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Abstract: Interactions between mobile robots and human operators in common areas require a
high level of safety, especially in terms of trajectory planning, obstacle avoidance and mutual
cooperation. In this connection, the crossings of planned trajectories and their uncertainty based on
model fluctuations, system noise and sensor noise play an outstanding role. This paper discusses
the calculation of the expected areas of interactions during human–robot navigation with respect to
fuzzy and noisy information. The expected crossing points of the possible trajectories are nonlinearly
associated with the positions and orientations of the robots and humans. The nonlinear transformation
of a noisy system input, such as the directions of the motion of humans and robots, to a system
output, the expected area of intersection of their trajectories, is performed by two methods: statistical
linearization and the sigma-point transformation. For both approaches, fuzzy approximations are
presented and the inverse problem is discussed where the input distribution parameters are computed
from the given output distribution parameters.

Keywords: human–robot interaction; Gaussian noise; sigma-point transformation; unscented Kalman
filter

1. Introduction

The planning and performing of mobile robot tasks in the presence of human operators
while sharing the same workspace requires a high level of stability and safety. Research
activities regarding navigation, obstacle avoidance, adaptation and collaboration between
robots and human agents have been widely reported [1,2]. Multiple target tracking for
robots using higher control levels in a control hierarchy are discussed in [3,4]. A human-
friendly interaction between robots and humans can be obtained by human-like sensor
systems [5]. A prominent role in robot navigation is the trajectory-crossing problem of
robots and humans [6,7] and corresponding fuzzy solutions [8]. Motivations for a fuzzy
solution of the intersection problem are manifold. One point is an uncertain measurement
of the position and orientation of the human agent, because of which the use of a fuzzy
signal and an adequate fuzzy processing seems natural [9,10]. Another aspect is the need
for decreasing the computing effort in the case of complex calculations during a very
small time interval. System uncertainties and observation noise lead to uncertainties of the
intersection estimations.

The objective of this work is the formulation of the crossing/intersection problem by
taking into account the uncertainties in human–robot systems, including sensors and motor
characteristics. An important aspect is to define permissible uncertainties in a human–robot
system for a given uncertainty at a possible intersection of their trajectories. Taking into
account the nonlinearities, this is performed by the differential approach and a following
analysis of the regarding Gaussian distributions. This approach is compared with the
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sigma-point transformation, which represents a simplification of the computation and a
qualitative extension of the analysis regarding the statistics of the random variables. For
broader areas of possible intersections, both methods are extended to fuzzy regions together
with different numbers and shapes of fuzzy sets. The most important contributions are
as follows:

• An investigation of uncertainties of possible intersection areas originating from sensor
noise or system uncertainties.

• A direct and inverse transformation of the error variables at the intersection areas for
two input variables (orientation angles) and two output variables (intersection coordinates).

• An extension of the method from two to six input variables (two orientation angles
and four position coordinates).

• An exploration of the formulations of fuzzy versions.
• A formulation of the problem by the sigma-point transformation and corresponding

comparison of the two methods.

This paper deals with the one-robot one-human trajectory-crossing problem, where
small uncertainties in the position and orientation may lead to high uncertainties at the
intersection points. The position and orientation of the human and robot are nonlinearly
coupled but can be linearized. In the following, the linear part of the nonlinear system is
considered in the analysis reported for small variations in the input [11]. Then, the “direct
task” is described, meaning that the parameters of the input distribution are transformed to
the output distribution parameters. The “inverse task” is also solved, meaning that for the
defined output distribution parameters the input parameters are calculated. In this paper,
two methods are outlined:

1. The statistical linearization, which linearizes the nonlinearity around the operating area at
the intersection. The means and standard deviations on the input parameters positions
(orientations) are transformed through the linearized nonlinear system to obtain the
means and standard deviations of the output parameters (the position of intersection).

2. The sigma-point transformation, which calculates the so-called sigma points of the input
distribution, including the mean and covariance of the input. The sigma points are
directly propagated through the nonlinear system [12–14] to obtain the means and
covariance of the output and, with this, the standard deviations of the output (the
position of intersection). The advantage of the sigma-point transformation is that
it captures the first- and second-order statistics of a random variable, whereas the
statistical linearization approximates a random variable only by its first order. How-
ever, the computational complexity of the extended Kalman filter (EKF, differential
approach) and unscented Kalman filter (UKF, sigma-point approach) is of the same
order [13].

This paper is organized as follows. Section 2 describes the related work already
conducted on unscented Kalman filters in mobile robot applications. In Section 3, the
general intersection problem and its analytical approach is described. Section 4 deals
with the transformation/conversion of Gaussian distributions for a two-input–two-output
system and for a six-input–two-output system plus the corresponding inverse and fuzzy
solutions. In Section 5, the sigma-point approach plus inverse and fuzzy solutions are
addressed. Section 6 presents simulations of the statistical linearization and the sigma-point
transformation to show the quality of the input–output conversion of the distributions and
the impact of different resolutions of fuzzy approximations on the accuracy of the random
variable intersection. Finally, Section 7 concludes this paper with a discussion of the two
different approaches and a comparison of the methods.

2. Related Work

The crossing problem for mobile robots has been especially dealt with by [6,7]. Both
publications deal with the so-called rendezvous problem whereby the key point is the
trajectory planning under time constraints, taking into account the dynamics of the con-
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tributing robots. Uncertainties of possible intersection areas that come from sensor noise or
system uncertainties are not discussed deeply. A fuzzy-adaptive extended Kalman filter
(FAEKF) for the real-time attitude estimation of a mobile robot is proposed in [15] where
fuzzy IF–THEN rules-based adaption laws modify the noise covariance matrices of the
filter. However, the use of unscented Kalman filters or sigma-point transformation has
not been discussed. For the estimation of landmarks, a simultaneous localization and
mapping (SLAM) method is presented by [16] where an iterated sigma-point FastSLAM
(ISP-FastSLAM) algorithm is proposed to minimize statistical linearization errors through
the Gaussian–Newton iteration. A further application is presented by [17] where a walking
robot uses sigma-point transformation for state estimation to guarantee stability in the sys-
tem’s hybrid dynamics, which contains continuous and switching parts during movement.
In [18], a vision-based SLAM system uses both extended Kalman filters (EKFs) and sigma-
point Kalman filter (SPKF) algorithms and showed its superiority over the EKF. The pose
estimation of mobile robots is discussed in [19] whereby several filter techniques like the
Kalman filter (EKF), the unscented Kalman filter (UKF) and several variants of the particle
filter (PF) are compared. It turns out that the UKF (also the sigma-point approach) exhibits
almost the same computational cost. In [20], the inter-robot and robot–target correlations
are discussed, and unscented transformation-based collaborative self-localization and a
target tracking algorithm between robots are proposed. A tutorial on different approaches
to exploit the structure of a system’s state and measurement models to reduce the computa-
tional demand of the algorithms is presented by [21]. In this publication, the computational
complexity of different state estimation algorithms is presented, showing the superiority of
the sigma-point transformation algorithms.

In all these publications, the problem of obstacle avoidance and/or the crossing
problem in the presence of human actors are not taken into account, because of which the
present paper is a further contribution to the robot–human interaction problem.

3. Computation of Intersections

The problem can be stated as follows:
A robot and human agent move in a common area according to their tasks or intentions.

To avoid collisions, possible intersections of the paths of the agents should be predicted
for both the trajectory planning and on-line interactions. To accomplish this, the positions,
orientations and intended movements of the robot and human should be estimated as
accurately as needed.

In this connection, uncertainties and noise on the random variables’ position/orientation
xR, xH , ϕR and ϕH of the robot and human have a great impact on the calculation of the
expected intersection position xc. The random variable xc is calculated as the crossing
point of the extension of the orientation or velocity vectors of the robot and human, which
may change during motion depending on the task and current interaction. The task is to
calculate the intersection and its uncertainty in the presence of the known uncertainties of
the acting agent robot and human.

System noise wR and wH for the robot and human can be obtained from experiments.
The noise wc of the “virtual” intersection is composed of the nonlinear transformed noise
wR and wH and some additional noise vc that may come from uncertainties of the nonlinear
computation of the intersection position xc (see Figure 1). In the following, the geometrical
relations are described as well as the fuzzy approximations and nonlinear transformations
of the random variables xR, xH , ϕR and ϕH .
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Figure 1. Intersection principle.

3.1. Geometrical Relations

Let the y-axis of the mobile coordinate frame of the robot and human be aligned
with their directions of motion. Furthermore, let the orientation angles ϕR and ϕH of the
robot and human be measured from the x-axis of the base frame counterclockwise. Let the
intersection (xc, yc) of the two linear trajectories xR(t) and xH(t) in a plane be described by
the following relations (see Figure 2):

xH = xR + dRH cos(ϕR + δR)

yH = yR + dRH sin(ϕR + δR) (1)

xR = xH + dRH cos(ϕH + δH)

yR = yH + dRH sin(ϕH + δH)

where xH = (xH , yH) and xR = (xR, yR) are the positions of the human and robot and
ϕH and ϕR are their orientation angles, and δH and δR are the positive angles measured
from the y coordinates counterclockwise. The angle at the intersection is β̃ = π − δR − δH .
The variables xH , xR, ϕR, ϕH δH and ϕH δR; distance dRH ; and angle γ are assumed to be
measurable. Angle γ is a bearing angle for the robot-to-human direction measured in base
coordinates. If ϕH is not directly measurable, then it can be computed by

ϕH = arcsin((yH − yR)/dRH)− δH + π (2)

The coordinates xc and yc of the intersection are computed straightforwardly by [8]

xc =
A − B

tan ϕR − tan ϕH

yc =
A tan ϕH − B tan ϕR

tan ϕR − tan ϕH
(3)

A = xR tan ϕR − yR

B = xH tan ϕH − yH

Rewriting (3) leads to

xc =

(
xR

tan ϕR
G

− yR
1
G

)
−

(
xH

tan ϕH
G

− yH
1
G

)
yc =

(
xR

tan ϕR tan ϕH
G

− yR
tan ϕH

G

)
−

(
xH

tan ϕH tan ϕR
G

− yH
tan ϕR

G

)
(4)

G = tan ϕR − tan ϕH



Sensors 2024, 24, 3303 5 of 24

After rearranging (4), we observe that xc = (xc, yc)T is linear in xRH = (xR, yR, xH , yH)
T

xc = ARH · xRH (5)

where

ARH = f (ϕR, ϕH) =

1
G

(
tan ϕR −1 − tan ϕH 1

tan ϕR tan ϕH − tan ϕH − tan ϕR tan ϕH tan ϕR

)
This notation is of advantage for further computations, such as the fuzzification of the

intersection problem and the transformation of the error distributions.

Figure 2. Human–robot scenario: geometry.

3.2. Computation of Intersections—Fuzzy Approach

The fuzzy solution presented in the following is a combination of classical analyti-
cal (crisp) methods and rule-based methods in the sense of a Takagi–Sugeno fuzzy rule
base. An appropriate choice of the number of fuzzy sets and corresponding fuzzy rules
depends strongly on the specific application. In the present case, fuzzy sets are used as the
approximation of nonlinear functions. In the following, we introduce a fuzzy rule-based
approximation of (5) with n × n fuzzy rules Ri,j

Ri,j : IF ϕR = ΦRi AND ϕH = ΦH j (6)

THEN xc = ARHi,j · xRH

n—the number of fuzzy terms, ΦRi and ΦHj for ϕR and ϕH , with the result

xc = ∑
i,j

wi(ϕR)wj(ϕH) · ARHi,j · xRH (7)

i, j = 1 . . . n, wi(ϕR), wj(ϕH) ∈ [0, 1] are normalized membership functions with ∑i wi(ϕR) = 1
and ∑j wj(ϕH) = 1.

Let the universes of discourse for ϕR and ϕH be ϕR, ϕH ∈ [0, 360]. Furthermore, let
these universes of discourse be divided into n partitions (for example, 6) of 60, which leads
to 6 × 6 fuzzy rules. The corresponding membership functions are shown in Figure 3. It
turns out that this resolution leads to a poor fuzzy approximation. The approximation
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quality can be improved by increasing the number of fuzzy sets, which however results
in a quadratic increase in the number of fuzzy rules. To avoid an “explosion” of the
number of fuzzy rules being computed in one time step, a set of sub-areas covering a
small number of rules for each sub-area is defined. Based on the measurements of ϕR and
ϕH , the appropriate sub-area is selected together with a corresponding set of rules (see
Figure 4, sub-area AR, AH). With this, the number of rules to be activated at one time step
of calculation is low, although the total number of rules can be high. At the borderlines
between the sub-areas, abrupt changes may occur, which can be avoided by overlapping
the sub-areas.

Figure 3. Membership functions for ∆ϕR, ∆ϕH = 0 − 360◦.

Figure 4. Fuzzy sectors.

3.3. Differential Approach

The positions and orientations of robots and humans are usually corrupted with
noise originated from system uncertainties, sensor errors and motor characteristics. These
uncertainties become apparent in uncertainties in the crossing/intersection areas of the
trajectories of the robot and human. The analysis of uncertainty and noise at xc generated
by the noise at ϕR, ϕH and xRH = (xR, yR, xH , yH)

T requires a linearization of (4) around
the operating points and with this a differential strategy. Let, for simplification, only
the orientation angles ϕR and ϕH be corrupted with noise. In Section 4.3, the positions
xRH = (xR, yR, xH , yH)

T are taken into account, too.
Differentiating (4) with xRH = const. yields

dxc = J̃ · dŒ

dŒ = (dϕR dϕH)T ; J̃ =
(

J̃11 J̃12
J̃21 J̃22

)
(8)
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where

J̃11 =
(
− tan ϕH 1 tan ϕH −1

) xRH
G2 · cos2 ϕR

J̃12 =
(

tan ϕR −1 − tan ϕR 1
) xRH

G2 · cos2 ϕH

J̃21 = J̃11 · tan ϕH

J̃22 = J̃12 · tan ϕR

The following sections deal with the accuracy of the computed intersection in the case
of noisy orientation information (see Figure 5).

Figure 5. Intersection with noisy orientations.

4. Transformation of Gaussian Distributions
4.1. General Assumptions

Consider a nonlinear system

z = F(x) (9)

where the random variables x = (x1, x2)
T denote the input, z = (z1, z2)

T denotes the
output and F denotes a nonlinear transformation. The distribution of the uncorrelated
Gaussian distributed components x1 and x2 is described by

fx1,x2 =
1

2πσx1 σx2

exp(−1
2
(

e2
x1

σ2
x1

+
e2

x2

σ2
x2

)) (10)

where ex1 = x1 − x̄1, with x̄1—the mean (x1) and σx1—the standard deviation x1, and
ex2 = x2 − x̄2, with x̄2—the mean (x2) and σx2—the standard deviation x2.

The goal is as follows: Given the nonlinear transformation (9) and the distribution (10),
compute the output signals z1 and z2 and their distributions together with their standard
deviations and the correlation coefficient. Linear systems transform Gaussian distributions
linearly such that the output signals are also Gaussian-distributed. This does not apply for
nonlinear systems, but if the input standard deviation is small enough, then a local linear
transfer function can be built for which the outputs are Gaussian-distributed. Suppose the
input standard deviations are small with respect to the nonlinear function, then the output
distribution can be written as follows:
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fz1,z2 =
1

2πσz1 σz2

√
1 − ρ2

z12

· (11)

exp(− 1
2(1 − ρ2

z12 )
(

e2
z1

σ2
z1

+
e2

z2

σ2
z2

− 2ρz12 ez1 ez2

σz1 σz2

))

ρz12 —the correlation coefficient.

4.2. Statistical Linearization, Two Inputs–Two Outputs
Let the nonlinear transformation F be described by two smooth transfer functions (see

block scheme Figure 6)

z1 = f1(x1, x2)

z2 = f2(x1, x2) (12)

where (x1, x2) = (ϕR, ϕH) and (z1, z2) = (xc, yc).
The linearization of (12) yields

dz = J̃ · dx or ez = J̃ · ex (13)

with

ez = (ez1 , ez2 )
T and ex = (ex1 , ex2 )

T (14)

dz = (dz1, dz2)
T and dx = (dx1, dx2)

T

J̃ =
(

∂ f1/∂x1, ∂ f1/∂x2
∂ f2/∂x1, ∂ f2/∂x2

)
(15)

Figure 6. Differential transformation.

4.2.1. Output Distribution

To obtain the density fz1,z2 (11) of the output signal, we invert (15) and substitute the
entries of ex into (10). J̃ is invertible if it is positive definite with | J̃| > 0. Otherwise, there
exist singularities due to different constellations of the position vector xRH and/or the
orientations ϕR and ϕH . To find all the singularities requires a further analysis, which is not
the content of this paper. However, a simple heuristic leads us to some obvious situations:
If ϕR = ϕH or ϕR = ϕH + π, then the human and robot would move in parallel either
in the same or the opposite direction. On the other hand, one may also obtain diverging
trajectories with no crossing.

ex = J · ez (16)

with J = J̃−1 and

J =
(

J11 J12
J21 J22

)
=

(
jxz
jyz

)
(17)

where jxz = (J11, J12) and jyz = (J21, J22). The entries Jij are the result of the inversion of J̃.
From this substitution, we obtain
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fx1,x2 = Kx1,x2 ·

exp(−1
2
· ez

T · (jx1 ,z
T , jx2 ,z

T) · S−1
x ·

(
jx1 ,z
jx2 ,z

)
· ez) (18)

where Kx1,x2 = 1
2πσx1 σx2

and

S−1
x =

 1
σ2

x1
, 0

0, 1
σ2

x2

 (19)

The exponent of (18) is rewritten into

xpo = −1
2
· ( 1

σ2
x1

(ez1 J11 + ez2 J12)
2

+
1

σ2
x2

(ez1 J21 + ez2 J22)
2) (20)

and furthermore

xpo = −1
2
· [e2

z1
(

J2
11

σ2
x1

+
J2
21

σ2
x2

) + e2
z2
(

J2
12

σ2
x1

+
J2
22

σ2
x2

) +

2 · ez1 ez2 (
J11 J12

σ2
x1

+
J21 J22

σ2
x2

)] (21)

Let

A = (
J2
11

σ2
x1

+
J2
21

σ2
x2

); B = (
J2
12

σ2
x1

+
J2
22

σ2
x2

)

C = (
J11 J12

σ2
x1

+
J21 J22

σ2
x2

) (22)

then a comparison of xpo in (21) and the exponent in (11) yields

1
(1 − ρ2

z12 )

1
σ2

z1

= A;
1

(1 − ρ2
z12 )

1
σ2

z2

= B

−2ρz12

(1 − ρ2
z12 )

1
σz1 σz2

= 2C (23)

The standard deviations σz1 and σz2 and the correlation coefficient ρz12 yield

ρz12 = − C√
AB

1
σ2

z1

= A − C2

B
;

1
σ2

z2

= B − C2

A
(24)

The result is as follows: If the parameter of the input distribution and the transfer
function F(x, y) are known, then the output distribution parameters can be computed
straightforwardly.

4.2.2. Fuzzy Solution

To save computing costs in real time, we create a TS fuzzy model that is represented
by the rules Rij.
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Rij : (25)

IF x1 = X1i AND x2 = X2i

THEN ρz12 = −
Cij√
AijBij

AND
1

σ2
z1

= Aij −
C2

ij

Bij
;

AND
1

σ2
z2

= Bij −
C2

ij

Aij

where X1i, X2i are fuzzy terms for x1, x2, and Aij, Bij, Cij are functions of the predefined
variables x1 = x1i and x2 = x2i.

From (25), we derive

ρz12 = −∑
ij

wi(x1)wj(x2)
Cij√
AijBij

1
σ2

z1

= ∑
ij

wi(x1)wj(x2)(Aij −
C2

ij

Bij
) (26)

1
σ2

z2

= ∑
ij

wi(x1)wj(x2)(Bij −
C2

ij

Aij
)

wi(x1) ∈ [0, 1] and wj(x2) ∈ [0, 1] are the weighting functions with ∑i wi(x1) = 1,
∑j wj(x2) = 1.

4.2.3. Inverse Solution

The previous paragraph discussed the direct transformation task: Let the distribution
parameters of the input variable be defined and find the corresponding output parameters.
However, it might also be useful to solve the inverse task: Given the output parameters
(standard deviation and correlation coefficient), find the corresponding input parameters.
This solution of the inverse task is similar to those discussed in Section 4.2. The starting
points are equations (10) and (11), which describe the distributions of the inputs and
outputs, respectively. Then, we substitute (13) into (10) and rename the resulting exponent
xpoz into xpox and discuss the exponent xpox

xpox =
−1

2(1 − ρ2
z12

)
(ex

T J̃TS−1
z J̃ex −

2ρz12 ez1 ez2

σz1 σz2

) (27)

with

S−1
x =

 1
σ2

z1
, 0

0, 1
σ2

z2


Now, comparing (27) with the exponent of (10) of the input density, we find that the

mixed term in (27) must be zero, from which we obtain the correlation coefficient ρz12 and
with this the standard deviations of the inputs
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ρz12 = (
J̃11 J̃12

σ2
z1

+
J̃21 J̃22

σ2
z2

)
σz1 σz2

( J̃11 J̃22 + J̃12 J̃21)

1
σ2

x
= (

J̃2
11

σ2
z1

+
J̃2
21

σ2
z2

− 2ρz12

σz1 σz2

J̃11 J̃21)/(1 − ρ2
z12

) (28)

1
σ2

y
= (

J̃2
12

σ2
z1

+
J̃2
22

σ2
z2

− 2ρz12

σz1 σz2

J̃12 J̃22)/(1 − ρ2
z12

)

The detailed development can be found in [22].

4.3. Six Inputs–Two Outputs

Consider again the nonlinear system

xc = F(x) (29)

In the previous subsections, we assumed the positions xR and xH not to be cor-
rupted with noise. However, taking into account the positions to be random variables,
the number of inputs is 6 so that the input vector yields x = (x1, x2, x3, x4, x5, x6)

T or
x = (ϕR, ϕH , xR, yR, xH , yH) with the output vector xc = (xc, yc)T .

Furthermore, let the uncorrelated Gaussian-distributed inputs x1 . . . x6 be described
by the 6-dim density

fxi =
1

(2π)6/2|Sx|1/2 exp(−1
2
(ex

TSx
−1ex)) (30)

where ex = (ex1, ex2, . . . , ex6)
T ; ex = x − x̄, x̄—the mean(x) and Sx—the covariance matrix.

Sx =


σ2

x1
0 . . . 0

0 σ2
x2

. . . 0
. . . . . . . . . . . .
0 . . . 0 σ2

x6


According to (11), the output density is described by

fxc ,yc =
1

2πσxc σyc

√
1 − ρ2

· (31)

exp(− 1
2(1 − ρ2)

(eT
xc Sc

−1exc −
2ρexc eyc

σxc σyc

))

ρ—the correlation coefficient, exc = (exc , eyc)
T .

After some calculations [23], we find for ρ, 1
σ2

xc
and 1

σ2
yc

ρ = − C√
AD

1
σ2

xc

= A − C2

D
;

1
σ2

yc

= D − C2

A
(32)

with

A =
6

∑
i=1

1
σ2

xi

J2
i1; B =

6

∑
i=1

1
σ2

xi

Ji1 Ji2 (33)

C =
6

∑
i=1

1
σ2

xi

Ji1 Ji2; D =
6

∑
i=1

1
σ2

xi

J2
i2
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This is the counterpart to the 2-dim input case (24).

4.3.1. Inverse Solution

An inverse solution cannot be uniquely computed due to the undetermined character
of the 6-input–2-output system. Therefore, from the required variances at the intersection
position (output), the corresponding variances for the positions and orientations of the
robot–human or robot–robot (input) cannot be concluded.

4.3.2. Fuzzy Approach

The steps to the fuzzy approach are very similar to those of the 2-input case:

- Define the operation points xi = (x1, x2, x3, x4, x5, x6)
T
i ;

- Compute Ai, Bi and Ci at xi = (x1, x2, x3, x4, x5, x6)
T
i from (33);

- Formulate the fuzzy rules Ri according to (25) and (26), i = 1 . . . n.

The number n of rules is computed as follows:
With l = 6—the number of fuzzy terms and k = 6—the number of inputs, we obtain

n = lk = 66—the number of rules.
This number of rules is unacceptably high. To limit n to an adequate number, one has

to limit the number of inputs and/or fuzzy terms to look for the most influential variables
either in a heuristic or systematic way [24]. This however is not the issue to be discussed in
this paper.

5. Sigma-Point Transformation

In the following, the estimation/identification of the standard deviations of possible
intersection coordinates of trajectories for both the robot–robot and human–robot com-
binations by means of the sigma-point technique is discussed. The following method
is based on the unscented Kalman filter technique where the intersections cannot be di-
rectly measured but predicted/computed only. Nevertheless, it is possible to compute
the variance of the predicted events, such as possible collisions or planned rendezvous
situations, by a direct propagation of statistical parameters—the sigma points—through
the nonlinear geometrical relation, which is a result of the crossing of two trajectories.
Let x = (x1, x2)

T—the input vector and xc = (xc1, xc2)
T—the output vector where for

the special case (x1, x2)
T = (ϕR, ϕH)

T and (xc1, xc2)
T = (xc, yc)T . The nonlinear relation

between x and xc is given by (34)
xc = F(x) (34)

For the discrete case, we obtain for the state xc

xc(k) = F(x(k − 1) + w(k − 1)) (35)

and for the measured output zc(k)

zc(k) = h(xc)(k) + v(k)) (36)

where w and v are the system noise and measurement noise, respectively. h(xc) is the
output nonlinearity. Furthermore, let there be the following:

x̄(k)—the mean at time tk;
P(k)—the covariance matrix;
x0—the initial state with the known mean µ0 = E(x0);
P0(k) = E[(x0 − µ0)(x0 − µ0)

T ].

5.1. Selection of Sigma Points

Sigma points are the selected parameters of a given error distribution of a random
variable. Sigma points lie along the major eigen-axes of the covariance matrix of the random
variable. The height of each sigma point (see Figure 7) represents its relative weight W j

used in the following selection procedure.
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Figure 7. Sigma points for a 2-dim Gaussian random variable.

Let X(k − 1) be a set of 2n + 1 sigma points where n is the dimension of the state space
(in our example, n = 2).

X(k − 1) = {(xj(k − 1), W j)|j = 0 . . . 2n} (37)

Consider the following selection of sigma points

x0(k − 1) = x̄(k − 1)

−1 < W0 < 1 (38)

W0 =
λ

n + λ
; λ = α2(n + κ)− n

xi(k − 1) = x̄(k − 1) +
√
(

n
1 − W0 P(k − 1)); i = 1 . . . n

xi(k − 1) = x̄(k − 1)−
√
(

n
1 − W0 P(k − 1)); i = (n + 1) . . . 2n

W j =
1 − W0

2n
(39)

under the following condition
2n

∑
j=0

W j = 1 (40)

α and κ are scaling factors. A usual choice is α = 10−2 and κ = 0.
√

n
1−W0 P(k − 1) is

the row/column of the matrix square root of n
1−W0 P. The square root of a matrix P is the

solution S for P = S · S, which is obtained by Cholesky factorization.

5.2. Model Forecast Step

To go on with the UKF, the following step is devoted to the model forecast. In this
way, the sigma points xj(k) are propagated through the nonlinear process model

x f ,j
c (k) = F(xj(k − 1)) (41)

where the superscript f means “forecast”. From these transformed and forecasted sigma
points, the mean and covariance for the forecast value of xc(k) are

x f
c (k) =

2n

∑
j=0

W jx f ,j
c (k)

P f (k) =
2n

∑
j=0

W j(x f ,j
c (k)− x f

c (k))(x
f ,j
c (k)− x f

c (k))T (42)



Sensors 2024, 24, 3303 14 of 24

5.3. Measurement Update Step

In this step, the sigma points are propagated through the nonlinear observation model

z f ,j
c (k) = h(xj

c(k − 1)) (43)

from which we obtain the mean and covariance (innovation covariance)

z f
c (k − 1) =

2n

∑
j=0

W jz f ,j
c (k − 1)

Cov(z̃ f
c (k − 1)) = (44)

2n

∑
j=0

W j(z f ,j
c (k − 1)− z f

c (k − 1))×

(z f ,j
c (k − 1)− z f

c (k − 1))T + R(k)

and the cross-covariance

Cov(x̃ f
c (k), z̃ f

c (k − 1)) =
2n

∑
j=0

W j(x f ,j
c (k)− x f

c (k))(z
f ,j
c (k − 1)− z f

c (k − 1))T (45)

5.4. Data Assimilation Step

In this step, the forecast information is combined with the new information from the
output z(k) from which we obtain, with the Kalman filter, gain K

x̂c(k) = x f
c (k) + K(k)(zc(k)− z f

c (k − 1)) (46)

The gain K is given by

K(k) = Cov(x̃ f
c (k), z̃ f

c (k − 1)) · Cov−1(z̃ f
c (k − 1)) (47)

and the posterior covariance is updated by

P(k) = P f (k)− K(k) · Cov(z̃ f
c (k − 1))KT(k) (48)

Usually, it is sufficient to compute the mean and variance for the output/state xc of
the nonlinear static system F(x). In this case, it is possible to stop further computing at
Equation (42), meaning to rather calculate the transformed sigma points x f ,j

c and develop
the specific output means and variances from (41) and (42). In this connection, it is enough
to substitute the covariance matrix Q into (38) instead of P. One advantage of the sigma-
point approach prior to statistical linearization is the easy scalability to multi-dimensional
random variables.

For the intersection problem, there are 2 cases:

1. The 2 inputs, 2 outputs (2 orientation angles and 2 crossing coordinates);
2. The 6 inputs, 2 outputs (2 orientation angles and 4 position coordinates, and 2 crossing

coordinates).

For the statistical linearization (method 1), the step from the 2 inputs–2 outputs case
to the (6,2)-case is computationally more costly than that for the sigma-point approach
(method 2), (see Equations (20)–(24) versus Equations (37) and (40)–(42)).

5.5. Sigma Points—Fuzzy Solutions

In order to lower the computing effort, the application of the TS fuzzy interpolation
may be a solution, which will be shown in the following. Having a look at the two-
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dimensional problem, we can see a nonlinear propagation of the input sigma points
through a nonlinear function F. Let xj be the two-dimensional “input” sigma points

xj = (xj
1, xj

2)
T (49)

or for the special case “intersection”

xj = (ϕ
j
R, ϕ

j
H)

T (50)

The propagation through F leads to the “output” sigma points

x f ,j
c (k) = F(xj(k − 1)) (51)

or for the special case

x f ,j
c (k) = F(xj

1(k − 1), xj
2(k − 1)) =

F(ϕj
R(k − 1), ϕ

j
H(k − 1)) (52)

The special nonlinear function F is described by (see (5))

xc = ARH(ϕR, ϕH) · xRH (53)

where ARH is a nonlinear matrix (6) linearly combined with the position vector
xRH = (xR, yR, xH , yH)

T .
A fuzzification aims at ARH :

F f uzz(ϕR, ϕH) = A f uzz
RH · xRH =

m

∑
l1,l2

wl1(ϕR)wl2(ϕH) · ARH(ϕ
l1
R , ϕl2

H) · xRH (54)

Applied to the sigma points (ϕj
R, ϕ

j
H), we obtain a TS fuzzy model described by the

following rules Rl1,l2

Rl1,l2 : (55)

IF ϕ
j
R = Φj

Rl1
AND ϕ

j
H = Φj

Hl2

THEN x f ,j
c = ARH(ϕ

l1,j
R , ϕ

l2,j
H ) · xRH

where Φj
Rl1

, Φj
Hl2

are fuzzy terms for ϕ
j
R, ϕ

j
H ; the matrices ARH are functions of the prede-

fined variables ϕ
j
R and ϕ

j
H . This set of rules leads to the result

x f ,j
c = F f uzz(ϕ

j
R, ϕ

j
H) =

m

∑
l1,l2

wl1(ϕ
j
R)w

l2(ϕ
j
H) · ARH(ϕ

l1,j
R , ϕ

l2,j
H ) · xRH (56)
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wl1(ϕ
j
R) ∈ [0, 1] and wl2(ϕ

j
H) ∈ [0, 1] are weighting functions with ∑l1 wl1 = 1, ∑l2 wl2 = 1.

The advantage of this approach is that the l1 × l2 matrices Al1,l2,j
RH = ARH(ϕ

l1,j
R , ϕ

l2,j
H ) can be

computed off-line. Then, the calculation of the mean and covariance matrix is obtained by

x f
c (k) =

2n

∑
j=0

Wjx f ,j
c (k)

P f (k) =
2n

∑
j=0

Wjx̃ f ,j
c (k)(x̃ f ,j

c (k))T (57)

x̃ f ,j
c = x f ,j

c − x f
c

From the covariance P f , the variances σcxx, σcyy, σcxy can be obtained

σcxx = E((x f
c − x̄ f

c )
2))

σcyy = E((y f
c − ȳ f

c )
2)) (58)

σcxy = σcyx = E((x f
c − x̄ f

c ) · (y
f
c − ȳ f

c ))

5.6. Inverse Solution

The inverse solution for the sigma-point approach is much easier to obtain than
that for the statistical linearization method. Starting from Equation (34), we build the
inverse function

x = F−1(xc) (59)

on the condition that F−1 exists. Then, the covariance matrix P is defined in correspon-
dence to the required variances σcxx, σcyy and σcxy. The following steps correspond to
Equations (34)–(42). The position vector xRH is assumed to be known. The inversion of F
requires a linearization of xRH and a starting point to obtain a stable convergence to the
inverse F−1. The result is the mean x and the covariance Q at the input. A reliable inversion
is only possible for the 2-input–2-output case.

5.7. Six-Inputs–Two-Outputs

This case works exactly as the 2-input–2-output case along with Equations (34)–(42)
due to the fact that the computation of the sigma points (38)–(40) and the propagation
through the nonlinearity F automatically include the input and output dimensions.

6. Simulation Results

The following simulations show the results of the uncertainties of the predicted
intersections based on statistical linearization and sigma-point transformation. For both
methods, identical parameters are employed for comparison reasons (see Figure 2). The
position/orientation of the robot and human are given by the following:

xR = (xR, yR)
T = (2, 0)Tm;

xH = (xH , yH)
T = (4, 10)Tm;

ϕR = 1.78 rad = 102◦;
ϕH = 3.69 rad = 212◦.
ϕR and ϕH are corrupted by Gaussian noise with standard deviations (std) of σϕR = σx1 = 0.02
rad, (= 1.1◦), and σϕH = σx2 = 0.02 rad, (=1.1◦) .

6.1. Statistical Linearization

Table 1 shows a comparison of the non-fuzzy method with the fuzzy approach using
sectors of 60◦, 30◦, 15◦, 7.5◦ of the unit circle for the orientations of the robot and human.
The notations in Table 2 are as follows: σxc—std-computed, σxm—std-measured, etc. As
expected, we see that higher resolutions lead to a better match between the fuzzy and
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analytical approach. Furthermore, the match between the measured and calculated values
depends on the form of membership functions (MFS). For example, low input standard
deviations (0.02 rad) show a better match for Gaussian membership functions, and higher
input standard deviations (0.05 rad = 2.9◦) require Gaussian bell-shaped membership
functions, which comes from different smoothing effects (see columns 4 and 5 in Table 2).

A comparison of the control surfaces and corresponding measurements xcm, ycm (black
and red dots) is depicted in Figures 8–10. Figure 8 shows the control surface of xc and yc
for the non-fuzzy case (4). The control surfaces of the fuzzy approximations (7) for the 30◦

and 7.5◦ sectors are shown in Figures 9 and 10. The resolution 30◦ (Figure 9) shows a very
high deviation compared to the non-fuzzy approach (Figure 8), which decreases further
down to the resolution 7.5◦ (Figure 10). This explains the high differences between the
measured and computed standard deviations and correlation coefficients, in particular for
sector sizes of 30◦ and higher.

Table 1. Standard deviations and fuzzy and non-fuzzy results.

Input Std 0.02 Gauss, Bell Shaped (GB) Gauss 0.05 GB

sector size/ ◦ 60◦ 30◦ 15◦ 7.5◦ 7.5◦ 7.5◦

non-fuzz σxc 0.143 0.140 0.138 0.125 0.144 0.366

fuzz σxc 0.220 0.184 0.140 0.126 0.144 0.367

non-fuzz σxm 0.160 0.144 0.138 0.126 0.142 0.368

fuzz σxm 0.555 0.224 0.061 0.225 0.164 0.381

non-fuzz σyc 0.128 0.132 0.123 0.114 0.124 0.303

fuzz σyc 0.092 0.087 0.120 0.112 0.122 0.299

non-fuzz σym 0.134 0.120 0.123 0.113 0.129 0.310

fuzz σym 0.599 0.171 0.034 0.154 0.139 0.325

non-fuzz ρxyc 0.576 0.541 0.588 0.561 0.623 0.669

fuzz ρxyc −0.263 0.272 0.478 0.506 0.592 0.592

non-fuzz ρxym 0.572 0.459 0.586 0.549 0.660 0.667

fuzz ρxym 0.380 0.575 0.990 0.711 0.635 0.592

Figure 8. Control surface non-fuzzy, units of ϕR and ϕH in rad.
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Figure 9. Control surface fuzzy, 30◦, units of ϕR and ϕH in rad.

Figure 10. Control surface fuzzy, 7.5◦, units of ϕR and ϕH in rad.

6.2. Sigma-Point Method

Two-inputs–two-outputs:
The simulation of the sigma-point method is based on a Matlab implementation of an

unscented Kalman filter by [25]. The first example deals with the 2-inputs–2-outputs case
in which only the orientations are taken into account, but the disturbances of the positions
of the robot and human are not part of the sigma-point calculation. A comparison between
the computed and measured covariance shows a very good match. The same holds for the
standard deviations σxc, σyc. A comparison with the statistical linearization shows a good
match as well (see Table 2, rows 1 and 2).

A view at the sigma points presents the following results: Figure 11 shows the two-
dimensional distribution of the orientation angles (ϕR, ϕH) and the corresponding sigma
points s1, . . . , s5 where s1 denotes the mean value. Figure 12 shows the two-dimensional dis-
tribution of the intersection coordinates (xc, yc) with the sigma points S1, . . . , S5. S1 denotes
the mean value and S1, . . . , S5 are distributed in such a way that the si are transformed
into Si, i = 1 . . . 5. From both figures, an optimal selection of both s1, . . . , s5 and S1, . . . , S5
can be observed, which results in a good match of the computed and measured standard
deviations σxc .
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Figure 11. Sigma points, input, units of ϕR and ϕH in rad.

Figure 12. Sigma points, output.

Six-inputs–two-outputs:
The 6-inputs–2-outputs example shows that the additional consideration of 4 input

position coordinates with σxR = 0.02 leads to similar results both for the computed and mea-
sured covariances and between the sigma-point method and statistical linearization (see
P(7, 7) = σx

2
c , P(8, 8) = σy

2
c and covar(7, 7) = σx

2
m, covar(8, 8) = σy

2
m, and σx

2
c —computed,

and σx
2
m—the measured variation). Table 2 shows the covariance submatrix considering

the output positions only.

Computed covariance:

P = 10−1 ×



0.004 −0.000 −0.000 0.000 −0.000 −0.000 −0.030 −0.018
−0.000 0.004 0.000 −0.000 −0.000 −0.000 0.003 −0.017
−0.000 0.000 0.004 0.000 −0.000 −0.000 0.004 0.002
0.000 −0.000 0.000 0.004 −0.000 −0.000 0.001 0.000
−0.000 −0.000 −0.000 −0.000 0.004 0.000 0.000 −0.002
−0.000 −0.000 −0.000 −0.000 0.000 0.004 −0.001 0.004
−0.030 0.003 0.004 0.001 0.000 −0.001 0.235 0.127
−0.018 −0.017 0.002 0.000 −0.002 0.004 0.127 0.165


(60)

σxc = 0.153, σyc = 0.122
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Measured covariance:

covar = 10−1 ×



0.004 0.000 0.000 0.000 0.000 −0.000 −0.028 −0.020
0.000 0.004 0.000 0.001 0.000 −0.000 0.000 −0.020
0.000 0.000 0.004 −0.000 0.001 −0.001 0.003 0.001
0.000 0.001 −0.000 0.004 −0.000 −0.000 −0.000 −0.003
0.000 0.000 0.001 −0.000 0.005 −0.000 −0.001 −0.006
−0.000 −0.000 −0.001 −0.000 −0.000 0.005 −0.000 0.005
−0.028 0.000 0.003 −0.000 −0.001 −0.000 0.213 0.131
−0.020 −0.020 0.001 −0.003 −0.006 0.005 0.131 0.182


(61)

σxc = 0.145, σyc = 0.134

Two-inputs–two-outputs, direct and inverse solution
The next example shows the computation of the direct and inverse cases. In the direct

case, we obtain again similar values between the computed and measured covariances and,
with this, the standard deviations. The results of the inverse solution lead to similar values
of the original inputs (orientations x1 = ϕR, x2 = ϕH) (see Table 2). The simulations of the
fuzzy versions showed the same similarities and can therefore be left out here.

Table 2. Covariances, standard deviations—computed and measured.

Outputs Covariance,
Computed Covariance, Measured σxc, Comp/Meas σyc, Comp/Meas

2 inputs P =

(
0.0213 0.0114
0.0114 0.0159

)
covar =

(
0.0264 0.0146
0.0146 0.0166

)
0.145/0.144 0.126/0.134

2 inputs, stat. lin. - - 0.144/0.142 0.124/0.129

6 inputs P =

(
0.0235 0.0127
0.0127 0.0165

)
covar =

(
0.0213 0.0131
0.0131 0.0182

)
0.135/0.145 0.122/0.134

Direct solution P =

(
0.0234 0.0133
0.0133 0.0151

)
covar =

(
0.0264 0.0146
0.0146 0.0166

)
0.152/0.162 0.128/128

Inverse solution P = 10−3 ×
(

0.4666 0.0522
0.0522 0.4744

)
covar = 10−3 ×

(
0.4841 −0.0190
−0.0190 0.396

)
0.0215/0.0220 0.0217/0.0190

Two-inputs–two-outputs, moving robot–human
The next example deals with the robot and human in motion. Figure 13 shows the

positions and orientations of the robot and human at selected time steps t1 . . . t5 and the
development of the corresponding intersections xc.

Figure 13. Moving robot and human.
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Figure 14 shows the corresponding time plot. The time steps t1 . . . t5 are taken at 0.58 s,
. . . , 4.58 s with a time distance of 1 s, which is 25 time steps of 0.04 s each. The robot and
human start at

xR = (xR, yR)
T = (2, 0)Tm

xH = (xH , yH)
T = (4, 10)Tm

with the velocities
ẋR(k) = −0.21 m/s;
ẏR(1) = +0.24 m/s;
ẋH(k) = −0.26 m/s;
ẏH(1) = −0.24 m/s.
k is the time step.

The x components of the velocities ẋR(k) and ẋH(k) stay constant during the
whole simulation.

The y components change their velocities with constant factors

ẏR(k + 1) = KR · ẏR(k)

ẏH(k + 1) = KH · ẏH(k)

where KR = 1.2 and KH = 0.9. The orientation angles start with the following:

ϕR = 1.78 rad;
ϕH = 3.69 rad.

They change their values every second according to the direction of motion.
From both plots, one observes an expected decrease in the output standard deviations

for a mutual decrease in their distances to the specific intersection and a good match
between the computed and measured values xc (see Table 3). With the information about
the distance of the robot and the standard deviation from and at the expected intersection,
respectively, it becomes possible to plan either an avoidance strategy or mutual cooperation
between the robot and human.

Figure 14. Time plot, robot and human.

Table 3. Covariances, standard deviations—computed and measured, moving robot–human.

Outputs Covariance, Computed Covariance, Measured σxc, Comp/Meas σyc, Comp/Meas

t1 P =

(
0.0220 0.0017
0.0017 0.0163

)
covar =

(
0.0246 −0.0002
−0.0002 0.0202

)
0.148/0.156 0.127/0.142

t2 P =

(
0.0198 0.0023
0.0023 0.0138

)
covar =

(
0.0222 0.0018
0.0018 0.0153

)
0.140/0.148 0.117/0.123

t3 P =

(
0.0168 0.0030
0.0030 0.0107

)
covar =

(
0.0140 0.0040
0.0040 0.0088

)
0.129/0.118 0.103/0.093

t4 P =

(
0.0151 0.0029
0.0029 0.0083

)
covar =

(
0.0127 0.0014
0.0014 0.0073

)
0.122/0.112 0.091/0.085

t5 P =

(
0.0125 0.0023
0.0023 0.0061

)
covar =

(
0.0102 0.0030
0.0030 0.0056

)
0.112/0.101 0.078/0.074
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7. Summary and Conclusions

The content of this work is the prediction of encounter situations of mobile robots and
human agents in shared areas by analyzing planned/intended trajectories in the presence of
uncertainties and system and observation noise. In this context, the problem of intersections
of trajectories with respect to system uncertainties and Gaussian noise of the position
and orientation of the agents involved is discussed. The problem is addressed by two
methods: the statistical linearization of distributions and the sigma-point transformation
of the distribution parameters. The positions and orientations of the robot and human
are corrupted with Gaussian noise represented by the parameters’ mean and standard
deviation. The goal is to calculate the mean and standard deviation/variation at the
intersection via the nonlinear relation between the positions/orientations of the robot and
human, on the one hand, and the position of the intersection of their intended trajectories,
on the other hand.

This analysis is realized by the statistical linearization of the nonlinear relation between
the statistics of the robot and human (input) and the statistics of the intersection (output).
The output results are the mean and standard deviation of the intersection as functions
of the input parameters’ mean and standard deviation of the positions and orientations
of robot and human. This work is first carried out for two-input–two-output relations
(two orientations of the robot–human and two intersection coordinates) and then for six
inputs–two outputs (two orientations and four position coordinates of the robot–human
and two intersection coordinates). These cases were extended to their fuzzy versions by
different Takagi–Sugeno (TS) fuzzy approximations and compared with the non-fuzzy
case. Up to a certain resolution, the approximation works as accurately as the original non-
fuzzy version. For the two-input–two-output case, an inverse solution is derived, except
for the six-input–two-output case because of the undetermined nature of the differential
input–output relation.

The sigma-point transformation aims at transforming/propagating distribution
parameters—the sigma points—directly through nonlinearities. The transformed sigma
points are then converted into the distribution parameters’ mean and covariance matrix.
The sigma-point transformation is closely connected to the unscented Kalman filter, which
is used in the example of the robot and human in motion. The specialty of the example
is a computed virtual system output (“observation”)—the intersection of two intended
trajectories—where the corresponding output uncertainty is a sum of the transformed posi-
tion/orientation noise and the computational uncertainty from the fuzzy approximation.
In total, the comparison between the computed and measured covariances shows a very
good match and the comparison with the statistical linearization shows good coincidences
as well. Both the sigma-point transformation and the differential statistical linearization
scales for more than two variables linearly. Their computational complexity is in the same
order [13]. However, if the model is nonlinear, then the differential linearization (EKF)
serves as the first-order or second-order approximating estimator. If the system is highly
nonlinear, the EKF may diverge and the sigma-point approach produces typically better
results. In summary, a prediction of the accuracy of human–robot trajectories using the
methods presented in this work increases the performance of human–robot collaboration
and human safety. In future work, this method can be used for robot–human scenarios
in factory workshops and for robots working in complicated environments like rescue
operations in cooperation with human operators.
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