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Abstract: This paper develops a methodology to accommodate uncertainty in a GARCH model with
the goal of improving portfolio decisions via Bayesian learning. Given the abundant evidence of
uncertainty in estimating expected returns, we focus our analyses on the single parameter driving
expected returns. After deriving an Uncertainty-Implied GARCH (UI-GARCH) model, we investigate
how learning about uncertainty affects investments in a dynamic portfolio optimization problem. We
consider an investor with constant relative risk aversion (CRRA) utility who wants to maximize her
expected utility from terminal wealth under an Affine GARCH(1,1) model. The corresponding stock
evolution, and therefore, the wealth process, is treated as a Bayesian information model that learns
about the expected return with each period. We explore the one- and two-period cases, demonstrating
a significant impact of uncertainty on optimal allocation and wealth-equivalent losses, particularly in
the case of a small sample size or large standard errors in the parameter estimation. These analyses
are conducted under well-documented parametric choices. The methodology can be adapted to other
GARCH models and applications beyond portfolio optimization.
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1. Introduction

Working with statistical models requires the estimation of parameters. In most cases,
these parameters are not directly observable, and therefore, carry the risk of an inaccurate
(e.g., large variance, biased) estimate. When using these models in portfolio construction,
inaccurate estimates of parameters driving expected returns, variances, and covariances
represent an additional source of risk to the investor. This risk, also known as estimation
error or parameter risk, should be considered when making decisions based on the model.

A main direction in the literature to deal with estimation error is the Bayesian approach.
Here, the unknown parameters are treated as random variables. A prior over the parameters
together with observations are used to calculate a posterior distribution of the parameters
and an update of the return distribution. Hence, a Bayesian optimal portfolio can be built by
maximizing an objective function with respect to the updated distribution. This direction of
Bayesian statistics has been applied in various studies, such as [1], relying on diffuse priors,
and [2], adding economic objectives to the prior. Both studies work within one-period
mean-variance theory [3], while [4] extended them to a multi-period model for a general
posterior. Similarly, ref. [5] proposed a Bayesian approach in a discrete setting for normally
distributed returns with an unknown mean and constant volatility, while ref. [6] extended
this approach to a multivariate setting, still assuming constant volatility. In general, ref. [7]
offered a comprehensive framework for addressing parameter error within the context of
stochastic control models and Bayesian analysis.
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An alternative approach to study estimation error consists of building a confidence
interval around the parameter of interest and adding the built as a constraint to the optimiza-
tion; see, for instance, [8] for one-period mean-variance models and [9] for continuous-time
models. We should also mention the work of [10], who used fuzzy numbers to tackle
parameter risk in a mean-variance framework.

The formulation and study of an expected-utility-maximizing control model, within a
Bayesian setting for parameter error in a GARCH model, is the main objective of this work.
We focus on the error arising from the market price of risk (MPR) driving the expected asset
return to derive a semi closed-form representation for the optimal allocation. The expected
return is much harder to estimate than variances and covariances; see [11]. Ref. [12] found
that errors in estimating expected returns are over 10 times as costly as errors in estimating
variances, and over 20 times as costly as errors in estimating covariances. This is in terms
of the cash-equivalent loss from using estimated rather than true parameters.

It is important to emphasize that this work does not go into the larger but also more
complex area of ambiguity aversion, also known as model uncertainty or robustness
analysis which is a future area of research. A Bayesian approach assumes a single prior on
the unknown parameter, which is recognized in the literature as neutral to uncertainty in
the sense of [13]. As per the seminal work of [14], decision makers might not be neutral
to ambiguity; see [15,16] for works allowing for multiple prior as a way of capturing
ambiguity/uncertainty. This phenomenon occurs when people have little competence in
assessing the probability distribution or feel that other people are more qualified to evaluate
the risk of their portfolios.

One of the objectives here is to derive closed-form solutions, which are rare for multi-
period portfolio analysis. This is not the case for continuous-time analyses, where the
ground-breaking work of [17] provided analytical expressions in the context of Expected
Utility Theory (EUT). Other possible frameworks for portfolio optimization such as mini-
max or multi-objective optimization are shown in [18]. In the common EUT framework,
not only solutions for models with stochastic volatility have been derived (see [19]), but
also solutions in the presence of ambiguity aversion; see the seminal work of [20], who
used EUT and robust control to obtain closed-form solutions while modeling the stocks via
geometric Brownian motion (GBM). This work was extended to study ambiguity aversion
in a stochastic volatility setting by [21]. To the best of our knowledge, estimation error,
as opposed to ambiguity aversion, has not been fully addressed in continuous time. A
related, but not equivalent, topic is filtering analysis. In filtering, instead of parameters, the
investor wants to learn about an unobservable process, reminiscent of the parameter from
the Bayesian perspective; see [22].

In practice, continuous-time models can be challenging to calibrate, particularly those
with stochastic volatility. This has led to a preference for models in discrete time, not only
due to their ease of estimation, but also the ability to provide a more flexible representation
of financial markets for investors. Nonetheless, to the best of our knowledge, there is no
study in the literature addressing GARCH models in portfolio optimization and parameter
errors via Bayesian analysis. The Affine GARCH model, pioneered by [23], which permits
closed-form pricing of options, has led to recent analytical results within EUT; see [24,25]
for extensions to other Affine GARCH models. In these works, the authors did not account
for parameter uncertainty. The availability of analytical solutions in the world of Affine
GARCH models makes them the best candidate for the Bayesian analysis conducted here.

For clarity, we outline the following specific contributions of this work:

• We adapt the control model theory developed in [7] to the setting of an Affine GARCH
model with Bayesian learning on the expected return parameter λ. This leads to a new
non-affine GARCH model named Uncertainty-Implied GARCH (UI-GARCH) model.
Although starting with an Affine GARCH, a non-affine structure appears due to the
formulation of parameter uncertainty.

• We pioneer the study of an expected utility portfolio optimization problem with a
CRRA utility under the UI-GARCH model. This allows us to understand the impact
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of uncertainty on portfolio decisions. We derive closed-form solutions for an optimal
allocation in a one-period and a two-period representation.

• We perform numerical analyses for two well-documented parametric sets. Using
maximum likelihood estimates and standard errors for the prior. Comparing to the
case of no uncertainty, we find large changes in optimal allocation (in the range of 20%
to 120%), and significant wealth-equivalent losses, which could be up to 20% in the
extreme case of low risk aversion and low sample size.

• Given the impact of uncertainty on λ within a GARCH model for one- and two-
period representations, we conclude that the importance of accounting for uncertainty
increases with the number of periods and the variety of uncertain parameters. This
highlights the need for further research in this area.

• The methodology developed here can be expanded to other GARCH models, not
exclusively Affine, as well as objectives beyond portfolio theory.

The paper is structured as follows. Section 2 introduces the mathematical setup,
presents the control model as well as extensions incorporating uncertainty, and considers
the optimization problem within this framework. Section 3 presents numerical results on
the portfolio optimization, displays a sensitivity analysis, and performs a comparison to
strategies without the inclusion of uncertainty. Section 4 concludes the paper. Appendix A
provides proofs and calculations as well as complementary material.

2. GARCH Model and Control Settings

Let (Ω,F ,P) be a complete probability space with filtration {Fn}N
n∈{0,...,N}. All stochas-

tic processes are defined on this space. In this setting the logarithm of a risky asset price will
be modeled by an affine GARCH model introduced by [23] (referred to as HN-GARCH).
The dynamics of this model are given by:

Xn = Xn−1 + r + λhn +
√

hnzn,

hn = ω + βhn−1 + α
(

zn−1 − θ
√

hn−1

)2
,

where X0 is non-random, r is the continuously compounded single-period risk-free rate,
zn is a sequence of independent standard normal innovations, and hn is the conditional
variance of the log-return Xn of the asset between n − 1 and n with β + αθ2 < 1 ensuring
stationarity. The long-term average of the variance h is given by:

h̄ =
α + ω

1 − β − αθ2 .

As the model is using the log-returns of the stock prices we are interested in the
log-wealth process of a portfolio consisting of a risky and a risk-free asset as well. By Bn we
denote the risk-free asset, i.e., the bank account, continuously compounded by the interest
rate r. From the self financing condition:

Vn = φS,nSn + φB,nBn = φS,n−1Sn + φB,n−1Bn,

where φS,n denotes the number of stocks and φB,n the number of units in the cash account
at time n, while the proportion of wealth invested in the risky asset Sn at any time n is
defined as πn. Hence, φn−1 = πn−1Vn−1

Sn−1
⇔ πn−1 = φn−1Sn−1

Vn−1
. Using a Taylor approximation

of order two, [24] derived an approximated log-wealth process given by:

Wn = Wn−1 + πn−1Yn +
(

πn−1 − π2
n−1

)1
2

hn + (1 − πn−1)r, Yn := Xn − Xn−1.
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Thus, Yn follows a N (r + λhn, hn) distribution. With the HN-GARCH model substi-
tuted for the log-return, the log-wealth process becomes:

Wn = Wn−1 + r +
(

πn−1 − π2
n−1

)1
2

hn + πn−1

(
λhn +

√
hnzn

)
.

The authors show that the impact of the approximation is negligible.
In this paper, we wish to perform a portfolio optimization in a HN-GARCH model

assuming the risk premium λ to be unknown, but described by a prior distribution µ0.
The prior distribution’s variance quantifies uncertainty. With zero prior variance, there is
no uncertainty. For the portfolio optimization, we choose a power utility function of the
form U(V) = Vγ

γ . This power utility characterizes the investor as having a constant level
of relative risk aversion (CRRA) of (1 − γ). For the portfolio optimization problem we
assume γ < 0.

The case without uncertainty and a final time horizon N has already been studied
in [24] with a value function describing the maximal expected utility over N periods
given by:

Φ(w0, h1) = max
{πn}N−1

n=0

E0

[
Vγ

N
γ

]
= max

{πn}N−1
n=0

E0[
1
γ

eγWN ], log(v0) = w0. (1)

Including uncertainty transforms the problem into:

Φ(w0, h1) = max
{πn}N−1

n=0

∫
Λ
E0[

1
γ

eγWN | λ] µ0(dλ), log(v0) = w0. (2)

We begin by rewriting Problem (1) in the framework of a stochastic control model. We
will extend this model and use this formal setup to study Problem (2).

2.1. Stochastic Control Model

Following [7] we set up the N-staged stochastic control model (CM) described by
the tuple:

(S, A,Y, T, Q, Φ0) = (R×R≥0,R,R, T, Q, Φ0), (3)

where the state space is given by (W, h) = s ∈ S and Q : S × Y 7→ R≥0 is the transition
probability measure on Y , a σ-algebra on Y, where we use the Borel σ-algebra on R resp.
R≥0 as a standard. More specifically, Q is given by:

Q(s; ·) = N (r + λh, h). (3a)

The transition function (The transition function is given by T(sn, an, yn+1) =
T(Wn, hn+1, an, yn+1) = (T1(sn, an, yn+1), T2(sn, yn+1)) = sn+1 = (Wn+1, hn+2)) T : S ×
A ×Y 7→ S:

T(s, a, Y) = (T1(s, a, Y), T2(s, Y)), (3b)

which is given by:

T1(s, a, Y) = W + aY + (a − a2)
1
2

h + (1 − a)r, (3c)

T2(s, Y) = ω + βh + α

(
Y − r − λh√

h
− θ

√
h
)2

. (3d)

The terminal utility function Φ0 : S 7→ R is:

Φ0(s) :=
Vγ

γ
=

1
γ

eγW , W = log(V). (3e)



Mathematics 2024, 12, 1611 5 of 27

The control model can be read as follows. At time n ∈ N0, we have a log-wealth of Wn
and observe a variance of hn+1 stored in state sn ∈ S. We now choose a portfolio weight
an ∈ A. A random movement Yn of the underlying asset occurs according to Q and leads
via the transition function T(sn, an, Yn) to a new state sn+1 ∈ S. At the final time horizon
N ∈ N0, a terminal utility of Φ0(sN) is obtained.

We define an N-stage policy πN = ( fn)
N−1
n=0 as a sequence of measurable mappings

fn : S 7→ A. Defining F := { f : S 7→ A measurable, f (s) ∈ A, ∀ s ∈ S} as the set of all
one-stage policies, FN denotes the set of all N-staged policies πN .

Next, we define the expected terminal utility. For this and f ∈ F, we will use the
following notation:

(Q f v)(s) :=
∫
Y

v(T(s, f (s), y))Q(s; dy),

and consequently:

(Q f1 Q f2 v)(s) :=
∫
Y
(Q f2 v)((T(s, f1(s), y))Q f1(s; dy).

Let now N ∈ N0 be the terminal time and π = ( f0, . . . , fN−1) ∈ FN a sequence of
one-stage policies. The expected terminal utility is then given by:

ΦN,π(s) := (Q f0 . . . Q fN−1 Φ0)(s),

and the maximal expected terminal utility is given by:

ΦN(s) := max
π∈FN

ΦN,π(s).

Thus, Problem (1) is equivalent to solving ΦN in the control model (CM). A useful
tool to solve Problem (1) is the value iteration. For this we introduce the following two
operators for all admissible functions v : S 7→ R (following [24] a function Φ0 : S 7→
R is called admissible if there exists a set of functions M ⊂ {v : S 7→ R : E[|v|] <
∞, vs. concave in the first component of S}, such that U : M → M, Φ0(s0) ∈ M and that
for all v ∈ M there exists an fv ∈ F such that fv(s) maximizes a 7→ Lv(s, a) on A for all
s ∈ S):

Lv(s, a) := E[v(T(s, a, Y))],

Uv(s, a) := max
a∈A

Lv(s, a).

Theorem 1. (Value iteration)
Let M be a set of functions, such that Φ0 is admissible. Then:

1. Φn(s) ∈ M
2. Φn(s) = UΦn−1(s), 1 ≤ n ≤ T

Proof. See [7], Lemma 16.1.12, p. 299.

The value iteration implies that Problem (1) can be rewritten as:

Φ(w0, h1) = max
π0∈R

E0

[
· · · max

πN−1∈R
EN−1[U(WN)] · · ·

]
,

and therefore, be solved recursively.
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2.2. Uncertainty Control Model

In the previous model (CM), there was no parameter uncertainty. To include this, we
set up an Uncertainty Control Model (UCM). In this model, the risk premium λ is now
considered to be unknown, but fixed. The model (UCM) is given by the tuple:

(S, A,Y, Λ, T, Q, Φ0) = (R×R≥0,R,R,R≥0, T, Q, Φ0) (4)

where S, A,Y, and Φ0 are as in (CM) and Λ describes the parameter space. The transition
probability measure Q : Λ × S × Y 7→ R≥0 on Y now depends on the uncertain but
fixed parameter:

Qλ(s; ·) := N (r + λh, h), (4a)

as does the transition function:

T(λ, s, a, Y) = (T1(s, a, Y), T2(λ, s, Y)). (4b)

We note that in the case of |Λ| = 1, the (UCM) becomes a (CM).
The idea is now to collect information about the unknown parameter over time,

and thus, improve the decision process. Therefore, we will need the notion of the set of
prehistories up to time n, which is recursively defined by:

H0 := S,

Hn := Hn−1 × A ×Y× S, n ∈ N.

An element Hn = (s0, a0, y1, s1, a1, y2, . . . , sn) is the prehistory at time n. Using the
prehistory, we can define a policy πN = ( fn)

N−1
n=0 as a sequence of measurable mappings

fn : Hn 7→ A. Defining Fn := { fn : Hn 7→ A measurable, fn(Hn) ∈ A, ∀ Hn ∈ Hn} as the set
of all policies at time n, ∆N := F0 × · · · × FN−1 denotes the set of all N-staged policies πN .

In a similar manner as before, we set (Qλ
fn

v)(Hn) :=
∫

v(T(λ, s, fn(Hn), y))Q(λ, s, dy),
and thus, have the expected terminal utility given by:

Φλ
N,πN

(H0) := (Qλ
f0

. . . Qλ
fN−1

Φ0)(H0),

and the maximal expected terminal utility by:

Φλ
N(s) := max

πN∈∆N
Φλ

N,πN
(s).

This model takes uncertainty into account, but in general, there is no N-stage policy
which is optimal for all λ ∈ Λ. To overcome this problem, we apply the so-called Bayes
principle, i.e., we assume a prior distribution µ0 ∈ P(Λ), the set of all probability measures
on Λ, and aim to solve the optimization problem:

ΦN(s) := max
πN∈∆N

ΦN,πN (s) := max
πN∈∆N

∫
Φλ

N,πN
(s)µ0(dλ).

2.3. Bayesian Information Model

From historical data, we have information on the risk premium λ that we can incorpo-
rate into the model. Assuming a prior distribution of the risk premium, we can derive the
sequence of posterior distributions using Bayes theorem. Therefore, we define the Bayes
operator by:

TB(s, µ, a, Y)(dλ) =

{
q(Y|λ,s)µ(dλ)∫

Λ q(Y|λ′ ,s)µ(dλ′)
, if the denominator > 0

µ(dY) , if the denominator = 0
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for some distribution µ ∈ P(Λ) and q, the density of Q. With a prior distribution µ0 we can
use the Bayes operator to derive the sequence of posterior distributions depending on the
prehistory recursively, that is:

µ0(H0; ·) := µ0, µ0 ∈ P(Λ), (5a)

µn+1(Hn+1; ·) := TB(sn, µn(Hn; ·), an, yn+1), n ∈ N0. (5b)

We assume a N (m0, σ2
0 ) prior distribution for λ. This implies a sequence of posterior

distributions:
µ0 = N (m0, σ2

0 ),

µn = N (m(Hn), σ2(Hn)),
(6)

with:

m(Hn) =
m0 + σ2

0 ∑n
t=1(yt − r)

1 + σ2
0 ∑n

t=1 ht
, (6a)

σ2(Hn) =
σ2

0
1 + σ2

0 ∑n
t=1 ht

, (6b)

see Appendix A.1 for the derivation.
The current information at time n on λ is, thus, captured by µn ∈ P(Λ) and we

recognize that we only need the actual state sn and the information on the posterior
µn(Hn; ·) to decide on the optimal one-period policy at time n. With time and via the
posterior, we improve our knowledge through observing the underlying. We will make
use of this feature by adding an information state to (UCM).

To date, the transition function T2 depends on the unknown parameter λ. To derive a
transition function for the Bayesian information model, independent of λ, we add the variance
as a second random variable to the transition probability measure, as both y and h are driven
by the innovation z. The transition probability measure Q̄ : S×P(Λ)×Y ⊗H 7→ R≥0 is now
defined on Y ⊗H, the product σ-algebra of Y and H, the σ-algebra on the variance space
R≥0. Using the Dirac-function δ, the joint conditional density of Q̄, written in terms of z, is
now given by:

q̄(yn+1(z), hn+2(z)|λ, sn) = δhn+2

ω + βhn+1 + α
(

z − θ
√

hn+1

)2

︸ ︷︷ ︸
:=w(z)


· δyn+1

(
r + λhn+1 +

√
hn+1z

)
· n(z|0, 1).

Combining Q̄ with the current state of information, the transition probability measure
Q̄′ is defined by:

Q̄′(sn, µ(Hn; ·); ·) :=
∫

Q̄(λ, sn; ·)µ(Hn; dλ).

We can explicitly calculate Q̄′’s density q̄′ as:

q̄′(yn+1(z), hn+2(z)|sn, µ(Hn; ·)) =
∫ +∞

−∞
q̄(yn+1(z), hn+2(z)|λ, sn)µ(Hn, dλ)

= c · δhn+2(w(z))
∫ +∞

−∞
exp

(
−1

2
(yn+1(z)− (r + λhn+1))

2

hn+1

)
exp

(
−1

2
(λ − m(Hn))

2

σ2(Hn)

)
dλ

= c′ · δhn+2(w(z)) exp
(
−1

2
(yn+1(z)− r − m(Hn)hn+1)

2

hn+1(hn+1σ2(Hn) + 1)

)
= c′ · δhn+2(w(z)) · δyn+1(r + m(Hn)hn+1 +

√
hn+1(σ2(Hn)hn+1 + 1)z) · n(z|0, 1),

(7)
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for some constants c and c′ (see Appendix A.1 for complete calculations).
From this, we can derive the uncertainty adjusted transition function T2, allowing

us to reduce Q̄′ back to the adjusted transition probability measure Q̄′ of y. For this, let
s = (W, h) be the state and H the history available at some point in time.

Thus, we define the transition function T′ : S × P(Λ)× A ×Y 7→ S′ by:

T′(s, µ(H; ·), a, y) = (T(s, µ(H; ·), a, y), TB(s, µ(H; ·), a, y)), (8)

T(s, µ(H; ·), a, y) = (T1(s, a, y), T2(s, µ(H; ·), y)), (9)

TB : S′ × A ×Y 7→ P(Λ), (10)

with:

T1(s, a, y) = W + ay + (a − a2)
1
2

h + (1 − a)r (11)

T2(s, µ(H; ·), y) = ω + βh + α

(
y − r − m(H)h√

h(1 + hσ2(H))
− θ

√
h

)2

. (12)

We can derive the following corollary.

Corollary 1. The information implied process dynamics are given by:

y′n+1 = r + m(Hn)hn+1 +
√

h′n+1zn+1,

h′n+1 = hn+1

(
hn+1σ2(Hn) + 1

)
,

hn+1 = ω + βhn + α
(

zn − θ
√

hn

)2
.

We call this process the UI-GARCH model. This process, which is derived from an
affine GARCH, is no longer affine. The non-affine structure is a result of considering
parameter uncertainty. For a strategy π, the UI-GARCH implies a wealth process W ′

given by:

W ′
n+1 = W ′

n + πny′n+1 + (πn − π2
n)

1
2

hn+1 + (1 − πn)r

= W ′
n + r + (πn − π2

n)
1
2

hn+1 + πn

(
m(Hn)hn+1 +

√
h′n+1zn+1

)
.

We note that the current sequence of posterior distributions so far depends on the
complete prehistory Hn. However, to update the posterior distribution only some of the
information stored in the prehistory is relevant. Filtering this information is achieved by
the sufficient statistic tn(Hn) : Hn 7→ I, mapping into the information space I = R2:

tn(Hn) =

(
n

∑
t=1

ht,
n

∑
t=1

(yt − r)

)
:= (ih,n, iy,n) := in,

tn+1(Hn, an, yn) = T̂B(sn, tn(Hn), an, yn) :=
(
ih,n + hn+1, iy,n + (yn+1 − r)

)
.

Using this, we can rewrite the update of the posterior distribution in terms of the
information in with a corresponding probability measure µ̂ : I 7→ Λ:

µ̂(in; ·) := µn = N (m(in), σ2(in))

with:
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m(in) =
m0 + σ2

0 · iy,n

1 + σ2
0 · ih,n

σ2(in) =
σ2

0
1 + σ2

0 · ih,n
.

Using the posterior distributions and the sufficient statistic, we can define a so-called
Bayesian Information Model (BIM) describing the flow of information and given by
the tuple:

(S′, A,Y, T′, Q′, Φ0) =
(
(R×R≥0)× I,R,R, T′, Q′, Φ0

)
, (13a)

where A,Y, and Φ0 remain the same as in (CM). The transition probability measure Q′ is
now given by:

Q′(s, i; ·) =
∫

Qλ(s; ·)µ̂(i, dλ), (13b)

and the transition function T′ : S′ × A ×Y 7→ S′ by:

T′(s, i, a, y′) = (T(s, i, a, y′), T̂B(s, i, a, y′)), (13c)

T(s, i, a, y′) = (T1(s, a, y′), T2(s, i, y′)), (13d)

with:

T1(s, a, y′) = W + ay′ + (a − a2)
1
2

h + (1 − a)r, (13e)

T2(s, i, y′) = ω + βh + α

(
y′ − r − m(i)h√

h(σ2(i)h + 1)
− θ

√
h

)2

. (13f)

The one- and N-stage strategies in this model are also denoted with a prime and de-
pend on the state s′ = (s, i) ∈ S′. All other definitions of the (CM) transfer correspondingly.

Using Q′ we can set, as above, the expected terminal utility in the BIM as:

Φ′
N,π′

N
(s) := (Q′

f ′0
. . . Q′

f ′N−1
Φ0)(s),

and the maximal expected terminal utility in the BIM as:

Φ′
N(s) := max

π′
N∈∆N

Φ′
N,π′

N
(s).

With the adjusted form:

L′v(s, i, a) := E
[
v(T(s, i, a, y′), T̂B(s, i, y′))

]
,

U′v(s, i) := max
a∈A

L′v(s, i, a),

where the value iteration, Theorem 1, also holds for the maximal expected terminal utility
in the BIM if we replace S, Φ,L,U by S′, Φ′,L′,U′,

Furthermore, due to the martingale property of the Bayes operator the following holds
for the expected terminal utilities of the (UCM) and the (BIM) (see [7], Proposition 23.1.16,
p. 400):

ΦN,πN (s0) = Φ′
N,π′

N
(s0, i0),

with:
fn(Hn) := f ′n(sn, in), 0 ≤ n ≤ N − 1.
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In combination with the value iteration of the (BIM) this implies that we can reformu-
late Problem (2) to:

Φ0(s0) = max
π0∈A

E0

[
· · · max

πN−1∈A
EN−1

[
exp

(
γW ′

N
)

γ

]
· · ·
]

,

with wealth transition W ′
n+1 = W ′

n + πny′n+1 + (πn − π2
n)

1
2 hn+1 + (1 − πn)r.

2.4. Analytical Solutions

To solve the problem we start by considering it in one period, i.e., N = 1. At time
n = 0 we have not yet collected any information and thus the information state is given by
i0 = (0, 0). The implied process is:

W ′
1 = W ′

0 + r +
(

π0 − π2
0

)1
2

h1 + π0

(
m0h1 +

√
h′1z1

)
,

h′1 = h1

(
h1σ2

0 + 1
)

,

h1 = ω + βh0 + α
(

z0 − θ
√

h0

)2
,

where h1, h′1 are F0-measurable.
The problem in one period is:

max
π0∈R

E0

[
1
γ

exp
(
γW ′

1
)]

, (14)

and its solution is shown next.

Proposition 1. The solution to (14) is given by:

π∗
0 =

1
2 + m0

1 − γ − γh1σ2
0

.

Proof. See Appendix A.1.

We note that this solution looks very similar to the solution of [17]
(

π∗ =
1
2+m0
1−γ

)
.

However, it has an additional component in the denominator that, as γ < 0, reduces the
portfolio weighting as the degree of uncertainty, either h1 or σ0, increases.

In two periods, the problem becomes:

Φ(s0) = max
π0∈R

E0

[
max
π1∈R

E1

[
1
γ

exp
(
γW ′

2
)]]

. (15)

To solve it completely, we have to resort to numerical methods, but we can prove the
well-definedness of the problem.

Proposition 2. Assuming that α > 0, γ < 0, and the remaining parameters non-negative, the
solution to problem (15) is well-defined. In particular, for n = 1:

π∗
1 =

1
2 + m(i1)

1 − γ − γh2σ2(i1)
.

Proof. See Appendix A.1.

We again find that the portfolio weight decreases with increasing uncertainty, but it is
additionally affected by the first-period observation contained in m(i1) and σ2(i1). As a
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result, the learning about the uncertain parameter λ impacts the optimal portfolio weight
via the updated mean and variance.

2.5. Wealth Equivalent Loss

To asses the strategy under uncertainty in one and two-periods we derive its wealth-
equivalent loss (WEL) in comparison to a suboptimal strategy. According to [21] we define
the WEL from following a suboptimal strategy, represented by superscript s, in comparison
to the optimal strategy, represented by a superscript *, and starting with an initial log-wealth
W0 = log(v0), as the solution L of:

E0[U(W∗
N)] = ΦN,π∗(log(v0(1 − L))) = ΦN,πs(log(v0)) = E0[U(Ws

N)]. (16)

The wealth-equivalent loss in one period can be found by solving (16) for L and N = 1:

E0[U(W∗
1 )] = Φ1,π∗

0
(v0(1 − L0)) = Φ1,πs

0
(v0) = E0[U(Ws

1)]. (17)

From Equation (A5) in the proof of Proposition 1, we know:

E0[
1
γ

exp(γW ′
1)] =

1
γ

exp

[
γ
(
W ′

0 + r
)
+ γh1

(
π0

(
1
2
+ m0

)
+

π2
0

2

(
γh1σ2

0 + γ − 1
))]

.

Using this, we get:

Φ1,π∗
0
(log(v0(1 − L))) =

1
γ

exp

 γ(log(v0(1 − L)) + r)

+γh1

(
π∗

0

(
1
2 + m0

)
+

π∗2
0
2
(
γh1σ2

0 + γ − 1
)) ,

Φ1,πs
0
(log(v0)) =

1
γ

exp

[
γ(log(v0) + r) + γh1

(
πs

0

(
1
2
+ m0

)
+

πs2
0
2

(
γh1σ2

0 + γ − 1
))]

.

Hence:

Φ1,π∗
0
(log(v0(1 − L))) = Φ1,πs

0
(log(v0))

⇔ γ(log(v0(1 − L)) + r) + γh1

(
π∗

0

(
1
2
+ m0

)
+

π∗2
0
2

(
γh1σ2

0 + γ − 1
))

= γ(log(v0) + r) + γh1

(
πs

0

(
1
2
+ m0

)
+

πs2
0
2

(
γh1σ2

0 + γ − 1
))

⇔ L = 1 − exp
[

h1

(
(πs

0 − π∗
0 )

(
1
2
+ m0

)
+

1
2

(
πs2

0 − π∗2
0

)(
γh1σ2

0 + γ − 1
))]

.

Analogously, we can express the WEL occurring in two periods by:

L = 1 −


exp

[
γ( 1

2 h1
(
πs

0 − πs2
0 − π∗

0 + π∗2
0
)
+ µ0h1

(
πs2

0 − π∗2
0
)]

· E0[exp(γ(πs
0

√
h′1z1+(πs

1−πs2
0 )

1
2 h2+πs

1µ1h2+
1
2 γπs2

0 h′2))]
E0[exp(γ(π∗

0

√
h′1z1+(π∗

1−π∗2
0 ) 1

2 h2+π∗
1 µ1h2+

1
2 γπ∗2

0 h′2))]


1
γ

. (18)

Calculations for (18) can be found in Appendix A.1. In Section 3.3, we will evaluate
this expression numerically.

3. Numerical Analysis

This section presents the numerical analyses of our study. In Section 3.1, we describe
the optimal allocation as a function of uncertainty-related quantities like sample size and
standard error. The sensitivity of the optimal solution is then discussed in Section 3.2. In
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Section 3.3, we compare the performance of our strategy under uncertainty in terms of
wealth-equivalent losses with the strategy under certainty.

3.1. Portfolio Optimization—Numerical Results

We will determine the optimal solution for two different sets of parameters of the
HN-GARCH (since both parameter sets show similar behavior, only one is discussed in the
main section (C-H-J-2006)—the numerical results for the second parameter set (B-C-H-J-
2018) can be found in Appendix A.2). Namely the maximum likelihood estimates (MLE)
by [26] (referred to as C-H-J-2006) and the ones by [27] (referred to as B-C-H-J-2018), which
can be found in Table 1. Standard errors for the estimates are provided in brackets below
the parameter, indicating their robustness. λ is a critical parameter not only conceptually
but also exhibits a substantial error estimate, necessitating the investigation of the impact
of this uncertainty.

Table 1. Maximum likelihood estimations of HN-GARCH.

λ ω α β θ

C-H-J-2006 2.772 3.038 × 10−9 3.66 × 10−6 0.9026 128.40
(Std. error) (1.826) (2.336 × 10−4) (4.841 × 10−7) (9.37 × 10−3) (1.731 × 101)

B-C-H-J-2018 1.100 −1.396 × 10−6 3.761 × 10−6 0.900 145.7
(Std. error) (1.128) (1.35 × 10−7) (2.3 × 10−7) (0.008) (10.182)

From the MLEs, we have an estimate for λ, a priori our best candidate for λ. The
degree of variation of this estimate is given by its standard error. It is, therefore, natural to
choose these two values as the mean and standard deviation for the prior distribution of λ.
It is also convenient for the presentation next to think of uncertainty as the standard error
described before. We will denote this parameter as σ0.

The parameters in the table were obtained using daily data. In practice, portfolio
weights are not always adjusted daily, e.g., some investors adjust quarterly or yearly.
Thus, we follow [23], Appendix B, Equation (B3) to derive scaled parameters for different
frequencies, and therefore, construct HN-GARCH models for other than daily frequency.
This can be interpreted as investors who are modeling non-daily, therefore rebalancing
their portfolios at the corresponding non-daily frequency.

This extra degree of freedom, the frequency, will allow us to study the impact of
uncertainty on investors with different rebalancing frequencies, e.g, daily and annual. The
parameters of the daily and ∆ frequencies can be related as follows (the stationary variance
for a ∆ frequency relates to the stationary variance of the estimated frequency as follows:
h̄∆ = h̄):

λ∆ = λ, ω∆ = ω∆, β∆ = β, α∆ = α∆, θ∆ =
θ√
∆

.

Applying this scaling to the MLEs of the two parameter sets to an annual frequency,
i.e., ∆ = 252, yields the parameters displayed in Table 2.

Table 2. HN-GARCH MLEs scaled annually.

λ∆ ω∆ α∆ β∆ θ∆

C-H-J-2006 2.772 7.77 × 10−7 9.22 × 10−4 0.9026 8.088
B-C-H-J-2018 1.100 −3.518 × 10−4 9.478 × 10−4 0.900 9.178

Note that working with parameters for models with lower frequencies can be inter-
preted as if fewer data are available for parameter estimation. The impact of sample size on
the standard error can be accounted for explicitly using that the standard error of the MLE
depends on the sample size, n, via σ0 = σ√

n , where n is the sample size and σ2 is the true,
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unknown variance in the population. Such a relation shows that standard errors for lower
frequencies, e.g., yearly, can be much larger than for daily frequencies.

As an example of sample size and standard error, we show the effect of a varying
sample size on the standard error for the estimator σ0 in Figure 1.

Figure 1. Standard error dependence on sample size.

In the following simulations, we generate 100,000 scenarios for the innovation z1
with the following configuration for the remaining parameters: r = 0.01/252, h0 := h̄ =
3.56 × 10−5, γ = −5.

We are now ready to assess the impact of uncertainty in the first period of the portfolio
analysis. We start with daily rebalancing. The results of the portfolio optimization are
shown in Table 3, while Figure 2 provides the histogram of optimal allocations (due to the
unobservability of the innovation z caused by the uncertainty induced from lambda, we
assume z0 = 0 in this section. For more details; see Appendix A.2).

Table 3. Portfolio weights of optimal solution in two periods for daily parameters.

C-H-J-2006 π0 Mean (π1)

No uncertainty 0.5460 0.5453
(σ0 = 0)

Under uncertainty 0.5459 0.5452
(σ0 = 1.826)

We observe a negligible change of the portfolio weights under uncertainty at time
n = 0 and the mean portfolio weight at time n = 1.

Recall that π1 is not deterministic (see proposition 2). It includes the first Bayesian
update from the first observation. The histogram in Figure 2 shows the variation of π1,
which is in a range of 2%. The mean of the updated portfolio weights is indistinguishable
from the no-uncertainty portfolio weight. This has to be seen under the fact that we are
dealing with daily parameters and an investment horizon of N = 2, i.e., two days.

It seems intuitive that the range of portfolio weights would increase for larger time
horizons, i.e., a lower frequency of rebalancing. The left histogram in Figure 3 confirms
this intuition. The updated portfolio weights range from 35% up to 70%. The mean of the
updated weights deviates slightly from the certain weight. The right histogram in Figure
3 shows the effect of increased uncertainty, i.e., greater standard error. The increase in
standard error, interpretable as a decreased sample size, led to an updated portfolio weight
in the range from 0% to 120%. Comparing this range of 120% to the former range of 2%
underlines the effect of incorporating parameter uncertainty and Bayesian updating.
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Figure 2. Histogram for π1 with C-H-J-2006 parameters of 100,000 scenarios. The portfolio weight
without uncertainty (red line) is π1 = 0.5453. The mean (black line) is given by 0.5453.

Figure 3. Histogram of 100,000 scenarios for π1 with C-H-J-2006 with annually scaled parameters
(left) and an adjusted σ0 corresponding to a sample size of n = 100 (right). The portfolio weight
without uncertainty (red line) is π1 = 0.5453. The mean (black line) is given by 0.5319 (left) and
0.5436 (right).

3.2. Sensitivity Analysis

This subsection deals with the sensitivity of the optimal solution stated in Proposition 2
to changes in the parameters. We first examine the sensitivity with respect to the risk
aversion γ. Then, given the importance of σ0, we perform a more detailed analysis of the
impact of σ0 (i.e., uncertainty) on the optimal allocation. In all cases, we hold all other
parameters constant.

We vary the risk aversion γ in a range from −10 to −0.1 and the standard error σ0 up
to a value corresponding to a standard error adjustment for a sample size of 50 observations.
We do the analysis for both daily and annually scaled parameters. The results are shown in
Figures 4–6. In Figures 4 and 5, the abscissa shows the different values of the parameter
with the corresponding portfolio weight on the ordinate. Figure 6 shows a histogram for
π1 in dependence of the varying parameter.

In Figure 4, we see an increase in investment as the risk aversion decreases, i.e., γ
getting closer to zero. This is what one would expect. We can further observe the solution
under uncertainty always being below the solution under certainty. This is in line with
the theoretical comparison of the solution under uncertainty and the solution without
uncertainty. More interesting is the behavior induced by a variation in the standard error
σ0 displayed in Figure 5. It shows the solution without uncertainty in two periods as well
as the solution in two periods including uncertainty, exhibiting the mean as proxy for π1.



Mathematics 2024, 12, 1611 15 of 27

In the left part of Figure 5, we are able to observe an interesting phenomenon (the uneven
pattern in the sensitivity of π0 is due to precision in numerical integration when solving
Equation (A6)). In the case of no uncertainty, the portfolio weight slightly decreases when
getting closer to the investment horizon. If parameter uncertainty is included, we can
already observe a different behavior of the solution in two periods. Namely, depending on
the degree of uncertainty, the average portfolio weight after the first observation may be
greater than the starting weight of the portfolio, reflecting the knowledge gained about the
unknown parameter. The greater the initial level of uncertainty, the larger is the effect of an
additional observation resulting in a higher portfolio weight at time n = 1 compared to
n = 0. The same effect can be seen in the right part of Figure 5 where the portfolio weight
after an information update always increases.

Figure 4. Sensitivity of π0 and the mean of π1 with respect to variation in risk aversion γ for daily
C-H-J-2006 parameters (left) and annual C-H-J-2006 parameters (right) parameters.

Figure 5. Sensitivity of π0 and the mean of π1 with respect to variation in σ0 for daily C-H-J-2006
parameters (left) and annual C-H-J-2006 parameters (right) parameters.

Looking at the mean of π1 gives us an incomplete picture of the first Bayesian update.
Therefore, Figure 6 shows the sensitivity of the distribution of the updated portfolio weights.
In this figure, we observe a similar qualitative behavior of the optimal weight. When
varying the level of uncertainty σ0, we observe (left figure) a significant increase in the range
of π1’s distribution. This effect is consistent with the intuition that additional information
has a greater impact on the optimal allocation when the initial level of uncertainty is high.
The solution including uncertainty converges towards the solution without uncertainty for
σ0 moving towards zero. In the right figure, we can spot the same behavior as the mean
exhibited before, i.e., an increasing investment in the risky asset as risk aversion decreases.
Interestingly, the range of the allocation seems to increase at the same time.
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Figure 6. Sensitivity of π1 with respect to variation in σ0 (left) resp. risk aversion γ (right) simulated
100,000 times using C-H-J-2006 annual parameters.

Overall, the degree of uncertainty has a strong influence on the behavior of the solution.
This will be further quantified, in dollar terms, in the next subsection.

3.3. Wealth Equivalent Loss

We saw the impact of uncertainty on the optimal allocation. However, does this really
matter? To address this question we determine the wealth-equivalent loss (WEL) occurring
if one does not account for uncertainty. In Section 2, we derived the WEL theoretically. In
this subsection, we report the WEL for daily as well as annual parameters. Furthermore,
we investigate the impact of having small sample sizes for a first estimate of λ (WEL in (18)
has been calculated via numerical integration; simulation yields similar results.).

Table 4 displays the wealth-equivalent losses corresponding to the level of uncertainty
for an annual parameter frequency for C-H-J-2006 parameters. The WEL observed in this
configuration is relatively low.

Table 4. Annualized wealth-equivalent losses for standard parameter configuration.

WEL One Period Two Periods

Annual parameters 4.33 × 10−6 1.48 × 10−4

Yet, when working with lower frequencies, such as annual, one should adjust the
level of uncertainty as fewer data are available for the MLE. Figure 7 shows the WEL in
dependence of the sample size starting with the initial daily available sample size down
to a sample size of 50. In this extreme case, the WEL can be as high as 12%. Combining a
smaller sample size with a lower risk aversion can lead to even higher losses as can be seen
in Figure 8.

Figure 7. Annualized WEL in two-periods for daily C-H-J-2006 parameters (left) and annually scaled
C-H-J-2006 parameters (right) depending on sample size.
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Figure 8. Annualized WEL in two-periods for daily C-H-J-2006 parameters (left) and annual C-H-J-
2006 parameters (right) depending on sample size and risk aversion γ.

4. Conclusions

This paper presents an approach for incorporating parameter uncertainty in a dynamic
portfolio optimization problem by utilizing stochastic control model theory. Starting
with a simple stochastic control model, we extend it to a Bayesian information model,
incorporating the risk of parameter uncertainty in the optimal allocation. Our study focuses
on portfolio optimization for a risk-averse investor, maximizing a terminal CRRA utility
function, where the log returns are assumed to follow a HN-GARCH model.

The proposed Bayesian information model leads to the development of a new GARCH
process, called the UI-GARCH, which accounts for the uncertainty of the risk premium
parameter λ. Unlike its Affine-GARCH predecessor, this new process is not affine. Using
a two-period investment horizon, we derive the optimal allocation while incorporating a
Bayesian update and prove the well-definedness of the initial portfolio weight.

Finally, we performed numerical evaluations of the derived expressions and analyzed
their sensitivity to parameter changes. We evaluated the optimal allocation for annual
trading periods over an investment horizon of two periods. The results showed that
the behavior of the portfolio weights could differ significantly from the solution without
uncertainty, exposing a high sensitivity to the degree of parameter uncertainty (σ0, which
can be translated into sample size available for estimation). This results in significant
wealth-equivalent losses.

A multitude of research questions emerge from this study. A natural continuation
of this work is to extend the numerical implementation to a larger number of investment
periods. Additionally, it remains an open question whether an analytical solution can be
derived when the HN-GARCH is replaced by non-Gaussian Affine-GARCH or inverse
Gaussian GARCH models.
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Appendix A

Appendix A.1. Proofs and Calculations

Proof of Equation (6).

Proof. Following Lemma 2.1 in [28], we derive the posterior distribution of λ at time n,
where n = 0, . . . , N and N is the final time horizon. The prior distribution of λ is given
by µ0 = N (m0, σ2

0 ). Further the density of the distribution of the transition probability is

given by q(yn|λ, sn−1) =
1√

2πhn
exp

(
− 1

2
(yn−(r+λhn))2

hn

)
.

We start by calculating the likelihood function at time t = n:

Ln(λ, Hn) =
n

∏
t=1

q(yt|λ, st−1)

=
n

∏
t=1

q(yt|λ, ht)

=
n

∏
t=1

1√
2πht︸ ︷︷ ︸

=:cy

· exp

(
−1

2

n

∑
t=1

(yt − (r + λht))2

ht

)
.

Simplifying the sum:

=
n

∑
t=1

(yt − r)2 − 2(yt − r)λht + λ2h2
t

ht

=
n

∑
t=1

1
ht
(yt − r)2 +

1
ht

(
λ2h2

t − 2λht(yt − r)
)

=
n

∑
t=1

(yt − r)2

ht
+

n

∑
t=1

(
htλ

2 − 2(yt − r)λ
)

=
n

∑
t=1

(yt − r)2

ht
+ λ2

n

∑
t=1

ht − 2λ
n

∑
t=1

(yt − r),

with the sufficient statistic tn:

tn(Hn) :=


n

∑
t=1

ht︸ ︷︷ ︸
=:ih,n

,
n

∑
t=1

(yt − r)︸ ︷︷ ︸
=:iy,n

,

we set:

gn(Hn) := exp

(
−1

2

n

∑
t=1

(yt − r)2

ht

)
,

l(λ, tn(Hn)) := exp
(
−1

2

(
λ2ih,n − 2λiy,n

))
,

so that we get:

Ln(λ, Hn) = cygn(Hn)l(λ, tn(Hn))

Following Lemma 2.1 in [28] the posterior distribution is then given by:

µn(tn(Hn); dλ) =
Ln(λ, Hn)µ0(dλ)∫ +∞

−∞ Ln(λ′, Hn)µ0(dλ′)
=

l(λ, tn(Hn))µ0(dλ)∫ +∞
−∞ l(λ′, tn(Hn))µ0(dλ′)

.
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Using that:

l(λ, tn(Hn))µ0(dλ) = exp
(
−1

2
(λ2ih,n − 2λiy,n)

)
1√

2πσ0︸ ︷︷ ︸
=:cµ

exp

(
−1

2

(
λ − m0

σ0

)2
)

dλ

= cµ exp

(
−1

2

(
λ2ih,n − 2λiy,n +

(
λ − m0

σ0

)2
))

dλ,

and rearranging λ2ih,n − 2λiy,n + ( λ−m0
σ0

)2:

=
1
σ2

0

(
λ2(1 + σ2

0 ih,n)− 2λ(iy,nσ2
0 + m0) + m2

0

)
=

1 + σ2
0 ih,n

σ2
0

(
λ2 − 2λ

iy,nσ2
0 + m0

1 + σ2
0 ih,n

+
m2

0
1 + σ2

0 ih,n

)

=
1 + σ2

0 ih,n

σ2
0


(

λ −
iy,nσ2

0 + m0

1 + σ2
0 ih,n

)2

+
m2

0
1 + σ2

0 ih,n
−
(

iy,nσ2
0 + m0

1 + σ2
0 ih,n

)2

︸ ︷︷ ︸
c(in ,m0,σ0)

,

we get:

l(λ, tn(Hn))µ0(dλ) = cµ exp

−1
2

1 + σ2
0 ih,n

σ2
0

(
λ −

iy,nσ2
0 + m0

1 + σ2
0 ih,n

)2

+ c(in, m0, σ0)

dλ.

Thus, µn ∼ N (mn, σ2
n) with

mn =
m0 + σ2

0 iy,n

1 + σ2
0 ih,n

=
m0 + σ2

0 ∑n
t=1(yt − r)

1 + σ2
0 ∑n

t=1 ht
, (A1)

and:

σ2
n =

σ2
0

1 + σ2
0 ih,n

=
σ2

0
1 + σ2

0 ∑n
t=1 ht

. (A2)

Calculations for Equation (7).

Proof. Let yn+1 := yn+1(z) and hn+2 := hn+2(z) for the ease of notation. Then:

q′(yn+1(z), hn+2(z)|sn, µn) = q′(yn+1, hn+2|sn, µn) =
∫ +∞

−∞
q(yn+1|λ, sn)µn(dλ)

= δhn+2(w(z))
∫ +∞

−∞

1√
2πhn+1︸ ︷︷ ︸
=:cq

exp
(
−1

2
(yn+1 − (r + λhn+1))

2

hn+1

)
1√

2πσ2
n︸ ︷︷ ︸

=:cµn

exp
(
−1

2
(λ − mn)2

σ2
n

)
dλ

= δhn+2(w(z)) cqcµn

∫ +∞

−∞
exp

(
−1

2

(
(yn+1 − (r + λhn+1))

2

hn+1
+

(λ − mn)
2

σ2
n

))
dλ.

Having a closer look at the exponential we see that:
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1
hn+1σ2

n

(
σ2

n(yn+1 − (r + λhn+1))
2 + hn+1(λ − mn)

2
)

=
1

hn+1σ2
n

(
σ2

n(yn+1 − r)2 − 2σ2
n(yn+1 − r)λhn+1 + σ2

nλ2h2
n+1 + hn+1λ2 − 2hn+1mnλ + hn+1m2

n

)
=

1
hn+1σ2

n

(
λ2(h2

n+1σ2
n + hn+1)− 2λhn+1(σ

2
n(yn+1 − r) + mn) + σ2

n(yn+1 − r)2 + hn+1m2
n

)
=

hn+1(hn+1σ2
n + 1)

hn+1σ2
n

((
λ − σ2

n(yn+1 − r) + mn

hn+1σ2
n + 1

)2

−
(

σ2
n(yn+1 − r) + mn

hn+1σ2
n + 1

)2

+
σ2

n(yn+1 − r)2 + hn+1m2
n

hn+1(hn+1σ2
n + 1)

)

=
hn+1σ2

n + 1
σ2

n

(
λ − σ2

n(yn+1 − r) + mn

hn+1σ2
n + 1

)2

︸ ︷︷ ︸
=:p(λ)

− 1
σ2

nhn+1

(
hn+1

(σ2
n(yn+1 − r) + mn)2

hn+1σ2
n + 1

− σ2
n(yn+1 − r)2 − hn+1m2

n

)

= p(λ) +
1

σ2
nhn+1

(
(yn+1 − r)2σ2

n

(
1 − hn+1σ2

n
hn+1σ2

n + 1

)
− 2hn+1(yn − r)

σ2
nmn

hn+1σ2
n + 1

+ m2
nhn+1

(
1 − 1

hn+1σ2
n + 1

))
= p(λ) +

1
σ2

nhn+1

(
(yn+1 − r)2 σ2

n
hn+1σ2

n + 1
− 2(yn+1 − r)mnhn+1

σ2
n

hn+1σ2
n + 1

+ m2
nh2

n+1
σ2

n
hn+1σ2

n + 1

)
= p(λ) +

1
σ2

nhn+1

(
σ2

n
hn+1σ2

n + 1
(yn+1 − r − mnhn+1)

2
)

.

Inserting all together into the exponential in the above integral gives:

δhn+2(w(z)) cqcµn

∫ +∞

−∞
exp

(
−1

2

(
hn+1σ2

n + 1
σ2

n

(
λ − σ2

n(yn+1 − r) + mn

hn+1σ2
n + 1

)2

+
(yn+1 − r − mnhn+1)

2

hn+1(hn+1σ2
n + 1)

))
dλ. (A3)

We can, therefore, derive that q′(yn+1, hn+2|sn, µn) = c′ · δhn+2(w(z)) · exp(
− 1

2
(yn+1−r−mnhn+1)

2

hn+1(hn+1σ2
n+1)

)
, and thus, follows a normal distribution:

N

r + mnhn+1, hn+1(hn+1σ2
n + 1)︸ ︷︷ ︸

=:h′n+1

. (A4)

Proof of Proposition 1.

Proof. We start by computing E0

[
1
γ eγW ′

1

]
:

= E0

[
1
γ

exp
(

γ

(
W ′

0 + r + (π0 − π2
0)

1
2

h1 + π0(m0h1 +
√

h′1z1)

))]
=

1
γ

exp
(

γ

(
W ′

0 + r + (π0 − π2
0)

1
2

h1 + π0m0h1

))
E0

[
exp

(
γπ0

√
h′1z1

)]
=

1
γ

exp
(

γ

(
W ′

0 + r + (π0 − π2
0)

1
2

h1 + π0m0h1 +
1
2

γπ2
0h′1

))

=
1
γ

exp
(

γ

(
W ′

0 + r + (π0 − π2
0)

1
2

h1 + π0m0h1 +
1
2

γπ2
0h1(h1σ2

0 + 1)
))

. (A5)

Maximizing yields:
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max
π0

1
γ

exp

γ(W ′
0 + r) + γh1

π0

(
1
2
+ m0

)
+

π2
0

2
(γ − 1 + γh1σ2

0 )︸ ︷︷ ︸
=:g(π0)


,

g(π) = π

(
1
2
+ m0

)
γ +

π2

2
γ
(

γ − 1 + γh1σ2
0

)
,

g′(π) =

(
1
2
+ m0

)
γ + πγ

(
γ − 1 + γh1σ2

0

)
,

g′′(π) = γ
(

γ − 1 + γh1σ2
0

)
.

If γ < 0 then g′′ > 0 and γ has a minimum in π∗
0 =

1
2+m0

1−γ−γh1σ2
0

. π∗
0 , thus, is a solution

to the optimization problem.

Proof of Proposition 2.

Proof. From one period it follows that:

E1

[
1
γ

eγW ′
2

]
=

1
γ

eγ(W ′
1+r)+γh2·g(π∗

1),

with:

g(π∗
1 ) =

(
1
2 + m(i1)

)2

2(1 − γ − γh2σ2(i1))
.

Then:

E0

[
1
γ

eγ(W ′
1+r)+γh2·g(π∗

1)
]

=
∫ +∞

−∞
q′(y1|s0, i0, π0) ·

1
γ

exp
(
γ
(
W ′

1 + r
)
+ γh2 · g(π∗

1 )
)
dy1

=
1
γ

∫ +∞

−∞
n
(

y1 | r + m(i0)h1; h1

(
h1σ2

0 + 1
))

· exp
(

γ

(
W ′

0 + π0y1 +
(

π0 − π2
0

)1
2

h1 + (1 − π0)r + r
)
+ γh2g(π∗

1 )

)
dy1

substituting: c := W ′
0 + 2r +

(
π0 − π2

0

)1
2

h1 + π0m0h1 and y1 = r + m0h1 +
√

h1
(
h1σ2

0 + 1
)
z1

=
eγc

γ

∫ +∞

−∞
n(z1|0, 1) · exp

γπ0

√
h1
(
h1σ2

0 + 1
)
z1 +

γ

2
h2

(
1
2 + m(i1)

)2

1 − γ − γh2σ2(i1)

dz1.
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Using m(i1) =
m0+σ2

0 (y1−r)
1+σ2

0 h1
and σ2(i1) =

σ2
0

1+σ2
0 h1

and substituting a := h1σ2
0 + 1 gives:

(
1
2 + m(i1)

)2

1 − γ − γh2σ2(i1)

=

(
1
2 +

m0+σ2
0 (y1−r)

1+σ2
0 h1

)2

1 − γ − γh2
σ2

0
1+σ2

0 h1

=

(
1
2 +

m0+σ2
0

(
m0h1+

√
h1(h1σ2

0+1)z1

)
1+σ2

0 h1

)2

1 − γ − γh2
σ2

0
1+σ2

0 h1

=

(
1
2 +

m0+σ2
0 (m0h1+

√
h1az1)

a

)2

1 − γ − γh2
σ2

0
a

=

(
a

2a +
2(m0a+σ2

0
√

h1az1)
2a

)2

1 − γ − γh2
σ2

0
a

=

(
a + 2(m0a + σ2

0
√

h1az1)
)2

4a2
(

1 − γ − γh2
σ2

0
a

)
=

a2 + 4a
(
m0a + σ2

0
√

h1az1
)
+ 4
(
m0a + σ2

0
√

h1az1
)2

4a
(
(1 − γ)a − γh2σ2

0
) .

Plugging this in gives:

=
eγc

γ

∫ +∞

−∞
n(z1|0, 1) exp

 γπ0
√

h1az1

+ γ
2 h2

a2+4a(m0a+σ2
0
√

h1az1)+4(m0a+σ2
0
√

h1az1)
2

4a((1−γ)a−γh2σ2
0 )

dz1. (A6)

Expanding and substituting d := a
4 +

(
m0a + m2

0a
)

as well as h2 = ω + βh1 + αθ2h1︸ ︷︷ ︸
=:u

+

αz2
1 − 2αz1θ

√
h1 gives:

=
eγc

γ

∫ +∞

−∞
n(z1|0, 1) · exp

 γπ0
√

h1az1

+ γ
2
(
u + αz2

1 − 2αθ
√

h1z1
) d+(σ2

0
√

h1a+2σ2
0
√

h1am0)z1+σ4
0 h1z2

1
(1−γ)a−γσ2

0 (u+αz2
1−2αθ

√
h1z1)

dz1

=
eγc

γ

∫ +∞

−∞
n(z1|0, 1) · exp



+γπ0
√

h1az1

+ γ
2


du +

(
uσ2

0
√

h1a + 2uσ2
0
√

h1am0 − 2dαθ
√

h1
)
z1

+
(
αd + uσ4

0 h1 − 2αθ
√

h1
(
σ2

0
√

h1a + 2σ2
0
√

h1am0
))

z2
1

+
(
α
(
σ2

0
√

h1a + 2σ2
0
√

h1am0
)
− 2αθ

√
h1σ4

0 h1
)
z3

1
+ασ4

0 h1z4
1


a(1−γ)−γσ2

0 u−γσ2
0 αz2

1+2γσ2
0 αθ

√
h1z1


dz1.

The integral is of the form
∫ +∞
−∞ exp

(
γ

P(z)
Q(z)

)
n(z|0, 1)dz. P(z) and Q(z) are polynomials

in z of degree 4 and 2, respectively. The leading coefficient of P(z) is ασ4
0 h1 ≥ 0. The constant

term of Q(z) is a(1 − γ)− γσ2
0 u = a(1 − γ)− γσ2

0
(
ω + βh1 + αθ2h1

)
> 0. Furthermore,
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Q(z) does not have roots (see calculations below), and hence, P(z)
Q(z) is finite and positive. By

observing that P(z)
Q(z) is multiplied by γ < 0, we conclude that the integral is well-defined.

Roots of Q(z): To see that Q(z) = a(1 − γ)− γσ2
0 u − γσ2

0 αz2 + 2γσ2
0 αθ

√
h1z does not

have any roots we determine the discriminant of Q(z). The discriminant is given by:

disc(Q) = 4γ2σ4
0 α2θ2h1 + 4γσ2

0 α
(

a(1 − γ)− γσ2
0 u
)

= 4γσ2
0 αa(1 − γ)− 4γ2σ4

0 (ω + βh1) < 0,

with:
a = h1σ2

0 + 1 > 0.

This follows as we assumed all parameters greater equal zero, α > 0 and γ < 0. Thus,
Q(z) does not have any roots.

Calculations for Equation (18), WEL in two-periods.

Proof.

Φ2,π∗(log(v0(1 − L))) =
1
γ
E0

exp

γ

 log(v0(1 − L)) + r +
(

π∗
0 − π∗2

0

)
1
2 h1 + π∗

0 m0h1

+π∗
0

√
h′

1z1 + r +
(

π∗
1 − π∗2

1

)
1
2 h2 + π∗

1 m1h2 +
1
2 γπ∗2

1 h
′
2


Φ2,πs(log(v0)) =

1
γ
E0

exp

γ

 log(V0) + r +
(

πs
0 − πs2

0

)
1
2 h1 + πs

0m0h1 + πs
0

√
h′

1z1

+r +
(

πs
1 − πs2

1

)
1
2 h2 + πs

1m1h2 +
1
2 γπs2

1 h
′
2

.

Then:

Φ2,π∗(log(v0(1 − L))) = Φ2,πs(log(v0))

⇔ 1
γ
E0

exp

γ

 log(v0(1 − L)) + r +
(

π∗
1 − π∗2

0

)
1
2 h1 + π∗

0 m0h1 + π∗
0

√
h′

1z1

+r +
(

π∗
1 − π∗2

1

)
1
2 h2 + π∗

1 m1h2 +
1
2 γπ∗2

1 h1
2


=

1
γ
E0

exp

γ

 log(v0) + r +
(

πs
1 − πs2

0

)
1
2 h1 + πs

0m0h1 + πs
0

√
h′

1z1

+r +
(

πs
1 − πs2

1

)
1
2 h2 + πs

1m1h2 +
1
2 γπs2

1 h1
2


⇔ eγ log(1−L) · eγ(π∗

0−π∗2
0 ) 1

2 h1+π∗
0 m0h1 ·E0

[
exp

(
γ

(
π∗

0

√
h′

1z1 +
(

π∗
1 − π∗2

1

)
1
2 h2

+π∗
1 m1h2 +

1
2 γπ∗

1 h
′
2

))]

= eγ(πs
0−πs2

0 )
1
2 h1+πs

0m0h1 ·E0

[
exp

(
γ

(
πs

0

√
h′

1z1 +
(

πs
1 − πs2

1

)
1
2 h2

+πs
1m1h2 +

1
2 γπs

1h
′
2

))]

⇔ (1 − L)γ = eγ
((

πs
0−πs2

0 −π∗
0+π∗2

0

)
1
2 h1+(πs

0−π∗
0)m0h1

) E0

[
exp

(
γ

(
πs

0

√
h′

1z1 +
(

πs
1 − πs2

1

)
1
2 h2

+πs
1m1h2 +

1
2 γπs

1h
′
2

))]

E0

[
exp

(
γ

(
π∗

0

√
h′

1z1 +
(

π∗
1 − π∗2

1

)
1
2 h2

+π∗
1 m1h2 +

1
2 γπ∗

1 h
′
2

))]

⇔ L = 1 −


exp

[
γ( 1

2 h1
(
πs

0 − πs2
0 − π∗

0 + π∗2
0
)
+ m0h1

(
πs2

0 − π∗2
0
)]

· E0[exp(γ(πs
0

√
h′1z1+(πs

1−πs2
0 )

1
2 h2+πs

1m1h2+
1
2 γπs2

0 h′2))]
E0[exp(γ(π∗

0

√
h′1z1+(π∗

1−π∗2
0 ) 1

2 h2+π∗
1 m1h2+

1
2 γπ∗2

0 h′2))]


1
γ

.
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Appendix A.2. Complementary Material

Appendix A.2.1. A Note on z0

To solve for π0 numerically, we implemented (A6). Unlike a regular GARCH, in the
case of uncertainty the innovation is no longer observable. As λ is unknown, z0 cannot
be simply found by observing the initial stock price and then solve for z0. However, it is
reasonable to assume z0 = 0 for two main reasons. First, z0 is a standard normal distributed
random variable and it is most likely to be very close to zero. Thus, in a general analysis of
the portfolio optimization problem it is natural to assume z0 = 0. Second, the sensitivity
of the solution with respect to z0 on daily as well on annual parameters is insensitive as
can bee seen in Figure A1. Thus, the assumption of z0 = 0 has little effect on the optimal
solution as well as its numerical analysis and will, therefore, be used throughout this paper.

Figure A1. Sensitivity of π0 with respect to variation in z0 for daily C-H-J-2006 parameters (left) and
annual C-H-J-2006 parameters (right) parameters.

Appendix A.2.2. Front View of Figure 6

Figure A2. Front view on Figure 6: Sensitivity of π1 with respect to variation in σ0 (left) resp. risk
aversion γ (right) simulated 100 000 times using C-H-J-2006 annual parameters.

Appendix A.2.3. B-C-H-J-2018 Parameter Set

Numerical results for the B-C-H-J-2018 parameter set.
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Table A1. Portfolio weights of optimal solution in two-periods for daily parameters.

B-C-H-J-2018 π0 Mean (π1)

No uncertainty 0.2669 0.2667
(σ0 = 0)

Under uncertainty 0.2668 0.2667
(σ0 = 1.826)

Figure A3. Histogram for π1 with B-C-H-J-2018 parameters of 100,000 scenarios. The portfolio weight
without uncertainty is shown in red.

Figure A4. Histogram of 100,000 scenarios for π1 with B-C-H-J-2018 with annually scaled parame-
ters (left) and to a sample size of n = 100 adjusted σ0 (right). The portfolio weight without uncertainty
is shown in red.

Figure A5. Sensitivity of π0 and the mean of π1 with respect to variation in σ0 for daily B-C-H-J-2018
parameters (left) and annual B-C-H-J-2018 parameters (right) parameters.
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Figure A6. Annualized WEL in two-periods for daily B-C-H-J-2018 parameters (left) and annual
B-C-H-J-2018 parameters (right) depending on sample size and risk aversion γ.
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