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Abstract

This thesis covers the topic of adjoint-based sensitivity analysis and its application to opti-
mal control problems of flexible multibody systems. The new scientific contribution in this
research area consists of an analytical and, thus, accurate approach for the efficient computa-
tion of first-order sensitivities, which is crucial for solving complex and large-scale optimiza-
tion problems.

The adjoint method is of major relevance in this thesis for developing efficient and ac-
curate computational methods in sensitivity analysis. As the theoretical foundation relevant
to this thesis, the general concept of the adjoint method is reviewed in depth. Additionally,
the theoretical aspects of solving optimal control problems are provided. Therein, the neces-
sary first-order optimality conditions of unbounded and bounded optimization problems are
discussed, and shooting and collocation methods are addressed as essential representatives
of gradient-based solution methods for the optimization problem. Furthermore relevant to
this thesis are the theoretical aspects of flexible multibody systems, focusing on the abso-
lute nodal coordinate formulation. The absolute nodal coordinate formulation is used in this
thesis to describe the dynamical behavior of deformable structures.

The optimal control problem of such flexible multibody systems under equality and in-
equality constraints is solved by iteratively minimizing the cost functional in this thesis. The
iterative solution procedure of gradient-based optimization methods requires the computa-
tion of sensitivities concerning the cost functional and the constraints in each iteration. The
computation of sensitivities is of fundamental importance in optimization since the sensi-
tivities are used to compute the search direction to minimize the cost functional while si-
multaneously satisfying the equality and inequality constraints of the optimization problem.
An efficient and accurate approach to sensitivity analysis is particularly advantageous for
large-scale optimization problems. To address the requirements of efficiency and accuracy
in sensitivity analysis, the general concept of the adjoint theory is exploited in this thesis to
derive approaches to sensitivity analysis concerning various optimal control problems.

In this thesis, optimal control problems are treated using direct optimization methods.
Optimal controls are computed for rest-to-rest problems of mechanical systems using both
rigid and flexible bodies to model the mechanical components. Initial and final state con-
straints of the mechanical system are specified, and equality and inequality constraints are
considered during the motion of the mechanical system. For example, the time-optimal con-
trol problem of a flexible two-arm robot and the energy optimal control problem of a non-
linear spring pendulum are analyzed. These examples demonstrate the theoretical concepts
presented in this thesis and highlight the computational benefits.

In summary, this thesis contributes to optimal control of flexible multibody systems. The
adjoint-based sensitivities presented in this thesis significantly reduce the computational time
to find an optimal solution in sophisticated optimization problems, such as the combined opti-
mal control and structural optimization problem within a single optimization framework. The
results of this thesis contribute to the ongoing development of methods for optimal control
problems of flexible multibody systems and enable new possibilities for future applications,
e.g., in soft robotics.
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Zusammenfassung

Diese Dissertation befasst sich mit dem Thema der adjungierten Sensitivitätsanalyse und ih-
rer Anwendung auf Optimalsteuerungsprobleme flexibler Mehrkörpersysteme. Der neue wis-
senschaftliche Beitrag zu diesem Forschungsgebiet besteht in einem analytischen und damit
genauen Ansatz zur effizienten Berechnung von Sensitivitäten erster Ordnung, die für die
Lösung komplexer Optimierungsprobleme entscheidend sind.

Die adjungierte Methode ist in dieser Dissertation von zentraler Bedeutung für die Ent-
wicklung von effizienten und genauen Berechnungsmethoden zur Sensitivitätsanalyse. Als
theoretische Grundlage für diese Dissertation wird das allgemeine Konzept der adjungierten
Methode vorgestellt. Darüber hinaus werden die theoretischen Aspekte zur Lösung von Opti-
malsteuerungsproblemen dargestellt. Darin werden die notwendigen Optimalitätsbedingun-
gen erster Ordnung sowohl für unbeschränkte als auch für beschränkte Optimierungsproble-
me untersucht, und Schießverfahren und Kollokationsverfahren als wichtige Vertreter gradi-
entenbasierter Lösungsverfahren für Optimalsteuerungsprobleme werden diskutiert. Weiters
sind die theoretischen Grundlagen der Modellierung flexibler Mehrkörpersysteme für diese
Dissertation relevant, wobei der Schwerpunkt auf der sogenannten absolute nodal coordi-
nate formulation liegt. Dieser Modellierungsansatz wird zur Beschreibung des dynamischen
Verhaltens von deformierbaren Strukturen verwendet.

Optimalsteuerungsprobleme solcher flexibler Mehrkörpersysteme unter Gleichheits- und
Ungleichungsbeschränkungen werden in dieser Dissertation durch eine iterative Minimie-
rung des Kostenfunktionals gelöst. Der iterative Lösungsprozess gradientenbasierter Opti-
mierungsverfahren erfordert die Berechnung der Sensitivitäten des Kostenfunktionals und
der Beschränkungen in jedem Iterationsschritt. Die Berechnung von Sensitivitäten ist in der
Optimierung von fundamentaler Bedeutung, da auf Basis der Sensitivitäten die Suchrichtung
zur Minimierung des Kostenfunktionals unter Einhaltung der Gleichheits- und Ungleichungs-
beschränkungen des Optimierungsproblems berechnet wird. Ein effizienter und analytisch
hergeleiteter Ansatz zur Sensitivitätsanalyse ist insbesondere bei großen Optimierungspro-
blemen von entscheidender Bedeutung. Um den Anforderungen an Effizienz und Genauig-
keit der Sensitivitätsanalyse gerecht zu werden, wird in dieser Dissertation das allgemeine
Konzept der adjungierten Methode verwendet, um Ansätze zur Sensitivitätsanalyse für un-
terschiedlichste Optimalsteuerungsprobleme zu formulieren.

In dieser Dissertation werden Optimalsteuerungsprobleme mit direkten Optimierungs-
verfahren gelöst. Optimale Steuerungen werden für Punkt-zu-Punkt-Probleme mechanischer
Systeme berechnet, wobei sowohl starre als auch flexible Körper zur Modellierung der me-
chanischen Bauteile verwendet werden. Anfangs- und Endzustandsbedingungen des mecha-
nischen Systems werden spezifiziert und Gleichheits- und Ungleichungsbeschränkungen wäh-
rend der Bewegung des mechanischen Systems berücksichtigt. So wird zum Beispiel die zeit-
optimale Bewegung eines flexiblen zweiarmigen Roboters untersucht und das energieopti-
male Steuerungsproblem eines nichtlinearen Federpendels analysiert. Diese Beispiele veran-
schaulichen unter anderem die theoretischen Konzepte der wissenschaftlichen Beiträge dieser
Dissertation und zeigen deren Vorteile in der Anwendung auf.

Zusammenfassend leistet diese Dissertation einen bedeutenden Beitrag zur optimalen
Steuerung flexibler Mehrkörpersysteme. Die vorgestellten Berechnungsmethoden mittels ad-
jungierter Sensitivitätsanalyse reduzieren die benötigte Rechenzeit für eine optimale Lösung
des Optimierungsproblems signifikant. Dies ermöglicht es, komplexe Optimierungsprobleme
wie das kombinierte Steuerungs- und Strukturoptimierungsproblem in einer gemeinsamen
Optimierung effizient zu lösen. Die Ergebnisse dieser Dissertation tragen zur Weiterentwick-
lung von Methoden zur optimalen Steuerung flexibler Mehrkörpersysteme bei und eröffnen
neue Möglichkeiten für zukünftige Anwendungen, z. B. im Bereich der Soft-Robotik.
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Chapter 1

Introduction

Enhancing mechanical systems is crucial to meet the increasing demands of modern industry
and future technological progress. The rapid development in mechanical engineering, such
as in robotics, aerospace, or vehicle dynamics, simultaneously requires efficient methods
to optimally perform the desired tasks of a mechanical system. Engineering and scientific
communities have faced increasing challenges in developing sophisticated simulation models
to solve complex and challenging problems in mechanical engineering. Therefore, there is
a growing need for robust and efficient algorithms in research and industry to meet current
and future challenges.

Faced with these challenges, the optimization of mechanical systems plays an essential
role in addressing complex and challenging problems across various scientific disciplines. For
example, a permanent issue in mechanical engineering is the reduction of energy consump-
tion to enable the development of sustainable and efficient solutions. A common approach
to reduce energy consumption is using a lightweight design resulting from a structural opti-
mization. Material savings reduce the actuator requirements to drive a mechanical system. In
addition to structural optimization, the reduction of energy can be addressed directly by op-
timizing the actuation for an energy optimal control of a given mechanical system. Typically,
structural optimization and optimal control are considered independently in a sequential pro-
cess. However, coupling both optimization strategies is promising to obtain the best possible
mechanical structure concerning an optimal control problem (OCP).

To formulate such optimization strategies, the use of mathematical models is required
to predict the physical behavior of the given mechanical system. For example, lightweight
structures and components made of soft material can undergo high deformation during mo-
tion. Therefore, proper formulations are required to capture the flexibility of the components
accurately. Depending on the properties of the mechanical system, different formulations of
flexible multibody dynamics are used for modeling. In addition to modeling, computing the
system response of the mathematical model plays a critical role in the efficiency and accu-
racy of the solution. Due to the complexity of the models, numerical simulation methods are
usually used to compute the evolution of the system response.

The performance of mechanical systems can be improved by finding an optimal design
of mechanical components and/or an optimal control to drive the mechanical system toward
its desired goal. To this end, expertise in modeling, simulation, and numerical optimization
is required. This thesis mainly focuses on the optimal control of deformable mechanical sys-
tems. However, the scientific contributions of this thesis can also be used in optimal design,
e.g., to address the challenging optimization problem of coupling structural optimization and
optimal control.

1



2 1 Introduction

1.1 Context and Motivation

Optimal control of flexible components such as soft robotic systems is of major concern, espe-
cially when using lightweight soft materials [141]. Designing the shape of soft robots and the
computation of a high-fidelity control is an emerging research and development area [143].
Such advanced robotic systems are becoming important due to their inherent compliance,
strong adaptability, and ability to effectively operate in unstructured environments like med-
ical or bioinspired applications [42]. Their compliance and flexibility often lead to highly
nonlinear dynamics, which complicates the design and control of such robots. Accurate for-
mulations are essential to account for the effects of deformations and stresses on the motion
control of soft robots. Capturing the effects of deformation can be considered by the con-
cepts of flexible multibody dynamics. Mechanical models formulated with flexible bodies are
usually underactuated systems, and the OCP becomes more complicated compared to fully
actuated systems [135].

In general, optimal control aims to determine time-dependent control functions to drive
a mechanical system toward its desired goal. In a mathematical context, optimal control re-
gards optimizing the input of a mechanical system to minimize a cost functional while satis-
fying physical constraints, e.g., the rest-to-rest motion of a soft robot. Therein, the dynamical
behavior of the underlying mechanical system is described by using differential equations.
To address the complexity of OCPs, various numerical methods have been developed to meet
the specific requirements of different OCP formulations. However, the focus of this thesis is
to use so-called direct methods for solving different OCPs. Direct methods formulate a non-
linear programming (NLP) problem that can be addressed using gradient-based optimization
algorithms, e.g., the sequential quadratic programming (SQP) method or the interior point
(IP) method. These algorithms use first and second-order gradients to determine a feasible
solution to the optimization problem. The computation of gradients is usually referred to
as sensitivity analysis and is essential in the iterative solution process of optimization prob-
lems. Methods for computing sensitivities are generally divided into numerical and analytical
approaches.

In Gufler et al. [74], a comprehensive literature review presents various gradient-based
optimization methods in the design optimization of flexible multibody systems. The review
paper discusses the objectives in the design optimization of flexible multibody dynamics and
reviews concepts and applications in this research area. More than 160 publications in the
bibliography provide a comprehensive overview of optimization algorithms, types and formu-
lations, and sensitivity analyses. Due to the increasing complexity of optimization problems,
scientists have paid much attention to developing sophisticated analytical approaches for sen-
sitivity analysis. Analytical sensitivity analysis includes the direct differentiation method and
the adjoint variable method, two principal approaches for computing sensitivities. The direct
differentiation method [81] facilitates implementation via straightforward differentiation of
the differential equations, cost functional, and (in)equality constraints with respect to the
optimization variables. Thus, the direct differentiation method yields a high computational
effort for large-scale optimization problems. A computationally efficient alternative to the
direct differentiation method is given by the adjoint variable method. This method avoids
computing the differentiation of the differential equations with respect to the optimization
variables by introducing adjoint variables. Therefore, the adjoint variable method is best
suited for large-scale optimization problems.

The use of the adjoint variable method for computing gradients in optimization problems
has a long history in optimal control theory [103]. Pioneering contributions to the adjoint
variable method are given by Kelley [91] and Bryson and Ho [30]. The relevance of adjoint-
based gradients has increased significantly in various engineering disciplines such as design
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optimization [114] and multibody dynamics [38, 51], especially as these applications be-
come more complex. Therefore, the efficient computation of gradients has become crucial in
sensitivity analysis. For example, applications of sensitivity analysis can be found in a broad
spectrum of fields, including optimization, parameter identification, data assimilation, opti-
mal control, uncertainty analysis, and experimental design. In the emerging research area of
neural networks, the ability of solvers to effectively compute gradients for high-dimensional
machine learning models is particularly advantageous [128]. Johnston and Patel [88] have
found that adjoint methods are essential for the efficient gradient computation of function-
als in both control theory and machine learning. Recent publications address the adjoint
method in multibody dynamics, e.g., in a feedback-feedforward control system that com-
putes input signals and the corresponding trajectories [106]. Schneider and Betsch [134]
propose a novel approach that preserves the variational structure of problems through the
strategic choice of a mechanical Hamiltonian and integration of constraints. Furthermore,
Held and Seifried [84] presented an approach to demonstrate the use of the adjoint vari-
able method for multibody systems initially modeled by differential-algebraic equations but
solved in minimal coordinates using a QR decomposition.

In this thesis, the general concept of the adjoint variable method is used to compute first-
order sensitivities of OCPs since the adjoint method is probably the most efficient method to
compute sensitivities [37, 119]. Thus, the scientific contributions of this thesis contribute to
the efficient and accurate computation of sensitivities and, therefore, play a significant role
in future challenges of OCPs of flexible multibody systems.

1.2 Objective

The main goal of this thesis is to develop efficient and accurate approaches to compute first-
order sensitivities in OCPs of flexible multibody systems. The thesis contributes to the follow-
ing ongoing research areas in optimal control:

• Time-optimal control problems
An important and challenging objective in optimal control is to identify the minimum
required time to manipulate a mechanical system toward its desired goal. This prob-
lem becomes even more challenging when the mechanical system consists of flexible
components. It is crucial to accurately capture the deformations and vibrations of these
flexible structures by proper flexible multibody formulations to ensure that the opti-
mization constraints during the manipulation and at the final time are satisfied. The
compliance of the flexible structures and physical limitations of the actuator during the
motion restrict the shortest possible time. The challenging problem requires advanced
approaches to efficiently integrate the dynamic behavior of flexible components into
the time-optimal control problem.

• Sensitivity analysis of constraints in dynamics
Efficient and accurate computation of sensitivities is crucial in the iterative process
of solving complex and large-scale optimization problems. In the past, considerable
effort has been dedicated to developing approaches for sensitivity analysis of the cost
functional. However, it is equally important to develop efficient methods for analyzing
the sensitivities of constraints within optimization problems. Efficient and accurate
computation of constraint sensitivities is essential to address challenging optimization
problems, such as the simultaneous consideration of an optimal control and design
problem in soft robotics.
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Recent research activities in both research areas show a growing interest in integrating flex-
ible multibody systems in OCPs. The interdisciplinary nature of optimal control concerning
flexible components is challenging and requires the development of robust methods to im-
prove the convergence to a local minimum of the optimization problem.

1.3 Outline

This thesis is organized into six chapters and two appendices. Following this introduction
chapter, Chapters 2–4 provide basic and fundamental theoretical principles relevant to the
understanding of the scientific contributions of this thesis. Chapter 5 summarizes the under-
lying publications of this thesis, and reprints of the publications are given in Appendix B. The
content of the subsequent chapters and appendices is outlined as follows:

• Chapter 2 establishes the mathematical foundation of the adjoint theory relevant to
this thesis. Therein, a brief overview of the historical perspective of the adjoint theory
is given, and the adjoint theory is introduced in an abstract context of linear algebra. In
particular, the relation of dual and primal formulations in statics and dynamics is dis-
cussed. Furthermore, the terminology of duality is discussed in the sensitivity analysis
of static and dynamic systems. Computational aspects of adjoint-based sensitivities for
dynamical systems conclude this chapter.

• Chapter 3 discusses the theoretical aspects of OCPs. An overview of numerical solution
methods is given, focusing on direct and indirect methods. In particular, the necessary
first-order optimality conditions of unbounded and bounded problems are derived in
detail for indirect methods. Furthermore, shooting and collocation methods are re-
viewed as important representatives of direct methods. Using direct methods yields
an NLP problem, which is usually solved by gradient-based optimization methods, as
discussed in this chapter. Finally, the chapter concludes with a discussion of commonly
used approaches in sensitivity analysis.

• Chapter 4 provides an introduction to flexible multibody systems with an emphasis
on the absolute nodal coordinate formulation. Therein, the kinematics and kinetics of
a well-established beam element are discussed, which yields the equations of motion
for a beam element. In addition, a constrained flexible multibody system is assembled
using the equations of motion from a single beam element.

• Chapter 5 summarizes the scientific contributions of this thesis based on three peer-
reviewed publications. The scientific contributions focus on deriving advanced for-
mulations in sensitivity analysis using the adjoint variable method, highlighting their
efficiency and applicability to large-scale optimization problems.

• Chapter 6 gives a brief conclusion and discussion of the main contributions of this
thesis. Moreover, recommended future research directions are highlighted.

• Appendix A includes some relevant notations of linear algebra used in this thesis.

• Appendix B presents the peer-reviewed publications of this thesis as reprints.

As an illustrative example of the above outline, Fig. 1.1 visualizes the core chapters of this
thesis within the framework of an OCP of a robotic system. This example aims to compute
an optimal control to drive the robotic system modeled with two flexible bodies concerning
a rest-to-rest maneuver. In this thesis, the modeling of flexible bodies relies on established
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approaches widely used and tested within the multibody dynamics research community, as
highlighted in Chapter 4. For an efficient computation the OCP, the methods discussed in
Chapter 3 are used in the solution process along with adjoint-based sensitivities, which are
part of the scientific contributions of this thesis. The efficient and accurate sensitivity analysis
is based on the general concept of the adjoint theory as addressed in Chapter 2.

u1

u2

Optimal Control Problem
(Chapter 3)

Flexible Multibody Formulation
(Chapter 4)

Scientific Contributions
(Chapter 5)

Concept of Adjoint Theory
(Chapter 2)

Figure 1.1: Visualization of the outline of this thesis based on the motion of a flexible robotic system





Chapter 2

General Concept of the Adjoint Theory

This chapter establishes the mathematical foundation of the adjoint theory. The general
concept of the adjoint theory is used in this thesis to develop adjoint-based sensitivities for
accurate and efficient computation of first-order gradients in optimization problems.

The use of adjoint equations has a long history in computational science, engineering,
and mathematics. A brief overview of the historical perspective of the adjoint theory is given
in Section 2.1. The historical notes provide fundamental contributions in aerodynamics and
optimal control, which are the foundation of current developments using the adjoint theory.
In the general concept, the adjoint theory is based on the substitution of variables and utilizes
the terminology of duality discussed in Section 2.2. Therein, the adjoint theory is introduced
in an abstract context of linear algebra. The adjoint theory is first discussed in static problems
for ease of understanding, followed by dynamic problems governed by first-order differential
equations. An important application of the adjoint theory is the sensitivity analysis for dy-
namical systems, which is discussed in Section 2.3. Computational aspects of adjoint-based
sensitivities for dynamical systems in Section 2.4 conclude this chapter.

The scope of this chapter is to provide sufficient details to understand the general concept
of the adjoint theory. The adjoint theory is used in the scientific contributions of the author’s
publications in [99, 101, 102] to develop adjoint-based sensitivities of OCPs. It is not an aim
to provide a complete treatment of the adjoint theory in optimal control. Instead, interested
readers are referred to excellent textbooks, e.g., on general adjoint theory [108], on adjoint
theory in optimal control [30, 91, 103]. The theoretical aspects of optimal control presented
in the next sections mainly follow the work of these textbooks.

2.1 Historical Perspective

The origin of the adjoint theory can be traced back to the fundamental work of Joseph-Louis
Lagrange, who introduced the Lagrange identity to define the adjoint operator. In the 20th
century, the general concept of the adjoint theory has been established in a wide range of sci-
entific fields. Researchers worked on pioneering theoretical developments using the adjoint
theory within their area of research. In the field of optimal control, Kelley [91] and Bryson
and Denham [28] independently developed a gradient-based method to treat OCPs using the
adjoint theory. Lions [103] introduced the adjoint theory in OCPs for systems governed by
partial differential equations. Another fundamental work of utilizing the adjoint theory in
optimal control is the textbook of Bryson and Ho [30]. This book covers various optimization
problems for dynamical systems and is a key reference for optimal control. Adjoint-based
methods also have a long history in theoretical formulations of fluid mechanics. The ad-
joint theory was first used in this area by Pironneau [122] for drag minimization problems
for Stokes flow. The pioneering work of Pironneau was later extended by Jameson [87] to
perform aerodynamic shape optimization. Based on developments in optimal control and

7
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fluid mechanics, researchers in the field of structural mechanics adopted the adjoint theory
to develop new methods in structural optimization [3, 80]. Researchers identified that us-
ing adjoint methods has a particular potential in sensitivity analysis [4, 107]. Bestle and
Eberhard [12] developed a sensitivity analysis approach for optimizing multibody systems
governed by first-order differential equations. This approach has been extended by Bestle
and Seybold [13] for systems governed by differential-algebraic equations (DAE). Further
significant developments, including the adjoint theory in multibody dynamics, are provided
in the papers [38, 51, 113]. The aforementioned fundamental contributions are the basis of
current developments using the adjoint theory.

2.2 Linear Duality

The adjoint method can be interpreted as a special case of linear duality to compute an
output [65]. The computation of an output can be viewed from the two perspectives of a
primal or dual problem definition. In the general concept, the adjoint method is based on the
substitution of variables and utilizes the terminology of duality [111]. This section introduces
the adjoint method in an abstract context of linear algebra. The terminology of duality for
static problems is discussed first for ease of understanding. The concept is then extended to
dynamic problems governed by first-order differential equations.

2.2.1 Static Problems

Suppose that a computation procedure requires the numerical evaluation of the time-invariant
matrix

Y= F+GTB ∈ RNj×Nz , (2.1)

where the matrices F ∈ RNj×Nz and G ∈ RNn×Nj are given. The matrix B ∈ RNn×Nz is the
unknown of the linear system

AB= C, (2.2)

in which the matrices A ∈ RNn×Nn and C ∈ RNn×Nz are given. The straightforward approach to
compute Y is to first solve (2.2) for B, and then use the solution of B in (2.1) to compute Y. An
alternative to this approach is to introduce a matrix P ∈ RNn×Nj , the so-called dual or adjoint
matrix including adjoint variables, and replace (2.1) with

Ỹ= F+ PTC, (2.3)

where the adjoint matrix P is the unknown of the linear system

ATP= G. (2.4)

The equations in (2.3) and (2.4) are referred to the dual problem corresponding to the primal
problem formulation in (2.1) and (2.2). The dual and primal problems are defined in such a
way that the matrices Ỹ and Y are equal. The equivalence of the primal and the dual problem
can be shown by substituting (2.2) and (2.4) into (2.3), which results in

Ỹ= F+ PTC= F+ PTAB= F+
�

ATP
�T

B= F+GTB= Y. (2.5)
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The equation in (2.5) states that Y and Ỹ are equivalent if the primal system is solved for
B and the dual system is solved for P, respectively. Both perspectives require the solution
of linear systems to compute the matrices B and P. Note that these matrices have the same
number of rows Nn, but the number of columns Nz for B and Nj for P is different. Thus, one
has to solve either Nz different primal computations for B or Nj different dual computations
for P. This fact implies the computational benefits of using the dual approach when Nj < Nz.
Using the dual approach is especially efficient when Nj ≪ Nz. Moreover, the number of
columns Nz of the matrix Y determines the number of columns for B, which is not the case
for P. This characteristic is the most powerful aspect of linear duality, where linear algebra is
exploited to efficiently compute Y [111].

2.2.2 Dynamic Problems

Similar to the static case where all variables are time-invariant, the terminology of linear du-
ality can be exploited for time-dependent problems. Suppose that a computation procedure
requires the numerical evaluation of the matrix

Y= D(tf)B(tf) +

∫ tf

t0

�

F(t) +G(t)TB(t)
�

dt ∈ RNj×Nz , (2.6)

where the matrices D ∈ RNj×Nn , F ∈ RNj×Nz , and G ∈ RNn×Nj are given. The matrix B ∈ RNn×Nz

is the unknown of the linear matrix differential equation

Ḃ(t) = A(t)B(t) +C(t) with B(t0) = 0, (2.7)

in which the matrices A ∈ RNn×Nn and C ∈ RNn×Nz are given. The straightforward approach to
evaluate Y is to first solve (2.7) for B, and then use the solution of B in (2.6) to compute Y. An
alternative to this approach is to introduce a time-dependent matrix P ∈ RNn×Nj , the so-called
dual or adjoint matrix including adjoint variables, and replace (2.6) with

Ỹ=

∫ tf

t0

�

F(t) + P(t)TC(t)
�

dt, (2.8)

where the adjoint matrix P is the unknown of the linear matrix differential equation

Ṗ(t) = −A(t)TP(t)−G(t) with P(tf) = D(tf)
T. (2.9)

The linear matrix differential equation constitutes a terminal-value problem that has to be
solved backward in time due to the final condition [148]. The equations in (2.8) and (2.9)
are referred to the dual problem corresponding to the primal problem formulation in (2.6)
and (2.7). The dual problem corresponding to the primal problem is defined in such a way
that the matrices Ỹ and Y are equal. Substituting (2.7) and (2.9) into (2.8) yields

Ỹ=

∫ tf

t0

�

F(t) + P(t)TC(t)
�

dt

=

∫ tf

t0

�

F(t) + P(t)T
�

Ḃ(t)−A(t)B(t)
��

dt

=

∫ tf

t0

�

F(t) + P(t)TḂ(t)−
�

A(t)TP(t)
�T

B(t)
�

dt

=

∫ tf

t0

�

F(t) + P(t)TḂ(t) +
�

G(t) + Ṗ(t)
�T

B(t)
�

dt.

(2.10)
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The integral of the term P(t)TḂ(t) is computed by applying integration by parts

∫ tf

t0

P(t)TḂ(t)dt = −
∫ tf

t0

Ṗ(t)TB(t)dt + P(tf)
TB(tf)
︸ ︷︷ ︸

D(tf)B(tf)

−P(t0)
TB(t0)
︸ ︷︷ ︸

0

, (2.11)

where the boundary term at t = t0 vanishes due to the initial conditions of the primal sys-
tem (2.7). The equivalence of the primal and the dual problem can be shown by substitut-
ing (2.11) into (2.10), which results in

Ỹ=D(tf)B(tf) +

∫ tf

t0

�

F(t)− Ṗ(t)TB(t) +
�

G(t) + Ṗ(t)
�T

B(t)
�

dt

=D(tf)B(tf) +

∫ tf

t0

�

F(t) +G(t)TB(t)
�

dt = Y.

(2.12)

The equation in (2.12) states that Y and Ỹ are equivalent if the primal matrix differential
equation is solved for B and the dual matrix differential equation is solved for P, respectively.
Both perspectives require the solution of linear matrix differential equations to compute the
matrices B and P. Note that these matrices have the same number of rows Nn, but the number
of columns Nz for B and Nj for P is different. Thus, one has to solve either Nz different
primal computations for B or Nj different dual computations for P. This fact implies the
computational benefits of using the dual approach when Nj < Nz. Using the dual approach
is especially efficient when Nj ≪ Nz. Moreover, the number of columns Nz of the matrix Y
determines the number of columns for B, which is not the case for P. This characteristic is
the most powerful aspect of linear duality [111].

2.3 The Adjoint Method for Sensitivity Analysis

This section exploits the concept of linear duality applied to local sensitivity analysis. Local
sensitivities describe how the values of a function or functional J ∈ RNj changes to a small
perturbation of the input z ∈ RNz , i.e.,

∇z JT =
dJ
dz

�

�

�

z=zk

, (2.13)

evaluated at the local point z = zk. Various approaches can be used to compute the sensi-
tivities in (2.13). However, this section focuses on the primal-dual approach to highlight the
advantages of the dual approach. The dual or adjoint method is probably one of the most
efficient approaches in sensitivity analysis since the number of underlying adjoint variables
does not depend on the dimension of the input z. The subsequent two sections discuss the
primal-dual approach for sensitivities concerning the function and functional J in static and
dynamic problems, respectively.

2.3.1 Static Problems

For static (time-invariant) problems, suppose that the function J is formulated with

J= L(x(z),u(z),ξ(z)), (2.14)
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where L : RNn ×RNm ×RNl → RNj specifies the function J, x : RNz → RNn is the vector of state
variables, u : RNz → RNm is the control, and ξ : RNz → RNl is a set of parameters. The state
variables x are computed by the static equilibrium equations

x(z) = f(x(z),u(z),ξ(z)), (2.15)

where f : RNn × RNm × RNl → RNn is the right-hand side vector. For example, the right-hand
side vector can represent the elongation of a nonlinear spring due to an acting force. The
scope of this section is to compute the sensitivities of the function J in (2.14) with respect to
the input z. The total derivative of J is defined by

dJ
dz
=
∂ L
∂ x

dx
dz
+
∂ L
∂ u

du
dz
+
∂ L
∂ ξ

dξ

dz
. (2.16)

Equation (2.16) requires the total derivative of the equilibrium equations (2.15) with respect
to the input z. Taking the total derivative of the equilibrium equations with respect to z yields

dx
dz
=
∂ f
∂ x

dx
dz
+
∂ f
∂ u

du
dz
+
∂ f
∂ ξ

dξ

dz
. (2.17)

Note that the linear equations in (2.16) and (2.17) have the same characteristics as the primal
problem introduced in equations (2.1) and (2.2). This can be seen by defining

A := I−
∂ f
∂ x

, B :=
dx
dz

, C :=
∂ f
∂ u

du
dz
+
∂ f
∂ ξ

dξ

dz
, F :=

∂ L
∂ u

du
dz
+
∂ L
∂ ξ

dξ

dz
, G :=
�

∂ L
∂ x

�T

, (2.18)

where I is the identity matrix, and reformulating the equations (2.16) and (2.17) by us-
ing (2.18). Consequently, the total derivative in (2.16) is transformed into the standard form

dJ
dz
= F+GTB, (2.19)

and the total derivative in (2.17) is also transformed into the standard form

AB= C. (2.20)

The straightforward approach to compute the sensitivities in (2.19) is to first solve (2.20) for
B, then use the solution to obtain the sensitivities. This procedure corresponds to the primal
approach described in Section 2.2.1. However, it has to be mentioned that the dimension of
the solution space for the linear system in (2.20) depends on the number of state variables Nn
and the number of input variables Nz. The dimension of the solution space changes linearly
when the number of inputs Nz changes. Thus, the computational effort to compute (2.19)
depends significantly on the computational effort to solve (2.20) for B, especially when the
number of inputs Nz is tremendous. The standard forms in (2.19) and (2.20) correspond to
the primal approach formulated in Section 2.2.1. Consequently, the associated dual approach
can be derived from the terminology of duality.

Duality Viewpoint

As shown in Section 2.2.1, the computation of the sensitivities in (2.19) can be transformed
into its dual counterpart by introducing the dual system and the adjoint matrix P leading to

dJ
dz
= F+ PTC, (2.21)
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where the adjoint matrix is computed according to the introduced adjoint equations in (2.4)
with

ATP= G. (2.22)

The term GTB ≡ PTC can be computed either by the primal approach, solving AB = C for B,
or by the adjoint approach, solving ATP = G for P. For a single input variable Nz = 1 there
would be no benefit in using the adjoint approach, but for multiple input variables Nz ≫ 1,
the adjoint approach is computationally much more efficient. Moreover, the number of input
variables Nz does not influence the adjoint matrix and, therefore, also not the number of
adjoint variables.

Lagrangian Viewpoint

The dual approach presented above uses the terminology of duality discussed in Section 2.2.1.
An alternative description to derive the dual approach arises using the terminology of La-
grange multipliers [65]. Most textbooks and papers on adjoint methods are based on a
Lagrangian viewpoint. In this alternative description, the function J is augmented by the
equilibrium equations (2.15) and adjoint variables leading to

J̄= L(x(z),u(z),ξ(z)) + PT
�

f(x(z),u(z),ξ(z))− x(z)
�

. (2.23)

Note that the augmented function J̄ coincides with J for any choice of the adjoint variables
in the case where the equilibrium equations (2.15) are satisfied. The sensitivities of the
augmented function J̄ are given by

dJ̄
dz
=
∂ L
∂ u

du
dz
+
∂ L
∂ ξ

dξ

dz
+

�

∂ L
∂ x
− PT

�

I−
∂ f
∂ x

��

dx
dz
+ PT

�

∂ f
∂ u

du
dz
+
∂ f
∂ ξ

dξ

dz

�

. (2.24)

To avoid the direct computation of the state sensitivities dx/dz by solving (2.17), the adjoint
matrix P may now be defined such that the rectangular bracket multiplied by the state sen-
sitivities becomes zero, i.e., the state sensitivities dx/dz do not have to be calculated directly
as the entire term vanishes. To this end, the adjoint equations are defined by

�

I−
∂ f
∂ x
︸ ︷︷ ︸

A

�T

P=
�

∂ L
∂ x

�T

︸ ︷︷ ︸

G

. (2.25)

Using the definitions in (2.18), it is obvious that the adjoint equations in (2.25) derived by
using the terminology of Lagrange multipliers are exactly the same as derived by using the
terminology of duality. Moreover, if the adjoint equations in (2.25) are satisfied, then the
total derivative in (2.24) reduces to

dJ̄
dz
=
∂ L
∂ u

du
dz
+
∂ L
∂ ξ

dξ

dz
︸ ︷︷ ︸

F

+PT

�

∂ f
∂ u

du
dz
+
∂ f
∂ ξ

dξ

dz
︸ ︷︷ ︸

C

�

. (2.26)

Note that the total derivative of the augmented function in (2.26) is exactly the same as
derived by using the terminology of duality.
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2.3.2 Dynamic Problems

For dynamic (time-dependent) problems, suppose that the functional J is formulated with

J= E(x(z, tf), tf) +

∫ tf

t0

L(x(z, t),u(z, t),ξ(z))dt, (2.27)

where the state variables x : RNz × R → RNn and the control u : RNz × R → RNm are time-
dependent, and an additional term E : RNn×R→ RNj has been introduced. The state variables
x are computed by the first-order differential equations

ẋ(z, t) = f(x(z, t),u(z, t),ξ(z)) with x(t0) = x̄0, (2.28)

where f : RNn×RNm×RNl → RNn is the right-hand side vector and x̄0 are given initial state vari-
ables. For example, the right-hand side vector can represent the state vector of a nonlinear
spring pendulum. The scope of this section is to compute the sensitivities of the functional J
in (2.27) with respect to the input z. The total derivative of J is defined by

dJ
dz
=
∂ E
∂ x

dx
dz
+

∫ tf

t0

�

∂ L
∂ x

dx
dz
+
∂ L
∂ u

du
dz
+
∂ L
∂ ξ

dξ

dz

�

dt. (2.29)

Similar to the static problem discussed above, the sensitivities (2.29) require the total deriva-
tive of the state variables x with respect to the input z. Taking the total derivative of the state
equations with respect to z yields

dẋ
dz
=
∂ f
∂ x

dx
dz
+
∂ f
∂ u

du
dz
+
∂ f
∂ ξ

dξ

dz
. (2.30)

Equation (2.30) is a system of linear differential equations that can be solved using classical
time integration methods. The state variables are specified at the initial time by x̄0, and
therefore, changing the input z does not influence the state variables x at the initial time.
Thus, the initial conditions to solve (2.30) are defined by

dx
dz
(t0) = 0. (2.31)

Note that the equations in (2.29) and (2.30) have the same characteristics as the primal
problem introduced in equations (2.6) and (2.7). This can be seen by defining

A(t) :=
∂ f
∂ x

, B(t) :=
dx
dz

, Ḃ(t) :=
dẋ
dz

,

C(t) :=
∂ f
∂ u

du
dz
+
∂ f
∂ ξ

dξ

dz
, D(t) :=

∂ E
∂ x

,

F(t) :=
∂ L
∂ u

du
dz
+
∂ L
∂ ξ

dξ

dz
, G(t) :=
�

∂ L
∂ x

�T

,

(2.32)

and reformulating the equations in (2.29) and (2.30) by using (2.32). Consequently, the
total derivative in (2.29) is transformed into the standard form

dJ
dz
= D(tf)B(tf) +

∫ tf

t0

�

F(t) +G(t)TB(t)
�

dt, (2.33)

and the total derivative in (2.30) is also transformed into the standard form

Ḃ(t) = A(t)B(t) +C(t) with B(t0) = 0. (2.34)



14 2 General Concept of the Adjoint Theory

The straightforward approach to compute the sensitivities in (2.33) is to first solve (2.34) for
B, then use the solution to obtain the sensitivities. This procedure corresponds to the primal
approach described in Section 2.2.2. However, it has to be mentioned that the dimension of
the solution space for the linear matrix differential equation in (2.34) depends on the number
of state variables Nn and the number of input variables Nz. The dimension of the solution
space changes linearly when the number of inputs Nz changes. Thus, the computational
effort to compute (2.33) depends significantly on the computational effort to solve (2.34)
for B, especially when the number of inputs Nz is tremendous. The standard forms in (2.33)
and (2.34) correspond to the primal approach formulated in Section 2.2.2. Consequently, the
associated dual approach can be derived from the terminology of duality.

Duality Viewpoint

As shown in Section 2.2.2, the computation of the sensitivities in (2.33) can be transformed
into its dual counterpart by introducing the dual system and the adjoint matrix P leading to

dJ
dz
=

∫ tf

t0

�

F(t) + P(t)TC(t)
�

dt, (2.35)

where the adjoint variables are computed according to the introduced adjoint system in (2.9)
with

Ṗ(t) = −A(t)TP(t)−G(t) with P(tf) = D(tf)
T. (2.36)

The linear matrix differential equation in (2.36) constitutes a terminal-value problem that
has to be solved backward in time. Thus, the history of all state variables is required first
to evaluate A and G backward in time starting from tf towards t0. The adjoint variables
can, therefore, not be computed simultaneously with the state variables [154]. However,
the time-dependent term GTB≡ PTC can be computed either by the primal approach, solving
Ḃ = AB+ C for B, or by the adjoint approach, solving Ṗ = −ATP−G for P. For a single input
variable Nz = 1 there would be no benefit in using the adjoint approach, but for multiple input
variables Nz ≫ 1, the adjoint approach is computationally much more efficient. Moreover,
the number of input variables Nz does not influence the adjoint matrix and, therefore, also
not the number of adjoint variables.

Lagrangian Viewpoint

The dual approach presented above uses the terminology of duality discussed in Section 2.2.2.
An alternative description to derive the dual approach arises using the terminology of La-
grange multipliers [65]. In this alternative description, the functional J is augmented by the
first-order differential equations (2.28) and adjoint variables leading to

J̄= E(x(z, tf), tf) +

∫ tf

t0

�

L(x(z, t),u(z, t),ξ(z)) + PT

�

f(x(z, t),u(z, t),ξ(z))− ẋ(z, t)

��

dt.

(2.37)

Note that the augmented functional J̄ coincides with J for any choice of the adjoint variables
in the case where the state equations (2.28) are satisfied. The sensitivities of the augmented
functional J̄ are given by

dJ̄
dz
=
∂ E
∂ x

dx
dz
+

∫ tf

t0

��

PT ∂ f
∂ x
+
∂ L
∂ x

�

dx
dz
+
∂ L
∂ u

du
dz
+
∂ L
∂ ξ

dξ

dz

+ PT

�

∂ f
∂ u

du
dz
+
∂ f
∂ ξ

dξ

dz
−

dẋ
dz

��

dt,

(2.38)
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where the term ∂ E
∂ x

dx
dz is evaluated at the final time t = tf. The integral of the term PT dẋ

dz is
computed by applying integration by parts

−
∫ tf

t0

PT dẋ
dz

dt =

∫ tf

t0

ṖT dx
dz

dt − P(tf)
T dx

dz
(tf) + P(t0)

T dx
dz
(t0)

︸ ︷︷ ︸

0

, (2.39)

where the boundary term at t = t0 vanishes due to the initial conditions (2.31). Substitut-
ing (2.39) in (2.38) yields to

dJ̄
dz
=

�

∂ E
∂ x
− PT

�

dx
dz
+

∫ tf

t0

��

ṖT + PT ∂ f
∂ x
+
∂ L
∂ x

�

dx
dz

+
∂ L
∂ u

du
dz
+
∂ L
∂ ξ

dξ

dz
+ PT

�

∂ f
∂ u

du
dz
+
∂ f
∂ ξ

dξ

dz

��

dt.

(2.40)

To avoid the direct computation of the state sensitivities dx/dz by solving (2.30), the adjoint
matrix P may now be defined such that the round brackets multiplied by the state sensitivities
become zero, i.e., the state sensitivities dx/dz do not have to be calculated directly as the
entire term vanishes. To this end, the adjoint equations are defined by

Ṗ= −
�

∂ f
∂ x
︸︷︷︸

A

�T

P−
�

∂ L
∂ x

�T

︸ ︷︷ ︸

G

with P(tf) =
�

∂ E
∂ x
︸︷︷︸

D

�T

. (2.41)

Using the definitions in (2.32), it is obvious that the adjoint equations in (2.41) derived by
using the terminology of Lagrange multipliers are exactly the same as those derived by using
the terminology of duality. Moreover, if the adjoint equations in (2.41) are satisfied, then the
total derivative in (2.40) reduces to

dJ̄
dz
=

∫ tf

t0

�

∂ L
∂ u

du
dz
+
∂ L
∂ ξ

dξ

dz
︸ ︷︷ ︸

F

+PT

�

∂ f
∂ u

du
dz
+
∂ f
∂ ξ

dξ

dz
︸ ︷︷ ︸

C

��

dt. (2.42)

Note that the total derivative of the augmented functional in (2.42) is exactly the same as
derived by using the terminology of duality.

2.4 Computational Aspects

This section discusses computational aspects relevant to adjoint-based sensitivity analysis.
High-fidelity and efficient sensitivity analysis is crucial, e.g., if the computed sensitivities are
used in a gradient-based optimization approach. In particular, this section aims to highlight
computational aspects to compute sensitivities dJ/dz of the scalar functional

J =

∫ tf

t0

L(x(z, t),u(z, t))dt, (2.43)

where the state variables are computed by the first-order differential equations

ẋ(z, t) = f(x(z, t),u(z, t)) with x(t0) = x̄0. (2.44)
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2.4.1 Duality of Sensitivities

Adjoint methods can be interpreted as a special case of linear duality, and their core is based
on the substitution of variables [111]. The adjoint method is often used in sensitivity analysis
to compute first-order derivatives. Adjoint sensitivities are based on the underlying adjoint
variables, whose dimension is independent of the number of input variables Nz. Instead, the
dimension of the adjoint variables is proportional to the dimension of the function of interest
Nj. However, the dimension of the function of interest is usually smaller than the number of
input variables. For such problems, the adjoint method is one of the most efficient methods
to evaluate sensitivities [37].

Figure 2.1 visualizes the dimensions of primal (a) and dual (b) sensitivities as well as the
dimensions of primal (c) and dual (d) differential equations for two different sets of input
variables. Increasing the number of input variables z from Nz to Nz + i, with i ≥ 1 ∈ N,
changes the dimensions of the derivatives with respect to the input z, while the dimensions
of the derivatives with respect to the state variables x are independent of the number of
input variables Nz; see Fig. 2.1 for a graphical interpretation of the dimensions. Note that
the primal (a) and dual (b) sensitivities require the solution of linear differential equations
for dx/dz and p, respectively. As aforementioned, the dimension of the state sensitivities
dx/dz changes with the number of the input variables Nz, while the dimension of the adjoint
variables p are independent of the number of input variables Nz. This can also be seen in
Fig. 2.1 for the dimensions of the linear differential equations associated with the primal (c)
and dual (d) approach.

2.4.2 Backward Time Integration

The computation of the adjoint matrix P requires solving differential equations backward in
time, starting from the final time t = tf towards the initial time t = t0, i.e., the interval of
integration (tf, t0) is decreasing. The terminal-value problem in (2.9) can be transformed
into a classical initial-value problem by using a time transformation [148]. Following Nach-
bagauer et al. [113], the time transformation can be performed by introducing a new time
domain τ ∈ [t0, tf] : R→ R defined by

τ= tf − t. (2.45)

Using the time transformation rule with an increasing interval of integration for t constructs
a decreasing τ. Hence, the new time domain τ can be used to compute the adjoint variables
backward in time with an increasing interval of integration for t. The transformation requires
a reformulation of the linear matrix differential equation in (2.9) by the new time domain.
Special attention has to be given to the total time derivative of a function (·) depending on
the new time domain, i.e., (·)(τ) = (·)(tf − t), which is defined by

d(·)(τ)
dt

=
d(·)(τ)

dτ
dτ
dt
= −

d(·)(τ)
dτ

. (2.46)

By using the transformation rule (2.45) and the total time derivative (2.46), the linear matrix
differential equation in (2.9) can be reformulated as a function of the new time domain

dP(τ)
dτ

= A(τ)TP(τ) +G(τ) with P(tf) = D(tf)
T. (2.47)

The reformulated linear matrix differential equation is an initial-value problem that can be
solved by any suitable third-party library for solving differential equations.
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Figure 2.1: Graphical interpretation of the dimensions in the sensitivity analysis in dynamics: (a) and (b) repre-
sent the sensitivities associated with the primal and dual approach, respectively; (c) and (d) represent the linear
differential equations associated with the primal and dual approach, respectively
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2.4.3 Memory Efficient Implementation

To fully utilize the advantages of the adjoint method, it is crucial to implement it memory-
efficiently. In the last few decades, various approaches have been developed to implement the
adjoint method in a memory-efficient way. The memory requirement of the adjoint method
can be demanding since the entire history of the state variables for all t ∈ [t0, tf] is required
to compute the adjoint variables. This can be a demanding storage requirement, especially
for large-scale problems. To overcome this memory overhead, Griewank [72] introduced the
concept of checkpointing. The key idea of the checkpointing method is to store the state
variables x only at specified checkpoints instead of the entire history. A comprehensive anal-
ysis of the checkpointing method is provided in [73]. Checkpointing is also used in a recent
paper by Gholami et al. [64], which presents a memory-efficient adjoint-based neural or-
dinary differential equation framework that provides unconditionally accurate gradients. A
memory-efficient approach in neural networks is using a symplectic adjoint method as pro-
posed in [110], where a symplectic integrator solves the adjoint system with appropriate
checkpoints. Another approach to reducing the memory footprint for implementations based
on automatic differentiation can be realized using the operator overloading-based adjoint ap-
proach presented in [48]. In addition, a comprehensive benchmark in [92] presents various
adjoint implementations focusing on efficiency, accuracy, and low-cost implementation.

2.4.4 Procedure of Adjoint Sensitivities

Using adjoint sensitivities in dynamics can be summarized with the following four major
steps:

1. Computation of partial derivatives
The sensitivity analysis requires the computation of partial derivatives, e.g., ∂ f/∂ x or
∂ f/∂ u. Partial derivatives can be computed mainly by four different methods: finite-
difference method, complex-step method, automatic differentiation, and symbolic dif-
ferentiation [92].

2. Forward time integration
The evolution of the state variables x is computed forward in time using a classical time
integration method to solve first-order differential equations, e.g., using a Runge–Kutta
time-integration scheme [32]. Explicit or implicit time integration methods can be used
depending on the characteristics of the differential equations.

3. Backward time integration
The evolution of the adjoint matrix P is computed backward in time starting from the
final time t = tf towards the initial time t = t0. Since the linear matrix differential
equation depends on the state variables x, the forward time integration must be finished
before the backward time integration can be performed.

4. Computation of sensitivities
The final step in the procedure to obtain abjoint-based sensitivities requires to compute
an integral over time. The integral can be solved using classical numerical integration
methods, such as a quadrature method [41].



Chapter 3

Fundamentals of Optimal Control

Optimal control aims to determine inputs that drive a dynamical system towards its desired
goal. In a mathematical context, optimal control regards optimizing a dynamical system to
minimize a cost functional while satisfying physical constraints, e.g., the rest-to-rest motion
of a soft robot. The dynamical system under consideration may be described as nonlinear
first-order differential equations

ẋ(t) = f(x(t),u(t),ξ) with x(t0) = x̄0, (3.1)

where x ∈ RNn is the vector of state variables, u ∈ RNm is the control, and ξ ∈ RNl is a set of
parameters. The ordinary differential equation (ODE) in (3.1) together with the initial state
variables x̄0 is referred to as an initial value problem (IVP).

As the complexity of OCPs increases, numerical methods are employed to obtain an opti-
mal solution. Numerical solution methods for OCPs can be divided into three main categories:

• Indirect methods are based on the calculus of variations to obtain the necessary first-
order optimality conditions of the OCP. The optimality conditions are in the form of
a two-point boundary value problem (BVP), which has to be solved to determine the
optimal control. This approach is also called first differentiate, then optimize.

• Direct methods are based on parameterizing the state and/or control variables to tran-
scribe the original infinite-dimensional optimization problem into a finite-dimensional
NLP problem. The NLP problem can be treated by well-known methods to determine
the optimal control. This approach is also called first discretize, then optimize.

• Dynamic programming is based on the principle of optimality, which leads to partial
differential equations referred to as the Hamilton-Jacobi-Bellman equations. For details
on dynamic programming, the reader is referred to [8, 10].

The main approaches for solving an OCP using indirect and direct methods are discussed in
a comprehensive survey of numerical methods provided by Rao [129]. In addition, von Stryk
and Bulirsch [159] provide commonly used methods for solving an OCP and introduce a
hybrid approach to combine indirect and direct methods. An overview of numerical methods
for solving an OCP is given in Fig. 3.1 focusing on direct methods. Indirect and direct methods
are discussed further as the theoretical basis for this dissertation.

The scope of this chapter is to provide sufficient details to understand the scientific contri-
butions of the author’s publications in [99, 101, 102]. It is not an aim to provide a complete
treatment of theory and applications on optimal control. Instead, interested readers are re-
ferred to excellent textbooks, e.g., on general optimal control theory [14, 30, 95], and on
convex and numerical optimization [25, 69, 115]. The theoretical aspects of optimal control
presented in the next sections mainly follow the work of these textbooks.

19
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Optimal Solution

Sequential Approach Simultaneous Approach

Dynamic Programming

([8, 10])

Indirect Methods

(Section 3.2)

Direct Methods

(Section 3.3)

IP Method

(Section 3.3.7)

SQP Method

(Section 3.3.6)

NLP Problem

(Section 3.3.4)

Direct Single Shooting

(Section 3.3.1)

Direct Collocation

(Section 3.3.3)

Direct Multible Shooting

(Section 3.3.2)

Optimal Control Problem

(Section 3.1)

Figure 3.1: Overview of numerical methods for solving optimal control problems focusing on direct methods
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3.1 Problem Formulation

An OCP aims to determine a continuous control u(t) = u∗, continuous state variables x(t) =
x∗, a final time tf = t∗f and possibly a set of parameters ξ = ξ∗ to minimize a scalar cost
functional J without violating (in)equality constraints. The control and the state variables
are time-dependent functions in the time interval t ∈ [t0, tf] and, therefore, the OCP is an
infinite-dimensional optimization problem. An OCP is formulated as

min
x,u,ξ,tf

J =

∫ tf

t0

L(x(t),u(t),ξ, t)dt + E(x(tf), tf) (3.2)

s.t.

φ(x(tf), tf) = 0 (3.3)

g(x(t),u(t)) = 0 (3.4)

h(x(t),u(t))≤ 0 (3.5)

x(t0) = x̄0 (3.6)

ẋ(t) = f(x(t),u(t),ξ) (3.7)

where the integral cost L : RNn ×RNm ×RNl ×R→ R is denoted as Lagrange term and the final
cost E : RNn×R→ R is denoted as Mayer term. An OCP formulated with a Lagrange term and
a Mayer term is referred to as a Bolza type. Different forms of an OCP are presented in [23]
or in [116]. The above-defined OCP is concerned to final constraints φ : RNn × R → RNφ ,
equality constraints g : RNn×RNm → RNg , and inequality constraints h : RNn×RNm → RNh while
satisfying the state equations with the given initial state variables x̄0 in the time interval
t ∈ [t0, tf].

As aforementioned, the OCP can be treated by indirect methods, direct methods, and
dynamic programming. The theoretical concept of indirect and direct methods is discussed
in the subsequent sections.

3.2 Indirect Methods

Indirect methods are proven to provide results with high accuracy regarding an OCP. The
basic idea is to derive the necessary first-order optimality conditions by applying the calculus
of variations and to solve the resulting equations. These optimality conditions formulate a
two-point BVP. An analytic solution of the derived BVP can only be found in some special
cases. For the general case, iterative methods are employed to solve the BVP, e.g., indirect
shooting, indirect collocation, or indirect gradient-based methods. The following section
derives the necessary first-order optimality conditions using a variational approach for an
unbounded OCP. These conditions are then extended to incorporate bounds, which leads to
Pontryagin’s minimum principle.

3.2.1 Unbounded Optimal Control Problems

This section focuses on formulating necessary first-order optimality conditions for the simple
but fundamentally important case in which the OCP is unbounded. The simplification yields
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the unbounded OCP formulation

min
x,u,tf

J =

∫ tf

t0

L(x(t),u(t), t)dt + E(x(tf), tf) (3.8)

s.t.

x(t0) = x̄0 (3.9)

ẋ(t) = f(x(t),u(t)) (3.10)

Note that (soft) inequality constraints on the state variables and the control can be considered
by introducing a proper penalty function P(x,u) : RNn ×RNm → R added to the integral cost
L. The penalty function is zero if the inequality constraints are satisfied and increases if
the inequality constraints are violated. Detailed information on the practical use of penalty
functions is presented in [14]. In addition to inequality constraints, the final constraints of the
state variables can be considered in the Mayer term E. However, the above OCP formulation
is used in the subsequent sections to derive the necessary first-order optimality conditions.

Following the fundamental work by Bryson and Ho [30], an extended cost functional

J̄ =

∫ tf

t0

�

L(x(t),u(t), t) + p(t)T (f(x(t),u(t))− ẋ(t))
�

dt + E(x(tf), tf) (3.11)

is formulated by coupling the state equations (3.10) with the cost functional (3.8). When
the state equations are satisfied, the additional term does not change the numerical value of
the cost functional J for any choice of the so-called adjoint variables p ∈ RNn . For the sake of
convenience, the Hamiltonian H : RNn ×RNm ×RNn ×R→ R associated with the extended cost
functional is introduced by

H(x(t),u(t),p(t), t) := L(x(t),u(t), t) + pT(t)f(x(t),u(t)). (3.12)

Using the Hamiltonian, the extended cost functional reads

J̄ =

∫ tf

t0

�

H(x(t),u(t),p(t), t)− p(t)Tẋ(t)
�

dt + E(x(tf), tf). (3.13)

The goal is to find optimal functions x∗, u∗, p∗, and a final time t∗f , such that the extended
cost functional (3.13) becomes stationary. The optimality of indirect methods is investigated
by a perturbation of the optimal solution. The modified functions are given by

x(t) = x∗(t) +δx(t) = x∗(t) + ϵη1(t), (3.14)

u(t) = u∗(t) +δu(t) = u∗(t) + ϵη2(t), (3.15)

p(t) = p∗(t) +δp(t) = p∗(t) + ϵη3(t), (3.16)

where δx, δu, δp are admissible variations, η1,2,3 are proper test functions and ϵ is a small
perturbation parameter. For the following derivation of the necessary optimality conditions,
the argument t of time-dependent functions is omitted to improve the readability. In the
general case, the final time is free and, therefore, also modified by

tf = t∗f +δtf = t∗f + ϵη4, (3.17)

where δtf is the variation of the final time and η4 is a test parameter. In addition, the
variation of the extended cost functional δJ̄ caused by a perturbation of the optimal solution
in (3.14)–(3.17) is given as

δJ̄ = J̄ − J̄∗ = J̄(x∗ + ϵη1,u∗ + ϵη2,p∗ + ϵη3, t∗f + ϵη4)− J̄(x∗,u∗,p∗, t∗f ). (3.18)
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The extended cost functional caused by a perturbation of the optimal solution can be ex-
pressed in terms of a Taylor series expansion. The linear approximation of the extended cost
functional yields

J̄(x∗ + ϵη1,u∗ + ϵη2,p∗ + ϵη3, t∗f + ϵη4)

≈ J̄(x∗ + ϵ0η1,u∗ + ϵ0η2,p∗ + ϵ0η3, t∗f + ϵ0η4)

+
d
dϵ

�

�

�

�

ϵ=ϵ0

�

J̄(x∗ + ϵη1,u∗ + ϵη2,p∗ + ϵη3, t∗f + ϵη4)

�

(ϵ − ϵ0),
(3.19)

where ϵ0 is the expansion point. Considering the linear approximation at the optimal solu-
tion, i.e., ϵ0 = 0, and substituting (3.19) into (3.18) yields the variation of the extended cost
functional

δJ̄ = ϵ
d
dϵ

�

�

�

�

ϵ=0

�

J̄(x∗ + ϵη1,u∗ + ϵη2,p∗ + ϵη3, t∗f + ϵη4)

�

. (3.20)

The variation of the extended cost functional formulates the necessary first-order optimality
conditions of an optimal solution. For an optimal solution, the variation becomes station-
ary, i.e., the condition δJ̄ = 0 has to be satisfied. The variation of the extended cost func-
tional (3.20) is written in terms of the extended cost functional introduced in (3.13), which
results in

δJ̄ =ϵ
d
dϵ

�

�

�

�

ϵ=0

�

E(x∗(t∗f + ϵη4) + ϵη1(t
∗
f + ϵη4), t∗f + ϵη4)

+

∫ t∗f

t0

�

H(x∗ + ϵη1,u∗ + ϵη2,p∗ + ϵη3, t)− (p∗ + ϵη3)
T(ẋ∗ + ϵη̇1)
�

dt

+

∫ t∗f +ϵη4

t∗f

�

H(x∗ + ϵη1,u∗ + ϵη2,p∗ + ϵη3, t)− (p∗ + ϵη3)
T(ẋ∗ + ϵη̇1)
�

dt

�

.

(3.21)

Therein, the interval of the integration is divided into two parts.
The next step in deriving the optimality conditions is to perform the total derivative of

the extended cost functional with respect to the perturbation parameter. The total derivative
with respect to the perturbation parameter can be carried out straightforwardly for the Mayer
term and for the integral in the time interval t ∈ [t0, t∗f ] by applying consequently the chain
rule of differentiation. The total derivative of the Mayer term results in

ϵ
d
dϵ

�

�

�

�

ϵ=0

�

E(x(tf(ϵ),ϵ), tf(ϵ))

�

= ϵ

�

∂ E(x, tf)
∂ x

�

∂ x
∂ tf

∂ tf

∂ ϵ
+
∂ x
∂ ϵ

�

+
∂ E(x, tf)
∂ tf

∂ tf

∂ ϵ

��

�

�

�

ϵ=0
. (3.22)

Evaluating the above total derivative at ϵ = 0 yields

ϵ
d
dϵ

�

�

�

�

ϵ=0

�

E(x(tf(ϵ),ϵ), tf(ϵ))

�

= ϵ

�

∂ E(x∗(t∗f ), t∗f )

∂ x

�

ẋ∗(t∗f )η4 +η1(t
∗
f )
�

+
∂ E(x∗(t∗f ), t∗f )

∂ t
η4

�

=
∂ E(x∗(t∗f ), t∗f )

∂ x

�

ẋ∗(t∗f )δtf +δx(t∗f )
︸ ︷︷ ︸

δxf

�

+
∂ E(x∗(t∗f ), t∗f )

∂ t
δtf,

(3.23)

where the product of the perturbation parameter times a test parameter/function is expressed
with the corresponding variation defined in (3.14)–(3.17). The majority of papers and text-
books on optimal control theory introduce the variation δxf first and then derive the explicit
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terms with

δxf = x(t∗f +δtf)− x∗(t∗f )

= x∗(t∗f +δtf) +δx(t∗f +δtf)− x∗(t∗f )

≈ x∗(t∗f ) + ẋ∗(t∗f )δtf +δx(t∗f ) +δẋ(t∗f )δtf − x∗(t∗f )

≈ ẋ∗(t∗f )δtf +δx(t∗f ),

(3.24)

where the state variables x∗(t∗f + δtf) and the variation δx(t∗f + δtf) are approximated by a
first-order Taylor series expansion at the expansion point t∗f , and where the higher-order term
δẋ(t∗f )δtf is neglected. Note that the variation of the final time δtf influences the variation of
the state variables δx; see Fig. 3.2 for a visualization of the relationship of the variations. In
the special case of a fixed final time, the variation (3.24) simplifies to δxf = δx(t∗f ).

x(t)

δx(t∗f )
δxfx

x∗

x̄0

tt0 t∗f t∗f +δtf

Figure 3.2: Optimal and modified state variable: Relationship between δx(tf), δxf and δtf

In addition to the total derivative of the Mayer term, the total derivative of the second
term in (3.21) reads

ϵ
d
dϵ

�

�

�

�

ϵ=0

�∫ t∗f

t0

�

H(x∗ + ϵη1,u∗ + ϵη2,p∗ + ϵη3, t)− (p∗ + ϵη3)
T(ẋ∗ + ϵη̇1)
�

dt

�

=

∫ t∗f

t0

�

∂H(x∗,u∗,p∗, t)
∂ x

δx+
∂H(x∗,u∗,p∗, t)

∂ u
δu

+
∂H(x∗,u∗,p∗, t)

∂ p
δp− p∗Tδẋ− ẋ∗Tδp

�

dt.

(3.25)

The total derivative of the third term in (3.21) requires to apply the Leibnitz integral rule
since the upper integration bound depends on the perturbation parameter ϵ. Using the inte-
gration rule leads to

ϵ
d
dϵ

�

�

�

�

ϵ=0

�∫ t∗f +ϵη4

t∗f

�

H(x∗ + ϵη1,u∗ + ϵη2,p∗ + ϵη3, t)− (p∗ + ϵη3)
T(ẋ∗ + ϵη̇1)
�

dt

�

= ϵ

�∫ t∗f +ϵη4

t∗f

d
dϵ

�

H(x∗ + ϵη1,u∗ + ϵη2,p∗ + ϵη3, t)− (p∗ + ϵη3)
T(ẋ∗ + ϵη̇1)
�

dt

��

�

�

�

ϵ=0

+ ϵ

�

�

H(x∗ + ϵη1,u∗ + ϵη2,p∗ + ϵη3, t)− (p∗ + ϵη3)
T(ẋ∗ + ϵη̇1)
�

�

�

�

�

t∗f +ϵη4

d
dϵ
(t∗f + ϵη4)

��

�

�

�

ϵ=0
.

(3.26)
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Evaluating the above total derivative at ϵ = 0 vanishes the integral term and simplifies the
total derivative to

ϵ
d
dϵ

�

�

�

�

ϵ=0

�∫ t∗f +ϵη4

t∗f

�

H(x∗ + ϵη1,u∗ + ϵη2,p∗ + ϵη3, t)− (p∗ + ϵη3)
T(ẋ∗ + ϵη̇1)
�

dt

�

=
�

H(x∗(t∗f ),u
∗(t∗f ),p

∗(t∗f ), t∗f )− p∗(t∗f )
Tẋ∗(t∗f )
�

δtf.

(3.27)

Finally, the total derivatives formulated in (3.23), (3.25), and (3.27) can now be used in the
variation of the extended cost functional (3.21). Hence, the variation of the extended cost
functional reads

δJ̄ =

∫ t∗f

t0

�

∂H(x∗,u∗,p∗, t)
∂ x

δx+
∂H(x∗,u∗,p∗, t)

∂ u
δu

+
�

∂H(x∗,u∗,p∗, t)
∂ p

− ẋ∗T
�

δp− p∗Tδẋ
�

dt +
∂ E(x∗(t∗f ), t∗f )

∂ x
δxf

+
�∂ E(x∗(t∗f ), t∗f )

∂ t
+H(x∗(t∗f ),u

∗(t∗f ),p
∗(t∗f ), t∗f )− p∗(t∗f )

Tẋ∗(t∗f )
�

δtf.

(3.28)

The integral of the term p∗Tδẋ is computed by applying integration by parts

−
∫ t∗f

t0

p∗Tδẋdt =

∫ t∗f

t0

ṗ∗Tδxdt − p∗(t∗f )
Tδx(t∗f ) + p∗(t0)

Tδx(t0)
︸ ︷︷ ︸

0

=

∫ t∗f

t0

ṗ∗Tδxdt − p∗(t∗f )
T[δxf − ẋ∗(t∗f )δtf],

(3.29)

where the variation δx(t0) vanishes due to the fixed initial conditions x(t0) = x̄0, and the
variation δx(t∗f ) is expressed in terms of (3.24). Substituting (3.29) in (3.28) and sorting the
variations δx, δu, δp, δxf, and δtf results in

δJ̄ =

∫ t∗f

t0

��

∂H(x∗,u∗,p∗, t)
∂ x

+ ṗ∗T
�

δx+
∂H(x∗,u∗,p∗, t)

∂ u
δu

+
�

∂H(x∗,u∗,p∗, t)
∂ p

− ẋ∗T
�

δp
�

dt +
�∂ E(x∗(t∗f ), t∗f )

∂ x
− p∗(t∗f )

T
�

δxf

+
�∂ E(x∗(t∗f ), t∗f )

∂ t
+H(x∗(t∗f ),u

∗(t∗f ),p
∗(t∗f ), t∗f )
�

δtf.

(3.30)

The extended cost functional becomes stationary when δJ̄ = 0 holds for any admissible
variations δx, δu, δp, δxf, and δtf. Hence, the necessary first-order optimality conditions for
an unbounded OCP are defined by:

• Minimum conditions

0=
�

∂H(x∗,u∗,p∗, t)
∂ u

�T

(3.31)

• State equations

ẋ∗ =
�

∂H(x∗,u∗,p∗, t)
∂ p

�T

with x(t0) = x̄0 (3.32)
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• Adjoint equations

ṗ∗ =−
�

∂H(x∗,u∗,p∗, t)
∂ x

�T

(3.33)

• Transversality conditions

0=
�∂ E(x∗(t∗f ), t∗f )

∂ x
− p∗(t∗f )

T
�

δxf

+
�∂ E(x∗(t∗f ), t∗f )

∂ t
+H(x∗(t∗f ),u

∗(t∗f ),p
∗(t∗f ), t∗f )
�

δtf

(3.34)

The equations in (3.31) are the necessary minimum conditions for unbounded controls,
which is a simplified statement of Pontryagin’s minimum principle. The minimum prin-
ciple for bounded controls is discussed in Section 3.2.2. The first-order differential equa-
tions (3.32) and (3.33) are referred to as canonical equations, where the boundary condi-
tions for the adjoint variables are specified at the final time using the transversality conditions
in (3.34). Note that the Hamiltonian for autonomous systems has a special behavior. The
total time derivative of the Hamiltonian states that

dH
dt
=
∂H
∂ x

ẋ∗ +
∂H
∂ u

u̇∗ +
∂H
∂ p

ṗ∗

= −ṗ∗Tẋ∗ +
∂H
∂ u

u̇∗ + ẋ∗Tṗ∗

= 0,

(3.35)

holds for all t ∈ [t0, tf], where the optimality conditions (3.31)–(3.33) are utilized. Conse-
quently, the solution of an OCP leads to a constant Hamiltonian over time for autonomous
systems.

The optimality conditions (3.31)–(3.33) consist of Nm algebraic equations (minimum
principle) and 2Nn first-order differential equations (state and adjoint equations) to deter-
mine the optimal control u∗ ∈ RNm , the state variables x∗ ∈ RNn , and the adjoint variables
p∗ ∈ RNn for a fixed final time tf. If the final time is free, the transversality conditions are
used to consider an additional equation. In general, the optimality conditions (3.31)–(3.33)
formulate a two-point BVP for the time interval t ∈ [t0, tf]with Nn initial conditions x(t0) = x̄0
and an additional set of Nn or (Nn + 1) final conditions defined by the transversality condi-
tions. The number of final constraints depends on whether the final time is specified or free.
In both cases, the actual values of the final conditions depend on the formulation of the OCP,
e.g., problems where some state variables are specified or where the cost functional is de-
fined without a Mayer term. The following sections discuss two cases to determine the final
conditions based on the transversality conditions (3.34). A comprehensive overview of final
conditions for different OCPs is provided in [95].

Final conditions for a fixed final time

In this case, the final time is assumed to be fixed, and some state variables are specified at
the final time. The fixed final time leads to δtf = 0, i.e., the second term in the transversality
conditions (3.34) vanishes. Assuming that the state variables are ordered by Ns specified
states xs followed by (Nn − Ns) unspecified states xu, i.e., x = (xT

s , xT
u)

T with Ns ≤ Nn, the
transversality conditions regarding specified and unspecified state variables can be decoupled
by

0=
�∂ E(x∗(t∗f ), t∗f )

∂ xs
− p∗s (t

∗
f )

T
�

δxf,s +
�∂ E(x∗(t∗f ), t∗f )

∂ xu
− p∗u(t

∗
f )

T
�

δxf,u. (3.36)
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The specified state variables xf,s lead to δxf,s = 0, while the variation of the unspecified state
variables δxf,u is free. Hence, the first term in (3.36) vanishes, and the second term must
be defined in such a way that the transversality conditions are satisfied. To this end, the
necessary Nn final conditions are defined by

x∗s (t
∗
f ) = xf,s, (3.37)

p∗u(t
∗
f ) =
�∂ E(x∗(t∗f ), t∗f )

∂ xu

�T

. (3.38)

Final conditions for a free final time

In this case, the final time is assumed to be free, and some state variables are specified at
the final time. Hence, the variation of the final time does not vanish, and the transversality
conditions (3.34) can be decoupled as in the previous case by

0=
�∂ E(x∗(t∗f ), t∗f )

∂ xs
− p∗s (t

∗
f )

T
�

δxf,s +
�∂ E(x∗(t∗f ), t∗f )

∂ xu
− p∗u(t

∗
f )

T
�

δxf,u

+
�∂ E(x∗(t∗f ), t∗f )

∂ t
+H(x∗(t∗f ),u

∗(t∗f ),p
∗(t∗f ), t∗f )
�

δtf.

(3.39)

The specified state variables xf,s lead to δxf,s = 0, while the variation of the unspecified state
variables δxf,u and the variation of the final time δtf are free. Hence, the first term in (3.39)
vanishes, and the second and third terms must be defined in such a way that the transversality
conditions are satisfied. To this end, the necessary (Nn + 1) final conditions are defined by

x∗s (t
∗
f ) = xf,s, (3.40)

p∗u(t
∗
f ) =
�∂ E(x∗(t∗f ), t∗f )

∂ xu

�T

, (3.41)

H(x∗(t∗f ),u
∗(t∗f ),p

∗(t∗f ), t∗f ) = −
∂ E(x∗(t∗f ), t∗f )

∂ t
. (3.42)

When the OCP is formulated without a Mayer term, the (Nn+1) final conditions are simplified
to

x∗s (t
∗
f ) = xf,s, (3.43)

p∗u(t
∗
f ) = 0, (3.44)

H(x∗(t∗f ),u
∗(t∗f ),p

∗(t∗f ), t∗f ) = 0. (3.45)

The final condition (3.45) states that the Hamiltonian is zero at the final time, and us-
ing (3.35), it holds that the Hamiltonian for autonomous systems is zero for all t ∈ [t0, t∗f ].

3.2.2 Bounded Optimal Control Problems

The previous section assumes that the control u and states x are not bounded. However, such
boundaries commonly occur in practical problems, e.g., if a robot should be manipulated from
an initial state to a final state without violating the maximum permissible torque of the drives.
Thus, the boundaries must be considered to derive the necessary optimality conditions. This
section focuses only on the boundaries of the control variables. For boundaries regarding the
state variables, the reader is referred to [95].

The minimum conditions formulated in (3.31) are derived for any arbitrary variation of
the control δu. This statement does not hold for bounded controls because the variation
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of the control is not arbitrary for bounded problems; see Fig. 3.3 for an extremal control
and (in)admissible control variations. However, the optimality conditions for unbounded
controls (3.32)–(3.34) remain also valid for bounded controls. Assuming that the later men-

u∗i

u∗i +δûi

u∗i +δūi

t

ui,max

u(t)

t0 t∗f
Figure 3.3: An extremal control u∗i and a perturbation by an admissible variation δûi and an inadmissible variation
δūi [95]

tioned optimality conditions are satisfied, the variation of the extended cost functional (3.30)
simplifies to

δJ̄ =

∫ t∗f

t0

∂H(x∗,u∗,p∗, t)
∂ u

δudt. (3.46)

The partial derivative of the Hamiltonian with respect to the control can be approximated by
a Taylor series expansion as

H(x∗,u∗ +δu,p∗, t)≈H(x∗,u∗,p∗, t) +
∂H(x∗,u∗,p∗, t)

∂ u
δu, (3.47)

caused by a change of the control. Substituting (3.47) into (3.46) results in

δJ̄ =

∫ t∗f

t0

�

H(x∗,u∗ +δu,p∗, t)−H(x∗,u∗,p∗, t)
�

dt. (3.48)

The necessary first-order optimality condition for a bounded control can be derived from (3.48)
with δJ̄ ≥ 0. Thus, the condition

H(x∗,u∗ +δu,p∗, t)≥H(x∗,u∗,p∗, t) (3.49)

must hold for any admissible variation δu. The condition (3.49) is the well-known Pontrya-
gin’s minimum principle [123] and states that the Hamiltonian to an optimal solution must
take a minimum. To summarize, the necessary first-order optimality conditions for a bounded
OCP are defined by:

• Pontryagin’s minimum principle

H(x∗,u∗ +δu,p∗, t)≥H(x∗,u∗,p∗, t) (3.50)

• State equations

ẋ∗ =
�

∂H(x∗,u∗,p∗, t)
∂ p

�T

with x(t0) = x̄0 (3.51)
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• Adjoint equations

ṗ∗ =−
�

∂H(x∗,u∗,p∗, t)
∂ x

�T

(3.52)

• Transversality conditions

0=
�∂ E(x∗(t∗f ), t∗f )

∂ x
− p∗(t∗f )

T
�

δxf

+
�∂ E(x∗(t∗f ), t∗f )

∂ t
+H(x∗(t∗f ),u

∗(t∗f ),p
∗(t∗f ), t∗f )
�

δtf

(3.53)

Time-Optimal Control Problems

An important application of OCPs is to drive a mechanical system from an initial state to a
final state in the shortest possible time. Such a problem is classified as a time-optimal control
problem and has been studied by various authors [30, 53, 95, 100]. Time-optimal control
problems aim to compute a control u = u∗, state variables x = x∗, and a final time tf = t∗f ,
such that the scalar cost functional J becomes stationary

min
x,u,tf

J =

∫ tf

t0

1 dt = tf − t0 (3.54)

s.t.

φ(x(tf), tf) = 0 (3.55)

ui,min ≤ ui(t)≤ ui,max with i = 1, . . . , Nm (3.56)

x(t0) = x̄0 (3.57)

ẋ(t) = f(x(t),u(t)) (3.58)

concerning equality constraints and bounds. The time-optimal control problem is subject
to final constraints (3.55), lower and upper bounds of the control variables (3.56), while
satisfying the state equations with the given initial state variables x̄0.

In mechanics, the control u usually appears linear in the state equations. Therefore, the
first-order differential equation (3.58) can be formulated as

ẋ(t) = a(x(t)) +B(x(t))u(t), (3.59)

where a : RNn → RNn is the system vector and B : RNn → RNn×Nm is the input matrix which
may depend on the state variables. The Hamiltonian to the time-optimal control problem is
formulated as introduced in (3.12) by

H(x(t),u(t),p(t)) = 1+ pT(t)
�

a(x(t)) +B(x(t))u(t)
�

. (3.60)

Following Pontyagin’s minimum principle (3.50), the optimality condition

1+ p∗T(t)
�

a(x∗(t)) +B(x∗(t))u(t)
�

≥ 1+ p∗T(t)
�

a(x∗(t)) +B(x∗(t))u∗(t)
�

(3.61)

must hold for all admissible control functions u and for all t ∈ [t0, t∗f ]. The optimality condi-
tion can be reformulated in index notation to

Nm
∑

i=1

p∗T(t)bi(x
∗(t))

︸ ︷︷ ︸

hi(x∗(t),p∗(t))

�

ui(t)− u∗i (t)
�

≥ 0, (3.62)
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where bi denotes the i-th column of the matrix B and hi : RNn × RNn → R is the so-called
switching function. Assuming that all control variables ui are linearly independent, the op-
timality condition in (3.62) yields the optimal control variables. Satisfying (3.62) for all
admissible ui, the control variable u∗i must lie on the minimum bound if the switching func-
tion hi is positive, the control variable u∗i must lie on the maximum bound if the switching
function hi is negative. When the switching function becomes zero, the control variable u∗i
can not be determined by Prontryagin’s minimum principle. This case is called singular inter-
val; the interested reader is referred to [95] for further details. To summarize, the optimality
conditions for a time-optimal control problem are defined by

u∗i (t) :=







ui,max for hi(x∗(t),p∗(t))< 0
ui,min for hi(x∗(t),p∗(t))> 0
singular for hi(x∗(t),p∗(t)) = 0

. (3.63)

Following [95], the optimality condition for time-optimal control problems is referred to

t

singular

interval

tt i,1t0 t i,2 t i,Nk
t i,Nk−1

ui,max

ui,min

h∗i (t)

u∗i (t)

t∗f

?

Figure 3.4: Switching function hi and corresponding control ui for a time-optimal control problem [95]

as the bang-bang principle and can be interpreted as maximizing the control effort for all
t ∈ [t0, t∗f ]. A graphical representation of the bang-bang principle is shown in Fig. 3.4 with
Nk switching points. For linear systems, the number of switching points can be computed
using the eigenvalues of the matrix A ∈ RNn×Nn , which results from reformulating the system
vector as a(x(t)) = Ax(t). If all of the eigenvalues of A are real and nonpositive, then each
control ui consists of Nk ≤ Nn − 1 switching points [95]. For nonlinear systems, the number
of switching points can only be determined using an (approximated) solution of the time-
optimal control problem. However, assuming no singular interval exists and the number of
switching functions is known, the time optimal-control problem can be transformed into
a parameter optimization problem regarding the final time and the time points where a
switching point occurs. The resulting NLP problem, including the equality constraints (3.55)
regarding the final states, can be solved with different methods, e.g., using an approach as
shown in Section 3.3 or as presented in [53].
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3.2.3 Solution Approaches

The necessary first-order optimality conditions provide the basis for computing an optimal so-
lution of the OCP using indirect methods. These optimality conditions formulate a two-point
BVP, which usually can not be solved analytically to obtain the optimal control law. Instead,
iterative numerical approaches have been developed to compute an optimal solution for the
OCP. The most common solution approaches in the class of indirect methods are: indirect
multiple shooting, indirect collocation, and gradient-based methods. The first two methods
focus on solving the two-point BVP derived from the first-order optimality conditions. Various
solution strategies based on the principle concept of multiple shooting have been developed,
e.g., by Keller [90], Bulirsch [31], and Bock [21]. An introduction to indirect multiple shoot-
ing is given by Stoer and Bulirsch [149]. For collocation methods, relevant developments
are provided, for example, by Ascher et al. [5] and Dickmanns and Well [45]. The general
solution strategy for an unbounded OCP using an indirect multiple shooting or a collocation
method follows the procedure outlined below [95]:

1. The control u is expressed as a function of the state variables x, the adjoint variables p,
and the time t by

u=ψ(x,p, t). (3.64)

This expression is obtained by exploiting the minimum conditions (3.31). If the control
appears linear in the Hamiltonian, the minimum conditions provide no information on
the control. However, since the minimum conditions must hold for an optimal solution,
the r-th total time derivative of the minimum conditions can be used to obtain an
expression of the control. The time derivative is applied r-th times until the expression

dr

dt r

�

∂H(x∗,u∗,p∗, t)
∂ u

�T

= 0 (3.65)

is explicitly dependent on the control u. Thus, an expression in the form of (3.64) can
be determined for the control.

2. Eliminating the control u from the canonical equations (3.32) and (3.33) using the
expression in (3.64) leads to the differential equations

ẋ=
�

∂H(x,ψ(x,p, t),p, t)
∂ p

�T

with x(t0) = x̄0, (3.66)

ṗ= −
�

∂H(x,ψ(x,p, t),p, t)
∂ x

�T

, (3.67)

which formulate a two-point BVP with the appropriate boundary conditions, e.g., using
the conditions provided in Section 3.2.1 or 3.2.1. The modified two-point BVP does
not depend on the control u and can be solved numerically by shooting or collocation
methods.

3. Solve the modified two-point BVP to obtain the state variables x∗, the adjoint variables
p∗, and the final time t∗f by using a numerical solver, e.g., the MATLAB routine bvp4c,
which is an implementation based on the collocation approach described by Kierzenka
and Shampine [93].

4. The evolution of the optimal control u∗ is computed using the expression in (3.64).
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Using the above procedure to solve an OCP requires a numerical approach for solving the
two-point BVP, which solution is usually difficult to compute. An alternative to solving the
two-point BVP directly is provided by gradient-based methods. The key idea is to minimize
the cost functional in an iterative process by using information on gradients. The gradients
of the cost functional are computed in each iteration in a sequential process by solving the
state equations forward in time, followed by solving the adjoint equations backward in time.
Various gradient-based solution strategies are available to obtain the optimal control law, e.g.,
the steepest descent method, which has been developed independently by Kelley [91] and
Bryson et al. [29], or a quasi-Newton method where the Hessian matrix is approximated with
gradients from previous iterations. The basic solution strategy for an unbounded OCP with
a fixed final time tf and unspecified state variables at the final time follows the procedure
outlined below [95]:

1. Select an initial control u0 and set the number of iterations k to zero.

2. Solve the state equations (3.32) for the k-th iteration

ẋk =
�

∂H(xk,uk,pk, t)
∂ p

�T

with xk(t0) = x̄0 (3.68)

forward in time using an ODE solver. The evolution of the state variables must be stored
in memory for the subsequent backward time integration to compute the evolution of
the adjoint variables.

3. Solve the adjoint equations (3.33) for the k-th iteration

ṗk = −
�

∂H(xk,uk,pk, t)
∂ x

�T

with pk(tf) =
�

∂ E(xk(tf), tf)
∂ x

�T

(3.69)

backward in time using an ODE solver. Final conditions of the adjoint variables for
problems with unspecified state variables at the final time are given by (3.38). The
terminal-value problem can be transformed into an IVP using a time transformation as
described in Section 2.4.2.

4. An optimal solution for the k-th iteration is found if the norm of the minimum condi-
tions (3.31) satisfies the condition













�

∂H(xk,uk,pk, t)
∂ u

�T










≤ ϵ, (3.70)

where the scalar ϵ > 0 is an a priori defined optimality tolerance.

5. If the termination criterion (3.70) is not satisfied, an iterative process updates the con-
trol until the termination criterion is satisfied. The control from iteration k to iteration
k+ 1 is updated by

uk+1 := uk +αkdu
k, (3.71)

where du
k is the search direction and αk > 0 is a sufficiently small step size for the k-th

iteration. The search direction of the control is computed by using the variation of the
cost functional in (3.30). Since the state equations (3.68) and adjoint equations (3.69)
are satisfied, the variation of the extended cost functional simplifies to

δJ̄ =

∫ tf

t0

�

∂H(xk,uk,pk, t)
∂ u

δu
�

dt. (3.72)
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The largest possible change of δJ̄ is obtained if the variation of the control δu points
into the direction of the derivative of the Hamiltonian with respect to the control. Thus,
the term ∂H/∂ u can be interpreted as the gradient of the extended cost functional, and
the steepest descent method uses the negative gradient to define the search direction

du
k := −
�

∂H(xk,uk,pk, t)
∂ u

�T

, (3.73)

which results in a reduction of the extended cost functional. The control uk+1 is then
used to continue the iterative process with Step 2 until the termination criterion (3.70)
is satisfied.

The basic version of the steepest descent method presented above can be extended to handle
an OCP with a free final time regarding final constraints [53]. The main advantages of the
steepest descent method are that (1) the control must not be expressed from the minimum
conditions, (2) an initial guess of the adjoint variables is not required, and (3) the method
is robust concerning the initial guess of the control [14]. Contrarily, the main disadvantage
of the method is the rather slow convergence, which can be improved by applying a quasi-
Newton method.

Indirect methods provide highly accurate solutions for the OCP under investigation. How-
ever, using such a method requires significant knowledge and expertise in control theory. As
pointed out by Betts [14], three main challenges occur in practice using indirect methods:

• Partial derivatives of the Hamiltonian may be complex to compute and need to be
updated for changes in the problem definition.

• Inequality constraints on the state variables are hard to handle. An a priori estimation
of the sequence of active inequality constraints is required, which is difficult to specify.

• Basic methods to solve the two-point BVP are sensitive concerning initial guesses for the
state variables, control variables, adjoint variables, and the final time. An appropriate
initial guess for the adjoint variables is particularly difficult to define. The sensitivity
to initial guesses can be reduced by using gradient-based methods or homotopy meth-
ods [6].

The practical challenges associated with indirect methods motivate the introduction of an
alternative approach to solve the OCP using so-called direct methods. The following section
introduces the main concepts of direct methods. Therein, approaches to reformulate the
OCP regarding an NLP problem, necessary optimality conditions for a feasible solution, and
numerical techniques to solve the NLP problem are discussed.

3.3 Direct Methods

The basic idea of direct methods is to transcribe the original infinite-dimensional OCP defined
in (3.2)–(3.7) into a finite-dimensional NLP problem. Therein, the OCP is first discretized,
and the resulting NLP problem is then treated by well-known classical optimization methods,
e.g., the SQP method or the IP method. Due to the sequence of discretizing followed by opti-
mizing, direct methods are referred to as first discretize, then optimize approaches. All direct
methods parameterize the control u, but they differ in the way how to handle the state vari-
ables x [46]. The transcription of the infinite-dimensional cost functional (3.2), the equality
constraints (3.4), and the inequality constraints (3.5) into their finite-dimensional counter-
parts is straightforward. The cost functional is approximated by numerical integration, e.g.,
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using a quadrature rule, and the (in)equality constraints are enforced to hold on a defined
time grid. Considering the state equations (3.7) is more advanced and can be accomplished
differently. Generally, there are two main approaches for direct methods [126]:

• Sequential approach
The evolution of the state variables is computed in each iteration of the optimization
procedure by an embedded numerical time integration scheme. Thus, the state vari-
ables are considered as an implicit function of the initial state, the parameters, and the
control parameterization employed. In this approach, the optimization iterations and
time integration proceed sequentially until an optimal solution is found.

• Simultaneous approach
The evolution of the state variables and the control are parameterized. Along with
the control parameterization, the parameterized state variables are considered to serve
as additional optimization variables. Thus, the state equations can be violated during
the optimization, but they must be satisfied in the optimal solution due to equality
constraints on the state variables. In this approach, the optimization iterations and the
time integration proceed simultaneously until an optimal solution is found.

Both approaches differ in transcribing the infinite-dimensional OCP into a finite-dimensional
NLP problem. The most common direct methods associated with the above approaches are:
direct single shooting (a pure sequential approach), direct collocation (a pure simultaneous
approach), and direct multiple shooting (a mixture of a pure sequential approach and a pure
simultaneous approach) [116]. These methods are discussed in the following sections.

In direct methods, the time horizon t ∈ [t0, tf] is split up into M intervals defined by the
time grid

Gu = {t0 < . . .< tk < . . .< tM−1 < tM = tf}, (3.74)

and the control u is usually parameterized on the grid Gu by a discrete set of variables

wu =
�

uT
0, uT

1, . . . , uT
M

�T ∈ RNu , (3.75)

with Nu = Nm(M + 1), and Nm denotes the number of control variables. Therein, the abbre-
viation (·) j := (·)(t j) is used to denote an evaluation of a time-dependent function (·) at a
particular time t = t j. For example, the parameterization wu can represent control values for
a piecewise constant parameterization or coefficients of polynomials. However, the general
form of the control parameterization wu is used in the following sections for transcribing the
infinite-dimensional OCP into a finite-dimensional NLP problem.

3.3.1 Direct Single Shooting

The concept of direct single shooting has been introduced by Hicks and Ray [85]. It is
probably the most intuitive approach to transcribe the infinite-dimensional OCP into a finite-
dimensional NLP problem. The method is based on approximating the time-dependent con-
trol u by a suitable parameterization wu. The evolution of the state variables x is computed
by numerical time integration, starting at the given initial state variables x̄0. Therefore, the
state constraints of the infinite-dimensional OCP in (3.6) and (3.7) are satisfied by using an
embedded ODE solver in each iteration. Direct single shooting is a sequential approach since
a numerical time integration is performed in each iteration of the optimization.
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The direct single shooting approach transcribes the OCP defined in (3.2)–(3.7) into the
following finite-dimensional NLP problem formulated as

min
wu,ξ,tf

J =

∫ tf

t0

L(x,u,ξ, t)dt + E(xM , tM ) (3.76)

s.t.

φ(xM , tM ) = 0 (3.77)

g(xk,uk) = 0 k ∈ {0, . . . , M} (3.78)

h(xk,uk)≤ 0 k ∈ {0, . . . , M} (3.79)

where the set of control variables wu, the parameters ξ, and the final time tf serve as opti-
mization variables. The optimal values of these variables are computed by using a numer-
ical optimization method, e.g., as described in Sections 3.3.6 and 3.3.7. The (in)equality
constraints (3.78) and (3.79) are typically enforced to hold on the time grid of the control
parameterization Gu.

Due to its simplicity, the direct single shooting method is often used to solve OCPs arising
in engineering. The main advantages of the approach can be summarized as: (1) state-of-the-
art ODE solvers can be used to compute the evolution of the state variables, and (2) only the
control is discretized (and not the state variables) leading to an NLP problem that consists of
few optimization variables even for large ODE systems. Contrarily, the main disadvantages
are: (1) the evolution of the state variables can not be used directly in the initialization of the
NLP problem, and (2) unstable systems are difficult to handle, especially for problems with a
long time horizon [46].

Figure 3.5 visualizes the evolution of the control variable u ( ) and the state variable x
( ) in the direct single shooting approach. Therein, the control is parameterized with (M+1)
grid nodes uk ( ) whereas values between the grid nodes are evaluated by interpolation. The
evolution of the state variable is computed by numerical time integration, where the value of
the last integration point ( ) has to fulfill the a priori defined final value x̄f ( ) for an optimal
solution of the NLP problem.

t0 t1

u1

uk uk+1

uM−1

uMu0

x̄0

tk tk+1 tM−1 tM
t

control variable state variable

x̄f

Figure 3.5: Evolution of the control and state variable in the direct single shooting method
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3.3.2 Direct Multiple Shooting

The direct multiple shooting method has been introduced by Bock and Plitt [22] and is based
on the general concept of the direct single shooting method. The key idea of direct multiple
shooting is to divide the time horizon into K so-called shooting intervals defined by the time
grid

Gx0
= {t0 < . . .< tk < . . .< tK−1 < tK = tf}, (3.80)

where the evolution of the state variables is computed in each shooting interval indepen-
dently by numerical time integration starting at artificial initial conditions xk, k ∈ {0, . . . , K}.
These artificial initial conditions serve as additional optimization variables compared to the
direct single shooting method. Positive influence on the sparsity of the optimization prob-
lem can be achieved if the artificial initial conditions are defined on the same time grid as
the control parameterization, i.e., Gx0

= Gu with K = M . The artificial initial conditions are
concatenated in the vector

wx0
=
�

xT
0, xT

1, . . . , xT
M

�T ∈ RNx0 , (3.81)

where the size of the vector is Nx0
= Nn(M +1), and Nn denotes the number of state variables.

Both the artificial initial conditions wx0
and the control parameterization wu influence the

evolution of the state variables within the shooting intervals. State variables x within the
shooting intervals are computed by numerical time integration, but they may not guarantee
continuity at the boundaries of the shooting intervals due to the artificial initial conditions
wx0

. Discontinuities over the shooting intervals are referred to as multiple shooting defects,
where equality constraints are considered in the NLP problem formulation to enforce conti-
nuity over the shooting intervals for a converged solution.

The direct multiple shooting approach transcribes the OCP defined in (3.2)–(3.7) into the
following finite-dimensional NLP problem formulated as

min
wu,wx0

,ξ,tf

J =
M−1
∑

k=0

∫ tk+1

tk

L(x,u,ξ, t)dt + E(xM , tM ) (3.82)

s.t.

φ(xM , tM ) = 0 (3.83)

g(xk,uk) = 0 k ∈ {0, . . . , M} (3.84)

h(xk,uk)≤ 0 k ∈ {0, . . . , M} (3.85)

x̄0 = x0 (3.86)

xk+1 = xk +

∫ tk+1

tk

f(x,u,ξ)dt k ∈ {0, . . . , M − 1} (3.87)

where the set of control variables wu, the artificial initial conditions wx0
, the parameters

ξ, and the final time tf serve as optimization variables. The above NLP problem is equiv-
alent to the direct single shooting NLP problem but contains artificial initial conditions wx0

which serve as optimization variables [46]. Therein, the equality constraints (3.87) enforce
continuity of the state variables over the shooting interval boundaries, while the equality con-
straints (3.86) ensure that the given initial conditions x̄0 are fulfilled. Note that the variables
x0 and xM could be eliminated from the set of optimization variables by starting the time
integration of the first shooting interval in (3.87) at x̄0 and by enforcing that the last integra-
tion point of the last shooting interval coincide with x̄f, respectively. However, considering
all (M + 1) artificial initial conditions positively influences the sparsity of the optimization
problem.
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Similar to the direct single shooting method, state-of-the-art ODE solvers can be used
to compute the evolution of the state variables. But the direct multiple shooting method
allows a shorter interval of integration by introducing shooting intervals, and therefore, nu-
merical time integration errors are reduced, especially when the time horizon t ∈ [t0, tf] is
long. Note that the time integration within a shooting interval is decoupled from its pre-
decessors, enabling simultaneous computation of the state variables. Thus, the method is
well suited for parallel computing [15]. In addition, the state variables at the boundaries of
the shooting intervals can be directly initialized using the artificial initial conditions, which
increases the robustness of handling unstable systems [47]. Compared to the direct single
shooting method, the dimension of the direct multiple shooting NLP problem is significantly
increased. Nonetheless, the structure of the optimization problem is sparse, which can be
exploited using sparse solvers [39].

Figure 3.6 visualizes the evolution of the control variable u ( ) and the state variable
x ( ) in the direct multiple shooting approach. Therein, the control is parameterized with
(M +1) grid nodes uk ( ) whereas values between the grid nodes are evaluated by interpola-
tion. In addition, each shooting interval consists of an artificial initial condition xk ( ). The
evolution of the state variable within the shooting intervals is computed by numerical time
integration. The value of the last integration point ( ) of a shooting interval has to coincide
with the artificial condition of the subsequent shooting interval to ensure continuity over the
time horizon. Moreover, the artificial initial conditions x0 and xM have to coincide with the
corresponding a priori given state variables ( ) for an optimal solution of the NLP problem.

t0 t1

u1

x1

xk

defect

xk+1

xM−1
xM

uk uk+1

uM−1
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tk tk+1 tM−1 tM
t

control variable state variable

x̄0
x̄f

Figure 3.6: Evolution of the control and state variable in the direct multiple shooting method

3.3.3 Direct Collocation

The key idea of direct collocation is to parameterize the control u and the state variables x
over the time horizon. Both the discrete set of control variables wu and the discrete set of
state variables wx serve as optimization variables, and therefore such a method is referred to
as a full discretization approach. Contrary to shooting methods, where the system dynamics
are considered by numerical time integration, the direct collocation method considers the
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system dynamics as nonlinear constraints of discretized state equations. In other words,
the direct collocation approach formulates an NLP problem where the evolution of the state
and control variables are solved simultaneously. Hence, the discretized state equations are
satisfied only for an optimal solution of the NLP problem.

In direct collocation, the time horizon t ∈ [t0, tf] is divided into K so-called collocation
intervals defined by the time grid

Gx = {t0 < . . .< tk < . . .< tK−1 < tK = tf}, (3.88)

where the evolution of the state variables is approximated by polynomials in each collocation
interval t ∈ [tk, tk+1), k ∈ {0, . . . , K − 1}. Usually, the collocation intervals are defined on the
same time grid as the control parameterization, i.e., Gx = Gu with K = M . Each polynomial
is parameterized with (d + 1) coefficients leading to a function of degree d. The polynomials
can be formulated in a number of equivalent ways, but usually the Lagrange interpolation
formula is used [17]. Therein, the polynomial coefficients ck of the k-th collocation interval
represent state variables

ck = (xk,0, . . . , xk,d) ∈ RNc , (3.89)

with Nc = Nn(d + 1), defined on the k-th collocation grid

Gck
= {tk = tk,0, . . . , tk,d}. (3.90)

The first subscript denotes the k-th collocation interval, and the second subscript denotes the
respective discretization point of the collocation interval. A common approach to select the
collocation grid Gck

is to use the Gauss-Legendre collocation scheme [9]. This approach is
known for the lowest integration error regarding a fixed number of function evaluations [76].
However, the Lagrange polynomials [98] for the k-th collocation interval l : R × RNc → RNn

are defined by the linear combination

lk(t,ck) =
d
∑

i=0

xk,iℓk,i(t), (3.91)

where the Lagrange basis functions ℓ : R→ R are given by

ℓk,i(t) =
d
∏

j=0, j ̸=i

t − tk,i

tk,i − tk, j
. (3.92)

The Lagrange basis functions have the property

ℓk,i(tk, j) =

�

0 for i = j
1 for i ̸= j

, (3.93)

indicating that the interpolation coincides with the state variables on the collocation grid Gck
,

i.e.,

lk(tk,i ,ck) = xk,i . (3.94)

Assuming that the state variables xk,0 at tk,0 are known, one can define the remaining collo-
cation state variables xk,1, . . . ,xk,d on the time grid Gck

\ {tk,0} such that the discretized state
equations are satisfied by the time derivative of (3.94):

l̇k(tk,i ,ck) = f(lk(tk,i ,ck)
︸ ︷︷ ︸

xk,i

,uk,i ,ξ), k ∈ {0, . . . , M − 1}, i ∈ {1, . . . , d}. (3.95)



3.3 Direct Methods 39

In addition, continuity of the polynomials over the collocation intervals can be enforced by

lk(tk+1,0,ck) = xk+1,0. (3.96)

The equations (3.95) and (3.96) are referred to as collocation constraints and ensure that the
system dynamics are approximated by the polynomials l. These collocation constraints are
considered in terms of embedded equality constraints in the direct collocation NLP problem
formulation. The optimization iterations and fulfilling the discretized state equations proceed
simultaneously. Therefore, all state variables on the collocation grids Gck

, k ∈ {0, . . . , M − 1},
are collected as

wx =
�

xT
0,0, xT

0,1, . . . , xT
0,d , xT

1,0, . . . , xT
M−1,d , xT

M ,0

�T ∈ RNx , (3.97)

and serve as optimization variables, with Nx = M · Nc + Nn.
The direct collocation approach transcribes the OCP defined in (3.2)–(3.7) into the fol-

lowing finite-dimensional NLP problem formulated as

min
wu,wx,ξ,tf

J =
M−1
∑

k=0

∫ tk+1,0

tk,0

L(lk,u,ξ, t)dt + E(xM ,0, tM ,0) (3.98)

s.t.

φ(xM ,0, tM ,0) = 0 (3.99)

g(xk,0,uk,0) = 0 k ∈ {0, . . . , M − 1} (3.100)

h(xk,0,uk,0)≤ 0 k ∈ {0, . . . , M − 1} (3.101)

x̄0 = x0,0 (3.102)

xk+1,0 = lk(tk+1,0,ck) k ∈ {0, . . . , M − 1} (3.103)

l̇k(tk,i ,ck) = f(xk,i ,uk,i ,ξ) k ∈ {0, . . . , M − 1}, i ∈ {1, . . . , d} (3.104)

where the set of control variables wu, the state variables wx, the parameters ξ, and the final
time tf serve as optimization variables. The (in)equality constraints (3.100) and (3.101) are
typically enforced to hold on the boundaries of the collocation intervals. As noted by Bordalba
et al. [24], this basic method significantly limits the kinematic accuracy of mechanical systems
formulated with redundant coordinates. The state variables xk,0 tend to drift off from the
state space manifold due to discretization errors in (3.103) and (3.104). The drift problem
can not be prevented by considering an additional set of constraints

l̇k(tk,0,ck) = f(xk,0,uk,0,ξ) (3.105)

for the direct collocation NLP problem because the continuity constraints (3.103) already
specify the state variables xk,0. Considering the constraints (3.105) in the direct collocation
NLP problem would introduce redundant constraints. Therefore, the first-order gradients
of the constraints are not linearly independent, which is a necessary condition to solve the
NLP problem; see Section 3.3.5 for regularity conditions. However, the drift problem can be
solved using a projection method or a local coordinate method as introduced in [24].

Direct collocation yields a large-size NLP problem due to a full discretization scheme
regarding control and state variables. Nonetheless, the structure of the problem is sparse
since the continuity constraints depend only on some control variables and two to three state
variables [19]. Thus, using an optimization solver tailored for sparse problems is essential
to take advantage of the sparsity. However, solving the NLP problem is an iterative process.
Therefore, an implicit ODE discretization can be used without solving a nonlinear equation
in each time integration step since all state variables serve as optimization variables [17]. For
more details on direct collocation methods, the reader is referred to [14, 54, 79, 158].



40 3 Fundamentals of Optimal Control

Figure 3.7 visualizes the evolution of the approximated state variable l ( ) in the direct
collocation approach. Therein, the state variable of the k-th collocation interval is approx-
imated by a polynomial of degree d = 3 with the state variables xk,i ( ). The value of the
polynomial lk evaluated at tk+1,0 ( ) has to coincide with the subsequent polynomial lk+1 to
ensure continuity over the time horizon. Moreover, the state equations have to be satisfied
on the time grid Gck

\ {tk,0} and the a priori given state variables ( ) have to be satisfied by
the polynomials for an optimal solution of the NLP problem.

t0 = t0,0 tk,0

xk,0

xk,1

xk,2

xk,3

l̇k(tk,i ,ck) = f(xk,i ,uk,i ,ξ)

xk+1,0
x0,0

tk,1 tk,2 tk,3 tk+1,0 tf = tM ,0
t

x̄0

x̄f

l(t)

defect

xM ,0

Figure 3.7: Evolution of the state variable in the direct collocation method for d = 3

3.3.4 Nonlinear Programming Problem Formulation

Direct methods transcribe the original infinite-dimensional OCP into a finite-dimensional NLP
problem; see the problem formulations for direct single shooting, direct multiple shooting,
and direct collocation in the previous sections. In general, an NLP problem is formulated as

min
z

J(z) (3.106)

s.t.

ĝ(z) = 0 (3.107)

ĥ(z)≤ 0 (3.108)

The above NLP problem aims to find a set of optimization variables z= z∗ ∈ RNz to minimize a
defined cost function J : RNz → R concerning a set of constraints. The minimization problem
can be inverted into an equivalent maximization problem by max J(z) =min − J(z). Equality
and inequality constraints are denoted by ĝ : RNz → RNp and ĥ : RNz → RNq , respectively.
For the sake of convenience, (in)equality constraints are concatenated into a general set of
nonlinear constraints by cT =

�

ĝT, ĥT
�

∈ RNp+Nq . A constraint ci is called active at an optimal
point if ci(z∗) = 0, i.e., all equality constraints must be active, while some inequality con-
straints may be inactive at an optimal point. The active (in)equality constraints are defined
by the finite set of indices

A(z∗) = {i : ci(z
∗) = 0, i = 1 . . . , Np + Nq} ⊆ {1, . . . , Np + Nq}, (3.109)
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which is called the active set of constraints concatenated into the vector ca ∈ RNa .
The general NLP problem in (3.106)–(3.108) can be treated by well-known classical op-

timization methods, e.g., the SQP method described in Section 3.3.6 or the IP method de-
scribed in Section 3.3.7. Various third-party solvers are available as software packages for
solving an NLP problem. To solve the problem, the user must provide information through
an interface of third-party solvers, as illustrated in Fig. 3.8. When interfacing with third-
party solvers, the user must provide function evaluations of the cost function J , equality
constraints ĝ, and inequality constraints ĥ at each iteration. Providing user-computed first-
order gradients is usually optional but significantly speeds up the optimization procedure; see
the scientific contributions of the author’s publications in [99, 101, 102] for an efficient and
accurate computation of first-order gradients. Apart from first-order gradients, second-order
gradients (Hessian) can also be provided to the solver. Nonetheless, the Hessian is usually
computed internally by the solver using a quasi-Newton updating method, such as the well-
known Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [26, 57, 70, 147]. In addition to
the required information at each iteration, the initial starting point z0 for the initialization,
optimization parameters such as the termination criteria, or the type of internal linear solver
used for step computation are provided before the optimization procedure starts.

optimization problem

min
z

J(z) J , ĝ, ĥ

k-th
iteration

dJ
dz , dĝ

dz , dĥ
dz

initial starting point z0

parameter
IPOPT [160]

using third-party
solvers e.g.:

MATLAB fmincon [152]
...

s.t.

ĝ(z) = 0

ĥ(z)≤ 0

interface solver

Figure 3.8: Schematic interface for solving an NLP problem by a third-party solver

3.3.5 Optimality Conditions

The general NLP problem in (3.106)–(3.108) is solved by introducing the Lagrangian func-
tion

L(z,ξ,η) = J(z) + ξTĝ(z) +ηTĥ(z), (3.110)

where ξ ∈ RNp and η ∈ RNq are the Lagrange multipliers for the equality and inequality
constraints, respectively. Note that ξ is also used to represent a set of design parameters,
but in this context, it specifically denotes the Lagrange multipliers associated with equality
constraints. In this section, the optimality of an NLP problem is investigated by first-order
conditions. In order to characterize an optimal point z∗ of an NLP problem with linearized
equations, the problem must fulfill some regularity conditions, also called constraint qualifi-
cations [17]. The linear inequality constraint qualification (LICQ) is the most frequently used
constraint qualification. The LICQ is satisfied for z∗ and the active set A(z∗), if the first-order
gradients of the active constraints are linear independent, i.e.,

rank
�

[∇zci(z
∗)]i∈A(z∗)
�

= Na. (3.111)
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Assuming that z∗ is an optimal point for the NLP problem in (3.106)–(3.108), the cost
function and the (in)equality constraints are continuously differentiable, and that the LICQ
holds at z∗, then there exist unique Lagrange multipliers ξ∗ and η∗ such that the following
conditions are satisfied:

• Stationarity

∇zL(z∗,ξ∗,η∗) = 0 (3.112)

• Primal feasibility

∇ξL(z∗,ξ∗,η∗) = ĝ(z∗) = 0 (3.113)

∇ηL(z∗,ξ∗,η∗) = ĥ(z∗)≤ 0 (3.114)

• Dual feasibility

η∗ ≥ 0 (3.115)

• Complementary slackness

η∗Tĥ(z∗) = 0 (3.116)

The conditions (3.112)–(3.116) are the so-called KKT conditions. These conditions were de-
veloped independently by Karush in his master’s thesis in 1939 [89] and by Kuhn and Tucker
in 1951 [97]. The complementary slackness condition implies whether the corresponding
inequality constraint is active or inactive at an optimal point:

• Inactive inequality constraint
The optimal point z∗ lies in a region where ĥi(z∗) < 0 holds for the i-th element of the
vector ĥ and therefore, the corresponding Lagrange multiplier is η∗i = 0.

• Active inequality constraint
The optimal point z∗ lies in a region where ĥi(z∗) = 0 holds for the i-th element of the
vector ĥ and therefore, the corresponding Lagrange multiplier is η∗i ≥ 0.

In general, the KKT conditions are nonlinear equations that can not be directly employed to
compute an optimal point of the NLP problem. Iterative methods, e.g., the SQP method or
the IP method, have to be utilized to compute an optimal point.

3.3.6 A Basic Sequential Quadratic Programming Method

The SQP method, which can be traced back historically to Wilson [163] and mainly popular-
ized by Biggs [18], Han [77] and Powell [124, 125], is one of the most popular methods to
solve small or medium-size NLP problems. The basic idea of SQP methods is to approximate
the NLP problem by a quadratic programming (QP) subproblem and to use the solution of
the subproblem iteratively to converge towards an optimal point of the original NLP problem.
In QP problems, the cost function is quadratic, while the constraints are linear. The QP sub-
problem is derived by linearizing the constraints and approximating the Lagrangian function
quadratically at the current major SQP iteration (zk,ξk,ηk) by

min
dz

k

J(zk) +∇zJ(zk)
Tdz

k +
1
2

dzT
k ∇

2
zzL(zk)d

z
k (3.117)

s.t.

ĝ(zk) +∇zĝ(zk)
Tdz

k = 0 (3.118)

ĥ(zk) +∇zĥ(zk)
Tdz

k ≤ 0 (3.119)
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where dz
k = z − zk is the minimizer of the QP subproblem. The Hessian ∇2

zzL(zk) of the
Lagrangian function is a symmetric, positive definite approximation using a quasi-Newton
updating method, usually employing the BFGS method. Solving the QP subproblem is an
iterative process, where minor iterations at the current major SQP iteration are the QP iter-
ations. The QP subproblem is solved by an active-set method, e.g., as shown in [115]. The
solution of the subproblem is then used to update the optimization variables from iteration k
to iteration k+ 1 by

zk+1 := zk +αkdz
k, (3.120)

ξk+1 := ξk +αk

�

dξk − ξk

�

, (3.121)

ηk+1 := ηk +αk

�

dηk −ηk

�

, (3.122)

where dξk and dηk are the Lagrange multipliers of the QP subproblem. The method can made
more robust by introducing the scalar step size αk. The step size is obtained by solving a
one-dimensional minimization problem of a proper merit function.

The SQP method for practical implementation is much more sophisticated than the ba-
sic SQP method presented above. Various implementations based on the SQP method are
available as software packages. The software package SNOPT by Gill et al. [66, 67] is an
efficient implementation of the SQP method for large-scale problems, where the QP subprob-
lem is solved using the software package SQOPT [68]. Additional SQP software packages
are given by NLPQLP [133], the MATLAB optimization toolbox fmincon (algorithm={'sqp',
'sqp-legacy','active-set'}) [152], which is an implementation based on various publica-
tions, e.g., [78, 124], and the SciPy function minimize (method='SLSQP') [157], which wraps
the SLSQP optimization subroutine originally implemented by Kraft [96]. Besides the afore-
mentioned software packages, many other commercial and open-source implementations are
available.

3.3.7 A Basic Interior Point Method

The IP or barrier method, which can be traced back historically to Fiacco and McCormick [56]
and Frisch [59], has proven to be very efficient for solving large-scale NLP problems. The key
idea of IP methods is to transform inequality constraints ĥ(z) ≤ 0 into equality constraints
by introducing slack variables s ≥ 0 ∈ RNq . To incorporate the lower bound on the slack
variables, the cost function J is augmented with a logarithmic barrier term, which results in
the barrier problem

min
z,s

J(z)−µ
Nq
∑

i=1

ln(si) (3.123)

s.t.

ĝ(z) = 0 (3.124)

ĥ(z) + s= 0 (3.125)

where the scalar µ > 0 is the barrier parameter. IP methods solve the barrier problem for
a decreasing sequence of barrier parameters {µk} converging to zero. Thus, the solution
of the barrier problem approaches the solution of the original NLP problem [35, 71]. The
Lagrangian function of the barrier problem reads

L(z, s,ξ,η) = J(z)−µ
Nq
∑

i=1

ln(si) + ξ
Tĝ(z) +ηT
�

ĥ(z) + s
�

, (3.126)
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which can be used to formulate the KKT conditions as follows:

∇zL(z∗, s∗,ξ∗,η∗) = 0 : ∇zJ(z∗) +∇zĝ(z
∗)ξ∗ +∇zĥ(z

∗)η∗ = 0 (3.127)

∇sL(z∗, s∗,ξ∗,η∗) = 0 : −µS∗−1e+η∗ = 0 (3.128)

∇ξL(z∗, s∗,ξ∗,η∗) = 0 : ĝ(z∗) = 0 (3.129)

∇ηL(z∗, s∗,ξ∗,η∗) = 0 : ĥ(z∗) + s∗ = 0 (3.130)

Here S := diag(s) is a diagonal matrix of the slack variables and e = (1, . . . , 1)T is a vector of
ones. The key advantage of the IP method is that it avoids using an active-set method to solve
the KKT conditions. Therefore, the nonlinear system (3.127)–(3.130) can be solved directly
by applying Newton’s method








∇2
zzL 0 ∇zĝ ∇zĥ
0 H 0 S
∇zĝ

T 0 0 0
∇zĥ

T I 0 0









k







dz

ds

dξ

dη







k

= −









∇zJ +∇zĝξ+∇zĥη
Sη−µe

ĝ
ĥ+ s









k

, (3.131)

where H := diag(η) is a diagonal matrix of the Lagrange multipliers. The Hessian ∇2
zzL

of the Lagrangian function is a symmetric, positive definite approximation using a quasi-
Newton updating method, usually employing the BFGS method. The solution of the linear
subsystem (3.131) is used to update the search directions from iteration k to iteration k + 1
by

zk+1 := zk +α
z
kdz

k, (3.132)

sk+1 := sk +α
s
kds

k, (3.133)

ξk+1 := ξk +α
ξ
kdξk , (3.134)

ηk+1 := ηk +α
η

k dηk , (3.135)

where the step size parameters αz,s,ξ,η
k ∈ (0,1] are computed by a proper merit function or a

line search filter method, e.g., as described by Fletcher and Leyffer [58].
The basic IP method presented above provides the foundation of modern IP methods.

However, several modifications and extensions are required for practical implementations.
Various implementations based on the IP method are available as software packages. The
software package IPOPT [160] by Wächter and Biegler is an efficient open-source implemen-
tation of the IP method for large-scale problems, where the performance of IPOPT depends
critically on the selected solver for linear subproblems [151], e.g., HSL MA97 or PARDISO.
Other additional IP software packages are given by KNITRO [36], LOQO [155], the MATLAB
optimization toolbox fmincon (algorithm='interior-point') [152], which is an imple-
mentation based on various publications, e.g., [33, 34, 161], and the SciPy function min-
imize (method='trust-constr') [157], which is an implementation based on the method
described in [34]. Besides the aforementioned software packages, many other commercial
and open-source implementations are available.

3.4 Sensitivity Analysis

Gradient-based optimization methods utilize first and second-order gradients to update search
directions from iteration k to iteration k + 1. The computation of gradients for an optimiza-
tion problem is referred to as local sensitivity analysis [131]. An overview of commonly
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used approaches in sensitivity analysis is given in [109, 153]. Different approaches for sen-
sitivity analysis in the design optimization of flexible multibody systems are discussed in a
comprehensive literature review provided by Gufler et al. [74].

The scope of this section is to discuss commonly used approaches to compute first-order
sensitivities of the cost functional J given as

J =

∫ tf

t0

L(x(z, t),u(z, t),ξ(z))dt + E(x(z, tf), tf), (3.136)

where the evolution of the state variables is obtained by solving the first-order differential
equations

ẋ(z, t) = f(x(z, t),u(z, t),ξ(z)) with x(t0) = x̄0. (3.137)

Sensitivity analysis aims to compute first-order gradients

∇zJT =
dJ
dz

�

�

�

z=zk

, (3.138)

evaluated at the k-th iteration. Since the computation of gradients is required at each iter-
ation, an accurate and efficient computation of first-order gradients is crucial in solving op-
timization problems. The accuracy of the gradient computation influences the convergence
behavior of the used solver and the runtime required for a converged solution.

3.4.1 Finite-Difference Method

The finite-difference method relies on the Taylor series expansion to compute first-order gra-
dients. It is the most straightforward approach to implement but suffers in terms of accu-
racy and efficiency, especially for a large number of optimization variables. Most third-party
solvers use the finite-difference method by default if the user does not provide gradients.
Components of the first-order gradient of the cost functional in (3.136) are approximated as

dJ
dzi
≈

J(zk + ei∆h)− J(zk)
∆h

, i ∈ {1, . . . , Nz} (3.139)

dJ
dzi
≈

J(zk)− J(zk − ei∆h)
∆h

, i ∈ {1, . . . , Nz} (3.140)

concerning forward and backward finite-differences, respectively. Computing a component
of the gradient vector via forward and backward finite-differences requires the evaluation of
the cost functional at zk and at a small perturbation zk ± ei∆h, where ei is a unit vector and
∆h is a small perturbation parameter. Thus, the cost of computing the entire gradient vector
is proportional to the number of optimization variables Nz.

The truncation error of forward and backward finite-differences is proportional to the per-
turbation parameter ∆h. Therefore, a smaller value of the perturbation parameter reduces
the truncation error. In practical implementations, a lower bound of the perturbation param-
eter exists. This bound mainly depends on the accuracy of numerical methods to compute the
cost functional, e.g., on the time integration method to compute the evolution of the state
variables or the integration method to compute the cost functional [12]. However, finite-
differences can be computed even when the cost functional is treated as a black box model.
Therefore, the finite-differences are commonly used to verify more sophisticated methods, as
discussed in the subsequent sections.
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3.4.2 Direct Differentiation Method

Besides the finite-difference method, analytical approaches such as the direct differentiation
or adjoint variable method can be used to compute sensitivities. Analytical approaches are
generally more sophisticated and significantly more expensive to derive and implement than
the finite-difference method. However, using analytical approaches in the sensitivity analysis
provides high efficiency and high accuracy in computing first-order gradients. The direct
differentiation method is based on directly applying the chain rule of differentiation to the
function of interest. Sensitivities for the cost functional (3.136) are obtained by

dJ
dz
=

∫ tf

t0

�

∂ L
∂ x

dx
dz
+
∂ L
∂ u

du
dz
+
∂ L
∂ ξ

dξ

dz

�

dt +
∂ E
∂ x

dx
dz

, (3.141)

where the sensitivities of the state equations dx/dz are computed by solving the linear matrix
differential equations

dẋ
dz
=
∂ f
∂ x

dx
dz
+
∂ f
∂ u

du
dz
+
∂ f
∂ ξ

dξ

dz
with

dx
dz
= 0. (3.142)

The matrix differential equations are obtained by differentiating the state equations (3.137)
with respect to the optimization variables z. Thus, the dimension of (3.142) is Nn×Nz, which
can be interpreted as Nz independent first-order differential equations of dimension Nn × 1.
Solving the matrix differential equations can become computationally expensive for a large
number of optimization variables [162]. However, the state equations (3.137) and the matrix
differential equations can be solved simultaneously, which reduces the memory requirements
compared to the adjoint variable method.

Sensitivity analysis based on direct differentiation consists of an extensive literature. De-
tailed derivations of the direct differentiation method in rigid and flexible multibody systems
can be found in [16, 27, 43, 49, 75]. Therein, the adjoint variable method is usually men-
tioned as an alternative and efficient approach in the case of a large number of optimization
variables. The adjoint variable method can be interpreted as the dual problem concerning
the primal problem of the direct differentiation method; see the discussion of linear duality
in Section 2.3.2.

3.4.3 Adjoint Variable Method

The adjoint method is probably the most efficient approach to computing sensitivities, es-
pecially for optimization problems with numerous optimization variables. Adjoint-based ap-
proaches are based on avoiding the direct computation of the state sensitivities dx/dz by
introducing adjoint variables. Following the discussion of linear duality in Section 2.3.2, the
sensitivities of the cost functional (3.136) using the adjoint variable method are given as

dJ
dz
=

∫ tf

t0

�

∂ L
∂ u

du
dz
+
∂ L
∂ ξ

dξ

dz
+ pT

�

∂ f
∂ u

du
dz
+
∂ f
∂ ξ

dξ

dz

��

dt, (3.143)

where the adjoint equations are computed by solving the linear first-order differential equa-
tions backward in time

ṗ= −
�

∂ L
∂ x

�T

−
�

∂ f
∂ x

�T

p with p(tf) =
�

∂ E
∂ x

�T

. (3.144)
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The adjoint sensitivities in (3.143) are computed in a sequential process by solving the state
equations forward in time followed by solving the adjoint equations backward in time; see
the procedure for using adjoint sensitivities in [99]. Note that the adjoint variables p are
of dimension Nn × 1, while the state sensitivities dx/dz are of dimension Nn × Nz. Thus, the
computational effort of solving the adjoint system does not depend on the number of opti-
mization variables, which is not the case when computing the state sensitivities in the direct
differentiation approach. In general, the adjoint method is more efficient than the direct dif-
ferentiation if the number of optimization variables is higher than the number of functions to
differentiate, i.e., the number of objectives to minimize and the number of constraints.

Note that the adjoint equations in (3.144) correspond to the adjoint equations as intro-
duced in (3.33) concerning an indirect method. This can be seen by using the Hamiltonian
of the optimization problem as defined in (3.12) given by

H = L(x(z, t),u(z, t),ξ(z)) + pT(t)f(x(z, t),u(z, t),ξ(z)). (3.145)

Using the above Hamiltonian, the adjoint equations in (3.144) can be reformulated as

ṗ= −
�

∂H
∂ x

�T

, (3.146)

which correspond to the adjoint equations as introduced in (3.33). In addition, the final
conditions of the adjoint variables in (3.144) correspond to the final conditions as introduced
in (3.38) for the case where the state variables are not specified at the final time.

Various formulations of the adjoint variable method for sensitivity analysis of rigid and
flexible multibody systems have been developed for different applications, e.g., as presented
in [37, 82, 113, 121]. The adjoint variable method in multibody dynamics consists of an
active scientific research community that provides novel approaches for efficient sensitivity
analysis. Recent developments of adjoint-based sensitivity analysis in multibody dynamics
are presented in [40, 104, 105, 156]. Due to its computational efficiency, the general con-
cept of the adjoint variable method is utilized in the scientific contributions of the author’s
publications in [99, 101, 102] for an efficient and accurate computation of sensitivities.





Chapter 4

Large Deformation Problems in Flexible Multibody
Systems

This chapter introduces the basics of flexible multibody systems, focusing on the absolute
nodal coordinate formulation (ANCF). The theory of the ANCF is used in this thesis to de-
scribe the dynamical behavior of deformable structures. A brief overview in Section 4.1
highlights two commonly used formulations in flexible multibody dynamics. In Section 4.2,
the equations of motion for a single ANCF element are derived. These equations are the basis
for flexible multibody systems modeled with multiple elements. The assembly of elements
for a flexible multibody system is described in Section 4.3.

The scope of this chapter is to provide sufficient details to understand the flexible multi-
body formulation used in the scientific contributions in [101, 102]. It is not an aim to provide
a complete treatment of theory and applications on flexible multibody systems. Instead, inter-
ested readers are referred to excellent textbooks, e.g., on general multibody dynamics [120,
132, 135, 140, 142], and on flexible multibody dynamics [7, 61]. The theoretical aspects
of flexible multibody systems presented in the next sections mainly follow the work of these
textbooks.

4.1 Overview

Flexible multibody dynamics deals with modeling and analyzing constrained flexible bodies
that undergo translational and rotational displacements with nonnegligible deformations.
Several ways and formulations have been developed for modeling and simulation of effects
due to the elasticity of flexible bodies. Comprehensive literature reviews in research and
applications of multibody dynamics are found in [50, 52, 74, 138]. Popular formulations
of flexible bodies in multibody dynamics are the floating frame of reference formulation
(FFRF) and ANCF. The basic idea of FFRF is to decompose the motion of a flexible body
into a rigid body motion and a superimposed deformation. Two sets of coordinates are used
to identify the configuration of the flexible body. Absolute reference coordinates describe
the location and rotation of a selected body coordinate system, while elastic coordinates
describe the deformation field of the body relative to the body coordinate system. The FFRF
is mainly used for modeling large rigid body motions and small deformations relative to
the body coordinate system. In comparison, the ANCF is suitable for correct modeling large
deformations and large rotations of flexible bodies. The basic idea is to describe the dynamics
in terms of absolute nodal displacements and slopes at nodal points of finite elements. An
arbitrary point of the element is defined by the nodal coordinates and a global shape function
that consists of a complete set of rigid body modes. Detailed comparisons between FFRF and
ANCF can be found in [44, 145, 146].

Flexible bodies are the main components in the rapidly growing field of soft robotics. Such

49
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robots are made of highly deformable materials and undergo high deformation during mo-
tion. Current challenges in the design, modeling, and control of soft robotics are highlighted
in [2, 127, 130, 164]. The authors agree that no consistent approach to modeling soft robots
exists. Shabana [141] and Shabana and Eldeeb [144] pointed out that the challenges in
modeling soft robots can be addressed by utilizing ANCF. The formulation is suitable for ac-
curately representing large deformations, and nonlinear material behavior can be considered.
Therefore, the ANCF is used in this dissertation to describe the flexibility of bodies. The thesis
is not intended to introduce new approaches to ANCF, but focuses on using well-established
ANCF formulations for adjoint-based sensitivity analysis in OCPs; see the examples in [101,
102].

4.2 Absolute Nodal Coordinate Formulation

The ANCF has been introduced in a technical report by Shabana [136] and become a pop-
ular formulation for flexible multibody dynamics. The ANCF is a nonlinear finite element
formulation developed for correctly modeling large deformations and large rotations [137].
The general idea of the ANCF is to use absolute nodal position coordinates and absolute
nodal slopes as degrees of freedom [61]. In contrast to conventional nonlinear finite element
methods, the ANCF uses the absolute nodal slopes instead of rotational degrees of freedom
to parameterize the cross-section and, therefore, does not necessarily suffer from singular-
ities arising from angular parameterizations. In ANCF, the centrifugal and Coriolis forces
are zero, and the mass matrix is constant for the degrees of freedom, which is particularly
advantageous in dynamic simulations [55]. However, highly nonlinear stiffness terms for
the formulation of elastic forces occur due to the use of absolute nodal position coordinates
defined in a global coordinate system. Thus, even a linear elastic material model leads to
nonlinear elastic forces. Comprehensive literature reviews of ANCF contributions are pro-
vided in [63, 118]. A detailed classification and description of the general requirements for
ANCF finite elements can be found in [139]. For an overview and further research directions
using ANCF elements, the reader is referred to Shabana [143].

A variety of ANCF elements have been developed to model beams/cables, plates/shells,
and solid elements, and have been widely used in engineering applications. In this disser-
tation, the following two-dimensional standard ANCF elements are considered to examine
effects due to the elasticity of flexible bodies:

• The formulation proposed by Berzeri and Shabana [11] has been used in [102]. This
classical large deformation beam model only accounts for axial and bending deforma-
tion, while the effect of shear deformation is neglected. Moreover, the cross-section of
the beam is assumed to remain plane and perpendicular to the beam center line. This
element has been formulated based on the Euler-Bernoulli beam theory.

• The formulation proposed by Omar and Shabana [117] has been used in [101]. This
classical large deformation beam model accounts for axial and bending deformation
while considering shear deformation. Moreover, the cross-section of the beam does not
remain perpendicular to the beam center line following the idea of Timoshenko’s beam
theory, but the cross-section in this element does not remain rigid.

Both elements have been tested extensively in the literature and are used in structural-
optimization problems, e.g., [83, 150]. The shear deformable formulation proposed by Omar
and Shabana [117] is briefly described in the following sections.
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4.2.1 Kinematics

The geometric description of a planar two-noded ANCF element is based on nodal position
vectors and nodal slope vectors; see Fig. 4.1 for an element in the undeformed reference con-
figuration and in the deformed configuration. Elements are defined in the global coordinate
system (x , y) by position vectors r( j) ∈ R2 ( ), axial slope vectors r( j)

ξ
∈ R2 ( ), and transverse

slope vectors r( j)η ∈ R2 ( ) of the j-th node ( ). The two-dimensional element consists of six

x

y

r(2)

P

r(1)

r(1)
ξr(1)η

r(2)
ξ

r(2)η

r

η

l

h
ξ

(a)

(b)

Figure 4.1: Position and slope vectors of an ANCF element: (a) is the undeformed reference configuration, and
(b) is the deformed configuration

degrees of freedom at each node, where the nodal position is described with one vector, and
the orientation of the cross-section is represented with two vectors. Such an element is often
referred in literature as a fully-parameterized element since the full gradient information of
the nodal position is included in the vector of degrees of freedom. For a clear distinction be-
tween fully-parameterized and gradient deficient elements and a comparison of advantages
see [143]. Partial derivatives define the slope vectors for the j-th node as

r( j)
ξ
=
∂ r( j)

∂ ξ
and r( j)η =

∂ r( j)

∂ η
, (4.1)

where the coordinates in the undeformed reference configuration ξ and η denote the axis
of the beam and the axis along the cross-section, respectively. All vectors of an element are
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concatenated in the vector of generalized coordinates

q=
�

r(1), r(1)
ξ

, r(1)η , r(2), r(2)
ξ

, r(2)η
�T
∈ R12. (4.2)

A material point ξ= (ξ, η)T in the undeformed reference configuration can be mapped to the
deformed configuration defined in the global coordinate system by

r(ξ, t) =

�

r1
r2

�

=

�

a0(t) + a1(t)ξ+ a2(t)η+ a3(t)ξη+ a4(t)ξ2 + a5(t)ξ3

b0(t) + b1(t)ξ+ b2(t)η+ b3(t)ξη+ b4(t)ξ2 + b5(t)ξ3

�

, (4.3)

where the position field is approximated using cubic polynomial functions with the time-
dependent coefficients a0 . . . a5 and b0 . . . b5. The global position vector r(ξ, t) can be decou-
pled into a local part B(ξ) related to the undeformed reference configuration and a time-
dependent part γ(t) by the matrix representation

r(ξ, t) = B(ξ)γ(t) =

�

1 ξ η ξη ξ2 ξ3 0 0 0 0 0 0
0 0 0 0 0 0 1 ξ η ξη ξ2 ξ3

�



















a0(t)
...

a5(t)
b0(t)

...
b5(t)



















. (4.4)

The polynomial coefficients γ are defined such that the generalized coordinates of an element
represent the nodal position vector of both nodes

q1 = r1|ξ=0,η=0, q2 = r2|ξ=0,η=0, q7 = r1|ξ=l,η=0, q8 = r2|ξ=l,η=0, (4.5)

and the global slope vectors of both nodes

q3 =
∂ r1

∂ ξ

�

�

�

�

ξ=0,η=0

, q4 =
∂ r2

∂ ξ

�

�

�

�

ξ=0,η=0

, q5 =
∂ r1

∂ η

�

�

�

�

ξ=0,η=0

, q6 =
∂ r2

∂ η

�

�

�

�

ξ=0,η=0

,

q9 =
∂ r1

∂ ξ

�

�

�

�

ξ=l,η=0

, q10 =
∂ r2

∂ ξ

�

�

�

�

ξ=l,η=0

, q11 =
∂ r1

∂ η

�

�

�

�

ξ=l,η=0

, q12 =
∂ r2

∂ η

�

�

�

�

ξ=l,η=0

.

(4.6)

The components of the generalized coordinates in (4.5) and (4.6) are concatenated in the
vector of generalized coordinates by

q(t) = Aγ(t), (4.7)

where the coefficient matrix A is defined by

A=







































1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
1 l 0 0 l2 l3 0 0 0 0 0 0
0 0 0 0 0 0 1 l 0 0 l2 l3

0 1 0 0 2l 3l2 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 2l 3l2

0 0 1 l 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 l 0 0







































. (4.8)
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Substituting (4.7) into (4.4) yields

r(ξ, t) = B(ξ)A−1

︸ ︷︷ ︸

S(ξ)

q(t), (4.9)

in which the shape function matrix S has been introduced. The shape function matrix maps
the generalized coordinates to the global position vector which reads

S=

�

s1 0 s2 0 s3 0 s4 0 s5 0 s6 0
0 s1 0 s2 0 s3 0 s4 0 s5 0 s6

�

, (4.10)

where the components of the shape function matrix can be written as follows

s1 = 1− 3α2 + 2α3, (4.11)

s2 = l(α− 2α2 +α3), (4.12)

s3 = h(1−α)β , (4.13)

s4 = 3α2 − 2α3, (4.14)

s5 = l(−α2 +α3), (4.15)

s6 = hαβ . (4.16)

Note that the components of the shape function matrix are formulated as a function of the
normalized element coordinates α= ξ/l and β = η/h, where the Jacobian

J1 =
∂ ξ

∂α
=

�

l 0
0 h

�

(4.17)

accounts for the transformation between the unit element coordinates α = (α, β)T and the
element coordinates ξ. Normalizing the element coordinates aims to be compatible with
standard numerical integration methods, e.g., using a Gaussian quadrature rule, to derive
the equations of motion [62]. Analyzing the shape functions in (4.11)–(4.16), it is obvious
that the centerline of the element is represented by a cubic interpolation in β along the
element axis, while the height of the element is represented by a linear interpolation in α
along the cross-section [112].

To summarize the kinematics of the ANCF element proposed in [117], the position vector
of an arbitrary point P is defined in the global coordinate system (x , y) using the shape
function matrix and the generalized coordinates as

r(α, t) = S(α)q(t), (4.18)

in which the shape function matrix is a function of unit element coordinates α. In addition,
the interpolation of the reference element is defined as follows

r0(α) = S(α)q0, (4.19)

where the generalized coordinates in the reference configuration are denoted by q0.

4.2.2 Equations of Motion

The equations of motion for multibody systems can be derived using D’Alembert’s principle
and the principle of virtual work. D’Alembert’s principle states that the virtual work of inertia
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forces δWinert and elastic forces δWelast equals the virtual work of external forces δWext
∫

V
ρr̈TδrdV

︸ ︷︷ ︸

δWinert

+

∫

V
S : δEdV

︸ ︷︷ ︸

δWelast

=

∫

V
bTδrdV +Mδθ

︸ ︷︷ ︸

δWext

, (4.20)

where ρ is the mass density of the material, V denotes the volume in the reference configu-
ration, S is the second order Piola-Kirchhoff stress tensor, E is the nonlinear Green-Lagrange
strain tensor, b denotes body forces, and M is an external torque acting on the angle of rota-
tion θ of the beam cross-section. The virtual work in D’Alembert’s principle can be formulated
in terms of the mass matrix M, the elastic forces Qelast, and the external forces Qext as

δWinert = δqTMq̈, and δWelast = δqTQelast, and δWext = δqTQext. (4.21)

For the derivation of the mass matrix, the elastic forces, and the external forces, see the
following sections. Based on D’Alembert’s principle and the terms in (4.21), the so-called
weak form of the equations of motion for an ANCF element can be formulated as

δqT (Mq̈+Qelast −Qext) = 0 ∀δq. (4.22)

Since the element is not subjected to any constraints, the weak form holds for all δq. Thus,
the equations of motion for an ANCF element can be written as

Mq̈+Qelast = Qext. (4.23)

The second-order differential equations can be transformed into first-order differential equa-
tions to be compatible with the first-order differential equations of an OCP introduced in (3.7).
Introducing generalized velocities v= q̇ transforms the second-order system into

ẋ= f=

�

I 0
0 M−1

��

v
Qext −Qelast

�

, (4.24)

wherein the state variables are expressed by xT =
�

qT, vT
�

.

Mass Matrix

The symmetric mass matrix of an element is obtained using the virtual work of inertia forces

δWinert =

∫

V
ρr̈TδrdV = q̈T

∫

V
ρSTSdV

︸ ︷︷ ︸

M

δq, (4.25)

in which the variation of the global position vector is computed by

δr=
∂ r
∂ q
δq= Sδq. (4.26)

The mass matrix defined by (4.25) reads

M=

∫

V
ρSTSdV = w

∫ 1

0

∫ 1/2

−1/2

ρSTS |det(J1)| dαdβ , (4.27)

in which the volume integral is transformed to unit element coordinates using the deter-
minant of the Jacobian of the unit element coordinate transformation |det(J1)| = lh and a
constant width w of the element. In general, the ANCF element leads to a constant mass
matrix that depends only on the inertia and the dimension of the beam [142]. Thus, ANCF-
based formulations are advantageous for dynamic simulations of multibody systems from a
computational point of view.
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Elastic Forces

The elastic forces of an element are obtained using the continuum mechanics-based formu-
lation of the virtual work of elastic forces δWelast, which is defined by using the nonlinear
Green-Lagrange strain tensor and the second-order Piola-Kirchhoff stress tensor. The Green-
Lagrange strain tensor reads

E=
1
2
(FTF− I), (4.28)

where F denotes the deformation gradient and I is the identity matrix. The deformation
gradient is defined by using partial derivatives of the position vector r with respect to the
position vector in the reference configuration r0 as follows

F=
∂ r
∂ r0

=
∂ r
∂α

∂α

∂ r0
. (4.29)

The transformation between the unit element coordinates α and the position vector of the
reference element is defined by the element Jacobian

J2 =
∂ r0

∂α
, (4.30)

which consistently considers precurved elements geometrically [62]. The element Jacobian

simplifies to J2 = J1 =

�

l 0
0 h

�

for the case of a straight and undistorted reference config-

uration in which the local ξ-axis is parallel to the global x-axis. For linear-elastic material
models, the second order Piola–Kirchhoff stress tensor is expressed by

S= D4 : E, (4.31)

where D4 denotes the fourth order tensor of elasticities. For the planar formulation of the
ANCF element, it is required to consider either plane stress or plane strain conditions. Thus,
the stress-strain relation is rewritten in terms of the engineering strain vector ϵ and the stress
vector σ

ϵ =
�

Ex x , Ey y , 2Ex y

�T
and σ =
�

Sx x , Sy y , Sx y

�T
, (4.32)

respectively. In case of plane stress, the elasticity matrix reads

D=
E

1− ν2





1 ν 0
ν 1 0
0 0 1−ν

2



 , (4.33)

in which E and ν represent the Young’s modulus and the Poisson’s ratio of the beam material,
respectively. Using the elasticity matrix and the engineering strains, the stress-strain relation
is given by

σ = Dϵ. (4.34)

The stress-strain relation used follows the paper by Gerstmayr et al. [62], and is slightly
updated from the original paper by Omar and Shabana [117] to be consistent with traditional
planar finite elements.

The strain energy of an element with a rectangular cross-section is usually defined as

U =
1
2

∫

V
ϵTDϵ dV =

1
2

w

∫ 1/2

−1/2

∫ 1

0

ϵTDϵ |det(J2)| dαdβ , (4.35)
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where the volume integral is transformed to unit element coordinates. Note that the integral
transformation requires considering the determinate of the element Jacobian in (4.30). The
virtual work of the elastic forces can be defined using the strain energy as

δWelast = δqT ∂ U
∂ q

, (4.36)

see [140]. Thus, the elastic forces are given by

Qelast =
∂ U
∂ q

. (4.37)

Generalized External Forces

Generalized external forces of an element are obtained using the principle of virtual work

δWext = δqTQext =

∫

V
δrTbdV +Mδθ ⇒ Qext. (4.38)

In this thesis, the vector of generalized forces Qext due to external forces and torques reads

Qext = Qg +Qu +Qd, (4.39)

where effects due to gravity Qg, an applied torque Qu, and viscous damping for joint friction
Qd are considered.

The generalized forces due to the distributed gravity of the element are obtained by the
first term of the virtual work in (4.38) as

δWg =

∫

V
δrTbdV = δqT

∫

V
ρST dVg

= δqT w

∫ 1/2

−1/2

∫ 1

0

ρST |det(J1)| dαdβg

︸ ︷︷ ︸

Qg

,
(4.40)

in which the body force b = ρg = ρ(0, −g)T is given by gravity field and the mass density of
the material. Based on the virtual work, the generalized distributed gravity force reads

Qg = −mg
�
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, 0,
l

12
, 0, 0, 0,

1
2

, 0, −
l

12
, 0, 0
�T

, (4.41)

where the mass of an element is denoted by m= ρlhw.
In addition to the generalized gravity forces, the principle of virtual work is utilized to

derive the generalized forces when an external torque M is applied at the cross-section of the
beam. The virtual work of the external torque is given by

δWM = Mδθ , (4.42)

where the generalized forces can be obtained by replacing the variation of the rotation angle
δθ as a function of the variation of the generalized coordinates δq. The orientation of the
cross-section can be described by attaching a coordinate system to the cross-section; see
Fig. 4.2. The rotation matrix of the attached coordinate system is defined by

�

cos(θ ) − sin(θ )
sin(θ ) cos(θ )

�

=
1
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∂ η

∂ r1
∂ η

− ∂ r1
∂ η
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rη

�

, (4.43)
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Figure 4.2: Orientation of the cross-section for a shear deformable ANCF element

where the orientation of the cross-section is expressed by the transverse slope vector rη and
the orthogonal vector rη,⊥ normalized with

f = ∥rη∥2 =

√

√

√

�

∂ r1

∂ η

�2

+
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∂ r2

∂ η

�2

. (4.44)

From the rotation matrix (4.43), the angle of rotation of the cross-section can be expressed
by trigonometric functions as

sin(θ ) = −
1
f
∂ r1

∂ η
and cos(θ ) =

1
f
∂ r2

∂ η
. (4.45)

The trigonometric functions can be used to formulate the variation of the rotation angle given
by

δθ =

∂ r2
∂ η δ
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∂ η
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f 2
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In case a concentrated torque M is applied at the first node r = r(1) and/or second node
r= r(2), the variation of the rotation angle can be formulated as

δθ =
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∂ η δ
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respectively. The variations of the rotation angle evaluated at the nodes can be formulated
as a function of the generalized coordinates. Therefore, it follows that

δθ = cTδq, (4.48)

where c maps the variation of the generalized coordinates to the variation of the rotation
angle. In case a torque is applied at the first node r= r(1), the coefficient vector reads

c=
1

q2
5 + q2

6

�

0, 0, 0, 0, q6, −q5, 0, 0, 0, 0, 0, 0
�T

, (4.49)

and the coefficient vector c for a torque applied at the second node r= r(2) reads

c=
1

q2
11 + q2

12

�

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, q12, −q11

�T
. (4.50)
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Substituting the variation of the rotation angle (4.48) into the virtual work (4.42) leads to
the generalized forces due to a torque M given by

δWM = δqT Mc
︸︷︷︸

QM

. (4.51)

Hence, generalized forces due to an applied control M = u and a damping M = −dθ̇ are
given by

Qu = uc and Qu = −dθ̇c, (4.52)

respectively. The applied control u drives the ANCF element, and the viscous damping is con-
sidered to model joint friction. When modeling a flexible body with multiple ANCF elements,
the generalized forces due to the control and damping are considered only at a node kine-
matically constrained to the ground or at nodes representing mechanical joints for coupling
two bodies; see the examples in [101, 102].

4.3 Element Assembly

The equations of motion formulated in the previous section are derived for a single ANCF
element. The continuum of flexible bodies is modeled by finite elements, which must be
properly connected at the nodes. Following [140], the element connectivity can be obtained
by eliminating redundant generalized coordinates at the connection nodes. To this end,
the element-specific Boolean transformation matrix T(e) maps the independent generalized
coordinates q of all nodes to its local element representation of an element (e)

q(e) = T(e)q. (4.53)

The equations of motion for the assembled multibody system are obtained in analogy to a
single finite element described in Section 4.2.2. Based on the formulation in (4.22), the weak
form of the assembled multibody system reads

∑

(e)

δq(e)
T
�

M(e)q̈(e) +Q(e)elast −Q(e)ext

�

= 0 ∀δq(e). (4.54)

The equations of motion can not be obtained directly from the weak form in (4.54) since
the generalized coordinates q(e) of an element are not independent. Thus, the variations of
the generalized coordinates and the generalized accelerations of an element are expressed in
terms of the independent generalized coordinates using (4.53) as

δq(e) = T(e)δq and q̈(e) = T(e)q̈, (4.55)

respectively. Substituting the expressions in (4.55) into the weak form in (4.54) yields

δqT
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T
M(e)T(e)q̈+ T(e)

T
Q(e)elast − T(e)

T
Q(e)ext

�

�

= 0 ∀δq, (4.56)

which holds for all δq if the body motion is unconstrained. Consequently, the global mass
matrix is assembled by

M=
∑

(e)

T(e)
T
M(e)T(e), (4.57)
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and the assembled vector of generalized forces due to elastic and external forces reads

Qelast =
∑

(e)

T(e)
T
Q(e)elast and Qext =

∑

(e)

T(e)
T
Q(e)ext, (4.58)

respectively. The dynamics of the assembled flexible multibody system is defined by second-
order differential equations given by

Mq̈+Qelast = Qext, (4.59)

Similar to a single ANCF element, the assembled system can be transformed into first-order
differential equations by introducing the generalized velocities v = q̇. Hence, the first-order
differential equations reads

ẋ= f=

�

I 0
0 M−1

��

v
Qext −Qelast

�

, (4.60)

wherein the state variables of all nodes are expressed by xT =
�

qT, vT
�

.





Chapter 5

Scientific Contributions

This dissertation aims to provide novel approaches for efficient and accurate sensitivity anal-
ysis for first-order differential equations. The scientific contributions focus on deriving ad-
vanced formulations in sensitivity analysis using the adjoint variable method, highlighting
their efficiency and applicability to large-scale optimization problems.

This chapter summarizes the scientific contributions of this dissertation based on three
peer-reviewed publications. Two publications [101, 102] are published in the journal Multi-
body System Dynamics, and one publication [99] is published in the IUTAM Bookseries Opti-
mal Design and Control of Multibody Systems. A brief outline and highlights of the scientific
contributions are given in the next section. In addition, each publication is summarized, and
the author’s contributions are presented in the following sections.

5.1 Outline of Publications

Publication I [102] and Publication II [99] are concerned with time-optimal control prob-
lems. The focus is on using adjoint variables in the context of an NLP problem. An example
of the publications include the time-optimal control problem of a flexible robotic system.
The promising results motivate the combination of optimal control and structural optimiza-
tion of flexible multibody systems in a combined optimization. To this end, Publication III
proposes a discrete adjoint gradient approach to efficiently compute sensitivities of equality
and inequality constraints in dynamics, e.g., final constraints on state variables and/or stress
restrictions of the flexible components.

Note that the arrangement of Publication I-III follows a chronological and methodolog-
ical order. A reprint of the publications can be found in Appendix B; see Publication I in
Appendix B.1, Publication II in Appendix B.2, and Publication III in Appendix B.3.

5.2 Summary of Publications

This section summarizes the scientific contributions to the dissertation. In addition, the au-
thor’s contributions to the Publications I-III are provided according to the Contributor Roles
Taxonomy (CRediT) defined in [1].
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5.2.1 Publication I

Bibliographic Information

Lichtenecker, D., Rixen, D., Eichmeir, P., and Nachbagauer, K. “On the use of adjoint gradi-
ents for time-optimal control problems regarding a discrete control parameterization”. In:
Multibody System Dynamics 59.3 (2023), pp. 313–334. DOI: 10.1007/s11044-023-09898-5

CRediT Author’s Contributions Statement

Lichtenecker, D.: Conceptualization, Methodology, Software, Validation, Formal Analysis,
Investigation, Data Curation, Writing - Original Draft and Review & Editing, Visualization,
Project Administration. Rixen, D.: Resources, Writing - Review & Editing, Supervision, Fund-
ing Acquisition. Eichmeir, P.: Conceptualization, Methodology, Validation, Writing - Review
& Editing. Nachbagauer, K.: Conceptualization, Methodology, Validation, Writing - Review
& Editing, Supervision, Project Administration, Funding Acquisition.

Summary

Publication I proposes an adjoint gradient approach for time-optimal control problems re-
garding parameterization of the control. Time-optimal control problems aim to manipulate
a mechanical system from an initial state to a final state in the shortest possible time. This
paper focuses on efficient and accurate computation of first-order gradients in time-optimal
control problems using adjoint gradients. In addition, the role of adjoint variables in direct
optimization methods is analyzed to reveal a new perspective on the optimality conditions in
time-optimal control problems of dynamical systems considering final constraints.

In this paper, the time-optimal control problem is formulated similarly to the problem
definition discussed in Section 3.2.2. Upper and lower bounds of the control are considered
with a penalty function P, while the final state is enforced by an equality constraint φ at the
final time. As proposed by Eichmeir et al. [53], such time-optimal control problems can be
solved by using an indirect gradient-based approach which relates the control u with final
constraints φ. Publication I extends the indirect gradient method to incorporate adjoint
gradients regarding a parameterization of the control. Therein, the continuous control is
parameterized by u(t) = C(t)ū, where C is a time-dependent interpolation function and ū is
a set of control variables. The proposed adjoint gradients are utilized in the context of direct
and indirect solution approaches.

Using the control parameterization, the infinite-dimensional time-optimal control prob-
lem is transcribed into a finite-dimensional NLP problem using a direct single shooting ap-
proach as discussed in Section 3.3.1. The resulting NLP problem is solved using the SQP
implementation provided by the MATLAB optimization toolbox fmincon. As pointed out in
Section 3.3.4, an efficient and accurate computation of first-order gradients is essential. The
proposed adjoint gradients are provided to the third-party solver, which speeds up the opti-
mization procedure. In addition, the adjoint variables are used to discuss the optimality of
the converged NLP solution by introducing a switching function to the corresponding time-
optimal control problem. As shown in Fig. 3.4, the switching function can be used for a
graphical interpretation of the optimality concerning Pontryagin’s minimum principle.

Two examples of a time-optimal rest-to-rest motion of a Selective Compliance Assembly
Robot Arm (SCARA) are analyzed to demonstrate the proposed adjoint gradient approach. In
the first example, the SCARA is modeled with two rigid bodies in the two-dimensional space.
The second example is intended to demonstrate the applicability of the proposed method to
problems where the SCARA is modeled with flexible bodies in the two-dimensional space.

https://doi.org/10.1007/s11044-023-09898-5
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Flexible multibody systems tend to be underactuated, and the OCP becomes more compli-
cated than the OCP of rigid multibody systems. However, the flexible bodies are formulated
using the ANCF element proposed by Berzeri and Shabana [11]. A brief introduction to the
kinematics and kinetics of the ANCF element used is given in Publication I. In both examples
studied, the interpolation function C is formulated to represent a cubic spline interpolation
for the set of control variables ū. Smooth control functions are especially relevant to reduce
vibrations of the flexible multibody system in order to fulfill final state constraints.

As discussed in Section 3.2.2, the evolution of the optimal control for time-optimal control
problems is of the bang-bang type. An approximation of the bang-bang behavior can be rec-
ognized in the results of both examples. In addition, the switching function derived from an
indirect optimization perspective is used to relate the results obtained by fmincon to the op-
timality conditions of an indirect optimization approach. The results obtained with fmincon
agree with the optimality conditions of the indirect approach. A comparison of the number
of function evaluations required for converged solutions considering either finite-differences
or adjoint gradients shows the tremendous advantage of using the proposed approach. The
computational effort to obtain a converged solution can be reduced significantly, which is
especially relevant for underactuated time-optimal control problems of flexible multibody
systems.

5.2.2 Publication II

Bibliographic Information

Lichtenecker, D., Eichmeir, P., and Nachbagauer, K. “On the usage of analytically computed
adjoint gradients in a direct optimization for time-optimal control problems”. In: Optimal
Design and Control of Multibody Systems. Ed. by Nachbagauer, K. and Held, A. Vol. 42. IUTAM
Bookseries. Springer, Cham, 2024, pp. 153–164. DOI: 10.1007/978-3-031-50000-8_14

CRediT Author’s Contributions Statement

Lichtenecker, D.: Conceptualization, Methodology, Software, Validation, Formal Analysis,
Investigation, Data Curation, Writing - Original Draft and Review & Editing, Visualization,
Project Administration. Eichmeir, P.: Conceptualization, Methodology, Validation, Writing -
Review & Editing. Nachbagauer, K.: Conceptualization, Methodology, Writing - Review &
Editing, Supervision, Project Administration, Funding Acquisition.

Summary

Publication II extends the adjoint gradient approach for time-optimal control problems pro-
posed in Publication I. The structure of first-order gradients computed by direct differentia-
tion and the adjoint method is addressed to emphasize the advantage of using the proposed
adjoint gradients. In addition, the adjoint variables are used to discuss the sensitivity of
NLP solutions concerning the refinement of the control parameterization. Furthermore, the
paper outlines the workflow for integrating the adjoint gradients into a third-party direct
optimization solver.

According to Publication I, the time-optimal control problem is formulated by a direct
single shooting approach, where the control is parameterized by u(t) = C(t)ū. Thus, the
time-optimal NLP problem contains the control variables ū and the final time tf as optimiza-
tion variables, i.e., zT = (tf, ū

T). However, the used NLP solver provides an optimal set of
optimization variables z = z∗ in case the KKT conditions are sufficiently fulfilled. The KKT

https://doi.org/10.1007/978-3-031-50000-8_14
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conditions correspond to the finite-dimensional NLP problem and do not provide any infor-
mation on the optimality of the original infinite-dimensional OCP. Consequently, the KKT
conditions for the time-optimal control problem can be satisfied even when considering a
relatively low number of control variables, in which the continuous control function can not
sufficiently approximate the bang-bang structure for a time-optimal control as discussed in
Section 3.2.2. To overcome the latter issue, the basic idea of Publication I is used to re-
late converged NLP solutions to Pontryagin’s minimum principle for further discussion on the
optimality of an optimal point z∗.

The rigid two-arm SCARA analyzed in Publication I is used in this publication to discuss
the sensitivity of converged NLP solutions concerning a different number of grid nodes in
the range of k ∈ {5,10, 20,30, 40,50} per control. For each discretization ūk with a different
number of grid nodes, the NLP problem is solved using the SQP implementation provided
by the MATLAB optimization toolbox fmincon. In addition, the proposed adjoint gradients
are provided to the solver to speed up the optimization procedure. It can be observed that
the optimized time-optimal control functions become a bang-bang structure by increasing
the number of control grid nodes. In addition, the final time t∗f decreases by increasing the
number of control grid nodes. Note that the KKT conditions for k = 5 control grid nodes
per control are fulfilled, but the result is not time-optimal regarding Pontryagin’s minimum
principle. In contrast, using k = 50 control grid nodes per control satisfies Pontryagin’s
minimum principle sufficiently.

The computational efficiency using the proposed adjoint gradient method to compute
first-order sensitivities is highlighted in Publication II. Therein, a graphical interpretation
of the dimensions using the adjoint method and the direct differentiation method is given.
Both approaches require the solution of linear differential equations before the first-order
gradients can be computed. The dimensions of the underlying differential equations for
the adjoint method do not scale when the number of optimization variables is changed. In
contrast, the dimensions of the differential equations for the direct differentiation method
are proportional to the number of optimization variables. Thus, the computational effort
to compute first-order gradients using the direct differentiation method depends strongly on
solving the differential equations, especially for problems with a high number of optimization
variables. For the study in Publication II regarding a different number of grid nodes k per
control, the computational effort to compute the first-order gradients using the proposed
adjoint method is almost independent of the number of grid nodes. A slight increase in the
computational effort can be observed due to the changing dimension of matrix multiplications
when the number of grid nodes per control is increased.

Publication II proposes a procedure for using adjoint variables in a direct optimization
approach. The adjoint variables are used to compute first-order gradients during the iterative
optimization procedure. In addition, the adjoint variables are used to evaluate the optimality
of the results obtained from the NLP solver regarding Pontryagin’s minimum principle.

5.2.3 Publication III

Bibliographic Information

Lichtenecker, D. and Nachbagauer, K. “A discrete adjoint gradient approach for equality and
inequality constraints in dynamics”. In: Multibody System Dynamics 61.1 (2024), pp. 103–
130. DOI: 10.1007/s11044-024-09965-5

https://doi.org/10.1007/s11044-024-09965-5
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CRediT Author’s Contributions Statement

Lichtenecker, D.: Conceptualization, Methodology, Software, Validation, Formal Analysis,
Investigation, Data Curation, Writing - Original Draft and Review & Editing, Visualization,
Project Administration. Nachbagauer, K.: Conceptualization, Methodology, Validation, Writ-
ing - Review & Editing, Supervision, Project Administration, Funding Acquisition.

Summary

Publication III proposes a discrete adjoint gradient approach for efficient and accurate com-
putation of sensitivities in dynamic simulations. The presented approach incorporates the
computation of first-order gradients of equality and inequality constraints in dynamics. The
focus of this paper is to provide an efficient framework to combine an OCP with structural op-
timization of mechanical systems. Combining both optimization tasks is promising to obtain
the best possible mechanical structure regarding an OCP. This paper contributes to solving
sophisticated and challenging optimization problems of flexible multibody systems efficiently,
e.g., the design and control of soft robotics.

Similar to Publication I and Publication II, the OCP is formulated using a direct single
shooting approach, where the control is parameterized by u(t) = C(t)ū. In addition, a set of
parameters ξ is considered to parameterize the mechanical system. Considering an OCP and
a structural optimization leads to a combined set of optimization variables zT = (ξT, ūT). The
resulting NLP problem is hard to handle, and therefore, an efficient approach to compute first-
order gradients becomes even more essential. In this paper, NLP problems are solved using
the software package IPOPT, where the proposed discrete adjoint gradients are provided to
the solver via an interface.

The discrete adjoint method constructs a set of algebraic equations for the adjoint vari-
ables directly from the time-integration scheme applied to the state equations of the me-
chanical system. In Publication III, the discrete adjoint variables are derived for systems
formulated by first-order differential equations. The derivation of adjoint-based sensitivities
of equality and inequality equality constraints leads to discretized matrix differential equa-
tions, which depend on the forward time-integration scheme. Publication III demonstrates
the proposed discrete adjoint gradient approach for two different time-integration schemes
(explicit and implicit Euler method) and highlights efficiency and straightforward applicabil-
ity. The discrete adjoint gradients are especially suitable for optimization problems involving
large-scale models or high-dimensional optimization spaces.

Three numerical examples are investigated to demonstrate the use and the advantage of
the proposed discrete adjoint gradient approach. In the first example, the role of discrete
adjoint variables in sensitivity analysis is discussed using an academic one-mass oscillator.
This simple example enables a deep insight into the proposed adjoint method. The sensitivity
analysis shows that the evolution of discrete adjoint variables is not necessarily a smooth
function. The second example highlights the computational efficiency using the adjoint gra-
dients within the energy optimal control problem of a nonlinear spring pendulum. The third
example exploits the efficient discrete adjoint approach to enable a combined optimal control
and design problem of a SCARA modeled with flexible bodies. The components of the SCARA
are formulated using the ANCF element proposed by Omar and Shabana [117]. A brief in-
troduction to the kinematics and kinetics of the ANCF element used is given in Section 4.2.
The efficiency of the discrete adjoint method is demonstrated by a comparison of the runtime
required to compute first-order gradients. The proposed discrete adjoint method significantly
reduces the runtime compared to the finite-difference method.

Summarizing, Publication III discusses adjoint-based sensitivity analysis for dynamic
systems in gradient-based optimization problems. Deriving the discrete adjoint gradients
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is mathematically more laborious than using finite differences or the direct differentiation
method. However, the significant reduction of the runtime when using discrete adjoint gra-
dients for the sensitivity analysis justifies the considerable preprocessing effort to derive the
adjoint gradients. This paper presents a novel discrete adjoint gradient approach for the
sensitivity analysis of equality and inequality constraints in dynamics. Moreover, the paper
demonstrates the application of two different time-integration schemes, highlighting their
efficiency and applicability to large-scale optimization problems.



Chapter 6

Closure

This thesis focuses on OCPs of flexible multibody systems using the adjoint method for ef-
ficient and accurate computation of sensitivities. The treatment of this subject requires a
solid mathematical background regarding the general concept of the adjoint method, numer-
ical optimization, and flexible multibody formulation. Sufficient details of these subjects are
provided to understand the scientific contributions of this thesis.

In this thesis, OCPs are treated using direct optimization methods. Direct optimization
methods include the computation of sensitivities in an iterative solution process. Therein,
the sensitivities are crucial for determining a search direction to minimize the cost functional
while satisfying equality and inequality constraints. Therefore, an efficient and accurate
approach for the computation of sensitivities is advantageous, especially for large-scale op-
timization problems. To address the requirements of efficiency and accuracy in sensitivity
analysis, the adjoint theory is exploited in this thesis to derive analytical approaches for sen-
sitivity analysis concerning different OCP formulations.

To demonstrate the efficiency and applicability of the proposed approaches, optimal tra-
jectories are computed for rest-to-rest problems of mechanical systems modeled with rigid
and flexible bodies. Initial and final state conditions are specified, and equality and inequal-
ity constraints are considered during the motion of the mechanical system. For example,
the optimal motion of a flexible two-arm robot is studied regarding a time-optimal control
problem, and the energy-optimal control problem of a nonlinear spring pendulum is ana-
lyzed. These practical examples demonstrate the theoretical concepts presented in this thesis
and highlight the advantages regarding a significant reduction of the computational cost for
solving OCPs.

6.1 Conclusion and Discussion

Optimal control of flexible multibody systems is of major concern in the emerging and ad-
vanced field of soft robotics that aims to go beyond traditional robot models with rigid com-
ponents. The compliance and flexibility of these systems often result in highly nonlinear
dynamics, which complicates the design and control of such robots. This thesis aims to con-
tribute to the challenging field of optimal control of flexible multibody systems by developing
efficient and accurate control strategies, e.g., for applications in soft robotics.

Conclusions on the scientific contributions to this thesis are given below for each publica-
tion:

• Publication I proposes an adjoint gradient approach for time-optimal control problems
formulated as a direct optimization problem. Therein, the continuous control functions
are parameterized using a set of control grid nodes, which serve as optimization vari-
ables along with the required time to manipulate a mechanical system from an initial
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state to a final state. The adjoint variables are exploited to compute first-order gradients
of the optimization problem. In addition, the adjoint variables are utilized to discuss
the solution of an NLP solver in terms of Pontryagin’s minimum principle. The interpre-
tation of the optimality concerning Pontryagin’s minimum principle provides essential
information on whether the parameterization of the control is sufficient to approxi-
mate the solution of the original infinite-dimensional OCP. The proposed approach is
demonstrated on the time-optimal control problem of a SCARA modeled with rigid and
flexible bodies. The computationally efficient approach to computing first-order gradi-
ents allows to study the challenging time-optimal control problem of flexible multibody
systems in a time-efficient manner.

• Publication II extends the proposed adjoint gradient approach in Publication I for
time-optimal control problems. It highlights the structure of first-order gradients com-
puted via direct differentiation and the proposed adjoint variable method, emphasizing
the benefits of using the adjoint gradient approach. Additionally, the paper examines
the sensitivity of converged NLP solutions concerning the refinement of control param-
eterization by using the adjoint variables.

• Publication III presents a discrete adjoint gradient approach for (in)equality constraints
in dynamics. The proposed approach provides an efficient and accurate opportunity for
sensitivity analysis. The time-integration scheme used to compute the evolution of the
state variables implies the backward integration of the adjoint variables. The straight-
forward application of different time-integration schemes is shown in the paper using
the explicit and implicit Euler method. In addition, the paper highlights the applicabil-
ity of the proposed approach to large-scale optimization problems. The adjoint-based
sensitivity analysis enables the computation of a solution to challenging optimization
problems concerning numerous (in)equality constraints, such as the combination of op-
timal control and design in a simultaneous optimization in a time-efficient manner.

The developed approaches for adjoint-based sensitivities are compared with the sensitivi-
ties computed by the finite-difference method for verification of the derivations and their
implementation. The results of the sensitivity analysis obtained by both approaches are in
good agreement, which demonstrates the correctness and validation of the presented adjoint
gradients. In terms of computational effort, the new approaches presented in this thesis
significantly outperform the numerically computed gradients usually used in standard im-
plementations. Thus, using the developed adjoint-based sensitivities within an optimization
framework for solving an OCP significantly reduces the required runtime for a converged
solution.

6.2 Outlook

This thesis demonstrates the potential of using adjoint variables in OCPs of flexible multibody
systems for future developments, e.g., in soft robotics. Future investigations could address
the following research directions:

• The proposed adjoint gradient approaches can be extended to incorporate multibody
systems formulated by a set of redundant coordinates instead of using a minimal set
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of coordinates similar to [113]. The set of redundant coordinates leads to differential-
algebraic equations to describe the dynamics of the mechanical system. However, con-
sidering differential-algebraic equations requires consistent boundary conditions for the
adjoint variables. A similar approach as proposed by Gear et al. [60] can be used to
define consistent boundary conditions.

• The studied OCPs in this thesis are formulated as a direct single shooting approach. A
natural extension of the proposed approaches is to formulate the OCP as a direct mul-
tiple shooting approach. Using the multiple shooting approach decouples the shooting
interval from its predecessors with initial conditions for the state variables at the bound-
aries of the shooting intervals. Consequently, the adjoint variables are also decoupled
from preceding shooting intervals with final conditions at the boundaries of the shoot-
ing intervals. Thus, this approach enables parallel computing to reduce the runtime for
the sensitivity analysis. Kirches et al. [94] and Blonigan and Wang [20] motivate to
extend the proposed approaches for a direct multiple shooting approach.

• Similar to the adjoint-based feedback-feedforward control presented in [106], the pro-
posed methods of this thesis can be embedded in a feedback control loop algorithm.
The offline solution of the OCP provides the feedforward signal, which can be utilized
in a control loop. Using a closed loop control system is especially relevant for practical
and experimental implementations on the hardware to increase reliability.

• The adjoint method is a popular approach in machine learning for the training of neural
networks, commonly referred to as back propagation [88]. The scientific contributions
of this thesis can be utilized for efficient sensitivity analysis of neural ordinary dif-
ferential equations concerning the training parameters; see [86] for a discussion on
the adjoint method for a neural ordinary differential equation network. Using efficient
solvers in sensitivity analysis is particularly advantageous for high-dimensional machine
learning models [128].





Appendix A

Notation

This appendix provides some basics of the notational conventions in linear algebra used in
this thesis.

A.1 Vectors and Matrices

In this thesis, the components of vectors and matrices are real numbers. In general, scalar
quantities are denoted by lowercase non-bold characters, vectors are denoted by lowercase
bold characters, and matrices are denoted by uppercase bold characters. An exception in the
notation is, e.g., the scalar cost functional denoted by the uppercase character J to be consis-
tent with the scientific community of optimal control. However, the dimension of vectors of
length Nn is given by RNn , and the dimension of Nn × Nm matrices is given by RNn×Nm .

A vector f ∈ RNn is usually considered as a column vector given by

f=





f1
...

fNn



 , (A.1)

in which the i-th component fi , i ∈ {1, . . . , Nn} is a real number. The transpose of the vector
f is the row vector

fT =
�

f1 . . . fNn

�

. (A.2)

A matrix F ∈ RNn×Nm is given by

F=





f1,1 · · · f1,Nm
...

. . .
...

fNn,1 · · · fNn,Nm



 , (A.3)

in which its components are denoted by the double subscripts as fi, j , i ∈ {1, . . . , Nn}, j ∈
{1, . . . , Nm}. The transpose of the matrix F is denoted by FT.

A.2 Nabla Operator

Let X ⊆ RNx be an open subset and f : X → R is a differentiable scalar-valued function, i.e.,
f ∈ C1, then the differential operator ∇x defines the first-order gradient with respect to the
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vector x ∈ RNn given as

∇x f =
�

∂ f
∂ x

�T

=







∂ f
∂ x1
...
∂ f
∂ xNn






∈ RNn , (A.4)

where the components ∂ f /∂ x i represent the partial derivatives of f with respect to x i. The
first-order gradient of a differentiable vector-valued function f : X → RNm with respect to the
vector x is defined by

∇xf=
�

∂ f
∂ x

�T

=









∂ f1
∂ x1

· · · ∂ fNm
∂ x1

...
. . .

...
∂ f1
∂ xNn

· · · ∂ fNm
∂ xNn









∈ RNn×Nm , (A.5)

which is usually called the Jacobian matrix.
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Abstract

In this paper, we discuss time-optimal control problems for dynamic systems. Such prob-

lems usually arise in robotics when a manipulation should be carried out in minimal oper-

ation time. In particular, for time-optimal control problems with a high number of control

parameters, the adjoint method is probably the most efficient way to calculate the gradients

of an optimization problem concerning computational efficiency. In this paper, we present

an adjoint gradient approach for solving time-optimal control problems with a special focus

on a discrete control parameterization. On the one hand, we provide an efficient approach for

computing the direction of the steepest descent of a cost functional in which the costs and

the error in the final constraints reduce within one combined iteration. On the other hand,

we investigate this approach to provide an exact gradient for other optimization strategies

and to evaluate necessary optimality conditions regarding the Hamiltonian function. Two

examples of the time-optimal trajectory planning of a robot demonstrate an easy access to

the adjoint gradients and their interpretation in the context of the optimality conditions of

optimal control solutions, e.g., as computed by a direct optimization method.
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1 Introduction

Improving the performance of mechanical systems requires sophisticated optimization

strategies to fulfill the high demands of current and future product requirements. In general,

two problem formulations can be considered to describe various optimization applications:

structural optimization of mechanical components and/or finding an optimal control for non-

linear dynamical systems [37]. The focus of this paper is on the latter problem and relates

particularly with time-optimal controls.

Bobrow et al. [4] solved the time-optimal control problem for the case where the path

is specified and the actuator torque limitations for the robot control are known. They com-

puted the optimal control torques using a conventional linear feedback control system. Shin

and McKay [35] used dynamic programming considering parametric functions to reduce

the state space. Regarding the application to industrial robots, smooth trajectory planning

is essential and has been presented, e.g., by Constantinescu and Craft [8] by using cubic

splines to parameterize the state-space trajectory. Reiter et al. [31] proposed a time-optimal

path tracking problem formulated as a nonlinear programming (NLP) problem solved by a

multiple shooting method to account for the continuity required to respect the technological

limits of real robots. Moreover, methods for the fast computation of optimal solutions to

planning problems with changing parameters based on B-spline parameterization are pre-

sented in [30].

An alternative to the methods mentioned above is the use of indirect optimization meth-

ods avoiding the solution of a boundary value problem suffering from poor initial controls.

The fundamental work by Bryson and Ho [6] shows how the gradient in an indirect opti-

mization approach can be computed in a straightforward manner using adjoint variables.

Optimal control problems can be solved iteratively with adjoint gradients using nonlinear

optimization routines, as described in the sense of optimal control or parameter identifica-

tion in multibody systems, e.g., in [23].

The adjoint method has been used by various authors [2, 14, 17] in different research ar-

eas. In the last few decades, the sensitivity analysis based on the adjoint method has become

increasingly important [7, 26]. An extensive literature review in a more recent work [15]

presents various gradient-based optimization methods, especially in design optimization of

flexible multibody systems.

Moreover, since the adjoint method is computationally efficient, real-time applications

and neural network applications can be addressed with the adjoint approach. For instance,

physics-informed neural networks use partial differential equations in the cost functions to

incorporate prior scientific knowledge. Previous research has shown that the discrete adjoint

approach is efficient in application of neural networks [29]. Solvers capable of building

efficient gradients are beneficial for training machine learning embedded cost functionals.

Moreover, Gholami et al. [12] proposed an adjoint-based neural ordinary differential equa-

tion framework that provides unconditionally accurate gradients. Johnston and Patel [18]

stated that adjoint methods are used in both control theory and machine learning to effi-

ciently compute gradients of functionals.

In this paper, we concentrate on the efficient computation of gradients in optimal control

problems and the role of adjoint variables in the optimization strategy. The proposed ideas
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can also be used in neural network approaches for the interpretation and evaluation of opti-

mal solutions. In particular, we discuss a particular class of time-optimal control problems

for dynamic systems involving final constraints. For such problems, Eichmeir et al. [10] re-

cently presented an indirect gradient method to relate the control variations to the error of

the given final constraints. In this paper, we extend the method to provide an exact gradi-

ent for discrete control parameterizations for direct or indirect optimization methods. For

both methods, the Hamiltonian of the system can be determined and can then be considered

for classical statements about optimality. To be more precise, we investigate the role of the

adjoint variables in the verification of the optimality conditions of a solution derived by an

arbitrary optimization approach, e.g., computed by a direct optimization method.

To this end, we discuss the time-optimal control problem of a two-arm robot. In a first ex-

ample, the robot is formulated with rigid bodies. The advantage of the proposed approach,

in particular, concerning computational effort, will be exploited in a second example of a

flexible robotic system using the absolute nodal coordinate formulation (ANCF) for de-

scribing large deformations. Both examples are solved by a direct optimization method, and

the evaluation of the optimality criteria regarding a Hamiltonian leads to an interpretation

of the adjoint gradients. In addition, we performed a comparison of the number of function

evaluations in a local minimum considering either numerical or analytical gradients, which

shows the clear advantage of using adjoint gradients.

2 Time-optimal control problem

The aim of an optimal control problem is to find a control of a dynamical system to minimize

certain performance measures. Let us consider the nonlinear dynamical system

ẋ(t) = f(x(t),u(t)) with x(0) = x0, (1)

where x(t) ∈ Rn and u(t) ∈ Rm are the vectors of state and control variables, respectively.

A performance measure might be the energy consumption or the operation time from initial

to final state. The focus in this work will be on the latter.

We briefly discuss the time-optimal control problem [3, 6, 21]. The goal is to determine

a final time tf = t∗f and a control u(t) = u∗ such that the scalar cost functional

J (x(t),u(t), tf ) =

∫ tf

t0

[

1 + P (x(t),u(t))
]

dt (2)

is minimized while satisfying the final constraints

φ(x(tf ), tf ) = 0 ∈ Rq . (3)

Note that the state variables x(t) and control u(t) are functions over the time interval

t ∈ [t0, tf ] in the cost functional and that inequality constraints for the state variables and

control are accounted for using the penalty function P (x,u). This means that a penalty term

will be added to the final time tf in case of violating inequality constraints; see Eq. (2).

The optimal control problem is defined by Eqs. (1)–(3) and can be solved by two different

approaches. Direct methods transform the original infinite-dimensional optimization prob-

lem into a finite-dimensional one. The resulting NLP problem can be treated by well-known

methods, e.g., the sequential quadratic programming (SQP) approach [24]. An optimal point
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is in accordance with the Karush–Kuhn–Tucker (KKT) conditions [19, 22], which are nec-

essary optimality conditions for direct optimization methods. Contrary, indirect methods are

based on the calculus of variations and the derived necessary optimality conditions. These

explicit expressions result from Pontryagin’s minimum principle and are in the form of a

two-point boundary value problem, which is usually hard to solve. Shooting methods, collo-

cation methods, or gradient-based approaches can be used to solve the underlying two-point

boundary value problem.

2.1 Direct optimizationmethod

Direct methods transform the original infinite-dimensional optimization problem into a

finite-dimensional one by a parameterization of the control u(t). In this paper, the control is

discretized by a set of grid nodes ū. Hence the set of optimization variables in time-optimal

control problems is defined by zT =
(

tf , ūT
)

∈ Rz. The discretization of the control leads to

an NLP problem of the form

min
z

J (z)

s.t. φ(z) = 0.

(4)

Note that the NLP problem is defined by the optimization variables z. To evaluate the cost

functional and final constraints, the state variables x have to be computed with respect to

the optimization variables z. For solving the state equations in this step, a classical ordinary

differential equation (ODE) solver can be used, e.g., an explicit Runge–Kutta solver. The

NLP problem in Eq. (4) can be solved by classical direct optimization methods. The local

optimality of direct methods is investigated by introducing the Lagrangian function

L(z, ξ) = J (z) − ξTφ(z), (5)

where ξ ∈Rq is the Lagrange multiplier. The necessary first-order or KKT conditions of the

optimization problem in Eq. (4) are formulated as

(

∇zL(z∗, ξ ∗)

∇ξL(z∗, ξ ∗)

)

= 0. (6)

One of the most powerful methods for finding a KKT point
(

z∗, ξ ∗
)

of the NLP problem is

an SQP approach [16, 25, 28]. The basic idea of this approach is to replace the original NLP

problem with a quadratic subproblem. The solution of this subproblem is then used in an

iterative method to determine a KKT point satisfying Eq. (6). The quadratic approximation

of the cost function and the linear approximation of the constraints lead to

min
dk

J (dk) ≈ J (zk) + ∇zJ (zk)
Tdk +

1

2
dT

k∇
2
zzJ (zk)dk

s.t. φ(dk) ≈ φ(zk) + ∇zφ(zk)
Tdk,

(7)

where dk = z − zk is the minimizer of the quadratic subproblem. In analogy to Eq. (6), the

KKT conditions regarding the quadratic-linear model result in the linear system

(

∇2
zzL −∇zφ(zk)

∇zφ(zk)
T 0

)(

dk

ξ k

)

=

(

−∇zJ (zk)

−φ(zk)

)

, (8)
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which is called the KKT system. The solution of this system is used to update the optimiza-

tion variables

zk+1 = zk + αkdk (9)

for the (k + 1)th iteration. The method is made more robust by using a step length control

parameter αk . The factor is obtained by minimizing a proper merit function. For a detailed

description and different variants of the basic SQP approach, we refer to [3, 24], which is

quite standard and implemented in various codes in this way. One goal of the present paper

is to derive adjoint gradients providing analytically given gradients for an SQP approach.

Hence the following section is devoted to the derivation of analytically computed adjoint

gradients of the Jacobians in Eq. (8). This approach is especially efficient in the case of a

high number of optimization variables. Moreover, the indirect approach is used for the eval-

uation of the chosen parameterization of the control. The parameterization of the control is

correctly chosen with respect to the problem formulation if the necessary optimality condi-

tions based on indirect methods are sufficiently small; see Fig. 2 for a graphical validation

in the scope of an example.

2.2 Adjoint gradient approach

In this section, we exploit the adjoint gradient approach to evaluate the necessary first-order

conditions regarding the Hamiltonian function in an indirect optimization method. For this

purpose, we briefly summarize the key idea and theory for determining time-optimal con-

trols for dynamic systems regarding final constraints using an indirect method. Generally,

indirect methods are based on optimality conditions and lead to solving the underlying two-

point boundary value problem. Instead of solving the two-point boundary value problem, the

optimization problem can also be addressed by a gradient-based method, e.g., the Kelley–

Bryson method [5, 20]. The key idea is to find a variation of the control to produce the

maximum local decrease of the cost functional. To find a minimum of the cost functional,

we can simply walk a short distance along the negative gradient of the cost functional. We

pursue this method to fulfill the necessary optimality conditions derived by the calculus of

variations following the basic ideas in [3, 6, 21].

2.2.1 Combined adjoint gradient approach regarding final constraints

The adjoint gradient computation in the presence of final constraints has been presented in

a recent work [10], and here we briefly summarize the main steps. To derive the adjoint

and influence equations, the cost functional in Eq. (2) is extended by the state equations in

Eq. (1) leading to

J̄ =

∫ tf

t0

[

1 + P (x,u) + pT
(

f(x,u) − ẋ
)
]

dt (10)

for any choice of the adjoint variables p ∈ Rn in the cases where the state equations are

satisfied. To compute the variation of the extended cost functional J̄ , we perform infinites-

imal variations of the final time δtf and of the control δu, which also cause a variation of

the states δx due to the state equations. The resulting variation of J̄ leads to a variation δẋ,

which can be eliminated by integration by parts. Finally, the cost functional can be reduced

to

δJ̄ =

∫ tf

t0

(

Pu + pTfu

)

δu dt + (1 + Pf )δtf (11)
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in the case where the adjoint variables fulfill the linear time-variant final value problem

ṗ = −P T

x − fT

xp with p(tf ) = 0, (12)

which is solved backward in time. Note that to compute the adjoint system, the state equa-

tions must first be solved forward in time. The subscripts u and x denote the partial deriva-

tives with respect to u and x, and the subscript f indicates the evaluation of quantities at

time t = tf .

The optimization problem in Eqs. (1)–(3) does not only consist of minimizing the cost

functional, but in addition, the final constraints must be fulfilled. The variations of the cost

functional and final constraints will lead to a combined gradient-based approach for updating

the final time and controls. As a first step, the final constraints are extended with the state

equations, leading to

φ̄ =

∫ tf

t0

RT
(

f(x,u) − ẋ
)

dt + φ(x(tf ), tf ). (13)

Proceeding exactly the same way as above, the variation for the extended final constraints is

defined by

δφ̄ =

∫ tf

t0

RTfuδu dt + φ̇f δtf , (14)

where φ̇f denotes the total time derivative of Eq. (3) evaluated at time t = tf . The influence

adjoint variables R ∈Rn×q have to fulfill the matrix differential equation

Ṙ = −fT

xR with R(tf ) = φT

x(x(tf ), tf ), (15)

in which one set of n ordinary differential equations for each component of the final con-

straints φ(x(tf ), tf ) = 0 is solved backward in time.

A linear combination of the scalar δJ̄ and vector δφ̄ needs the introduction of vector

multipliers ν ∈ Rq resulting in

δJ̄ + νTδφ̄ =

∫ tf

t0

[

Pu +
(

pT + νTRT

)

fu

]

︸ ︷︷ ︸

:=−δuT

δu dt +
(

1 + Pf + νTφ̇f

)

︸ ︷︷ ︸

:=−δtf

δtf , (16)

where ν is a vector of multipliers to combine both sets of adjoint variables and is computed

in such a way that the variations in the control and final time lead to a better approximation

of the final constraints. The largest possible decrease of the combined variation is obtained

if the variations δu and δtf are chosen in the appropriate descent directions in Eq. (16) for

the optimal updates unew = u + δu and tf,new = tf + δtf . These updates always reduce the

cost functional and final constraints within one iteration.

Moreover, the Hamiltonian for the time-optimal control problem in Eqs. (1)–(3) was

formulated by

H(x(t),u(t),λ(t)) := 1 + P (x(t),u(t)) + λ(t)Tf(x(t),u(t)), (17)

in which λ(t) = p(t) + R(t)ν exploits the decoupling of boundary conditions of the state

and adjoint equations by introducing a set of adjoint variables p and the so-called influence
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adjoint variables R for q final constraints. The decoupling within the multiplier λ enables

sequential integration of a new set of canonical equations forward and backward in time,

depending on a putative optimal control history. The solution of the canonical (adjoint and

influence) equations for p and R can be combined to determine the Hamiltonian in Eq. (17).

A more elaborate derivation can be found in [10], supplemented with examples and conver-

gence analysis.

2.2.2 Parameterization of control

The following adjoint gradient approach allows the consideration of final constraints and

enables the use of various control parameterizations. Hence the infinite-dimensional optimal

control problem is reduced to a finite-dimensional problem to reduce the complexity of the

optimization task. As proposed for instance in [10], the variation δu can be defined as an

explicit function in time by

δu := −P T

u − fT

u

(

p + Rν
)

, (18)

and only depends on the time discretization of the forward and backward solution. It has to

be emphasized that this update δu is not yet dependent on the type of parameterization. To

meet the restrictions of industrial applications, feasible control parameterizations have to be

specified. However, the control function u(t) can be parameterized by grid nodes ū (see the

Appendix for a cubic spline parameterization of the control) in the form

u(t) = C(t) ū, (19)

leading to the variation of the control

δu(t) = C(t) δū. (20)

It has to be emphasized that any parameterization according to Eq. (19) can be used for the

proposed gradient approach. Following the theory introduced in Section 2.2.1, the variation

in Eq. (20) is inserted into Eq. (16). Since the variation δū does not depend on time, we can

rewrite the combined variation in the following form:

δJ + νTδφ̄ =

∫ tf

t0

[(

Pu + λTfu

)

C
]

dt

︸ ︷︷ ︸

:=−δūT

δū +
(

1 + Pf + νTφ̇f

)

︸ ︷︷ ︸

:=−δtf

δtf . (21)

Similarly to the previous section, the variations of the grid nodes δū and final time δtf are

defined by

δū = −κ

∫ tf

t0

CT

(

P T

u + fT

uλ
)

dt, (22)

δtf = −κα
(

1 + Pf + φ̇
T

f ν
)

, (23)

so that the combined variation leads to the largest possible decrease. The scalar κ is a suf-

ficiently small step size, and the factor α can be used as a scaling factor if the magnitudes

of the two latter variations differ dramatically. The choice of the vector of multipliers ν is
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based on the reduction of the final constraints in every iteration with the updates δū and δtf ,

i.e.,

δφ̄ := −ε φf , (24)

choosing an appropriate update parameter ε > 0, as shown in detail in [10]. This approach

finally results in

ν = A−1
(

ε φf − b
)

, (25)

where we use the abbreviations

A := κ

∫ tf

t0

RTfuC dt

∫ tf

t0

CTfT

uR dt + καφ̇f φ̇
T

f , (26)

b := κ

∫ tf

t0

RTfuC dt

∫ tf

t0

CT

(

P T

u + fT

up
)

dt + καφ̇f (1 + Pf ). (27)

This combined gradient approach enables the use of various parameterizations of the control,

shown, e.g., in [10] for a bang-bang control. This paper investigates the combined gradient

approach to evaluate necessary optimality conditions regarding the Hamiltonian function.

In case of using a direct optimization method, the corresponding analytically adjoint gra-

dients can be used instead of numerically computed gradients because of the computational

burden. To derive these adjoint gradients, the discrete control parameterization from Eq. (20)

is inserted into the variation of the cost functional in Eq. (11) and into the variation of the

final constraints in Eq. (14). Hence the analytically adjoint gradients are given by

∇ū J T =

∫ tf

t0

(

Pu + pTfu

)

C dt, (28)

∇ū φT =

∫ tf

t0

RTfuC dt, (29)

and can be used instead of the numerical gradients in Eq. (8) in a direct optimization method.

Note that the analytical gradients of J and φ with respect to tf cannot be simply given in a

proper form and are therefore computed numerically in this case. It has to be emphasized that

the size of the adjoint system does not increase with a larger number of grid nodes, which

is not the case in the direct differentiation method or a numerical differentiation method. If

(forward or backward) numerical differentiation is used, then the equations of motion have

to be solved (1 + z) times to evaluate the numerical gradients, where z is the number of

optimization variables. Hence, the number of forward simulations grows linearly with the

number of optimization variables.

Note that the variables κ , α, and ε are introduced here in accordance to the prework paper

[10] but are not relevant in the discussion of the present paper, and therefore the variables

are set to κ = α = ε = 1. In this paper, the gradients in Eq. (28) and (29) are provided to a

direct optimization method without using any user-defined scaling factors. Furthermore, the

presented approach provides a new view of adjoint gradients in terms of the evaluation of

optimality criteria using the Hamiltonian function.
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3 Interpretation of the adjoint variables for optimality conditions

The decoupling of the gradients in Section 2.2 can lead to a new perspective on the adjoint

variables in the evaluation and interpretation of Pontryagin’s principle. Bryson and Ho [6]

derive the necessary optimality conditions using the calculus of variations. The minimization

of the Hamiltonian must be addressed for restricted optimal controls problems according to

Pontryagin’s minimal principle [21]. In this paper, we state the Hamiltonian as

H(x,u,λ) := 1 + P (x,u) + λTf(x,u), (30)

in which the multiplier λ is computed by a linear combination of the adjoint variables

λ = p + Rν. (31)

Using the introduced Hamiltonian, we can formulate the necessary optimality conditions for

time-optimal control problems. The derived variation in Eq. (22) can be rewritten in terms

of the Hamiltonian as

δū = −

∫ tf

t0

HT

ū dt, (32)

where the partial derivative of the Hamiltonian with respect to the grid nodes ū is given by

∂H
∂ū

=
∂H
∂u

∂u

∂ū
=

(

Pu + λTfu

)

C. (33)

In a similar manner, the variation in Eq. (23) can be reformulated as

δtf = −
(

H+ φT

t ν
)∣
∣
∣
t=tf

, (34)

where the total time derivative of the final constraints is given by

φ̇f =

(
∂φ

∂x

∂x

∂t
+

∂φ

∂t

)∣
∣
∣
∣
t=tf

=
(

RTf + φt

)∣
∣
∣
t=tf

. (35)

Note that the partial derivative of the constraints with respect to the states is expressed

in terms of the influence adjoint variables given in the final condition in Eq. (15). In this

paper, we use the adjoint gradients within the optimality conditions for other optimization

methods relating to a Hamiltonian function. An optimal control parameterized by u = C ū

must satisfy the necessary optimality conditions

ẋ∗ = HT

λ(x
∗,u∗,λ∗), t ∈ [t0, tf ], (36)

λ̇
∗
= −HT

x(x
∗,u∗,λ∗), t ∈ [t0, tf ], (37)

0 =

∫ tf

t0

HT

ū dt, t ∈ [t0, tf ], (38)

0 = H(x∗,u∗,λ∗) + φT

t ν
∗, t = tf , (39)
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fulfilling the boundary conditions

x(t0) = x0, (40)

x(tf ) = xf , (41)

λ(tf ) = λf . (42)

However, since the defined Hamiltonian is an autonomous system, d
dt
H (x∗,u∗,λ∗) = 0

only if an infinite number of grid nodes is used. In addition to the optimality conditions

in Eq. (36)–(39), the optimal control history u∗ can be evaluated in the particular case where

the control appears linearly in the underlying state equation by introducing the switching

function [27]

h∗
i (t) = f∗

ui

T
λ∗, i = 1, . . . , m. (43)

Following Pontryagin’s principle, three cases can be observed to express the optimal control

u∗
i (t) :=

⎧

⎨

⎩

ui,max for h∗
i < 0,

ui,min for h∗
i > 0,

unspecified for h∗
i = 0,

(44)

where an infinite number of grid nodes ûi is assumed, and the dynamic behavior of the con-

trol is of the bang-bang type. Hence Eq. (43) and (44) can be used in a postprocessing step

to relate the optimal control u∗
i generated by a direct method with the switching functions hi

to evaluate the solution in terms of an indirect method. If an infinite number of grid nodes is

used, then the roots of the switching function exactly match the switching times of the con-

trol. Note that the optimization results of the direct approach may yield to so-called singular

intervals, where the switching function is zero for a finite time interval, and Pontryagin’s

principle does not provide any information on the optimal control. However, gradient-based

optimization methods are appropriate to identify the control history of singular intervals [9].

3.1 Procedure for the use of the adjoint gradients

1. Select an initial final time tf and initial grid nodes ū. In time-optimal control problems, it

is numerically advantageous to use a normalized time domain τ = t/tf ∈ [0, 1]. Deriva-

tives with respect to the original time coordinate are given by d(·)/dt = 1/tf (·)′, where

the variable (·) is a function of the normalized time domain τ .

2. Solve the state equations related to initial conditions

x′ = tf f(x,u) with x(0) = x0 (45)

using an ODE solver.

3. Compute the adjoint variables p(τ ) by solving the linear time-variant final value problem

backward in time

p′ = −tf

(

P T

x + fT

xp
)

with p(1) = 0. (46)

4. Compute the adjoint variables R(τ ) using the matrix differential equation

R′ = −tf fT

xR with R(1) = φT

x(x(1),1). (47)
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5. Compute the adjoint gradients of the cost functional and the final constraints

∇ū J T = tf

∫ 1

0

(

Pu + pTfu

)

C dτ, ∇ū φT = tf

∫ 1

0

RTfuC dτ. (48)

6. Use these analytical gradients for solving the constrained optimization problem by a

direct method, e.g., as shown in Section 2.1 by an SQP approach. Repeat steps (2)–(5)

until the KKT conditions are satisfied and hence until an optimal solution z∗T

=
(

t∗f , ū∗T
)

is found.

7. The states x∗ according to the optimal control grid nodes ū∗ have to be computed for

evaluation of the Hamiltonian in Eq. (30). Moreover, the corresponding λ∗ is obtained

based on Eq. (31).

8. Finally, the optimality conditions in Eqs. (36)–(39) can be evaluated in terms of the

Hamiltonian function.

4 Numerical examples

To show the use of the adjoint gradient approach in a direct optimization method and to

evaluate the optimality conditions in a typical time-optimal control problem, we present two

examples of a Selective Compliance Assembly Robot Arm (SCARA) in a rest-to-rest mo-

tion. The serial robot consists of two bodies connected with revolute joints and an additional

mass is attached to the tool center point (TCP). Firstly, we only consider structural compo-

nents that are modeled as rigid bodies. Secondly, the rigid bodies are replaced with flexible

components. For both examples, the goal is to identify controls u∗
1 and u∗

2 (m = 2) with a

continuity requirement up to C2 such that the TCP moves from a prescribed initial state to a

final state in minimal time. Minimizing the cost functional

min
z

J = tf

∫ 1

0

[

1 + P (u1, u2)
]

dτ (49)

s.t. φ(x) = 0 (50)

leads to the shortest operation period t∗f with respect to physical bounds of the controls,

i.e., −ui,max ≤ ui ≤ ui,max. The physical bounds are considered with penalty approach

P (u1, u2) := µ1P1 + µ2P2, where the penalty function is given by

Pi(ui) :=

{

0 for |ui | < ui,max,
1
2
(|ui | − ui,max)

2 otherwise.
(51)

To ensure a continuity requirement up to C2 of the control u and to transform the original in-

finite optimization problem to a finite dimensional one, the interpolation scheme in Eq. (81)

in the Appendix is used to parameterize the control. Hence the vector of optimization vari-

ables z consists of the final time tf and discrete grid nodes ûi , i.e., zT =
(

tf , ûT

1, ûT

2

)

. The

NLP problem is formulated as direct single shooting and solved by a standard SQP method

implemented in the MATLAB function fmincon, in which the gradients of the Lagrange

function in Eq. (28) and (29) are computed with the proposed adjoint method. In addition,

the Hessian of the Lagrange function is computed by a BFGS method.
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Fig. 1 Planar two-arm robot with

rigid bodies in a general

configuration

4.1 Rigid SCARA

4.1.1 Task description and optimization problem

In the following example, the robot depicted in Fig. 1 is considered in the time-optimal con-

trol problem. All structural components are modeled as rigid bodies. The robot is described

with a minimal set of generalized coordinates ϕ1 and ϕ2. The system dynamics are obtained

with a coupled first-order differential equation by introducing the state variables

x =
(

ϕ1, ϕ2, ω1, ω2

)T

, (52)

where ϕ̇i = ωi . This model has been studied by several authors for time-optimal control

problems, e.g., in [10]. The mass of the first body and the mass of the TCP is given by

m1 = m3 = 1 kg, the mass of the second body is m2 = 0.5 kg, and the length of both links

is l1 = l2 = 1 m. The moment of inertia of both bodies around their centers of gravity is

defined as Ji = mi l
2
i /12.

The cost functional of the optimization problem is given in Eq. (49), and the final con-

straints read

φ(ϕ1, ϕ2,ω1,ω2) :=

⎛

⎜
⎜
⎜
⎝

l1 cos(ϕ1) + l2 cos(ϕ2) − xf

l1 sin(ϕ1) + l2 sin(ϕ2) − yf

ω1

ω2

⎞

⎟
⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣
∣

t=tf

, (53)

where xf = 1 m and yf = 1 m denote the desired final configuration of the TCP in

the workspace W . Physical limitations of the controls are considered with the upper

bounds u1,max = 4 Nm and u2,max = 2 Nm. Moreover, the weights for the penalty ap-

proach are chosen as µ1 = µ2 = 10. The initial conditions of the states are defined by

x0 = (−π/4, 0, 0, 0)T. The control ui is discretized with k = 50 grid nodes and uniform

intervals in the normalized time domain τ , i.e., the number of optimization variables is

z = 101. As an initial guess, the final time is taken as tf = 3 s, and the grid nodes are set to

zero, ū = 0.
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Fig. 2 Initial controls, optimal controls, and switching functions for a time-optimal rest-to-rest motion of the

rigid SCARA model

Table 1 Comparison of two different approaches to provide gradients in the SQP routine for converged

solutions

Number of grid nodes k Type of gradient computation Number of function evaluations

5
forward finite differences 579

adjoint gradient method 107

50
forward finite difference 38584

adjoint gradient method 811

4.1.2 Results

Figure 2 shows the time-optimal control history for both controls in the normalized time

domain, where the optimized final time is given by t∗f = 1.8294 s. The results are in accor-

dance with the defined final constraints in Eq. (53), and the controls converge to bang-bang

solutions with respect to the control parameterization. Note that the switching function hi

in Eq. (43) is derived from an indirect method and evaluated in terms of the optimal SQP

solution. However, the resulting switching function agrees well with the defined control in

Eq. (44), and the Hamiltonian of the system is sufficiently small. The optimization result is

robust with respect to initial guesses, which implies that the proposed approach converges

even if the initial guess is far away from the optimal solution.

Table 1 compares the number of function evaluations when numerical or adjoint gra-

dients are used in the direct optimization method for converged solutions z∗. In the table,

the controls are discretized with k = 5 and k = 50 grid nodes each. We can see that the

number of function evaluations in the case of numerical gradients is in general higher when

compared to the case where analytical gradients are used. This becomes even more obvious

when the number of optimization variables is increased. In addition, the computational cost

is reduced for a large number of grid nodes by using adjoint gradients, since the adjoint

system does not depend on the number of optimization variables. Note that the number of it-

erations does not depend on the way the gradients are computed, i.e., both gradients point in

the same direction. To be more precise, the number of function evaluations counts the num-

ber of evaluations of the cost functional and the number of evaluations of the constraints.
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In the case of using finite differences, note that for each evaluation of the constraints, the

state equations must be solved. Hence we observe (in general) a high computational effort.

In comparison, the function evaluations for analytically derived adjoint gradients are much

fewer. Here, although the calculation of the gradient is complicated, the state equations have

to solved only once, and just one system of ordinary differential equations (the adjoint sys-

tem) needs to be solved, which is independent of the number of grid nodes k. The numbers

in the table are of course problem-dependent and also dependent on the solver settings, thus

also on the number of iterations.

4.2 Flexible SCARA

Modern robot design includes innovative lightweight techniques to reduce mass and energy

consumptions in production lines. Therefore optimal control problems have to be defined

for flexible multibody systems, in which the flexible components have to be able to de-

scribe large deformations during motion. Multibody systems with flexible components are

often underactuated systems, and the optimal control problem becomes more complicated

in comparison to fully actuated systems [32].

In this paper, we use the ANCF in the second example examining the effects due to elas-

ticity of the SCARA. The ANCF has been developed particularly for solving large defor-

mation problems in multibody dynamics [34]. Contrary to classical nonlinear finite element

approaches used in the literature, the ANCF does not use rotational degrees of freedom and

therefore does not necessarily suffer from singularities emerging from angular parameteriza-

tions. The most essential advantage of the ANCF is the fact that the mass matrix is constant

with respect to the generalized coordinates. The following example is intended to show the

applicability of the proposed method for solving time-optimal control problems of highly

flexible multibody systems. Therefore we use a standard ANCF element, which is available

and has been tested extensively in the literature; see, e.g., [1].

4.2.1 Equations of motion

Based on the proposed ANCF formulation of Berzeri and Shabana [1], a two-node element

is described in the global coordinate system with the generalized coordinates

qT =
(

r(1)T

, r(1)
χ

T

, r(2)T

, r(2)
χ

T
)

, (54)

where r(i) denotes the nodal position vector, and r(i)
χ represents the nodal slope vector of the

ith node. Figure 3 shows the used ANCF element in a deformed configuration including the

generalized coordinates.

An arbitrary point on the undeformed configuration is expressed as χ ∈ [0, l], where l is

the original length of the beam. The position vector of the beam model is defined as

r = Sq, (55)

where the shape function matrix S maps the generalized coordinates into the global position

vector in the reference frame of the workspace W .

The governing equations of a single beam element require the mass matrix and general-

ized forces. The mass matrix of an element is defined by using the kinetic energy

T =
1

2
m

∫ 1

0

ṙTṙ dξ =
1

2
q̇Tm

∫ 1

0

STS dξ q̇ =
1

2
q̇TMq̇ (56)
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Fig. 3 ANCF element in a

deformed configuration

and the normalized beam length in the undeformed configuration ξ = χ/l ∈ [0, 1]. Note

that the ANCF mass matrix is constant, which leads to numerical advantages. Additionally,

the elastic forces vector Qk , external applied torques Qu, and damping forces Qd have to be

defined. The elastic forces vector is defined as

Qk =

(
∂U

∂q

)T

, (57)

where the strain energy due to longitudinal and bending deformations

U =
1

2
l

∫ 1

0

E Aε2 dξ +
1

2
l

∫ 1

0

E Iκ2 dξ (58)

is used. Here E represents the Young modulus, A is the cross-sectional area, and I is the

second moment of area. The curvature κ is defined with the Serret–Frenet formulas [13]

κ =
|r′ × r′′|

|r′|3
, (59)

and the longitudinal strain ε is formulated with the nonlinear Green–Lagrange strain mea-

sure

ε =
1

2

(

r′Tr′ − 1
)

, (60)

where

r′ =
dr

dχ
=

dr

dξ

dξ

dχ
=

1

l

dS

dξ
q. (61)

In addition to elastic forces, the principal of virtual work due to a torque Mi acting on the

angle of rotation of the cross-section θ

δWi = Miδθ = Mi

∂θ

∂q
δq = Q�

i δq, (62)
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leads to the generalized force Qi . Hence generalized forces associated with control u and

damping fd = −dθ̇ in the revolute joint are given by

Qu = u

(
∂θ

∂q

)�

, (63)

Qd = fd

(
∂θ

∂q

)�

, (64)

where d is the viscous damping coefficient. Finally, the equations of motion for a single

beam element can be obtained as

Mq̈ + Qk = Qu + Qd . (65)

Introducing the generalized velocities v = q̇ as additional variables transforms the second-

order differential equation for q into a first-order system

(

I 0

0 M

)(

q̇

v̇

)

=

(

v

Qu + Qd − Qk

)

. (66)

Instead of using the augmented formulation of Eq. (65) to obtain the equations of motion for

N connected elements, it is possible to define an independent set of generalized coordinates

to obtain the equations of motion for a constrained multibody system in the form of Eq. (66).

Remark that the system Jacobians are calculated with a symbolic toolbox, simplified and

factorized to reduce the complex expressions for efficient use. Note that in the two-arm

SCARA example, the revolute joint between the first arm and the ground and the revolute

joint between the two arms reduce the number of generalized coordinates. The following set

of parameters is used in the optimization procedure: the mass of beams m1 = m2 = 2 kg,

the beam length in undeformed configuration l1 = l2 = 1 m, the viscous damping coefficient

d1 = d2 = 0.1 Nm/rad, the axial stiffness E1 A1 = E2 A2 = 300 N, and the bending stiffness

E1 I1 = E2 I2 = 3 Nm2. Moreover, an additional mass attached to the TCP m3 = 0.5 kg

is considered, which has to be taken into account in Eq. (56) for the kinetic energy of the

second beam.

4.2.2 Optimization problem

Similarly to the example in Section 4.1, the cost functional is given in Eq. (49), and the final

constraints for the TCP read

φ(x) :=

(

r(2) − xf

ṙ(2)

)∣
∣
∣
∣
t=tf

, (67)

where xf =
(

xf , yf

)T

with xf = 1 m and yf = 1 m denotes the desired final configuration

of the TCP in the workspace W . The state variables of the remaining nodes are not specified

and therefore free. Physical limitations of the controls are considered with the upper bounds

u1,max = u2,max = 1 Nm. The weights for the penalty approach are chosen as µ1 = µ2 = 50.

The initial state of the flexible SCARA is defined in the undeformed configuration as in

the rigid example with ϕ1 = −π/4 rad and ϕ2 = 0 rad. In this example, the control ui is

discretized with k = 10 grid nodes and uniform intervals in the normalized time domain τ ,

i.e., the number of optimization variables is z = 21. As an initial guess, the assumption for

the final time is tf = 5 s, and the grid nodes are set to zero, ū = 0.
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Fig. 4 Initial and optimal controls for a time-optimal rest-to-rest motion of a flexible SCARA model

Fig. 5 Time-optimal control of a

flexible two-arm robot for a

rest-to-rest maneuver

4.2.3 Results

Figure 4 shows the time-optimal control history for both controls in the normalized time

domain τ , where the optimized final time is given by t∗f = 3.7289 s. The results are in

accordance with the defined final constraints in Eq. (67), and the optimality conditions in

Eqs. (36)–(39) are sufficiently small. Snapshots of the time-optimal motion are illustrated

in Fig. 5, where the nodal slope vector r(i)
χ is scaled for improved representation of the

structural flexibility.

5 Conclusion and outlook

In this paper, we presented a gradient-based technique to show a new perspective on the opti-

mality conditions in time-optimal control problems of dynamical systems considering final
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constraints. Conventional solutions based on a nonlinear programming approach/SQP ap-

proach utilize the adjoint variables to assess the optimality conditions regarding the Hamil-

tonian function. The use of adjoint gradients for a discrete control parameterization is pre-

sented in two examples. The gradients are used to replace numerical gradients in a direct

optimization method and to evaluate the optimality conditions in terms of a Hamiltonian.

The present work illustrates the computational advantage especially by application of the

adjoint gradients for discrete control parameterizations in time-optimal control problems of

flexible multibody systems including a high number of degrees of freedom. Moreover, the

comparison of function evaluations of numerical and adjoint gradients can provide a fu-

ture perspective for significantly reducing the computational burden when applied to highly

dimensional complex multibody system applications.

In a future work, the proposed approach can be extended to formulate the multibody sys-

tem by a set of redundant coordinates similarly to [23]. Considering differential-algebraic

equations requires consistent boundary conditions for the adjoint variables. A similar ap-

proach as proposed by Gear, Gupta, and Leimkuhler [11] can be used to overcome this

issue.

Appendix: Formulation of cubic spline parameterization

The original infinite-dimensional optimization problem in Eqs. (1)–(3) has to be transformed

into a finite-dimensional one to carry out a direct optimization method. This procedure is

usually denoted as a direct transcription method [3]. In general, the literature provides var-

ious formulations that can be pursued to perform such a transformation. All methods result

in a vector z to describe the control history. One common method is to carry out a time

discretization of the control and an interpolation between the resulting subintervals; e.g.,

Steiner and Reichl [36] used a linear dependency between the subintervals to minimize a

cost functional. A higher-order interpolation scheme is obtained using cubic splines, e.g.,

in [33]. In the present work, we use a cubic interpolation scheme of the control history u(t):

u(t) := si(t) = ûi + bi(t − ti) + ci(t − ti)
2 + di(t − ti)

3 (68)

for t ∈ [ti, ti+1] with i = 0, 1, . . . , s − 1,

where si is the ith cubic spline segment for t ∈ [ti, ti+1], and s ∈ N represents the number of

piecewise defined spline functions. A given grid node is expressed with ûi , and {bi, ci, di}

are constant spline parameters associated with the ith segment si . To determine a spline with

C2 continuity, we require that

si(ti+1) = ûi+1

ṡi(ti+1) = ṡi+1(ti+1)

s̈i(ti+1) = s̈i+1(ti+1)

with i = 0, 1, . . . , s − 1,

with i = 0, 1, . . . , s − 2,

with i = 0, 1, . . . , s − 2.

(69)

This set of equations leads to a linear system with hi := ti+1 − ti :

ûi + bihi + cih
2
i + dih

3
i = ûi+1

bi + 2cihi + 3dih
2
i = bi+1

2ci + 6dihi = 2ci+1

with i = 0, 1, . . . , s − 1,

with i = 0, 1, . . . , s − 2,

with i = 0, 1, . . . , s − 2,

(70)
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for the unknown spline parameters collected in

pb,c,d =
(

b0, . . . , bs−1, c0, . . . , cs−1, d0, . . . , ds−1

)T

∈R3s . (71)

Since the number of linear equations x = 3s − 2 in Eq. (70) is lower than the number of un-

knowns y = 3s, the linear system is underdetermined. The first and second time derivatives

of the splines s0(t0) and ss−1(ts) are still undefined and can be used to determine a unique

solution of the spline parameters pb,c,d. One option is to prescribe the velocity of the first

and last spline segment s0(t0) = ss−1(ts) = 0:

b0 = 0, (72)

bs−1 = −2cs−1hs−1 − 3ds−1h
2
s−1. (73)

Now the number of linear equations is equal to the number of unknowns, and Eqs. (70)–(73)

can be written in the compact form

Kû + Apb,c,d = 0, (74)

where the vector û =
(

û0, û1, . . . , ûs

)T

∈Rk collects all grid nodes with k = s + 1. The co-

efficient matrices K ∈ R3s×k and A ∈ R3s×3s can be simply determined with the underlying

Eqs. (70)–(73). However, it is also possible to transform the control history in Eq. (68) into

u(t) = τ̄ Ppb,c,d + δ̄û, (75)

where we use the abbreviations

τ̄ =
(

t − ti, (t − ti)
2, (t − ti)

3
)

∈R3, P =

⎛

⎝

δ 0 0

0 δ 0

0 0 δ

⎞

⎠ ∈R3×3s, (76)

and

δ̄ = (δ, 0) ∈Rk. (77)

The Boolean vector δ ∈ Rs picks a certain quantity corresponding to the time interval t ∈

[ti, ti+1], and the components are defined by

δi :=

{

1 for t ∈ [ti, ti+1] with i = 0, 1, . . . , s − 1,

0 otherwise,
(78)

using the Kronecker delta, e.g., δ = (0, 1, 0, 0) for s = 4 spline segments in the second

time interval. In this sense, the Boolean matrix P maps all 3s spline parameters into those

active in the ith time interval t ∈ [ti, ti+1]. Now using Eq. (74), the control history can be

expressed as a simple vector multiplication

u(t) = c û ∈ R (79)

with the time-dependent vector

c(t) := −τ̄PA−1K + δ̄ ∈Rk. (80)
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Fig. 6 Effect of updating grid nodes ûi and ûi+1 on the continuous control function u(t)

Note that all the information of all spline segments is given in c. Instead of using a single

control u, generalizations of Eq. (79) for m controls are readily given by

u(t) = C ū ∈Rm, (81)

where ūT =
(

ûT

1, . . . , ûT

m

)

∈ Rm·k collects all grid nodes k of the m control inputs, and the

sparse block diagonal matrix C reads

C(t) :=

⎛

⎜
⎜
⎜
⎝

c 0 · · · 0

0 c · · · 0
...

...
. . .

...

0 0 · · · c

⎞

⎟
⎟
⎟
⎠

∈Rm×m·k. (82)

The interpolation scheme in Eq. (81) is used in Section 2.2.2 to describe a continuous control

history. The variation of grid nodes leads to

δu(t) = C δū, (83)

i.e., an update of the grid nodes δū in the optimization procedure leads to an update of the

control function u(t), shown in Fig. 6 for a single control. It must be emphasized that all

m controls have to be discretized with the same number of grid nodes k and time intervals

[ti, ti+1]. The discrete control parameterization can be applied for optimal control problems

in direct optimization methods, but also in the same manner in indirect optimization meth-

ods.
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Abstract. This paper discusses time-optimal control problems and
describes a workflow for the use of analytically computed adjoint gra-
dients considering a discrete control parameterization. The adjoint gra-
dients are used here to support a direct optimization method, such as
Sequential Quadratic Programming (SQP), by providing analytically
computed gradients and avoiding the elaborate numerical differentiation.
In addition, the adjoint variables can be used to evaluate the necessary
first-order optimality conditions regarding the Hamiltonian function and
gives an opportunity to discuss the sensitivity of a solution with respect
to the refinement of the discretization of the control. To further empha-
size the advantages of adjoint gradients, there is also a discussion of
the structure of analytical gradients computed by a direct differentiation
method, and the difference in the dimensions compared to the adjoint
approach is addressed. An example of trajectory planning for a robot
shows application scenarios for the adjoint variables in a cubic spline
parameterized control.

1 Introduction

Optimal control theory is based on the calculus of variations and deals with
finding optimal trajectories for nonlinear dynamical systems, e.g. spacecrafts or
multibody systems like robots. The works by Kelley [4] and Bryson and Ho [1]
have to be mentioned as groundbreaking in the field of optimal control theory
and serve as basis for extensive subsequent research, also in the field of time-
optimal control.
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As a special class of time-optimal control problems considering final con-
straints, one can cite the control of a robot arm designed in such a way that the
operation time for a rest-to-rest maneuver becomes minimal. Following an indi-
rect optimization approach, such problems can be transformed into a two-point
boundary value problem, which can usually be solved by shooting or full colloca-
tion methods. Alternatively, a direct optimization approach can be pursued, in
which the boundary value problem is posed as a nonlinear programming prob-
lem method, see e.g. [12] for the time-optimal trajectory planning considering
the continuity required to respect technological limits of real robots.

An alternative to the mentioned methods is offered by indirect gradient meth-
ods, which are considered to be particularly robust with respect to initial con-
trols. The work by Bryson and Ho [1] shows how the gradient can be computed
straightforward using adjoint variables. With this gradient information optimal
control problems can be solved iteratively by the use of nonlinear optimization
routines, as described in the sense of optimal control or parameter identifica-
tion in multibody systems e.g. in [8]. The work by Eichmeir et al. [2] extends
the theory for time-optimal control problems to dynamic systems under final
constraints. Such problems arise e.g. in space vehicle dynamics during minimum
time moon ascending/descending maneuvers or in robotics in the case that the
time for a rest-to-rest maneuver should become a minimum. Such problems can
be considered as two-point boundary value problems, with the major drawback
of requiring an initial guess close to the optimal solution. Otherwise, the opti-
mal control problem could be solved via the adjoint method which is an effi-
cient way to compute the direction of the steepest descent of a cost functional.
However, when using such indirect methods to solve optimal control problems, a
major drawback appears in the computation of the Hamiltonian and the required
derivatives: they may be complex and furthermore need to be recomputed often
during the simulation. Moreover, depending on the variables or parameters to
be identified in the optimal control strategy, it is difficult to assign a physical
meaning to the adjoint variables.

This paper focuses on solving time-optimal control problems with a classical
direct optimization method and then evaluating the respective optimality con-
ditions based on an indirect optimization approach. The adjoint variables can
be investigated to efficiently compute the gradients of the cost functional and
the constraints. Moreover, the adjoint variables can be investigated to exploit
the optimality conditions regarding the Hamiltonian function. To demonstrate
the use of analytically computed adjoint gradients, the time-optimal trajectory
planning of a Selective Compliance Assembly Robot Arm (SCARA) is solved
by an SQP method and the optimality conditions regarding the Hamiltonian
function are evaluated by the adjoints. The application shows the easy access
to the adjoint gradients and discusses the latter mentioned role of the adjoint
variables in the optimality conditions.
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2 Use of Adjoint Variables in Direct Optimization
Approaches

The aim of this paper is to determine a control u(t) = u∗ and a final time tf = t∗f
of a dynamical system

ẋ(t) = f(x(t),u(t)) with x(0) = x0, (1)

such that the scalar performance measure

J(x(t),u(t), tf ) =
∫ tf

t0

[
1 + P (x(t),u(t))

]
dt (2)

becomes a minimum with respect to a final constraint

φ(x(tf ), tf ) = 0 ∈ R
q. (3)

Inequality constraints on the state x ∈ R
n and the control u ∈ R

m are consid-
ered by the scalar penalty function P . To be specific, violations of inequality
constraints within the time interval t ∈ [t0, tf ] are taken into account as an
additional term in the cost functional in Eq. (2). The above optimal control
problem can generally be solved by a direct or indirect optimization approach.
In this paper, the original infinite dimensional optimization problem is trans-
formed into a finite dimensional one by parameterizing the control with a finite
set of optimization variables z ∈ R

z including the final time and the control
parameterization. Thus, the resulting nonlinear programming (NLP) problem
can be solved with classical direct optimization approaches such as the SQP
method [9].

How to Interpret the Results from a Direct Optimization Algorithm
An optimal point z = z∗ fulfills the well-known Karush-Kuhn-Tucker (KKT)
conditions [3,5], but these conditions do not provide any information about the
quality of the control parameterization with respect to the infinite dimensional
optimization problem. The basic idea to interpret an optimal point z∗ is to
relate the direct optimization approach to Pontryagin’s minimum principle [11].
The optimality conditions based on an indirect optimization approach [2] can
be used for this idea. Figure 1 illustrates a rough flowchart for the interpretation
of results obtained by a direct optimization approach. This approach requires
the Hamiltonian of the system to evaluate Pontryagin’s minimum principle. The
Hamiltonian for time-optimal control problems related to the cost functional in
Eq. (2) can be formulated as

H(x(t),u(t),λ(t)) := 1 + P (x(t),u(t)) + λ(t)Tf(x(t),u(t)), (4)

in which the multiplier λ(t) = p(t)+R(t)ν is computed by a linear combination
of the adjoint variables p ∈ R

n and R ∈ R
n×q. The vector ν ∈ R

q is a multiplier
to combine both adjoint variables. A deep insight into the combination of both
adjoint variables is presented in [2]. The Hamiltonian in Eq. (4) is used in Sect. 4
to interpret the results of a time-optimal control problem obtained by a direct
optimization approach as depicted in Fig. 1.
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Fig. 1. Flowchart to interpret the results from a direct optimization algorithm with
Pontryagin’s minimum principle

3 Computation of First-Order Derivatives

Classical gradient-based optimization algorithms rely on the derivatives of the
cost functional and the constraints with respect to the optimization variables z.
The computation of these gradients takes a key role in such optimization algo-
rithms and the convergence of the optimization depends on the accuracy of the
gradients. In addition to accuracy, efficient computation of gradients is especially
important for large numbers of optimization variables. Thus, the computational
effort to solve the optimization problem depends significantly on the efficient
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computation of gradients. Figure 2 summarizes the most common approaches for
the computation of first-order gradients. The finite differences method is the eas-
iest approach to code, but suffers in terms of computational effort especially for
a large number of optimization variables. In case of using (forward or backward)
finite differences, the state equations have to be solved (1 + z) times in order to
evaluate the numerical gradients with respect to z optimization variables. Thus,
the number of forward simulations grows linearly with the number of optimiza-
tion variables. In contrast to this numerical approach, the direct differentiation
and the adjoint method are referred as analytical approaches to compute gradi-
ents. Both approaches lead to exact gradient information and using them in an
optimization scheme leads to an increase in efficiency. The characteristics of the
analytical approaches are discussed in the following sections.

3.1 Direct Differentiation Approach for Discrete Control
Parameterization

The direct differentiation approach is based on the sensitivity of the state
equations and is briefly discussed in this section. In this paper, the control is
described by u(t) = Cū, in which the vector ūT =

(
ûT
1 , . . . , ûT

m

) ∈ R
m·k col-

lects k grid nodes of the m equidistant time-discretized controls and the matrix
C(t) ∈ R

m×m·k maps the grid nodes to a time dependent function. The interpo-
lation matrix C has to be determined once a priori and depends on the chosen
interpolation order [6].

By using this control parameterization, the gradient of the cost functional is
directly obtained by differentiating it with respect to the grid nodes as

∇ū JT =
∫ tf

t0

[∂P

∂x
∂x
∂ū

+
∂P

∂u
∂u
∂ū

]
dt (5)

=
∫ tf

t0

[
Pxxū + PuC

]
dt, (6)

Fig. 2. Overview of approaches to compute first-order derivatives
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in which the partial derivative of the parameterized control with respect to the
grid nodes

∂u
∂ū

= C (7)

has been utilized. Partial derivatives of an arbitrary function f with respect
to x are denoted with subscripts, i.e. fx. Similar to the gradient of the cost
functional, the gradient of the final constraints in Eq. (3) can be calculated by
direct differentiation as

∇ū φT = φxxū. (8)

The resulting gradients in Eq. (6) and Eq. (8) involve the system sensitivity xū ∈
R

n×m·k which is obtained by differentiating the state equations with respect to
the grid nodes as

ẋū = fxxū + fuuū (9)
= fxxū + fuC. (10)

Initial conditions of the system sensitivity are defined as

xū(0) = 0, (11)

since the initial conditions of the state equations do not depend on the grid
nodes, i.e. x(0) = x0. The system Jacobian fx ∈ R

n×n and fu ∈ R
n×m have

to be calculated a priori, e.g., by analytical differentiation, in order to solve
the matrix differential system in Eq. (10). Remark that the differential system
depends on the number of grid nodes. Thus, the computational effort increases
with the number of grid nodes.

3.2 Adjoint Gradient Approach for Discrete Control
Parameterization

A large number of grid nodes leads to a large solution space and, therefore, the
gradient computation leads to a high computational effort resulting from finite
differences or direct differentiation. An efficient alternative to compute gradients
analytically is the adjoint variable method which is based on the calculus of
variations. Following the basic idea presented in the seventies by Bryson and
Ho [1], an adjoint gradient approach for discrete control parameterizations is
utilized. Lichtenecker et al. [6] derived the adjoint gradients for time-optimal
control problems defined in Eqs. (1)–(3) for spline control parameterizations in
the following form:

∇ū JT =
∫ tf

t0

(
pTfu + Pu

)
Cdt, (12)

∇ū φT =
∫ tf

t0

RTfuCdt, (13)
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in which the adjoint variables fulfill the (adjoint) system of differential equations

ṗ = −PT
x − fTx p with p(tf ) = 0, (14)

Ṙ = −fTx R with R(tf ) = φT
x(x(tf ), tf ). (15)

Due to the final conditions, they have to be solved backward in time to compute
the adjoint gradients. Moreover, it has to be emphasized that the size of the
adjoint system does not grow with the number of grid nodes which is not the
case for direct differentiation, see Sect. 3.3. The adjoint gradients in Eqs. (12)
and (13) prove to be preferable regarding computational effort and accuracy in
gradient based optimization strategies. For further details on adjoint gradients,
the reader is referred to [2,6].

How to Compute the Adjoint Gradients
The adjoint gradients in Eqs. (12) and (13) can be used for direct and indirect
optimization algorithms. Both approaches are iterative methods and, therefore,
the gradients have to be recomputed in each iteration. In this paper, we use a
direct optimization method in order to compute the optimal control. Similar as
shown in [10], Fig. 3 illustrates the application of adjoint gradients provided to
a direct optimization method and is summarized with the following steps:

1. Select a direct optimization method which is able to use user-defined gradi-
ents, e.g. a classical SQP method or an Interior Point (IP) method.

2. The optimization algorithm proposes values zi for the optimization variables
associated to the current i-th iteration. Starting from this view, the gradients
have to be computed for the (i + 1)-th iteration.

3. Solve the state equations related to the actual optimization variables and
initial conditions using an ODE solver.

4. The cost functional and the final constraints can be evaluated.
5. Compute the adjoint variables p and R backward in time using Eqs. (14) and

(15).
6. Finally, the adjoint gradients of the cost functional and the final constraints

are computed by a time integration and provided to the optimization algo-
rithm for the next iteration.

7. Steps (2) through (6) are repeated until the KKT conditions are fulfilled with
respect to the optimal solution z∗.

3.3 Discussion on Duality of Gradients

McNamara et al. [7] pointed out that the adjoint approach can be interpreted
as a special case of linear duality and that the core of this method is based on
a substitution of variables. This can be seen by considering the first term of the
gradients of the cost functional in Eqs. (6) and (13), i.e.,∫ tf

t0

Pxxū dt with ẋū = fxxū + fuC and xū(0) = 0, (a)

∫ tf

t0

pTfuCdt with ṗ = −PT
x − fTx p and p(tf ) = 0. (b)
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Fig. 3. Procedure for the use of adjoint gradients in direct optimization approaches

Both terms require the solution of a linear differential system, but it has to
be emphasized that the size of the systems is different. The size of the system
sensitivity depends on the number of states n, the number of controls m and
on the number of grid nodes k, while the size of the adjoint system depends
only on n. To compute the gradients, one can solve either the primal system (a)
with dimension (n×m · k) or the dual system (b) with dimension (n× 1). Thus,
the adjoint approach is an efficient technique to incorporate especially a large
number of grid nodes. A graphical interpretation of the dimensions occurring in
the gradients of the cost functional is shown in Fig. 4, with a special focus on
increasing the number of grid nodes.

4 Numerical Example

4.1 Task Description and Optimization Problem

The analytically derived adjoint gradients in [6] are used for a direct optimization
method in a time-optimal control problem of a SCARA with two rigid bodies.
The goal is to manipulate the tool center point (TCP) of the robot depicted
in Fig. 5 from an initial state to a final state in minimal operation time t∗f
with a discrete control parameterization. To meet industrial requirements, the
control is forced to be C2 continuous. Hence, the matrix C is chosen such that the
interpolation of each discretized control subinterval is performed by a cubic spline
function. The state equations are obtained by introducing the state variables

x = (ϕ1, ϕ2, ω1, ω2)T, (16)
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Fig. 4. Graphical interpretation of the dimensions occurring in the gradient of the cost
functional with respect to the direct differentiation approach in Eq. (6) and the adjoint
approach in Eq. (13)

in which ϕ̇i = ωi. The model parameters for the simulation are set as follows:
m1 = m3 = 1kg, m2 = 0.5 kg, li = 1m and Ji = mil

2
i /12, in which i ∈ {1, 2}.

The mass m3 is considered as a point mass attached to the TCP.
The cost functional of the optimization problem is given in Eq. (2), in which

the penalty term P (u) = 10(P1(u1) + P2(u2)) is used with

Pi(ui) :=
{

0 for |ui| < ui,max,
1
2 (|ui| − ui,max)2 otherwise. (17)

The final constraints of the system are defined as

φ(ϕ1, ϕ2, ω1, ω2) :=

⎛
⎜⎜⎝

l1 cos(ϕ1) + l2 cos(ϕ2) − xf

l1 sin(ϕ1) + l2 sin(ϕ2) − yf
ω1

ω2

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
t=tf

, (18)

in which xf = 1m and yf = 1m denote the desired final configuration of the
TCP. Physical bounds of the controls are given by u1,max = 4Nm and u2,max =
2Nm.

The NLP contains the optimization variables zT = (tf , ūT) and is solved
with an SQP method. As an initial guess, the assumption for the final time is
tf = 2 s and the grid nodes are set to ū = 0. Initial conditions of the state
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Fig. 5. SCARA with two rigid bodies in a general configuration

variables are set to x0 = (−π/4, 0, 0, 0)T. In order to analyze the sensitivity of
the solution to the refinement of the discretization of the control, both controls
are equidistantly discretized in the time interval t ∈ [0, tf ] with a set of grid
nodes with various number k ∈ {5, 10, 20, 30, 40, 50}.

4.2 Results

Figure 6 shows the optimal control history u∗
k and the resulting trajectory of the

TCP with respect to the defined number of grid nodes k. One can observe that
the control becomes a bang-bang type control by increasing the number of grid
nodes. It can also be seen that the TCP trajectory with k = 5 grid nodes is
noticeably different compared to controls in which the number of grid nodes is
higher. This is due to the fact that in this case the optimal control cannot be
represent a bang-bang structure. Theoretically, an infinite number of grid nodes
will lead to the shortest possible final time. The final times for the six inde-
pendent optimizations are (k = 5, t∗f = 1.9439 s), (10, 1.8633 s), (20, 1.8391 s),
(30, 1.8325 s), (40, 1.8303 s) and (50, 1.8294 s).

The optimal control with k = 50 grid nodes and the corresponding switching
functions, as defined in [2] for bang-bang controls, are shown in Fig. 7. The zero
values of the control agree well with those of the switching functions hi and the
Hamiltonian of the system is sufficiently small. Thus, the termination criteria
shown in Fig. 1 is satisfied and a bang-bang control can be approximated with
a sufficient number of grid nodes.
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Fig. 6. Optimal control history and TCP trajectory for various number of grid nodes
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Fig. 7. Initial controls, optimal controls and switching functions considering a cubic
spline parameterization of the control

5 Conclusions

This paper presents a procedure for using adjoint variables in a direct opti-
mization approach. The adjoint variables are examined in the context of two
scenarios: The adjoint variables are used to compute the gradients during the
optimization. In addition, the adjoint variables are used to evaluate Pontryagin’s
minimum principle in order to discuss the optimization results obtained by an
SQP method. A time-optimal control problem of a SCARA shows the versatile
application of adjoint variables. Moreover, the computational effort for the com-
putation of gradients can be reduced by considering adjoint gradients, especially
when the number of grid nodes is large or the mechanical system is difficult to
solve forward in time.
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Abstract

The optimization of multibody systems requires accurate and efficient methods for sensitiv-
ity analysis. The adjoint method is probably the most efficient way to analyze sensitivities,
especially for optimization problems with numerous optimization variables. This paper dis-
cusses sensitivity analysis for dynamic systems in gradient-based optimization problems.
A discrete adjoint gradient approach is presented to compute sensitivities of equality and
inequality constraints in dynamic simulations. The constraints are combined with the dy-
namic system equations, and the sensitivities are computed straightforwardly by solving
discrete adjoint algebraic equations. The computation of these discrete adjoint gradients can
be easily adapted to deal with different time integrators. This paper demonstrates discrete
adjoint gradients for two different time-integration schemes and highlights efficiency and
easy applicability. The proposed approach is particularly suitable for problems involving
large-scale models or high-dimensional optimization spaces, where the computational effort
of computing gradients by finite differences can be enormous. Three examples are investi-
gated to validate the proposed discrete adjoint gradient approach. The sensitivity analysis
of an academic example discusses the role of discrete adjoint variables. The energy optimal
control problem of a nonlinear spring pendulum is analyzed to discuss the efficiency of the
proposed approach. In addition, a flexible multibody system is investigated in a combined
optimal control and design optimization problem. The combined optimization provides the
best possible mechanical structure regarding an optimal control problem within one opti-
mization.
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1 Introduction

The direct differentiation and the adjoint variable approach represent two principal analyt-
ical methods employed for sensitivity analysis in the context of optimization. The direct
differentiation method [13] facilitates implementation via straightforward differentiation of
system equations, constraints, and cost functions with respect to optimization variables. De-
spite this, the direct differentiation yields a tremendous computational effort for large-scale
optimization problems. Alternatively, the adjoint variable method [13] determines design
sensitivities as the solution of adjoint variable equations deduced from variations of the sys-
tem equations. This avoids the necessity for direct computation of state sensitivities and can
dramatically reduce the computational effort required for large-scale optimization problems
when adjoint variable equations and algorithms are properly formulated.

The computation of gradients in optimization problems includes the adjoint method with
a long history in optimal control theory [24]. Adjoint gradients, e.g., applied for trajectory
planning, have already been presented in 1975 by Bryson and Ho [4]. The adjoint gradi-
ents have become more and more important in various optimization problems in engineer-
ing, e.g., in design optimization [32] or multibody dynamics [7, 10], since the applications
have become larger in dimension. Therefore, an efficient calculation of gradients has be-
come essential. Sensitivity analysis has wide-ranging applications in science and engineer-
ing, including optimization, parameter identification, data assimilation, optimal control, un-
certainty analysis, and experimental design. Current trends in neural networks benefit from
solvers capable of building efficient gradient computation for training machine-learning em-
bedded cost functionals in high dimensions [36]. Johnston and Patel stated in [17] that ad-
joint methods are used both in control theory and machine learning to efficiently compute
gradients of functionals. Recent publications discuss the adjoint method in multibody dy-
namics for various applications, e.g., in a feedback–feedforward control to compute the
input control signal and corresponding trajectory predicted by a model [27]. In the work by
Schneider and Betsch [38], the choice of a mechanical Hamiltonian and the incorporation of
constraints is discussed, and a new approach that preserves the variational structure of the
problem is introduced. Moreover, an adjoint sensitivity analysis using a QR decomposition
in [16] shows how the adjoint variable method can be applied to multibody systems whose
system equations are initially set up in differential–algebraic form but solved in minimal
coordinates.

For optimization in complex, large-scale optimization problems, a discrete version of the
adjoint method with neat features in terms of stability and accuracy has been proposed re-
cently by various authors [3, 6, 21]. In the discrete adjoint method, the adjoint differential
equations are replaced by algebraic equations by introducing a finite-difference scheme for
the adjoint system directly from the numerical time-integration method. The method pro-
vides exact gradients of the discretized cost function subjected to the discretized equations
of motion. The equations of motion of the multibody system and adjoint equations may ei-
ther be separately discretized from their representations as differential–algebraic equations,
or the equations of motion of the multibody system may be discretized first, and the discrete
adjoint equations are then derived directly from the discrete multibody equations, tracing
back to [4]. It has been emphasized, e.g., by Callejo et al. [6], that the adjoint method is
one of the most efficient methods to evaluate sensitivities for problems involving numer-
ous design parameters and relatively few objective functions. The latter paper has presented
a discrete version of the adjoint method, which can be applied to the dynamic simulation
of flexible multibody systems not only by using an ad hoc backward integration solver but
leads to a straightforward algebraic procedure that provides the desired design sensitivi-
ties of rigid and flexible multibody systems. Moreover, in [3], the discrete adjoint method
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is discussed in different time-marching schemes, including backward difference formulas,
Newmark and Adams–Bashforth–Moulton methods. In [25], a discrete adjoint sensitivity
analysis considering a Newmark family integrator is presented. In Lauß et al. [21], the dis-
crete adjoint equations for the computation of gradients of a cost function are derived using
the Hilbert–Hughes–Taylor (HHT) solver to solve the system equations. The great advan-
tage of this approach is that the cost function can also depend on the accelerations, thus
allowing the use of measured data from acceleration sensors in the optimization procedure
in a straightforward manner.

Flexible multibody formulations must be included in optimization problems when the
cost function includes elasticity or deformation of mechanical systems. When dealing with
flexible multibody systems with large deformations or large rotations, the absolute nodal
coordinate formulation (ANCF) [40] is advantageous because the formulation does not use
rotational degrees of freedom. Using these ANCF elements for flexible bodies, a gradient-
based adjoint optimization approach has been presented by Held and Seifried [15]. There,
a criterion accounts for the deformation energy of the flexible body. A recent work [44]
presents an optimization approach that exploits the adjoint variable method in combina-
tion with the flexible natural coordinates formulation for obtaining the sensitivity informa-
tion. A comprehensive literature review in [12] presents various gradient-based optimization
methods, especially in the design optimization of flexible multibody systems. The latter-
mentioned review paper discusses the main goals in the design optimization of flexible
multibody dynamics and reviews concepts and applications in this field. Over 160 pub-
lications in the bibliography give a comprehensive overview of optimization algorithms,
types and formulations, and sensitivity analysis. Optimal control and design optimization
are discussed in various publications, but there is a gap in the literature on optimization
or sensitivity analysis that combines optimal control and design optimization of multibody
systems.

This paper significantly enhances optimal control and design optimization problems for
flexible multibody systems. Promising results in a preliminary paper by Lichtenecker et al.
[22] have shown an efficient optimal control strategy for highly flexible robotic systems
based on the adjoint gradient computation method. Furthermore, flexible multibody sys-
tems, e.g., soft robots, allow new potential for performing various tasks. Soft robots have not
yet fully demonstrated their capabilities, as nature is still clearly superior to them in some
areas, particularly evolutionary improved motion and control. Future research should ad-
dress critical challenges and focus on understanding the fundamental principles that govern
the design, modeling, and control of soft robots, as stated in Hawkes et al. [14] and Della
Santina et al. [9]. Improving the performance of mechanical systems, like soft robots, re-
quires sophisticated optimization strategies to fulfill the high demands of current and future
product requirements. In general, two problem formulations can be considered to describe
various optimization applications: structural optimization of mechanical components and/or
finding an optimal control for dynamical systems [43]. The focus of this paper is on the
combination of both problems. A combined gradient computation for highly efficient opti-
mal control while optimizing the structural components of a mechanical system within the
same computation is presented.

To this end, a discrete adjoint gradient computation considering equality and inequal-
ity constraints is developed, which will be able to incorporate, e.g., final conditions and/or
stress restrictions in design optimizations. With this novel approach, a sensitivity analysis
of constraints with respect to optimization variables using discrete adjoints is possible, and
a combined optimal control and optimal design of a mechanical system is realized. Three
examples will show the application of the proposed discrete adjoint gradient approach: (1)
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an academic example of a one-mass oscillator in a sensitivity analysis, (2) an energy opti-
mal control problem of a nonlinear spring pendulum, and (3) a combined optimal control
and optimal sizing problem of a flexible two-arm robot using the ANCF for describing large
deformations.

2 Problem description

The increasing industrial relevance of high-end solutions that fulfill a wide range of require-
ments demands the consideration of novel approaches at an early stage of virtual product
development. For instance, finding an optimal control of a flexible multibody system un-
der consideration of final constraints is essential to perform a manipulation according to
predefined tasks [22]. In addition, innovative lightweight design requires novel approaches
in the field of structural optimization [28]. The performance of mechanical systems, either
in optimal control problems and/or structural optimization problems, can be increased by
optimization.

An optimization problem aims to find a set of optimization variables z = z∗ ∈ Rz to
minimize a defined cost function J with respect to constraints. A standard nonlinear pro-
gramming (NLP) problem can be formulated by

min
z

J (z) (1)

s.t.

zmin ≤ z ≤ zmax (2)

ĝ = 0 (3)

ĥ ≤ 0, (4)

wherein (2) imposes lower and upper bounds of optimization variables. Equality and in-
equality constraints are denoted by ĝ ∈ Rp and ĥ ∈ Rq , respectively. To address an optimal
control problem with the above NLP formulation, it is necessary to transform the original
infinite-dimensional optimization problem into a finite-dimensional one by using a direct
transcription method. In general, transcription methods are categorized into shooting meth-
ods and collocation methods. A widely used method is the direct single-shooting method,
where only the control is parameterized. The reader is referred to [2] for a detailed de-
scription of transcription methods. The NLP problem can be treated by well-known algo-
rithms, e.g., the sequential quadratic programming (SQP) approach or the interior point
(IP) method [33]. An optimal point z∗ fulfills the Karush–Kuhn–Tucker (KKT) condi-
tions [18, 19], which are necessary first-order optimality conditions for direct optimization
methods.

In this paper, the constraints ĝ = ĝ(x, ξ) and ĥ = ĥ(x, ξ) depend on system parameters
ξ ∈Rl and on state variables x ∈Rn due to a time-dependent control u ∈Rm of a mechanical
system. Thus, evaluating the (in)equality constraints requires the evolution of the system
response. The dynamics of mechanical systems can be described with ordinary differential
equations (ODE)

ẋ = f(x,u, ξ), x(0) = x0. (5)
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Fig. 1 Time domain and index scale: (a) is the time domain for time integration, (b) is the i-index scale for
time integration, and (c) is the j -index scale for the evaluation of constraints

For the numerical computation of the state variables, the ODE can be formulated by a tem-
poral discretization as

xi+1 = f̃(xi,xi+1,ui,ui+1, ξ), i ∈ {0, . . . ,N − 1}, (6)

with the given initial state x0. The evolution of the state variables x1, . . . , xN is influenced
by the time integrator used, the control variables u0, . . . , uN , and the set of parameters ξ .
The discrete ODE (6) represents a general form for an explicit or implicit one-step time
integrator, such as a Runge–Kutta scheme [5]. The time domain t ∈ [t0, tf] is discretized
with N uniform intervals leading to a constant time-integration step size �t ; see Fig. 1(a).
Consequently, the micro (integration) time mesh is defined by ti = �t i, i ∈ {0, . . . , N},
with t0 = 0 and tN = tf = �t N .

This paper considers equality constraints at the final time tf, while inequality constraints
must be satisfied on a macro (inequality) time mesh; see Fig. 1(c) for the according index
scale of the macro time mesh. The macro time mesh t̂j = �T j , j ∈ {0, . . . , M} is defined
by M time intervals between inequality constraints leading to the inequality step size �T =

tf/M . The circumflex ˆ(·) denotes the evaluation of a variable (·) regarding the macro time
mesh. The number of chosen time-integration points e ∈ N divides the inequality step size
�T into the integration step size �t by defining the time-integration step size �t = �T/e.
For the case M = N , one defines inequality constraints at the micro time mesh in each
time integration. Figure 1 illustrates the time domain, including the time-integration steps
and the arrangement of (in)equality constraints. For example, an equality constraint can
be a particular configuration of a mechanical system at the final time tf. In contrast, an
inequality constraint ensures that the acceleration is within a defined limit at the macro time
mesh t̂ .

For the sake of convenience, the constraints ĝ and ĥ are concatenated into a general set
of nonlinear constraints by cT =

(

ĝT, ĥT
)

∈ Rp+q . The equality constraints ĝ = gN represent
an evaluation of p implicit time-dependent functions g = g(x(t), ξ) ∈Rp at the final time tf,
while the inequality constraints ĥ are a concatenation of r functions h = h(x(t), ξ ) ∈ Rr

evaluated at the macro time mesh. The size of the concatenated inequality constraints is
q = r(M +1); see the j -index scale for inequality constraints in Fig. 1. However, inequality
constraints have to be defined in the i-index scale to be in accordance with a time integration
of the ODE at the micro time mesh, i.e., inequality constraints are defined in the i-index scale
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with i = ej . The general set of constraints is formulated in the i-index scale by

c = B1gN +

M
∑

j=0

B2,j hej . (7)

Boolean matrices B map the (in)equality constraints into the combined set of constraints,
i.e.,

cT = (g1,N , . . . , gp,N
︸ ︷︷ ︸

ĝT

, h1,0, . . . , hr,0, . . . , h1,N , . . . , hr,N
︸ ︷︷ ︸

ĥT

), (8)

in which the first subscript denotes the row and the second subscript denotes the correspond-
ing time in the i-index scale of g and h, respectively.

The constraint formulation in (7) allows a straightforward derivation of discrete adjoint
gradients for sensitivity analysis and gradient-based optimizations. In gradient-based op-
timization algorithms, first-order gradients are crucial to compute a local minimum of an
optimization problem. The accuracy of the gradient computation influences the convergence
and robustness of optimization algorithms. In addition, the computational effort to solve an
optimization problem depends on the runtime required to compute gradients. This paper
addresses accurate and efficient first-order sensitivity analysis with particular emphasis on
gradients of the constraint formulation in (7). One approach that meets both requirements is
the adjoint method [26, 29]. This paper employs a discrete version of the adjoint method to
derive first-order gradients of constraints. The proposed discrete adjoint approach replaces
the finite-difference approach, usually the default of optimization toolboxes.

3 Sensitivity analysis

This section proposes a novel discrete adjoint approach to sensitivity analysis with emphasis
on gradients of the constraint formulation in (7). The sensitivities are computed for a dis-
crete set of optimization variables z, i.e., the sensitivity analysis is defined by dc/dz. The
adjoint method is an efficient method to compute gradients since the computational effort
to compute the so-called adjoint variables does not depend on the number of optimization
variables [6, 11, 31]. The discrete adjoint method constructs a finite-difference scheme for
the adjoint variables directly from the time-integration method to solve the governing equa-
tions [21]. In this paper, the computation of the discrete adjoint gradients is formulated for
governing equations in the form of (6). However, the discrete adjoint gradient computa-
tion can be easily adapted to deal with different one-step time integrators, as shown for an
explicit and an implicit Euler method.

3.1 Discrete adjoint method for one-step time integrators

The goal of the adjoint gradient method is to avoid the expensive computation of state sensi-
tivities dx/dz by introducing adjoint variables. Following the fundamental work by Bryson
and Ho [4], the constraint (7) is extended by the discrete state equations (6) leading to

c̄ = B1gN +

M
∑

j=0

B2,j hej +

M−1
∑

j=0

⎡

⎣

e(j+1)−1
∑

i=ej

Ri+1

(

xi+1 − f̃i,i+1

)

⎤

⎦ , (9)
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for any choice of the adjoint variables R1, . . . ,RN ∈R(p+q)×n in the case where the discrete
state equations are satisfied. For the sake of easier reading, the temporal discretized right-
hand side of the ODE is defined by f̃i,i+1 := f̃(xi,xi+1,ui,ui+1, ξ), i ∈ {0, . . . ,N − 1}. The
constraint (9) is extended by introducing a double sum to account for the system dynamics.
The inner sum considers the time intervals between two inequality constraints ]t̂j , t̂j+1[, j ∈

{0, . . . , M −1} and the outer sum considers exactly the time instances t̂j , j ∈ {0, . . . , M} at
which inequality constraints must be satisfied; see scales in Fig. 1. However, the additional
zero terms do not influence the constraints c in the case where the state equations are satisfied
and, therefore, the gradients of c are equal to the gradients of c̄. The following derivation of
discrete adjoint gradients is based on the extended constraints c̄.

Before deriving the gradients of c̄ by a discrete adjoint approach, the boundaries of the
state variables xN and (in)equality constraints gN and hN , respectively, must be extracted
from (9) to derive terminal conditions for the differential equations of the adjoint variables.
Performing an index shift of the inner i-sum in (9) results in an extraction of the boundaries

c̄ =B1gN + B2,MhN +

M−1
∑

j=0

⎡

⎣

e(j+1)−1
∑

i=ej+1

Ri

(

xi − f̃i−1,i

)

+Rej xej − Re(j+1) f̃e(j+1)−1,e(j+1) + B2,j hej

⎤

⎦ − R0x0 + RNxN .

(10)

Note that (9) and (10) are equal despite different formulations. Moreover, note that the sub-
scripts ej and e(j + 1) in (10) are a result of the performed index shift, and the related terms
are evaluated in the j -sum at the macro time mesh; see Fig. 1.

The derivation of discrete adjoint gradients is based on the calculus of variations. The
first-order variation of (10) in terms of δxi , δxi−1, δui , δui−1, and δξ is given by

δc̄ =B1

(
∂gN

∂xN

δxN +
∂gN

∂ξ
δξ

)

+ B2,M

(
∂hN

∂xN

δxN +
∂hN

∂ξ
δξ

)

+

M−1
∑

j=0

⎡

⎣

e(j+1)−1
∑

i=ej+1

Ri

(

δxi −
∂ f̃i−1,i

∂xi−1
δxi−1 −

∂ f̃i−1,i

∂ui−1
δui−1 −

∂ f̃i−1,i

∂xi

δxi

−
∂ f̃i−1,i

∂ui

δui −
∂ f̃i−1,i

∂ξ
δξ

)

+ Rejδxej + B2,j

(
∂hej

∂xej

δxej +
∂hej

∂ξ
δξ

)

−Re(j+1)

(

∂ f̃e(j+1)−1,e(j+1)

∂xe(j+1)−1
δxe(j+1)−1 +

∂ f̃e(j+1)−1,e(j+1)

∂ue(j+1)−1
δue(j+1)−1

+
∂ f̃e(j+1)−1,e(j+1)

∂xe(j+1)

δxe(j+1) +
∂ f̃e(j+1)−1,e(j+1)

∂ue(j+1)

δue(j+1)

+
∂ f̃e(j+1)−1,e(j+1)

∂ξ
δξ

)]

− R0δx0 + RNδxN .

(11)

In this paper, the focus lies on a combined sensitivity analysis with respect to the system
parameters ξ and a discrete set of control grid nodes ū. Following Lichtenecker et al. [22],
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the continuous control function is formulated with u = Cū, where C is a time-dependent in-
terpolation function. The variables of interest in the sensitivity analysis are combined in the
vector zT =

(

ξT, ūT
)

and can be used as optimization variables in gradient-based optimiza-
tion problems. Note that the optimization variables z can consist of system parameters, e.g.,
the stiffness of a spring of a mechanical system and/or a parameterization of the control.

To derive a variation of the constraints with respect to the optimization variables z, the
variations δξ and δu in (11) can be obtained in terms of δz with

δξ =B3δz, (12)

δu =Cδū = CB4δz, (13)

respectively. The Boolean matrices B map the combined set of optimization variables to
system parameters and control grid nodes. Substituting (12) and (13) into (11) and reformu-
lating leads to

δc̄ =

M−1
∑

j=0

⎡

⎣

e(j+1)−1
∑

i=ej+1

[(

Ri − Ri

∂ f̃i−1,i

∂xi

− Ri+1
∂ f̃i,i+1

∂xi

)

δxi

−Ri

(

∂ f̃i−1,i

∂ui−1
Ci−1B4 +

∂ f̃i−1,i

∂ui

CiB4 +
∂ f̃i−1,i

∂ξ
B3

)

δz

]

+

(

Rej + B2,j

∂hej

∂xej

− Rej+1
∂ f̃ej,ej+1

∂xej

)

δxej

−Re(j+1)

(

∂ f̃e(j+1)−1,e(j+1)

∂ue(j+1)−1
Ce(j+1)−1B4 +

∂ f̃e(j+1)−1,e(j+1)

∂ue(j+1)

Ce(j+1)B4

+
∂ f̃e(j+1)−1,e(j+1)

∂ξ
B3

)

δz + B2,j

∂hej

∂ξ
B3δz

⎤

⎦

+

(

B1
∂gN

∂ξ
+ B2,M

∂hN

∂ξ

)

B3δz +

(

B1
∂gN

∂xN

+ B2,M

∂hN

∂xN

+ RN

)

δxN .

(14)

Equation (14) implies the relation between δx and δz. The optimization variables z influence
the state variables x and, therefore, the variation of state variables should be interpreted as
[6, 23]

δx =
dx

dz
δz. (15)

The total derivatives of state variables with respect to optimization variables are obtained by
solving the matrix differential equations

dẋ

dz
=

∂f

∂x

dx

dz
+

∂f

∂u

∂u

∂z
+

∂f

∂ξ

∂ξ

∂z
. (16)

This system is defined by taking the total derivative of (5) with respect to the optimization
variables and, therefore, the dimension of the system depends on the number of optimization
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variables. The solution of the matrix differential equations is obtained by applying a tempo-
ral discretization, where the computational effort to solve (16) can become expensive in the
case of a large number of optimization variables. Using the state sensitivities (16) with (15)
in (14), first-order gradients of the constraint formulation in (7) can be obtained without the
need for the adjoint variables. This approach is called direct differentiation. However, the
goal of the proposed discrete adjoint gradient approach is to avoid the direct computation
of the state sensitivities dx/dz. To this end, the discrete adjoint variables in (14) are defined
such that the brackets multiplied with δx are zero. Hence, the discrete adjoint variables are
obtained by the matrix differential equations

RN = − B1
∂gN

∂xN

− B2,M

∂hN

∂xN

, (17)

Ri = Ri+1
∂ f̃i,i+1

∂xi

+ Ri

∂ f̃i−1,i

∂xi

, ∀i ∈ {ej + 1, . . . , e (j + 1) − 1}, (18)

Rej = − B2,j

∂hej

∂xej

+ Rej+1
∂ f̃ej,ej+1

∂xej

, ∀j ∈ {1, . . . , M − 1}. (19)

Equation (17) imposes the terminal condition of the adjoint variables at the final time tN .
The computation of the adjoint variables is performed in a backward manner starting from
RN and proceeding with the adjoint system (18). It has to be emphasized that (18) is defined
within the macro time mesh ]t̂j , t̂j+1[, j ∈ {0, . . . , M − 1}. The discrete adjoint variables at
the macro time mesh t̂j , j ∈ {1, . . . , M − 1} are determined by the intermediate condition
in (19). The adjoint system and the intermediate condition are applied alternately in the
backward integration to solve the discrete adjoint variables.

Once the discrete adjoint variables are computed by (17)–(19), the terms related to δx

vanish in (14) and, therefore, the variation of the extended constraints simplifies to

δc̄ = {. . .}
︸︷︷︸

dc̄
dz

δz, (20)

where the variation δz is factored out. The simplified variation leads to first-order gradients
of constraints with respect to optimization variables given by

dc̄

dz
=

M−1
∑

j=0

⎡

⎣

e(j+1)−1
∑

i=ej+1

Ri

(

−
∂ f̃i−1,i

∂ui−1
Ci−1B4 −

∂ f̃i−1,i

∂ui

CiB4 −
∂ f̃i−1,i

∂ξ
B3

)

+B2,j

∂hej

∂ξ
B3 − Re(j+1)

(

∂ f̃e(j+1)−1,e(j+1)

∂ue(j+1)−1
Ce(j+1)−1B4

+
∂ f̃e(j+1)−1,e(j+1)

∂ue(j+1)

Ce(j+1)B4 +
∂ f̃e(j+1)−1,e(j+1)

∂ξ
B3

)]

+

(

B1
∂gN

∂ξ
+ B2,M

∂hN

∂ξ

)

B3.

(21)

The discrete adjoint gradient computation for the constraint formulation in (7) is obtained
by (21). Note that the computation of discrete adjoint gradients is based on the solution of
the adjoint system, whose size does not depend on the number of optimization variables.
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The gradient computation using direct differentiation requires the solution of (16), which
depends on the number of optimization variables. Therefore, the adjoint-based sensitivity
analysis is computationally efficient, especially when dealing with optimization problems
with a large number of optimization variables.

Employing the discrete adjoint gradient (21), e.g., within an optimization procedure, re-
quires the specific formulation of the right-hand side vector f̃. The chosen time integrator
to solve the forward dynamics implies the backward integration of the discrete adjoint vari-
ables. Moreover, sensitivities of the forward time integrator are recognized in the compu-
tation of the discrete adjoint variables. To use the proposed discrete gradient approach, the
sensitivities of the chosen forward time integrator need to be defined.

3.2 Application to the explicit Euler method

The explicit Euler method is an iterative solution scheme to approximate the state variables
of the ODE in (5) by

xi+1 = xi + �t f(xi,ui, ξ)
︸ ︷︷ ︸

f̃(xi ,ui ,ξ)

. (22)

Using the above time-integration scheme in the discrete adjoint sensitivity analysis, the ex-
plicit right-hand side vector f̃ has to be defined in the general form f̃i,i+1 := f̃(xi,ui, ξ). The
computation of the discrete adjoint variables requires the derivatives of f̃ with respect to the
state variables x given by

∂ f̃i,i+1

∂xi

= I + �t
∂fi

∂xi

and
∂ f̃i−1,i

∂xi

= 0, (23)

where fi = f(xi,ui, ξ) and I denotes the identity matrix. In addition, the discrete adjoint
gradient computation requires the derivatives of f̃ with respect to u and ξ given by

∂ f̃i−1,i

∂ui

= 0,
∂ f̃i−1,i

∂ui−1
= �t

∂fi−1

∂ui−1
and

∂ f̃i−1,i

∂ξ
= �t

∂fi−1

∂ξ
, (24)

respectively.

3.3 Application to the implicit Euler method

Similar to the explicit Euler method, the implicit Euler method is an iterative solution
scheme to approximate the state variables of the ODE in (5) by

xi+1 = xi + �t f(xi+1,ui+1, ξ)
︸ ︷︷ ︸

f̃(xi ,xi+1,ui+1,ξ)

. (25)

Using the above time-integration scheme in the discrete adjoint sensitivity analysis,
the implicit right-hand side vector f̃ has to be defined in the general form f̃i,i+1 :=

f̃(xi,xi+1,ui+1, ξ). The computation of the discrete adjoint variables requires the deriva-
tives of f̃ with respect to the state variables x given by

∂ f̃i,i+1

∂xi

= I and
∂ f̃i−1,i

∂xi

= �t
∂fi

∂xi

. (26)
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In addition, the discrete adjoint gradient computation requires the derivatives of f̃ with re-
spect to u and ξ given by

∂ f̃i−1,i

∂ui

= �t
∂fi

∂ui

,
∂ f̃i−1,i

∂ui−1
= 0 and

∂ f̃i−1,i

∂ξ
= �t

∂fi

∂ξ
, (27)

respectively.

3.4 Procedure for the use of the discrete adjoint gradients

This section summarizes the sensitivity analysis using the proposed discrete adjoint gradient
approach within an optimization problem. The focus is to compute first-order gradients of
the constraint formulation in (7) with respect to optimization variables, i.e.,

dc

dz

∣
∣
∣
z=z(k)

,

evaluated at the (k)th iteration in a gradient-based optimization. The use of the proposed
discrete adjoint gradient approach can be summarized by the following steps:

1. Set up an optimization problem in the form of (1)–(4) and select an NLP software pack-
age to solve the optimization problem, e.g., IPOPT [45].

2. Compute the derivatives by symbolic differentiation for the discrete adjoint approach:
a) Compute the derivatives of (in)equality constraints g and h with respect to x and ξ ,

respectively, by symbolic differentiation.
b) Select a numerical time-integration solver and compute the derivatives of f with re-

spect to x, u, and ξ by symbolic differentiation. Additionally, define the derivatives
of the solver-specific right-hand side vector f̃, e.g., as shown in Sect. 3.2 and Sect. 3.3
for the explicit and the implicit Euler method, respectively.

3. Compute the first-order gradients of the constraints using the discrete adjoint approach:
a) Compute the state variables x influenced by the set of optimization variables z(k) with

the chosen time-integration scheme.
b) Compute the discrete adjoint variables by solving the matrix differential equa-

tions (17)–(19) backward in time.
c) Compute the sensitivities of the constraint formulation in (7) using the discrete adjoint

gradient approach (21).
4. Provide the cost function, constraints, and the respective first-order gradients via an in-

terface to the chosen NLP software package. The Hessian of the cost function and the
constraints are usually computed internally by the software package.

5. Repeat Steps 3 and 4 until the KKT conditions are satisfied and an optimal solution z∗ is
found.

As aforementioned in the second step, derivatives with respect to x, u, and ξ are computed
by symbolic differentiation. Considering a complicated mechanical system with many state
variables, the governing equations become extensive and difficult to solve. For such systems,
the effort to derive system derivatives by symbolic differentiation is enormous or not feasible
in a reasonable time. The following section discusses the symbolic differentiation when a
mechanical system is formulated with flexible bodies.
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4 Flexible multibody formulation

The governing equations of multibody systems with rigid and flexible bodies are described
by the second-order differential equations

M(q, ξ)q̈ = Q(q, q̇,u, ξ), (28)

where M is the mass matrix, q denotes the generalized coordinates and Q is the generalized
force vector. In this paper, the generalized force vector

Q = Qu + Qd + Qg − Qk (29)

consists of the term associated with the control Qu, the viscous damping for joint friction
Qd, the gravity Qg, and the elasticity Qk. The second-order differential equations are trans-
formed into

ẋ = f =

(

I 0

0 M−1

)

︸ ︷︷ ︸

M−1

(

v

Q

)

, (30)

wherein the state variables are expressed by xT =
(

qT, vT
)

∈ Rn with the generalized ve-
locities q̇ = v. In this paper, effects due to the elasticity of flexible bodies are considered
by a nonlinear finite-element-based formulation using the ANCF as proposed by Omar and
Shabana [34]. This standard ANCF element has been tested extensively in the literature and
employed in structural-optimization problems, e.g., [15, 41]. The ANCF was developed to
solve large-deformation problems in multibody dynamics [40]. Since the ANCF does not
use rotational degrees of freedom, the formulation does not necessarily suffer from singu-
larities arising from angular parameterizations. An essential advantage of the ANCF is that
the mass matrix is constant with respect to the generalized coordinates, i.e., M = M(ξ). For
a detailed description of the flexible multibody formulation, the reader is referred to [34].

Employing the proposed discrete adjoint approach to study constraint sensitivities re-
quires first-order derivatives of the governing equations with respect to the states, the con-
trol, and the set of parameters; see the procedure provided in Sect. 3.4. In this paper, the
system derivatives are computed by using symbolic differentiation for efficient computation
in the sensitivity analysis.

Modeling a mechanical system with a large number of structural elements results in an
extensive system of governing equations. Therefore, the effort to derive the system deriva-
tives by symbolic differentiation is enormous or not feasible in a reasonable time. Instead
of directly computing the derivatives of the governing equations in (30), one can derive the
global system derivatives based on the symbolic differentiation of a single structural ANCF
element. The element-based derivatives are then assembled to compute the global system
derivatives. Therefore, the computation of symbolic differentiations is very efficient and
independent of the number of structural elements. To this end, the global mass matrix is
defined by the local mass matrix of an element with superscript (e)

M =
∑

(e)

T
(e)T

1 M(e)T
(e)

1 , (31)
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where the element specific Boolean transformation matrix T
(e)

1 maps a global variable to its
local representation. Similarly, the global generalized force vector reads

Q =
∑

(e)

T
(e)T

1 Q(e), (32)

and the local state variables are given by

x(e) =

(

q(e)

v(e)

)

=

(

T
(e)

1 0

0 T
(e)

1

)(

q

v

)

= T̃
(e)

1 x. (33)

In addition, the local control and the local set of parameters are defined by

u(e) = T
(e)

2 u and ξ (e) = T
(e)

3 ξ , (34)

respectively, with Boolean transformation matrices. The element-based formulations
in (31)–(34) are used in the proceeding section to derive global first-order derivatives based
on local representations.

4.1 Element-based derivatives for an efficient implementation of the proposed

approach

The computation of the discrete adjoint equations in (17)–(19) and the discrete adjoint gra-
dient in (21) requires the system derivatives with respect to the state variables ∂f/∂x, the
control ∂f/∂u, and the set of parameters ∂f/∂ξ . As aforementioned, an essential advantage
of the ANCF is that the mass matrix does not depend on the generalized coordinates, i.e.,
the derivatives with respect to the state variables vanish. The constant mass matrix leads to
a simplification of the derivatives of the first-order state equations (30) with respect to the
state variables by

∂f

∂x
= M−1

(
0 I
∂Q

∂q

∂Q

∂v

)

. (35)

To derive element-based derivatives, the derivatives of the global generalized force vector
can be formulated with (32) as follows:

∂Q

∂x
=

∑

(e)

T
(e)T

1

∂Q(e)

∂x(e)

∂x(e)

∂x
︸ ︷︷ ︸

T̃
(e)
1

. (36)

The symbolic differentiation of the global generalized force vector Q for all elements sim-
plifies to the symbolic differentiation of the local generalized force vector Q(e) for one el-
ement. The derivatives of the global generalized force vector are assembled by using the
element-specific Boolean transformation matrices T

(e)

1 and T̃
(e)

1 . Thus, the computational ef-
fort for symbolic differentiations is tremendously reduced and independent of the number
of elements.

In addition, the derivatives of the first-order state equations (30) with respect to the con-
trol are given by

∂f

∂u
= M−1

(

0
∂Q

∂u

)

, (37)
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where the derivatives of the generalized force vector with respect to the control are formu-
lated with

∂Q

∂u
=

∑

(e)

T
(e)T

1

∂Q(e)

∂u(e)

∂u(e)

∂u
︸ ︷︷ ︸

T
(e)
2

. (38)

Finally, the derivatives of the first-order state equations (30) with respect to the set of pa-
rameters read

∂f

∂ξ
=

(
0

∂
(

M−1Q
)

∂ξ

)

=

(
0
∂a
∂ξ

)

, (39)

with the generalized accelerations a = M−1Q. The derivatives of the generalized accelera-
tions with respect to the set of parameters are difficult to compute because the mass matrix
and the generalized force vector are functions of the parameters. The element-based formu-
lation of the generalized accelerations is given by

Ma = Q ⇒
∑

(e)

T
(e)T

1 M(e) T
(e)

1 a
︸︷︷︸

a(e)

=
∑

(e)

T
(e)T

1 Q(e). (40)

The matrix–vector product M(e)a(e) is reformulated to avoid the direct derivative of the mass
matrix with respect to the parameters as a sum of vector-scalar products, leading to

∑

(e)

T
(e)T

1

∑

c

M(e)
c a(e)

c =
∑

(e)

T
(e)T

1 Q(e), (41)

where the subscript c denotes the column of the mass matrix and the row of generalized
accelerations, respectively. The derivatives of the element-based formulation with respect to
ξ read

∑

(e)

T
(e)T

1

∑

c

(

∂M(e)
c

∂ξ (e)

∂ξ (e)

∂ξ
︸ ︷︷ ︸

T
(e)
3

a(e)
c + M(e)

c

∂a(e)
c

∂ξ

)

=
∑

(e)

T
(e)T

1

∂Q(e)

∂ξ (e)
T

(e)

3 . (42)

By reformulation of the dyadic product of an element

∑

c

M(e)
c

∂a(e)
c

∂ξ
= M(e) ∂a(e)

∂ξ
= M(e)T

(e)

1

∂a

∂ξ
, (43)

the derivatives of the global acceleration are computed by substituting (43) into (42) and
using (31)

∂a

∂ξ
= M−1

∑

(e)

T
(e)T

1

(

∂Q(e)

∂ξ (e)
T

(e)

3 −
∑

c

∂M(e)
c

∂ξ (e)
T

(e)

3 a(e)
c

)

. (44)

Note that the derivatives are time-dependent functions, but the inverse of the global mass
matrix only needs to be computed once for the numerical evaluation since the mass matrix
is constant for the ANCF.
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The element-based derivatives in (36), (38), and (44) are computed by symbolic differen-
tiation and used to assemble the global derivatives required for the proposed discrete adjoint
gradient computation. In this paper, the formulation of the flexible multibody and all re-
quired symbolic differentiations are written in the computer algebra system toolbox SymPy
[30], which is written in pure Python. In addition, the analytical expressions are compiled
ahead of (simulation) time with Numba [20] to efficiently evaluate the derived terms. Both
packages are available under an open-source license.

5 Numerical examples

This section discusses three examples to demonstrate the use and advantages of the pro-
posed discrete adjoint gradient approach. In the first example, the sensitivity analysis of an
academic one-mass oscillator is analyzed. This example provides a deep insight into the
proposed approach and discusses the role of the discrete adjoint variables. The second ex-
ample studies the energy optimal control problem of a nonlinear spring pendulum to discuss
the efficiency of the proposed approach. The third example analyzes a combined optimal
control and design problem of a Selective Compliance Assembly Robot Arm (SCARA) in
a rest-to-rest motion. The bodies of the robot are modeled with flexible components, where
the ANCF discussed in Sect. 4 is used to examine the effects due to elasticity. Explicit and
implicit integration schemes are applied to demonstrate the versatility of the proposed ap-
proach to different time integrators, with a particular focus on the computation of adjoint
variables. In addition, all examples are used to verify the proposed discrete adjoint gradients
using numerical computed gradients via the finite-difference method.

5.1 Sensitivity analysis of a one-mass oscillator

As a first example, the proposed discrete adjoint gradient approach in Sect. 3 is applied to
the sensitivity analysis of an academic one-mass oscillator to demonstrate the proposed pro-
cedure in Sect. 3.4 and to discuss the role of the discrete adjoint variables. The mechanical
system consists of a mass m, a linear damping parameter d , and a linear spring parameter c.
The mass is driven by a time-dependent control u. The state equations are given by a linear
first-order differential system

ẋ = f(x, u) =

(

v
1
m
(u − dv − cx)

)

, (45)

wherein the state variables are expressed by x = (x, v)T with the position x and velocity
v of the mass. The control variable is formulated as proposed in [22] with u = Cû, where
C is a time-dependent cubic spline interpolation function and û =

(

û0, . . . , ûM

)T

is a set of
control grid nodes. The grid nodes are defined at the uniformly distributed macro time mesh
t̂j , j ∈ {0, . . . , M} within the time interval [t0, tf].

This example examines sensitivities of the inequality constraint h = f − fmax ≤ 0 re-
garding the reaction force f = c x + d v (r = 1 time-dependent function) with respect to
the grid nodes û. Hence, the variables of interest in the sensitivity analysis are defined by
z = û. The reaction force is evaluated at the macro time mesh t̂j , resulting in the concate-
nated vector ĥ = (ĥ0, . . . , ĥM)T. The reaction force depends on the state variables, which
are time integrated under the influence of the control. Therefore, a change in the control grid
nodes leads to a change in the reaction force. A graphical illustration of the dependencies is
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Fig. 2 Influence of changing a control grid node on the reaction force: (a) continuous control function with
grid nodes, (b) reaction force due to the control in (a)

shown in Fig. (2), where the change of the control grid node δû1 leads to a change of δf̂1

and δf̂2.
The sensitivity analysis uses the following set of parameters: the mass m = 1 kg, the

damping coefficient d = 0.5 Ns/m, the stiffness c = 1 N/m, the constant time-integration
step size �t = 0.001 s, and the final time tf = 2 s. In addition, the control u is discretized
by three grid nodes (M = 2 uniform distributed intervals in the time interval [t0, tf]) set to
û = (10, 6, 2)T. The initial conditions of the state variables are defined by x0 = 0, i.e., the
initial reaction force is zero.

5.1.1 Discrete adjoint gradient computation

The sensitivities of dĥ/dz are obtained by using the proposed discrete adjoint gradient
in (21), which includes the discrete adjoint variables R defined in (17)–(19). Referring to
the procedure in Sect. 3.4, the first step of the adjoint gradient computation is the symbolic
differentiation of constraints. In this example, the reaction force is interpreted as an inequal-
ity constraint, and the derivative with respect to the state variables is given by ∂h

∂x
= (c, d).

Derivatives with respect to ξ are not defined since the state equations are not parameter-
ized. The second step of the adjoint gradient computation is the symbolic differentiation of
the state equations. The derivatives with respect to the state variables and the control are
represented by

∂f

∂x
=

(

0 1
− c

m
− d

m

)

:= A and
∂f

∂u
=

(

0
1
m

)

, (46)

respectively. Note that the simple structure of the linear state equations leads to constant sys-
tem derivatives and, therefore, no forward integration is required to evaluate the derivatives.

The computation of the discrete adjoint variables is performed in a backward manner in
which the final value defined in (17) is given in this example by

RN = −

⎛

⎝

0 0
0 0
c d

⎞

⎠ , (47)

where the derivative of the reaction force with respect to state variables is recognized. The
explicit Euler method is used to solve the forward dynamics, and, therefore, the specific sen-
sitivity of the right-hand side f̃ is required, as shown in Sect. 3.2. Substituting (46) and (23)
into (18) leads to the algebraic equations of the discrete adjoint variables. Starting from RN

and proceeding with

Ri = Ri+1 (I + �tA) , (48)
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the discrete adjoint variables are computed in a backward manner. Note that (48) is defined
within the macro time mesh ]t̂j , t̂j+1[, j ∈ {0, . . . , M − 1}. The discrete adjoint variables
at the macro time mesh t̂j , j ∈ {1, . . . , M} are determined by the intermediate condition
in (19) given by

Rej = Rej+1 (I + �tA) − B2,j (c, d) . (49)

After computing the adjoint variables backward in time, the sensitivity of the inequality
constraints ĥ with respect to the grid nodes û can be evaluated by the proposed formulation
in (21).

5.1.2 Interpretation

Figure 3 represents the evolution of each component of the adjoint variables R. The adjoint
variables R ∈ R(p+q)×n consists of six components with p = 0, q = r(M + 1) = 3, and n =

2. It can be observed that the adjoint variables are not necessarily smooth functions due to the
intermediate condition in (49). The intermediate condition computes the adjoint variables in
the same manner as in (48) and initializes the adjoint variables for the time interval ]t̂0, t̂j ]

in addition. The gradient computation of dĥj/dû evaluated at the time t̂j is not influenced
by the system dynamics in the time interval ]t̂j , t̂M ] and, therefore, Rj,• = 0 in this interval
for all • columns of the adjoint variables. To be more precise, the system dynamics of the
gradient computation for ĥj is only taken into account for the time interval ]t̂0, t̂j ], i.e., the

Fig. 3 Time evolution of the discrete adjoint variables
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adjoint variables for the time interval ]t̂j , t̂M ] are zero and do not influence the gradient.
This effect is seen in the second row of the adjoint variables visualized in Fig. 3. Here, the
gradient computation of dĥ1/dû evaluated at the time t̂1 = 1 s is not influenced by the system
dynamics in the time interval ]t̂1, t̂2] and, therefore, the adjoint variables R1,0 and R1,1 are
zero in this time interval. However, the discrete adjoint sensitivities are compared with the
sensitivities computed by the finite-difference method to verify the proposed approach and
its implementation. The sensitivity analysis results obtained by both approaches are in good
agreement.

5.2 Energy optimal control of a nonlinear spring pendulum

The second example is focused on the energy optimal control of a nonlinear spring pendu-
lum, as depicted in Fig. 4, inspired by the example studied in [1]. The aim is to compute
a control to manipulate the mechanical system from an initial to a final state. The example
studied in [1] is adapted with an additional inequality constraint during the maneuver to test
the proposed discrete adjoint gradient approach. The mechanical system consists of three
degrees of freedom q = (rx, ry, rz)

T describing the position vector of a mass m formulated
in the inertial Cartesian coordinate system. The mass is connected to the ground by a spring
c, and the strain is formulated by using a Green–Lagrangian-type strain measure

ε =
1

2l2
0

(

qTq − l2
0

)

, (50)

wherein l0 denotes the strain-free spring length. The mass matrix M of the mechanical sys-
tem is defined by using the kinetic energy

T =
1

2
q̇T mI

︸︷︷︸

M

q̇, (51)

where I is the identity matrix. Forces introduced due to the gravitational acceleration g and
the deformation of the spring are defined by

Qnl =

(
∂V

∂q

)T

. (52)

Fig. 4 Nonlinear spring
pendulum in a general
configuration
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The potential energy of the mechanical system reads

V = mgrz +
1

2
cl2

0ε
2, (53)

where the first term corresponds to gravity and the second to the deformation of the spring.
Note that the force term Qnl is nonlinear due to the nonlinear Green–Lagrange strain mea-
sure in (50). In addition, the mass is driven by a time-dependent control u = (ux, uy, uz)

T

and the corresponding force in the inertial Cartesian coordinate system is defined by the
principle of virtual work as Qu = u. The state equations are given by a nonlinear first-order
differential system

ẋ = f(x,u) =

(

v

M−1 (Qu − Qnl)

)

, (54)

wherein the state variables are expressed by introducing the velocity q̇ = v of the mass
by x = (q, v)T. In this example, the control is formulated as proposed by Lichtenecker et
al. [22] with u = Cū, where C ∈ R3×3k is a time-dependent cubic spline interpolation ma-

trix and ūT =
(

ûT

x, ûT

y, ûT

z

)

∈ R3k is a set of concatenated control grid nodes regarding the

control functions. Each control is discretized with k grid nodes defined at a uniformly dis-
tributed time mesh within the time interval [t0, tf].

According to the example studied in [1], the following set of parameters is used: the
mass m = 1 kg, the stiffness c = 0.6 N/m, the strain-free spring length l0 = 5 m, and the
gravitational acceleration g = 9.81 m/s2. The state variables x are time-integrated using the
explicit Euler scheme on the micro time mesh in the interval [t0, tf], where the final time is
tf = 5 s with a constant time-integration step size �t = 0.001 s. The initial state variables
are defined by x0 = (−2, −5, −5, −3, 0, 0)T.

5.2.1 Optimization problem

The energy optimal control problem of mechanical systems has been studied by various
authors with different formulations of the cost function. In this example, the energy optimal
control problem is formulated by minimizing the signal energy required to manipulate the
mechanical system. The signal energy is defined as the integrated quadratic control in the
time interval [t0, tf]. To address the energy optimal control problem, the concatenated set of
grid nodes is used to define optimization variables, i.e., z = ū ∈R3k .

The energy optimal control problem yields the NLP problem formulated as a direct single
shooting by

min
z

J =
1

2

∫ tf

t0

uTu dt =
1

2
zT

∫ tf

t0

CTC dt

︸ ︷︷ ︸

A

z (55)

s.t.

zmin ≤ z ≤ zmax (56)

qN = qf (57)

q̇N = 0 (58)

l̂/lmax ≤ 1 (59)

xi+1 = f̃(xi,ui), (60)
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where the control in (55) is formulated with u = Cz. The position qN and velocity q̇N are
prescribed at the fixed final time tf. The final position of the mass is defined according
to [1] by qf = (2, −10, −4)T. In addition, the optimization problem concerns normalized
inequality constraints regarding the spring length l =

√

qTq. The inequality constraints are
considered at the uniformly distributed macro time mesh t̂j , j ∈ {0, . . . , M} within the time
interval [t0, tf]. Evaluating the spring length (M + 1) times leads to the concatenated vector
l̂ ∈ RM+1 with M = 500. The defined inequality constraints forces the mass to a position
within a sphere with radius r = lmax centered on the inertial Cartesian coordinate system
with lmax = 12 m. Lower and upper bounds of the optimization variables are taken into
account with −5.5 N ≤ û ≤ 5.5 N. As an initial guess, the optimization variables are set to
z = 0.

For efficient numerical computation, the NLP is solved with IPOPT 3.14.12 [45] (HSL
MA97 to solve linear subproblems). The cost function, constraints, and the respective first-
order gradients are provided to IPOPT via an interface. The first-order gradients of the cost
function (55) can be easily computed by symbolic differentiation

dJ

dz
= zTA, (61)

where the symmetric property of A due to the block diagonal matrix C is utilized. The first-
order gradients of the constraints (57)–(59) are computed following the proposed procedure
in Sect. 3.4, implemented in Python.

5.2.2 Optimization results

Each control is discretized with k = 10 grid nodes leading to z = 30 optimization variables.
Figure 5 shows the time evolution of the state variables obtained for the energy optimal con-
trol. The results are in accordance with the defined equality constraints in (57) and (58) at the
final time. Figure 6 visualizes the obtained energy optimal control history and the inequal-
ity constraint regarding the spring length. It can be observed that the control variables are
within the lower and upper bounds, while the inequality constraint in (59) is active. Similar
to the previous example, the discrete adjoint gradients of the constraints are compared with
the gradients computed by the finite-difference method to verify the proposed approach and
its implementation. The sensitivity analysis results obtained by both approaches are in good
agreement.

To demonstrate the efficiency of the proposed discrete adjoint gradient approach, the
NLP problem is solved by providing gradients of the constraints to IPOPT once using the

Fig. 5 Time evolution of the state variables obtained for the energy optimal control problem
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Fig. 6 Optimal control history for the energy optimal control problem and the resulting spring length

Table 1 Runtime comparison of
two different approaches to
provide first-order gradients of
constraints to IPOPT for
converged solutions

Grid nodes per control Type of gradient computation Runtime

k = 10 forward finite-difference 22.3 s

discrete adjoint method 13.2 s

k = 20 forward finite-difference 37.8 s

discrete adjoint method 14.7 s

finite-difference method and once using the discrete adjoint gradient approach. The runtimes
required for converged solutions are given in Table 1. The comparison is performed with
k = 10 and k = 20 grid nodes for each control. The proposed discrete adjoint approach out-
performs the finite-difference method in terms of runtimes. Employing the discrete adjoint
gradient approach, the change in the runtime required for k = 10 and k = 20 is small. In con-
trast, the runtime required for the finite-difference method depends strongly on the number
of grid nodes. Note that the number of grid nodes k influences the number of optimization
variables z = 3k and, therefore, the runtime for the finite-difference method. The number of
iterations to fulfill the KKT conditions is equal for both approaches, which demonstrates the
correct implementation of the discrete adjoint gradient approach.

5.3 Optimal control and design of a flexible SCARA

The third example focuses on the combined optimal control and structural optimization
problem for flexible multibody systems. The idea of coupling both optimization tasks is
promising to obtain the best possible mechanical structure concerning an optimal control
problem. Engineers usually do not address the combined structural optimization and opti-
mal control problem; the two challenges are typically considered independently. In addition,
multibody systems with flexible components are usually underactuated, and the optimal con-
trol problem becomes more complicated than fully actuated systems [39]. Lichtenecker et
al. studied in [22] the time-optimal control problem of a SCARA with flexible components.
A similar system configuration is used in this example to employ the proposed discrete ad-
joint approach for the sensitivity analysis of a combined optimal control and structural op-
timization problem. Thus, a combined set of discrete adjoint gradients is used to efficiently
and accurately compute first-order gradients to speed up the runtime in a direct optimization
method.
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Fig. 7 SCARA in a general undeformed configuration

Inspired by the example studied in [35], the two-arm robot depicted in Fig. 7 is analyzed
in the combined optimization problem. The SCARA is driven by two controls, u1 and u2,
in which the control variables are formulated by cubic splines similar to the previous exam-
ple. In application to industrial robots, smooth trajectory planning is essential and has been
presented using cubic splines, e.g., in [8, 37].

Each arm is divided into two ANCF elements, and an additional mass is attached to the
tool-center point (TCP). Moreover, a stress marker is attached to each structural element to
determine the equivalent stress σV while the robot performs a task. The material properties
of the structural elements are set to E = 3e9 N/m2 and ρ = 1300 kg/m3 for the Young’s
modulus and the density, respectively. The length of both arms is l1 = l2 = 1 m and the
viscous damping coefficient in the revolute joints is set to d1 = d2 = 0.2 Nm s/rad. The width
of the structural elements is set to w(e) = 0.002 m. In addition, the system is affected by the
gravity field, and an additional mass mE = 1 kg is attached to the TCP. The state variables x

are integrated using the implicit Euler scheme on the micro time mesh in the interval [t0, tf],
where the final time is tf = 2 s with a constant time-integration step size �t = 0.001 s.

5.3.1 Optimization problem

Structural-optimization problems can be treated with so-called weakly and fully coupled
methods [42]. Weakly coupled methods are based on equivalent static loads, while fully
coupled methods incorporate the system dynamics into the optimization process. This ex-
ample focuses on extending fully coupled methods to embed the optimal control of flexible
multibody systems. Considering an optimal control problem and a structural optimization
problem leads to a combined set of optimization variables, including the control param-
eterization and design parameter of the multibody system. In this example, the structural
elements are parameterized by the height h(e), while the width w(e) and the length l(e) are set
to constant values. The set of design parameters regarding the multibody system depicted
in Fig. 7 is defined by ξT =

(

h(1), h(2), h(3), h(4)
)

. The optimal control problem of flexible
multibody systems requires smooth control functions to reduce vibrations. In this example,
a continuity requirement up to C2 of the control is enforced, similar to the previous example
in Sect. 5.2, by a cubic spline interpolation. Both continuous control functions u1 and u2

are discretized with k = 21 grid nodes at a uniformly distributed time mesh within the time
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interval [t0, tf]. The discretization of the control leads to the set of grid nodes ūT =
(

ûT

1, ûT

2

)

.
Concatenating the parameterization of the multibody system and the control leads to the
combined set of optimization variables zT =

(

ξT, ūT
)

.
Minimizing the mass of mechanical systems is a common approach in structural op-

timization to enable innovative lightweight designs. In this paper, the mass minimization
yields the NLP problem formulated as direct single shooting by

min
z

m = ρ
∑

(e)

w(e) h(e) l(e) (62)

s.t.

zmin ≤ z ≤ zmax (63)

rTCP,N = rf (64)

ṙTCP,N = 0 (65)

σ̂ V/σVmax ≤ 1 (66)

xi+1 = f̃(xi,xi+1,ui,ui+1, ξ), (67)

with special attention to position and velocity constraints of the TCP, rTCP,N , and ṙTCP,N ,
respectively, at the fixed final time tf. The final position of the TCP is defined by rf =

(1, 1)T. In addition, the optimization problem concerns normalized inequality constraints
regarding the equivalent stress σV of the four markers attached to the structure. All four
markers are evaluated at the macro time mesh t̂j , j ∈ {0, . . . , M} with M = 100 leading
to the concatenated equivalent stress vector σ̂ V. The upper limit of the equivalent stress is
σVmax = 1.1e7 N/m2. Lower and upper bounds of the optimization variables are taken into
account with 0.002 m ≤ h(e) ≤ 0.02 m and −5 Nm ≤ û ≤ 5 Nm, respectively. Regarding the
initial conditions of the state variables, the robot is defined in the undeformed configuration,
where both arms are hanging vertically downward with generalized velocities equal to zero.

In terms of initializing the NLP problem, a two-stage procedure is utilized with de-
coupling of the optimization variables. The first stage solves an optimal control problem
with a constant height of the structural elements, i.e., the optimization variables z = ū con-
sists of the grid nodes. The aim is to identify a control with a defined set of parameters ξ

that manipulates the robot from the initial configuration so that the TCP satisfies the con-
straints (64) and (65) at the final time. As an initial guess for this first-stage optimization,
the control grid nodes are set to û = 0 Nm and the constant height of the elements is defined
by h(e) = 0.02 m. The preoptimized set of control grid nodes ū∗ and heights of the elements
h(e) are employed as an initial guess to the combined optimization problem.

For efficient numerical computation, the NLP is solved with IPOPT 3.14.12 [45] (HSL
MA97 to solve linear subproblems). The cost function, constraints, and the respective first-
order gradients are provided to IPOPT via an interface. The first-order gradients of the cost
function (62) can be easily computed by symbolic differentiation, while the first-order gradi-
ents of the constraints (64)–(66) are computed following the proposed procedure in Sect. 3.4,
implemented in Python.

5.3.2 Optimization results

Figure 8 shows the obtained control history for both controls. It can be observed that the
control is within the lower and upper bounds, while the stress constraint in (66) is active.
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Fig. 8 Optimal control history of a flexible two-arm robot for a rest-to-rest maneuver

Fig. 9 Time evolution of the position and velocity of the TCP obtained for the optimal control and design
problem

Fig. 10 Final sizing of the flexible two-arm robot

Applying the optimal control to the SCARA leads to the position and velocity of the TCP
as shown in Fig. 9. Note there are no acceleration constraints defined at the final time in this
example. It can be observed that the equality constraints in (64) and (65) are fulfilled at the
final time. Figure 10 visualizes the final sizing of the structural elements. The final sizing
provides a structure in which the height of the structural elements becomes smaller towards
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Fig. 11 Snapshots of the robot’s
motion history

the TCP; thus, the bending stiffness also becomes smaller towards the TCP. The initial mass
of the robot minit = 0.1040 kg is reduced by the final design to m∗ = 0.0450 kg, which
corresponds to a reduction of 56.7% regarding the initial mass. With the final design and
the corresponding control, the SCARA undergoes a large deformation during manipulation.
However, the results are in accordance with the constraints posed in (63)–(67) and provide a
local minimum of the robot’s mass. Snapshots of the robot’s motion are illustrated in Fig. 11.

It has to be mentioned that normalizing inequality constraints is essential since the nu-
merical value of the equality constraints in (64) and (65) are relatively small compared to
those of the inequality constraint in (66). Without normalizing, the optimization would not
converge to a local minimum. Similar to the previous examples, the discrete adjoint gradi-
ents are verified by applying the finite-difference method. The sensitivity analysis results
obtained by both approaches are in good agreement. The proposed discrete adjoint gradient
approach is an efficient technique to incorporate a large number of optimization variables,
and the computational effort is less than using the finite-difference method. A comparison
of the runtimes required to compute first-order gradients of the constraints is performed to
demonstrate the efficiency of the proposed discrete adjoint gradient approach. The gradients
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are computed with the optimal set of optimization variables z∗ ten times in a row. The av-
erage runtime required for the finite-difference method is tFDM = 592.4 s, while the average
runtime required for the discrete adjoint method is tDAM = 52.2 s. The proposed approach
reduces the computational time by 91.2% regarding the finite-difference method. The high
computational time in the finite-difference method is because the number of state equations
to be solved depends on the number of optimization variables. It has to be emphasized that
the computation of gradients is required at each iteration of the NLP solver package, which
encourages the use of the proposed discrete adjoint gradient method to improve computa-
tional efficiency.

6 Conclusion

This paper discusses adjoint-based sensitivity analysis for dynamic systems in gradient-
based optimization problems. Deriving adjoint gradients is mathematically more laborious
than simply computing finite differences for numerical gradients. However, the significant
time advantage when using adjoint gradients for the sensitivity analysis justifies the consid-
erable preprocessing effort. This paper presents a novel discrete adjoint gradient approach
to incorporate (in)equality constraints. Moreover, the paper shows the application of differ-
ent time-integration schemes, highlighting their efficiency and applicability to large-scale
problems. Three numerical examples are investigated to show the application of the pro-
posed discrete adjoint gradient approach. The sensitivity analysis of an academic example
discusses the role of the discrete adjoint variables. The energy optimal control problem of
a nonlinear spring pendulum studies the efficiency of the proposed approach. In addition,
the proposed discrete adjoint gradients are utilized in a coupled optimal control and optimal
design problem in flexible multibody dynamics.
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