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Abstract

Full-waveform inverse problem is a significant research field, embedded with problems
and solutions from different studies. The boost of deep learning and neural network
lead to the occurrence of more and more data-driven solutions, therefore, the study in
this field is more specifically divided.

In this paper, the regularization part of the full-waveform inverse problem is re-
searched by using a generative adversarial network(GAN). From building of the sce-
nario, mimicking the defect problem set, to the training process of the GAN and the
evaluation of the formed regularizer. To conclude, the paper draws the full method-
ology to deal with problem and the possibility of the regularization through a GAN
trained discriminator is validated. The regularizer is evaluated as valid in distinguishing
between real images and counter facts.
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1 Introduction

Inverse problem is a set of ill-conditioned and ill-posed problems, which has been
gaining continuous attentions of scholars from different study fields. Full waveform
inverse problem as a subset of the problem, which researches on reconstruction of the
subsurface properties by seismic data, is also well researched.
Since the fast development of machine learning, deep learning and neural networks,
we gain more capacity of solving inverse problem with data-driven method. And more
and more techniques and details about the machine learning and deep learning has
been raised, and the study field is more and more sophisticated.

This project intends to meet the need of quick structural health monitoring, detecting
and reconstructing the defect properties of built structures, using the pressure field
data. The current work related to the problem has drawback of difficult interpretation,
as most of them are knowledge-based inversions. Also, it would not be possible to
be broadly applied due to the specific characteristics of each cases. In turn, they try
to seek for data-driven solutions, as for the data-driven solutions, once the model is
trained, the interpretation cost would be relatively small and the results can be shown
relatively quick.
In this data-driven, machine learning, model fitting scenario, the regularization of the
training would be a very important part in regard of the performance. As regularizer
would prevent the model from overfitting and also add on reward and punishment
degree to better control the training. And the usual regularizer uses fixed-norm, or
regularizer that pair with the loss function.
However, in the full waveform inversion problem set, the regularization framework is
of great value. It would help improve the reconstruction performance. In the case of
structural health monitoring, it is not possible to see the possible structure of the defect
directly, therefore, we propose a methodology to mimickthe defect, and the gain the
possibility to apply the training scenarios to all different environments according to
the requirements. In this way, it would help the main inverse model to be easily fitting
different scenarios and requirements.

Therefore, this paper tries to build a regularizier that would distinguish between
the real or the optimal structure and the counter facts or unrealistic structures. Such a
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1 Introduction

regularizer has the same property as a discriminator in a GAN model. Therefore, this
paper tries to validate the possibility of building a regularizer using a GAN trained
model.
The paper contributes in the methodology, that using a dataset of mimicking defects to
train the GAN model, to generate the regularizer ability. The building of the dataset is
easily transferrable, making the inverse problem applicable to all kinds of requirements.
The trained out generator would be possible to use as further source of counter facts.
And the regularizer is validated as possible to distinguish the images and some of the
counter facts.
And there is plenty of research space to keep adding on this field. Through a proper
regularizer, that is trained from a GAN model. It is possible to improve the performance
of the inverse solution is a large scale.
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2 Related Work

This research project functions as a sub-project of a defects detection project. The defect
detection project uses ultrasonic detect techniques, aiming at predicting a wave velocity
distribution given a pressure field. In the project, three different ways of solving inverse
problem would be examined for the wave function problem set, including data-driven
deep learning, iterative forward solver or physics-informed network.
The defect detection solution is an inverse problem. The specific ultrasonic detection
techniques categories the problem into the full-waveform inverse problem. As the
project deals with different techniques in this field, the article stands on the regular-
ization for the problem. And it is proposed to use a GAN trained neural network as a
discriminator.
Therefore, from the relevant perspectives, this chapter is divided into the inverse
problem, full waveform inverse problem, deep learning(data-driven solutions), regular-
ization, GAN relevant and the training techniques.

2.1 inverse problem

An inverse problem is a scientific process of calculating the causal factors that produced
a set of observations. Inverse problems are some of the most important mathematical
problems in science and mathematics because they tell us about parameters that we
cannot directly observe. They have wide application in system identification, optics,
radar, acoustics, communication theory, signal processing, medical imaging, computer
vision, geophysics, oceanography, astronomy, remote sensing, natural language pro-
cessing, machine learning, nondestructive testing, slope stability analysis and many
other fields.[Ger70] The inverse problem in ultrasonic transmission tomography system
is encountered in practical implementation, which consists of reconstructing an image
that is an estimation of an unknown object from a finite set of projection data[Ara+18].
Reconstructive algorithms used in transmission tomography are based on linear math-
ematical models, which makes it necessary to process non-linear data into estimates
for a finite number of projections.(Rymarczyk, T. et al, 2021) The application of trans-
formation methods requires building a mathematical model in which the projection
data forming the known and unknown quantities are functions with arguments from
a continuous set of real numbers, determining the function describing the unknown
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quantities sought in the form of inverse relation and adapting it to operate on discrete
and noisy data.(S. Goudarzi et al, 2022)

Seismic exploration is often used to map the structure of subsurface formations
based on the propagation of seismic wave on the Earth.[Ois+] It can estimate the
physical properties of the Earth’s subsurface mainly from reflected or refracted seismic
wave. Since seismic exploration is capable of detecting target features from a large to
small scale, it plays an important role in the delineation of near-surface geology for
engineering purposes, hydrocarbon exploration, as well as the Earth’s crustal structure
investigation.[Ara+18][Li+20] Usually, artificial sources of energy are required and a
series of receivers are placed on the surface to record seismic waves. One major outcome
of processing the recorded data is the reconstruction of the subsurface velocity model,
namely seismic velocity inversion, which has a substantial impact on the accuracy
of locating and imaging target bodies. Recently, in addition to stochastic inversion
strategies, by using full-waveform information of seismic data, full-waveform inversion
(FWI) is now one of the most appealing methods to reconstruct the velocity model with
high accuracy and resolution.

2.2 Full-Wave Inversion

The inversion of full-waveform equation is very computationally demanding with no
guarantees of global convergence. Additionally, the problem is ill-posed, the existing
solution may not being unique, and is ill-conditioned, the output being highly sensitive
to the input, making the processing of noise from input highly demanding. Therefore,
a data-driven deep learning model has been widely applied recently to improve the
performance.

Full Waveform Inversion (FWI) was firstly introduced as a method to reconstruct
the velocity model by minimizing the difference between seismic data and synthetic
data in a least-squares sense. Conventional FWI uses gradient-based solvers to update
the model parameters, and the gradient is normally calculated through backward
wavefield propagation of data residuals based on adjoint-state methods. However,
seismic velocity estimation from observed signals is a highly nonlinear process, so the
conventional iterative algorithm usually requires a good starting model to avoid local
minimum. Moreover, FWI faces severe nonuniqueness due to inadequate observation or
observation data contaminated with noise. To address these issues, geophysicists have
proposed many improvements, such as the multiscale strategy, processing of seismic
data in other domains, and so on.
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2.3 Deep Learning(data driven solutions)

Deep neural networks (DNNs) face several challenges when it comes to seismic data
analysis. [Li+20]One of the main challenges is the weak spatial correspondence and
uncertain reflection-reception relationship between seismic data and velocity model,
which makes it difficult to estimate seismic velocity from observed signals. The con-
ventional iterative algorithm usually requires a good starting model to avoid local
minimum. Furthermore, due to the ill-conditioned problem setting, the corrupted data
due to existence of noise in experiments would be another obstacle to overcome, which
would also worsen the impact of nonlinearity during prediction.

However, recent developments in DNNs have demonstrated remarkable ability to
approximate nonlinear mapping functions between various data domains, such as
images and label maps, images and text, and different types of images, especially for
inverse problems, such as model/image reconstruction, image super-resolution, and
real-world photosynthesis[empty citation]. These state-of-the-art developments bring
new perspectives for seismic inversion and velocity model reconstruction. DNN-based
seismic inversion is to learn the mapping function F from seismic data to velocity model.

Some work has already made progress on this task. Moseley et al. achieved 1-D
velocity model inversion by WaveNet after depth-to-time conversion of the velocity
profile. Araya-Polo et al. used convolutional neural networks (CNNs) to reconstruct
velocity model from a semblance cube calculated from raw data. These two approaches
may introduce biases because of the human intervention in seismic data processing.
Other than data processing, Wu et al. proposed InversionNet to build the mapping
from raw seismic data to the corresponding velocity model directly by Autoencoder
architecture, which decodes the velocity model from an encoded embedding vector.
Since data are extremely condensed in the embedding vector, the decoded velocity
model is more robust to noise and less prone to overfitting.

In general, there are three main characteristics that pose a great challenge for deep
neural networks (DNNs) when it comes to seismic data inversion. Firstly, the spatial
correspondence between raw time-series signals (seismic data) and seismic images
(velocity model) is weak, especially for reflected seismic signals. This means that the
position on the velocity model that corresponds to a reflected wave on the seismic
profile may not contain any interface and vice versa. Secondly, the complexity of
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subsurface structure in various velocity models makes it difficult to determine the cor-
responding interfaces that cause the reflections in velocity model for reflected seismic
signals received by one receiver from one source (i.e., seismic trace). We refer to this
characteristic as the uncertain reflection-reception relationship. Thirdly, seismic data
are of time-varying property, which means that the recorded seismic wave gradually
weakens as time goes by. This makes seismic pattern hard to capture with fixed kernel.
All these characteristics make it challenging for DNNs, especially for convolutional
neural networks (CNNs) with spatial correspondence and weight-sharing properties.

2.4 Regularization

Deep learning has already been widely used in the inverse problem solving, especially
in image processing procedure. And the structure plays a significant role in the perfor-
mance of the model. The sub-project is designed to improve the performance of the
data-driven deep learning methods in inversion of full-waveform equation through
the modification of the regularisation mechanism, trying to support overcoming the
challenges resulting from the noise corruption in a structural way.

This would probably in turn improve the overall performance of the model due to
the endogenous relation between noise corruption and nonlinearity, time-variety and
uncertainty in relation between input and output(seismic data and velocity model).

2.5 GAN-Regularizer

Regularization is a technique that adds some constraints or penalties to the inverse
problem to make it more stable and well-posed. In regard of regularization of the the
inversion problem, there are two types of techniques to regularize the ill-posed inverse
problems.[LSÖ]

2.5.1 Knowledge-driven

Traditional knowledge-driven approaches to inverse problems are based on functional
analytic inversion and Bayesian inversion, which rely on physical–analytical models
and prior information to regularize the ill-posedness of the problem.
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Functional analytic inversion is based on the theory of Fredholm integral equations,
which can be solved using methods such as Tikhonov regularization, sparsity-promoting
regularization, low- rank regularization, and manifold regularization[Arr+19]. These
methods use different norms or functions to measure the smoothness, sparsity, low-
rankness, or manifold structure of the model parameter, and add them as penalty terms
to the least-squares objective function.

• Tikhonov regularization: This is a classical method that adds a penalty term to
the least- squares objective function to stabilize the solution. The penalty term is
proportional to the norm of the model parameter, and the proportionality constant is
called the regularization parameter. The paper discusses how to learn the regularization
parameter from data using cross-validation or Bayesian inference.

• Sparsity-promoting regularization: This is a method that imposes sparsity on the
model parameter by using norms or functions that are non-smooth or non-convex, such
as the L1- norm or the L0-norm. The paper reviews some of the algorithms for solving
sparse inverse problems, such as iterative shrinkage-thresholding algorithm (ISTA), fast
iterative shrinkage- thresholding algorithm (FISTA), alternating direction method of
multipliers (ADMM), and proximal gradient methods.

• Low-rank regularization: This is a method that exploits the low-rank structure of
the model parameter by using matrix or tensor decompositions, such as singular value
decomposition (SVD), principal component analysis (PCA), or Tucker decomposition.
The paper presents some of the applications of low-rank regularization in image recon-
struction, video completion, and hyperspectral imaging.

• Manifold regularization: This is a method that incorporates prior knowledge about
the manifold structure of the model parameter by using graph-based or kernel-based
techniques, such as graph Laplacian regularization or manifold kernel learning. The
paper shows some of the examples of manifold regularization in image denoising,
super- resolution, and inpainting.

• Bayesian inversion is a statistical framework that uses prior information and likeli-
hood models to infer the posterior distribution of the unknown model parameter from
the noisy observations. By choosing different the prior distribution and the likelihood
model in a Bayesian inversion framework for different problem set, the ill-posedness
would be able to be regularised.

• prior distribution: Using Gaussian prior distribution with a covariance matrix that
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incorporates spatial correlation and physical bounds on the slip. A Gaussian likelihood
model with a covariance matrix would also be possible to function as account for data
noise and model errors.

• posterior distribution: Using Markov chain Monte Carlo (MCMC) methods, which
are stochastic algorithms that generate samples from the target distribution. It this way,
the problem set can be transformed into a generated a well-posed problem.

2.5.2 Data-driven

The data-driven techniques are methods that use data-driven models, such as deep
neural networks, to learn from data and incorporate domain-specific knowledge to deal
with ill- posedness and ill-conditionedness.

• Deep neural network regularization: This is a method that uses deep neural
networks to learn a nonlinear mapping from the observations to the model parameter
or to learn a nonlinear regularization operator that enforces prior information. Some of
the architectures and training strategies for deep neural network regularization have
already occur in the existing literature, such as convolutional neural networks (CNNs),
recurrent neural networks (RNNs), variational autoencoders (VAEs), and generative
adversarial networks (GANs).

2.5.3 Adversarial regularizer

In the paper, “Adversarial Regularizers in Inverse Problems,” [BKM17] a new frame-
work was proposed for applying data-driven approaches to inverse problems using
a neural network as a regularization functional. The network learns to discriminate
between the distribution of ground truth images and the distribution of unregular-
ized reconstructions. Once trained, the network is applied to the inverse problem by
solving the corresponding variational problem. The algorithm can be applied even if
only unsupervised training data is available. The authors demonstrate the potential
of the framework for denoising on the BSDS dataset and for computed tomography
reconstruction on the LIDC dataset.

In “Learned Regularizers for Inverse Problems”, the paper proposes a class of al-
gorithms that builds on the well-established variational framework, training a neural
network as a regularization functional. These approaches come with the advantage
of a theoretical understanding and stability theory that is built on existing results
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for variational regularization. In comparison to “Adversarial Regularizers in Inverse
Problems,” which also proposes a new framework for applying data-driven approaches
to inverse problems using a neural network as a regularization functional, “Learned
Regularizers for Inverse Problems” focuses on learning priors from data directly, with
the goal of obtaining a more realistic and detailed image representation.

2.5.4 Evaluation

A complete mathematical analysis of a regularization method includes proving conver-
gence rates and stability estimates, in addition to existence, stability, and convergence.
Convergence rates provide an estimate of the difference between a regularized solution
R θ (g) and the solution without regularization. Stability estimates, on the other hand,
provide a bound on the difference between the true data and the experiment collected
data, depending on the error term ||e||.

2.5.5 GAN model

A GAN training is a process of learning to generate realistic data using a generative
adversarial network (GAN). A GAN is a type of neural network that consists of two
parts: a generator and a discriminator. The generator tries to create fake data that look
like the real data, while the discriminator tries to distinguish between the real and fake
data. The two parts compete with each other in a game-like scenario, where the genera-
tor aims to fool the discriminator, and the discriminator aims to catch the generator.
The GAN training alternates between updating the parameters of the generator and
the discriminator, until they reach a balance where the discriminator cannot tell the
difference between the real and fake data.

Some of the benefits of GAN training are that it can generate novel and diverse data,
such as images, text, audio, or video, that are not present in the original dataset. It
can also learn the underlying distribution of the data, which can be useful for tasks
such as data augmentation, anomaly detection, or domain adaptation. However, some
of the challenges of GAN training are that it can be unstable, difficult to converge, or
suffer from mode collapse, where the generator produces only a limited variety of data.
Therefore, many techniques and tricks have been proposed to improve the stability
and quality of GAN training, such as using different loss functions, architectures,
regularization methods, or evaluation metrics
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2.6 training technique

2.6.1 batch normalization

Batch normalization is a technique used in deep learning to improve the performance
of neural networks by normalizing the inputs of each layer. It is a type of normalization
that is applied to the outputs of a layer, before the activation function is appliedBatch-
Norm1d is a PyTorch module that applies batch normalization over a 2D or 3D input
as described in the paper “Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift” [IS15]
The primary use of batch normalization is to accelerate the training of deep neural
networks and to reduce the number of training epochs required to train deep networks
12. It also helps to reduce the internal covariate shift and makes the training process
more stable.
This is an essential layer in the linear deep model, the batch normalization layers make
the training faster, and allow a wider range of learning rate without compromising the
training convergence.

2.6.2 reparameterization

The reparameterization trick is a powerful method that makes the training of Variational
Autoencoders (VAEs) possible and efficient. By cleverly separating the random and
deterministic elements of the sampling operation in the VAE, it allows us to leverage the
power of backpropagation while maintaining the stochastic nature of the model. The
trick involves reparameterizing the random variable in the VAE’s latent space so that it
can be expressed as a deterministic function of the random noise variable and the model
parameters. This allows us to compute gradients with respect to the model parameters
using backpropagation, which is essential for efficient training.[HS18] [KW22]
When computing the gradient of an expectation, i.e. Ep(z)[ fθ(z)],where p is a density. it
is easily to calculate out, the gradient of the expectation is equal to the expectation of
the gradient.

∇θEp(z)[ fθ(z)] = ∇θ

[ ∫
z

p(z) fθ(z)dz
]

=
∫

z
p(z) [∇θ fθ(z)] dz

= Ep(z) [∇θ fθ(z)]

However, if the p is also the function of θ, then the expectation would change to more
complicated result:

10
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∇θEpθ(z)[ fθ(z)] = ∇θ

[∫
z

pθ(z) fθ(z)dz
]

=
∫

z
∇θ [pθ(z) fθ(z)]dz

=
∫

z
fθ(z)∇θ pθ(z)dz +

∫
z

pθ(z)∇θ fθ(z)dz

=
∫

z
fθ(z)∇θ pθ(z)dz + Epθ(z) [∇θ fθ(z)]

The first term of the last equation is not guaranteed to be an expectation. It is possible
we can sample from pθ(z) but it is not possible to get the gradient. Since∇θ pθ(z) is not
analytic.
What is done by reparameterization, is that we set:

ϵ ∼ p(ϵ)

z = gθ(ffl, x)

Then it is clear that:

Epθ(z)[ f (z(i))] = Ep(ϵ)[ f (gθ(ϵ, x(i)))]
∇θEpθ(z)[ f (z(i))] = ∇θEp(ϵ)[ f (gθ(ϵ, x(i)))] (1)

= Ep(ϵ)[∇θ f (gθ(ϵ, x(i)))] (2)

≈ 1
L

L

∑
l=1

∇θ f (gθ(ϵ
(l), x(i))) (3)

In this way the reparameterization express a gradient of an expectation (1) as an
expectation of a gradient (2). Provided gθis differentiable, then it is possible to sample
and estimate ∇θEpθ(z)[ f (z(i))].[Doe21] [MDA]
This reparameterizaton technique is essential to the training of VAE and GAN.

To conclude, this chapter lists the project related work. The full-wave inverse
problems in regard of defects detection, and GAN-trained models and regularization
are all significant research areas and topics, this paper stand on the point to combine
the related work and current techniques together, trying to apply them to the new
scenarios to solve the essential problems.
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This chapter introduces the methodology that would be used in the experiment, i.e. the
research question settings of the paper. What kind of problem shall be dealt with or
solved during this study, what kind of methods would be used to achieve the goal, and
what kind of evaluations would be used to evaluate on the goal.

3.1 problem setting

The project tries to build a regularizer that would help the full-waveform inversion
problem. Therefore, the whole task for the regularizer is to distinguish between the
real solutions and fake solutions, a model that would give pseudo inversion solutions
more punishment than the possible inversion solutions, so that the the learning process
of the inverse problem itself would be trained or updated in the right direction. So
the solution to the inverse problem would not be overfitted, giving only a databased
solution, or being updated around too generated result, that would not form proper
solution.
However, it is not possible to see the solutions that would be calculated from the
inversion problems in advance, therefore, it is not possible to form a regularizer that
would be able to regularize on all kinds of "unrealistic" defects calculated from the
data-driven model. Therefore, a regularizer with the possibility of being fitted into
different defects scenarios is needed.

From the literature of related work in chapter 2, we can clearly conclude that,
it is possible to give the regularizer with knowledge-driven base, build up a more
physical/reality-based model, mimicking the defect in the way that should be pos-
sible in reality and use the model to rule out the other "fake" defects. However, the
knowledge-based regularizer would be in need of great amount of modelling and very
complex physical calculation, and the scenarios is not universally applicable. It is highly
case-dependent, which would cause difficulties in using the regularizer for different
kinds of application scenarios.

12
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Therefore, the data-driven based methods was preferred in our project. It would be
possible to achieve better results from the data-driven mind, using the neural networks
to gain the knowledge from large amount of cases. The possible advantages with the
data driven solutions would be, after the learning process, it would be possible to
get a model that is easier calculated or more competent than the knowledge based
model, as the model can learn information that may not be modeled by a knowledge
based model, or the trivial differences that would be simplified by a universally used
knowledge-based model would have case-dependent significant effect. Furthermore,
the regularizer would be easier to be applied to other scenarios when equipped with
enough data. With the data-driven regularizer, it would be possible to solve the reg-
ularization problem with intuitive images of the defects, rather than comprehensive
analysis of the situation in advance to fit for the knowledge based data model for
hyper-parameters, which requires much higher qualifications than feeding the image
data to the model. Therefore, the realization of a data-drivien regularizer would be
very promising.

3.2 difficulties

According to problem setting, we choose the data-driven regularizer as the preferred
answer. However, the difficulty also comes along with the data advantages. It is
difficult to gain the data, therefore, difficult to train. The difficulty comes both from the
authentic data side and the counterfactual data side.

For the authentic data, it is not possible to directly gain the defect data that would be
enough for training. If modelled from the knowledge-based model, it would also face
the problem of large amount of calculation and model simplification.

For the counterfactual data, that should be the solutions calculated from the data-
driven model for the whole inverse problem. If trained with solutions, the regularization
for the solution itself would be not realiable. Therefore, it is also not possible to have
reliable counterfactual "fake" data to train the regularizer.

3.3 entry point

In this experiment, we try to partly solve the problem, finding possible and feasible
solutions to the possible way of training such regularizers, so that the regularizer would
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be able to distinguish the real defects and the fake defects.
Essentially, this paper tries to validate the possibility of training such regularizers in a
relatively more practical sense, since there is no easy direct way of gaining training data
and train such regularizers in reality. The paper tries to build up a pseudo scenario
that would be easily extended or applied to other scenarios. The training process of the
regularizer would be validated in this pseudo scenario, so it would be possible to see
the critical points of training, the possible difficulties and corresponding solutions.In
this way, it would be possible to further transform the results to other scenarios.

Regarding the substitute of the authentic data, the pseudo scenario, it is important,
that the building of the pseudo scenario should be easily not too complex and tedious to
build up, unlike direct knowledge-based modelling. At the same time, it shall perform
due reconstruction of the reality, with representative characteristics. Additionally, it
shall be easily transferable, meaning it is possible to change the specification of the
training data structure according to the characteristics of different scenarios. This
means there shall be enough extend ability of the building scenarios.
Apart from the requirements for the authentic data, it also important to find solu-
tions for the counter-facts. On one hand, the counter-facts should be reasonable for
be trained against the authentic data/pseudo scenario, the counter-facts shall be the
"impossible solutions" of the inverse problem. This requires the generalization ability
of the counter-facts, i.e. it is not specific to only one type of counter-fact, meaning the
regularizer would be stable against all kinds of noised/fake images. On the other hand,
it should have the capacity to deal with specific noise and fake "attack".

3.4 solving methods

Based on the explanation in section 3.3, the database would be created on with a easy
accessible way, and a GAN-trained regularizier is used for training. The GAN would
be trained on the built-up pseudo datas, and the adversarial part would be considered
as a good regularizer.
In regard of pseudo scenarios, a set of data would be created for the experiment and
the training. It would be easy to change the hyper-parameters of the data structure,
and apply it to other scenarios. The details would be explained in the chapter 4
In regard of counter-facts, the training process of the GAN-generator, would be consid-
ered as a process trained by "counterfactual generator", during which the regularizer is
exposed to all different kinds of counterfacts (unlearned results from the generator),
that would be considered as a good learining process for the regularzier to be trained.
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3.5 evaluations

In the related work, the evaluation of a regularizer is usually directly bounded with
the solving of the inverse solution, observed with the performance, whether it help
improve the performance of the solution or not.
In the case of our full-waveform inversion, it would be very time and computation
consuming, to simply test the performance of the regularizer. Therefore, there should
be some ways of evaluation that is independent from the inversion solving procedure,
as a prediction of the regularizer performance.
The regularizer should be able to distinguish between the authentic images and the
counterfactual images. It is trained in this way through the adversarial networks. And
for the evaluation, the counterfacts from the generators are not available anymore, and
have already been feed to the regularizer. Therefore, in the experiments, the evaluation
is carried out using the manually noised images, this would be illustrated in detail in
chapter 6. The regularizer would go through all the noised images and see the score
given by the regularizer, to check if the threshold for authentic and counterfactual
images exist.
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4 Data creation

This chapter is about the data structure used in the experiments. It would illustrate
how the data-sets used in the experiments would be created, and the considerations
behind this process.

The data structure is vital to the experiment, as it is related to the performance of
the discriminator/regularizer being created, and the evaluation of the results. The
data structure would on one hand, affect the training difficulty of the model, as the
training process and the model hyper-parameters shall be adjusted due to different
dataset characteristics, on the other hand, the characteristics of the data would also
impact the generalization ability of the model, and also the evaluation of this ability.
To be more specific, the degree of freedom of the dataset, would directly impact the
training diffculty: with a large number of degrees of freedom in the dataset, and a
sparse sample along the DOF, it would be difficult for the model to gain the information.
Furthermore, how identical the distributions of the validation set and test set are to the
training set, would directly impact the evaluation of the robustness and generalization
ability. Whether those distributions are identical to each other, would be related to
characteristics of the data-set, i.e. the DoF and whether the samples are representative
enough for the distribution.

The data used in the experiments are virtually created data that are intended to
feature the possible characteristics of detected defects. The data set would consider
the appearance of a possible spline, and try to mimic the defect with relative simple
methods.

In this way, it would be possible to easily extend the data-set into other categories of
defects (not included in current experiment work), and test the robustness of the model
of this experiments and validate the reliability of the training process when using other
types of the data. There is always this trade-off between robustness and generalization
ability of machine learning model. The manually-created data-set, would make it easier
to test the ability and adjust due to realistic requirements.
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4.1 Dataset

The original database contains 128x128 images with a defect in the middle of the picture.

The training datasets contains 128x128 images with a "low DOF" defect. The vali-
dation datasets contains 128x128 images with a "low DOF" defect. The test datasets
contains 128x128 images with a defect.

4.2 Generating procedure

The generating procedure illustrates, how the images would be generated, especially
how the spline of the defect would be generated. Generally, the spline would be
represented as a randomly weighted combination of 5 random normal distribution. To
simplify the training procedure, and control the DOF, the training spline was generated
with a plain combination of two normal distribution.

4.2.1 Sampling

The training dataset contains the combination of 2 normal distributions. With a random
mean and variance of the normal distribution, the dataset is featured with four DOF.
To avoid sparse sampling, the mean and variance was sampled through a linear space
each with 16 samples, creating a pseudo-random combination of the mean and variance
of the normal distribution. With the four DOF, the dataset contains 65,536 images.

4.2.2 Normal distribution

The random mean is selected from the linear sample space of (-64,64), and the random
variance is selected from the linear sample space of (16,32).

A variance number selected from other interval would cause either no observable
variance in the plot or too abrupt turning, as illustrated by figure 4.1 A small variance
would lead to abrupt shot in the plot, due to the limited sample capacity within 128
pixels, causing sparse sample results with a large breaking space between sampled
points.

With the pair of norm and mean, the normal distribution is sampled with an x-axis
between (-64,64) with a sample interval of 1, which would create a 128 samples on the
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Figure 4.1: Comparison between difference variances sampling

image, corresponding to the final image size.

4.2.3 Amplifying

To make the spline positioned in a proper place, and make the variance of the normal
distribution observable for further extension, the normal distribution is amplified with
a constant of 128.

The amplification process first uses a min-max normalization, to project the normal
distribution to 0-1 range. Then, a amplifier constant is applied to the new distribution,
resulting in a "normal-like" distribution between 0-128.

The results is illustrated by the figure 4.2.
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(a) original normal distribution (b) amplified distribution

Figure 4.2: Amplification of the distribution

4.2.4 Rotation

A possible extension of the distribution is to rotate the distribution with certain angles.
This is the rotation of the distribution itself, to better mimicking the defect, which is
different from a direct rotation-augmentation that can be used when loading training
data.

The direct rotation augmentation of the final image would be taken simply as a
useful technique to improve the robustness of the model, same as other augmentation
techniques like flipping, cropping and translational shifting, while the rotation here is
trying to improve the technique of the mimicking the defect in reality.

The rotation uses simply the rotation matrix for x and y axis. And the rotation center
is set as the center of the sampled image (0,64), as after amplification the distribution is
ranged from 0 to 128 along y-axis. The rotation degree is set to 20 degree.

To restrict the rotated image still within the 128x128 image frame. A normalization
and integerization is applied on the rotated image. The x-axis is normalized to (-64,64),
while the y-axis is normalized to (0,128)

There are different ways to do the normalization. As the spline is mimicked to defect
through the image, the x-axis normalization would be always be applied to the rotated
distribution. And the y-axis can also be normalized, or just be kept after being rotated.
As illustrated in the figure 4.3.
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(a) rotated and x-normalized(1) (b) rotated and xy-normalized(1)

(c) rotated and x-normalized(2) (d) rotated and xy-normalized(2)

Figure 4.3: Rotation and normalization of the distribution

4.2.5 Normalization/Integerization

In this step of the image creation, the whole plot is normalized into a specific range of
the picture. As the final image is created into a 128x128 image, the the distribution is
normalized into the range of (21,106), so the plot is centered in the image, occupying
2/3 of the whole image. To achieve this, a min-max normalization is used to project
the distribution to specific range.

Furthermore, to create the image with pixel wise value, the value of the normalization

20



4 Data creation

is also integerized. So each sampled value would be represented to the corresponding
pixel in the image.

In this part, the normalization is just trying to make the upper and lower bound of
the spline, making the defect centered in the image, which can be easily changed and
augmented for further research.

Noticeably, the normalization and integerization should be aligned with the rotation
part. The y-axis normalization can be applied after the rotation, which would make the
final result always the case of xy-normalized(the cases of 4.3(b) and 4.3(d)), even if a
x-normalized is used in the rotation part(the cases of 4.3(a) and 4.3(c)). To maintain
the feature of x-normalization, rotation must be applied after the normalization to the
image frame, and another x-axis normalization must be applied, as illustrated in the
figure 4.4.

Figure 4.4: Distribution after normalization w/o rotation
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4.2.6 Image Matrix

After the normalization, the distribution would be plotted centered in an 128x128 image.
A pixel-wise matrix would be created to plot the image.

As the plot is now two one-dimensional value of the x and y. This image matrix
creating procedure tries to create the two dimensional matrix by pixel-wise value
through the whole 128x128 image.

As the result of samping and integerization, there would be possible breakpoints on
the plot. To fill the information between the breakpoints, when sampling along the
x-axis, the occurring break space would be filled by giving values of the neighbouring
sample, connecting the breakpoints and creating a plot. As illustrated in the figure 4.5,
the variable d refers to the distribution value that would be plotted into a matrix.

In this way, the image matrix would be created and the pixels are connected with
each other in the plot. The image then is created using this pixel-wise matrix illustrated
in figure 4.7(a).

def create_Matrix(d):
gMatrix = np.zeros([128,128])
for i in range(128):

if i <127:
d1 = min(d[i],d[i+1])
d2 = max(d[i],d[i+1])
for x in range(d1,min(d2,127)+1): gMatrix[i][x]=1

else: gMatrix[i][d[i]]=1
return gMatrix

Figure 4.5: source code of matrix creation

However, after rotation of the plot, the x-axis sampling is not as uniformly distributed
as before rotation. Therefore, the matrix creating procedure would be more complicated.
The spline should be draw pixel by pixel and the space between the breakpoints should
be filled in another way, illustrated in 4.6. The missing samples between the pixels are
filled by a whole rectangle, i.e. all pixels among the range of the two pixels would be
filled with information, i.e. set value as 1.
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def create_Matrix(rx,de):
gMatrix = np.zeros([128,128])
rx = rx+64 #change x-axis from (-64,64) to (0,128)
for i in range(128):

x = rx[i]
y = de[i]
if i < 127:

gMatrix[x][y]=1
#next pixel with value
x1 = rx[i+1]
y1 = de[i+1]

#find out the matrix of the missing data between two pixels
if x <= x1: X = np.array(range(x,min(x1,127)+1))
else: X = np.array(range(min(x,127),x1-1,-1))
if y <= y1: Y = np.array(range(y,min(y1,127)+1))
else: Y = np.array(range(min(y,127),y1-1,-1))

#set the missing information value as 1
for p in X:

for q in Y:
gMatrix[p][q]=1

else: gMatrix[x][y]=1
return gMatrix

Figure 4.6: source code of matrix creation for rotated image

4.2.7 Extensions

It is also possible to add on some other extensions in the data generating process, as the
image is created pixel by pixel. It is easier to extend other augmentations for further
research.

Originally, the database would be intended to create with a 5-normal-distribution-
based spline, combining 5 randomly weighted normal distributions, as illustrated in
figure 4.9 without randomly weighted coefficient, and 4.10 with random weights.

With the random sampled mean and variance of each normal distribution and a
random coefficient weight, the image database would have a 15 DOF. The spline is
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(a) without rotation

(b) rotated and xy-normalized (c) rotated and x-normalized

Figure 4.7: pixel-wise matrix

better mimicked, similar to the defects in reality.
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(a) distribution (b) rotated & xy normalized (c) rotated & x normalized

Figure 4.8: 2-norm distribution images

However, as the experiment would have no intense samples of each degree, it would
be difficult for the model to learn about the characteristics. Therefore, the 15-DOF
spline is only used for test sets, to test the generalization ability of the model.

Furthermore, as explained in the 4.2.4 part, it is possible to add on rotation matrix
before the normalization, which would better model the possible defects in reality.
However, this would also increase the degrees of freedom. To avoid the problems
that would be caused because of sparse sampling, which in turn causing confusion of
information. The rotated images, illustrated as in figures 4.8, 4.9,4.10 are also only used
in the test sets to evaluate the generalization ability.
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(a) distribution (b) rotated & xy normalized (c) rotated & x normalized

Figure 4.9: 5 norm distribution images

4.2.8 Discussion

Due to the limit of computing capacity and storage, it is not possible to use an intense
sample along all degrees of freedom. Therefore, the whole database is always faced
with the trade-off between furious information that would improve the generalization
ability of the training and sparse sampling without clear representations of any charac-
teristics that would confuse the model.

Therefore, the different datasets, i.e. samples from different data distributions, are
allocated into different experiments settings.

4.3 Datasets allocation

After the creation of the data according to the data structure. The data would also be
allocated into different datasets to fit with the machine learning requirements.
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(a) distribution (b) rotated & xy normalized (c) rotated & x normalized

Figure 4.10: randomly weighted 5 norm distribution images

For the 2 normal distribution based images, a intense sampling of the mean and
variance of each normal distribution is created. The sample space is therefore structured
with 16*16*16*16 images. For the training process, all data would be used, a random
selected 32 images are used for validation. The test datasets is combined with random
selected 32 images from the training set and 32 images from the 5-norm distribution
based dataset and rotated images.

Figure 4.11: Dataset structure illustration
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4.4 Conclusion

The data creation part, explained in detail how the datasets used in the experiment have
been created and allocated. And the possible further extensions on the datasets would
depend on the change of the hyper-parameters of the data structure, which would lead
to further possible research, and more thorough study of the training features of the
data.

The hyper parameters of the datasets include:

distribution relevant:

- numbers of normal distribution basis, a larger number of distribution would lead
to more variance in the image, creating the spline closer to the reality

- random coefficient, whether the distributions are randomly weighted or not, a
random weighted distribution would avoid the impact of extreme samples and
the corresponding breakpoints due to limited sample capacity

- the sample interval of mean and variance, from which range of mean and variance
should the distributions be sampled from, this would directly affect the result of
the spline

- amplifier constant, this amplifier is used to prepare for rotation, but would also
dinimish the accuracy of the sample, making the sampled result sparse

- rotation degree, how much degree should be rotated, this can also be used to the
better mimic the reality.

image creating relevant:

- information range, the spline should be plotted in which part of the image, this
would control the information intensity in the image

- information filling strategy, when the break points occur due to sampling, which
strategy should be used for connecting the breakpoints and add on information

For further data creation, changes to the hyper-parameters could be considered. On
one hand, the hyper parameters that would add on DOF, would lead to difficulties in
training, therefore, should be taken more considerations, and the training procedure
and model structures should be modified accordingly. While the change of other
hyper-parameters that has no relation with the DOF, would lead to different mimicking

28



4 Data creation

scenarios, and the relation between these hyper-parameters and the training perfor-
mance can be further studied.

Table 4.1: The hyper-parameter table.

hyper-parameters case in experiment add on DOF

numbers of distribution 2/5 Y
random coefficient without/with Y
the sample interval of mean and variance (16,32) N
amplifier constant 128 N
rotation degree 20 N

information range 2/3 of image, pixel 21-106 N
information filling strategy neighbouring pixels N
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5.1 training structure

I based my training process on the model structure illustrated from the paper adversial
autoencoder. The model provides the essential GAN framework for the training.
The idea is to create a GAN-trained generator and discriminator with the neural net-
work model, and use the discriminator as the regularizer, testing the performance of
the regularizer.

Figure 5.1: training structure

The generator (variational autoencoder) and the discriminator would be trained at the
same time, the neural networks would be updated using different loss functions. The
two neural networks would be trained against each other to improve performance of
each other. The performance of the model is evaluated from both of the loss functions.
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5.2 model details

This section the detailed information about the entire network would be explained. The
entire training model includes a variational autoencoder and a discriminator. There are
three neural networks in the whole model. The encoder, decoder and the discriminator.
The model would train both the discriminator and the variational autoencoder, setting
the discriminator and the variational autoencoder as the adversarial counterparts in the
model.
The performance of the model would be evaluated both from the performance of the
variational autoencoder and the performance of the discriminator.

5.2.1 Convolution neural network

The model given by the existing paper, used a fully connected neural network. The
training in the original model was trained on MNIST, and the generator reached rela-
tively good result. Due to the similarity (single line based) between the MNIST and our
datasets, I first tried on the linear model(illustrated in figure 5.2) for training. However,
the result was not able to converge. It is probably due to the sparse sampling, i.e. the
samples are not representative enough for the linear model to learn so many weights.
Therefore, I finally chose the convolution neural network to do the training.

Figure 5.2: linear neural network structure

The CNN was trained step by step from native autoencoder, to variational autoen-
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coder and finally to the adversial autoencoder. The model structure’s ability to train
a converging neural network was proven by the AE and VAE. Therefore, the model
structure for autoencoder part is not changed, only a discriminator instead of a simple
BCE loss function is added when training.

5.2.2 Encoder

The structure of the encoder is clearly illustrated in the figure 5.3. There are three
convolution layers for the image processing. After each convolution layer, a ReLu()
function is followed for non-linearity. The filters are all 4x4 convolution filters. In the
first two layers, not much information is reduced, stride was set as 1 and channels
increases from 1 over 8 to 16. The third layer reduced the weights dimension, with a
stride of 2, decreasing the image size to 12*12 and a decrease in channel number to 8.
After the convolution layer, channels are fully flattened into a 8*144 linear combination
and then decreases over 144 to latent space dimension 16, after two layers of fully
connected neural networks.
For the variational reparameterization, the mean and variance for the normal distribu-
tion is separately modeled.
Then, a reparameterization is used to built up the relation between the weights and the
samples. So, it would be possible to do the back-propagation for the weights updating.
As illustrated in figure 5.3

Figure 5.3: encoder neural network structure
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5.2.3 Decoder

The decoder here used the normal form of decode in VAE, using the opposite layers of
the encoder, as illustrated in figure 5.4.
For the decoder, fist layer is the linear layer, increasing the latent space into 144 neurons,
with activation function LeakyReLu(0.2). A further linear layer with the same activation
function would prepare the input out as 8*144 neurons, prepared for the unflatten
into images. After being unflattened into 8 channels of 12x12 images, three layers of
Convolution Transpose would be applied, with non-linearity formed by ReLU(). All
filters are 4x4 and the channels after increased to 16 would remain 8 before the final
output. In the last layer, the images would be transposed to a 1 channel 32x32 image,
which is the final output of the procedure.

Figure 5.4: decoder neural network structure

5.2.4 Discriminator

As illustrated in the training structure figure 5.1, the discriminator has the input from
the latent space and a random normal distribution sample. Therefore, the input are
already linear vectors. Therefore, the discriminator uses a fully connected linear neural
networks model, as illustrated in figure 5.5.
From the latent space with an input of a vector of 16 neurons, the first layer increases the
information into 512 neurons, and second layer decreases to 256 neurons, both activated
by LeakyReLU(0.2). The final layer give the output as to one layer and activated by
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Sigmoid(), having a useful distirbution between (0,1) which is aligned with the need of
discriminator.
The input of the discriminator is either the latent space result from the encoder, or the
random sample from a normal distribution. The discriminator is trained to distinguish
the difference between the two. The detailed mechanism of the discriminator would be
mentioned in the loss function part.

Figure 5.5: discriminator neural network structure
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5.2.5 Loss functions

There are two loss functions used in the GAN trained model. The generator and the
discriminator have different loss functions. The basic GAN training mechanism is as
follow,

min
G

max
D

Ex∼pdata [logD(x)] + Ez∼p(z)[log(1 − D(G(z))]

The generator G and the discriminator D can be found using alternating SGD in two
stages: (a) Train the discriminator to distinguish the true samples from the fake samples
generated by the generator. (b) Train the generator so as to fool the discriminator with
its generated samples.
Both, the adversarial network and the autoencoder are trained jointly with SGD in two
phases – the reconstruction phase and the regularization phase – executed on each
mini-batch. In the reconstruction phase, the autoencoder updates the encoder and the
decoder to minimize the reconstruction error of the inputs. In the regularization phase,
the adversarial network first updates its discriminative network

The generator loss is made up two parts:

g : loss = 0.001 ∗ BCELoss(discriminator(encoded :
imgs), 1) + 0.999 ∗ MSELoss(decoded : imgs, real : imgs)

BCELoss(): binary cross entropy loss of the discriminator recognize the encoded picture
as real;
MSELoss(): the mean square errores between the generated image and the real image.
where BCELoss(discriminator(encoded-imgs), valid) is the adversarial loss part;

The discriminator loss is made as an average of the binary cross entropy:

real : loss = BCELoss(discriminator(z), 1)
f ake : loss = BCELoss(discriminator(encoded : imgs, 0)

d : loss = 0.5 ∗ (real : loss + f ake : loss)

real loss: BCE loss of the discriminator recognize the fake image as real
fake loss: BCE loss of the discriminator recognize the real image as fake

5.3 training details

This section would explained the training procedure of the model. And specific trials
and results.
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5.3.1 overfitting

Due to the limited capacity of training and computation time, it is reasonable to train
and first see the result of the model trained on an overfitting dataset.
The overfitting here, means with a limited number of samples, small variation in the
dataset, I trained intentionally train the model to be overfitted, to give a primitive check
on the result of the model and the training.
Therefore, the overfitting dataset is made up of 32 randomly selected images from the
whole dataset, illustrated in figure 5.6.

Figure 5.6: overfitting dataset

The model would be able to generate a relative good result in overfitting. The
overfitting training procedure also gives a brief forecast of how many epochs may be
necessary for the training on the entire dataset, which batch-size should be chosen and
how possible it is to generate a good result, helping to estimate the training procedure
on the whole dataset.

5.3.2 information density

Since the spline is only on pixel information. When training directly with the dataset,
the information is not enough, this would lead to difficulty in convergence, as illustrated
in figure 5.7. The second row was the pre-trained result after 200 epochs. It is clear
for the images with less dense of information it is difficult to converge. Therefore, the
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input are loaded in the dataloader directly with a resize to 32x32 and a dilation of 3
times.
This resize and dilation could also be possibly absorbed by the convolution neural
network. But to reduce the computation cost, and make the network more interpretative,
I used the dataloader as a small pre-processing.

(a) without dilation (b) with 3 time dilation

Figure 5.7: with/out dilation in overfitting

5.3.3 DOF

The original training set used 5 randomly weighted normal distribution as training
set, which made it difficult to converge. After changed to 2 normal distribution based
dataset, the model is easier to reach convergence. As explained in data creation part.
High DOF requires also more samples to make the features representable.

5.3.4 latent space dimension

The latent space is also impacting the training same as the DOF. It is necessary, not to
extract the features too much. For MNIST dataset, the latent space dimension is 10. In
the case of our dataset, I use 16 as the latent space, so that not too much information is
lost during the feature extraction.
The latent space is also directly related to the model structure. Though, it is possible
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to change only in the linear layer, but that would make not many difference when the
model is not converging.

5.3.5 batchsize

With the help of the overfitting training, it is easy to see and find a good result at the
very beginning of the dataset. Therefore, it is also possible to try different batch-sizes
in advance, which would make the result in later training more feasible.
Through the overfitting period, it is easy to see, that the batchsize would lead to different
converge speed. Bigger batchsize is time consuming as there are fewer iterators in
each epoch, while smaller batchsize makes the gradient more unstable, the stochastic
probability is larger. The overfitting period can give a hint of whether larger or smaller
batchsize should be used.

5.3.6 loss function

Different loss functions may have different results in the training. For the case of our
experiment, there are possiblity of BCELoss(), L1Loss(), MSELoss(). They would give
out different training results and different training times.
This hyperparameter is not possible to selected with only overfitting, as through overfit-
ting, no clear difference is observable. The proper way to select this hyperparameter is
to train it from the AE, VAE, when the model is relatively easy to converge, choose the
proper loss function for the generator, which would also improve training efficiency.
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This chapter is about the evalutation methods of the regularizer. The evalution methods
for the regularizer is usually connected to the inverse problem, but in the experiement,
training regularizer together with the whole inverse problem is not realistic. Therefore,
we propose a method that would be independent from the inverse problem. Whether it
would help improve the result in the inverse problem is remain to be researched, but it
can be used as a primitive evaluation of the result.

Ideally, a regularizer would be able to distinguish between the normal images and
the images with strong noises. Therefore, the inversion results with very strong noises
would get punished and in turn be trained to get a result less noised.
Ideally, a regularizer would be able to distinguish between the normal images and the
images with strong noises. Therefore, the inversion results with very strong noises
would get punished and in turn be trained to get a result less noised.
However, it is not possible to directly illustrate and model out what kind of "noised"
result the inversion part would calculate out. And the "authentic defects" are also only
pseudo defects modeled in the way illustrated in the chapter 4.

Therefore, we propose to add image noises on the images in the dataset, to test
the performance of the discriminator. The way used in the experiment to test the
performance of the regularizier at distinguishing between authentic and counterfactual
images would be the test between original images in datasets and images with manually
added noise.

Additionally, the images generated by the variational-autoencoder, can also be seen as
a source of counter-facts. However, after the generator has learned enough information,
it would be difficult to see great difference between the "counter fact" and the "pseudo
facts". The generated images must be manually selected to reach the requirements.

The following sections in this chapter would give examples of the "counterfactual"
images used in the experiments, mainly the noised images and the generated images.
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6.1 noised images

And there are different kinds of possible image noises included. These noise are usually
image based, rather than defect based, therefore, the outperform of distiguish the
images noise would indicate possibilities of ruling out factors that are not knowledge-
based, and may have little to do with the defect mechanism, which would be another
possible advantage.

6.1.1 Gaussian noise

The Gaussian noise is added independent at each pixel, and independent of the signal
intensity, caused primarily by Johnson–Nyquist noise (thermal noise), including that
which comes from the reset noise of capacitors ("kTC noise"). [Oht17] And the knowl-
edge based behind the adding of the Gaussian noise, according to the literature, is that
it is a major part of the "read noise" of an image sensor, that is, of the constant noise
level in dark areas of the image[Nak17], which is exactly the case we are facing for the
dataset created in data creation set.

(a) original (b) mean 128, std 20 (c) mean 128, std 40

(d) mean 128, std 60 (e) mean 128, std 120

Figure 6.1: Gaussian noised images with increased std
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(a) original (b) mean 16, std 60 (c) mean 32, std 60

(d) mean 64, std 60 (e) mean 128, std 60

Figure 6.2: Gaussian noised images with increased mean

It is the most easily applied and useful image noise, as it is easy to control the mean
and variance of the noise given to pixel. It is possible to have a serial of noised the
images with different mean and standard deviation of the Gaussian noise (illustrated
in figure 6.1 and figure 6.2) or add on Gaussian noise on to the images for several
times((illustrated in figure 6.3)), and see the performance of the regularizer.

6.1.2 Salt-and-pepper noise

The other possible noised added is the salt-and pepper noise. Fat-tail distributed or
"impulsive" noise is sometimes called salt-and-pepper noise or spike noise. An image
containing salt-and-pepper noise will have dark pixels in bright regions and bright
pixels in dark regions.
As our images created from the dataset are mainly dark parts, the threshold to create
the salt-and-pepper noise should be concentrated from the bright side, close to 255, the
code to add on salt-and-pepper noise is illustrated in figure 6.4. The different threshold
would lead to different levels of noise, displayed in figure 6.5

The additive result would seem similar to different thresholds if applied with several
times of uniform noise, illustrated in figure 6.6
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(a) original (b) 1x Gaussion noise (c) 2x Gaussion noise

(d) 3x Gaussion noise (e) 4x Gaussion noise

Figure 6.3: additive Gaussian noised images

6.1.3 Quantization noise(uniform noise)

The noise caused by quantizing the pixels of a sensed image to a number of discrete
levels is known as quantization noise. It has an approximately uniform distribution.
Therefore, a uniform sampled noise is added to the image. However, for uniform
distribution, there would be no feature on itself, only added on noise as illustrated in
figure 6.7

6.2 generated images

Poorly generated images from the autoencoder would also be possible solutions for the
evaluation, illustrated in figure 6.8 The detailed information regarding the autoencoder
is explained in chapter 5 and the results of the autoencoder would be displayed in
chaper 7.

42



6 Evaluation

for filename in namelist:
img = Image.open(filename)
imp_noise=np.zeros(img.shape,dtype=np.uint8)

# use cv2 package to create uniform sample
cv2.randu(imp_noise,0,255)

# set binary threshold for the sampling to get salt-pepper noise
imp_noise=cv2.threshold(imp_noise,245,255,cv2.THRESH_BINARY)[1]
img_in = cv2.add(img,imp_noise)

Figure 6.4: Code of adding salt and pepper noise

(a) original (b) threshold (245,255) (c) threshold (235,255)

(d) threshold (225,255) (e) threshold (215,255)

Figure 6.5: salt and pepper noised images with different threshold

6.3 evaluation model

The evaluation of the regularizer would be using the encoder of the autoencoder and
the discriminator instead of the decoder. The structue is illustated in the figure 6.9.
The evaluation need the encoder to make the pictures into the latent space and get the
discriminator working from there. The whole encoder and discriminator combined
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(a) original (b) 1x threshold (245,255) (c) 2x threshold (245,255)

(d) 3x threshold (245,255) (e) 4x threshold (245,255) (f) 5x threshold (245,255)

Figure 6.6: additive salt and pepper noised images

form the regularizier, as shown in the figure.
In this way, it would be possible to evaluate the performance of the regularizer. The
detailed performance result would be displayed in chaper 7
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(a) original (b) 1x threshold (245,255) (c) 2x threshold (245,255)

(d) 3x threshold (245,255) (e) 4x threshold (245,255) (f) 5x threshold (245,255)

Figure 6.7: additive uniform noised images
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(a) generator after 13 epoch

(b) generator after 12 epoch (c) generator after 15 epoch

Figure 6.8: generated images
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Figure 6.9: evaluation structure of the regularizer
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In this chapter, I will illustrate the results of the experiments carried out during the
project.
The section would be divided into training results, generator results and discriminator
results. The training results would show the results from the training process, the loss
function plot. The generator results mainly shows the performance of the result trained
by the generator, how good the GAN trained VAE is performing. The discriminator
result shows the performance of the discriminator, how good it can rate between real
images and noised images.
Several experiments have been made before reaching the final results, using different
batch size, different loss functions, therefore, first the main results would be illustrated.
And then, a compasion would also be made between different experiments.

Figure 7.1: training loss plot
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7.1 training results

This section shows the change of the loss function during training. It is clear to see,
that the training loss has two stages of decreasing, illustrated in figure 7.1.
The first stage of decrease happens in the very beginning of the training, the loss value
is reduced to a certain degree. Then, after several epochs, the loss function remain stable
(till after 12 epochs), but the performance of the autoencoder is not good, illustrated
in figure 7.2. Here, in the output results, the original images are shown in a row, and
the output of the autoencoder is shown in the row below. It is clearly to see, during
the staged-period of the loss value, the performance of the autoencoder remains poor,
comparing to the performance after the second loss value decrease, illustrated in figure
7.3.

Figure 7.2: AAE output result after 6 epochs

The critical decrease of loss value happens in the 12th epochs. It is shown in the
figure 7.4. The training result is getting much better and resembles more and more the
original input in this epoch.
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(a) training after 6 epoch (b) training after 12 epoch

Figure 7.3: AAE output result after 6 and 12 epochs

Meanwhile, from the results in other figures i.e. figure 7.5 and figure 7.6, it is possible
to see, after the training loss value has decreased to certain degree, the validation output
also performance a satifying result, with limited performance weakness comparing to
the training output, shown in figure 7.6. This indicates, that the generator has reached
a relatively good performance level (illustrated in detail in the next section 7.2) when
the loss value has reached its second decrease stage.

Additionally, the decrease in loss value is also highly relevant with the performance
of the discriminator, illustrated in figure 7.7.
The first row is the output of auto-encoder on training data. The second row of plots is
the generator loss value plot, the third row of plots is the discriminator loss value plot,
i.e. the adversarial loss function value plot.

50



7 results

(a) training after 11 epoch (b) training after 12 epoch

(c) training output in between

Figure 7.4: AAE output result after 11 and 12 epochs

It can be observed, after the generator loss value reaches its second stage, the value
and variances of the discriminator increases, which is clearly illustrated in the figure
7.8. Furthermore, it is not observable that the discriminator loss has a tendency of
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(a) validation after 11 epoch (b) validation after 12 epoch

(c) validation output in between

Figure 7.5: AAE output result after 11 and 12 epochs

convergence. And the evaluation of the discriminator would be illustrated in detail in
section 7.3
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(a) training output between 12th epoch

(b) validation output between 12th epoch

Figure 7.6: Comparison between training and validation output

7.2 generator results

In this section the result of the generator in the experiment would be displayed. The
generator is the part of the decoder part of the autoencoder. Although, it is not directly
correlated with the regularizer trained. It is possible to use the generated images as
the counterfactual images to train the discriminator to understand better of the true
images.

The plots shown below (figure 7.9 and figure 7.10) are the series of output from the
decoder, when a random normal distribution is sampled in the latent space and fed
into the decoder.
The shown images are the group of output results in the critical epochs 11th, 12th, 13th,
when the generator loss value reached its stage after second decrease. It can be seen
that the improvement of generator performance occurred later than the second decrease
stage, illustrated in figure 7.9. Due to the variational autoencoder requirements, the
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(a) training after 1 epoch (b) training after 6 epoch (c) training after 12 epoch

Figure 7.7: loss function and generator result

training for the training for the variational part is more time consuming.
The better results occurred in the around 25 to 50 epochs, as shown in the figure7.10.
The generated results are already really close to the created datasets. In this way, the
decoder can be used as a easy dataset-generator for further study, as generator for basic
facts, or counterfactual "fake" or "noised" images, according to the research setting.
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(a) generator loss after 25 epoch (b) discriminator loss after 25 epoch

Figure 7.8: AAE output result after 6 and 12 epochs

7.3 discriminator results

In this section, the performance of the discriminator would be displayed. As the dis-
criminator is the regularizer, the performance of the discriminator would be evaluated
by performing on the original data and the noised image dataset as illustrated in the
section 6.3.
The evaluation would be divided into three parts. A general frequency table of the
results, indicating the distribution of the score given by the regularizer.
The average score plot with different degrees of noise in different noise type, this would
trying to figure out, whether the regularizer is sensitive to the complexity of the noise.
The average score plot of the generated images, this part the performance of the regu-
larizer would be evaluated on the generated dataset, checking whether the regularizer
is possible to distinguish between the real images and the generated images.

7.3.1 general result

This figure 7.12 shows the frequency table of the score. It can be seen the blue results
are the real images, and the others are noised images. The distribution of the scores
are relative separable. The mainly distributed smaller than 0.5, and the noised images
distributed larger than 0.5.
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7.3.2 noise specific result

Gaussian noise

This is the two plots when add on Gaussian noises.
The figure 7.13(a) shows the score plot from the regularizer when Gaussian noise is
added to the image. It is shown that with second Gaussian noise added, the regularizer
is already giving lower score than the original one, which means the regularizer is not
resistant to the addictive Gaussian noise.
The second figure, figure 7.13(b), shows the score plot of the regularizer when Gaussian
noise with different standard deviation is added on the plot. The plot, indicate that
the there are siginificant difference between the original image and the Guassian nosed
image. However, the regularizer is not sensitive to the changes in the standard deviation
of the Gaussian noise. The regularizer cannot give a higher punishment to the picture
with more noise.

other noise

Other noise have similar results as the gaussian, as seen in the distribution, illustrated in
figure 7.12. The distribution of the noised images are relatively similar, but insensitive
to the level of noise.
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(a) generator after 11 epoch (b) generator after 12 epoch

(c) generator after 13 epoch (d) generator after 15 epoch

Figure 7.9: generated images in critical epochs
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(a) generator after 15 epochs (b) generator after 25 epochs

(c) generator after 40 epochs

Figure 7.10: generator results
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Figure 7.11: evaluation structure of the regularizer
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Figure 7.12: evaluation structure of the regularizer
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(a) additive Gaussian

(b) Gaussian with different std

Figure 7.13: regularizer agaisnt Gaussian noise
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8 Conclusions and discussions

This chapter conclude the work of the whole project, concluding the findings of the
whole project, and discuss the further research possibilities. The conclusions would
focus on the findings, the contributions of the project and possible further extensions.
The discussions would focus on the possible critiques on the research and possible
improvement.

8.1 Conclusions

The project basically is illustrated in the figure 8.1. Firstly, the data is created to mimick
the defect in the need of the project, and a VAE is trained with GAN structure. An
adversarial discriminator is used to force the VAE to generate better images. And the
discriminator is forced to distinguish the real images and the fake images. After the
convergence in the VAE generator, the encoder and the discriminator is combined to
use as the regularizer.

8.1.1 data creation

The project has put some efforts in the mimicking of the defect, trying to finding a
extendable way for further full waveform inverse problems settings. The dataset turns
out to work well with experiment settings.
The main data used in the experiments were the 2-norm distribution based spline. This
DOF is possible for the model to learn in a reasonable time, reaching a convergence.
And, interestingly, the result is surprisingly robust for 5-norm distribution based spline.
It is possible for the VAE to reconstruct the 5-norm distribution base spline during the
validation process. Therefore, a more thorough research on the dataset construction and
the relation of performance between different DOF distribution sets could be conducted.
We may see the transfer ability of the model between high DOF and low DOF dataset.
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Figure 8.1: conclusion model of the project

8.1.2 GAN-training

To conclude, it is quite difficult to train out a proper GAN networks. The adversarial
part adds more challenges to the reach of convergence.
From the initialization, serveral initialization would lead to no convergent solutions.
Espeicially, for GAN-trained network, with no inital information for the discriminator,
it would be highly possible, that the training lead to no possible result.
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The model structure, mainly how fast the features should be extracted, how many
layers should be included to extract the features, and how large the latent space should
be, are highly related with the data structure. When there are too many weights to
learn, although the extraction is not extreme, if the data is not sampling enough for the
features, it would be difficult for the model to learn useful information.
The batchsize is also essential to the data training due to the same reason, the model has
to got either too much information making the features sparse, or too little information,
not able to extract any feature. Therefore, it is important to choose the proper batchsize.

To select the proper hyper parameters mentioned aboove for the training, "overfitting"
processs, training the model with small number of images, i.e. small variance in the
training data, would on one hand save the training time, and on the other hand receive
a brief understanding of the training.
However, it is also possible that the convergence in the overfitting scenario would not
be transmittable in a larger dataset scale. A smaller batch-size at the beginning to mimic
the overfitting situation might help understand the initialization situation. However,
a small batchsize would also lead to changes in gradient, it would be difficult to find
the proper gradient that would lead to converge. Therefore, there is no firm answer
to the application of the training details. It must be altered according to the result of
the current training. The speciality of the GAN trained model is the adversarial part,
which is in need of a proper initialized discriminator.

The most siginificant feature of the training process, is the two stages of the generator
loss, which is not occurred during a traditional VAE, indicating the adversarial contribu-
tion to the generator. This makes the generator more stable and of better performance.
However, it made the training for discriminator relatively difficult and not possible to
converge. The significant decrease in the training loss leads to the oscillation of the
discriminator loss.
A possible soluton would be to train a discriminator at the beginning, and try to
improve the performance of the discriminator and the generator together. However,
this is not very realistic in the problem setting given.
Another possible solution, is to use the poorly trained generator, the generator at the
critical epochs, to trained the initial discriminator. Although this would need a lot of
manual interference of the training, it would be possible to reach better results.

As mentioned, the trained generator would be a good source of images. It is already
used in the evaluation of the regularizer. There would be more use of the generator.
Since, usually people concern more of the performance of the generator, rather than
the discriminator. Therefore, there would still be large research gap for research in the
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training of the discriminator during a GAN-training.

8.1.3 Regularizer

From the evaluation of the regularizer, it is possible to conclude that the regularizer
would be able to distinguish from the image that it has been trained with, and distin-
guish these images from the manually added noised images.

However, the score difference between the values are not very clear. The most scores
located between around 0.5, which is not giving large enough punishment to specific
data.
Another not ideal situation, would be the insensitivity to the noise level. When given
more noised images, the regularizer is not able to recognize and give out higher pun-
ishment.

To address the two problems, one possible solution would be, include the specific
data into the training scenario, train the model’s ability to deal with specific kind of
true and fake images. For example, including the image and the noised image in the
input, teach the discriminator to distinguish between each other.
This would however diminish the meaningfulness of a GAN-trained model. We use the
GAN trained model counting on the generalization ability in faced of attacks that it
would bring with the adversarial training process. If we add on the thorough noised
dataset for the model to distinguish, it would be more like two separately trained
models.
Therefore, it is high time we carefully include some of the noised/counterfactual images
in the training dataset, trying to reach a balance between the performance of the model
and the generalization ability of the model.

Another possible reason would be that, in the training process for the regularizier,
the adversarial loss is not taking too much part of the whole loss, making the update of
the discriminator rather small and trivial.
Therefore, a possible solution would be increase the percentage of the adversarial loss.
However, if we try to increase the percentage of the adversarial loss. It would be
difficult for the whole model to reach the convergence. This is intuitively reasonable, as
the initialization of the discriminator is extremely difficult, when the generator has no
information of a gradient update, the adversarial part would make the convergence to
the correct gradient much more difficult.
A possible solution to this would be, only increase the percentage of the adversarial
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part when using a pre-trained generator as initialization of the model. This solution
has been tried during the experiement, but did not reach significant result. This may be
due to the limit capacity and time invested in hyper-parametering and experimenting.
It possible of solving the problem in this way should not yet be ruled out.

8.2 Discussions

An important critique would be, based on the problem setting, it would be difficult to
have a pre-trained discriminator. Since, the kind of "attack" the discriminator is faced
with is not clear, it would not possible to directly trained such discriminators. This
would lead to the difficulty in training the GAN model.
For the primitive discriminator, a possible solution would be make a discriminator
based on the knowledge-driven based model. And try to improve the knowledge based
model by data-driven methods, for example use the GAN trained model structure.

Another reason to combine the knowledge-based model and the data-driven model
would be due to the solution of the inverse problem. The inverse problem choose
already the data-driven model, trying to seek a solution using the machine learning,
making the regularizer necessary for a better solution.
It is possible that in this scenario, a knowledge-based regularizer would outperform
the data-driven regularizer. Theoretically, the two kinds of regularizers are both apppli-
cable, but both have weakness. Further reseach maybe done to check the performance
difference between them, or combine them together for better regularization of a data-
driven inverse problem.

Also, the evalution of the current regularizer is relatively primitive. The accurate
performance evaluation of a regularizer can only be done together with the inverse
problem. Therefore, further study shall be done to validate the accurate performance
of a GAN trained regularizer.
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