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Abstract

This work is about data fusion and multi-fidelity data in finance. Data fusion has
recently been widely used in finance data analyses. Portfolio optimization, a special
multi-objective optimization problem, is rebalancing asset allocation. This work aims
to improve portfolio optimization using multi-fidelity data and data fusion methods to
generate a new portfolio, which can bring higher returns and a better Sharpe ratio. Our
work is the first attempt to apply multi-fidelity for portfolio optimization. We define
fidelity in portfolio optimization. We propose two different multi-fidelity models in
portfolio optimization. One is the sampling interval based multi-fidelity model. The
other one is the prediction based multi-fidelity model. According to the experiment
results, the sampling interval based multi-fidelity model is feasible. We can generate a
fused long-term portfolio from short-term and long-term portfolios in the sampling
interval based multi-fidelity model. This fused long-term portfolio can outperform
long-term portfolios. Moreover, this model can refine the Sharpe ratio and the return
by a binary prediction of local optimal γ∗

short.
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1 Introduction

This work explores using multi-fidelity data fusion and Gaussian processes in port-
folio optimization. Data fusion has recently been widely used in finance data analy-
ses[42][15][43] [38]. Mainly, Gaussian processes and Bayesian optimization have been
successful in finance analysis [14][28]. This work wants to apply Gaussian processes
and multi-fidelity data for new financial areas and portfolio optimization. Portfolio opti-
mization,a special multi-objective optimization problem,[25] rebalances asset allocation
based on multi-objectives. Trend-following strategy, a traditional algorithm to rebalance
asset allocation, must manually adjust some hyperparameters[8][14]. These suitable
hyperparameters can be selected faster using Bayesian optimization with a squared
exponential kernel in hyperparameter space. With these optimized hyperparameters, a
trend-following strategy can generate some outstanding portfolios.

This work aims to improve the performance of portfolio optimization to generate a
better portfolio, which can bring a better return and higher Sharpe ratio. [39] Before our
work, Tseng and Allen used multi-fidelity methods in financial engineering. In their
research, they try to solve the problem that information about alternative surrogate
systems’ accuracy or ’fidelity’ may be ambiguous and difficult to determine in practical
applications. In our work, we need to solve a similar problem: What is the accuracy of
portfolio optimization? Our work is the first trial to apply multi-fidelity for portfolio
optimization. We need to define the fidelity of portfolio optimization. Traditionally, the
fidelity is equivalent to the accuracy. A high-fidelity model can generate a more exact
solution than a low-fidelity model. However, in portfolio optimization, the definition of
fidelity needs to be clarified because accuracy is hard to measure.

Based on different definitions of fidelity, we propose two different multi-fidelity
models in portfolio optimization. One is the sampling interval based multi-fidelity
model. The other one is the prediction based multi-fidelity model. According to some
tests, we found that the prediction based multi-fidelity model needs to be revised.
Fortunately, the sampling interval based multi-fidelity model is feasible according to
the experiment results.

Our work goal is to improve the return and Sharpe ratio of the portfolio. The
sampling interval-based multi-fidelity model can fuse a short-term portfolio into a
long-term portfolio to generate a fused long-term portfolio. The fused long-term
portfolio can outperform the long-term portfolio. Moreover, γshort, a hyperparameter in
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1 Introduction

the sampling interval based multi-fidelity model, can affect the Sharpe ratio and the
return of the fused long-term portfolio. The local optimal γshort distribution is similar
to a two-point distribution.

The main contribution of this work is to propose a new model based on the different
sample intervals and fusion algorithms for portfolio optimization. We observe that it
improves the Sharpe ratio and increases long-term portfolio returns. Moreover, this
model can refine the Sharpe ratio and the return by a binary prediction of local optimal
γshort.

1.1 Outline

Chapter 2 covers the theoretical background behind portfolio optimization, multi-
fidelity, and Gaussian process. We mention financial data characteristics, assets, portfo-
lios, and how portfolio optimization can work. The reasons for the difficulty of portfolio
optimization and the performance benchmark in our work are also introduced. At the
same time, we also introduce multi-fidelity models, Gaussian Processes, and Gaussian
Processes Regression. In Chapter 3, we will describe two process models. One is process
models of portfolio optimization. One is process models of multi-fidelity methods.
Chapter 4 introduces two different multi-fidelity portfolio optimization models in this
work. One is the prediction based multi-fidelity model. The other one is the sampling
interval based multi-fidelity model. We introduce their design principles and trade-offs
one by one. Chapter 5 covers the implementation of our work. We post a UML class
diagram and a package diagram. Chapter 6 records the experiment results of the
sampling interval based multi-fidelity model. Six different experiments are designed
and conducted to prove that our model can improve the long-term portfolio’s return
and Sharpe ratio. Finally, we conclude our work and plan for future work in Chapter 7.

2



2 Theoretical Background

This section recalls basic concepts about assets, portfolios, portfolio optimization
problems, and multi-fidelity.

2.1 Financial Data Characteristics

Portfolio optimization[25][27] refers to the optimal combination of financial assets.
The target of portfolio optimization is financial assets and the corresponding financial
data. With these financial data come new challenges associated with their analysis.
Financial data sets may contain thousands of transactions or posted quotes in a single
day, stamped to the nearest second. The sizes of these financial data sets are huge, but
the valuable information could be more extensive. The analysis based on these financial
data is a challenging task because it is complicated due to the low signal-to-noise ratio
and non-stationary time series.

2.1.1 Low Signal-to-Noise Ratio

Financial markets are highly uncertain, and the signal/information hidden behind
financial data is weak compared with the amount of noise[22]. The signal-to-noise ratio
(SNR) is the ratio between desired information and undesired information[1]. It is a
measurement to compare the level of a desired signal to the level of background noise
in engineering and science. Different SNRs can reflect different abilities of the data
source. One prevalent assumption is that the signal-to-noise ratio can partly indicate
the prediction skill, how much predictability exists within a system [2][9]. The other
assumption is that we need more data to validate a signal for the signal prediction when
the signal-to-noise ratio is very low.[21]. The low signal-to-noise property may lead to
severe overfitting issues and inaccurate prediction of future financial data. According
to [22], the signal-to-noise ratio of the financial data is very low.

Many researchers expressed skepticism about whether the current models can suf-
ficiently distinguish between signal and noise. Some real-world examples reinforce
this sentiment. Many machine learning models about financial data mistook noise for
signal and launched strategies that looked good on backtests but failed post-launch[22].

3



2 Theoretical Background

2.1.2 Non-Stationary Time-Series Data

Most financial data is non-stationary time-series data [37]. In most research [20], it
is assumed that financial data is stationary time series data. Using non-stationary
time series data in financial models can produce unreliable and spurious results. The
solution to this problem is to do transformations and adjustments of the time series
data so that it becomes stationary[20]. It can be transformed into a stationary process
by differencing [20] to compute the differences between consecutive observations when
the non-stationary process is a random walk with or without a drift. On the other hand,
if the time series data analyzed exhibits a deterministic trend, detrending can avoid
spurious results [6].

2.2 Asset

In portfolio optimization, the target is optimal asset allocation. For example, how much
asset should we buy/sell at a particular time? Before making an asset allocation, the
corresponding financial data should be analyzed. In this work, we focus on the stock
in the secondary market. The asset in our work is the stock in the secondary market.
Hence, our financial data is the stock price in the secondary market. Before introducing
the portfolio, we need to define asset price and return.

2.2.1 Asset Price

In this work, our asset is the stock in the secondary market. Hence, the asset prices
are stock prices in the secondary market. In the secondary market, the participator can
purchase the stock at a target price using an order. Each order is assigned a price. In
real-world situations, the number of orders is million upon billion for each stock daily.
It is necessary to choose one of them to represent the asset value.

Without loss of generality, the stock price can be represented by the closing price,
the raw price of the last transacted price before the market officially closes for normal
trading. In other words, the closing price is from the last stock transaction every day.
Closing price is a trendy choice by many researchers to represent the stock price.

2.2.2 Asset Return

The immediate research data in portfolio optimizations is not asset price but asset
return. The asset return is [34]:

asset return =
Change in value o f the asset + accumulated cash f lows

Original value o f the asset
(2.1)

4



2 Theoretical Background

The change in the asset’s value is the difference between the sales price and the purchase
price, while the asset’s original value is the purchase price. In our work, all stock prices
are the adjusted closing price. Hence, dividend payments, new offerings, and stock
splits can be ignored. The accumulated cash flows are zero.

2.2.3 Expected Asset Return

The expected asset return is the expected value of the asset asset return. The expected
asset return represents the return brought by the asset. In portfolio optimization, the
classical choice of the expected asset return calculation is the historical average returns,
which can calculated by a simple moving average.

Simple Moving Average (SMA)

A simple moving average (SMA) in portfolio optimization is the unweighted mean
of the previous k data points, where k is the rolling window size. Let us consider
data-points R1, R2...Rn. These data points are the historical returns. We denote the
mean over the last k data points as SMAk. It is calculated as

SMAk =
Rn−k+1 + Rn−k+2 + ... + Rn

k
=

1
k

n

∑
i=n−k+1

Ri (2.2)

2.3 Portfolio

A portfolio is a collection of investments constructed and held by an institution or a
private individual for diversification[25].

2.3.1 Definition of Portfolio

A portfolio is a combination of n assets. Let x ∈ Rn and x = (x1, x2, ..., xn) be the
allocation vector of weights in the portfolio . And we assume that portfolio is fully
invested : x1 + x2 + ... + xn = 1.

2.3.2 Portfolio Return

Let R = (R1, R2, ..., Rn) denote the vector of asset returns. The portfolio return R(x) is
then equal to

R(x) =
n

∑
i=1

xiRi = xTR (2.3)

5



2 Theoretical Background

2.3.3 Expected Portfolio Return

Let µ = E[R] be the vector of expected returns of asset returns.
The expected portfolio return [35] can be :

µ(x) = E[R(x)] = E[xTR] = xTE[R] = xTµ (2.4)

2.3.4 Portfolio Variance (Portfolio Volatility)

Portfolio variance or portfolio volatility is a portfolio risk measurement by a measure of
uncertainty[18][35]. Portfolio variance can be regarded as the covariance or correlation
coefficients for the assets in a portfolio. Generally, a lower correlation between assets
in a portfolio results in a lower portfolio variance. The portfolio variance statistic is
calculated using the standard deviations of each asset in the portfolio as well as the
correlations of each asset pair in the portfolio.

Let us consider an asset i with returns Rit, where t indexes time. The variance of this
asset’s returns σ2

i is :

σ2
i = E[(Ri − µi)

2] = (1/T)(
t=1

∑
T
(Rit − µi)

2) (2.5)

where µi denotes the mean return of asset i and T the number of observations.
The covariance between asset i and asset j , σij is given by :

σij = E[(Ri − µi)
2] = (1/T)(

t=1

∑
T
(Rit − µi)(Rjt − µj)) (2.6)

Let Σ = E[(R − µ)(R − µ)T] be the vector of the covariance matrix of asset returns.
The portfolio variance σ2(x) is

σ2(x) = xTΣx (2.7)

where Σ is a n × n matrix of covariances ,

Σ =


σ11 σ12 ... σ1n

σ21 σ22 ... σ2n
...

...
. . .

...
σn1 σn2 ... σnn

 (2.8)
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2 Theoretical Background

2.3.5 Goal of Portfolio

The portfolio is an asset allocation. When determining an asset allocation, the corre-
sponding goal is to maximize the expected portfolio return and minimize the portfolio
risk. A portfolio is preferred to another if it has a higher expected return and lower vari-
ance. However, how can we find a portfolio that can maximize the expected portfolio
return and minimize the portfolio risk? The best way is portfolio optimization.

2.4 Portfolio Optimization

Portfolio optimization is the process of rebalancing asset allocation based on multi-
objectives[25][27]. It can be treated as a particular multi-objective optimization problem.
Traditionally, portfolio optimization is going to select different assets to invest to
maximize the overall return and minimize the overall risk simultaneously. The selection
of different assets is based on the mean-variance optimization framework(mean-variance
analysis).

2.4.1 Goal of Portfolio Optimization

Portfolio optimization is to select the best asset allocation according to some special
objective[25][27]. The result of portfolio optimization is an optimal portfolio. As
introduced in the section, a better portfolio is a portfolio that can bring a better return
and lower risk. The actual return and the actual risk are generally unobservable and
unknown, The expected return and the expected risk can be measured. Portfolio
optimization is to select an optimal allocation that can maximize the expected return
and minimize the expected risk simultaneously.

In a typical portfolio optimization (equation 2.9 and equation 2.10 ), We want to
maximize the expected return of the portfolio u(x) under some constraints or minimize
the portfolio volatility σ(x) under some constraints. The portfolio volatility σ(x)
represents the risk.

Max u(x) s.t. constraints (2.9)

Min σ(x) s.t. constraints (2.10)

2.4.2 Modern Portfolio Theory (Mean-Variance Analysis)

This section introduces the modern portfolio theory, or mean-variance analysis, and
discusses its different formulations.

Mean-variance analysis is an approach to the optimal portfolio choice problem
introduced by Harry Markowitz in 1950[25][27]. According to Markowitz’s suggestion,

7



2 Theoretical Background

the portfolio choice should be made concerning two criteria: the expected portfolio
return and the variance of the portfolio return. A portfolio is preferred to another if
it has a higher expected return and lower variance. Mean-variance analysis can be
regarded as an optimization problem and geometric interpretation of the trade-off
between the expected return and variance. (a mean-variance optimization framework
that can assist in selecting the most efficient portfolio by analyzing various possible
portfolios of the given assets.) In this work, we consider long position (long position
means that xi >= 0) and full allocation ∑n

i=1 xi = 1Tx = 1 in this work.
The portfolio choice problem is typically treated as a one-period problem in classical

portfolio optimization. The main principle of mean-variance analysis consists of two
different ways:

• find the portfolio with the minimum variance from all feasible portfolios with a
lower bound on the expected performance, like equation 2.10.

• find the portfolio with maximum expected performance from all feasible portfolios
with a given upper bound on the variance of portfolio return, like equation 2.9.

In this work, we focus on the second principle, to maximize the expected performance
with a given upper bound on the variance of portfolio return. The corresponding
optimization problem of equation 2.9 is:

max
x

xTµ

s.t. xTΣx ≤ R⋆

xTe = 1

x ≥ 0

(2.11)

Where :

• R⋆ is the upper bound on the portfolio variance.

• x ≥ 0 means that all components of the vector are non-negative, xi ≥ 0, i = 1, ..., n.

The corresponding optimization problem of equation 2.10 is:

min
x

xTΣx

s.t. xTµ ≥ R⋆

xTe = 1

x ≥ 0

(2.12)
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Where :

• R⋆ is the lower bound on the expected performance (the expected portfolio
return).

• x ≥ 0 means that all components of the vector are non-negative, xi ≥ 0, i = 1, ..., n.

2.4.3 Regularized Markowitz Portfolio Optimization

The idea of using penalization comes from the regularization problem of linear re-
gressions. Penalization has mainly been used in forecasting to improve out-of-sample
forecasting [44]. Markowitz portfolio optimization is related to linear regression [36],
and regularizations may improve the performance of Markowitz portfolio optimization.

L2 Constrained Portfolio

The L2 regularization method is one of the most famous regularization procedures.
Using L2 regularization, we could prevent overfitting by penalizing complex models.
In portfolio optimization, overfitting can cause an extremely imbalanced portfolio,
which contains many negligible weights[13]. In order to reduce the number of negli-
gible weights, we can add the L2 regularization to the objective function in portfolio
optimization [13][8].

In our work, the L2 regularization is written as follows:

− γxTx (2.13)

Where :

• γ is L2 regularization parameter.

When this L2 regularization parameter is a maximum value, all weights of the
portfolio are equally distributed. Furthermore, when this L2 regularization parameter
is a minimum value, the entire portfolio is allocated to one asset. Hence, it can reduce
the amount of negligible weight.

2.4.4 How to Solve Optimization Problem in Mean-Variance Analysis?

Mathematical optimization is a very difficult problem regarding complex objectives
and constraints. Fortunately, mean-variance analysis with standard objectives and
constraints, like equation 2.11 and equation 2.12, are convex optimization problems
that are a well-understood class of problems[13]. The task of how to solve a convex
optimization problem is done directly by CVXPY. [41]
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2.5 Portfolio’s Performance Benchmark

The goal of portfolio optimization is to generate a good portfolio. A good portfolio can
bring a very high actual return and a low actual risk. Therefore, portfolio optimization
aims to maximize the return and minimize the variance. This section introduces some
relevant benchmarks for comparing a portfolio’s performance .[3] Traditionally, there
are three different types of benchmarks in portfolio performance evaluation: absolute
return measures, risk-adjusted return measures, and performance attribution. In our
work, we focus on absolute return measures and risk-adjusted return measures.

2.5.1 Average Return

To evaluate the portfolio, this section introduces our first benchmark, average return
[35]. In real situations, the return on a portfolio must be measured when a portfolio
needs to be rebalanced over time. If we want to see the portfolio’s performance every
period, average return is the best choice. Let us consider the portfolio return at time t
is Rt(x). The average return of the portfolios x between time 1 to time t is equal to

RAVG = (
t

∑
i=1

Ri(x))/t (2.14)

Where :

• x is the portfolio.

• Ri(x) is portfolio return at time i

• RAVG is the average return between time 1 to time t

2.5.2 Cumulative Return

This section introduces our second benchmark, cumulative return[35]. If we want
the performance of portfolio total periods, cumulative return is more suitable. Let us
consider the portfolio return at time t is Rt(x). The cumulative return of the portfolios
x between time 1 to time t is equal to

RCUM = (
t

∏
i=1

(Ri(x) + 1)) (2.15)

Where :

• x is the portfolio.

10
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• Ri(x) is portfolio return at time i

• RCUM is the average return between time 1 to time t

2.5.3 Sharpe Ratio

Sharpe ratio, or reward-to-variability ratio, is one of the risk performance measures
that play an essential role in the evaluation of the risk performance of a portfolio. A
higher positive Sharpe ratio represents that an asset can bring higher returns or lower
volatility. It considers not only risk parameters but also return. Sharpe ratio is stated as
follows.

Sa =
R(x)− Rr f

σ(x)
(2.16)

Where :

• R(x) is the return of the portfolio

• Rr f is the risk-free rate

• σ(x) is the standard deviation of the portfolio

2.6 Time Frame in the Application of Portfolio Optimization

The time frame, or investment time horizon, about how frequently to rebalance the
portfolio is significant in applying portfolio optimization. For example, the portfolio
must be rebalanced every day when the time frame is one day. The portfolio needs to be
rebalanced every month when the time frame is one month. The portfolio optimization
applications with different time frames can be regarded as different fidelity models.

Trend-following strategy can generate different portfolios using different time frames.
A short-term portfolio, which is generated using a short-term time frame, focuses on
the short-term asset return. The short-term asset price always brings more uncertainty
because asset prices may be affected by some jamming in a short time. The asset price
could come back to a fair value after the jamming. A long-term portfolio, which is
generated using a long-term time frame, can overcome the jamming and bring a more
stable return. Hence, the long-term portfolio can be more stable than the short-term
portfolio. In other words, a long-term portfolio does not need to refresh (rebalance)
itself frequently. However, sometimes, the performance of the long-term portfolio could
be better than the performance of the short-term portfolio.
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2.7 Multi-Fidelity

Measuring real-world data is fundamental for decision-making in many scientific
fields[30]. Although data can always be generated with a certain quality and quantity
in a computer simulation, it still needs to trade between working with more precise
but huge-cost data or inaccurate but low-cost data in some complex competition. In
this section, we introduce a formalization of multi-fidelity, which we will use in the
following sections.

2.7.1 Multi-Fidelity Models

In this section, we introduce and formalize multi-fidelity models[30].
Let us consider a function f : Z → Y mapping an input z ∈ Z ⊆ Rd to an output

y ∈ Y ⊆ R. The evaluating cost of function f is a certain workload c ∈ R+. A
high-fidelity model is the function fhi : Z → Y with a evaluation workload chi ∈ R+.
A low-fidelity model is the f (i)lo : Z → Y with a evaluation workload c(i)lo ∈ R+. The
evaluating cost of high-fidelity model fhi is more expensive than the evaluating cost of
f (i)lo . The high-fidelity model fhi and the low-fidelity model f (i)lo are the approximations
of the underlying function fexact. The high-fidelity model fhi is a better approximation
of the underlying function fexact than all low-fidelity model f (i)lo . In theory , we consider

a transformation function h(i)trans−lo , which can mapping the underlying function fexact

into f (i)lo , like :

f (i)lo = h(i)trans ◦ fexact (2.17)

The more complex the underlying transformation function h(i)trans leads the worse
approximation performance of f (i)lo . Similarly, we consider a transformation function
htrans−hi , which can mapping the underlying function fexact into fhi , like :

fhi = htrans−hi ◦ fexact (2.18)

The transformation function htrans−hi is more complex than the transformation function
h(i)trans. Figure 2.1 describes the trade-off between low- and high-fidelity models in the
classical multi-fidelity model. As we can see, a high-fidelity model requires more
computation costs but can bring a more exact solution. A low-fidelity model can just
bring an inexact solution, but its computation cost is inexpensive.
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Figure 2.1: Illustrations of the Trade-off between Low- and High-Fidelity Model in
Classical Multi-Fidelity Model [30]

2.7.2 Multi-fidelity Model Management Strategies

This section introduces a multi-fidelity model management strategy[30]. A model man-
agement strategy typically describes combining and applying different fidelity models.
There are three types of multi-fidelity model management strategies: adaptation, fusion,
and filtering. Our work is related to adaptation and fusion.

Adaptation The first type of multi-fidelity model management strategy is an adapta-
tion, enhancing the low-fidelity model with information from the high-fidelity model
while the computation proceeds [30]. One typical case of adaptation is the correction
of low-fidelity model outputs. The correction, which is derived from the high-fidelity
model, can be added to the low-fidelity model output to generate a better output. In
this situation, the low-fidelity model provides a primary result with a lower evaluation
cost. In contrast, the high-fidelity model provides the correction that can improve the
accuracy of the basic result. Therefore, the low-fidelity model can turn into a more
accurate model after such an adaptation process,

Fusion The second multi-fidelity model management strategy type is information
fusion, combining information from different fidelity sources. One typical case of
fusion is the control variate framework [7][17][30]. In the control variate framework, the
correlation between high- and low-fidelity models can reduce the variance of Monte
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Carlo estimators. An estimator with a low variance can be obtained from a large
number of low-fidelity model evaluations, A few high-fidelity model evaluations can
be leveraged to obtain unbiased estimators of the statistics of interest, which can be
derived from the estimator with a low variance.

2.8 Gaussian Process

In this section, we introduce Gaussian progress and Gaussian progress regression.

2.8.1 Multivariate Gaussian Distributions

This section recalls the basic concept of Gaussian distributions and multivariate Gaus-
sian distributions[40].

Gaussian distributions are the fundamentals of Gaussian process regression. The
Gaussian distributions N(µ, σ2) can described by its probability density function :

f (x) =
1

σ
√

2π
e−

1
2 (

x−µ
σ )2

(2.19)

Where:

• The parameter µ is the mean or expectation of the distribution

• The parameter σ2 is the variance of the distribution.

The multivariate Gaussian distribution of a d-dimensional random vector X =

(X1, ..., Xd)
d can described in the following notation: X ∼ N(µ, Σ) Where:

• The parameter µ is d-dimensional mean vector with µ = E[X] = (E(X1), E(X2), ..., E(Xd))
T

• The parameter Σ is d × d covariance matrix with Σi,j = E[(Xi − µi)(Xj − µj)] =

COV[Xi, Xj]

The corresponding probability density function is :

fX(x1, ..., xd) =
exp(− 1

2 (x − u)TΣ−1(x − u))√
(2π)d |Σ|

(2.20)

Where:

• The parameter x is d-dimensional column vector

• The parameter |Σ| ≡ detΣ is the determinant of Σ.

• The parameter Σ is d × d covariance matrix with Σi,j = E[(Xi − µi)(Xj − µj)] =

COV[Xi, Xj]
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2.8.2 Marginalization

Assuming a multivariate Gaussian distribution X ∼ N(µ, Σ) is given and Xs is a any
subset vector of X. The marginalization property of Gaussian distributions states that
the marginal distribution of Xs is also a multivariate normal distribution.

Xs ∼ N(µs, Σs)

Where:

• The parameter µs drops the irrelevant variables from the mean vector µ

• The parameter Σs drops the corresponding rows and columns from the covariance
matrix Σ

For example, let us consider X is partitioned as follows:

X =

[
x1

x2

]
µ and Σ are partitioned as follows:

µ =

[
µ1

µ2

]

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
The covariance matrix Σ is symmetric , Σ11 and Σ22 are also symmetric. According to

the marginalization property , x1 and x2 follow the multivariate Gaussian distributions
with the following distributions:

x1 ∼ N(µ1, Σ11)

x2 ∼ N(µ2, Σ22)

2.8.3 Conditional Distributions

Assuming a multivariate Gaussian distribution is given. Let us consider d-dimensional
x s partitioned as follows [40][33]:

x =

[
x1

x2

]
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with size
[

q × 1
(N − q)× 1

]
.

µ and Σ can be partitioned as follows:

µ =

[
µ1

µ2

]

with size
[

q × 1
(N − q)× 1

]
.

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
with size

[
q × q q × (N − q)

(N − q)× q (N − q)× (N − q)

]
.

According to [40], the conditional distribution x1|x2 is also a multivariate Gaussian
distribution with the following distributions:

x1|x2 ∼ N(µ1|2, Σ1|2)

Where:

• µ1|2 = µ1 + Σ12Σ22
−1(x2 − µ2)

• Σ1|2 = Σ11 − Σ12Σ22
−1Σ21

2.8.4 Gaussian Processes

A stochastic Gaussian process can be described as a collection of random variables
indexed by time or space [40][33]. Each collection of those random variables has a
multivariate Gaussian distribution. In other words, the distribution of a Gaussian
process is the joint distribution of those random variables. This distribution of a
Gaussian process is over functions f (x) with a continuous domain. These functions
f (x) can be evaluated at x1, ..., xn. The mean of f (x) is the mean function m(x) :

m(x) = E[ f (x)]

The covariance between the two random variables f (xi) and f (xj) corresponding to
xi and xj is the kernel function k(xi, xj):

k(xi, xj) = cov( f (xi), f (xj)) = E[( f (xi)− m(xi))( f (xj)− m(xj))]

Gaussian process can be written as :

f (x) ∼ GP(m(x), k(x, x′))
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.
The shape of the Gaussian processes model is defined by the mean function m(x)

and the kernel function k(x, x′). Some common covariance functions include:

• Constant : KC(x, x′) = C

• Linear : KL(x, x′) = xTx′

• Squared exponential : KSE(x, x′) = exp(− d(x,x′)2

2ł2 ) , where l is the length scale of
the kernel and d(·, ·)is the Euclidean distance.

2.8.5 Gaussian Processes Regression

In this section, we are going to introduce Gaussian processes regression[40]. According
to, the regression function modeled by a multivariate Gaussian is defined as:

P( f |X) = N( f |µ, K)

, where:

• X are the the observed data points with X = [x1, ..., xn] .

• f = [ f (x1), ..., f (xn)]

• µ = [m(x1), ..., m(xn)] and m(·) represents the mean function.

• Kij = k(xi, xj) and k(·, ·) represents a positive definite kernel function.

Based on this model, we can predict the result at new points X∗ as f (X∗). Let us
consider the joint distribution of f and f∗ can be described as :[

f
f∗

]
∼ N(

[
m(X)

m(X∗)

]
,
[

K K∗
KT
∗ K∗∗

]
)

, where:

• K = K(X, X) ,K∗ = K(X, X∗) and K∗∗ = K(X∗, X∗)

• (m(X), m(X∗)) = 0 , while the data is often normalized to a zero mean.

In fact , this joint distribution of f and f∗ is the joint probability distribution equation
P( f , f∗|X, X∗) over f and f∗. In regressions , we want to know the conditional
distribution P( f∗| f , X, X∗).

Using the theorem, the corresponding conditional distribution is :

f∗| f , X, X∗ ∼ N(KT
∗ K f ,−KT

∗ K−1K∗)
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In the last chapter, we recall some background knowledge about portfolio optimization
and multi-fidelity. In this section, we want to specify the portfolio optimization process
model and the multi-fidelity method process model.

3.1 Process Models of Portfolio Optimization

This section describes the process model of portfolio optimization.
Classical Portfolio optimization is based on the single-period model of investment. A

single-period investment always takes place over only one period. Before or after this
period, there is not any investment. In other words, the portfolio turnover costs can
be ignored. Portfolio optimization can be divided into four steps: Data Sampling, Data
Preprocessing, Optimization Problem Solving, and Result Evaluation, as illustrated in 3.1.

3.1.1 Data Sampling

The first step is Data Sampling. In this step, raw data is collected from the financial mar-
ket. In our work, the raw data is stock prices from the secondary market. Specifically,
the raw data is the closing price based on different time frames. Using different time
frames represents using different sampling intervals or sampling periods. The data
from financial markets is historical time-series data. The amount of these historical
time-series data is limited. A large sampling interval can lead to a smaller data set size.
In contrast, a smaller sampling interval can bring a more extensive data set.

3.1.2 Data Preprocessing

The second step is Data Preprocessing. Raw data must be preprocessed before being used
in optimization problem solving. Data Preprocessing contains four different calculations.

Adjusted Closing Prices

Firstly, the adjusted closing prices need to be calculated from raw data to ensure
comparability because dividend payments, new offerings, and stock splits can make a
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non-linear change in asset prices[29]. In this work, the raw data are the adjusted closing
prices[5] from Yahoo Finance. Hence, this calculation can be ignored.

Historical Asset Returns

Secondly, the historical asset returns need to be calculated from these adjusted clos-
ing prices using the formula 2.1. At the same time, the research target in portfolio
optimization is not asset prices but asset returns.

Expected Asset Returns

Thirdly, the expected asset return needs to be calculated from historical asset returns
because building a portfolio is a forward-looking activity [25]. Thus, the asset returns
must be forecast rather than observed. Calculating the expected asset returns for all
assets is equivalent to calculating the expected portfolio return. This calculation is
based on the formula 2.2 in our work.

Covariances of Asset Returns

Finally, the covariances of asset returns are required to be calculated from historical
asset returns using the formula 2.5. A calculation of covariances among all assets is
equivalent to a calculation of the portfolio variance.

3.1.3 Optimization Problem Solving

The third step is optimization problem solving. This step is the core component of portfolio
optimizations because the first and second steps are just about data preparation. This
step generates an optimal portfolio by solving an optimization problem. Traditionally,
this optimization problem is mean-variance analysis. The input of this optimization
problem is the expected portfolio return and the expected portfolio variance. Mean-
variance analysis with standard objectives and constraints are convex optimization
problems that are a well-understood class of problems. Hence, it can be solved by
mathematical tools, such as quadratic and linear programming. The detailed setting of
the optimization problem is mentioned in the section. In this work, the optimization
problem is directly solved by CVXPY.[41]

Optimization Problem Setting

In our work, our target optimization problem in portfolio optimization is as follows:
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max
x

xTµ − γxTx

s.t. xTΣx ≤ R⋆

xTe = 1

x ≥ 0

(3.1)

Where :

• R⋆ is the upper bound on the portfolio variance.

• x ≥ 0 means that all components of the vector are non-negative, xi ≥ 0, i = 1, ..., n.

• γ is L2 regularisation parameter, defaults to 1.

• R⋆ = 3 , which can allow a very high portfolio variance.

3.1.4 Result Evaluation

The final step is result evaluation. In this step, the portfolio optimization performance
must be evaluated according to the actual asset returns. Before portfolio return calcula-
tion, the portfolio need to be normalized.

Let us consider that x ∈ Rn and x = (x1, x2, ..., xn) be the allocation vector of weights
in the portfolio before normalization. The normalized portfolio xnorm is specified as
follow :

xnorm = (x1,norm, x2,norm, ..., xn,norm) (3.2)

Where :

• xi,norm = xi
(x1+x2+...+xn)

, i ∈ [1, n]

In our work, the benchmarks in result evaluation are average return, cumulative return,
and Sharpe ratio. See section 2.5.
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Figure 3.1: Portfolio Optimization Process Model

3.2 Process Models of Multi-Fidelity methods

This section describes the process model of multi-fidelity methods for outer-loop
applications. Multi-fidelity methods for outer-loop applications are the notion from
[30], see Figure 3.2. Outer-loop applications are defined as computational applications
that form outer loops around a model. The multi-fidelity model can receive input from
outer-loop applications and generate output. At the termination of the outer loop,
an overall outer-loop result can be obtained. Outer-loop applications should target a
specific outer-loop result.
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Figure 3.2: Process Models of Multi-Fidelity Methods for Outer-Loop Applications[30]
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4 Multi-Fidelity Portfolio Optimizations
Models

In this Chapter, we discuss the fidelity of portfolio optimization and propose two
different multi-fidelity portfolio optimization models. One is the prediction based
multi-fidelity model. The other one is the sampling interval based multi-fidelity model.

4.1 Fidelity in Portfolio Optimizations

Our work is the first trial to link multi-fidelity to portfolio optimizations. Therefore,
we need to define the fidelity of portfolio optimizations. We want to find a mapping
between the process model of multi-fidelity methods and the process model of portfolio
optimization. Without loss of generality, we focus on low-fidelity and high-fidelity in
our work. We want to improve the performance of portfolio optimization to generate
a new and better portfolio offering a higher return and a better Sharpe ratio. The
multi-fidelity model’s output should be the new portfolio’s evaluation results when the
target outer-loop applications detect whether or not the new portfolio can outperform.
The overall outer-loop result is whether or not portfolio optimization is improved. The
difficulty in linking multi-fidelity methods to portfolio optimization is not in these
outer-loop applications but in low-fidelity and high-fidelity models. We must solve a
problem: What is a high-fidelity (low-fidelity) model in portfolio optimizations?

4.1.1 What Are High-Fidelity (Low-Fidelity) Models in Portfolio
Optimizations?

What are high-fidelity (low-fidelity) models in portfolio optimizations? The intuitive
idea is that high-fidelity models can generate a better portfolio, while low-fidelity
models can generate a worse one. A better portfolio can bring a higher return and
a lower risk, while a worse portfolio can offer a lower return and a higher risk. Can
a particular portfolio optimization model generate a better portfolio than others?
Although some have suggested that some variants of classical portfolio optimization
can outperform for some special situations[25][13][8], there is currently no known
documentation to support that they can outperform in most situations[16]. As far

23



4 Multi-Fidelity Portfolio Optimizations Models

as we know, there is no acknowledged high-fidelity portfolio optimization model or
an acknowledged low-fidelity portfolio optimization model. Hence, we must define
high-fidelity (low-fidelity) models in portfolio optimizations.

As introduced in the section 3.1, portfolio optimization consists of four steps: data
sampling, data preprocessing, optimization problem solving, and result evaluation. Each step
receives the input from its last step or data source and generates the corresponding
output. Suppose we find a high-fidelity model to generate a better output for one of
these steps. In that case, this better output may lead to a better portfolio optimization
performance evaluation result. Hence, our target is to test whether or not these steps
can be high-fidelity models(steps) or low-fidelity models(steps). In other words, we
want to know whether or not some better approach or parameter adjustments can
refine these steps of classical portfolio optimization.

4.1.2 Why High-Fidelity Model Could Not Be a Complex Model in Portfolio
Optimizations?

Traditionally, the low-fidelity model is simplified, while the high-fidelity model is more
complex but better. The evaluating cost of the high-fidelity model is larger than the
evaluating cost of the low-fidelity model[30]. Multifidelity methods leverage a low-
fidelity model to obtain computational speedups. If we found a more complex model for
portfolio optimization, multi-fidelity methods would leverage the portfolio optimization
with a low-fidelity model to obtain computational speedups. These more complex
models include the expected return calculation based on a more complex model, the
portfolio variance calculation based on a more complex model, and the optimization
problem with more constraints. Using a more complex model increases the computation
cost of optimization. Unfortunately, portfolio optimization with a more complex model
may underperform in most situations compared to portfolio optimization with a simple
model[23]. Traditionally, a more complex model in portfolio optimization represents
using more constraints in optimization problems. These complex constraints may
interact with each other. Using these multiple and interacting constraints can lead to
risk-return optimization being more sensitive to input changes, see section 4.1.3.

4.1.3 Why Is It Difficult to Improve Portfolio Optimization ?

There are two reasons why improving portfolio optimizations is so hard. One is the
uncertainty from financial data. The other one is the uncertainty of optimization
problems.
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Uncertainty from Financial Data and Time Series Decomposition

Financial data is uncertain because its signal-to-noise ratio is meager, as introduced
in section 2.1.1. It can lead to a phenomenon: garbage in, garbage out. One classical
solution to this phenomenon is time series decomposition, which decomposes a time
series into trends, seasonality, and cycles. Although it is possible to make a time series
decomposition using some filter to increase the signal-to-noise ratio, it is also equivalent
to adding more limitations to the portfolio optimization. If the input of the portfolio
optimization came from a particular time series decomposition, its portfolio could offer
a higher return and lower risk only in the corresponding trend cycle. Using time series
decomposition is unsuitable for portfolio optimization because no such approach can
guarantee that a trend must be detected in any time interval. The investment-based
portfolio optimization must be continuous without any break because the portfolio
returns and performance must be calculated periodically. Investments with such a
filter can lead to a huge loss when a trend can not be detected. Hence, time series
decomposition, or filter, is unsuitable for portfolio optimization when the investment
must be rebalanced regularly.

Uncertainty of Optimization Problems

Solving the optimization problem is uncertain because of mean-variance instability. In
portfolio optimization, the estimation errors of the covariance matrix Σt of asset returns
and the expected return u can Introduce some huge estimation errors and instability in
the optimal solution. Academics have largely studied this stability issue with estimators
based on historical figures. Before going into the details of this subject, we propose
to illustrate the stability problem of the optimal portfolio with the following example
from [35].

Let us consider four assets,x1,x2,x3,x4. The expected asset returns are û1 = 5%, û2 =
6%,û3 = 7%,û4 = 8% whereas the variance of the asset returns, are equal to σ̂1 =10%,σ̂2

=12%,σ̂3 =14%,σ̂4 =15%, Our assumption is that the correlations are the same and
we have ρ̂i,j =ρ̂=70% We solve the optimization problem without constraints using
these parameters. In this case the optimal portfolio is x∗1=23.49%,x∗2=19.57%,x∗3=16.78%,
x∗4=28.44%. Hence, 23.49 % of the total capital should be used to buy asset x1. 19.57 %
of the total capital should be used to buy asset x2 .

In table 4.1, we indicate how a small perturbation of input parameters changes the
optimized solution. For instance, if the variance of the second asset increases by 3%, the
weight on this asset becomes -14.04% instead of 19.57%. If the realized return of the first
asset is 6% and not 5%, the optimal weight of the first asset is almost three times larger
(63.19% versus 23.49%). As a consequence, the optimized solution is very sensitive to
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ρ̂ 70% 80% 70% 80% 70%

σ̂2 12% 12% 15% 15% 12%

û1 5% 5% 5% 5% 6%

x∗1 23.49% 19.43% 36.55% 39.56% 63.19%

x∗2 19.59% 16.19% -14.04% -32.11% 8.14%

x∗3 16.78% 13.88% 26.11% 28.26% 6.98%

x∗4 28.44% 32.97% 37.17% 45.87% 18.38%

Table 4.1: Sensitivity of the portfolio to input parameters [35]

estimation errors. The stability problem comes from the solution structure. Indeed, the
solution involves the inverse of the covariance matrix I = Σ̂−1called the information
matrix. The eigenvectors of the two matrices are the same, but the eigenvalues of I are
equal to the inverse of the eigenvalues of Σ̂.

4.1.4 Data Sampling in High-Fidelity Model / Low-Fidelity Model

This section discusses how we can improve the output of Data Sampling. Accord-
ing to signal processing, sampling is the reduction of a continuous-time signal to a
discrete-time signal by a sampler, which is a component that extracts samples from a
continuous signal[24]. The sampler can sample from the continuous-time signal every
time interval T, called the sampling interval or sampling period. The sampling rate is
how frequently the sampler extracts samples from a continuous signal. According to
the Nyquist–Shannon sampling theorem[26], the fidelity of the sampling depends on
the sample rate. The lower sample rate can generate a high-fidelity result with a lower
probability than the higher sample rate. Without loss of generality, the high-fidelity
result comes from the sampling with a higher sample rate. The low-fidelity result
comes from sampling with a lower sample rate. In other words, the high-fidelity result
can come from sampling with a smaller sampling interval, while the low-fidelity result
comes from a larger sampling interval.

However, there is a problem: a smaller sampling interval can lead to a larger data
set size. In comparison, a larger sampling interval can lead to a smaller data set size
because the range of dates is limited in the time series data. The number of generated
portfolios within a range of dates differs according to the different sizes of the data sets.
For example, using daily data with a daily sampling, the investors should rebalance
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their portfolio by solving optimization problems daily. In comparison, the investors
should rebalance their portfolios by solving optimization problems monthly using
monthly data with a monthly sampling. There are 365 or 366 portfolios generated by
daily rebalance every year, while 12 portfolios are generated by monthly rebalance
every year. Comparing the daily portfolio and monthly portfolio is a problem. For
more details about how to solve this problem, see section 4.3.2.

4.1.5 Data Preprocessing in High-Fidelity Model / Low-Fidelity Model

This section discusses how we can improve the output of Data Preprocessing. As
introduced in, Data Preprocessing consists of four different calculations, but we focus on
the expected asset returns and the covariances of asset returns. The intuitive idea is that
high-fidelity Data Preprocessing can calculate more precise expected asset returns and
covariances of asset returns. The expected asset return calculation and the covariances
of asset returns calculation are based on rolling-window analysis of time-series models
with a fixed rolling window size w. A larger rolling window size means that the
expected asset returns and the covariances of asset returns can learn more things from
the historical data.

However, more evidence is needed to prove that a more precise calculation can
benefit much from a larger rolling window size. According to our experiment result,
see section 6.1, using a larger rolling window size can only improve the accuracy of
these calculations when the time range about related data is smaller than 3 or 4 years.
For example, the expected monthly asset return calculation with w = 40 is better than
it’s with w = 70 or w = 12. The data set with w = 70 contains too much data that
needs to be more timely.

4.1.6 Optimization Problem Solving in High-Fidelity Model / Low-Fidelity
Model

This section discusses how we can improve the output of Optimization Problem Solving.
An optimal portfolio can be generated by solving a classical optimization problem. The
optimization problem can be mean-variance analysis. In this optimization problem,
the hyperparameter tuning can lead to different results and computational costs. Is it
possible to select a suitable hyperparameter to give the optimization problem a better
result with higher computational cost? According to our experiments in section 6.3,
changing the L2 regularisation parameter γ, can affect the result to generate a better
portfolio.
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4.1.7 Result Evaluation in High-Fidelity Model / Low-Fidelity Model

This section discusses how we can improve the output of Result Evaluation. In Result
Evaluation, the portfolio optimization performance needs to be evaluated according to
the actual asset returns. Normally, there is nothing to do because an optimal portfolio
is generated from the last step, and the actual returns are collected directly from the
market. The calculations of average return, cumulative return, and Sharpe ratio are
based on formula 2.14, formula 2.15, and formula 2.16. The actual asset returns and
these calculations are invariant. Nothing can be done. However, one interesting thing
is whether or not we can get a higher portfolio return if we can reduce the difference
between the actual and expected asset returns. Can an unknown mapping function be
found between actual and expected asset returns?

Unknown Mapping Function between Actual Asset Returns and Expected Asset
Returns

This section discusses the unknown mapping function between actual and expected
asset returns in portfolio optimization; see Figure4.1. Before discussing the unknown
mapping function, whether or not the unknown mapping function exists must be
discussed.

Does the Unknown Mapping Function Exist? The unknown function can map the
expected return into the actual return. Let us assume that the expected return can be
calculated from the historical asset return R , where R = [R1, R2..., Rn] is a time-series
data. The corresponding actual return is Rn+1 for Rn . This unknown mapping function
is equivalent to time series data forecasting. There is no evidence to prove that we can
forecast the financial time series data. In other words, the unknown mapping function
may not exist.

Unknown Mapping Function There is much research on asset return prediction
based on time series data[20][37]. The most famous hypothesis is the random walk
hypothesis, which states that stock market prices evolve according to a random walk
(so price changes are random), and thus, the stock return cannot be predicted [10].
In our work, we assume that the asset return can be predicted in a short time. The
relationship between the historical returns and the actual return is a non-linear rela-
tionship according to [20]. Hence, the unknown mapping function may be non-linear.
In our work, we have tried using linear and Gaussian processes regression with some
multi-fidelity methods to predict the actual asset return. Unfortunately, the actual asset
return can not be predicted successfully; more details are in section 4.2.
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Figure 4.1: Portfolio Optimization with unknown mapping function
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4.2 Prediction Based Multi-Fidelity Model — a Unsuccessful
Case

This section describes the prediction based multi-fidelity model. As introduced in
the section 4.1.7, we want to find an unknown mapping function between actual and
expected asset returns. If the difference/error between actual and expected asset
returns can be reduced, the portfolio optimization can be improved. If this difference
can disappear, the actual asset returns can be predicted perfectly by the historical asset
returns. Evaluating this unknown mapping function is equivalent to predicting the
actual asset returns. That is the reason why this model is named a prediction-based
multi-fidelity model. Although the prediction-based multi-fidelity model is not feasible
according to our test, we still propose our idea.

4.2.1 Relationship between Expected Asset Return and Actual Asset Return

This section discusses the relationship between expected asset returns and actual asset
returns again. As introduced in the section 2.4, portfolio optimization is based on the
expected asset return and the expected covariance. The portfolio is the optimal solution
when the expected asset return is the actual asset return. The expected asset return
can be regarded as the result of a low-fidelity model when the actual asset return
results from a high-fidelity model. However, this high-fidelity model is an unknown
function that can predict the actual asset returns from the historical asset returns in
Data Preprocessing.

Forecasting the actual asset return is a challenging task. Some research has shown
that predicting the actual asset returns may be impossible, like the random walk
hypothesis[10]. However, there is still much research about how to predict the actual
asset return[32][19][31][11]. In this work, classical portfolio optimization, which needs
to calculate the expected asset returns, is regarded as a low-fidelity model. In contrast,
particular portfolio optimization, which can predict asset returns, is regarded as a
high-fidelity model.

We assume that a black box function, a precise but huge-cost approach, can make
this prediction. The classical portfolio optimization can be improved if we can build a
mapping function between the high-fidelity and low-fidelity models to estimate the
distribution of the high-fidelity model’s output.

4.2.2 Prediction Based Multi-Fidelity Model Design

This section describes the design of the prediction based multi-fidelity model. A
multi-fidelity model should consist of low-fidelity models and high-fidelity models.
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The low-fidelity models in the prediction-based multi-fidelity model are classical
portfolio optimization; see Figure 4.2. The expected returns and covariance are derived
from the historical asset returns. Portfolio optimization can solve an optimization
problem based on the expected returns and the expected covariance to generate a
portfolio. Ultimately, this portfolio is evaluated with the actual asset returns in Result
Evaluation.

The high-fidelity models in the prediction-based multi-fidelity model are the portfolio
optimization using the black box function, which can calculate the perfect expected
asset returns, see Figure 4.3. The expected covariance is calculated from the historical
asset returns. The perfect expected returns come from the black box function. Portfolio
optimization can solve an optimization problem based on the perfect expected returns
and the expected covariance to generate a perfect portfolio. Ultimately, this portfolio is
evaluated with the actual asset returns in performance evaluation.

Suppose we can find a function that can map the expected returns into the perfect
expected returns; see mapping A in Figure 4.4. In that case, the actual portfolio returns
can be improved in the low-fidelity model with mapping A. Similarly, the actual
portfolio returns can benefit from finding a function that can map the portfolio into the
perfect portfolio; see mapping B in Figure 4.4, too.
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Figure 4.2: Low-Fidelity Model in Prediction-Based Multi-Fidelity Model32
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Figure 4.3: High-Fidelity Model in Prediction-Based Multi-Fidelity Model
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Figure 4.4: Prediction Based Multi-Fidelity Model

4.2.3 Trade-off in Prediction Based Multi-Fidelity Model

This section discusses the trade-off in the prediction-based multi-fidelity model. The
trade-off between low- and high-fidelity models in the prediction-based multi-fidelity
models is similar to the classical multi-fidelity model; see Figure 4.5. A high-fidelity
model can calculate the perfect expected asset returns equal to the actual asset returns.
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The expected asset returns can be calculated as usual in the low-fidelity model. Let
us consider that the black box calculation of the perfect expected asset return requires
infinite computation cost with zero error in a high-fidelity model, while the calculation
of the expected asset return requires finite computation cost with a significant error in
a low-fidelity model. Hence, high-fidelity models require huge costs and offer a perfect
result with negligible error. Low-fidelity models can provide a classically expected
asset return with a visible error between the expected and actual asset returns but need
a reasonable computation cost.

Figure 4.5: Illustrations of the Trade-Off between Low- and High-Fidelity Model in
Prediction Based Multi-Fidelity Model

4.2.4 Difference between Multi-Fidelity Methods and Unknown Mapping
Function

In the prediction-based multi-fidelity model, we try to estimate the perfect expected
returns or the perfect portfolio using classical multi-fidelity methods. However, there is
a problem with multi-fidelity methods and unknown mapping functions. The output of
multi-fidelity methods and unknown mapping functions are different types. Classical
multi-fidelity methods, like autoregressive schemes and nonlinear autoregressive multi-
fidelity GPs, are based on Gaussian processes. A distribution mean and a distribution
standard deviation describe these methods’ output. In contrast, the output of the
unknown mapping function is based on the input of Optimization Problem Solving and
the input of Result Evaluation The input of these two steps is some real number. Hence,
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the output of the unknown mapping function must be a real number. According to our
test, we can successfully estimate the distribution of the perfect expected returns and
portfolio. We still need to solve the conflict between two different outputs.

4.2.5 Unsuccessful Methods linking Multi-Fidelity Methods to Unknown
Mapping Function

In the prediction-based multi-fidelity model, the most important problem is how we
can link the output of multi-fidelity methods to the output of an unknown mapping
function. We need to find a new unknown mapping,which can project a distribution (a
distribution mean and a distribution standard deviation) into a real number. In our
work, we have tried the following methods to solve this problem.

Distribution Mean

Design Principle The first method is that we regard the distribution mean as the real
number directly. The reason why we do such a thing is that the expected return is the
arithmetic mean of historical returns. The distribution mean is a measure of central
tendency. In a symmetrical distribution, the mean of distribution can be an arithmetic
mean of all data. In other words, we assume that the distribution is symmetrical.

Test Result We have tried to predict the perfect expected returns or the perfect
portfolio using Gaussian process regression. The distribution mean is directly regarded
as perfect expected returns or portfolios. The error between the distribution mean, and
perfect expected return always underperforms the baseline for unknown mapping A
when the baseline is the error between the perfect expected return and the average
value of the historical return. For unknown mapping B, the distribution mean is
regarded as the proportions of portfolios. We predict the different assets ’ proportions
independently using Gaussian process regression. Each asset has its distribution
mean. We integrate the distribution mean into a predicted portfolio and normalize this
predicted portfolio. The normalized and predicted portfolios are evaluated to calculate
the return and Sharpe ratio. Compared to the portfolio in the low-fidelity model, the
predicted portfolio sometimes can outperform the portfolio when we just focus on a
special period. But its return and Sharpe ratio are always lower than the low-fidelity
model.

Weighted Arithmetic Mean
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Design Principle The second method is using weighted arithmetic mean to calculate
the real number. Using Gaussian process regression, we can calculate the 95% confi-
dence interval. We select the upper and lower bounds of this confidence interval as the
input of the weighted arithmetic mean, while the distribution mean is also put into the
weighted arithmetic mean as input. We want to adjust the weights of the upper bounds,
lower bounds, and mean to change the investment style. For example, the weight of
lower bounds should be larger for the perfect expected returns calculation if we prefer
a more safe investment.

Test Result We tried to find suitable weights using linear regression. The observed
values are the perfect expected returns during the perfect expected returns calculation.
Similarly, the observed values are the perfect portfolio during the perfect portfolio
calculation. According to our test, the weighted arithmetic mean using linear regression
also underperforms the baseline for unknown mapping A when the baseline is the
average value of the historical return. For unknown mapping B, the weighted arithmetic
mean is the proportion of portfolios. The weighted arithmetic mean with linear
regression can outperform using the mean of distribution as the proportion of the
perfect portfolio. However, the weighted arithmetic mean still underperforms the
baseline when focusing on average return, cumulative return, and Sharpe ratio.

4.2.6 Conclusion

The prediction based multi-fidelity model looks like a logical design. Although the
black box function is unknown, the output and the input of the black box function
are known. If we can link the output of multi-fidelity methods to the output of an
unknown mapping function, it is possible to implement the prediction based multi-
fidelity model. Unfortunately, according to our test in a small data set, we can not
find a suitable approach to help us build a helpful connection between two different
outputs. According to our observations, predicting the proposition of portfolio is better
than predicting the return. Although the normalized predicted portfolio sometimes can
outperform the baseline, the average return, the cumulative return, and the Sharpe ratio
of the normalized predicted portfolios are always under the baseline for the whole data
set. Because we are unable to solve this problem, we tried to design a new model,the
sampling interval based multi-fidelity model.
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4.3 Sampling Interval Based Multi-Fidelity Model — a
Successful Case

This section introduces the sampling interval based multi-fidelity model. As introduced
in the section 4.1.4, the high-fidelity data come from sampling with a smaller sampling
interval in the data sampling. In comparison, the low-fidelity data come from sampling
with a larger sampling interval. Can the high-fidelity data and the low-fidelity data be
utilized by the multi-fidelity method? Before solving this problem, it is necessary to
show how these high-fidelity and low-fidelity data work in portfolio optimization.

4.3.1 High-Fidelity Data and Low-Fidelity Data in Portfolio Optimization

This section introduces how portfolio optimization can generate a portfolio from high-
fidelity or low-fidelity data.

The first step of portfolio optimization is Data Sampling, which collects asset prices
from the financial market. Data Sampling with different sampling intervals can generate
different data sets with different sizes. The historical data from the financial markets
is finite. A smaller sampling interval can expand the size of the corresponding data
set, while a larger sampling interval can shrink the size of its data set. In financial
investment, the long-term investment is always based on some data set collected with a
larger sampling interval. This data set may need to be more timely, and its quantities
are rare. Hence, the data from these data sets are low-fidelity data. The low-fidelity
data set based on a larger sampling interval is named long-term data because it is used
for long-term investment. In contrast, the short-term investment is always based on
some data set collected with a smaller sampling interval because the data from these
data sets is timely enough. Hence, the data from these data sets are high-fidelity data.
The high-fidelity data set based on a smaller sampling interval is named short-term
data in our work.

The asset prices are sampled regularly from the financial market with different
sampling intervals. A larger sampling interval causes the long-term asset prices, while
the short-term asset prices come from a smaller sampling interval. These asset prices can
easily be converted into historical asset returns according to the formula 2.1. Similarly,
historical asset returns based on long-term asset prices are the historical long-term asset
returns. The expected long-term asset returns and the expected long-term portfolio
variance are calculated with the historical long-term asset returns. The long-term
portfolio is generated by portfolio optimization with expected long-term asset returns
and expected long-term portfolio variance. Hence, long-term portfolio optimization is
the optimization of these long-term data to generate a long-term portfolio. Due to a lack
of timeliness, long-term portfolio optimization is low-fidelity portfolio optimization.
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And vice versa.
Figure 4.6 describes generating a long-term portfolio from historical long-term asset

returns. The expected long-term returns and covariance are computed according to
the historical long-term asset returns. The expected long-term returns, the expected
long-term covariance, and the L2 regularisation parameter γlong play as the input of the
portfolio optimization problem to generate a long-term portfolio. Finally, this long-term
portfolio is evaluated by the actual long-term asset returns to calculate the long-term
portfolio return.

In order to simplify the process structure, the computation of the expected long-
term returns and the expected long-term covariance are integrated into one process,
long-term portfolio generation. Long-term portfolio generation produces a long-term
portfolio directly from the historical long-term asset returns.

Figure 4.7 describes generating a short-term portfolio from historical short-term
asset returns. The computation of the expected short-term returns and the expected
short-term covariance, as well as the portfolio optimization, are integrated into one
process: short-term portfolio generation. Short-term portfolio generation with the
L2 regularisation parameter γshort produces a short-term portfolio directly from the
historical short-term asset returns.
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Figure 4.6: Long-term Portfolio Generation in Low-Fidelity Portfolio Optimization
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Figure 4.7: Short-Term Portfolio Generation in High-Fidelity Portfolio Optimization
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4.3.2 Sampling Interval Based Multi-Fidelity Model Design

This section proposes the sampling interval-based multi-fidelity model design. In
portfolio optimization, the generation of a long-term portfolio requires historical long-
term asset returns, while the generation of a short-term portfolio requires historical
short-term asset returns. The generation of the historical short-term asset returns and
the historical short-term asset returns has been discussed in this section. Because of the
different sampling intervals, the number of historical short-term asset returns is larger
than that of historical long-term asset returns. The historical short-term asset returns
can contain more information than the historical long-term asset returns. Therefore, the
short-term portfolio may involve more timely information than the long-term one. In
other words, the short-term portfolio may bring more return and a higher Sharpe ratio.
The short-term portfolio optimization, which can generate the short-term portfolio, is
high-fidelity portfolio optimization. Although short-term portfolio optimization may
outperform long-term portfolio optimization, most individual investors are passive
investors who prefer to hold an investment over a long period. It means that their
portfolios are rebalanced infrequently, like a long-term portfolio. Can we improve the
long-term portfolio with a short-term portfolio?

Figure 4.8 describes how a short-term portfolio is fused into a long-term portfolio. A
short-term portfolio SP can be generated from the historical short-term asset returns
from the historical asset prices with a γshort. A long-term portfolio LP can be generated
from the historical long-term asset returns from the historical asset prices, with a
γlong. Using different γ , different portfolios with different risks can be generated by
portfolio optimization; see section 2.4.3. Then, the short-term portfolio is combined
with the long-term portfolio via a fusion algorithm to generate a fused long-term
portfolio FLP. The fusion algorithms are introduced in the section 4.3.3. The fused
long-term portfolio FLP should outperform the long-term portfolio. For example, the
corresponding average return, cumulative return, and Sharpe ratio should be better
than the long-term portfolio. Moreover, we want to adjust the γshort to improve the
fused long-term portfolio.
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Figure 4.8: Data fusion between High-Fidelity Portfolio Optimization and low-fidelity
portfolio optimization

4.3.3 Fusion Algorithm

This section introduces some fusion algorithms used in data fusion of long-term and
short-term portfolios. As introduced in the last section, a short-term portfolio SP
is fused into a long-term portfolio LP to generate a fused long-term portfolio FLP.
However, how can we fuse SP into LP? In our work, our fusion algorithm is a simple
average, as follows:

Simple Average

FLP = (0.5)LP + (0.5)SP (4.1)
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Reason Using Simple Average

We want to use simple averages as the fusion algorithm for controlling variables. This
is the first trial of the sampling interval-based multi-fidelity model. We do not aim to
maximize the performance but to prove that the sampling interval-based multi-fidelity
model can improve performance. We need to control variables. Controlling variables
can benefit from the simple average because the weights of the simple average are fixed.

4.3.4 Intuitive Design Principles

This section explains the intuitive design principles. However, our experiment result in
section 6.3,section 6.4,and section 6.5, violates the second principle partly. There are
two intuitive reasons why the fused long-term portfolio should outperform.

The first reason is that the short-term portfolio can offer the newest information and
the most recent trends. The fused long-term portfolio can benefit from these trends and
this information. As mentioned in the introduction 2.4, a portfolio is generated from
the asset returns. The asset returns are based on the historical asset prices. According
to [20][14], the momentum of asset return follows some asset return cycles. Using
different sampling intervals, different asset return cycles can be detected. The short-
term asset returns can display more asset return cycles than the long-term asset returns
because the short-term asset returns contain more information. The expected return
and covariance, calculated from the short-term asset returns, can reveal the most recent
trend that can not be detected in the long-term asset returns. Hence, the short-term
portfolio can catch the most recent trends that the long-term cannot.

The second reason is that the fused long-term portfolio comes from two portfolios
with different gamma. One portfolio with smaller γ can offer a higher return with
higher risk. The other portfolio with larger γ can offer a lower return with lower risk.
Using a simple average to fuse one portfolio into another is equivalent to building
a portfolio of portfolios. The average return of the fused long-term portfolio is just
the average of the average returns of the long-term portfolio and short-term portfolio
when the fusion algorithm is the simple average. However, the cumulative return and
the Sharpe ratio of the fused long-term portfolio are not just the average values. It
is possible that the fused long-term portfolio can outperform with a better Sharpe
ratio and cumulative return than the short-term portfolio and the long-term portfolio.
The worst case is that the fused long-term portfolio can outperform just one of these
portfolios.
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4.3.5 Trade-Off in Sampling Interval Based Multi-Fidelity Model

This section discusses the trade-off in sampling interval-based multi-fidelity model. In
the classical multi-fidelity model and the prediction-based multi-fidelity model, the
trade-off of the low- and high-fidelity models is for the error of the result and the
computation cost. However, the trade-off in the sampling interval-based multi-fidelity
models differs from the classical and prediction-based multi-fidelity models.

As introduced in the section 4.3.2, a sampling interval-based multi-fidelity model
is related to high-fidelity and low-fidelity data. High-fidelity data can bring a higher
return, portfolio variance, and transaction cost for the short-term portfolio when it
must frequently rebalance itself. In contrast, low-fidelity data used for long-term
portfolios can offer a lower return, portfolio variance, and transaction cost, while the
short-term portfolio needs to be rebalanced at a lower frequency. In this section, the
return represents the portfolio performance.

Figure 4.9 illustrates two examples of multi-fidelity setting. In the traditional multi-
fidelity setting, the trade-off between low- and high-fidelity models is for computation
cost and error. High-fidelity models can bring higher costs and lower errors, while
low-fidelity models can bring lower costs and higher errors. In sampling interval-
based multi-fidelity model, the trade-off between low- and high-fidelity models is
between return/portfolio variance and transaction cost. High-fidelity models can bring
a higher return, variance, and cost, while low-fidelity models can bring a lower return,
variance, and cost. A different thing is that high-fidelity models can not guarantee that
their return can always be higher than those of low-fidelity models at any time. Like
figure 4.10, some outliers that low-fidelity models can outperform high-fidelity models
sometimes are avoidless. It can guarantee that the variance and cost of high-fidelity
models are higher than those of low-fidelity models.

In this work, we apply the fusion algorithm in portfolio optimization to generate a
fused-low-fidelity model. This fused-low-fidelity model should outperform the worst
one of between low- and high-fidelity models at least; see section 4.3.3. In other
words, the fusion algorithm can offer a lower bounds that the fused-low-fidelity model
can outperform the low-fidelity model, like Figure 4.11. But how can we find the
upper bounds in a sampling interval-based multi-fidelity model? We can find the
upper bounds in the sampling interval-based multi-fidelity model by optimizing the L2
regularisation parameters γshort.
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Figure 4.9: Illustrations of trade-off between low- and high-fidelity models

Figure 4.10: Illustrations of the profits in different time periods
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Figure 4.11: Illustrations of the fused-low-fidelity model

4.3.6 L2 γshort in Sampling Interval Based Multi-Fidelity Model

This section introduces how L2 regularisation parameters γshort can affect the fused
long-term portfolio. As introduced in section 2.4.3, the L2 regularization parameter
γ can reduce the amount of negligible weight in portfolio optimization. In other
words, L2 regularization can reduce the variance and the cost in portfolio optimization.
The portfolio, generated with a very small γ in portfolio optimization, can bring
high risk and return because the allocation is extremely imbalanced. If we find the
relationship between L2 γshort and the portfolio optimization, we can improve the
portfolio optimization by adjusting L2 γshort. Before discussing this relationship, we
must introduce two new concepts, local optimal L2 γ∗

short and global optimal L2 γ∗
short.

Global Optimal L2 γ∗
short

Sampling interval-based multi-fidelity model with a fixed L2 γshort, a fixed L2 γlong,
and a fixed historical data can generate a set of fused long-term portfolios. This set can
be evaluated by average return, cumulative return, and Sharpe ratio. L2 γshort can affect
these average return, cumulative return, and Sharpe ratio. If we change L2 γshort , these
average returns, cumulative returns, and Sharpe ratios must be changed. We want
to find a global optimal L2 γ∗

short, which can make these average return, cumulative
return, and Sharpe ratio as large as possible. Intuitively, a imbalance portfolio using
very small L2 γshort should bring higher risk and return ,compared to a more balance
portfolio using large L2 γshort. But, according to our experiment result, see section
6.3, the relationship between L2 γshort and these returns a high positive correlation. In
other words, the best way to improve the fused long-term portfolios is using a huge L2
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γshort. When L2 γshort is very large, the allocation of assets in the short-term portfolio
is a balanced portfolio. Because the long-term portfolio is also a balanced portfolio,
the fused long-term portfolio must be a very balanced portfolio. It seems that equally
weighted portfolios are better than mean–variance portfolios [23] [12]. In our work, L2
γshort is selected from a range between 0.05 and 1.5. Hence,the global optimal L2 γ∗

short
is 1.5.

Local Optimal L2 γ∗
short

In the last section, we have introduced global optimal L2 γ∗
short. This section describes

local optimal L2 γ∗
short. Sampling interval-based multi-fidelity model with a fixed L2

γshort, a fixed L2 γlong, and a fixed historical data can generate a set of fused long-term
portfolios. Now, we only focus on this whole set, but each fused long-term portfolio in
this set. These fused long-term portfolios belong to time series data. Let us consider a
set of fused long-term portfolios with γshort = x written as follow :

FLPγshort=x = [FLP1,x, FLP2,x, ..., FLPT,x] = [FLPt,x] (4.2)

Where :

• t ∈ [1, T] is the time point.

• x ∈ [0.01, 1.5] is L2 γshort

The local optimal L2 γ∗
short is x at time t ,which can make :

R(FLPt,x) ≥ R(FLPt,y), ∀y ∈ [0.05, 1.5] (4.3)

Where :

• R(FLPt,x) : the actual portfolio return

• t ∈ [1, T] : the time point.

• x ∈ [0.05, 1.5]

If we can predict such local optimal L2 γ∗
short at each time t, we can maximize the

return of the fused-long-term portfolio. The maximized return of the fused-long-term
portfolios is our trade-off ’s upper bounds in the sampling interval based multi-fidelity
model. Actually, according to our experiment result in section 6.5, the distribution of
local optimal L2 γ∗

short is similar to the two-point distribution when we ignore some
outliers; see figure4.12. To predict a data point in a two-point distribution is equivalent
to the binary prediction.
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Figure 4.12: Local Optimal γ∗ distribution (from section 6.4 )

How to predict the local optimal γ∗

As introduced in the last section, the local optimal γ∗ distribution can be regarded
as a two-point distribution. The best way to predict the data point in a two-point
distribution, or binary prediction, is a machine learning or deep learning model. It is
out of our work expectations. We try to use Gaussian process classification to predict
the local optimal γ∗ at time t.

4.3.7 Conclusion

The sampling interval based multi-fidelity model is a trial directly using multi-fidelity
method to improve the portfolio optimization. In this model, the short-term portfolio
from the high-fidelity model is fused into a long-term portfolio from the low-fidelity
model to generate a fused long-term portfolio. This fused long-term portfolio owns
a better lower bound than the long-term one. The corresponding upper bounds of
the fused long-term portfolio are also mentioned. We also provide a possible idea
about how to get closer to the upper bounds. Generally, the sampling interval based
multi-fidelity model aims to improve portfolio optimization. The problem of improving
portfolio optimization is converted into a binary prediction problem using a multi-
fidelity method.
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5 Implementation

This section describes the implementation of this work. In our work, we do not im-
plement some classical methods one more time because many famous open-source
packages can offer outstanding implementations of these traditional approaches. Our
work focuses on designing a feasible multi-fidelity model to improve portfolio op-
timization. The link for the GitHub repository of the implementation is https :
//github.com/ZhangArcher/MTgithub.git.
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5.1 UML Package Diagram of the Implementation

Figure 5.1: UML Package Diagram of the Implementation

Figure 5.1 illustrates the package diagram of the implementation. In our work, op-
timization problems are solved by PyPortfolioOpt, a very famous library that has
implemented many portfolio optimization methods. The portfolio optimization prob-
lems with standard objectives and constraints can be solved as a convex optimization
by cvxpy, the fantastic python-embedded modelling language for convex optimization,
in PyPortfolioOpt. MuDaFu GP is used directly to implement the prediction based
multi-fidelity model. MuDaFu GP can offer some outstanding implementations of
classical multi-fidelity methods. Gpflow is used to create basic GP regression models
for the sampling interval based multi-fidelity model. Yfinance, an open-source tool
that uses Yahoo’s publicly available APIs to collect financial data, is used to collect the
financial data in our work. scikit-learn(sklearn) can offer some outstanding implemen-
tations of machine learning. We predict the local optimal γ∗

short using Gaussian process
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classification which is implemented by scikit-learn.

5.2 UML class diagram of the implementation

Figure 5.2: UML Class Diagram of the Implementation

Figure 5.2 illustrates the UML class diagram of the implementation. In order to keep
things simple, the illustrated classes contain only the most important methods. All
classes have been added the necessary code comments. More detailed documentation
can be found in the GitHub repository https : //github.com/ZhangArcher/MTgithub.git.
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6 Experiment

In this Chapter, we introduce some experiments about the sampling interval based
multi-fidelity model , to prove that fused long-term portfolios can outperform the
long-term portfolios.

6.1 Experiment 1: Is a Larger Rolling Window Size Better For
the Calculation of the Expected Asset Return ?

6.1.1 Experiment Goal

We want to verify whether or not using a larger rolling window size can generate a
better-expected asset return in data preprocessing.

6.1.2 Experiment Design

1. calculates the expected asset return from the historical prices of stocks using
different methods with different rolling window sizes

2. calculates the error between the expected and actual asset returns using mean
absolute error.

3. calculate the Pearson correlation coefficient between the error and the rolling
window sizes

6.1.3 Data set

In this experiment, the data set is the historical monthly prices of stocks between
1995 − 01 − 01 and 2015 − 01 − 01 and the historical daily prices of stocks between
1995 − 01 − 01 and 2015 − 01 − 01.

The relative stocks are:
"AMD","BA","CSCO","DHR","INTC","JPM","NKE","PG","TXN","WMT".
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6.1.4 Experiment Result

Error with different rolling window sizes

Figure 6.1 describes the error between the expected and actual asset returns with the
different rolling window sizes when the data set is the historical monthly prices of
stocks between 1995 − 01 − 01 and 2015 − 01 − 01. As we can see clearly, the errors
decrease with increasing the rolling window size until that rolling window size is 40.
And then, the errors rebound from the lowest point and never go down in the future.
The reasonable rolling window size is about 40. In other words, we should calculate
expected monthly asset returns using the data of the most recent 3 or 4 years.

Figure 6.1: Development of the errors between the expected asset return and the actual
asset return with the different rolling window sizes (based on the historical
monthly prices)

Figure 6.2 describes the error between the expected and actual asset returns with the
different rolling window sizes when the data set is the historical daily prices of stocks
between 1995 − 01 − 01 and 2015 − 01 − 01. The errors drop rapidly at the beginning
with increasing rolling window size. But the errors level off earlier, compared to Figure
6.1. It begins to bound back when the roll window size exceeds 900. Hence, the sensible
range of the historical data is the most recent 2 or 3 years for calculating expected daily
asset returns.
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Figure 6.2: Development of the errors between expected asset return and actual asset
return with the different rolling window sizes (based on the historical daily
prices)

Pearson correlation coefficients between errors and rolling window sizes

Figure 6.3 describes the correlation coefficient between the error and the rolling window
sizes when the data set is the historical monthly prices of stocks between 1995− 01− 01
and 2015 − 01 − 01 . ID represents the stock ID, whose errors between the expected
asset return and the actual asset return are calculated. Range means the range of the
rolling window size. For example, the Pearson correlation coefficient between the
error about AMD and the rolling window sizes is −0.87189272 in the rolling window
size range between 1 and 12. When the range is small, like [1,12], all coefficients are
between −0.8 and −1. In other words, it represents a very high negative correlation.
For this range, increasing the rolling window size can certainly reduce the error. When
enlarging the range, these coefficients get closer to 0. The coefficient of PG and the
coefficient of NKE are especially under −0.1 when the range is [1,96]. A coefficient,
being in a range [-0.19 ,0.19] , implies a very low correlation.

In other words, when the rolling window size is small enough, the relationship
between errors and rolling window sizes is a high negative correlation. The high
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negative correlation disappears with increasing rolling window size.

Figure 6.3: Pearson correlation coefficients between errors and rolling window sizes,
when using different ranges of rolling window sizes and the monthly data
(For example, the Pearson correlation coefficient between the error about
AMD and the rolling window sizes, is -0.87189272 in the rolling window
size range between 1 and 12 )

Similarly, figure 6.4 describes the correlation coefficient based on the historical daily
prices between 1995 − 01 − 01 and 2015 − 01 − 01 At the beginning, all coefficients
are between -0.8 and -1 for the small range [1,10]. In other words, the error can be
reduced significantly by increasing the rolling window size within a range between 1
and 10. After that, these coefficients rise up to around -0.5, when the range is enlarged
until the range [1,180]. After [1,180], most coefficients rebound and sink again with
increasing rolling window size. This rebound ends at range [1,1000]. When the range
is [1,1000], most coefficients are between -0.8 and -1 again. In the rest of these ranges,
the coefficients climb to -0.2 again.

Totally, the coefficients between errors and rolling window sizes fluctuate, ranging
from −0.2to −0.9 . Combined with Figure 6.2, it is clear that a larger rolling window
size can offer some limited help to reduce errors between the expected asset return and
the actual asset return.

56



6 Experiment

Figure 6.4: Pearson correlation coefficients between errors and rolling window sizes,
when using different ranges of rolling window sizes and daily data(For
example, the Pearson correlation coefficient between the error about AMD
and the rolling window sizes is -0.61616 within a rolling window size range
between 1 and 90)

Compare the error with the actual asset returns

In this experiment, performance evaluation is based on mean absolute error. Ideally,
the expected asset return is a measure of the center of the distribution of the return.
The actual asset return should follow this distribution. However, it is well-known that
the difference between the expected asset return and the actual asset return is large. As
we can see in Figure 6.1, the minimal absolute error between them is larger than 0.025
when the average monthly return of AMD between 2000 − 01 − 01 and 2015 − 01 − 01
is only 0.00196. The percentage error between them can be 1275%. The error is very
much larger than the average true value.

6.1.5 Conclusion

Using a larger rolling window size can generate a better expected asset return when
the rolling window size is in a suitable range. When the rolling window sizes are huge,
the errors can not be reduced anymore. Although the reduction can decrease the error
to 50%, the errors are still very large compared to the actual asset returns.

6.2 Experiment 2: Can a Larger Rolling Window Size Bring a
Better Portfolio?

6.2.1 Experiment Goal

We want to verify whether or not using a larger rolling window size can generate a
better portfolio in portfolio optimization.
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6.2.2 Experiment Design

1. generate portfolios with different rolling window sizes in portfolio optimization

2. calculates cumulative returns, average returns, and Sharpe ratios.

3. calculate the correlation coefficient between the rolling window sizes and the
average returns

4. calculate the correlation coefficient between the rolling window sizes and the
cumulative returns

5. calculate the correlation coefficient between the rolling window sizes and the
Sharpe ratios

6.2.3 Data set

In this experiment, the data set is the historical monthly prices between 1995 − 01 − 01
and 2015 − 01 − 01 and the historical daily prices between 1995 − 01 − 01 and 2015 −
01 − 01.

The relative stocks are:
"AMD","BA","CSCO","DHR","INTC","JPM","NKE","PG","TXN","WMT".

6.2.4 Experiment Result

Average Portfolio Returns and its Correlation Coefficients

Figure 6.5 describes the development of the average portfolio returns from different
portfolios when these portfolios are generated by portfolio optimization with the
historical monthly prices and different rolling window sizes. As we can see, the average
return goes up and down with an upward trend until the rolling window size is around
43. The peak of the average return is 0.0143 (1.43%). After the peak, the average
returns slump into 0.0082(0.82%) with some bounce back. The Pearson correlation
coefficient between average portfolio returns and the corresponding rolling window
sizes is -0.315828878607737, when the data set is the historical monthly prices. There is
only a low negative correlation between them.

Figure 6.6 describes the development of the average portfolio returns from different
portfolios when these portfolios are generated by portfolio optimization with the histor-
ical daily prices and different rolling window sizes. As we can see, the development of
the average portfolio returns in figure 6.6 is similar to the development in figure 6.5. The
average return goes up and down with an upward trend until the rolling window size
is around 800. The peak of the average return is 0.00053 (0.053%). And then, the average
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returns sink into 0.00037(0.037%). The Pearson correlation coefficient between average
portfolio returns and the corresponding rolling window sizes is -0.483744502406371,
when the data set is the historical daily prices. There is only a moderate negative
correlation between them.

Figure 6.5: Development of the average portfolio returns from different portfolios that
are generated by portfolio optimization with different rolling windows sizes
(based on the historical monthly prices)

59



6 Experiment

Figure 6.6: Development of the average portfolio returns from different portfolios that
are generated by portfolio optimization with different rolling windows sizes
(based on the historical daily prices)

Cumulative Returns and its Correlation Coefficients

Figure 6.7 describes the development of the cumulative returns from different portfolios
when these portfolios are generated by portfolio optimization with the historical
monthly prices and different rolling window sizes. As we can see, the average return
goes up and down with an upward trend until the rolling window size is around 43.
The peak of the average return is 4.5 (450%). After the peak, the average returns slump
into 0.75 (75%) with some bounce backs. The Pearson correlation coefficient between
cumulative returns and the corresponding rolling window sizes is -0.483744502406371 ,
when the data set is the historical monthly prices. There is only a moderate negative
correlation between them.

Figure 6.8 describes the development of the cumulative returns from different portfo-
lios when these portfolios are generated by portfolio optimization with the historical
daily prices and different rolling window sizes. The average return goes up and down
with an upward trend until the rolling window size is around 750. The peak of the
average return is 2.5 (250%) . And then, the average returns sink into 0.6 (60%). The
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Pearson correlation coefficient between cumulative returns and the corresponding
rolling window sizes is -0.821987539560751 , when the data set is the historical daily
prices. There is only a very high negative correlation between them.

Figure 6.7: Development of cumulative returns from different portfolios that are gener-
ated by portfolio optimization with different rolling windows sizes (based
on the historical monthly prices)
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Figure 6.8: Development of cumulative returns from different portfolios that are gener-
ated by portfolio optimization with different rolling windows sizes (based
on the historical daily prices)

Sharp Ratio and its correlation coefficients

Figure 6.9 describes the development of Sharpe ratios from different portfolios when
these portfolios are generated by portfolio optimization with the historical monthly
prices and different rolling window sizes. As we can see, the average return goes up
and down with an upward trend until the rolling window size is around 40. The peak
of the average return is 2.5. After the peak, the average returns slump to 0.9 with
some bounce-backs. The Pearson correlation coefficient between Sharpe ratios and the
corresponding rolling window sizes is -0.513842048881781 , when the data set is the
historical monthly prices. There is only a moderate negative correlation between them.

Figure 6.10 describes the development of Sharpe ratios from different portfolios
when these portfolios are generated by portfolio optimization with the historical daily
prices and different rolling window sizes. The average return goes up and down
with an upward trend until the rolling window size is around 750. The peak of the
average return is 2.2. And then, the average returns sink to 0.9. The Pearson correlation
coefficient between Sharpe ratios and the corresponding rolling window sizes is -

62



6 Experiment

0.715591403398691, when the data set is the historical daily prices. There is only a high
negative correlation between them.

Figure 6.9: Development of Sharpe ratios from different portfolios that generated by
portfolio optimization with different rolling windows sizes (based on the
historical monthly prices)
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Figure 6.10: Development of Sharpe ratios from different portfolios that generated by
portfolio optimization with different rolling windows sizes (based on the
historical daily prices)

6.2.5 Conclusion

It is similar to the section; a better portfolio can be generated using a larger rolling
window size when the rolling window size is in a suitable range. But when the rolling
window size is too large, the portfolio becomes terrible rapidly.

6.3 Experiment 3: Sampling Interval Based Multi-Fidelity
Model Using Different γshort

6.3.1 Experiment Goal

In this experiment, we want to test the performance of the fused long-term portfolio,
compared to the short-term portfolio and long-term portfolio, when using different
γshort. The range of γshort is between 0.05 and 1.5.
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6.3.2 Experiment Design

1. generate long-term portfolios with γlong = 1 in portfolio optimization

2. generate short-term portfolios with different γshort in portfolio optimization

3. fuses the short-term portfolio with γshort into the long-term portfolio to generate
a fused long-term portfolio with γshort when the long-term portfolio and the
short-term portfolio are at the same time point.

4. calculate cumulative returns, average returns, and Sharpe ratios for the short-term
portfolio with γshort, long-term portfolio, and fused long-term portfolio.

6.3.3 Data set

In this experiment, the data set is the historical monthly prices between 1995 − 01 − 01
and 2015 − 01 − 01 and the historical daily prices between 1995 − 01 − 01 and 2015 −
01 − 01.

The relative stocks are:
"AMD","BA","CSCO","DHR","INTC","JPM","NKE","PG","TXN","WMT".

6.3.4 Experiment Result

Average Portfolio Returns and its Correlation Coefficients

Figure 6.11 describes the development of average portfolio returns when using different
γshort. Because a long-term portfolio, using the fixed γlong = 1, it can be a baseline.
Long-term, short-term, and fused long-term portfolios rebalance themselves every
month. Hence, the average portfolio returns of the long-term portfolio, short-term
portfolio, and fused long-term portfolio are the monthly return The red curve is the
average monthly return of the short-term portfolio based on daily rebalance. We
assume that there are 30 days every month. Hence, the red curve is the result that the
average daily return of the short-term portfolio based on daily rebalance is multiplied
by 30. As we can see, the peak of the red one is closer to 0.018 (1.8%) at the beginning,
while γshort is closer to 0. After that, the average return dwindles with increasing γshort
without any recovery. There is a similar trend for the average of short-term portfolios
and the average of fused long-term portfolios. Both fall at first and rebound from
γshort = 0.15. After that, they never go down. The baseline, the average portfolio
returns of a long-term portfolio, always be 0.00303990108268414 (0.303990108268414%) ,
due to the fixed γlong = 1

Table 6.1 describes the Pearson correlation coefficients between the average return
and γshort for the short-term portfolio, the fused long-term portfolio, and the short-term
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fused long-term
portfolio

short-term
portfolio

short-term portfolio based
on daily rebalance

Pearson correlation coefficients 0.91296972 0.91296972 -0.697389618

Table 6.1: Pearson correlation coefficients between the average return and γshort

portfolio based on daily rebalance. Pearson correlation coefficient of fused long-term
portfolio and the coefficient of short-term portfolio is in the range between 0.8 and 1.
There is a high positive correlation between the average return of the fused long-term
portfolio (the short-term portfolio). In other words, increasing γshort can increase the
average return of a fused long-term portfolio(the short-term portfolio).

Figure 6.11: Development of average portfolio returns when using different γshort

Cumulative Returns and its Correlation Coefficients

Figure 6.12 describes the development of cumulative returns when using different γshort.
The long-term portfolio is the baseline due to the fixed γlong = 1. The cumulative
returns of the long-term portfolio is 1.00085 (100.085%). Compared to figure 6.11, the
trend of the short-term portfolio based on daily rebalance is different. The red one rises
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fused long-term
portfolio

short-term
portfolio

short-term portfolio based
on daily rebalance

Pearson
correlation
coefficients 0.909286988309415 0.916197063052294 -0.602477854280436

Table 6.2: Pearson correlation coefficients between the cumulative return and γshort

up at first until γshort = 0.2 . The corresponding peak is 3.8 (380%). After γshort = 0.2 ,
its cumulative returns rebound from the peak and fall into the lowest level. The trend
of the short-term portfolio and the trend of the fused long-term portfolio are similar to
Figure 6.12. Both of them can outperform the long-term portfolio.

Table 6.2 describes the Pearson correlation coefficients between the cumulative return
and γshort for the short-term portfolio, the fused long-term portfolio, and the short-
term portfolio based on daily rebalance. Similar to table 6.1, there is a high positive
correlation between the cumulative return of fused long-term portfolio (the short-term
portfolio) and γshort.

Figure 6.12: Development of cumulative returns when using different γshort
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fused long-term
portfolio

short-term
portfolio

short-term portfolio based
on daily rebalance

Pearson
correlation
coefficients 0.906947959067862 0.908923985557281 0.272903586203281

Table 6.3: Pearson correlation coefficients between the Sharpe ratios and γshort

Sharpe ratios and its correlation coefficients

Figure 6.13 describes the development of Sharpe ratios when using different γshort.
The long-term portfolio is the baseline due to the fixed γlong = 1 . The Sharp ratio of
the long-term portfolio is around 0.4. Similar to figure 6.12, the Sharpe ratios of the
short-term portfolio, based on daily rebalance, rise up at first until γshort = 0.2 . The
corresponding peak is 1.712. After γshort = 0.2 , its Sharpe ratios rebound from the
peak and fluctuate. Compared to Figure 6.12 and Figure 6.11, the difference point is
that the Sharpe ratios of the short-term portfolio can outperform the Sharpe ratios of
the short-term portfolio based on daily rebalance when γshort is larger than 1.1. The
rest are similar.

Table 6.3 describes the Pearson correlation coefficients between the Sharpe ratios and
γshort for the short-term portfolio, the fused long-term portfolio, and the short-term
portfolio based on daily rebalance. Similarly, there is a high positive correlation between
the Sharpe ratios of the fused long-term portfolio (the short-term portfolio) and γshort.
Compared to table 6.2, the difference thing is that Pearson correlation coefficients of
short-term portfolios based on daily rebalance are positive. Hence, there is a low
positive correlation between the Sharpe ratios of the short-term portfolio based on daily
rebalance and γshort.
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Figure 6.13: Development of Sharpe ratios when using different γshort

6.3.5 Conclusion

As we can see, γshort can affect the returns of these portfolios when focusing on the
whole data set over long time periods. We can find a relationship between γshort and
the returns of these portfolios easily. The distribution of Sharpe ratios / cumulative
returns / average return looks like a continuous distribution. It is possible to find a
global optimal γshort to improve Sharpe ratios, cumulative returns, and average returns.

6.4 Experiment 4: Local Optimal γ∗
short Distribution in Sampling

Interval Based Multi-Fidelity Model

6.4.1 Experiment Goal

In this experiment, we want to describe the local optimal γ∗
short distribution at different

time points (for each data point) , when the range of γshort is between 0.05 and 1.5.

6.4.2 Experiment Design

1. generate long-term portfolios with γlong = 1 at time t

69



6 Experiment

2. generate short-term portfolios with different γshort at time t

3. fuse the short-term portfolio with γshort = x into long-term portfolio with γlong =

1, to generate a fused long-term portfolio with γshort = x at time t

4. find out the local optimal γ∗
short from these fused long-term portfolio with γshort =

x at time t , when the fused long-term portfolio with γshort = γ∗
short should bring

the highest return at time t ,compared to the other portfolio with other γshort )

5. repeat for each time point within the range of the historical data set.

6. display these γ∗
short at different time points.

6.4.3 Data set

In this experiment, the data set is the historical monthly prices between 1995 − 01 − 01
and 2015 − 01 − 01 and the historical daily prices between 1995 − 01 − 01 and 2015 −
01 − 01.

The relative stocks are:
"AMD","BA","CSCO","DHR","INTC","JPM","NKE","PG","TXN","WMT".

6.4.4 Experiment Result

Figure 6.14 describe local optimal γ∗
short distribution. As we can see, the largest local

optimal γ∗
short is only 1.5 because our experiment setting about the range of γshort is just

between 0 and 1.5. Most of these local optimal γ∗
short are closer to the extreme value in

the default range of γshort. It looks like a particular step function or a special two-point
distribution.
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Figure 6.14: optimal γ∗
short distribution

6.4.5 Conclusion

The local optimal γ∗
short distribution is similar to a two-point distribution. If we can

ignore some non-extreme values, it can be regarded as a two-point distribution.

6.5 Experiment 5: Sampling Interval based Multi-Fidelity
Model with the local optimal γ∗

short

6.5.1 Experiment Goal

In this experiment, we want to test the performance of the fused long-term portfolio
using the local optimal γ∗

short , compared to the short-term and long-term portfolios.

6.5.2 Experiment Design

1. generate local optimal γ∗
short for each time point t like Experiment 4 long-term

portfolios with γlong = 1 at time t

2. generate the fused long-term portfolio with local optimal γ∗
short

3. calculate cumulative returns, average returns, and Sharpe ratios for the fused
long-term portfolio with local optimal γ∗

short
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4. compare with Experiment 3

6.5.3 Data set

In this experiment, the data set is the historical monthly prices between 1995 − 01 − 01
and 2015 − 01 − 01 and the historical daily prices between 1995 − 01 − 01 and 2015 −
01 − 01.

The relative stocks are:
"AMD","BA","CSCO","DHR","INTC","JPM","NKE","PG","TXN","WMT".

6.5.4 Experiment Result

Average Portfolio Returns

Figure 6.15, based on figure 6.11 , describes the development of average portfolio
returns when using different γ. Because these local optimal γ∗

short are fixed for each
time point, the corresponding average portfolio return does not change with different
γshort. As we can see, the average portfolio return of the fused long-term portfolio
using a local optimal γ∗

short is about 0.013 (1.3%). It outperforms the fused long-term
portfolio, short-term portfolio, and long-term portfolio.
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Figure 6.15: Development of average portfolio returns when using the local optimal
γ∗

short

Cumulative Returns

Figure 6.16, based on figure 6.12 , describes the development of cumulative returns
when using different γ. Because these local optimal γ∗

short are fixed, the corresponding
average portfolio return does not change with different γshort. As we can see, the
cumulative returns of the fused long-term portfolio using the local optimal γ∗

short is
about 4.6(460%). It is the best among all of these portfolios.
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Sharpe ratios

Figure 6.16: Development of cumulative returns when using the local optimal γ∗
short

Figure 6.17, based on figure 6.13 , describes the development of Sharpe ratios when
using different γshort. Because these local optimal γ∗

short are fixed, the corresponding
average portfolio return does not change with different γshort. As we can see, the Sharp
ratio of the fused long-term portfolio using the local optimal γ∗

short is 2.148. It’s better
than the rest of the portfolio.
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Figure 6.17: Development of Sharpe ratios when using the local optimal γ∗
short

6.5.5 Conclusion

As we can see, the performance of the fused long-term portfolio using the local optimal
γ∗

short is better than the others. If we can predict the local optimal γ∗
short , the fused

long-term portfolio can be improved.

6.6 Experiment 6: Sampling Interval based multi-fidelity Model
with predicted local optimal γ∗

short and binary local optimal
γ∗

short

6.6.1 Experiment Goal

In this experiment, we want to test the performance of the fused long-term portfolio
using predicted local optimal γ∗

short and binary local optimal γ∗
short, compared to the

short-term portfolio and long-term portfolio.
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6.6.2 Experiment Design

1. generate local optimal γ∗
short for each time point t like Experiment 4 and long-term

portfolios with γlong = 1.

2. predict local optimal γ∗
short at each time t using a Gaussian process classifier .

3. calculate binary local optimal γ∗
short (If a local optimal γ∗

short is larger than 0.8, then
the corresponding binary local optimal γ∗

short is 1.5 . Others binary local optimal
γ∗

short are 0.05 ).

4. generate the fused long-term portfolio with predicted local optimal γ∗
short.

5. calculates cumulative returns, average returns, and Sharpe ratios for the fused
long-term portfolio with predicted local optimal γ∗

short and binary local optimal
γ∗

short .

6. compare with experiment 5

6.6.3 Data set

In this experiment, the data set is the historical monthly prices between 1995 − 01 − 01
and 2015 − 01 − 01 and the historical daily prices between 1995 − 01 − 01 and 2015 −
01 − 01.

The relative stocks are:
"AMD","BA","CSCO","DHR","INTC","JPM","NKE","PG","TXN","WMT".

6.6.4 Experiment Result

In this experiment, we predict the local optimal γ∗
short using Gaussian process classifier

implemented by scikit-learn [4]. The local optimal γ∗
short distribution is similar to a

two-point distribution. The best way to predict data points from two-point distributions
is a machine learning model or deep learning model. Unfortunately, we can not predict
the data using a machine learning or deep learning model due to a lack of time and
data. Therefore, Gaussian process classifier is used in our experiment to predict the
local optimal γ∗

short. Our data set size of local optimal γ∗
short is 144. The accuracy of the

predictions is 54.8%.

Average Portfolio Returns

Figure 6.18, based on figure 6.15, describes the development of average portfolio returns
when using predicted local optimal γ∗

short and binary local optimal γ∗
short. Because the
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predicted local optimal γ∗
short and the binary local optimal γ∗

short are fixed for each time
point, the corresponding average portfolio return does not change with different γshort.
As we can see, the average portfolio return of binary local optimal γ∗

short is about 0.0123
(1.23%). Compared to the local optimal γ∗

short ,the average portfolio return of binary
local optimal γ∗

short drops down slightly.
The average portfolio return of predicted local optimal γ∗

short is just 0.004 (0.4%).
It seems that we should keep γ∗

short as large as possible if we can not predict the local
optimal γ∗

short in a high accuracy. However, it still outperforms the long-term portfolio.

Figure 6.18: Development of average portfolio returns when using predicted local
optimal γ∗

short and Binary Local Optimal γ∗
short

Cumulative Returns

Figure 6.19, based on figure 6.16, describes the development of cumulative returns
when using predicted local optimal γ∗

short and binary local optimal γ∗
short. Because the

predicted local optimal γ∗
short and the binary local optimal γ∗

short are fixed for each time
point, the corresponding cumulative portfolio return does not change with different
γshort.

As we can see, the cumulative returns of the fused long-term portfolio using the local
optimal γ∗

short is about 4.6(460%). It is the best among all of these portfolios.
As we can see, the cumulative return of binary local optimal γ∗

short is about 4.1 (410%).
Compared to the local optimal γ∗

short ,the cumulative return of binary local optimal
γ∗

short drops down slightly.
The cumulative portfolio return of predicted local optimal γ∗

short is just 1.38 (138%).
It seems that we should keep γ∗

short as large as possible if we can not predict the
local optimal γ∗

short correctly in a high probability. However, it still outperforms the
long-term portfolio.

77



6 Experiment

Figure 6.19: Development of Cumulative Returns When Using Predicted Local Optimal
γ∗

short and Binary Local Optimal γ∗
short

Sharpe Ratios

Figure 6.20, based on figure 6.17, describes the development of Sharpe ratios when
using predicted local optimal γ∗

short and binary local optimal γ∗
short.

Because the predicted local optimal γ∗
short and the binary local optimal γ∗

short are
fixed for each time point, the corresponding Sharpe ratios do not change with different
γshort.

As we can see, the Sharpe ratio of binary local optimal γ∗
short is 2.02. There is also a

little decline compared to the local optimal γ∗
short. The Sharpe ratio of predicted local

optimal γ∗
short is only 0.61. But it is still better than the long-term portfolio.

Figure 6.20: Development of Sharpe Ratios When Using Predicted Local Optimal γ∗
short

and Binary Local Optimal γ∗
short
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6 Experiment

6.6.5 Conclusion

As we can see, there is a slight decline of the performance when using binary local
optimal γ∗

short, compared to using local optimal γ∗
short. However, the performance using

binary local optimal γ∗
short is better than the baseline. The performance of predicted

local optimal γ∗
short just outperforms the long-term portfolio can be improved because

the accuracy of the predictions is very low.
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7 Conclusion

Our work has given an overview of portfolio optimization, multi-fidelity, and Gaussian
processes. We described financial data characteristics, assets, portfolios, portfolio
optimization, traditional multi-fidelity model, Gaussian process, and some regression
algorithms. Process models about how portfolio optimization can work are also
mentioned. We discuss the definition of multi-fidelity in portfolio optimizations.
According to the process models of portfolio optimization, we discuss whether or not
each step can be a high-fidelity / low-fidelity in portfolio optimization. According to
the result of the discussion, two different types of multi-fidelity portfolio optimization
models are proposed. One is the sampling interval based multi-fidelity model, a feasible
idea. The other one is the prediction-based multi-fidelity model, an unreasonable idea.
The reason why the prediction-based multi-fidelity model is unreasonable is that we
can not transform a distribution into a useful expected return or a useful portfolio.
Some experiments about the sampling interval based multi-fidelity model are designed
and implemented. These experiment results explain the total workflow of the sampling
interval based multi-fidelity model, and how it can be used in the future. Experiments
1 and 2 describe why we can not improve portfolio optimization with a huge data set.
Experiment 3 proves that it is possible that a short-term portfolio can be fused into a
long-term portfolio to generate a fused long-term portfolio, which can bring higher
returns and a higher sharp ratio than the long-term portfolio. Experiment 4 displays
the local optimal γ∗

short distribution. This distribution can be treated as a two-point
distribution if we ignore some non-extreme values. Experiment 5 shows an ideal
situation of how good the fused long-term portfolio can be while using local optimal
γ∗

short at each time t. But how can the local optimal γ∗
short for the fused long-term

portfolio be predicted at each time point t? The local optimal γ∗
short distribution is

similar to a two-point distribution. The best way to predict data points from two-point
distributions is a machine learning model or deep learning model. Unfortunately, we
can not predict the data using a machine learning or deep learning model due to a lack
of time and data. In experiment 6, we predict the local optimal γ∗

short using a Gaussian
process classifier implemented by scikit-learn [4].
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7 Conclusion

7.1 Future Works

Many things about this work still need to be done in the future. The first thing is
how to predict the local optimal γ∗

short. The second thing is how to refine the fusion
algorithm in sampling interval based multi-fidelity model.

7.1.1 Predicting Local Optimal γ∗
short

Predicting optimal γ∗
short is a challenging thing. However, fortunately, the distribution

of local optimal γ∗
short can be regarded as a two-point distribution. Normally , binary

prediction is easier than multiple outcome prediction because the machine learning
and deep learning model can outperform in such tasks. We can use machine learning
or deep learning to calculate the probability of local optimalγ∗

short at time t. Because it
follows the two-point distribution, two probabilities,P0 and P1, can be calculated. P0

is the probability of the minimum γ. P1 is the probability of the maximum γ. These
probabilities can be used in the fusion algorithm. In order to use machine learning or
deep learning, it is necessary to collect more data from different data source, not just
stock prices.

7.1.2 Refine Fusion Algorithm with the probability of the maximum of local
optimal γ∗

short

In this work, our fusion algorithm is just a simple average method. In fact, due to the
prediction of local optimal γ∗

short, it is possible that we can apply the probability of local
optimal γ∗

short at time t into the fusion algorithm. For example, we can allocate the
portfolio according to these probabilities, such as:

FLP = ((0.5)LP + (0.5)SP)P0 + ((0.5)LP + (0.5)SP)P1 (7.1)

It can reduce the risk by pooling risk.
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