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Abstract— Deploying nonlinear sampled-data systems in
safety-critical applications requires us to ensure robust con-
straint satisfaction for an infinite time horizon. To maximize
the region of safe operation, we aim to compute a robust
control invariant set with maximum volume. In this work, we
propose an iterative optimization-based algorithm that com-
putes a sequence of candidate invariant sets, which is volume-
wise monotonically increasing. By leveraging polynomialization-
based techniques from reachability analysis and controller
synthesis, our approach outperforms linearization-based ap-
proaches, especially for higher-dimensional systems. We show
that the computational complexity of each iteration of our algo-
rithm is polynomial in the state dimension and demonstrate its
broad applicability using several examples from the literature
with up to 10 dimensions.
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I. INTRODUCTION

Deploying controlled systems, such as vehicles, robots,
and drones, in safety-critical applications is very challeng-
ing, since these systems exhibit nonlinear dynamics and
hard constraints on the state must be satisfied with limited
control effort despite disturbances. We address this issue
by computing robust control invariant (RCI) sets satisfying
provided constraints. RCI sets have many applications in
robust control: they serve as terminal sets in robust model
predictive control [1], [2] or safeguard learning-based con-
trollers [3], [4]. The following literature overview categorizes
the approaches based on the chosen set representation (please
see [5] for a more exhaustive literature overview).

Polytopic Sets: The computation of polytopic (robust
control) invariant sets of nonlinear systems has been consid-
ered in [6]–[10]. The works in [6]–[8] abstract the discrete-
time nonlinear system by a convex difference inclusion
[11], [12]. However, these approaches rely on the vertex
representation of polytopes, which enables a flexible design
of the (robust control) invariant set, but restricts the applica-
bility to low-dimensional systems. In the case of polynomial
dynamics, the computation of polytopic (robust control)
invariant sets can be encoded as a polynomial program that
can be relaxed into a sequence of linear programs [9], [13].
However, these approaches have only been applied to low-
dimensional systems and it is not clear how the relaxation
can be automated.
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Level Sets: Level sets have been used to represent
invariant sets computed by methods such as Hamilton-Jacobi
reachability analysis [14]–[16], occupation measures [17]–
[19], and control-barrier functions [20]–[22]. For all these
approaches, the task of computing an invariant set is encoded
as a (sequence of) semidefinite program(s). However, a)
the invariance-enforcing controller must be designed prior
to computing the set [15]–[17], b) only controlled but not
perturbed systems are considered [18], or c) the size of
the semidefinite program compromises the scalability of the
approach [18], [23].

Ellipsoidal Sets: Usually, algorithms that use ellipsoids
to represent the RCI set scale better to higher-dimensional
systems but yield more conservative results: In [24], [25],
the nonlinear system is abstracted by a polytopic linear
difference inclusion and, in [26], a control invariant set
is computed for the linearized system before verifying in-
variance for the nonlinear system by solving a non-convex
program.

Grid Cells: The control invariant set is represented as
the union of grid cells in [27], [28]. While these approaches
enable to approximate the maximal control invariant set
arbitrarily close in theory, gridding the state space restricts
their applicability to low-dimensional systems.

Previous Work: In our previous work [5], we proposed
the first algorithm for computing RCI sets of nonlinear sys-
tems using zonotopes as a set representation. By combining
scalable reachability analysis with (successive) convexifica-
tion, we computed RCI sets of nonlinear systems with up to
20 dimensions in only a couple of minutes. However, we kept
the center of the RCI set fixed and abstracted the nonlinear
dynamics to a linear difference inclusion.

Contribution: In this paper, we address the afore-
mentioned sources of conservatism in [5] to obtain larger
RCI sets of perturbed nonlinear sampled-data systems. In
particular, we

• use zonotopes as an efficient set representation of the
RCI set and consider its center as an optimization
variable;

• leverage the polynomialization approach for reachability
analysis from [29] and polynomial controller synthesis
[30] to obtain less conservative results;

• design a sequence of polynomial programs where the
resulting sequence of candidate RCI sets is volume-wise
monotonically increasing; and

• demonstrate the broad applicability and scalability of
our approach using various examples from the literature



with up to 10 dimensions.

Organization: In Sec. II, we provide the problem
statement, introduce the required set representations, present
conditions for zonotope containment, and algorithms for
reachability analysis of nonlinear systems. We introduce
and analyze our novel approach for computing RCI sets in
Sec. III. The discussion and evaluation of our algorithm are
provided in Sec. IV and Sec. V, respectively.

Notation: The sets of natural numbers with and without
zero are denoted by N0 and N, respectively. For two vectors
y, v ∈ Ro, we define yv =

∏o
i=1 y

vi
i . The vector full of

ones and zeros of appropriate dimension is denoted by 1
and 0, respectively. Given a matrix A ∈ Rm×n, we use
A(j) to denote the j-th column of A and A(J ), where
J = {j1, . . . , jm} ⊂ N, is used for [A(j1), . . . , A(jm)]. The
absolute value |A| as well as equalities and inequalities
between vectors and matrices are applied elementwise. If
A is a square matrix, det (A) refers to its determinant. For
a ∈ Rn, the operator diag (a) returns a diagonal matrix with
the elements of a on the main diagonal. Given two sets
A,B ⊂ Rn, A ⊕ B = {a+ b : a ∈ A, b ∈ B} denotes their
Minkowski addition.

II. PRELIMINARIES

A. Problem Statement

We consider perturbed continuous-time nonlinear systems
of the form

ẋ(t) = f(x(t), u(t), w(t)), (1)

where x(t) ∈ Rnx is the system state, u(t) ∈ Rnu is the
control input, and w(t) ∈ Rnw is the unknown disturbance
at time t ∈ R≥0. The nonlinear function f is assumed to
be sufficiently smooth and the input as well as disturbance
trajectories u(·) and w(·), respectively, are assumed to be
piecewise continuous. Moreover, w(·) is confined to the set
of disturbances W ⊂ Rnw , i.e., ∀t: w(t) ∈ W , which we
denote by w(·) ∈ W . We assume that W is compact and
contains the origin. The solution of (1) at time t ∈ R≥0 with
initial state x(0) = x0, input u(·), and disturbance w(·) is
denoted by χ(t, x0, u(·), w(·)).

In controller synthesis for cyber-physical systems, one
usually encounters the setting of sampled-data systems, i.e., a
physical plant evolving in continuous time is controlled by a
digital controller [3]. Measurements are obtained at discrete
points in time tk = k∆t with ∆t ∈ R>0, k ∈ N0, and the
actuators provide a piecewise constant control input

u(t) = uctrl(x(tk)), ∀t ∈ [tk, tk+1[ , (2)

where uctrl denotes a given sampled-data control law. Next,
we define the closed-loop reachable set.

Definition 1 (One-step Reachable Set): For the system in
(1), a set of initial states X0 ⊂ Rnx , a sampled-data con-
troller uctrl, and a set of disturbances W , the reachable
set R (∆t,X0, uctrl) after one time step is the set of states

reachable from X0 at time ∆t:

R (∆t,X0, uctrl) = {χ(∆t, x0, uctrl(x0), w(·)) :
x0 ∈ X0, w(·) ∈ W}.

(3)

The reachable set over the time interval [0,∆t] is the union
of reachable sets R (t,X0, uctrl) , ∀t ∈ [0,∆t]:

R ([0,∆t],X0, uctrl) =
⋃

t∈[0,∆t]

R (t,X0, uctrl) . (4)

Since the exact computation of R (t,X0, uctrl) for general
nonlinear systems is impossible [31], we compute over-
approximations, i.e., R̂ (t,X0, uctrl) ⊇ R (t,X0, uctrl) to en-
sure safety [32].

The state and the control input are constrained by

x(·) ∈ X , (5a)
u(·) ∈ U , (5b)

where X = {x ∈ Rnx : HXx ≤ hX } is a polytope and U
is assumed to be representable as a zonotope (Sec. II-B).
As in our previous work [5], we aim to compute an RCI
set ŜRCI ⊂ Rnx with maximum volume and its associ-
ated safety-preserving controller ûRCI around a steady state
(xeq, ueq) for nonlinear sampled-data systems by solving

PRCI :(
ŜRCI, ûRCI

)
= arg max

S,uS

VOLUME (S) (6a)

such that

R̂ (∆t,S, uS) ⊆ S, (6b)

R̂ ([0,∆t],S, uS) ⊆ X , (6c)
∀x0 ∈ S : uS(x0) ∈ U . (6d)

The condition in (6b) ensures invariance of ŜRCI at the
sampling instants; moreover, satisfaction of the state and
input constraints in between sampling times is enforced
by the constraints in (6c) and (6d), respectively. Since this
argument can be repeated for any future point in time, robust
satisfaction of (5a) and (5b) for every x0 ∈ ŜRCI follows.

B. Set Representations

Zonotopes are a popular set representation for reachability
analysis and controller synthesis [33].

Definition 2 (Zonotope): A zonotope Z ⊂ Rnz is given
by

Z = {z ∈ Rnz : z = c+Gλ, |λ| ≤ 1}

where c ∈ Rnz is the center and G ∈ Rnz×ηZ is the genera-
tor matrix with ηZ denoting the number of generators of Z .
We use the shorthand Z = ⟨c,G⟩.

In addition, we introduce polynomial zonotopes [29] [34,
Ch. 3.2], which are beneficial for reachability analysis of
nonlinear systems. Unless stated otherwise, we use polyno-
mial zonotopes to compute reachable sets in this work.

Definition 3 (Polynomial Zonotope): A polynomial zono-



tope PZ ⊂ Rnz is given by

PZ =

{
z ∈ Rnz : z = c+

ηD∑
i=1

g(i)λ
e(i) +GIδ,

|λ| ≤ 1, |δ| ≤ 1

}
where c ∈ Rnz is the center, G =

[
g(1) . . . g(ηD)

]
∈ Rnz×ηD

is the matrix of dependent generators, GI ∈ Rnz×ηI

is the matrix of independent generators, and
E =

[
e(1) . . . e(ηD)

]
∈ Ro×ηD is the exponent matrix.

The operator Z (PZ) returns a zonotope that encloses a
polynomial zonotope PZ [34, Proposition 3.1.14].

C. Zonotope Containment

To formulate the set containment conditions in (6b)-
(6d), we recall two encodings of the zonotope containment
problem. Consider the zonotopes Z1 = ⟨c1, G1⟩ ⊂ Rnz and
Z2 = ⟨c2, G2diag (α)⟩ ⊂ Rnz where α ∈ RηZ2

>0 . Z1 is con-
tained in Z2, i.e., Z1 ⊆ Z2 if there exist Γ ∈ RηZ2

×ηZ1 ,
γ ∈ RηZ2 such that [35, Lemma 2]

G1 = G2Γ, (7a)
c2 − c1 = G2γ, (7b)∣∣[Γ γ

]∣∣1 ≤ α. (7c)

Given a polytope P = {z ∈ Rnz : Hz ≤ h},

Hc1 + |HG1|1 ≤ h, (8)

is necessary and sufficient for Z1 ⊆ P [36, Theorem 2].

D. Reachability Analysis of Nonlinear Systems

In this section, we provide a brief overview of the reacha-
bility algorithm in [29]. First, the nonlinear dynamics in (1)
are abstracted by a Taylor series of order κ:

ẋ(t) ∈ flin(x(t), u(t), w(t)) + ξ(x(t), u(t), w(t))⊕ L(t)︸ ︷︷ ︸
=:Ξ(t)

,

(9)

where flin(x(t), u(t), w(t)) is the first-order approximation
of (1), ξ(x(t), u(t), w(t)) contains all higher-order terms up
to order κ, and L(t) denotes the Lagrange remainder. We
expand the system dynamics about x = xeq, u = ueq, and
w = 0 since we compute an RCI set around the steady state
(xeq, ueq). Using the uncertainty set Ξ(t), which encloses
ξ(x(t), u(t), w(t)) and L(t), we can apply the superposi-
tion principle of linear systems to compute reachable sets:
First, we compute the reachable sets of the linearized dy-
namics flin(x(t), u(t), w(t)) at the time point ∆t and for
the time-interval [0,∆t]. To obtain R̂ (∆t,X0, uctrl) and
R̂ ([0,∆t],X0, uctrl), we add the reachable set due to the
set of uncertainties Ξ([0,∆t]), which encloses Ξ(t) for
t ∈ [0,∆t].

For the presentation of our approach, we use a symmetric
Lagrange remainder

L ([0,∆t]) =
〈
0,diag

(
ℓ
(
R̂ ([0,∆t],X0, uctrl)

))〉
,

where ℓ
(
R̂ ([0,∆t],X0, uctrl)

)
∈ Rnx

≥0 bounds the Lagrange
remainder, see e.g. [34, Eq. (4.13)] for κ = 2. Moreover, we
assume that the discretization of flin(x(t), u(t), w(t)) with
sampling time ∆t is stabilizable.

III. COMPUTATION OF RCI SETS

In general, we obtain a set of non-differentiable constraint
functions if we execute the reachability algorithm in Sec. II-
D to evaluate the conditions in (6b) and (6c). Inspired by the
successive convexification algorithm in our previous work
[5], we therefore propose to iteratively approximate PRCI.

We start by introducing the parameterized candidate RCI
set S and the candidate invariance-enforcing controller uS .
Afterwards, we present the steps conducted in the i-th iter-
ation of our algorithm: Based on the reachability algorithm
in Sec. II-D, we first compute parameterized approximations
R̃(i) (∆t,S, uS) and R̃(i) ([0,∆t],S, uS) of the reachable
sets that enable a differentiable encoding of the conditions in
(6b) and (6c) (Sec. III-B). Afterwards, we solve a polynomial
approximation P̃ (i) of PRCI to obtain the updated candidate
RCI set S(i) and candidate invariance-enforcing controller
u
(i)
S (Sec. III-C). In Sec. III-D, we show that repeating these

two steps yields a sequence of candidate RCI sets S(·) that
is volume-wise monotonically increasing.

Since we use approximations of the reachable sets for
optimization, we cannot guarantee that any of the iterates
S(i), u(i)S satisfies the conditions in (6b)-(6d). In the last step
of our algorithm, we therefore compute over-approximations
of the reachable sets R̂ (∆t,S∗, u∗S) and R̂ ([0,∆t],S∗, u∗S)
to verify safety of the converged solution S∗, u∗S (see [5,
Sec. III] for more details). We use SRCI and uRCI to denote
the verified solution of our algorithm.

A. RCI Set and Controller Parameterization

We adopt the generator scaling framework introduced
in [37] to obtain an efficient parameterization of the
reachable sets: Given a non-degenerate initial guess
S(0) =

〈
xeq, G

(0)
S

〉
for ŜRCI, we keep the orientation of

its ηRCI generators fixed and introduce a vector of scaling
factors s ∈ RηRCI

>0 as an optimization variable. Using the
initial step G

(1)
S = G

(0)
S diag

(
s(1)

)
, the generator matrix of

S(i) is defined recursively as

G
(i)
S = G

(i−1)
S diag

(
s(i)

)
. (10)

To increase flexibility, we introduce the translation
∆cS ∈ Rnx of the center of S as an optimization variable.
The center of S(i) is obtained using the recursion

c
(i)
S = c

(i−1)
S +∆c

(i)
S (11)

with the initial step c(1)S = xeq +∆c
(1)
S . By combining (10)

and (11), the parameterized candidate RCI set in P̃ (i) follows
as

S (∆cS , s) =
〈
c
(i−1)
S +∆cS , G

(i−1)
S diag (s)

〉
= ⟨cS , GS⟩ .

(12)



As we will see in the next subsection, the evolution of any
x0 ∈ S (∆cS , s) can be expressed as a polynomial combi-
nation of the center and generators of S (∆cS , s). Thus, we
can compute a control input for x0 by finding control inputs
for the center and generators of S (∆cS , s) and interpolat-
ing between them using λS , where x0 = cS +GSλS with
|λS | ≤ 1. Since U is assumed to be a zonotope, i.e.,

U = {u ∈ Rnu : u = cU +GUλU , |λU | ≤ 1} , (13)

the computation of the control inputs for the center
and generators of S (∆cS , s) can be equivalently ex-
pressed as the computation of the corresponding fac-
tor λU . We use the parameterization of λU proposed
in [30]: Given a user-defined matrix of exponents
O =

[
o(1) . . . o(M)

]
∈ NηRCI×M

0 and the matrix of controller
parameters P =

[
p(1) . . . p(M)

]
∈ Rnu×M , we define

λU (λS , P ) = p(1) +

M∑
k=2

p(k)λ
o(k)

S , (14)

i.e., λU (λS , P ) is a polynomial in λS and the optimization
variables P . Please note that we define o(1) = 0 to model
offsets via p(1). Since we impose no other restrictions regard-
ing the choice of the exponent matrix O, the user can add
arbitrary desired monomials to λU (λS , P ). Combining (13)
with (14), the parameterized candidate invariance-enforcing
control input uS(P ) given the state x0 ∈ S (∆cS , s) is

uS(P ) = cU +GUλU (λS , P ). (15)

For the remainder of this work, we write S and uS instead
of S (∆cS , s) and uS(P ), respectively, where convenient.

B. Parameterized Reachability Analysis

We now define the parameterized approximations
R̃(i) (∆t,S, uS) and R̃(i) ([0,∆t],S, uS). To enable a
differentiable encoding of the conditions in (6b) and (6c),
we evaluate the uncertainty set Ξ(t) in (9) only for the
initial state x0 since Ξ([0, 0]) ≈ Ξ([0,∆t]) for small time
steps as explained in [29]. This approximation entails
L ([0, 0]) = ⟨0,diag (ℓ (S))⟩ ≈ L ([0,∆t]). To avoid the
costly evaluation of ℓ (S (∆cS , s)) and its derivatives while
solving P̃ (i), we approximate the Lagrange remainder by

Ψ(i) (S) = ⟨0,diag (ψ)⟩ , (16)

where ψ ∈ Rnx

≥0 and ψj ≥ ψ̃
(i)
j (S) , j ∈ {1, . . . , nx}. The

interchangeable function ψ̃
(i)
j (S) is a polynomial, i.e., it

is twice continuously differentiable, and we assume that
ψ̃
(i)
j (S) ≈ ℓj

(
R̂ ([0,∆t],S, uS)

)
. We provide a simple ex-

ample for ψ̃(i)
j (S) in Sec. III-D.

By plugging Ξ([0, 0]) ≈ Ξ([0,∆t]) and (16) into the
reachability algorithm in Sec. II-D, we obtain the polynomial

zonotope

R̃(i) (∆t,S, uS) =
{
x ∈ Rnx : x = cR (∆cS , P )

+

ηD∑
l=1

gR,(l) (∆cS , P, ψ) s
e(l)λ

e(l)
S

+GIδ, |λS | ≤ 1, |δ| ≤ 1

}
,

(17)

where cR (∆cS , P ) and gR,(l) (∆cS , P, ψ) are vector-valued
polynomials. For simplicity, we use the heuristic

R̃(i) ([0,∆t],S, uS) = S ≈ R̂ ([0,∆t],S, uS) (18)

to approximate the time-interval reachable set.

C. Polynomial Optimization Problem

As stated in Sec. II-A, our goal is to compute an RCI set
with maximum volume. According to [38, Corollary 3.4],
the cost function VOLUME (S) thus is

VOLUME (S) = 2nx

ncomb∑
j=1

∣∣∣det(G(i−1)
(J (j))

)∣∣∣ ∏
l∈J (j)

sl,

where J (j) denotes one of the ncomb possible nx-membered
subsets of {1, . . . , ηRCI}.

Due to the parameterization of the invariance-
enforcing controller in Sec. III-A, we use the condition
|λU (λS , P )| ≤ 1 from (13) to encode the input constraint in
(6d). To check this condition for every x0 ∈ S, we introduce
the set ΛU (P ):

ΛU (P ) = {λU (λS , P ) : |λS | ≤ 1} ,

which is representable as a polynomial zonotope [30].
Using the proposed approximations in (17) and (18) of the

exact reachable sets in (3) and (4), respectively, we can now
state the polynomial program P̃ (i):

P̃ (i) :(
S(i), u

(i)
S

)
= arg max

∆cS ,s,P,ψ
VOLUME (S (∆cS , s)) (19a)

such that

Z
(
R̃(i) (∆t,S (∆cS , s) , uS(P ))

)
⊆ S (∆cS , s) ,

(19b)
S (∆cS , s) ⊆ X , (19c)
Z (ΛU (P )) ⊆ [−1,1] , (19d)

∀j ∈ {1, . . . , nx} : ψj ≥ ψ̃
(i)
j (S) , (19e)

where we compute the zonotope enclosure of
R̃(i) (∆t,S, uS) and ΛU (P ) in (19b) and (19d), respectively,
to use the conditions for zonotope containment in (7)
and (8). Since S is representable as a zonotope and both
R̃(i) (∆t,S, uS) and ΛU (P ) are representable as polynomial
zonotopes, the cost function and all constraint functions in
P̃ (i) can be rewritten as polynomials.



D. Iterative Procedure

In Sec. III-B, we proposed to approximate the Lagrange
remainder using a set of polynomial functions. While this
enables us to solve P̃ (i) efficiently in practice, finding
functions ψ̃

(i)
j (S) that tightly approximate the Lagrange

remainder L ([0,∆t]) can be challenging, especially for
high-dimensional systems. On the other hand, using rather
simple functions ψ̃(i)

j (S) can lead to conservative solutions.
Therefore, we propose an iterative procedure, which realizes
a local refinement of ψ̃(i)

j (S). To ensure that every addi-
tional iteration improves the quality of our solution, i.e., the
resulting sequence of candidate RCI sets S(·) is volume-wise
monotonically increasing, we require that ψ̃(i)

j (S) meets the
following requirements, which are adapted from [5, Def. 4]:

∀i ∈ N : ψ̃
(i+1)
j

(
S(i)

)
≤ ψ̃

(i)
j

(
S(i)

)
(20a)

∀S ⊆ X : ℓj (S) ≤ ψ̃
(i)
j (S) . (20b)

As we will show subsequently in Theorem 1, the condition
in (20a) ensures that the solution of P̃ (i) is a feasible solution
of P̃ (i+1). Moreover, we impose the condition in (20b) to
ensure that ψ̃(i)

j (S) approximates the Lagrange remainder

bound ℓj

(
R̂ ([0,∆t],S, uS)

)
reasonably well. Let us now

provide a simple example for a suitable ψ̃(i)
j (S).

Example 1: For simplicity, we assume a one-dimensional
dynamical system. Furthermore, we introduce the operator
BOX (A, a), which returns the smallest interval that is cen-
tered at a and contains the compact set A. Using interval
arithmetic to bound the Lagrange remainder, see e.g. [34,
(4.13)] for κ = 2, ℓj (S) is a homogeneous polynomial of
degree κ+ 1 in the edge-length of BOX (S, xeq). Hence,
choosing ψ̃

(i)
1 (S) as a piece-wise linear function defined

by ℓ1 ({xeq}), ℓ1
(

BOX
(
S(i), xeq

))
, and ℓ1 (BOX (X , xeq))

satisfies the conditions in (20). Since the constraint in (19e)
can be encoded as a set of two linear inequalities, differentia-
bility is ensured. Please note that this simple example can be
generalized to higher-dimensional systems by using the aux-
iliary variable β̌ with β̌ = min

{
β : β BOX

(
S(i), xeq

)
⊇ S

}
for interpolation.

To show that S(·) is volume-wise monotonically increas-
ing, we require the following auxiliary result.

Lemma 1: Assume that the constraints in (19e) hold with
equality. If all ψ̃(i)

j (S) , i ∈ N, are chosen according to (20a),

then R̃(i+1)
(
∆t,S(i), u

(i)
S

)
⊆ R̃(i)

(
∆t,S(i), u

(i)
S

)
.

A proof is provided in Appendix I.
Theorem 1: Let P̃ (m),m ∈ N, admit a feasible solution

S(m) and u
(m)
S . For every i > m, i ∈ N, it holds that

VOLUME
(
S(i−1)

)
≤ VOLUME

(
S(i)

)
, i.e., the sequence S(·)

is volume-wise monotonically increasing.
Proof: We show that S(m),u(m)

S is a feasible solution
of P̃ (m+1), which implies that VOLUME

(
S(m)

)
is a lower

bound of VOLUME
(
S(m+1)

)
. Since this argument can be

applied for any i > m, the claim follows by induction.
Satisfaction of the constraint in (19c) follows

for ∆cS = 0 and s = 1 since S (0,1) = S(m).
Similarly, choosing P = P (m) satisfies the constraint
in (19d). Since ψj is only lower-bounded by
ψ̃
(m+1)
j

(
S(m)

)
, setting ψj = ψ̃

(m+1)
j

(
S(m)

)
in (19e)

is feasible. From Lemma 1, we therefore obtain
R̃(m+1)

(
∆t,S(m), u

(m)
S

)
⊆ R̃(m)

(
∆t,S(m), u

(m)
S

)
.

Thus, the constraint in (19b) is satisfied, which concludes
the proof.
So far, we have assumed that the initial guess S(0), u

(0)
S

admits a feasible solution of P̃ (1). As proposed in [5,
Remark 3], we can rewrite the conditions in (7c) and (8)
as soft constraints so that our approach can handle an
infeasible initial guess. Extending the results in Theorem 1
is straightforward.

IV. DISCUSSION OF THE ALGORITHM

A. Computational Complexity

Every iteration of our algorithm consists of two main
steps: computing parameterized approximations of the reach-
able sets and solving the polynomial program P̃ (i). The
computation of the parameterized reachable sets is based
on the reachability algorithm presented in Sec. II-D, which
has complexity O

(
(max(nx, nu))

5
)

[34, Sec. 4.1.4]. If
we use second-order methods to solve P̃ (i), the required
number of function evaluations depends polynomially on the
requested solution accuracy ϵopt > 0 [39]. Since evaluating
the polynomial constraint and cost functions (thus, their
Jacobians and Hessians are polynomials too) has polynomial
complexity in nx and nu [40], solving P̃ (i) to a stationary
point of accuracy ϵopt has polynomial complexity in nx and
nu. Hence, every iteration of our algorithm has polynomial
complexity in nx and nu. We cannot provide an upper bound
on the required number of iterations, however, our algorithm
usually terminates in a small number of iterations, see Sec. V.

B. Existence of Solutions and Formal Guarantees

Since P̃ (i) approximates PRCI, feasibility of PRCI does
not imply feasibility of P̃ (1). Similarly, a feasible solution
of P̃ (i) not necessarily satisfies the constraints in (6b) and
(6c). However, if P̃ (m),m ∈ N, admits a feasible solution,
it is guaranteed that every P̃ (i), i > m, admits a feasible
solution (see the proof of Theorem 1). Moreover, we verify
satisfaction of the constraints in (6b) and (6c) for the
converged solution by computing over-approximations of the
reachable sets (Sec. III).

V. NUMERICAL EXPERIMENTS

We apply our robust control approach to several examples
from the literature. In Sec. V-A, we compare our novel poly-
nomialization (poly.) approach to our previous linearization
(lin.) approach [5] and demonstrate the effect of choosing
the center of SRCI as an optimization variable. Afterwards,
we analyze the scalability of our approach in Sec. V-B and
close this section with a comparison with an approach from
the literature in Sec. V-C.



For all examples, we use the convergence criterion pro-
posed in [5]

VOLUME
(
S(i)

)
− VOLUME

(
S(i−1)

)
VOLUME

(
S(i−1)

) ≤ ϵ, (21)

with ϵ = 10−3 as the convergence tolerance, the Taylor order
for the abstraction of the nonlinear dynamics is chosen as
κ = 2 (Sec. II-D) and ηRCI = 5nx. To enable a fair compar-
ison, we choose the matrix of exponents O for the controller
(Sec. III-A) so that we obtain a linear interpolation-based
controller as in [5]. As an initial guess, we compute an RCI
set for the linearized dynamics using the approach from [35].

Our implementation and the benchmark systems alongside
all parameters will be made publicly available with the next
release of the AROC1 toolbox [41]. We use the open-source
tool CORA [42] for reachability analysis and IPOPT [43]
via the MATLAB interface included in the OPTI toolbox2

for solving the polynomial programs P̃ (i). All computations
were conducted on a laptop equipped with an Intel Core i7-
11370H and 64 GB of memory.

A. Comparison with the Linearization Approach

For the comparison with our previous work [5], we use
a broad range of control systems such as a cartpole or a
quadrotor. Table I provides a summary of the results. The
fifth column indicates whether the initial guess admits a
feasible solution of P̃ (1). The sixth and seventh column
provide the number of iterations of our algorithm until
the convergence criterion in (21) is satisfied (# iter. opt.)
and until the converged solution can be verified as safe
(# iter. ver.), respectively. The average time required for
solving P̃ (i) is reported in the eighth column. The numbers
in parentheses denote the corresponding number of convex
programming iterations in [5] and the corresponding average
computation times per convex program. The last column
shows the quotient

Jn (SRCI) =
VOLUME (SRCI poly. approach)

VOLUME (SRCI lin. approach)
.

Both approaches manage to compute a feasible solution for
all the examples in Table I. By formulating the containment
checks in (7) and (8) as soft constraints (Sec. III-D), our
approach can recover from an infeasible initial guess, see
the Cartpole and Robot Arm example. Most importantly,
the polynomialization approach outperforms the linearization
approach in every example due to the less conservative
approximations of the reachable sets, which is indicated by
Jn (SRCI) > 1 in the last column. However, the improved
performance comes at the cost of increased computation
times. We consider a chain of nonlinear mass-spring-damper
systems to obtain a better impression of the scalability and
the performance with increasing dimension of the state space
in Sec. V-B.

1https://tumcps.github.io/AROC/
2https://github.com/jonathancurrie/OPTI
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Fig. 1: Cart example: When considering the center of SRCI as an opti-
mization variable, SRCI is translated in the positive x2-direction. In both
cases, the polynomialization approach yields a significantly larger RCI set
compared to the linearization approach [5].

Next, we consider the cart example from [41] to demon-
strate the efficacy of choosing the center as an optimization
variable. The dynamics of the cart are governed by

ẋ1 = x2 + w1,

ẋ2 = −x22 − x31 + u+ w2,
(22)

where x1, x2 denote the position and the velocity of the cart,
respectively. Measurements are taken with a sampling time
of ∆t = 0.1 s and the origin is chosen as the equilibrium for
the computation of SRCI. The results for a fixed center of
SRCI, i.e., ∆cS = 0, and a free center of SRCI are shown
in Fig. 1. In the latter case, the center of SRCI is translated
in the positive x2-direction to exploit the nonlinear damping
term in (22). Thereby, the volume of SRCI can be increased
by 7%. Compared to the linearization approach, the volume
of SRCI increases by more than 100% when using the novel
polynomialization approach.

B. Analysis of the Scalability

To analyze the scalability of our approach, we use the
chain of nmass coupled nonlinear mass-spring-damper sys-
tems from [5]. The results for nmass ∈ {1, . . . , 5} are sum-
marized in Table II. As already indicated by the analysis
in Sec. IV-A, the numbers in both Table I and Table II
indicate that the computational complexity of our approach
scales reasonably well with the dimension of the state space
nx and the input space nu. In comparison with the convex
approximations of PRCI in [5], the computational effort for
solving a polynomial approximation P̃ (i) of PRCI grows
faster with the dimension of the state space (see the third
column of Table II). However the last column of Table II
indicates that using higher-order abstractions of the nonlinear
dynamics for reachability analysis is performance-wise even
more beneficial with increasing nx, since we handle the
nonlinearities in a less conservative way.

https://tumcps.github.io/AROC/
https://github.com/jonathancurrie/OPTI


TABLE I: Comparison with our previous work [5].

Example
nx nu nw P̃ (1) feas.? Poly. Approach (Lin. Approach [5]) Jn (SRCI)

# iter. opt. # iter. ver. ∅ solver time

Jet Engine [9] (Sec. V-C) 2 1 1 ✓ 2 (8) 1 (1) 0.49 s (0.1 s) 1.07
Cart [41] (Sec. V-A) 2 1 2 ✓ 2 (10) 1 (0) 0.67 s (0.11 s) 2.30
Mass-Spring-Damper System [44] 2 1 2 ✓ 8 (8) 0 (0) 0.36 s (0.12 s) 1.06
Cartpole (dynamics of the pendulum) [45] 2 1 1 ✓ 10 (18) 1 (0) 0.27 s (0.13 s) 1.65
Cartpole [46] 4 1 1 ✗ 9 (16) 5 (0) 1.78 s (0.66 s) 7.33
Pendubot [47] 4 1 1 ✓ 14 (19) 0 (0) 2.01 s (0.86 s) 125.9
Robot Arm [41] 4 2 4 ✗ 16 (28) 2 (0) 1.83 s (0.55 s) 2.4
Longitudinal Quadrotor [3] 6 2 2 ✓ 7 (10) 6 (1) 32.0 s (0.79 s) 6.5
Chain of 5 Mass-Spring-Damper Systems Sec. V-B 10 5 5 ✓ 3 (25) 1 (0) 128.5 s (1.9 s) 1009.1

TABLE II: Analysis of the scalability (using nmass coupled nonlinear mass-
spring-damper systems, see also [5]).

nmass

Poly. Approach (Lin. Approach [5]) Jn (SRCI)

# iter. opt. + ver. ∅ solver time

1 (nx = 2) 3 + 1 (14 + 0) 0.42 s (0.11 s) 1.7
2 (nx = 4) 3 + 1 (18 + 0) 4.9 s (0.49 s) 26.4
3 (nx = 6) 3 + 1 (22 + 0) 19.1 s (0.75 s) 156.4
4 (nx = 8) 3 + 0 (26 + 0) 76.2 s (1.5 s) 246.6
5 (nx = 10) 3 + 1 (25 + 0) 128.5 s (1.9 s) 1009.1

C. Comparison with an Approach from the Literature

We consider the Moore-Greitzer model of a jet engine
whose dynamics are governed by [48]

ẋ1 = −x2 −
3

2
x21 −

1

2
x31 + w,

ẋ2 = u.
(23)

Measurements are taken with a sampling time of ∆t = 0.1
time units. The origin is chosen as the equilibrium for the
computation of SRCI.

In [9], an RCI polytope and a corresponding polynomial
controller for the continuous-time polynomial dynamics are
computed by solving a sequence of linear programs. The
corresponding result from [9] for a linear controller and SRCI

for both our approaches are shown in Fig. 2.
Even though the authors in [9] do not need to abstract

the polynomial dynamics and represent the RCI set using
polytopes, which offer more flexibility compared to zono-
topes, our approaches compute a significantly larger RCI
set. Among others, this is due to the increased flexibility of
our sampled-data setting compared to enforcing invariance
for every point in time. In addition, our approach is easily
applicable to general nonlinear systems, whereas it is not
clear whether and how the computations in [9] can be
automated.

VI. CONCLUSION

We presented a novel, formally correct approach for com-
puting RCI sets of perturbed nonlinear sampled-data systems.
By combining scalable reachability analysis with numerical
optimization, we designed an algorithm that computes a se-
quence of candidate RCI sets with monotonically increasing
volume. In addition to using polynomial difference inclusions
without limiting the order of the abstraction, we introduced

−0.2 −0.1 0 0.1 0.2
−0.2

−0.1

0

0.1

0.2

x1
x
2

RCI polytope [9]
SRCI lin. [5]
SRCI poly.

Fig. 2: Comparison with the approach from [9].

the center of the zonotopic RCI set as an optimization
variable. We show that every iteration of our approach has
polynomial complexity in the state dimension. Our results
demonstrate the broad applicability of our approach and no-
table improvements in terms of the volume of the computed
RCI sets compared to state-of-the-art approaches.

APPENDIX I
PROOF OF LEMMA 1

We assume κ = 2 for simplicity since the extension to
higher-order abstractions is straightforward. By plugging the
approximation Ξ([0, 0]) ≈ Ξ([0,∆t]) from Sec. III-B into the
reachability algorithm presented in Sec. II-D, we obtain

R̃(i) (∆t,S, uS) = Rlin (∆t,S, uS)⊞Rabs (Ξ([0, 0])) ,

where Rlin (∆t,S, uS) returns the reachable sets of the lin-
earized dynamics flin(x(t), u(t), w(t)) and ⊞ denotes the ex-
act addition as defined in [34, Prop. 3.1.20]. Rabs (Ξ([0, 0]))
returns the reachable set due to Ξ([0, 0]) and consists of the
input solution due to

• the constant input QUADMAP (H,S, uS), which evalu-
ates the quadratic forms due to the set of Hessians H
of the dynamics in (1); and

• the approximation Ψ(i) (S) of the Lagrange remainder.
Since we choose (xeq, ueq,0) as the expan-
sion point ∀i ∈ N0, Rlin

(
∆t,S(i), u

(i)
S

)
and

QUADMAP
(
H,S(i), u

(i)
S

)
are identical for two subsequent

iterations R̃(i)
(
∆t,S(i), u

(i)
S

)
, R̃(i+1)

(
∆t,S(i), u

(i)
S

)
. By

assumption, the constraints in (19e) hold with equality and



ψ̃
(i)
j (S), ψ̃(i+1)

j (S) are chosen according to the condition
in (20a). Thus, we obtain Ψ(i+1)

(
S(i)

)
⊆ Ψ(i)

(
S(i)

)
from (16). The claim then follows by computing the input
solutions as described in [29, Sec. 3.2].
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