
Technische Universität München
TUM School of Computation, Information and Technology

Advances of Side-Channel Analysis in the
Areas of Post-Quantum Cryptography and
Deep Learning-Based Attacks

Thomas Schamberger

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr.-Ing. Antonia Wachter-Zeh

Prüfende der Dissertation:
1. Prof. Dr.-Ing. Georg Sigl
2. Prof. Dr.-Ing. Elif Bilge Kavun

Die Dissertation wurde am 25.06.2024 bei der Technischen Universität München eingereicht und durch die
TUM School of Computation, Information and Technology am 16.12.2024 angenommen.

I would like to sincerely thank Prof. Dr.-Ing. Georg Sigl for the opportunity to

pursue this PhD and for supporting me with my research ideas. Further, I would

like to thank Dr. Johanna Sepúlveda for encouraging me to take this opportunity

while always providing me with full support and believing in my abilities. I’m also

thankful to Dr.-Ing. Michael Pehl for the provided support in all administrative and

scientific matters.

I would also like to thank my colleagues who made the years of this PhD project a

period of my life on which I will certainly look back with very happy memories. I’m

very thankful for the productive scientific discussions but also the numerous chats

about the small and big questions of life. In particular, I would like to thank Lars

Tebelmann, Michael Gruber and our newest member Tim Music for the nice

atmosphere in the office, which certainly contributed to the success of this thesis.

Additionally, I would like to thank Christoph Frisch and Michaela Brunner for the

mutual support during the final phase of our thesis. I’m glad for all the meetings of

the "post-quantum group" with Patrick Karl and Jonas Schupp and I’m happy that I

was able to work with such motivated and brilliant colleagues.

I’m very thankful to all co-authors who shared their knowledge with me and

contributed to my and our shared research. Without their help this thesis would not

have been possible. I would especially like to thank Lars Tebelmann with whom I

have co-authored many of my publications. Thanks for the proposed creative

solutions, our shared work on the "Attack Framework" and the knowledge we built

together. Further, I would like to thank Julian Renner, Lukas Holzbaur, and Prof.

Dr.-Ing. Antonia Wachter-Zeh who shared their extensive knowledge of

error-correcting codes with me and invested a lot of work on joint publications.

Additionally, I would like to thank all students who worked under my supervision

and whose work has contributed to my research. A special thanks goes to

Maximilian Egger and Tim Kaiser for their excellent and dedicated work, which

enabled parts of the research presented in this thesis.

Finally, I would like to thank my family and friends for their unconditional support.

There are no words to describe my feelings of gratitude for Lisa, who joined me on

this journey in the very beginning and has supported me with all her wisdom also

during the challenging times. With this part of my life finally concluded, I’m very

much looking forward to the upcoming joint adventures in life.

v

Abstract

Since the publication of the first power side-channel attack by Kocher et al. over two decades ago,
attacks still threaten the information security of embedded devices. This is the case as these attacks
do not exploit weaknesses in the mathematical security of an algorithm but rather exploit the inherent
data-dependent power consumption of Complementary Metal-Oxide-Semiconductor (CMOS) logic
in order to extract used cryptographic secrets. Countermeasures, therefore, have to be developed
or adapted individually for each implementation or used cryptographic algorithm. Research in the
domain of Side-Channel Analysis (SCA) is therefore crucial in order to develop new attack method-
ologies and to evaluate algorithms regarding possible attack vectors with the goal of developing
resource-efficient countermeasures against them. This thesis provides multiple contributions in this
domain.

The first part of this thesis discusses side-channel attacks and countermeasures for two post-
quantum cryptography algorithms. These algorithms are based on other mathematical problems
than established public-key cryptography and are considered secure even in the presence of a large-
scale quantum computer. They are developed in the context of a standardization process by the
National Institute of Standards and Technology (NIST) that identified that solutions have to be ready
in the event of a sudden breakthrough in quantum computing as the migration of cryptographic
infrastructure requires significant time. First, an evaluation of masking for NTRUEncrypt is presented,
which was a promising candidate for standardization after a merger with a similar cryptosystem.
Further, a comprehensive side-channel study of the HQC cryptosystem is shown. This algorithm is
still a candidate for standardization and is based on error-correcting codes. The study includes the
development and practical evaluation of chosen-ciphertext attacks for the initial version of HQC as
well as its update with an improved error correction. Finally, the first part of this thesis is concluded
with the evaluation of multiple countermeasures against the proposed attacks.

The second part of this thesis discusses the promising attack direction of using deep neural networks
for profiled side-channel attacks. This field of deep learning-based side-channel analysis received
considerable research interest as attacks have been shown to be able to break countermeasures while
reducing the preprocessing effort of measurements significantly as, e.g., side-channel information that
needs to be combined for a successful attack is identified automatically. Nevertheless, this leads to a
reduced explainability of attack results, which is unfortunately required by the designer of a protected
implementation to identify weaknesses and to strengthen applied countermeasures. This thesis shows
contributions to explainability methods for these attacks in order to reduce this downside. First, the
foundation for research on explainability methods is created with a comprehensive evaluation of
the standard research datasets called ANSSI SCA Database (ASCAD) with classical side-channel
analysis and a comparison of the different dataset versions. The shown results include unexpected
side-channel leakage for a protected implementation and differing side-channel leakages between
the target bytes of the attacked secret. Based on these observations, multiple advancements to the
occlusion explainability method are presented. These include the identification of suitable occlusion
parameters for ASCAD as well as a method to identify combinations of measurement regions required
for a successful attack.

vi

Zusammenfassung

Seit der Veröffentlichung des ersten strombasierten Seitenkanalangriffs durch Kocher et al. vor mehr
als zwei Jahrzehnten bedrohen Angriffe immer noch die Informationssicherheit von eingebetteten
Geräten. Dies ist der Fall, da diese Angriffe nicht Schwächen in der mathematischen Sicherheit eines
Algorithmus nutzen, sondern vielmehr den inhärenten datenabhängigen Stromverbrauch von CMOS-
Logik ausnutzen, um die verwendeten kryptografischen Schlüssel zu extrahieren. Gegenmaßnahmen
müssen daher für jede Implementierung und jeden verwendeten Algorithmus individuell angepasst
werden. Die Forschung auf dem Gebiet der Seitenkanalanalyse (SCA) ist daher von entscheidender
Bedeutung, um neue Angriffsmethoden zu entwickeln und Algorithmen auf potenzielle Angriffsvek-
toren zu evaluieren, mit dem Ziel, ressourceneffiziente Gegenmaßnahmen zu entwickeln. Diese
Arbeit trägt mehrfach zu diesem Bereich bei.

Der erste Teil dieser Arbeit befasst sich mit Seitenkanalangriffen und Gegenmaßnahmen für zwei
Post-Quantum-Kryptografie-Algorithmen. Diese Algorithmen basieren auf anderen mathematischen
Problemen als die der etablierten asymmetrischen Kryptosysteme und gelten auch in Gegenwart eines
Quantencomputers von ausreichender Größe als sicher. Die Algorithmen wurden im Rahmen eines
Standardisierungsverfahrens des National Institute of Standards and Technology (NIST) entwickelt,
um im Falle eines plötzlichen Durchbruchs in der Quantencomputerforschung Lösungen bereitstellen
zu können, da die Umstellung der kryptografischen Infrastruktur sehr zeitintensiv ist. Zunächst
werden Maskierungsgegenmaßnahmen für das Verfahren NTRUEncrypt vorgestellt, das nach einer
Fusion mit einem ähnlichen Kryptosystem ein vielversprechender Kandidat für die Standardisierung
war. Außerdem wird eine umfassende Seitenkanalstudie des HQC Kryptosystems gezeigt. Dieses
System ist ein Kandidat für die Standardisierung und basiert auf fehlerkorrigierenden Codes. Die
Studie umfasst die Entwicklung und praktische Evaluierung von Chosen-Ciphertext-Angriffen für
die ursprüngliche Version von HQC sowie dessen Weiterentwicklung mit einer verbesserten Fehler-
korrektur. Abschließend werden verschiedene Gegenmaßnahmen gegen die präsentierten Angriffe
evaluiert.

Im zweiten Teil dieser Arbeit wird der vielversprechende Angriffsvektor der Nutzung von tiefen
neuronalen Netzwerken für die Seitenkanalanalyse diskutiert. Dieser Bereich der Seitenkanalana-
lyse erregt großes Forschungsinteresse, da gezeigt wurde, dass Angriffe in der Lage sind Gegen-
maßnahmen zu umgehen und gleichzeitig den Aufwand für die Vorverarbeitung von Messungen
erheblich zu reduzieren, da z.B. Seitenkanalinformationen, die für einen erfolgreichen Angriff kom-
biniert werden müssen, automatisch identifiziert werden. Dies führt jedoch zu einer verminderten
Erklärbarkeit von Angriffsergebnissen, was aber für die Identifikation von Schwachstellen einer
geschützten Implementierung von entscheidender Bedeutung ist. Diese Arbeit zeigt Verbesserungen
von Erklärungsmethoden für diese Angriffe, um diesen Nachteil abzuschwächen. Als Grundlage
für die Erforschung von Erklärbarkeitsmethoden werden Ergebnisse einer umfassenden Auswer-
tung der Standard-Forschungsdatenbank ASCAD mit klassischer Seitenkanalanalyse und ein Ver-
gleich der unterschiedlichen Datenbankversionen gezeigt. Die Ergebnisse dieser Untersuchun-
gen zeigen unerwartete Seitenkanalinformationen für eine geschützte Implementierung und un-
terschiedliche Seitenkanalinformationen zwischen den angegriffenen Teilen des verwendeten Schlüs-
sels. Auf der Grundlage dieser Beobachtungen werden mehrere Weiterentwicklungen der Occlusion-
Erklärungsmethode vorgestellt. Dazu gehören die Bestimmung geeigneter Parameter der Methode
für eine Evaluation von ASCAD sowie eine Methode zur Ermittlung der für einen erfolgreichen
Angriff erforderlichen Kombination an Seitenkanalinformation.

vii

Contents

1 Introduction 1

2 Side-Channel Analysis 5
2.1 Leakage Evaluation . 5
2.2 Unprofiled Side-Channel Attacks . 8
2.3 Profiled Side-Channel Attacks . 8
2.4 Countermeasures . 11

I Attacking and Securing Post-Quantum Cryptography 13

3 Practical Evaluation of Masking for NTRUEncrypt on ARM Cortex-M4 15
3.1 Introduction . 15
3.2 NTRUEncrypt . 16

3.2.1 Notation and Representation of Polynomials . 17
3.2.2 Algorithm Description . 18
3.2.3 Operations on Polynomials . 18

3.3 CPA Attack on NTRUEncrypt . 21
3.4 Masking Countermeasure . 22

3.4.1 Sequential Implementation . 24
3.4.2 Parallel Implementation . 24
3.4.3 Optional Shuffling Countermeasure . 25
3.4.4 Performance Evaluation . 25

3.5 Side-Channel Evaluation Results . 26
3.5.1 CPA on Ternary Polynomials . 26
3.5.2 Second-Order Attacks on the Masking Countermeasure 26
3.5.3 Second-Order Attack on the Combination of Masking and Shuffling 29

3.6 Discussion . 29

4 Chosen-Chiphertext Attacks on Hamming Quasi-Cyclic (HQC) 33
4.1 Introduction . 33
4.2 Error-Correcting Codes . 35

4.2.1 Introduction to Error-Correcting Codes . 35
4.2.2 Linear Block Codes . 36
4.2.3 Reed-Solomon (RS) Codes . 40
4.2.4 Bose-Chaudhuri-Hocquenghem (BCH) Codes 43
4.2.5 Reed-Muller (RM) Codes . 44
4.2.6 Concatenated Codes . 49

4.3 Hamming Quasi-Cyclic (HQC) . 49
4.3.1 Notation . 50
4.3.2 Cryptosystem . 50
4.3.3 Choice of the Error-Correcting Code . 54

4.4 General Attack Strategy using SCA Oracles . 56
4.4.1 Support Distribution of the Secret Key 𝒚 . 57
4.4.2 Retrieving 𝒚(0) Using a Side-Channel Oracle . 58

viii

4.4.3 Retrieval of 𝒚(1) . 59
4.4.4 Utilizing Partial Attack Results through Information Set Decoding 60

4.5 Attack Strategy on HQC-BCH . 62
4.5.1 Attack Strategy . 62
4.5.2 Instantiation of the Decoding Oracle through a Power Side-Channel 64
4.5.3 Experimental Results . 65
4.5.4 Discussion . 67

4.6 Attack Strategy for HQC-RMRS . 68
4.6.1 Unapplicability of Related Work . 68
4.6.2 Attack Strategy . 71
4.6.3 Side-Channel Targets to Build the Required Oracle 74

4.7 Countermeasures . 77
4.7.1 Detection of Attack Patterns . 77
4.7.2 Codeword Masking of the Outer Decoder . 77
4.7.3 Inserting Additional Errors . 78
4.7.4 Conclusion . 82

II Explainability for Deep Learning-based Side-Channel Analysis (DL-SCA) 85

5 Preliminaries 87
5.1 Deep Learning-based Side-Channel Analysis (DL-SCA) 87

5.1.1 Introduction and Notation . 87
5.1.2 Elemental Network Layers and Used Architectures 88
5.1.3 Training and Architecture Optimization . 90
5.1.4 Evaluation Metrics . 91
5.1.5 Advantages and Disadvantages of DL-SCA . 92

5.2 ANSSI SCA Databases (ASCAD) . 93
5.2.1 Advanced Encryption Standard (AES) Implementation 93
5.2.2 Versions of the Database . 94
5.2.3 Used Network Architectures . 95

6 A Second-Look at the ASCAD Databases 97
6.1 Introduction . 97
6.2 Classical Side-Channel Analysis of ASCAD . 99

6.2.1 Leakage Evaluation . 99
6.2.2 First/Second-Order CPA Results . 103

6.3 DL-SCA on ASCAD: Impact of Training Scenarios and Varying Key Byte Leakage . . . 105
6.3.1 Experimental Setup . 106
6.3.2 Fixed Key vs. Variable Key Training . 106
6.3.3 Training on Different Key Bytes . 109
6.3.4 Cross-Byte Analysis . 111

6.4 Conclusion . 112

7 Occlusion Techniques for DL-SCA Attribution 113
7.1 Introduction . 113
7.2 Revisiting Gradient-based Attribution for ASCAD . 115
7.3 Improvements to the Occlusion Technique . 117

7.3.1 𝑛-Occlusion . 117
7.3.2 Exploring Different Occlusion Methods . 117
7.3.3 Higher-Order Occlusion: Hiding Multiple Parts at Once 122

7.4 Occlusion Evaluation of the ASCAD Databases . 123

ix

7.5 Conclusion . 125

8 Conclusion 127

A Proof of the Attack Strategy for HQC-RMRS 129

B CPOI Analysis of ASCAD fix and ASCAD variable 135

C Second-Order Attack Results for ASCAD variable 137

Related Publications by the Author 139

Bibliography 141

Acronyms 155

xi

List of Figures

1.1 Timeline of the National Institute of Standards and Technology (NIST) post-quantum
competition. 2

2.1 Overview of different types of side-channel attacks. 5
2.2 Simple Power Analysis (SPA) attack. 8
2.3 Differential Power Analysis (DPA) attack. 9
2.4 Visualization of the two stages of a profiled side-channel attack. 9

3.1 Timeline of the evolution of the NTRUEncrypt cryptosystem. 17
3.2 Index-based multiplication with binary polynomials. 21
3.3 Index-based multiplication with ternary polynomials. 22
3.4 Comparison of the developed sequential and parallel masked implementations. 23
3.5 Visualization of the SADD16 instruction of an ARM Cortex-M4 microcontroller. 24
3.6 Combined input to the parallel masked implementation. 24
3.7 CPA results for the unprotected NTRUEncrypt implementation. 27
3.8 Leakage of both shares for the sequential implementation. 28
3.9 Attack results for the sequential masked implementation. 28
3.10 Attack results for the parallel masked implementation. 29
3.11 Evolution of the correlation for both implementations with an increasing number of

traces. 29
3.12 Second-order attack results of the masked and shuffled implementations. 30

4.1 Example of a systematic encoding of the vector 𝒖. 36
4.2 Encoding and decoding of a message vector 𝒖. 36
4.3 Visualization of different decoding methods. 38
4.4 Shortening of a given error-correcting code. 39
4.5 Syndrome-based unique decoding of primitive Reed-Solomon (RS) codes. 42
4.6 Syndrome-based unique decoding of binary primitive Bose-Chaudhuri-Hocquenghem

(BCH) codes. 44
4.7 Duplicated encoding of a Reed-Muller (RM) code. 49
4.8 Encoding and decoding of concatenated codes. 49
4.9 Updates to the Hamming Quasi-Cyclic (HQC) cryptosystem during the NIST competition. 54
4.10 Visualization of the code concatenation used in HQC. 55
4.11 Different parts of the secret key 𝒚 ∈ 𝔽𝑛2 . 57
4.12 Visualization of the attack strategy to reveal the individual 𝒚(0)𝑖 58
4.13 Complexity𝒲BCH of Prange’s algorithm for partial attack results of HQC-BCH. 61
4.14 Complexity𝒲RMRS of Stern’s algorithm for partial attack results of HQC-RMRS. . . . 61
4.15 Patterns to find a super support of 𝒚(0)𝑖 given HW(𝒚(0)𝑖) ≤ 1. 63
4.16 Patterns to find a super support of 𝒚(0)𝑖 given HW(𝒚(0)𝑖) ≤ 2. 63
4.17 Patterns to determine the support of 𝒚(0)𝑖 given the super support. 64
4.18 T-test results for different functions of the BCH decoder during the decryption of

HQC-BCH. 66
4.19 Computed templates after the initialization step of the oracle using 500 traces for each

class. 67

xii

4.20 Decoding results of an maximum likelihood (ML) decoder for two different inputs at
the decoding boundary after an additional error has been added to the input. 69

4.21 Building blocks of the HQC-RMRS decapsulation with the side-channel attack targets
used in related work. 74

4.22 T-test results for the error-locator polynomial computation of HQC-RMRS-128. 75
4.23 Visualization of the codeword masking countermeasure. 78
4.24 T-test results of the error locator polynomial computation of the RS decoder of HQC-

RMRS-128 after adding 𝜙 additional errors. 80
4.25 T-test results for the RS decoder of HQC-RMRS-128 secured with the random error

insertion countermeasure. 81

5.1 Visualization of a perceptron. 88
5.2 Multi Layer Perceptron (MLP) with two hidden layers. 89
5.3 One dimensional Convolutional Neural Network (CNN) 90
5.4 Masked SubBytes operation of the ASCAD implementation. 94

6.1 Leakage analysis of 𝑘2 for the sample ranges and state-of-the-art intermediates. 100
6.2 CPOI analysis of the ASCAD variable dataset for multiple key bytes. 101
6.3 CPOI analysis for the entire masked SubBytes operations for key byte 𝑘2 of ASCAD

variable. 103
6.4 Second-order attack results for ASCAD variable. 105
6.5 Attack results for different training scenarios using key byte 𝑘2. 108
6.6 Attack results for all key bytes of ASCAD variable. 109
6.7 Cross-byte analysis on ASCAD variable. 111

7.1 Gradient-based attribution results in comparison with a leakage evaluation of interme-
diates. 116

7.2 Visualization of the 𝑛-occlusion method. 118
7.3 Key rank evolution using different occlusion methods for both ASCAD datasets. . . . 119
7.4 Occlusion results for different occlusion methods. 120
7.5 Occlusion results for different window sizes. 121
7.6 Occlusion results for a training with the identity (ID) model for both datasets and

architectures. 122
7.7 Visualization of the higher-order occlusion method with order 𝑑 = 2. 122
7.8 Results for the second-order occlusion of 𝑘2 for ASCAD variable. 123
7.9 Occlusion evaluation for 𝑘3 of ASCAD variable. 124
7.10 Occlusion evaluation for 𝑘5 of ASCAD variable. 124

B.1 CPOI analysis of the ASCAD variable dataset for the remaining key bytes. 135
B.2 CPOI analysis of the ASCAD fix dataset for all key bytes. 136

C.1 Second-order attack results for the remaining key bytes of ASCAD variable. 137

xiii

List of Tables

3.1 Parameter sets of NTRUEncrypt. 18
3.2 Performance evaluation of the implementations presented in this section. 25
3.3 Parameter sets of the NTRU submission. 31

4.1 Parameter sets of HQC-BCH. 52
4.2 Parameter sets of HQC-RMRS. 52
4.3 Probabilities that 𝒚 is generated such that the weight of all 𝒚(0)𝑖 for 𝑖 = 0, . . . , 𝑛1 − 1 is at

most 𝑤𝑚𝑎𝑥 for the different parameter sets of HQC-BCH. 57
4.4 Probabilities that 𝒚(0) is generated such that max{HW(𝒚(0)0), . . . ,HW(𝒚(0)𝑛1−1)} is at most

𝑦𝑤,𝑚𝑎𝑥 for all parameter sets of HQC-RMRS. 58
4.5 Length of the remaining part of the secret key that has to be found through an exhaustive

search and the work factor of the presented linear algebra solution. 60
4.6 Super support of 𝒚(0)𝑖 depending on the oracle output for different input patterns. . . . 64
4.7 Ciphertext input used for the initialization of the oracle. 65
4.8 Comparision of the required oracle queries for an attack with HW(𝒚(0)𝑖 ≤ 2). 67
4.9 Required oracle queries for the different attack strategies on HQC-RMRS. 74
4.10 Resulting parameter sets of HQC-RMRS to support the random error insertion coun-

termeasure with 𝜙max = 10. 82

5.1 Overview of the ASCAD databases. 95
5.2 Overview of the used CNNbest architectures. 96
5.3 Overview of the used CNNsmall architectures. 96

6.1 Sample indices for the alignment of all key bytes on CPOI values. 101
6.2 First- and second-order CPA results for both ASCAD databases. 104
6.3 First- and second-order CPA results using all available samples of ASCAD. 106
6.4 Traces to reach median key rank zero for all bytes of ASCAD variable. 110

1

1 Introduction

With the rise of the Internet of Things (IoT) in recent years, there are more and more connected
devices, including smart devices, intelligent factories in the industry 4.0, and cars. This leads to a
total of 15 billion connected devices in 2023, which is estimated to almost double until 20301. In order
to secure the communication of these devices, cryptographic algorithms and protocols are used to
achieve the desired security goals like confidentiality, authenticity, and integrity. Fortunately, the
mathematical security of algorithms, i.e., their resistance against cryptanalysis, is well understood
and therefore established algorithms are considered secure given a sufficient length of the used secret
key. Nevertheless, as an attacker can possess or obtain physical access to a device, it has to be secured
against physical attack attempts. A prominent attack vector are side-channel attacks that exploit a
so-called side-channel of a device in order to extract information about the used secret with the goal of
completely retrieving it. Examples of side-channels are the power consumption of the device, electro-
magnetic emanations, and timing information of the executed algorithm. Possible countermeasures
against these attacks are based on either making the power consumption independent of the used
secret (masking) or increasing the noise of measurements due to a randomized execution of the tar-
geted algorithm (hiding). Although countermeasures are known, side-channel attacks are still a threat
to the information security of embedded devices as advanced attacks are developed and required
equipment becomes affordable. Additionally, the implementation of countermeasures is error prone
such that countermeasures are implemented insufficiently (see, e.g., [RLMI21, SWUH21]). Therefore,
research on Side-Channel Analysis (SCA) is crucial in order to a) develop new attack methodologies
to ultimately identify countermeasures against them and b) evaluate (novel) algorithms for possible
attack vectors such that resource-efficient countermeasures can be developed.

One major field of research is the SCA evaluation of algorithms in the context of the post-quantum
cryptography standardization competition by the National Institute of Standards and Technology
(NIST) [Nat16], which aims at standardizing novel public-key cryptosystems based on mathematical
problems that are considered secure in the presence of a large-scale quantum computer. For these
algorithms, a thorough side-channel evaluation is especially important as, due to the alternative math-
ematical problems, novel constructions of cryptosystems have been developed with building blocks
that differ significantly from established systems and have therefore not seen much scrutiny by the
SCA community. The competition was initiated as, with the publication of Shor’s algorithm [Sho97],
the underlying problems of established public key cryptography, such as the Rivest-Shamir-Adleman
(RSA) cryptosystem or Elliptic-Curve Cryptography (ECC) can be solved in polynomial time given a
quantum computer of sufficient size to attack typical key sizes. Although currently available quantum
computers are only capable of solving small instances of, e.g., integer factorization, and therefore,
substantial effort is required in order to scale a quantum computer up to a cryptographically relevant
size, large public and private investments led to noticeable advancements in quantum computing
[SWM+24]. Besides the fact that experts consider the near-future risk of a large-scale quantum com-
puter quite low2 there are two main reasons why a timely migration to post-quantum cryptography is
required: a) sensitive information can be stored now with the goal of decrypting it in the future when
a large-scale quantum computer is available; b) adapting the cryptographic infrastructure usually
takes a large amount of time. Consequently, the need for a fast development of post-quantum secure

1https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/, last accessed 17th May 2024
2An estimation through the extrapolation of the current quantum computing hardware progress suggests that RSA-2048

will unlikely (< 5 % confidence) be factorized before 2039 [SR20]. See [SWM+24, Section 4.2] for a more detailed discussion
of this estimate.

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

2

algorithms has also been identified by NIST, which started its competition in 2016. A timeline of the
competition is shown in Fig. 1.1.

2016 2017 2018 2019 2020 2021 2022 2023 2024

Call
for

su
bm

iss
ion

s

Fir
st

rou
nd

Se
co

nd
rou

nd

Thir
d rou

nd

Fo
urth

rou
nd

Fir
st

draf
ts

of
sta

nd
ard

s

Figure 1.1 Timeline of the NIST post-quantum competition.

For the first round of the competition, a total of 69 submissions were accepted, and the selection
of algorithms has been refined by NIST for each additional round based on selected criteria obtained
from contributions of the scientific community. These include, e.g., the achievable performance and
resource efficiency of implementations and identified side-channel attacks in combination with the
required resources to achieve a side-channel secured implementation. Especially the need for re-
search on SCA was encouraged by NIST within their status report of the second round [Nat20], which
states “NIST hopes that [...] the public review period will include more work on side-channel resistant
implementations [...]”, as the first two rounds were mainly dominated by research on cryptanalysis
and efficient implementations. After the third round, four algorithms were selected for standard-
ization and the initial public drafts of the corresponding standards were published in August 2023.
The selected algorithms are the Key Encapsulation Mechanism (KEM) CRYSTALS-Kyber [ABD+20]
and the three digital signature algorithms CRYSTALS-Dilithium [BDK+20], Falcon [FHK+20] and
SPHINCS+ [ABB+20b]. Most of the selected algorithms are based on hard problems over lattices,
as NIST concluded that with these types of systems the best performance in combination with the
smallest parameter sizes can be achieved. In order to not rely on the security of a single mathematical
problem, NIST advanced four3 additional KEMs to the fourth round with the goal of standardizing
one of them as an alternative. The remaining selected algorithms are Bit Flipping Key Encapsulation
(BIKE) [ABB+20a], Classic McEliece [ABC+20], and Hamming Quasi-Cyclic (HQC) [MAB+20] that
are systems based on error-correcting codes.

A second field of research that received a lot of attention is the usage of machine learning methods
for SCA, especially the usage of methods from deep learning (DL), i.e., deep neural networks. After
the first publication of DL-based SCA in 2016 by Maghrebi et al. [MPP16], there were two events that
sparked the research interest in this field. First, researchers of the French cybersecurity agency ANSSI
published an opensource database called ANSSI SCA Database (ASCAD) [BPS+18] that includes
measurements and the required metadata for an attack on a protected version of the Advanced
Encryption Standard (AES). Within their corresponding paper [PSB+18], they perform an in-depth
evaluation of different neural network architectures that can be used to successfully attack the database
and provide example code of their architecture with the best attack performance in order to enable
further research. Second, attention to this research field was additionally drawn with the CHES
2018 challenge called “Deep learning vs. classic profiling”4 where multiple datasets for an attack on
block ciphers as well as the RSA cryptosystem were provided. This led to a total of 183 publications
until 2021, as noted by a recent systemization of knowledge paper on the field [PPM+23]. Within

3An example why an alternative candidate could be needed is the complete break of the isogeny-based SIKE cryptosys-
tem [ACC+20] in [CD23], which was found after SIKE was chosen to advance as a fourth-round alternative candidate.

4https://web.archive.org/web/20230103214718/https://chesctf.riscure.com/2018/news, last accessed
19th May 2024

https://web.archive.org/web/20230103214718/https://chesctf.riscure.com/2018/news

3

this paper, the authors identify the following main advantages in contrast to classical side-channel
approaches. DL-based SCA is able to automatically break the implemented countermeasures of
protected implementations with the benefit of requiring no or a significantly reduced amount of
preprocessing of the side-channel measurements. This additionally makes these methods suitable for
attacks on public-key cryptography, including post-quantum cryptography, as these algorithms show
a largely increased execution time in contrast to symmetric algorithms like block ciphers. With neural
networks, exploitable side-channel information can automatically be identified within the resulting
large timeframes of measurements. For classical SCA, measurements usually have to be pre-processed
in order to achieve a feasible computation complexity with the use of expert knowledge. This
highlights the potential of DL-based SCA for an automated end-to-end analysis of the side-channel
security of protected implementations. A first step in this direction is shown in [BIK+24], where a
single network architecture is used to attack multiple implementations and types of cryptosystems.
Nevertheless, besides the presented advantages, there is a major downside which lies in the reduced
explainability of attack results. As the important side-channel information is automatically extracted
from measurements, the respective points in time and, ultimately, the corresponding operations of
an implementation that are used for a successful attack can hardly be identified. Unfortunately,
this information is required by a designer of a cryptographic implementation in order to identify
weaknesses of the implementation and to strengthen applied countermeasures.

Contribution and Outline This thesis provides multiple contributions in the field of SCA that can
be grouped into two parts. In the first part, the development and evaluation of attacks and counter-
measures for two submissions of the NIST post-quantum cryptography competition are presented,
where the underlying publications have been considered as contributions to the NIST standardization
process. The second part provides contributions in the field of explainability of DL-based SCA.

To begin, Chapter 2 gives an overview of the field of side-channel analysis by introducing methods
to identify side-channel leakage in measurements, the different types of side-channel attacks, and
possible countermeasures.

Part I begins with the evaluation of a masking countermeasure for an early version of NTRUEncrypt
[CHWZ17] in Chapter 3, which has been a final candidate for the third round of the NIST competition
as NTRU [CDH+19] after a merger with a similar submission. Provided practical attack results
demonstrate the security of developed protected implementations, which show a low performance
overhead and can additionally be combined with an efficient hiding countermeasure. This work can be
considered one of the first works on countermeasures for software implementations of post-quantum
cryptography. This is followed by a side-channel analysis of the code-based HQC cryptosystem in
Chapter 4, which is still among the remaining three candidates that can be chosen by NIST as an
alternative standard. After an introduction to error-correcting codes and the HQC algorithm, the first
chosen-ciphertext power side-channel attack on the cryptosystem is presented. This attack works
by observing the decoding results of the used error correction through the power side-channel for
multiple ciphertexts. These are chosen by the attacker such that the decoding results depend on an
individual small part of the secret key, allowing the retrieval of the complete secret with a sufficient
amount of observations. Further, a novel attack strategy is shown for an updated version of the
cryptosystem that employs an improved error correction chosen by the HQC authors in order to reduce
parameter sizes. Finally, the chapter is concluded by an evaluation of multiple countermeasures
against the proposed attacks that indicate that a complete masking scheme for HQC has to be
developed in order to provide a protected implementation.

Part II begins with Chapter 5, which provides an introduction to DL-based SCA followed by an
presentation of the different versions of the ASCAD database in combination with the underlying
AES implementation and used neural network architectures. Chapter 6 provides a comprehensive
evaluation of the ASCAD database with classical SCA as we argue that research on explainability of
DL-based SCA requires a throughout understanding of the leakage characteristics of the used dataset.
The presented findings show the presence of additional leakage of intermediates in the selected trace

4

segment of the databases as well as significantly different leakage characteristics dependent on the
targeted key byte. Further, attack results through classical SCA revealed flaws in the underlying
masked implementation that should be considered for an interpretation of DL-based attack results.
With the knowledge of the different leakage characteristics, attack results for all key bytes are shown.
These indicate significant attack performance differences between key bytes and that training and
attacking on different bytes poses challenges to the evaluated architectures. Finally, we show that
the first version of ASCAD provides an easier attack target than the updated version of the database.
In Chapter 7, we provide multiple advancements to the occlusion explainability method building
on the leakage evaluation of Chapter 6. Occlusion can be considered a direct explainability method
as it works by occluding parts of the used side-channel measurements and observing changes in
the resulting attack result. If the attack performance decreases, it can be concluded that the used
neural network has learned to extract information from the occluded part, while a comparison with
a leakage evaluation allows to reason about learned intermediate values of the implementation. We
propose the occlusion of multiple adjacent points in time and introduce higher-order occlusion,
which allows to identify sample combinations that are used by a network in order to perform a
successful attack. Additionally, suitable parameters of the developed methods for evaluating ASCAD
are determined. Finally, the developed higher-order occlusion is used to show that evaluated neural
network architectures actually utilize the identified different leakage characteristics of key bytes.

Chapter 8 concludes this thesis and discusses possible topics for future work.

5

2 Side-Channel Analysis

The security of a cryptographic algorithm is usually determined by an evaluation of the best-known
attack against its underlying mathematical problem. Nevertheless, during the execution of an algo-
rithm, an attacker is able to obtain additional information or characteristics from the device that exe-
cutes the algorithm, which can be used to mount a so-called side-channel attack to derive information
about internal secrets, such as the secret key of a KEM. It is essential to understand that side-channel
attacks do not exploit cryptographic weaknesses in a system but are specific to a particular imple-
mentation of an algorithm. Possible side-channels include the power consumption [KJJ99], which can
also be obtained through electromagnetic emanations, and the timing behavior [Koc96]. This thesis
discusses power side-channel attacks that are based on measurements of the power consumption
of an implementation exploiting the data-dependent power consumption of Complementary Metal-
Oxide-Semiconductor (CMOS) logic [MOP07]. An overview of different power side-channel attacks
is given in Fig. 2.1.

Power side-
channel attacks

Unprofiled

Simple Power
Analysis (SPA)

Correlation Power
Analysis (CPA)

Profiled

Template
Attack (TA)

Machine Learning-
based Attacks

Figure 2.1 Overview of different types of side-channel attacks.

This section gives an overview of the different types of attacks as well as an introduction to possible
countermeasures. In Section 2.1, different methods for leakage evaluation are presented, which
are used to detect exploitable information in side-channel measurements. This is followed by an
introduction to unprofiled side-channel attacks in Section 2.2, which either directly or through the
use of statistical methods in combination with a generic model of the power consumption allow an
attack on the used secret. In contrast, Section 2.3 introduces profiled side-channel attacks. These
attacks assume an identical device with a known secret that can be used to build an exact and tailored
power model of attacked intermediates. Finally, countermeasures are described in Section 2.4.

2.1 Leakage Evaluation

For practical side-channel attacks, it is often necessary to detect exploitable information (leakage) in
side-channel measurements (traces). This implies to determine the points in time with the corre-
sponding measurement samples where the highest amount of leakage can be obtained for a targeted
intermediate value or operation. This process is also called point of interest (POI) detection. There
are multiple reasons for performing leakage evaluation:

• It can be used as a preprocessing step prior to the actual attack to reduce the length of a trace,
thereby imposing a limit on the data to be processed and reducing the required computational

6

resources. This is especially important for profiled attacks since the amount of considered
samples significantly increases the computational complexity.

• In addition to the reduced computational complexity, it allows removing samples that do not
contain exploitable leakage and, therefore, act as noise for an attack.

• It can be used to infer details about a targeted implementation, e.g., samples that have to be
combined in order to break protected implementations can be identified.

It can be distinguished between methods that can be used in a black-box scenario, i.e., no information
about targeted intermediates is required, like the Welch’s t-test [GGJR11, SM15] and methods that
require knowledge about targeted intermediates1 like the signal-to-noise ratio (SNR) [MOP07] or the
Correlation Point of Interest (CPOI) [DS16].

T-Test Welch’s t-test [GGJR11, SM15] can be used to statistically evaluate the presence of side-channel
leakage without prior knowledge about the investigated implementation and used intermediates. It
essentially evaluates whether two sets of data significantly differ from each other in the sense that their
means are different. More formally, Welch’s t-test gives the probability at which the null hypothesis,
i.e., both sets were drawn from the same distribution, can be rejected. Given two sets 𝒮0 and 𝒮1 with
their respective mean 𝜇0 , 𝜇1 and variance 𝑠0 , 𝑠1 the resulting 𝑡-value is calculated as

𝑡 =
(𝜇0 − 𝜇1)

(
√

𝑠2
0
𝑛0
+ 𝑠2

1
𝑛1
)
, (2.1)

where 𝑛 denotes the respective cardinality of the set. Usually, a threshold of |𝑡| > 4.5 is defined, which
states that there is a confidence of > 0.99999 that both sets can not be distinguished if the resulting
t-value stays below this threshold. As the t-test can be individually performed for all the samples of
a measurement trace, it acts as an efficient method for POI detection.

For the actual leakage evaluation, the non-specific or fixed-vs.-random t-test can be applied. It
requires to measure the power consumption of multiple algorithm executions with a fixed secret
while randomly choosing the input data of subsequent measurements to have a fixed or random
value. Measurements are then split into 𝒮0 with fixed input data and 𝒮1 with random input data,
which are then used to calculate the t-value according to Eq. (2.1). All samples that show a t-value
above the threshold are identified as the resulting POIs. This shows a downside of the t-test, as an
attacker does not know which POI actually corresponds to the intermediate value she would like to
target, but rather all samples that exhibit side-channel leakage are revealed. Nevertheless, this makes
the t-test a popular tool for the evaluation of masked implementations as resulting t-values below the
threshold indicate that an implementation can be considered secure against attacks employing the
used amount of traces.

Signal-to-noise Ratio (SNR) The Signal-to-Noise Ratio (SNR) as defined in the side-channel context
by Mangard et al. [MOP07, Section 4.3.2] can be used as a metric for leakage evaluation. It is based
on a model of the leakage in form of the power consumption of a device as

𝐿 = 𝐿𝑑𝑎𝑡𝑎 + 𝐿𝑛𝑜𝑖𝑠𝑒 , (2.2)

where 𝐿𝑑𝑎𝑡𝑎 is the exploitable data dependent leakage and 𝐿𝑛𝑜𝑖𝑠𝑒 is the noise. 𝐿𝑛𝑜𝑖𝑠𝑒 includes the
electronic noise, which consists of the noise of the executing device as well as noise that is induced
through the measurement setup and leakage that does not correspond to the targeted intermediate.

1Usually the knowledge of the used secret is required in order to calculate the values of targeted intermediates.

7

It is modeled as a normal distribution with a zero mean and variance 𝜎2 as 𝐿𝑛𝑜𝑖𝑠𝑒 ∼ 𝒩(0, 𝜎) [MOP07].
The SNR is then defined as

𝑆𝑁𝑅 =
𝑉𝑎𝑟(𝐿𝑑𝑎𝑡𝑎)
𝑉𝑎𝑟(𝐿𝑛𝑜𝑖𝑠𝑒) , (2.3)

which is the ratio between the variance of both parts of the leakage. In practice, side-channel
measurements only contain information about 𝐿 and the goal is to estimate both parts of the leakage
such that the SNR can be computed.

In the following, the computation of the SNR is described according to [PGA+23]. First, an interme-
diate value 𝑣 has to be selected for which the leakage is estimated using the SNR. An example is the
S-box input of a block cipher like the AES, which is an 8-bit value and therefore there are 256 different
values for this intermediate. Then all traces are grouped into different sets ℒ0 , . . . ,ℒ255 according
to the intermediate value, such that ℒ𝑖 contains all traces with 𝑖 = 𝑣. For the individual sets ℒ𝑖 , the
corresponding estimation of the statistical mean 𝜇𝑖 and variance 𝜎2

𝑖 can be computed. The SNR is
then calculated as

𝑆𝑁𝑅 =
𝑉𝑎𝑟(𝜇0 , . . . , 𝜇255)
𝑀𝑒𝑎𝑛(𝜎2

0 , . . . , 𝜎
2
255)

. (2.4)

Correlation-based Leakage Test (CPOI) Durvaux and Standaert [DS16] propose a correlation-based
leakage test that is referred to as CPOI in this thesis. It is based on a profiled instead of an abstract
leakage model like the Hamming weight (HW) or Hamming distance (HD). This profiled leakage
model is generated from the evaluated traces by first grouping each trace according to its value of
the targeted intermediate. For each of these groups the mean for each sample of all traces in the
group is computed, which leads to a mean trace vector for all possible values of the intermediate.
The profiled power model consists of these individual mean trace vectors. Then, the CPOI result is
computed as the correlation of the targeted intermediate for each sample. The process differs from
a Correlation Power Analysis (CPA) [BCO04] in the sense that for the calculation of the correlation
the corresponding mean trace, according to the value of the intermediate for each individual trace of
the computation, is used as the hypothetical power consumption. Finally, this process is repeated 𝑘
times, i.e., 𝑘-fold cross-validation is used, in order to obtain unbiased results. The presence of leakage
and its corresponding samples is indicated by a significant correlation.

More formally, the method is described as follows. First the available traces 𝒯 are split into 𝑘
disjoint sets 𝒯 (𝑖) of equal size for 𝑖 = 0, . . . , 𝑘 − 1. Then one of the sets is chosen as the test set 𝒯 (𝑖)𝑡

and the remaining 𝑘 − 1 sets are used as the profiling set 𝒯 (𝑖)𝑝 = 𝒯 \ 𝒯 (𝑖)𝑡 . The profiling set is used
to estimate a separate model for all 𝑁𝑐 possible values of the targeted intermediate value 𝑣. The
different models consist of the sample mean traces 𝝁(𝑖)𝑐 with 𝑐 = 0, . . . , 𝑁𝑐−1, where only traces of 𝒯 (𝑖)𝑝
with a corresponding intermediate value (𝑐 = 𝑣) are considered for the calculation of the respective
mean trace. Then the correlation of the test set 𝒯 (𝑖)𝑡 with the profiled power model can be calculated
through the use of the Pearson correlation. For this calculation, each trace is correlated with the
power model 𝝁(𝑖)𝑐 of the corresponding intermediate value. The correlation coefficient for all samples
of 𝒯 (𝑖)𝑡 is given as

𝑟(𝑖) =

∑|𝒯 (𝑖)𝑡 |
𝑗=0 (𝒯 (𝑖)𝑡 [𝑗] − 𝒯 (𝑖)𝑡)(𝝁(𝑖)𝑣[𝑗] − 𝝁(𝑖))√∑|𝒯 (𝑖)𝑡 |

𝑗=0 (𝒯 (𝑖)𝑡 [𝑗] − 𝒯 (𝑖)𝑡)2
√∑|𝒯 (𝑖)𝑡 |

𝑗=0 (𝝁(𝑖)𝑣[𝑗] − 𝝁(𝑖))2
, (2.5)

where 𝒯 (𝑖)𝑡 corresponds to the mean of all traces in the test set, 𝝁(𝑖) to the mean of all models, and 𝑣[𝑗]
to the intermediate value corresponding to the trace 𝒯 (𝑖)𝑡 [𝑗]. The process is repeated for all 𝑖 until all
𝑘 cross-validation sets are chosen as the test set and their respective correlation is calculated. Finally,
all correlation results 𝑟(𝑖) for 𝑖 = 0, . . . , 𝑘 − 1 are averaged to get an unbiased result.

8

4
ø

Figure 2.2 Simple Power Analysis (SPA) attack.

2.2 Unprofiled Side-Channel Attacks

The unprofiled side-channel attacks can be distinguished between Simple Power Analysis (SPA)
attacks and Differential Power Analysis (DPA) attacks. In contrast to profiled attacks (c.f. Section 2.3),
a hypothetical model of the side-channel leakage is used for the attack.

SPA attacks are considered simple as they use a single or few traces with the same input to directly
infer the secret, e.g., through visual inspection [MOP07]. A prominent example is the SPA against
the Square-and-Multiply algorithm used for exponentiation in the RSA cryptosystem. Using SPA on
a power trace of this exponentiation allows to distinguish the characteristic power consumption of
the different operations (square or multiply), which directly reveals the used secret key [KJJ99]. A
visualization of a SPA attack is shown in Fig. 2.2.

In contrast, DPA attacks exploit multiple traces in order to attack a secret by comparing power mea-
surements with a hypothetical model of the power consumption through a statistical distinguisher.
The attacks use a divide-and-conquer strategy, which means that they individually target small parts
of the secret and reveal the complete secret through multiple successful attacks. For the attack, an
intermediate value or a function of the algorithm has to be chosen that depends on known input or
output and a (small) part of the secret. Then, for each trace, a hypothetical power consumption is cal-
culated based on all possible hypotheses for the secret using a specific power model like the Hamming
weight (HW) or the Hamming distance (HD). The HW is typically used for software implementations
that are running on a microcontroller, while for hardware implementations the HD is most common
as it reflects the fact that the power consumption of CMOS logic is mostly dominated by the dynamic
power consumption, i.e., transitions from 1→ 0 and 0→ 1 [MOP07]. Finally, all available traces are
compared with their respective hypothetical power consumption through the statistical distinguisher.
The hypothesis that corresponds to the correct secret is revealed as only for this comparison there
exsists a statistical dependency, which is indicated by the distinguisher. In practice, due to noise in
the measurements or an inaccurate power model, multiple traces have to be used until a significant
dependency is revealed. The original DPA of Kocher et al. [KJJ99] uses the difference of means as a
distinguisher. The most common form of DPA is the so-called CPA [BCO04] that uses the Pearson
correlation coefficient in order to determine the linear correlation between actual and hypothetical
power consumption. Mutual Information Analysis (MIA) [BGP+10] utilizes mutual information as a
generic distinguisher that is able to capture any type of dependency. The principle of a DPA attack is
shown in Fig. 2.3.

2.3 Profiled Side-Channel Attacks

For profiled side-channel attacks, the attacker is able to characterize the leakage of a target device.
This requires first choosing a target intermediate value 𝑣 during the execution that is defined by a
function 𝑣 = 𝑓 (𝑥, 𝑘) based on an observable input 𝑥 and the secret 𝑘. There are 𝑁𝑐 possible values
for the intermediate 𝑣, which is therefore in the range [0, 𝑁𝑐 − 1]. The actual attack is divided into a
profiling phase and an attack phase visualized in Fig. 2.4.

9

f(𝑣,ø)

Power Model
f(𝑣,ø1)
f(𝑣,ø2)...
f(𝑣,ø𝑛)

Statistical
Distinguisher ø

Figure 2.3 Differential Power Analysis (DPA) attack.

Profiling
Device

ø

Preprocessing

...

𝑓 (𝑥,ø) = 0

𝑓 (𝑥,ø) = 1

𝑓 (𝑥,ø) = 𝑁𝑐 − 1

𝜃0

𝜃1

𝜃𝑁𝑐−1

Model 𝜽

Attack
Device

ø

Preprocessing

Classification
Pr[𝜽|𝒯𝑎] ø

𝒯𝑎

𝒯𝑝

Profiling Phase Attack Phase

Figure 2.4 Visualization of the two stages of a profiled side-channel attack.

10

For the profiling phase, an attacker has complete control over a profiling device. This allows
modeling the leakage of the targeted intermediate using a set of profiling traces 𝒯𝑝 with known
inputs and secret. Using the profiling traces, the attacker computes a model of the leakage 𝜽 for
all possible 𝑁𝑐 values of 𝑣, resulting in the individual models 𝜃𝑖 with 𝑖 = 0, . . . , 𝑁𝑐 − 1 for each
value. In the attack phase, the attacker captures the attack traces 𝒯𝑎 of an identical device with an
unknown secret. Then, each trace 𝒕 ∈ 𝒯𝑎 is compared to all models 𝜃𝑖 , and the resulting classification
results are aggregated for all traces. This aggregation requires computing key hypotheses 𝑘𝑖 for
𝑖 = 0, . . . , 𝑁𝑐 − 1 through reverting the targeted function using the knowledge of the input 𝑥 and
the intermediate value 𝑣 associated with the model 𝜃𝑖 . Then, for each trace, the corresponding
classification results for the different 𝑘𝑖 can be aggregated. Finally, the key hypothesis with the best
classification result is estimated as the correct value of the targeted secret. There are multiple aspects
of profiled side-channel attacks that have to be considered:

• Preprocessing: Captured traces can be optionally preprocessed in order to reduce computa-
tional complexity and include only samples of a trace that are considered beneficial for the
classification. This can be achieved using leakage evaluation techniques introduced in Sec-
tion 2.1 to identify samples with a high estimated leakage. Additionally, dimensionality re-
duction techniques like Principal Component Analysis (PCA) [APSQ06] or Linear Discriminant
Analysis (LDA) [SA08, CK14] can be used to compress traces by transforming them into a
lower-dimensional subspace.

• Key Enumeration: There is the possibility that the best classification result does not indicate
the correct secret due to an insufficient amount of profiling or attack traces as well as low SNR
measurements. Additionally, due to a limit of the available computational resources as well as a
prohibitive measurement time during the profiling phase, the secret has to be split into multiple
parts that are attacked individually. For example, a 128-bit AES key can be split into 16 8-bit
subkeys that are individually targeted. It is, therefore, required to define a metric of the attack
success on each subkey individually with the goal of estimating the final enumeration effort
that is required to retrieve the complete key. Popular metrics include the key rank [PGA+23] that
is defined as the position of the correct key in a ranked list of the final classification results, and
the guessing entropy [SMY09], which is defined as the average key rank for multiple attacks. The
enumeration effort in order to retrieve a complete key and, therefore, the remaining security after
an attack can be estimated using so-called key rank estimation algorithms. A popular algorithm
based on the convolution of histograms is presented by Glowacz et al. [GGP+15].

The classical profiled side-channel attack is the template attack by Chari et al. [CRR03]. It uses
the fact that side-channel leakage can be modeled as a multivariate Gaussian distribution that is
sufficiently described using a mean vector 𝝁 and covariance matrix 𝚺. Therefore, during the profiling
phase, the individual models, which are also called templates, are estimated as 𝜃𝑖 = (𝝁𝑖 ,𝚺𝑖) for all
values of the intermediate 𝑣. Then, the probability density function of the distribution is defined as

𝑝(𝒕|𝑣) = 1√
(2𝜋)𝑛𝑠 |𝚺𝑣|

· exp(−1
2 (𝒕 − 𝝁𝑣)

𝑇𝚺−1
𝑣 (𝒕 − 𝝁𝑣)) , (2.6)

where 𝑛𝑠 is the number of samples in a trace or the dimension of the trace if dimensionality reduction
is used. In the attack phase, the classification of an attack trace, also called template matching, is done
using Bayes’ rule to compute the posterior probability 𝑝(𝑣|𝒕). Since the attacker is only interested in
the relative ranking of all classification results, the correct probabilities are not computed directly, but
only a discriminant function is used to provide the correct ranking. In practice, the log-likelihood
is used for this purpose [CK14]. Additionally, multiple optimizations for template attacks increase
efficiency and robustness. An example is the use of a pooled covariance matrix for all templates with
the assumption that only the noise characterizes the covariance, which is independent of the signal,
and therefore the covariances for all templates are equal [CK14, CK18].

11

In contrast to the classical template attack, the classification task of profiled side-channel attacks can
also be performed using machine learning techniques2. This includes unsupervised methods like k-
means clustering [HIM+14] and supervised methods like a Support Vector Machine (SVM) [LBM11], a
random forest (RF) [LBM11] and linear regression [SLP05]. The usage of deep learning (DL) methods
like a Multi Layer Perceptron (MLP) or a Convolutional Neural Network (CNN) was first proposed
by Maghrebi et al. [MPP16]. A detailed introduction to DL-based methods for side-channel attacks is
given in Section 5.1.

2.4 Countermeasures

Countermeasures against side-channel attacks can be mainly grouped into two categories. The
first category are hiding countermeasures that aim to reduce the amount of exploitable side-channel
information on either the physical, logic, or algorithmic level. In contrast, the second category, in the
form of so-called masking countermeasures, aims at splitting sensitive variables into multiple random
shares in order to make them independent from processed secrets.

Hiding Countermeasures The goal of these countermeasures is to lower the achievable SNR of side-
channel measurements. This can be done either in the amplitude domain through increasing the
noise or in the time domain. Hiding countermeasures in the amplitude domain are employed on
the physical or logical level. This includes shielding in order to lower electromagnetic emissions of a
device [QS01], dedicated hardware that exhibits additional noise [MOP07], or the usage of dedicated
logic styles that try to balance the power consumption to be independent of processed data, e.g.,
dual-rail logic [MSS09]. In the time domain, hiding countermeasures induce misalignment between
measurements by inserting a random amount of dummy operations or by shuffling, which refers to
the random execution of independent operations within an algorithm [VCMKS12]. The effect of
hiding countermeasures can be reduced through a preprocessing of measurements, e.g., filtering of
noise and integration of samples, or through re-alignment strategies like pattern matching during the
measurement phase or advanced techniques like elastic alignment [vWWB11]. However, since hiding
countermeasures only achieve a linear increase in noise, they are typically used in combination with
masking.

Masking The masking countermeasure was proposed by Chari et al. [CJRR99] as well as inde-
pendently by Goubin and Patarin [GP99]. It works by representing each sensitive variable of a
cryptographic algorithm as a combination of multiple (𝑑 + 1) shares that are uniformly distributed
and, therefore, independent of the used secret. Only the knowledge of all shares allows to reconstruct
the unmasked variable, e.g., at the output of an algorithm. The goal of a masked implementation is to
compute a shared version of the correct output while keeping the uniformity of all shares throughout
the complete execution without allowing a (partial) recombination of shares. For linear operations,
this can be achieved by performing the operations of the algorithm individually for each share, but
non-linear operations such as the AES S-box computation require additional care, as they typically
need to be computed using multiple shares. A 𝑑th-order masking scheme defines each sensitive
variable 𝑥 using 𝑑 + 1 shares that statisfy the equation

𝑥1 ◦ 𝑥2 ◦ . . . ◦ 𝑥𝑑+1 = 𝑥 , (2.7)

where ◦ defines the group operation and usually 𝑥𝑖 for 𝑖 = 1, . . . , 𝑑 is generated uniformly random
and 𝑥𝑑+1 is computed such that the equation holds. For boolean masking the bitwise XOR operation
⊕ is used as a group operation, and for arithmetic masking modular addition + in the ring ℤ𝑛 is

2The list of methods is not exhaustive and provided references consist of the first publication of the respective method
in the side-channel context. For a detailed overview, the reader is referred to [HGG19].

12

used. The group operation has to be chosen for a given algorithm such that the highest amount of
operations is linear under the chosen group.

In order to break a 𝑑th-order masking scheme, an attacker has to estimate at least the (𝑑 + 1)th
statistical moment, which requires to combine the leakage from all 𝑑 + 1 shares. For univariate
attacks, the computation of all shares is assumed to be performed in parallel, which is usually the
case for masked hardware implementations, and therefore the higher-order statistical moments can
be computed directly from the traces. Multivariate attacks, where operations on the individual shares
are assumed to be performed at different points in time, require a preprocessing step where samples
corresponding to leakages of the shares are combined. In [PRB09, SVCO+10], the mean-free product of
samples is identified as a suitable combination function, which is additionally proven to be optimal for
second-order attacks under the assumption of HW leakage. The effort of identifying corresponding
samples in the measurements contributes to the security gain of a masking scheme, as the amount of
sample combinations in the preprocessing step is limited by the available computational resources of
an attacker. Nevertheless, the largest part of the security gain stems from the fact that the estimation
of higher-order moments is significantly more difficult, i.e., significantly more traces are needed for
a sufficient estimation. This is additionally enhanced by the noise amplification property of a masking
scheme that exponentially increases the noise with the masking order 𝑑 [CJRR99].

The security of a masking scheme can be formally proven under the assumption of a specific
adversary model. The most prominent model is the 𝑑-probing model by Ishai et al. [ISW03], which
allows an attacker to gain exact knowledge of at most 𝑑 shares of an implementation. In [DDF14], it
is shown that the security in the probing model can be reduced to the noisy leakage model, which
better suits side-channel attack results, i.e., is more realistic, as it is based on the assumption that an
adversary has access to the noisy leakage of shares. Finally, it has been shown by Barthe et al. [BBD+16]
how to securely combine multiple small parts of an algorithm, which are also called gadgets, into
a complete masked implementation. For hardware implementations, it is important to consider the
possibility of glitches, which is reflected in the robust probing model by Faust et al. [FGMDP+18]. It
can be used to prove the security of dedicated masking schemes for hardware implementations like
Domain-Oriented Masking (DOM) [GMK16] or threshold implementations [NRR06].

13

Part I

Attacking and Securing Post-Quantum
Cryptography

15

3 Practical Evaluation of Masking for NTRUEncrypt
on ARM Cortex-M4

This chapter is based on the publication Schamberger/Mischke/Sepulveda: Practical

Evaluation of Masking for NTRUEncrypt on ARM Cortex-M4 published in Constructive

Side-Channel Analysis and Secure Design, 2019 [SMS19]. The attack on the imple-
mentation of NTRUEncrypt with ternary polynomials has been developed during
my master thesis [Sch17]. In order to discuss countermeasures against this attack,
it is again described in Section 3.3. Additionally, attack results of the unsecured
implementation from [Sch17] are shown and discussed in Section 3.5.1. In sum-
mary, the algorithms for the index-based multiplications (Algorithms 4 and 5) as
well as Figs. 3.2 and 3.3 are adapted from [Sch17].

3.1 Introduction

The lattice-based cryptosystem NTRUEncrypt was a promising candidate in the NIST post-quantum
cryptography competition due to the maturity of the underlying mathematical problem, which with-
stood the scrutiny of the scientific community for over 20 years since its first publication in 1998. In
addition, the early publication of the original system minimizes the threat of patents on the system,
which would hinder its adoption after standardization by NIST. Implementations of NTRUEncrypt
targeting resource-constrained devices like microcontrollers typically utilized index-based multipli-
cation, which has been shown to be vulnerable to CPA. Although countermeasures against this attack
have been proposed, an evaluation of masking was lacking at the time this research was performed.
In order to fill this gap, this chapter presents a practical evaluation of masking for modern parameter
sets of NTRUEncrypt on an ARM Cortex-M4 microcontroller.

Related Works In 2008, the first power side-channel attack on NTRUEncrypt was published by
Atıcı et al. [ABGV08]. Lee et al. [LSCH10] showed a CPA that is able to retrieve the used private
key polynomial for implementations utilizing index-based multiplication for binary polynomials. In
addition to their attack, they introduce three countermeasures: blinding the result array, shuffling
operations during multiplication, and masking. It has been shown how to defeat the blinding
countermeasure with a second-order attack in [LSCH10] and a collision attack in [ZWW13]. Power
side-channel attacks for implementations using the product scanning method for multiplications are
published by Huang et al. [HCY19]. A detailed evaluation of CPAs against additional multiplication
techniques, including Toom-Cook and the Number Theoretic Transform (NTT), is given in [MWK+22].
Regarding countermeasures, a resource-efficient shuffling method is proposed in [WWZ+17], and an
evaluation of higher-order masking for NTRU is shown by Coron et al. [CGTZ23].

For completeness, it has to be mentioned that there is an extensive amount of work regarding
chosen-ciphertext attacks on NTRU. The attacks are presented in [ZCD21, REB+21, AR21, XPOZ23]
with [REB+21] giving a comprehensive overview. Additionally, there exists a single-trace attack on
the polynomial sampler that allows an attack on the secret key [KAA21].

16

Contributions This chapter analyzes countermeasures against CPA attacks on index-based multi-
plication for NTRUEncrypt, a widely used multiplication method at the time of this research. The
contributions can be summarized as follows:

• We use arithmetic masking as a countermeasure for index-based multiplication and show two
assembly-optimized masked implementations. One implementation utilizes single instruction,
multiple data (SIMD) instructions of the targeted ARM Cortex-M4 microcontroller to compute
the multiplication of both shares in parallel, resulting in a small overhead of only 0.21 % in the
worst case.

• Practical evaluations show that both implementations exhibit no first-order leakage for up to
two million measurements. We show successful second-order attacks on both implementations
with up to two hundred thousand measurements.

• When using both masked implementations in combination with a shuffling countermeasure
[WWZ+17], the second-order attack is no longer successful when using up to two million
measurements on our setup. The shuffling method makes use of the cyclic structure of the
polynomial rings in NTRUEncrypt. It can, therefore, be used without modifications to the
multiplication and results in a low overhead of at most 1.89 %.

Outline In Section 3.2, the NTRUEncrypt cryptosystem is introduced. First, its evolution from
the original NTRU system to newer variants in the subsequent rounds of the NIST competition is
discussed, followed by an algorithmic description as well as an introduction to the used types of
polynomials and their respective index-based multiplication. In order to discuss countermeasures,
the CPA attack on an unsecured version of NTRUEncrypt from [Sch17] is recalled in Section 3.3.
The developed masked implementations are described in Section 3.4, and a performance evaluation
is presented. An evaluation of first- and second-order attacks on the protected implementations is
shown in Section 3.5. Finally, Section 3.6 discusses the applicability of the results to newer versions
of the cryptosystem, which includes a discussion on the usage of index-based multiplication and its
theoretical adaption.

3.2 NTRUEncrypt

The NTRU cryptosystem was first introduced by Hoffstein et al. in 1998 [HPS98]. First parameter
sets of an Adaptive Chosen Ciphertext Attack (CCA-2) secure version of the system using the NAEP
transformation [HGSSW03] have been shown in [HGSW05]. This system and versions that have been
developed since the original publication were given the name NTRUEncrypt. Based on [HGSW05],
a version of NTRUEncrypt is standardized as IEEE 1363.1-2008 [IEE09]. With some advancements
in the attacks targeting the underlying NTRU problem, the authors revised the parameter sets of
NTRUEncrypt in [HPS+17]. These revised parameter sets are used in the submission of NTRUEncrypt
for the first round of the NIST post-quantum cryptography competition [CHWZ17]. In parallel to
NTRUEncrypt, two additional systems based on the original NTRU publication [HPS98], named
NTRU-HRSS-KEM [HRSS17] and NTRU Prime [BCLvV17], were also submitted. NTRU-HRSS-KEM
proposes some changes to the choice of parameters that eliminate decryption failures, therefore
resulting in a correct and deterministic public key encryption scheme. NTRUPrime diverges further
from the original NTRU system to proactively reduce the attack surface using conservative design
choices. For the second round of the NIST competition, NTRUEncrypt and NTRU-HRSS-KEM merged
their submissions to NTRU [CDH+19]. For NTRU, the authors unify their systems to provide a correct
and deterministic scheme, preserving the characteristic of fixed-weight polynomial sampling from
NTRUEncrypt with three parameter sets. An overview of the evolution of NTRUEncrypt is shown in
Fig. 3.1.

17

2000 2005 2010 2015 2020

Orig
ina

l N
TRU

[H
PS9

8]

NAEP tra
ns

for
mati

on
[H

GSS
W

03
]

NTRUEnc
ryp

t w
ith

NAEP [H
GSW

05
]

IEEE Std
13

63
.1-

20
08

[IE
E09

]

NTRUEnc
ryp

t (n
ew

para
mete

rs)
[H

PS+
17

]

NTRUEnc
ryp

t (N
IST

su
bm

iss
ion

) [C
HW

Z17
]

NTRU
[C

DH
+ 19

]

(N
TRUEnc

ryp
t +

NTRU-H
RSS

-K
EM)

NIST post-quantum competition

Figure 3.1 Timeline of the evolution of the NTRUEncrypt cryptosystem.

The attacks and countermeasures in this chapter are developed for NTRUEncrypt as defined in the
standardized version IEEE 1363.1-2008 [IEE09] as well as the submission to the first round of the NIST
competition [CHWZ17]. The following section describes the different aspects of the algorithm as
defined in [CHWZ17]. Changes induced for more recent NTRU-based systems and their implications
on the presented work are discussed in Section 3.6.

3.2.1 Notation and Representation of Polynomials

The main elements of NTRUEncrypt are polynomials within one of the following rings formally
described as

ℛ =
ℤ[𝑥]
(𝑥𝑁 − 1) , ℛ𝑝 =

(ℤ/𝑝ℤ)[𝑥]
(𝑥𝑁 − 1) , ℛ𝑞 =

(ℤ/𝑞ℤ)[𝑥]
(𝑥𝑁 − 1) . (3.1)

In essence, this means every polynomial is at most of degree 𝑁 − 1 and has integer coefficients. For
the rings ℛ𝑝 and ℛ𝑞 , the coefficients of the polynomials are reduced modulo 𝑝 and respectively 𝑞.
This results in polynomials of the following form:

𝑎(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + · · · + 𝑎𝑁−1𝑥𝑁−1 (3.2)

In order to ease notation, polynomials are also denoted in their vector form as a B ⟨𝑎0 , 𝑎1 , . . . , 𝑎𝑁−1⟩.
As the NTRUEncrypt algorithm has evolved over time, two different kinds of parameter sets were
proposed. Their main difference is the choice of the modulo parameter 𝑝. This parameter defines
the structure of the private key polynomial, and therefore, it is crucial to formalize a name for the
different types of polynomials. In [BCE+01] the different types of a polynomial 𝑎(𝑥) are defined as:

• Binary polynomial (𝑝 = 2):

ℬ(𝑑) :

{
𝑎(𝑥) has 𝑑 coefficients equal to 1
𝑎(𝑥) has all other coefficients equal to 0

(3.3)

• Ternary polynomial (𝑝 = 3):

𝒯 (𝑑 + 1, 𝑑) :

𝑎(𝑥) has 𝑑 + 1 coefficients equal to 1
𝑎(𝑥) has 𝑑 coefficients equal to -1
𝑎(𝑥)with other coefficients equal to 0

(3.4)

18

Polynomials in 𝒯 and ℬ are sampled uniformly. Only for fixed weight polynomials, as defined in
Eqs. (3.3) and (3.4), the amount of non-zero elements is additionally specified. It has to be noted that
earlier parameter sets [HGSW05] propose the use of binary polynomials. In contrast, more recent
publications [HPS+17, CHWZ17] and the standardized version [IEE09] only use ternary polynomials.

3.2.2 Algorithm Description

This chapter describes the public key encryption variant of NTRUEncrypt according to the supporting
document of the NIST submission in [CHWZ17], where it is referred to asntru-pke. The KEM version
of the system is omitted as it relies on calls to ntru-pke functions and, therefore, has no influence on
the side-channel discussion.

An instance of NTRUEncrypt is described by the parameter set {𝑁, 𝑝, 𝑞}, which defines the used
polynomial rings, as well as the parameter 𝑑, which describes the amount of non-zero coefficients
in the used binary or ternary polynomials. An overview of the proposed parameter sets is given in
Table 3.1. The additional parameter set NTRU-1024 is omitted as it implies additional changes to the
algorithm, like a different choice of the ring and the polynomial sampling method.

Parameter set 𝑁 𝑞 𝑝 𝑑 classical security [bit]

NTRU-443 443 2048 3 143 128
NTRU-743 743 2048 3 247 256

Table 3.1 Parameter sets of NTRUEncrypt as defined in [CHWZ17].

Based on a specific parameter set, the ntru-pke scheme consists of the three algorithms
ntru-pke.KeyGen (Algorithm 1), ntru-pke.Encrypt (Algorithm 2), and ntru-pke.Decrypt (Algo-
rithm 3). With ntru-pke.KeyGen (Algorithm 1), the private key polynomial f and the corresponding
public key h can be constructed. The encryption function, ntru-pke.Encrypt (Algorithm 2), uses
the public key polynomial h to encrypt the message m generating the ciphertext e1. The decryption
function, ntru-pke.Decrypt (Algorithm 3), takes the ciphertext e and the private key f as input in
order to retrieve the message m. The retrieval of m′ in Line 1 of Algorithm 3 works as the parameters
of NTRUEncrypt are chosen such that after the multiplication with the private key polynomial all
coefficients are smaller than 𝑞/2 [Sch18]. This leads to the retrieval of the exact result in ℛ and
therefore an additional reduction modulo 𝑝 recovers m′.

The algorithms rely on a polynomial sampler Sampler that takes as input the desired type of
polynomial and a seed that is used to initialize the sampler. For ntru-pke.KeyGen this seed is random,
while forntru-pke.Encrypt andntru-pke.Decrypt a hash function HASH is used to deterministically
derive the seed from a given input. For NTRUEncrypt, the hash function SHA-512 is used to instantiate
HASH. For simplicity reasons, additional padding operations for the message m are not shown. It is
essential for later discussions that the private key f is a fixed weight polynomial in either 𝒯 (𝑑 + 1, 𝑑)
or ℬ(𝑑), while the ciphertext e is an element of ℛ𝑞 . The secret key is used in the form 𝑝 · f + 1 as this
eliminates one multiplication step during decryption [HS00].

3.2.3 Operations on Polynomials

As discussed in Section 3.2.1 all variables of the algorithm are polynomials in their respective ring.
The main property of the used rings is that elements can be at most of degree 𝑁 −1, and an additional
modulo operation, depending on the respective ring, has to be performed on each coefficient of the
resulting polynomial. All operations in NTRUEncrypt are performed in ℛ𝑞 , except operations that

1Note that related work on side-channel attacks and NTRUEncrypt descriptions prior to the NIST submission defines
the ciphertext polynomial as e, while the NIST submission defines it as c. In order to be compatible with related work, we
stick to the convention of naming it e.

19

Algorithm 1 ntru-pke.KeyGen

Input: Parameter set = {𝑁, 𝑝, 𝑞, 𝑑}, seed.
1: f← Sampler(𝒯 (𝑑 + 1, 𝑑), seed) ⊲ For 𝑝 = 2: Sampler(ℬ(𝑑), seed)
2: if f is not invertible mod 𝑞 then
3: go to step 1
4: g← Sampler(𝒯 (𝑑 + 1, 𝑑), seed) ⊲ For 𝑝 = 2: Sampler(ℬ(𝑑), seed)
5: h = g/(𝑝f + 1)mod 𝑞

Output: Public key h, secret key f

Algorithm 2 ntru-pke.Encrypt

Input: Public key h, message m
1: r← Sampler(𝒯 (𝑑 + 1, 𝑑), HASH(m|h)) ⊲ For 𝑝 = 2: Sampler(ℬ(𝑑), HASH(m|h))
2: t = r ∗ h
3: m𝑚𝑎𝑠𝑘 ← Sampler(𝒯 , HASH(t)) ⊲ For 𝑝 = 2: Sampler(ℬ, HASH(t))
4: m′ = m −m𝑚𝑎𝑠𝑘 mod 𝑝
5: e = t +m′

Output: Ciphertext e

Algorithm 3 ntru-pke.Decrypt

Input: Private key f, public key h, ciphertext e
1: m′← (𝑝 · f + 1) ∗ e mod 𝑝
2: t← e −m′
3: m𝑚𝑎𝑠𝑘 ← Sampler(𝒯 , HASH(t)) ⊲ For 𝑝 = 2: Sampler(ℬ, HASH(t))
4: m = m′ +m𝑚𝑎𝑠𝑘 mod 𝑝
5: r← Sampler(𝒯 (𝑑 + 1, 𝑑), HASH(m|h)) ⊲ For 𝑝 = 2: Sampler(ℬ(𝑑), HASH(m|h))
6: if 𝑝 · r ∗ h = t then
7: result← m
8: else
9: result←⊥

Output: result

20

specify an additional modulo 𝑝 operation in Algorithms 1 to 3. The choice of the ring quotient 𝑥𝑁 − 1
defines the multiplication of polynomials as cyclic convolution, which is defined as

𝑎(𝑥) ∗ 𝑏(𝑥) =
𝑁−1∑
𝑘=0

©
«

∑
𝑖+𝑗≡𝑘 (mod 𝑁)

𝑎𝑖𝑏 𝑗
ª®
¬
𝑥𝑘 (3.5)

in [HPS14]. In other words, Eq. (3.5) can be seen as the multiplication of two polynomials with an
additional reduction of the result by (𝑥𝑁 − 1) through polynomial long division. The convolution
product is denoted with the symbol (∗), while a multiplication with a factor is marked as (·).

The bottleneck operation of NTRUEncrypt is the multiplication of two polynomials through this
convolution product. There are several publications on optimized implementations of this multipli-
cation. A general discussion of multiplication methods for microcontrollers with a focus on an ARM
Cortex-M4 is given in [KRS19]. Another popular type of implementation for resource-constrained
devices utilizes the sparse structure of binary or ternary polynomials. In [BCE+01], the authors
propose Algorithm 4 for the multiplication of a polynomial in ℛ𝑞 and a binary polynomial ℬ(𝑑).
With this algorithm, which is called index-based multiplication in this thesis, the authors substitute the
multiplication of coefficients with additions based on the index of ones in the binary polynomial. As
a binary polynomial is built to be sparse, the coefficients with the value zero can be skipped, resulting
in a lower number of additions to execute and, therefore, a faster multiplication. This algorithm can
be used for NTRUEncrypt as all convolution products of the algorithm have one sparse polynomial
as an operand. This is also true for the first line of Algorithm 3 as (𝑝 · f + 1) ∗ e can be rewritten to
(𝑝 · f ∗ e + e). As described in Section 3.2.1 recent parameter sets make use of ternary polynomials.
These polynomials also have a sparse nature and contain only ones and minus ones, which allows
abstracting the multiplication again by either addition or subtraction based on the index of nonzero
coefficients. An adaption of Algorithm 4 for ternary polynomials is given in Algorithm 5.

It has to be noted that index-based multiplication has been developed for resource-constrained
devices like microcontrollers, which typically do not contain a cache. Therefore, the secret-dependent
array accesses can be considered as constant time on these devices. On devices that contain a cache,
this multiplication method induces a timing side-channel that has to be considered. For a detailed
discussion, see Section 3.6.

Algorithm 4 Index-based binary multiplication [Sch17]

Input: 𝑎(𝑥) ∈ ℬ(𝑑) (stored as an array a[d] with indexes 𝑎𝑖); 𝑏(𝑥) ∈ 𝑅𝑞
1: Initialize a temporary array 𝑡 of size 2𝑁
2: for 0 ≤ 𝑗 < 2𝑁 do ⊲ Initialize 𝑡(𝑥)with zero
3: 𝑡 𝑗 ← 0
4: for 0 ≤ 𝑗 < 𝑑 do
5: for 0 ≤ 𝑘 < 𝑁 do
6: 𝑡𝑘+𝑎[𝑗] ← 𝑡𝑘+𝑎[𝑗] + 𝑏𝑘 ⊲ Add polynomial 𝑏(𝑥) at position a[j]
7: for 0 ≤ 𝑗 < 𝑁 do
8: 𝑐 𝑗 ← (𝑡 𝑗 + 𝑡 𝑗+𝑁)mod 𝑞 ⊲ Reduction by (𝑥𝑁 − 1)modulo q

Output: 𝑐(𝑥) ∈ 𝑅𝑞 = 𝑎(𝑥) ∗ 𝑏(𝑥)

21

𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11 𝑡12 𝑡13 𝑡14 𝑡15
= = = = = = = = = = = = = = = =

Initialization: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ + + + + + + +

𝑗 = 0 : 𝑒0 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7
+ + + + + + + +

𝑗 = 1 : 𝑒0 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7
+ + + + + + + +

𝑗 = 2 : 𝑒0 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7
+ + + + + + + +

𝑗 = 3 : 𝑒0 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7

Figure 3.2 Index-based multiplication with binary polynomials according to Algorithm 4 (lines 1 to 6) for the
parameters N = 8 and 𝑓 ∈ ℬ(4) = [1, 3, 4, 6] from [Sch17]. All targeted additions with the coefficient 𝑒0 are
marked.

Algorithm 5 Index-based ternary multiplication [Sch17]

Input: 𝑎(𝑥) ∈ 𝒯 (𝑑 + 1, 𝑑) (stored as arrays 𝑎𝑜𝑛𝑒𝑠[𝑑 + 1] and 𝑎𝑚𝑜𝑛𝑒𝑠[𝑑]); 𝑏(𝑥) ∈ 𝑅𝑞
1: Initialize a temporary array 𝑡(𝑥) of size 2𝑁
2: for 0 ≤ 𝑗 < 2𝑁 do ⊲ Initialize 𝑡(𝑥) to zero
3: 𝑡 𝑗 ← 0
4: for 0 ≤ 𝑗 < 𝑑 + 1 do
5: for 0 ≤ 𝑘 < 𝑁 do
6: 𝑡𝑘+𝑎𝑜𝑛𝑒𝑠 [𝑗] ← 𝑡𝑘+𝑎𝑜𝑛𝑒𝑠 [𝑗] + 𝑏𝑘 ⊲ Add 𝑏(𝑥) at position 𝑎𝑜𝑛𝑒𝑠[𝑗]
7: for 0 ≤ 𝑗 < 𝑑 do
8: for 0 ≤ 𝑘 < 𝑁 do
9: 𝑡𝑘+𝑎𝑚𝑜𝑛𝑒𝑠 [𝑗] ← 𝑡𝑘+𝑎𝑚𝑜𝑛𝑒𝑠 [𝑗] − 𝑏𝑘 ⊲ Subtract 𝑏(𝑥) at position 𝑎𝑚𝑜𝑛𝑒𝑠[𝑗]

10: for 0 ≤ 𝑗 < 𝑁 do
11: 𝑐 𝑗 ← (𝑡 𝑗 + 𝑡 𝑗+𝑁)mod 𝑞 ⊲ Reduction by (𝑥𝑁 − 1)modulo q
Output: 𝑐(𝑥) ∈ 𝑅𝑞 = 𝑎(𝑥) ∗ 𝑏(𝑥)

3.3 CPA Attack on NTRUEncrypt

The main power analysis attack on NTRUEncrypt consists of a CPA published in [LSCH10] based on
parameter sets with binary polynomials. With this attack, the authors target the multiplication of the
private key f with the ciphertext e (c.f. Line 1 of Algorithm 3), as this is the only operation on the
private key with an attacker-controllable input. If this multiplication is performed with index-based
multiplication, as described in Algorithm 4, an attacker can exploit the fact that the addition of the
first ciphertext coefficient 𝑒0 is determined by the indexes of ones in the private key f. An example of
this multiplication is visualized in Fig. 3.2.

For all 𝑑 rounds of additions, the ciphertext coefficients 𝑒𝑖 are added with the content of the
corresponding temporary result array element 𝑡𝑖 in a sequential manner, starting from 𝑒0 to 𝑒𝑁−1.
Based on the additions with 𝑒0 (marked in Fig. 3.2), the difference between the key indexes of each
round of additions can be found. The attack of [LSCH10] performs a separate CPA for all rounds
𝑗 ≥ 1 with an attack on the Hamming distance of the addition of 𝑡𝑖 with 𝑒0 (HD(𝑡𝑖 , 𝑡𝑖 + 𝑒0)). The
corresponding values of 𝑡𝑖 can be calculated based on a hypothesis for the difference in the associated
key indexes. After the individual CPAs successfully retrieved all index differences 𝑤𝑖 , the location
of the first key index can be found by exhaustive search. We will denote the difference between the

22

𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11 𝑡12 𝑡13 𝑡14 𝑡15
= = = = = = = = = = = = = = = =

Initialization: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ + + + + + + +

𝑗 = 0 : 𝑒0 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7
+ + + + + + + +

𝑗 = 1 : 𝑒0 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7
+ + + + + + + +

𝑗 = 2 : 𝑒0 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7
− − − − − − − −

𝑗 = 0 : 𝑒0 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7
− − − − − − − −

𝑗 = 1 : 𝑒0 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7

Figure 3.3 Example of a index-based multiplication with ternary polynomials according to Algorithm 5 (lines
1 to 9) for 𝑁 = 8 and 𝑓 ∈ 𝒯 (3, 2) = [1, 3, 4], [0, 6] from [Sch17].

indexes 𝑓 [𝑖] and 𝑓 [𝑖 + 1] with 𝑤𝑖 for the rest of the paper. For example, the difference between the
first index 𝑓 [0] and the second index 𝑓 [1]will be called 𝑤0.

Adaption of the attack to ternary polynomials In [Sch17] the adaption of the CPA attack from
[LSCH10] for a convolution product with ternary polynomials as implemented with an index-based
multiplication given by Algorithm 5 was performed. An example of a ternary multiplication is shown
in Fig. 3.3. It can be seen that the first part of the multiplication (light grey background) is performed
exactly as in the binary case. Therefore, the differences between the ones in f ∈ 𝒯 (𝑑 + 1, 𝑑), called 𝑤1

𝑖 ,
can be found by the attack methodology for binary polynomials.

The adaption works by first attacking the difference between the last index of ones 𝑓𝑜𝑛𝑒𝑠[𝑑 + 1] and
the first index of minus ones 𝑓𝑚𝑜𝑛𝑒𝑠[0] during the first round of subtractions (𝑗 = 0). This difference
will be called 𝑤0. The correct 𝑤0 can be retrieved by finding the index of 𝑒𝑖 that is subtracted from
the 𝑡𝑖 corresponding to the last addition with 𝑒0 (marked with a dotted line in Fig. 3.3). Based on
the different hypotheses for 𝑤0, the Hamming weight of the corresponding intermediate values can
be calculated and attacked through CPA. It has to be noted that there is the unlikely possibility
of no subtraction from 𝑡𝑖 corresponding to the last addition of 𝑒0 for some constructions of the
private key. This can also be defeated by successively evaluating different points of subtraction, for
example, the value of 𝑡𝑖 corresponding to the last addition of 𝑒1. With the correct 𝑤0 the remaining
differences between the indexes of minus ones 𝑤−1

𝑖 can be found. Similar to the binary case, different
hypothetical intermediate results for the subtraction of 𝑒0 during the rounds 𝑗 ≥ 1 can be constructed
(see the attacked subtraction result marked with a solid line in Fig. 3.3). The correct hypothesis can
be found through CPA, which reveals the corresponding 𝑤−1

𝑖 .
The final private key f can be found through an exhaustive search for 𝑓𝑜𝑛𝑒𝑠[0], as all relative index

differences are known at this stage. The complexity of this search can be seen as negligible as an
attacker has to try at most 𝑁 −(2𝑑+ 1) different combinations. This leads to at most 248 combinations
for the parameter set NTRU-743.

3.4 Masking Countermeasure

In addition to their attack, the authors of [LSCH10] propose three different countermeasures to secure
NTRUEncrypt utilizing index-based multiplication. The different countermeasures are:

1. Random initialization of t: The temporary result array t is initialized with different random
values 𝑟𝑖 .

23

m𝑚 = f ∗ e𝑚 masks′ = f ∗masks m = m𝑚 −masks′

Combination m = m𝑚 −masks′

Sequential:

Parallel:

Figure 3.4 Comparison of the developed sequential and parallel masked implementations. It can be seen that
the parallel implementation combines the first two steps into one.

2. Shuffling: The sequence of all addition/subtraction rounds can be shuffled randomly, as the
order has no impact on the final result. In theory, shuffling countermeasures can be defeated
with an increased amount of traces. Therefore, the authors propose this countermeasure only
in combination with masking.

3. Masking of ciphertext e: With this countermeasure, each coefficient 𝑒𝑖 is masked with a
random value through modular addition (arithmetic masking). A detailed evaluation of this
countermeasure is given in this work.

Successful attacks have been shown against the random initialization countermeasure with a
second-order CPA [LSCH10] and a first-order collision attack [ZWW13]. The second-order CPA
still targets the HD(𝑡𝑖 , 𝑡𝑖 + 𝑒0), which is changed by the countermeasure to HW(𝑡𝑖 + 𝑟𝑖 , 𝑡𝑖 + 𝑟𝑖 + 𝑒0). The
authors show that the subtraction of the power consumption of HD(𝑟𝑖 , 𝑡𝑖+𝑟𝑖) from HD(𝑡𝑖+𝑟𝑖 , 𝑡𝑖+𝑟𝑖+𝑒0)
can be used as a preprocessing function to mount an attack on the unmasked values with the hypo-
thetical power consumption of HW(𝑡𝑖) −HW(𝑒0). In order to perform the first-order collision attack,
an attacker has to observe the power consumption during the initialization phase of 𝑡 with the dif-
ferent masks 𝑟𝑖 . The highest correlation with the power consumption during the addition of the last
ciphertext coefficient 𝑒𝑁−1 allows the calculation of the corresponding private key index. This can be
done for all rounds of addition.

Since possible attacks for the random initialization countermeasure of [LSCH10] have already been
shown, and other approaches can be seen as hiding countermeasures, we focus on evaluating the
masking of the ciphertext. Only a masking countermeasure is able to reliably provide a first-order
secured implementation, as it makes the processed variables independent from the known input, in
this case, the ciphertext. We use arithmetic masking with different masks on all coefficients of the
ciphertext polynomial e. Arithmetic masking, in our case, can be defined as a modular addition of e
with a polynomial masks, containing the different masks for each coefficient, as

e𝑚 = e +masks mod 2𝑛 . (3.6)

For our implementations, the modulus is set to 216 as the elements of the temporary result array
t are stored with 16-bit values. Arithmetic masking is more suitable for index-based multiplication
as it only performs arithmetic operations, and therefore, changes to the mask are linear. In this case,
changes of a mask can be computed by performing the operations on the mask itself. The masking
countermeasure is implemented for the ternary index-based multiplication described in Algorithm 5.
We provide two different masked implementations with the use of ARM assembly code. The first
implementation sequentially performs the multiplication on the masked values and the mask itself.
This approach has the downside of an increased execution time as the multiplication algorithm is
executed twice in order to compute the mask changes. We eliminate this disadvantage in our second
implementation, as it computes the multiplication of the masked value and the mask in parallel. To
achieve this, we utilize special SIMD instructions of the ARM Cortex-M4 architecture. The idea of
the different implementations is visualized in Fig. 3.4.

24

3.4.1 Sequential Implementation

The sequential implementation first performs a multiplication of the masked ciphertext e𝑚 with the
private key f to get the masked result m𝑚 :

m𝑚 = f ∗ e𝑚 = f ∗ (e +masks) (3.7)

In a second step, the changes to the masks are computed through a multiplication of f with the values
of the masks as:

masks′ = f ∗masks (3.8)

In order to retrieve the unmasked multiplication result m, all coefficients of masks′ are subtracted
from m𝑚 with the result reduced modulo 𝑞.

3.4.2 Parallel Implementation

The parallel implementation of the masking countermeasure makes use of SIMD instructions of the
DSP extension of an ARM Cortex-M4 architecture. With these instructions, a 32-bit word is split into
smaller parts (two 16-bit or four 8-bit values) on which the corresponding arithmetic operation can
be performed in parallel. For example, the SADD16 and SSUB16 operations perform an addition or
subtraction on the higher and lower 16-bit parts of the operand, taking care of suppressing a potential
carry overflow between the two parts. An example of an addition with SADD16 is given in Fig. 3.5.

0151631

a1 a2OP1

b1 b2OP2

(a1+b1) mod 216 (a2+b2) mod 216SADD16 (OP1, OP2)

Figure 3.5 Visualization of the SADD16 instruction of an ARM Cortex-M4 microcontroller. Two 16-bit additions
of (𝑎1 + 𝑏1) and (𝑎2 + 𝑏2) are performed in parallel. The subtraction with SSUB16 works accordingly.

0151631

𝑚𝑎𝑠𝑘𝑖 𝑒𝑖 + 𝑚𝑎𝑠𝑘𝑖
Figure 3.6 Description of the input to Algorithm 5 as a combination of the masked ciphertext and the mask
itself. The individual coefficients of the ciphertext e are constructed in this way.

In order to benefit from these operations, we construct the individual ciphertext coefficients 𝑒𝑖 and
corresponding mask𝑚𝑎𝑠𝑘𝑖 as a 32-bit word as shown in Fig. 3.6. By using this construction as an input
for the ciphertext coefficients 𝑒𝑖 in Algorithm 5, all additions and subtractions can be implemented
with the corresponding SIMD instruction. In this case, the mask update is computed in parallel,
which is twice as fast as the sequential implementation. The implicit reduction modulo 216 does not
change the result of the multiplication as all coefficients of the result are reduced modulo 211, with
𝑞 = 2048 for modern parameter sets.

This type of masking can be attacked with a univariate second-order attack, which does not
require finding correct sample combinations of the mask and the masked value. Nevertheless, the
implementation still benefits from the noise amplification property (c.f. Section 2.4). Additionally, it
has to be noted that this type of masking is prone to unintended recombination of both shares due to
effects caused by the microarchitecture of the executing device (see [MPW21] for a study of this effect).
Although the experimental results in Fig. 3.10 show no first-order leakage for up to two million traces
– thus demonstrating that this type of masking is indeed possible on the evaluated target – its usage
has to be carefully evaluated.

25

3.4.3 Optional Shuffling Countermeasure

The cyclic structure of the rings in NTRUEncrypt allows for an efficient shuffling of the multiplication
as described in Algorithm 6. This approach was first sketched in [ZWW13] and further analyzed in
[WWZ+17]. The correctness of the shuffled multiplication can be seen by looking at the complete
multiplication, which results in (𝑎(𝑥) ∗ 𝑥 𝑖) ∗ (𝑏(𝑥) ∗ 𝑥𝑁−𝑖) = 𝑎(𝑥) ∗ 𝑏(𝑥) ∗ 𝑥𝑁 . As 𝑥𝑁 equals one in the
ringℛ𝑞 , the multiplication result is equal to the unshuffled variant. The overhead of this countermea-
sure is low since multiplication by 𝑥 𝑖 and 𝑥𝑁−𝑖 corresponds to a clockwise (𝑥 𝑖) or counterclockwise
(𝑥𝑁−𝑖) rotational shift of the coefficients of a polynomial. In addition, the implementation of the
multiplication does not have to be changed.

Algorithm 6 Shuffled multiplication [WWZ+17, Algorithm 2]

Input: 𝑎(𝑥) ∈ 𝒯 (𝑑 + 1, 𝑑) or ℬ(𝑑); 𝑏(𝑥) ∈ 𝑅𝑞
1: 𝑖

$←− {0, . . . , 𝑁 − 1}
2: 𝑎(𝑥) = 𝑎(𝑥) ∗ 𝑥 𝑖
3: 𝑏(𝑥) = 𝑏(𝑥) ∗ 𝑥𝑁−𝑖
4: 𝑐(𝑥) = 𝑎(𝑥) ∗ 𝑏(𝑥) ⊲ Algorithm 4 or Algorithm 5

Output: 𝑐(𝑥) ∈ 𝑅𝑞

3.4.4 Performance Evaluation

In this section, the proposed implementations are evaluated regarding their performance, i.e., exe-
cution time overhead. The cycle counts for both NTRUEncrypt parameter sets (c.f. Table 3.1) on an
ARM Cortex-M4 are shown in Table 3.2. The cycle measurements are done on an STMicroelectronics
STM32F303DISCOVERY board with an STM32F303VCmicrocontroller running at 48 MHz. The code is
compiled with version 13.2.0 of arm-none-eabi-gcc and an -03 optimization. The presented cycle
counts are averaged over 10 000 measurements.

Unmasked Sequential Sequential (shuffled) Parallel Parallel (shuffled)
NTRU-443 1 867 266a 3 863 936 3 902 881 1 871 197 1 906 567
NTRU-743 5 372 737a 11 128 983 11 182 445 5 373 387 5 438 931
a) Note that it is possible to also speed up the unmasked implementation with SIMD instructions increasing the performance by

a factor of 2.
Table 3.2 Performance evaluation of the implementations presented in this section.

We use the ternary index-based multiplication (Algorithm 5) as a baseline for comparison, which
is denoted as Unmasked in Table 3.2. The sequential masked implementation (Section 3.4.1) has an
overhead of 107 % (NTRU-443) and 107.14 % (NTRU-743), which mainly comes from executing the
multiplication twice for both shares. In contrast, the parallel masked implementation (Section 3.4.2)
only has an overhead of 0.21 % (NTRU-443) and 0.012 % (NTRU-743). All assembly operations between
the parallel implementation and the baseline require the same amount of clock cycles. This overhead
is due to the additional required unmasking of the result during the modulo reduction in lines 10
and 11 of Algorithm 5. Adding the additional shuffling countermeasure increases the required clock
cycles by 1.01 % (NTRU-443) and 0.48 % (NTRU-743) for the sequential implementation, while the
parallel implementation shows an increase of 1.89 % (NTRU-443) and 1.22 % (NTRU-743).

26

3.5 Side-Channel Evaluation Results

In this section, we show the results of a CPA attack on a non-masked implementation using ternary
polynomials as well as first- and second-order attacks against the two masked implementations. In
addition, we show attack results for the masked implementations in combination with the shuffling
countermeasure.

All attacks are performed with power measurements of a STM32F303RCT7 ARM Cortex-M4 mi-
crocontroller mounted on the NewAE CW308 UFO board. The target device is built with a 12 Ω
shunt resistor placed in the VDD line, and the corresponding power consumption can be measured
through an SMA connector on the CW308 board. The measurements are performed with a Picoscope
6402D and a sampling frequency of 156.25 MHz. As the power is measured between VDD and GND,
a Minicircuits BLK-89+ DC Block is used in order to utilize the whole input range of the oscilloscope.
The clock for our Device Under Test (DUT) is fixed to 10 MHz and is provided by a Keysight 33500B
waveform generator. In order to provide aligned traces, the device clock and the sampling clock of
the oscilloscope are synchronized through the waveform generator.

3.5.1 CPA on Ternary Polynomials

First, the results of the CPA against the unmasked ternary multiplication according to Algorithm 5
from [Sch17] are presented. As described in Section 3.3, the attack retrieves the differences between
the indices of ones and minus ones in f. This results in 2𝑑 + 1 CPAs to retrieve all 𝑤1 and 𝑤−1

and an additional attack on 𝑤0, which translates to a sum of 288 different attacks for, e.g., NTRU-
443. Although the attack has been successfully performed for both NTRU parameter sets, it is not
possible to show this amount of attack results (i.e., 288 for NTRU-443 and 495 for NTRU-743) in a
reasonable manner. Therefore, the results for a smaller instance for a multiplication given the private
key 𝑓 ∈ 𝒯 = [3, 7, 10], [1, 4] and a maximum degree of 𝑁 = 20 is shown in Fig. 3.7.

Exemplarily the correlation graphs that reveal 𝑤1
0, 𝑤0, and 𝑤−1

0 are provided. However, all different
CPA attacks on the corresponding key indexes are successful. The correlation over time is shown for
the whole execution of lines 4 to 9 in Algorithm 5. It can be seen that the attack is successful even
without the restriction of the measurements to the corresponding attacked operations. Nevertheless,
a restriction would remove additional correlation peaks. In contrast to the attack in [LSCH10], the
attack uses the Hamming weight power model and targets the result of the addition of 𝑡𝑖 with 𝑒0 as
HW(𝑡𝑖 + 𝑒0) for retrieving all 𝑤1. The Hamming weight is used, as it usually corresponds to the bus
transfer leakage on microcontrollers, which shows a high amount of exploitable leakage. This is due
to the comparable large length of the bus wires, which causes a high power consumption for transfers
on the bus. In [Sch17] this is experimentally verified and the storage of the final result 𝑡𝑖 + 𝑒0 is found
to be a suitable target for the attack with a higher exploitable leakage than the Hamming distance of
the computation.

3.5.2 Second-Order Attacks on the Masking Countermeasure

After the attack has been shown to be working on an unprotected implementation, this section
discusses the results of second-order attacks against the masked implementations. We again limit the
amount of shown attack results and the NTRU instance, which does not influence the transferability of
results. For the attack, we take measurements for the respective implementation with the parameters
𝑁 = 20 and private key 𝑓 ∈ 𝒯 (2, 1) = [3, 7], [5]. Attack results are only given for the second round
(𝑗 = 1) in Algorithm 5 corresponding to the addition of ones in the ciphertext. In other words, results
are shown for the difference between 𝑓𝑜𝑛𝑒𝑠[0] and 𝑓𝑜𝑛𝑒𝑠[1], which is the first attackable key index
difference. The presented attacks are also applicable to the remaining key index differences. We first
show attack results on the sequential implementation, followed by results for the parallel variant. In
a second step, we provide a comparison of both implementations regarding the required amount of
traces for a successful attack.

27

0 5000 10000 15000 20000

Time [samples]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

co
rr
el
at
io
n
co
effi

ci
en

t

1(a) Result for 𝑤1
0

0 5000 10000 15000 20000

Time [samples]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

co
rr
el
at
io
n
co
effi

ci
en

t

1(b) Result for 𝑤0

0 5000 10000 15000 20000

Time [samples]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

co
rr
el
at
io
n
co
effi

ci
en

t

1(c) Result for 𝑤−1
0

Figure 3.7 CPA results for 𝑁 = 20 and 𝑓 ∈ 𝒯 = [3, 7, 10], [1, 4] with a total amount of 10 000 traces. Using the
initially developed implementation from [Sch17], the shown attack results are regenerated for [SMS19] using
traces captured with the described measurement setup.

Sequential Implementation

In this implementation, the masked value and the mask itself are processed during different clock
cycles. Therefore, a multivariate second-order attack is able to defeat the masking countermeasure
through the combination of the corresponding leakages. In [PRB09, SVCO+10], the normalized
product preprocessing function, which was initially proposed in [CJRR99], is stated to be the optimal
way of combination for a Hamming weight leakage model. As we are targeting Hamming weight
leakage, we make use of this combination function by a multiplication of the corresponding mean-
free sample points. The location of the leakage points is found by a separate CPA on the masked
intermediate value and the mask itself. Figure 3.8 shows the correlation of both shares, indicating the
points in time where the individual values are processed. This is possible since we want to evaluate
the attack under the best possible conditions, and therefore, we store the masks during the trace
measurement. If an attacker does not know the corresponding mask, she has to perform an educated
guess on the possible leakage areas and try all possible combinations of samples, usually as a multiple
of clock cycles. This is an advantage of the sequential implementation since the computation of the
correlation for all these sample combinations becomes computationally expensive. Results for the
first- and second-order attacks are shown in Fig. 3.9. No significant correlation is visible for the
first-order attack using up to two million trace measurements. In contrast, the second-order attack is
successful with two hundred thousand traces.

28

0 10000 20000 30000 40000

Time [samples]

−0.6

−0.4

−0.2

0.0

0.2

co
rr
el
at
io
n
co
effi

ci
en

t

1
(a) Masked value

0 10000 20000 30000 40000

Time [samples]

−0.6

−0.4

−0.2

0.0

0.2

co
rr
el
at
io
n
co
effi

ci
en

t

1
(b) Mask

Figure 3.8 Leakage points of the masked value and the corresponding mask in time for the sequential imple-
mentation. The points with the highest correlation are used for the multivariate second-order attack.

0 100 200 300 400

Time [samples]

−0.03

−0.02

−0.01

0.00

0.01

co
rr
el
at
io
n
co
effi

ci
en

t

1
(a) First-order attack (2M traces)

0 50 100 150 200

Time [samples]

−0.03

−0.02

−0.01

0.00

0.01
co
rr
el
at
io
n
co
effi

ci
en

t

1
(b) Second-order attack (200k traces)

Figure 3.9 Attack results for the sequential masked implementation. Here, a subsection of 200 samples centered
around the leakage of the mask is shown. For the preprocessing step, the traces are shifted 1445 clock cycles.

Parallel Implementation

As the parallel implementation processes the mask and the masked value at the same time, a zero-
offset second-order attack can be used to attack this implementation. In order to perform this attack,
the individual samples of the traces are mean-free squared. In Fig. 3.10, attack results for the masked
implementation with the parallel construction are shown. No first-order leakage could be found using
an amount of two million trace measurements. On the other hand, it can be seen that the proposed
second-order attack is successful in retrieving the correct key index difference 𝑤1

0 for an amount of
two hundred thousand traces.

Comparison

In order to compare both implementations, we provide correlation plots of the corresponding main
leakage points, taken from the attack results in Figs. 3.9 and 3.10, for an increasing number of trace
measurements in Fig. 3.11. The correlation is shown for up to two hundred thousand measurements.
It can be seen that a second-order attack is less effective on the parallel implementation. In contrast,
the sequential implementation shows significant leakage with less than 50 000 traces. In practice, a
designer has to make a trade-off between both implementations. The parallel implementation requires
a significantly increased amount of traces for a successful attack and comes with a reduced execution
time in comparison to the sequential one. The sequential implementation has the benefit that in a

29

0 200 400 600 800 1000

Time [samples]

−0.03

−0.02

−0.01

0.00

0.01

co
rr
el
at
io
n
co
effi

ci
en

t

1
(a) First-order attack (2M traces)

0 200 400 600 800 1000

Time [samples]

−0.03

−0.02

−0.01

0.00

0.01

co
rr
el
at
io
n
co
effi

ci
en

t

1
(b) Second-order attack (200k traces)

Figure 3.10 Attack results for the parallel masked implementation. The shown samples belong to the execution
of the first two coefficient additions corresponding to 𝑓𝑜𝑛𝑒𝑠[1].

black box scenario, an attacker has to find the correct sample combinations that enable a second-order
attack, which can become computationally expensive.

0 50000 100000 150000 200000
traces

−0.04

−0.02

0.00

0.02

0.04

co
rr
el
at
io
n
co

effi
ci
en

t

1
(a) Sequential implementation

0 50000 100000 150000 200000
traces

−0.04

−0.02

0.00

0.02

0.04

co
rr
el
at
io
n
co

effi
ci
en

t

1
(b) Parallel implementation

Figure 3.11 Evolution of the correlation for both implementations with an increasing number of traces. The
correlation of all hypotheses is shown for up to two hundred thousand measurements.

3.5.3 Second-Order Attack on the Combination of Masking and Shuffling

We have shown that both implementations can be attacked with a second-order attack. As the shuf-
fling countermeasure described in Section 3.4.3 can be employed without changes to the underlying
multiplication, we propose its use in combination with our masked implementations. For the used
parameter set, the degree of polynomials is 𝑁 = 20, which implies a shuffling with twenty possible
ways of multiplication. The attack results for both shuffled and masked implementations are shown in
Fig. 3.12. It can be seen that the resulting implementation shows no significant second-order leakage
for up to two million trace measurements.

3.6 Discussion

The attack on NTRUEncrypt described in this chapter has been developed very early in the NIST
competition. It is, therefore, based on a version that was available at that time, namely the stan-
dardized version [IEE09] with modern parameter sets [HPS+17] and the first round NIST submission
[CHWZ17]. This section gives an overview of algorithm changes for NTRUEncrypt during the ad-

30

0 50 100 150 200

Time [samples]

−0.03

−0.02

−0.01

0.00

0.01

co
rr
el
at
io
n
co
effi

ci
en

t

1
(a) Sequential implementation

0 200 400 600 800 1000

Time [samples]

−0.03

−0.02

−0.01

0.00

0.01

co
rr
el
at
io
n
co
effi

ci
en

t

1
(b) Parallel implementation

Figure 3.12 Second-order attack results for both masked implementations in combination with the random key
rotation countermeasure using two million trace measurements.

vancing NIST competition and discusses its influence on the presented attack and countermeasures.
Additionally, the usage of index-based multiplication in NTRUEncrypt is discussed.

Usage of Index-based Multiplication As already briefly discussed in Section 3.2.3, the index-based
multiplication has the downside of not being executed in constant time on systems with caches since
its usage of secret-dependent array accesses. Nevertheless, the algorithm is developed for resource-
constrained devices like microcontrollers that usually do not contain caches, making it suitable for
such devices. During the time of performing the research, index-based multiplication was the stan-
dard method for polynomial multiplication by the NTRUEncrypt authors, as it, e.g., can be seen in
their open source library named libntruencrypt2. An attack on index-based multiplication had
practical relevance as it was an attack on the reference implementation of the algorithm. Another
argument for the relevance of the presented research is its applicability to performant hardware mul-
tipliers for ternary polynomials as used by Fritzman et al. [FSF+19] and Farahmand et al. [FDNG19].
These accelerators are built in a Linear Feedback Shift Register (LFSR) structure that performs a clock-
wise addition or substruction of coefficients dependent on the ternary polynomial with an implicit
reduction in the ring. An attack can be performed by building a hypothesis for a specific ternary
coefficient using the Hamming distance for the update of the registers holding the polynomial coef-
ficients of the result. This again allows to perform multiple CPAs to successively retrieve all private
key coefficients. Ternary multiplication can be performed in constant time using these hardware
accelerators.

Changes to NTRUEncrypt With the merge of NTRUEncrypt and NTRU-HRSS-KEM in the second
round of the NIST competition to the NTRU submission [CDH+19], several changes to the algorithm
have to be considered regarding the presented side-channel attack. Although the reference imple-
mentations of all these submissions decided not to use index-based multiplication anymore, we first
discuss if its usage is possible in theory.

For the NTRU submission, the authors merged their submissions with the purpose of unifying
them. This results in four different parameter sets, for which three parameter sets keep the property
of fixed weight polynomials, as in NTRUEncrypt. These parameter sets define an instance that is
called NTRU-HPS, while the additional one follows the design principles of NTRU-HRSS-KEM and
is therefore called NTRU-HRSS. The resulting parameter sets are shown in Table 3.3.

The parameter sets for NTRU-HPS allow the usage of index-based multiplication, although it has
to be noted that f is now uniformly sampled from 𝒯 and therefore does not have a fixed amount of
ones and minus ones anymore. The NTRU-HRSS parameter set no longer uses polynomials with a

2https://github.com/jschanck-si/NTRUEncrypt, last accessed 3rd November 2023

https://github.com/jschanck-si/NTRUEncrypt

31

Parameter set 𝑁 𝑞 𝑝 f ∈ g ∈ r ∈
ntruhps2048509 509 2048 3 𝒯 𝒯 (𝑞/8 − 2, 𝑞/8 − 2) 𝒯
ntruhps2048677 667 2048 3 𝒯 𝒯 (𝑞/8 − 2, 𝑞/8 − 2) 𝒯
ntruhps4096821 821 4096 3 𝒯 𝒯 (𝑞/8 − 2, 𝑞/8 − 2) 𝒯
ntruhrss701 701 8192 3 𝒯+ (𝑥 − 1) · v : v ∈ 𝒯+ 𝒯

Table 3.3 Parameter sets of the NTRU submission [CDH+19].

fixed weight but uniformly samples all polynomials from 𝒯 , introducing the additional notation of
ternary polynomials in 𝒯+, which includes only polynomials with a higher or equal amount of ones
than minus ones. This parameter set also allows the usage of index-based multiplication. However,
the additional multiplication of (𝑥 − 1) during the sampling of g requires additional attention, as
after the multiplication, g is not a ternary polynomial anymore. This problem can be solved by first
multiplying the ternary part of g with the second operand and, in a second step, multiplying it with
(𝑥 − 1). This is possible due to the commutative properties of the used polynomial ring.

As index-based multiplication can be used for both types of parameter sets in the NTRU submission,
we have to discuss the influence of these changes on the presented CPA and countermeasures. The
CPA is still working as described, but it has to be adapted to the fact that f is now sampled uniformly
from 𝒯 . In this case, an attacker does not know the amount of non-zero elements in f, and therefore,
she does not know the amount of different CPAs needed to find all key index differences. A strategy
to cope with this limitation is to perform the attack under the assumption of 𝑑 = 𝑁 ones followed
by 𝑑 = 𝑁 minus ones in f. Then, if an attack on a certain 𝑤1

𝑖 or 𝑤−1
𝑖 does not result in a significant

correlation, she can reason that all respective ones or minus ones have been found. The changes to
the algorithm and parameters do not influence the proposed masked implementations, as operations
are still linear, and changes to the mask can be computed accordingly. The adaption of the modulus 𝑞
still allows the use of the parallel masked implementation, as 𝑞 is still a power of two for all parameter
sets, and since 𝑞 ≤ 216, the implicit reduction by the SIMD instructions has no influence on the results.
As the ring modulus is still (𝑥𝑁 − 1), the shuffling countermeasure can be used unaltered.

33

4 Chosen-Chiphertext Attacks on Hamming
Quasi-Cyclic (HQC)

This chapter is based on the following publications:
• Schamberger/Renner/Sigl/Wachter-Zeh: A Power Side-Channel Attack on the

CCA2-Secure HQC KEM published in Smart Card Research and Advanced Ap-

plications (CARDIS), 2021 [SRSWZ21]

• Schamberger/Holzbaur/Renner/Wachter-Zeh/Sigl: A Power Side-Channel Attack

on the Reed-Muller Reed-Solomon Version of the HQC Cryptosystem published in
Post-Quantum Cryptography (PQCrypto), 2022 [SHR+22]

The attack strategy on HQC-BCH shown in Section 4.5 and published in
[SRSWZ21] was jointly developed with Julian Renner. Additionally, the method to
retrieve the final bits of the secret key in Section 4.4.3, as well as the utilization of
partial attack results through information set decoding in Section 4.4.4, was also
developed by Julian Renner. The attack strategy on HQC-RMRS in Section 4.6
was jointly developed and published in [SHR+22] with Lukas Holzbaur. The for-
mal proof of the attack strategy on HQC-RMRS in Appendix A was developed
by Lukas Holzbaur. The discussion on possible countermeasures is partly based
on the master thesis of Tim Kaiser [Kai22]. The ideas for the countermeasures
in Sections 4.7.2 and 4.7.3 were initially proposed by me and have been jointly
developed further during this thesis.

4.1 Introduction

The code-based cryptosystem HQC is a fourth-round candidate in the NIST post-quantum stan-
dardization competition. It is a promising candidate in the standardization of an alternative KEM
based on a different mathematical problem than the already selected lattice-based CRYSTALS-Kyber
[ABD+20]. In [Nat22], NIST summarizes HQC as offering strong security assurances in combination
with a mature decryption failure rate analysis while showing reasonable public key and ciphertext
sizes. While the first two rounds of the NIST competition were dominated by research on possible per-
formance improvements and optimized implementations, from the beginning of the third round, the
focus shifted to the side-channel security of systems, which was encouraged by NIST [Nat20, Nat22].
This section presents contributions in this direction with two chosen-ciphertext attacks through the
use of a power side-channel on first the original version (HQC-BCH) and the third round version
(HQC-RMRS) with updated error-correcting codes. A first evaluation of countermeasures suggests
that a complete masking scheme for the HQC algorithm has to be developed in order to provide a
secure implementation against the presented attacks.

Related Work In 2019, Wafo-Tapa et al. presented an ePrint version of a timing side-channel at-
tack on the non-constant-time implementation of HQC-BCH, which was later officially published in
[WBB+22]. Their attack consists of a chosen-ciphertext attack that utilizes the variable execution time
of the implemented Bose-Chaudhuri-Hocquenghem (BCH) decoder that depends on the number of

34

errors that have to be corrected. They propose a constant-time implementation of the decoder that
has been integrated into the reference implementation of HQC-BCH. In [PT20], the authors show
an additional timing side-channel on HQC-BCH, where they also utilize the timing variance of the
BCH decoder. They use the timing information to reconstruct the spectrum, i.e., the difference in
the indices of entries, of the secret key. With the knowledge of the spectrum, they utilize a known
search algorithm to determine the actual support of the key. Their attack requires a minimum of
400 million queries to the algorithm. Guo and Johansson [GJ20] show a decryption failure attack
on HQC-BCH that uses a pre-computation step to compute inputs that show a significantly higher
failure rate. Their overall attack complexity is estimated as 2246, which is slightly below the security
level of HQC-BCH-256. As the precomputation has to be performed only once and allows an attack
on multiple keys, the authors propose to additionally include the public key in the hash used to derive
the randomness for the KEM version of HQC.

In [GHJ+22], the authors present a timing attack on the fixed-weight polynomial sampler of HQC-
RMRS. They identify that the rejection sampling approach requires a variable amount of randomness
that has to be generated with additional calls to the Pseudo Random Number Generator (PRNG),
which influences the execution time. The authors construct an input to the algorithm that requires a
large amount of additional randomness and then additively query the algorithm with modifications
of this input, where a faster execution time (less randomness) is likely caused by a part of the secret
key. A countermeasure to this attack is presented in [Sen21], which is included in the reference
implementation of the fourth round HQC submission. In [UXT+21] and [XIU+21a], the authors
identify that a misuse attack on the Public Key Encryption Scheme (PKE) version of HQC-BCH
published in [BDHD+19, HDV20] can be used to construct a chosen-ciphertext attack on HQC-RMRS.
They construct the required oracle for the attack from a power side-channel on the used SHAKE256
extendable-output function [UXT+21] or from directly observing incorrect KEM outputs through a
fault attack on the message check of the used variant of the Fujisaki-Okamoto (FO) transformation
[XIU+21a]. Nevertheless, these two attacks are shown to be non-functional in this thesis.

Shortly after the publication of the attack on HQC-RMRS presented in this thesis, Goy et al.
[GLG22] also published a chosen-ciphertext attack on HQC-RMRS. This attack directly utilizes the
Reed-Muller (RM) decoder result by querying every bit of a RM block individually and observing
through a power side-channel if the decoder has to correct an additional error or if the error is reduced
by one. Although their attack claims to be "less complex" it has several disadvantages compared to
the attack presented in this thesis. First, in order to construct the side-channel oracle, Goy et al.
have to distinguish several distinct classes corresponding to a fixed amount of errors corrected by
the RM code. This is a significantly stronger assumption for a side-channel attack. Additionally,
this requires the attacker to correctly identify the execution of the RM decoder in the measurement
traces. In contrast, the oracle used in this thesis only has to distinguish two classes. Therefore, the
complete side-channel information of the HQC decapsulation, starting from the decoding step, can
theoretically be used, as discussed in this thesis. Additionally, their attack requires 240 000 profiling
traces in contrast to the 1000 traces used in this thesis, which outweighs the additional traces required
during the attack phase of the presented attack.

Contributions This chapter proposes two chosen-ciphertext attacks on HQC as well as its updated
third-round version and shows the applicability of the attacks through practical side-channel evalu-
ations. The contributions can be summarized as follows:

• We present the first power side-channel based chosen-ciphertext attack on HQC-BCH that
utilizes leakage of the BCH decoder and show practical attack results on an STM32F415 ARM
Cortex-M4 microcontroller using 20 000 traces. The attack strategy is able to retrieve a large
portion of possible keys, e.g., 93.2 % of HQC-128.

35

• We provide a complete discussion of the attack, including a method based on linear algebra that
is able to retrieve a small part of the secret key that is not included in the input of the decoder
and, therefore, not attackable through the side-channel.

• The state of the art for attacks on HQC-RMRS is revisited, and it is shown that the change of the
used codes in HQC-RMRS to a Reed-Muller (RM) and Reed-Solomon (RS) code induces a new
form of decoder that breaks attack attempts in [UXT+21, XIU+21a].

• As the attack of [UXT+21] is shown to be inapplicable, we again present the first power side-
channel attack on HQC-RMRS, including a proof of the attack based on a condition that is
fulfilled with very high probability for all parameter sets. Additionally, a discussion of published
side-channel oracles for HQC-RMRS is given, and it is shown how and if those oracles can be
instantiated for the use with the proposed attack strategy. This includes a practical side-channel
evaluation of the RS decoder.

• We discuss multiple countermeasures against the presented attacks and propose a novel coun-
termeasure through the insertion of additional errors during decoding, for which we provide
an evaluation of its effectiveness.

Outline In Section 4.2, an introduction to error-correcting codes is given with a focus on concepts and
codes used in the different versions of the HQC cryptosystem. The HQC cryptosystem is presented
in Section 4.3, including a discussion of the different changes to the system as well as details on the
used error-correcting codes. In Section 4.4, the general concept of the attack strategy for both versions
of the cryptosystem is presented. The attack on HQC-BCH is described in Section 4.5 and the attack
on HQC-RMRS in Section 4.6. Finally, countermeasures are discussed in Section 4.7.

4.2 Error-Correcting Codes

In this section, an overview of the field of error-correcting codes is given. As this field of research is
very extensive, the focus is set on an explanation of the concepts and error-correcting codes used in
the HQC cryptosystem. For further information, the reader is referred to [LC04] and [Rot06]. This
section is structured in accordance with [WZ21].

First, a general introduction to the topic is given in Section 4.2.1. This is followed by an overview of
linear block codes and their general encoding and decoding in the Hamming metric in Section 4.2.2.
An introduction to RS codes is provided in Section 4.2.3 followed by an introduction to BCH codes
in Section 4.2.4, which are subcodes of RS codes. In Section 4.2.5 RM codes are introduced. Finally,
Section 4.2.6 describes the concept of concatenated codes, which are used in HQC to achieve the
required error correction capability.

4.2.1 Introduction to Error-Correcting Codes

The purpose of error-correcting codes is to store or transmit data in a systematic or structured way
given a noisy environment (usually modeled as a communication channel), such that a receiver is
able to reconstruct the transmitted message even in the presence of errors. In order to allow this
reconstruction, a certain amount of redundancy has to be added to a transmitted message. The
challenge in the design of error-correcting codes is to find a tradeoff between a low amount of
redundancy and the resulting error-correcting capability (how many errors can be corrected by the
code).

In order to encode a message given its information vector 𝒖 = (𝑢0 , 𝑢1 , . . . , 𝑢𝑘−1) with symbols
usually chosen from a finite field 𝔽𝑞 , it is mapped using an encoder to a codeword vector 𝒄 of larger
length 𝑛. More formally, the encoding is defined as the mapping:

𝒖 ∈ 𝔽𝑘𝑞 ↦→ 𝒄 ∈ 𝔽𝑛𝑞 ,with 𝒄 ∈ 𝒞 ,

36

𝑢0 𝑢1 𝑢2 𝑢3 𝑢4 . . . 𝑢𝑘−1 ↦→𝒞 𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 . . . 𝑐𝑘−1 𝑐𝑘 𝑐𝑘+1 𝑐𝑘+2 . . . 𝑐𝑛−1

𝒄𝒖

information redundancy

Figure 4.1 Example of a systematic encoding of the vector 𝒖.

Encoder
𝒖 +𝒄

𝒆

Decoder
𝒓 Extract

information
vector

�̂� �̂�

Figure 4.2 Encoding and decoding of a message vector 𝒖.

where 𝒞 is a subset of 𝔽𝑛𝑞 and denotes the used error-correcting code. An example of a codeword in
systematic encoding, meaning the first 𝑘 symbols of the codeword contain the information symbols,
is shown in Fig. 4.1. The resulting codeword 𝒄 can then be transmitted over a channel1 that can add
errors, modeled as the error vector 𝒆, resulting in the received codeword 𝒓 = 𝒄+𝒆 = (𝑟0 , 𝑟1 , 𝑟2 , . . . , 𝑟𝑛−1)
at the receiver. Due to the used error-correcting code, it is possible to reconstruct (decode) the
codeword 𝒄 from 𝒓 . As the decoding is only possible up to a limited amount of errors, the result after
decoding is defined as �̂�, where �̂� = 𝒄 holds for a successful decoding. Finally, from �̂� the information
vector �̂� can be reconstructed, while for a systematic encoding the location of the corresponding
symbols is known. Frequently, this reconstruction is considered to be part of the decoder and
therefore it is assumed that the decoder directly returns the information vector �̂�. The process of
encoding and decoding is visualized in Fig. 4.2.

4.2.2 Linear Block Codes

Linear block codes are the most prominent subclass of error-correcting codes, as they fit the purpose
of data transmission with arbitrary-length messages that can be decomposed into individual message
blocks. These blocks are then encoded to their respective codewords independently of the adjacent
codewords. A linear block code implies that the linear combination of two codewords from the
same code 𝒞 is again a valid codeword. It follows from this property that the all-zero codeword
0 = (0, . . . , 0) is a valid codeword for any linear code.

Formally, a linear block code is a 𝑘-dimensional linear subspace of the vector space 𝔽𝑛𝑞 with the
minimum Hamming distance 𝑑, where 𝑞 defines the underlying alphabet size. For 𝑞 = 2 the resulting
codes are called binary. The characteristics of a code can be described using the notation [𝑛, 𝑘, 𝑑]𝑞
where:

• 𝑛 is the length of the code (i.e., the number of symbols in a codeword),

• 𝑘 the dimension (i.e., the number of symbols to be encoded),

• 𝑛 − 𝑘 the number of redundancy symbols,

• 𝑞𝑘 the cardinality (i.e., the number of different codewords),

• 𝑑 the minimum distance of the code.

1A channel model is used to model the probability of an error for a certain symbol of the transmitted codeword. In our
case we only consider a binary symmetric channel where each bit of a codeword is flipped with probability 𝑝 independently.

37

The codes that we consider are defined in the Hamming metric, where the minimum distance 𝑑 of the
code 𝒞 is the minimum Hamming distance (HD) between two codewords, which can be simplified
for linear codes [LC04, Section 3.3]:

𝑑 = min
𝒙 ,𝒚∈𝒞
𝒙≠𝒚

HD(𝒙 , 𝒚) = min
𝒙∈𝒞
𝒙≠0

HW(𝒙).

It has to be noted that the Hamming weight (HW) and the Hamming distance (HD) between two
codewords in 𝒞 is defined as the number of non-zero symbols and the number of coordinates with
different symbols, respectively. Only for binary codes (𝑞 = 2) this corresponds to the definition for
calculating the Hamming weight/Hamming distance of the binary representation of a value.

The minimum distance of a code can be used to describe its error-correcting capability. For a
code 𝒞 with minimum distance 𝑑 and an error vector with HW(𝒆) ≤ ⌊

𝑑−1
2
⌋
, a decoder for the given

code can always correct the induced errors. The process of decoding an erroneous codeword that
resides in the decoding spheres of the decoder is called unique error correction and a decoder using
this principle is called bounded distance decoder. Such a decoder with its unique decoding radius is
visualized in Fig. 4.3a. There is also a second type of decoder called maximum likelihood

2 (ML) or
nearest codeword decoder. In the Hamming metric, such a decoder returns the codeword that has the
smallest Hamming distance to the received vector 𝒓 . Formally, an ML decoder returns the codeword

�̂� = arg max
𝒄∈𝒞

𝑃(𝒓|𝒄) ,

which is equivalent in the HQC case, i.e., without considering soft information, to minimizing the
Hamming distance between 𝒓 and 𝒄, resulting in

�̂� = arg min
𝒄∈𝒞

HD(𝒓 , 𝒄) . (4.1)

The decoder is visualized in Fig. 4.3b with the borders for the decoding decision marked with gray
lines. It can be seen that an ML decoder is able to correct additional errors that exceed the unique
decoding radius. Additionally, the decision boundaries show a distinctive margin depending on the
"location" of the received word 𝒓 , which reflects the fact that the amount of correctible errors is also
influenced by the support of the error, i.e., the positions of the errors in the received word. It is to be
noted that for a non-distinct solution, i.e., the received word lies on the decision boundary between
codewords, the decision is not specified and is fully dependent on the implementation of the decoder.

Encoding The encoding of an information vector 𝒖 to a codeword 𝒄 is done by multiplying 𝒖 with
a 𝔽𝑘×𝑛𝑞 generator matrix 𝑮 as

𝒄 = 𝒖 · 𝑮 .

In the case of a desired systematic encoding, 𝑮 can be transferred into its systematic form 𝑮𝑠𝑦𝑠 =(
𝑰 𝑘 𝑨

)
, where 𝑨 is calculated through Gaussian elimination and 𝑰 𝑘 denotes the 𝑘× 𝑘 identity matrix.

A systematic encoding of 𝒖 is therefore defined as

𝒄 = 𝒖 · 𝑮𝑠𝑦𝑠 = 𝒖 · (𝑰 𝑘 𝑨
)
=
(
𝒖 𝒖 · 𝑨) . (4.2)

Please note that 𝑮𝑠𝑦𝑠 is still a valid generator matrix of 𝒞 , but only the mapping to codewords
is changed. An example of an encoding using a generator matrix in systematic form is given in
Example 4.2.1.

2In the case of HQC, where a channel is assumed that has a probability for an error smaller than 0.5, i.e., fewer errors
are more likely than more errors, a nearest codeword decoder is also a maximum likelihood decoder.

38

𝒄(1)

𝒄(2)

𝒄(3)

⌊
𝑑−1

2
⌋

𝒓

(a) Bounded distance decoding

𝒄(1)

𝒄(2)

𝒄(3)

𝒄(4) ⌊
𝑑−1

2
⌋𝒓

(b) Maximum likelihood (ML) decoding

Figure 4.3 Visualization of the different decoding methods. Adapted from [WZ21].

Example 4.2.1: Systematic Encoding of a Single-Parity Check Code. Adapted from [WZ21].

A single-parity check code is a [𝑛, 𝑛 − 1, 2]2 binary code that computes the parity of the input
vector, in this case, a binary value of size 𝑘 = 𝑛−1. As an example, a [5, 4, 2]2 code is considered,
which is used to encode the information vector 𝒖 = (0110). Using the generator matrix of this
code in systematic form, the resulting codeword is

𝒄 = (0110) ·
©
«

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

ª®®®
¬
= (01100) .

It can be seen that the first parts of 𝑮𝑠𝑦𝑠 consist of 𝑰𝑛−1 and therefore the first 𝑘 entries of the
codeword correspond to 𝒖.

Parity-Check Matrix The decoding process of an error-correcting code is highly dependent on the
used code, but there is a particular class of decoder that is used by most of the codes (BCH and RS)
in HQC. This class of decoders is based on computing the syndrome of a vector that is to be decoded
using a so-called parity-check matrix of the code 𝒞 . A parity-check matrix 𝑯 is an (𝑛 − 𝑘) × 𝑛 matrix in
𝔽𝑞 that fulfills the property that for any codeword 𝒄 ∈ 𝒞 it holds:

𝒄 · 𝑯𝑇 = 0 . (4.3)

Using this definition, the syndrome 𝒔 ∈ 𝔽𝑛−𝑘𝑞 of a vector 𝒓 ∈ 𝔽𝑛𝑞 is defined as the result of the
multiplication of this vector and the parity-check matrix as

𝒔 = 𝒓 · 𝑯𝑇 . (4.4)

If 𝒔 = 0, it follows that 𝒓 is a valid codeword, and a syndrome that is not equal to zero indicates that
an error has occurred. This distinction makes it possible to detect errors and to construct a decoder
that uses the information contained in the syndrome.

39

Example 4.2.2: Parity-Check Matrix and Syndrome of a Single-Parity Check Code

Using the [5, 4, 2]2 binary single-parity check code from Example 4.2.1, we can calculate the
syndrome for a correct codeword and an erroneous codeword. The generator and parity-check
matrix of this code is given by

𝑮 =
©
«

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

ª®®®
¬
, 𝑯 =

(
1 1 1 1 1

)
.

For a correct codeword 𝒄 = (01100), the computation of the syndrome shows that it is a
codeword of 𝒞 , while for an erroneous vector 𝒄𝑒𝑟𝑟 = (11100) the syndrome indicates an error:

𝒔 = (01100) ·
©
«

1
1
1
1
1

ª®®®®®
¬
= 0, 𝒔 = (11100) ·

©
«

1
1
1
1
1

ª®®®®®
¬
= 1 .

Shortened Codes In some use cases, it can be desired to encode a word that is smaller than the
dimension 𝑘 of the code. An example of this is the fixed size of a shared secret during a key exchange
using a KEM that normally corresponds to the security level of the algorithm, e.g., 128 bit. This
can be achieved through shortening of the used code, such that the new dimension 𝑘𝑠 is the desired
length of the word to be encoded. The process works with a systematic encoding by first identifying
all codewords with a "0" at the first positions and removing these zeros from the codewords3. This
also implies to reduce the length of the codewords to reflect this change. Formally, the shortening
of a [𝑛, 𝑘, 𝑑]𝑞 code results in a [𝑛𝑠 , 𝑘𝑠 , 𝑑𝑠]𝑞 code with 𝑘𝑠 = 𝑘 − 𝑘, 𝑛𝑠 = 𝑛 − �̂�, and 𝑑𝑠 ≥ 𝑑 where 𝑘, �̂�
correspond to the size of the removed symbols and 𝑘 = �̂�. The shortening process is visualized in
Fig. 4.4.

1

1
1

1

1

©
«

ª®®®®®®®®
¬

. . .

. . .

0 . . . 0 𝒖𝑘 𝒖𝑘+1 . . . 𝒖𝑘−1

()
= 0 . . . 0 𝒄�̂� 𝒄�̂�+1 . . . 𝒄𝑛−1

()

𝑘 �̂� = 𝑘𝑘𝑠 𝑛𝑠

𝒖

𝑮

𝒄

Figure 4.4 Visualization of the shortening of a given code adapted from [WZ21]. The resulting shortened
generator matrix is indicated in gray together with the corresponding input and resulting codeword.

Cyclic Codes Some codes fulfill the property of cyclicity, which states that every cyclic shift of a
codeword is again a valid codeword. For cylic codes, a codeword vector 𝒄 = (𝑐0 , 𝑐1 , . . . , 𝑐𝑛−1) can be
represented with the corresponding polynomial 𝑐(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + . . . + 𝑐𝑛−1𝑥𝑛−1 which is an
element of the ring 𝔽𝑞[𝑥]

𝑥𝑛−1 . This implies that a multiplication with 𝑥 corresponds to a cyclic shift of one
position as

𝑥 · 𝑐(𝑥) = 𝑥 · (𝑐0 + 𝑐1𝑥 + . . . + 𝑐𝑛−1𝑥𝑛−1) = 𝑐𝑛−1 + 𝑐0𝑥 + 𝑐1𝑥2 + . . . + 𝑐𝑛−2𝑥𝑛−1 mod (𝑥𝑛 − 1) .
3This does not imply that the first position 𝒖𝑘 of the shortened 𝒖 has to be zero.

40

For cyclic codes there exists a generator polynomial 𝑔(𝑥) that divides all codewords 𝑐(𝑥) ∈ 𝔽𝑞[𝑥] of
degree 𝑛 − 1 without a remainder polynomial [Rot06, Section 8.2]:

𝑐(𝑥) ∈ 𝒞 ⇐⇒ 𝑔(𝑥) | 𝑐(𝑥) .

This implies that for cyclic codes the encoding of an information vector 𝒖 in its polynomial represen-
tation 𝑢(𝑥), with deg(𝑢(𝑥)) < 𝑘, can be done through multiplication with the generator polynomial
𝑔(𝑥) of degree 𝑛 − 𝑘:

𝑐(𝑥) = 𝑢(𝑥) · 𝑔(𝑥) mod (𝑥𝑛 − 1) . (4.5)

This is an advantage for practical implementations of cyclic codes, as there exist optimized algo-
rithms for polynomial multiplication or even dedicated hardware constructions like a LFSR [LC04].
Analogously, the parity-check polynomial ℎ(𝑥) corresponding to 𝑔(𝑥) can be computed as

ℎ(𝑥) = 𝑥𝑛 − 1
𝑔(𝑥) mod (𝑥𝑛 − 1) . (4.6)

The corresponding generator and parity check matrix to a given generator and parity-check polyno-
mial can be constructed by cyclic shifts of the respective polynomial:

𝑮 =

©
«

𝑔0 𝑔1 . . . 𝑔𝑛−𝑘
𝑔0 𝑔1 . . . 𝑔𝑛−𝑘

.
𝑔0 𝑔1 . . . 𝑔𝑛−𝑘

ª®®®®
¬
, 𝑯 =

©
«

ℎ𝑘 ℎ𝑘−1 . . . ℎ0
ℎ𝑘 ℎ𝑘−1 . . . ℎ0

.
ℎ𝑘 ℎ𝑘−1 . . . ℎ0

ª®®®®
¬
.

4.2.3 Reed-Solomon (RS) Codes

Reed-Solomon (RS) codes are a prominent class of block codes as they achieve optimal error correction
capabilities4 while being efficient to encode and decode. Additionally, since they are defined for
symbols over 𝔽𝑞 , a particular advantage is the possibility of correcting consecutive bit errors, so-
called burst errors. An [𝑛, 𝑘, 𝑑]𝑞 RS code has the following parameters:

• Block length: 𝑛 = 𝑞 − 1

• Minimum distance: 𝑑 = 𝑛 − 𝑘 + 1

• Number of parity check symbols: 𝑛 − 𝑘 = 2𝛿, where 𝛿 is the error correcting capability defined
as 𝛿 =

⌊
𝑑−1

2
⌋

• Dimension: 𝑘 = 𝑞 − 1 − 2𝛿

In the following, only primitive RS codes are described as only this subclass of RS codes is used in
HQC. A primitive RS code is usually defined over an extension field of 𝔽2 with extension degree 𝑚
using a primitive element 𝛼 ∈ 𝔽2𝑚 that is used to generate the field. Additionally, the code length 𝑛
must be dividable by 2𝑚 − 1 and 𝛼 has to be of order 𝑛, which means that 𝑛 is the smallest integer
such that 𝛼𝑛 = 1. This results in the following generator and parity check matrices of a primitive RS
code based on the primitive element 𝛼:

𝑮RS =

©
«

1 1 1 · · · 1
1 𝛼 𝛼2 · · · 𝛼(𝑛−1)
...

...
...

. . .
...

1 𝛼(𝑘−1) 𝛼2(𝑘−1) · · · 𝛼(𝑛−1)(𝑘−1)

ª®®®®
¬
, 𝑯RS =

©
«

1 𝛼 𝛼2 · · · 𝛼(𝑛−1)
1 𝛼2 (𝛼2)2 · · · (𝛼2)(𝑛−1)
...

...
...

. . .
...

1 𝛼(𝑛−𝑘) (𝛼(𝑛−𝑘))2 · · · (𝛼(𝑛−𝑘))(𝑛−1)

ª®®®®
¬
.

4More formally, they achieve the Singleton bound and are, therefore, maximum distance separable codes.

41

As a primitive RS code is cyclic, a generator polynomial can also be used to describe its encoding.
The construction of the parity check matrix 𝑯RS and the fact that Eq. (4.3) holds implies that every
codeword has the sequential powers of 𝛼 as its roots, i.e., 𝑐(𝛼) = 𝑐(𝛼2) = . . . = 𝑐(𝛼(𝑛−𝑘)) = 0. Thus, the
generator polynomial 𝑔(𝑥) of a primitive RS code is given by

𝑔(𝑥) = (𝑥 − 𝛼)(𝑥 − 𝛼2)(𝑥 − 𝛼3) . . . (𝑥 − 𝛼(𝑛−𝑘)) . (4.7)

Using Eq. (4.6), the corresponding parity check polynomial is defined as

ℎ(𝑥) = 𝑥𝑛 − 1
𝑔(𝑥) = (𝑥 − 𝛼(𝑛−𝑘+1))(𝑥 − 𝛼(𝑛−𝑘+2))(𝑥 − 𝛼(𝑛−𝑘+3)) . . . (𝑥 − 𝛼(𝑛)) . (4.8)

Encoding The encoding of a message using RS codes can be done through the multiplication of
the message polynomial with the generator polynomial (c.f. Eq. (4.5)). Nevertheless, this produces
an encoding in non-systematic form, which requires an additional division of the decoding result
by 𝑔(𝑥) to retrieve the message from 𝒖. This downside is removed by a systematic encoding, which
works for RS codes as follows:

• First, the message polynomial 𝑢(𝑥) is multiplied by 𝑥(𝑛−𝑘).

• Then the remainder 𝑏(𝑥) for the division of 𝑥(𝑛−𝑘) · 𝑢(𝑥) with the generator polynomial is
computed.

• In a final step the codeword is obtained as 𝑐(𝑥) = 𝑏(𝑥) + 𝑥(𝑛−𝑘) · 𝑢(𝑥) .
Please note that this systematic encoding defines the rightmost symbols or the coefficients that are
equal or higher than 𝑥(𝑛−1) as information symbols and the leftmost symbols or coefficients smaller
than 𝑥(𝑛−1) as the redundancy. This stands in contrast to the definition in Eq. (4.2) and has to be
considered during the retrieval of the message after decoding.

Unique Syndrome-Based Decoding The most prominent method for decoding RS codes is based
on computing the syndromes of the received word 𝒓 that should be decoded. In order to describe the
decoding process the error polynomial 𝑒(𝑥) = 𝑒0 + 𝑒1𝑥 + . . . + 𝑒𝑛−1𝑥(𝑛−1) has to be introduced, which
is defined as

𝑒(𝑥) = 𝑟(𝑥) − 𝑐(𝑥) . (4.9)

According to 𝑒(𝑥) the set of error locations ℰ = supp(𝒆) is defined, which contains all the nonzero
coefficients of 𝑒(𝑥), i.e., ℰ = {𝑖 : 𝑒𝑖 ≠ 0, 𝑖 = 0, . . . , 𝑛 − 1}. The described decoder results in a unique
decoding result, which implies |ℰ| = HW(𝒆) ≤ ⌊

𝑑−1
2
⌋

(c.f. Section 4.2.2). The goal of the decoding
process is to determine the error polynomial 𝑒(𝑥) in order to compute the codeword 𝑐(𝑥) using
Eq. (4.9). The decoding consists of the following steps5, which are additionally visualized in Fig. 4.5:

1) Syndrome Computation
The syndrome with its coefficients 𝒔 = (𝑠0 , 𝑠1 , . . . , 𝑠𝑑−2) ∈ 𝔽𝑑−1

𝑞 is calculated by multiplication of
the received word with the parity check matrix as 𝒔 = 𝒓 · 𝑯𝑇

RS. Please note that the syndrome is
only dependent on the error 𝒆 of the received word, since 𝒄 · 𝑯𝑇

RS = 0 and therefore:

𝒔 = 𝒓 · 𝑯𝑇
RS = (𝒄 + 𝒆) · 𝑯𝑇

RS = 𝒄 · 𝑯𝑇
RS︸ ︷︷ ︸

0

+ 𝒆 · 𝑯𝑇
RS . (4.10)

5Please note we describe the decoder for primitive RS codes, which implies that the code locators are powers of
a primitive element 𝛼 ∈ 𝔽𝑞 and therefore 𝛼𝑖 = 𝛼𝑖 . In literature [LC04, Rot06], the decoder is usually described for
generalized RS codes using the general 𝛼𝑖 . These generalized RS codes additionally introduce non-zero column multipliers
𝑣𝑖 = 𝑣0 , 𝑣1 , . . . , 𝑣𝑛−1 ∈ 𝔽𝑞 that are used to scale the columns of the parity check matrix. For primitive RS codes 𝑣𝑖 = 𝛼𝑖 = 𝛼𝑖 .
For consistency, all 𝛼𝑖 and 𝑣𝑖 are substituted in the presented formulas of the decoder.

42

Syndrome
computation

𝒓 ,𝑯RS
Solve key
equation:

Ω(𝑥) = Λ(𝑥) ∗ 𝑆(𝑥)
𝑆(𝑥)

Find error
locations:

Λ((𝑎 𝑙)−1) = 0
∀𝑙 ∈ ℰ

Λ(𝑥),Ω(𝑥)

Compute
error values

ℰ

Λ(𝑥),Ω(𝑥),ℰ
𝑐(𝑥) = 𝑟(𝑥) − 𝑒(𝑥)𝑒(𝑥) 𝑐(𝑥)

Figure 4.5 Syndrome-based unique decoding of primitive RS codes.

The individual syndrome coefficients for 𝑖 = 0, . . . , 𝑑 − 2 are

𝑠𝑖 =
𝑛−1∑
𝑗=0

𝑟 𝑗𝛼 𝑗𝛼 𝑗·𝑖 =
𝑛−1∑
𝑗=0

𝑒 𝑗𝛼 𝑗𝛼 𝑗·𝑖 =
∑
𝑗∈ℰ

𝑒 𝑗𝛼 𝑗𝛼 𝑗·𝑖 .

2) Solving the Key Equation

The key equation states the relation between the error locator polynomial Λ(𝑥), which defines
the locations of errors, and the error evaluator polynomial Ω(𝑥), which defines the error values,
as

Ω(𝑥) = Λ(𝑥) · 𝑆(𝑥) mod (𝑥𝑑−1), with deg(Ω(𝑥)) < deg(Λ(𝑥)) ≤
⌊
𝑑 − 1

2

⌋
. (4.11)

The error error locator polynomial Λ(𝑥) is defined by

Λ(𝑥) =
∏
𝑖∈ℰ
(1 − 𝛼𝑖𝑥) , (4.12)

with roots (𝛼𝑙)−1 for 𝑙 ∈ ℰ, which means that only if 𝑙 is an erroneous position it holds that
Λ((𝛼𝑙)−1) = 0. The error evaluator polynomial Ω(𝑥) is defined by

Ω(𝑥) =
∑
𝑖∈ℰ

𝑒𝑖𝛼𝑖
∏

𝑗∈ℰ\{𝑖}
(1 − 𝛼 𝑗𝑥) . (4.13)

For a known amount of errors 𝑡 in 𝒆, i.e., 𝑡 = HW(𝒆) = |ℰ|, the key equation (Eq. (4.11)) is equal
to the following system of equations:

©
«

𝑠0 0 0 . . . 0
𝑠1 𝑠0 0 . . . 0
...

...
.

...
𝑠𝑡−1 𝑠𝑡−2 . . . 𝑠0 0
𝑠𝑡 𝑠𝑡−1 . . . 𝑠1 𝑠0
𝑠𝑡+1 𝑠𝑡 . . . 𝑠2 𝑠1
...

...
.

...
𝑠𝑑−2 𝑠𝑑−3 . . . 𝑠𝑑−𝑡−1 𝑠𝑑−𝑡−2

ª®®®®®®®®®®®®
¬

·
©
«

Λ0
Λ1
...
Λ𝑡

ª®®®®
¬
=

©
«

Ω0
Ω1
...

Ω𝑡−1
0
0
...
0

ª®®®®®®®®®®®®
¬

. (4.14)

The last equations in Eq. (4.14) for 𝑑 − 1− 𝑡 ≥ 𝑡 do not depend on Ω(𝑥) and therefore, this linear
system of equations can be solved in order to determine Λ(𝑥). In practice, the number of errors

43

in 𝒆 is unknown during decoding, and therefore 𝑡 must be determined. This can be done by
subsequently checking the rank of the following matrix with syndrome coefficients

𝑺𝑣 =

©
«

𝑠𝑣−1 . . . 𝑠1 𝑠0
𝑠𝑣 . . . 𝑠2 𝑠1
...

. . .
...

...
𝑠2𝑣−2 . . . 𝑠𝑣 𝑠𝑣−1

ª®®®®
¬
,

for 𝑣 =
⌊
𝑑−1

2
⌋
, . . . , 1 that only has full rank, i.e., is invertible, if 𝑣 = 𝑡 [Pet60]. Please note that

there are more efficient algorithms to compute Λ(𝑥), like the Berlekamp-Massey algorithm, that
does not rely on the knowledge of 𝑡. For a detailed discussion on this algorithm and other
ways to solve the key equation, the reader is referred to [Rot06, Chapter 6]. Finally, Ω(𝑥) can be
computed using Eq. (4.11) or inserting the now known Λ(𝑥) in Eq. (4.14).

3) Determining ℰ from Λ(𝑥)
The definition of Λ(𝑥) in Eq. (4.12) states that Λ((𝛼𝑙)−1) = 0 for all 𝑙 ∈ ℰ. Therefore, the error
locations ℰ can be found through finding the roots of Λ(𝑥). As the number of possible roots
(the inverses of all 𝛼𝑙) is limited by 𝑛, it is possible to perform a brute-force search to identify
them. An efficient way to perform this brute-force search in practice is the so-called chien search.
For a detailed discussion, the reader is again referred to the literature [LC04, Chapter 7].

4) Finding the Error Values
The error values, i.e., the individual coefficients 𝑒𝑖 of 𝑒(𝑥), can be computed using Froney’s

formula that states:

𝑒𝑖 =
1
𝛼𝑖
· Ω((𝛼𝑖)−1)∏

𝑗∈ℰ\{𝑖}(1 − 𝛼 𝑗(𝛼𝑖)−1) (4.15)

5) Retrieve the Codeword 𝑐(𝑥)
The codeword is computed as

𝑐(𝑥) = 𝑟(𝑥) − 𝑒(𝑥) .

4.2.4 Bose-Chaudhuri-Hocquenghem (BCH) Codes

The following section describes primitive Bose-Chaudhuri-Hocquenghem (BCH) codes that are also
an important class of cyclic error-correcting codes. Especially, we focus on binary BCH codes used in
the HQC cryptosystem. For primitive BCH codes, the block length is defined as 𝑛 = 𝑞𝑚 − 1 = 2𝑚 − 1,
as for binary BCH codes 𝑞 = 2. Given a primitive element 𝛼 of 𝔽2𝑚 andℳ = 𝐶𝑖1 ∪ 𝐶𝑖2 ∪ . . . ∪ 𝐶𝑖𝑙 for
𝑙 ≥ 1 with the different 𝐶𝑖 being the cyclotomic cosets with respect to 𝑛, the generator polynomial of
the corresponding primitive BCH code is defined as

𝑔(𝑥) =
∏
𝑖∈ℳ
(𝑥 − 𝛼𝑖) =

|ℳ|∑
𝑖=0

𝑔𝑖𝑥 𝑖 , with 𝑔𝑖 ∈ 𝔽2 . (4.16)

The desired minimum distance 𝑑 of the code is defined as the smallest integer of all cyclotomic cosets
that is not inℳ6. The dimension of the code is defined as 𝑘 = 𝑛 − |ℳ|. A cyclotomic coset with
respect to an integer 𝑛 = 𝑞𝑚 − 1 is defined as

𝐶𝑖 = {𝑖 · 𝑞 𝑗 mod 𝑛, 𝑗 = 0, 1, . . . , 𝑛𝑖 − 1}, (4.17)

where 𝑛𝑖 is the smallest positive integer such that 𝑖 · 𝑞𝑛𝑖 = 𝑖. For a detailed explanation, the reader is
referred to [Rot06, Chapter 7.5].

6Another definition is that 𝑑 is the highest number of consecutive numbers (starting from 1) inℳ added by one.

44

It is important to note that although the primitive element 𝛼 is defined in 𝔽2𝑚 , the described BCH
codes are binary, i.e., the symbols of resulting codewords are in 𝔽2, and therefore the codewords are
elements of 𝔽𝑛2 . This is due to the construction of the generator polynomial from the cyclotomic cosets
and their corresponding minimal polynomials such that 𝑔(𝑥) has coefficients in 𝔽2. This implies that
a binary primitive BCH code is a subfield-subcode of the respective primitive RS code of the same
block length.

Encoding Since BCH codes are cyclic codes, the encoding of a message can be done by representing it
as a message polynomial and multiplying it with the generator polynomial as defined in Eq. (4.5). The
systematic encoding of BCH codes works analog to primitive RS codes by first multiplying the message
polynomial 𝑢(𝑥) by 𝑥(𝑛−𝑘). In a second step, the remainder 𝑏(𝑥) of the division (𝑥(𝑛−𝑘) · 𝑢(𝑥))/𝑔(𝑥) is
computed. Finally, the codeword is obtained as 𝑐(𝑥) = 𝑏(𝑥) + 𝑥(𝑛−𝑘) · 𝑢(𝑥).

Decoding As BCH codes can be seen as RS codes with binary coefficients, they can be decoded in
the same way as a RS code, which is described in Section 4.2.3. For binary BCH codes, the decoding is
even simplified since for binary coefficients, it is sufficient to determine the locations of errors ℰ from
Λ(𝑥) and flipping the respective bits in the received word. This allows skipping the computation
of the error values during decoding (Step 4 of the RS decoding). The decoding of BCH codes is
visualized in Fig. 4.6.

Syndrome
computation

𝒓 ,𝑯BCH
Solve key
equation:

Ω(𝑥) = Λ(𝑥) ∗ 𝑆(𝑥)
𝑆(𝑥)

Find error
locations:

Λ((𝑎 𝑙)−1) = 0
∀𝑙 ∈ ℰ

Λ(𝑥) 𝑒(𝑥)

𝑐(𝑥) = 𝑟(𝑥) − 𝑒(𝑥)𝑒(𝑥) 𝑐(𝑥)

Figure 4.6 Syndrome-based unique decoding of binary primitive BCH codes analogous to the decoding of
primitive RS codes.

4.2.5 Reed-Muller (RM) Codes

In this section, Reed-Muller (RM) codes are described, which are among the oldest error-correcting
codes. Their main advantage is their simple construction, and their decoding can be performed
relatively easily in contrast to other code classes through the use of majority logic. The section is
loosely based on [MS77, Chapter 13,14] and [LC04], with a focus on binary first-order RM codes, and
the reader is referred to these references for a more in-depth discussion. A binary RM code of order
𝑟 is denoted as ℛℳ(𝑟, 𝑚) and has the following properties:

• Block length: 𝑛 = 2𝑚

• Dimension: 𝑘 =
∑𝑟
𝑖=0 =

(𝑚
𝑖

)
• Minimum distance: 𝑑 = 2𝑚−𝑟

The generator matrix of an ℛℳ(𝑟, 𝑚) code is given by the binary vectors 𝒑𝑖 ∈ 𝔽𝑚2 for 1 ≤ 𝑖 ≤ 𝑚 of
the form

𝒑𝑖 = (0 . . . 0︸︷︷︸
2(𝑖−1)

, 1 . . . 1︸︷︷︸
2(𝑖−1)

, 0 . . . 0︸︷︷︸
2(𝑖−1)

, . . . , 1 . . . 1︸︷︷︸
2(𝑖−1)

) , (4.18)

45

where the amount of alternating all-zero and all-one sequences of size 2(𝑖−1) is given by 2(𝑚−𝑖+1).
Additionaly, 𝒑0 is defined as the vector in 𝔽𝑚2 with all ones, i.e., 𝒑0 = (1, 1, . . . , 1). These vectors can
also be interpreted as polynomials for which operations, like addition or multiplication, are obtained
from a boolean function 𝑓 (𝒑1 , . . . , 𝒑𝑚), which implies that, e.g., 𝒑1 + 𝒑2, is defined as the exclusive or

and 𝒑1 · 𝒑2 as the binary and of the individual coefficients. The generator matrix 𝑮RM of anℛℳ(𝑟, 𝑚)
code is given by the set of vectors

𝑮RM(𝑟, 𝑚) = {𝒑0 , 𝒑1 , 𝒑2 , . . . 𝒑𝑚 , 𝒑1𝒑2 , 𝒑1𝒑3 , . . . , 𝒑𝑚−1𝒑𝑚 , . . . , up to all products of degree r} (4.19)

arranged as the rows of the generator matrix. An example for the generator matrix of the first- and
second-order RM codes for 𝑚 = 4 is shown in Example 4.2.3.

Example 4.2.3: Generator Matrix 𝑮RM of ℛℳ(1, 4) and ℛℳ(2, 4)
The ℛℳ(1, 4) code corresponds to the [16, 5, 8]2 code. Therefore, the corresponding generator
matrix is of size 𝐹5×16

2 (c.f. Section 4.2.2). A first-order RM code (𝑟 = 1) implies that only the
elements with degree≤ 1 of the set defined in Eq. (4.19) are considered for the generator matrix.
This results in the set {𝒑0 , 𝒑1 , 𝒑2 , 𝒑3 , 𝒑4} and the usage of Eq. (4.18) defines the generator matrix
as

𝑮ℛℳ(1,4) =

©
«

𝒑0
𝒑4
𝒑3
𝒑2
𝒑1

ª®®®®®
¬
=

©
«

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

ª®®®®®
¬
.

In contrast, the ℛℳ(2, 4) code corresponds to the [16, 11, 4]2 code and therefore the gen-
erator matrix is of size 𝐹11×16

2 . It is a second-order RM code, and therefore all elements
of degree ≤ 2 defined in Eq. (4.19) specify the generator matrix. This results in the set
{𝒑0 , 𝒑1 , 𝒑2 , 𝒑3 , 𝒑4 , 𝒑1𝒑2 , 𝒑1𝒑3 , 𝒑1𝒑4 , 𝒑2𝒑3 , 𝒑2𝒑4 , 𝒑3𝒑4} that define the generator matrix as

𝑮ℛℳ(2,4) =

©
«

𝒑0
𝒑4
𝒑3
𝒑2
𝒑1

𝒑3𝒑4
𝒑2𝒑4
𝒑1𝒑4
𝒑2𝒑3
𝒑1𝒑3
𝒑1𝒑2

ª®®®®®®®®®®®®®®®®®
¬

=

©
«

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

ª®®®®®®®®®®®®®®®®®
¬

.

Note that the generator matrices show a lot of structure and that the elements of degree two (e.g.,
𝒑3𝒑4) indeed are the result of a binary and of their individual vector components. Additionally,
the weight of the individual 𝒑𝑖 except 𝒑0 is given by HW(𝒑𝑖) = 2𝑚−1 and in contrast the elements
of degree two, e.g., 𝒑3𝒑4, are of weight HW(𝒑𝑖) = 2𝑚−2.

In literature there is also another definition of RM codes [MS77], that defines the code as all
vectors defined by an evaluation of the boolean function 𝑓 (𝒙) with 𝒙 = (𝒑1 , . . . , 𝒑𝑚), where 𝑓 (𝒙) is a
polynomial of degree at most 𝑟 and the coefficients of 𝑓 are in 𝔽2. More formally the binaryℛℳ(𝑟, 𝑚)
code is defined as

ℛℳ(𝑟, 𝑚) =
{
ev(𝑓 (𝒙)) �� 𝑓 (𝒙) ∈ 𝔽2[𝒙], deg(𝑓 (𝒙)) ≤ 𝑟

}
, (4.20)

46

where ev(𝑓 (𝒙)) denotes the evaluation of the polynomial 𝑓 (𝒙) for all possible coefficients. An example
using this definition is given in Example 4.2.4. In this example, it can be seen that the polynomial that
defines 𝑓 (𝒙) can be a single element of 𝒙 and therefore, the different elements of 𝒙 are analogously
called polynomial in the later described attack on the HQC system (Section 4.6.2).

Example 4.2.4: Definition of ℛℳ(1, 3) as ev(𝑓 (𝒙))
For the first-order ℛℳ(1, 3) code the degree of 𝑓 (𝒙) is given as deg(𝑓 (𝒙)) ≤ 1. The elements of
𝒙 = (𝒑1 , 𝒑2 , 𝒑3) are generated according to Eq. (4.18) which results in

𝒑3 = (0 0 0 0 1 1 1 1)
𝒑2 = (0 0 1 1 0 0 1 1)
𝒑1 = (0 1 0 1 0 1 0 1)

.

The resulting polynomial of degree one is

𝑓 (𝒙) = 𝑎01 + 𝑎1𝒑1 + 𝑎2𝒑2 + 𝑎3𝒑3 ,with 𝑎𝑖 ∈ 𝔽2 .

Now the codewords of ℛℳ(1, 3) are constructed as ev(𝑓 (𝒙)) which results in the 2𝑘 = 16
codewords

0 (𝑎0 = 0, 𝑎1 = 0, 𝑎2 = 0, 𝑎3 = 0) = (0 0 0 0 0 0 0 0)
𝒑3 (𝑎0 = 0, 𝑎1 = 0, 𝑎2 = 0, 𝑎3 = 1) = (0 0 0 0 1 1 1 1)
𝒑2 (𝑎0 = 0, 𝑎1 = 0, 𝑎2 = 1, 𝑎3 = 0) = (0 0 1 1 0 0 1 1)

𝒑2 + 𝒑3 (𝑎0 = 0, 𝑎1 = 0, 𝑎2 = 1, 𝑎3 = 1) = (0 0 1 1 1 1 0 0)
𝒑1 (𝑎0 = 0, 𝑎1 = 1, 𝑎2 = 0, 𝑎3 = 0) = (0 1 0 1 0 1 0 1)

𝒑1 + 𝒑3 (𝑎0 = 0, 𝑎1 = 1, 𝑎2 = 0, 𝑎3 = 1) = (0 1 0 1 1 0 1 0)
𝒑1 + 𝒑2 (𝑎0 = 0, 𝑎1 = 1, 𝑎2 = 1, 𝑎3 = 0) = (0 1 1 0 0 1 1 0)

𝒑1 + 𝒑2 + 𝒑3 (𝑎0 = 0, 𝑎1 = 1, 𝑎2 = 1, 𝑎3 = 1) = (0 1 1 0 1 0 0 1)
1 (𝑎0 = 1, 𝑎1 = 0, 𝑎2 = 0, 𝑎3 = 0) = (1 1 1 1 1 1 1 1)

1 + 𝒑3 (𝑎0 = 1, 𝑎1 = 0, 𝑎2 = 0, 𝑎3 = 1) = (1 1 1 1 0 0 0 0)
1 + 𝒑2 (𝑎0 = 1, 𝑎1 = 0, 𝑎2 = 1, 𝑎3 = 0) = (1 1 0 0 1 1 0 0)

1 + 𝒑2 + 𝒑3 (𝑎0 = 1, 𝑎1 = 0, 𝑎2 = 1, 𝑎3 = 1) = (1 1 0 0 0 0 1 1)
1 + 𝒑1 (𝑎0 = 1, 𝑎1 = 1, 𝑎2 = 0, 𝑎3 = 0) = (1 0 1 0 1 0 1 0)

1 + 𝒑1 + 𝒑3 (𝑎0 = 1, 𝑎1 = 1, 𝑎2 = 0, 𝑎3 = 1) = (1 0 1 0 0 1 0 1)
1 + 𝒑1 + 𝒑2 (𝑎0 = 1, 𝑎1 = 1, 𝑎2 = 1, 𝑎3 = 0) = (1 0 0 1 1 0 0 1)

1 + 𝒑1 + 𝒑2 + 𝒑3 (𝑎0 = 1, 𝑎1 = 1, 𝑎2 = 1, 𝑎3 = 1) = (1 0 0 1 0 1 1 0)

.

Note that the addition of two elements of 𝒙 is defined by the boolean function as an exclusive or

of the coefficients.

Encoding The encoding of binary RM codes can be done in the classical way by a multiplication of
the information vector 𝒖 with the generator matrix 𝑮RM. Alternatively, the evaluation of the boolean
function 𝑓 (𝒙), as defined in Eq. (4.20), can be used for the encoding. This is done by using the
coefficients of 𝒖 as the coefficients 𝑎𝑖 of this polynomial 𝑓 (𝒙). An example is given in Example 4.2.5.

47

Example 4.2.5: Encoding of 𝒖 in ℛℳ(1, 3)
This example discusses the encoding of the message 𝒖 = (0101) with the code ℛℳ(1, 3). First,
the resulting codeword is computed using the generator matrix as

𝒄 = 𝒖 · 𝑮ℛℳ(1,3) =
(
0 1 0 1

) · ©
«

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

ª®®®
¬
=
(
0 1 0 1 1 0 1 0

)
.

The same result can be computed by evaluating 𝑓 (0101)which corresponds to 𝑎1 = 1 and 𝑎3 = 1
that is the polynomial 𝑓 (0101) = 𝒑1 + 𝒑3, which evaluates to

𝒑1 = (0 0 0 0 1 1 1 1)
𝒑3 = (0 1 0 1 0 1 0 1)

𝒄 = 𝒑1 + 𝒑3 = (0 1 0 1 1 0 1 0)
.

Decoding A general method for decoding binary RM codes is the Reed decoding algorithm that works
by majority logic decoding. In the following, the concept is explained for the ℛℳ(1, 3) code of
Example 4.2.4. The polynomial of this code is given by 𝑓 (𝑥) = 𝑎0𝒑0 + 𝑎1𝒑1 + 𝑎2𝒑2 + 𝑎3𝒑3 for which a
decoder has to distinguish the different 𝑎𝑖 from a received word. When the vectors 𝒑𝑖 are displayed
with their individual coefficients as (𝑏0 , 𝑏1 , . . . , 𝑏2𝑚−1), multiple equations can be constructed for the
value of an 𝑎𝑖 . If we use the values for, e.g., 𝒑1 ofℛℳ(1, 3) (c.f. Example 4.2.4), there are the following
equations to determine 𝑎1:

𝑎1 = 𝑏0 + 𝑏1 = 𝑏2 + 𝑏3 = 𝑏4 + 𝑏5 = 𝑏6 + 𝑏7 .

The evaluation of these four equations gives four votes on the value of 𝑎1, and the majority vote is still
correct even in the presence of one error, which is the error correction capability of theℛℳ(1, 3) code.
The process to determine 𝑎2 and 𝑎3 works analogously. After all 𝑎𝑖 for 𝑖 ≥ 1 have been determined,
the final equation for 𝑎0 can be constructed, which is 𝒙′ = 𝒓 − 𝑎1𝒑1− 𝑎2𝒑2− 𝑎3𝒑3. The majority of zeros
or ones in 𝒙′ then define the value of 𝑎0. For further explanation, the reader is referred to [MS77].

For binary first-order RM codes, there exists an even more practical form of decoder as these codes
can be efficiently decoded using maximum likelihood (ML) decoding as defined in Eq. (4.1). In
essence, a ML decoding works by comparing a received vector 𝒓 with all codewords of ℛℳ(1, 𝑟) and
then decoding to the codeword that has the smallest Hamming distance to 𝒓 . If there is a tie between
codewords, the decision for a codeword is only dependent on the actual implementation of the
decoder. In practice, there is a faster method to perform this comparison for all codewords through
the Hadamard transformation. The Hadamard transformation is defined through the Hadamard
transformation matrix 𝐻𝑖 of size 2𝑖 × 2𝑖 , which can be recursively defined starting with 𝐻0 = 1 as:

𝐻𝑖 =

(
𝐻𝑖−1 𝐻𝑖−1
𝐻𝑖−1 −𝐻𝑖−1

)
. (4.21)

For a decoding using the Hadamard transformation the received word 𝒓 = (𝑟1 , 𝑟2 , . . . , 𝑟2𝑚) first has
to be transferred to 𝒓 = ((−1)𝑟1 , (−1)𝑟2 , . . . , (−1)𝑟2𝑚). Then, the largest value of |𝒓 · 𝐻2𝑚 | has to be
determined. The coordinate (the index in the resulting vector) corresponding to the largest value is
defined as 𝑥, where the binary representation of 𝑥 defines the coefficients 𝑎𝑖 of 𝑓 (𝒙). The sign of the
largest value determines the final step, which adds 1 to the resulting codeword if the value is negative.
An example of ML decoding for RM codes is shown in Example 4.2.6.

48

Example 4.2.6: ML Decoding of ℛℳ(1, 3)
The codeword 𝒄 = (00000000) with a single error 𝒆 = (00100000) results in the word 𝒓 =
(00100000) that has to be decoded by the ML decoder. The decoding works by a comparison of
the Hamming distance of 𝒓 to all codewords, which is given by:

𝒓 (0 0 1 0 0 0 0 0)
𝒄0 (0 0 0 0 0 0 0 0) → HD(𝒓 , 𝒄0) = 1
𝒄1 (0 0 0 0 1 1 1 1) → HD(𝒓 , 𝒄1) = 5
𝒄2 (0 0 1 1 0 0 1 1) → HD(𝒓 , 𝒄2) = 3
𝒄3 (0 0 1 1 1 1 0 0) → HD(𝒓 , 𝒄3) = 3
𝒄4 (0 1 0 1 0 1 0 1) → HD(𝒓 , 𝒄4) = 5
𝒄5 (0 1 0 1 1 0 1 0) → HD(𝒓 , 𝒄5) = 5
𝒄6 (0 1 1 0 0 1 1 0) → HD(𝒓 , 𝒄6) = 3
𝒄7 (0 1 1 0 1 0 0 1) → HD(𝒓 , 𝒄7) = 3

𝒓 (0 0 1 0 0 0 0 0)
𝒄8 (1 1 1 1 1 1 1 1) → HD(𝒓 , 𝒄8) = 7
𝒄9 (1 1 1 1 0 0 0 0) → HD(𝒓 , 𝒄9) = 3
𝒄10 (1 1 0 0 1 1 0 0) → HD(𝒓 , 𝒄10) = 5
𝒄11 (1 1 0 0 0 0 1 1) → HD(𝒓 , 𝒄11) = 5
𝒄12 (1 0 1 0 1 0 1 0) → HD(𝒓 , 𝒄12) = 3
𝒄13 (1 0 1 0 0 1 0 1) → HD(𝒓 , 𝒄13) = 3
𝒄14 (1 0 0 1 1 0 0 1) → HD(𝒓 , 𝒄14) = 5
𝒄15 (1 0 0 1 0 1 1 0) → HD(𝒓 , 𝒄15) = 5

It can be seen that the codeword with the smallest Hamming distance to the received word
is 𝒄0, and therefore the decoding is successful. Now, the decoding using the Hardamard
transformation is shown. First, 𝒓 is computed as

𝒓 = ((−1)0 + (−1)0 + (−1)1 + (−1)0 + (−1)0 + (−1)0 + (−1)0 + (−1)0) = (
1 1 −1 1 1 1 1 1

)
.

Then the multiplication of 𝒓 with the Hadamard matrix 𝐻8 is computed, which results in

𝒓 · 𝐻8 =
(
1 1 −1 1 1 1 1 1

) ·
©
«

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

ª®®®®®®®®®®®
¬

=
(
6 −2 2 2 −2 −2 2 2

)
.

The hightest value of |𝒓 · 𝐻2𝑚 | is the first index with value 6, which gives 𝑥 = 0. The binary
representation of 𝑥 (0000) defines the different 𝑎𝑖 as (𝑎3 = 0, 𝑎2 = 0, 𝑎1 = 0, 𝑎0 = 0). This results
in the codeword 𝒄 as

𝒄 = 0 ∗ 𝑝0 + 0 ∗ 𝑝1 + 0 ∗ 𝑝2 + 0 ∗ 𝑝3 = (00000000) .
The highest value in |𝒓 ·𝐻2𝑚 | is 6, which is a positive value and therefore the resulting codeword
is 𝒄, which indicates a successful decoding.

Duplicated RM codes For RM codes, there is the possibility of duplicating the code multiple times,
where the total amount of duplicated codewords is given by 𝑠, which is called the multiplicity of
the code. After the duplication, a 𝑅𝑀(𝑟, 𝑚) code that corresponds to the [2𝑚 ,∑𝑟

𝑖=0
(𝑚
𝑖

)
, 2𝑚−𝑟] code

results in an [𝑠 · 2𝑚 ,∑𝑟
𝑖=0

(𝑚
𝑖

)
, 𝑠 · 2𝑚−𝑟] code. As an example the 𝑅𝑀(1, 3) code with [8, 4, 4] and

multiplicity 𝑠 = 3 results in the [24, 4, 12] code. It can be seen that the dimension of the code is
unchanged, but the length and minimum distance increase. Therefore, the error-correcting capability
of the duplicated code increases accordingly. For the given example, the single error-correcting code
([8, 4, 4]) is transferred to a code, which is able to correct up to 5 errors.

The encoding with a duplicated RM code of a vector𝒖 is done by first encoding it with the underlying
ℛℳ(𝑟, 𝑚) code and duplicating the resulting codeword 𝑠 − 1 times through binary concatenation.
The process is visualized in Fig. 4.7.

49

𝑢0 𝑢1 . . . 𝑢𝑘−1 ↦→𝒞 𝑐0 𝑐1 𝑐2 𝑐𝑛−1

𝑢0 𝑢1 . . . 𝑢𝑘−1 ↦→𝒞(𝑠 = 3)
𝑐0 𝑐1 𝑐2 𝑐𝑛−1 𝑐0 𝑐1 𝑐2 𝑐𝑛−1 𝑐0 𝑐1 𝑐2 𝑐𝑛−1

𝑠 · 𝑛 = 3 · 𝑛

𝑛

Figure 4.7 Visualization of the duplicated encoding of a RM code. The top part shows an encoding with the
normal code, while the bottom part shows the encoding for the duplicated code with multiplicity 𝑠 = 3.

Encoder
of 𝒞1

𝒖 Encoder
of 𝒞2

𝒄′ +𝒄

𝒆

Decoder
of 𝒞2

𝒓 Decoder
of 𝒞1

𝒓 ′ 𝒖

Figure 4.8 Encoding and decoding of concatenated codes. Adapted from [WZ21].

For the decoding, only the mapping of the received word to 𝒓 must be adapted to reflect the now
duplicated code. Given the received word of the duplicated code as 𝒓dubl =

(
𝒓0 𝒓1 . . . 𝒓 𝑠−1

)
and

the individual as 𝒓 𝑖 =
(
𝑟𝑖0 𝑟𝑖1 . . . 𝑟𝑖𝑛−1

)
then 𝒓dubl is defined as

𝒓dubl =
((−1)𝑟00 + (−1)𝑟10 + . . . + (−1)𝑟𝑠−10 . . . (−1)𝑟0𝑛−1 + (−1)𝑟1𝑛−1 + . . . + (−1)𝑟𝑠−1𝑛−1

)
.

After this mapping, the length of 𝒓dubl is equal to the one of the non-duplicated code, and therefore
the decoding follows the same steps as described for the non-duplicated RM code.

4.2.6 Concatenated Codes

In practice, the problem exists that the execution time and resource requirements of a decoder as well
as the overall complexity of the decoding increase with the length of the code. A prominent example
are code-based encryption schemes where the requirements for the decryption failure rates lead to
code lengths of 𝑛 > 20 000. A solution for this problem is the concept of code concatenation, where the
desired length of the code is achieved by combining multiple shorter codes, for which the individual
decoding is efficient. In the following, we describe the code concatenation of two error-correcting
codes 𝒞1 and 𝒞2 to the concatenated code 𝒞 . In this scenario the outer code 𝒞1 encodes an input 𝒖 to
the codeword 𝒄′ and the inner code 𝒞2 divides 𝒄′ into blocks of its dimension 𝑘𝒞2 that are individually
encoded and their concatenation is the codeword 𝒄 of 𝒞 . For practical reasons, the dimension of
𝒞2 is often chosen as the length of a symbol of 𝒞1, as then 𝑛𝒞1 is dividable by 𝑘𝒞2 . The parameters
of the concatenated code 𝒞 built from 𝒞1 with [𝑛𝒞1 , 𝑘𝒞1 , 𝑑𝒞1]2𝑚 and 𝒞2 with [𝑛𝒞2 , 𝑘𝒞2 = 𝑚, 𝑑𝒞2]2 are
𝑛 = 𝑛𝒞1𝑛𝒞2 , 𝑘 = 𝑘𝒞1 𝑘𝒞2 , and 𝑑 ≥ 𝑑𝒞1𝑑𝒞2 . A visualization of this code concatenation is shown in Fig. 4.8.

4.3 Hamming Quasi-Cyclic (HQC)

This section gives an introduction to HQC. First, the notation is introduced in Section 4.3.1. In Sec-
tion 4.3.2, the HQC cryptosystem is described with its changes during the NIST competition. Finally,
details on the used error-correcting codes for both versions of HQC are provided in Section 4.3.3.

50

4.3.1 Notation

Let𝔽2 be the finite field of size 2. 𝔽𝑚×𝑛2 is used to denote the set of all𝑚×𝑛matrices over𝔽2, 𝔽𝑛2 = 𝔽1×𝑛
2

for the set of all row vectors of length 𝑛 over 𝔽2, and define the set of integers [𝑎, 𝑏] := {𝑖 : 𝑎 ≤ 𝑖 ≤ 𝑏}.
We index rows and columns of 𝑚 × 𝑛 matrices by 0, . . . , 𝑚 − 1 and 0, . . . , 𝑛 − 1, where the entry in the
𝑖-th row and 𝑗-th column of the matrix 𝑨 is denoted by 𝐴𝑖 , 𝑗 .

The Hamming weight of a vector 𝒂 is indicated by HW(𝒂) and the support of 𝒂 is denoted by
supp(𝒂) := {𝑖 ∈ ℤ : 𝑎𝑖 ≠ 0}. A set𝒜 is called super support (ssupp) of 𝒂 if𝒜 ⊃ supp(𝒂).

Let 𝒱 be a vector space of dimension 𝑛 over 𝔽2. We define the product of 𝒖 , 𝒗 ∈ 𝒱 as

𝒖𝒗 = 𝒖 rot(𝒗)⊤ = 𝒗 rot(𝒖)⊤ = 𝒗𝒖, (4.22)

where

rot(𝒗) :=

𝑣0 𝑣𝑛−1 . . . 𝑣1
𝑣1 𝑣0 . . . 𝑣2
...

...
. . .

...
𝑣𝑛−1 𝑣𝑛−2 . . . 𝑣0

∈ 𝔽𝑛×𝑛2 . (4.23)

As a consequence of this definition, elements of 𝒱 can be interpreted as polynomials in the ring
ℛ2 := 𝔽2[𝑋]/(𝑋𝑛 − 1).

4.3.2 Cryptosystem

The code-based cryptosystem Hamming Quasi-Cyclic (HQC) was first published in 2018 [AMBD+18]
and is a promising alternative candidate in the NIST post-quantum cryptography competition. It
is still present in the ongoing fourth round of the competition as it offers the following advantages.
In contrast to established code-based cryptosystems like McEliece [ABC+20] and its derivatives,
its security does not rely on hiding the structure of the used error-correcting code. Instead, the
structure of the used code and the efficient decoding algorithm are publicly known, reducing its
security to instances of the Quasi-Cyclic Syndrome Decoding (QCSD) problem, which is a well-
understood problem in coding theory. Furthermore, HQC features attractive key sizes and allows
precise estimations of its decryption failure rate.

The HQC scheme is based on two different codes. It consists of a public code 𝒞 ⊆ 𝔽𝑛1𝑛2
2 of length

𝑛1𝑛2 and dimension 𝑘, where it is assumed that both an efficient encoding algorithm 𝒞 .Enc and an
efficient decoding algorithm 𝒞 .Dec are known publicly. Further, the decoding algorithm can correct
𝛿 errors with high probability but fails for errors of large weight. HQC is also based on a second code
of length 2𝑛 and dimension 𝑛 which has a parity-check matrix (𝑰 , rot(𝒉)) ∈ 𝔽𝑛×2𝑛

2 , where 𝑰 denotes
the 𝑛 × 𝑛 identity matrix. Contrary to 𝒞 , it is assumed that no party possesses an efficient decoding
algorithm for the second code. Please note that knowledge of this second code is not needed for either
encryption or decryption, but it is instead used to model the security of the system.

We start by introducing the PKE version of the algorithm as shown in Algorithms 7 to 9. First, the
secret and public key is generated using HQC-KeyGen (Algorithm 7) such that the secret key consists
of two polynomials 𝒙 , 𝒚 with fixed Hamming weight 𝑤 and the public key of the polynomials 𝒉 , 𝒔.
With HQC-Encrypt (Algorithm 8), a message of size 𝑘 can be encrypted to the ciphertext 𝑐 consisting of
the two polynomials 𝒖 , 𝒗. This ciphertext is decrypted with HQC-Decrypt using the secret key 𝒚 to the
message 𝒎. Within these algorithms, several polynomials are uniformly sampled fromℛ2, denoted as
$←−, with the optional argument of specifying the Hamming weight 𝑤 of the polynomial. The required

randomness for the sampler is generated using a PRNG (SHAKE256 is used in the presented version
of HQC) that is initialized with a random seed. For HQC-Encrypt this seed is defined by the input 𝜃
such that the encryption is deterministic, which is a requirement of the KEM version of HQC.

51

Algorithm 7 HQC-KeyGen
Input: param

1: 𝒉
$←− ℛ2

2: 𝒙
$(𝑤)←−−− ℛ2 ⊲ HW(𝒙) = 𝑤

3: 𝒚
$(𝑤)←−−− ℛ2 ⊲ HW(𝒚) = 𝑤

4: 𝒔 ← 𝒙 + 𝒉𝒚
Output: pk = (𝒉 , 𝒔), sk = (𝒙 , 𝒚)

Algorithm 8 HQC-Encrypt

Input: pk = (𝒉 , 𝒔), 𝒎 and seed 𝜃
1: Initialize the PRNG used by the sampler with 𝜃

2: 𝒆′
$(𝑤e)←−−− ℛ2 ⊲ HW(𝒆′) = 𝑤e

3: 𝒓1
$(𝑤r)←−−− ℛ2 ⊲ HW(𝒓1) = 𝑤r

4: 𝒓2
$(𝑤r)←−−− ℛ2 ⊲ HW(𝒓2) = 𝑤r

5: 𝒖 ← 𝒓1 + 𝒉𝒓2
6: 𝒗 ← 𝒞 .Enc(𝒎) + 𝒔𝒓2 + 𝒆′

Output: 𝑐 = (𝒖 , 𝒗)

Algorithm 9 HQC-Decrypt

Input: sk = 𝒚, ct = (𝒖 , 𝒗)
1: 𝒗′← 𝒗 − 𝒖𝒚
2: 𝒎 ← 𝒞 .Dec(𝒗′)

Output: 𝒎

52

shortened BCH code Repetition code
[𝑛1 , 𝑘, 𝑑𝐵𝐶𝐻] [𝑛2 , 𝑘𝑅𝑒𝑝 , 𝑑𝑅𝑒𝑝] 𝑛 𝑘 𝑤 𝑤r = 𝑤e

HQC-BCH-128 [766, 256, 115] [31, 1, 31] 23 869 256 67 77
HQC-BCH-192 [766, 256, 115] [59, 1, 59] 45 197 256 101 117
HQC-BCH-256 [796, 256, 121] [87, 1, 87] 69 259 256 133 153

Table 4.1 Parameter sets of HQC-BCH according to the updated second-round NIST submission from 21.04.2020
[MAB+20].

shortened RS code duplicated RM code
[𝑛1 , 𝑘a) , 𝑑𝑅𝑆] [𝑛2 , 𝑘𝑅𝑀 , 𝑑𝑅𝑀 , 𝑠] 𝑛 𝑘 𝑤 𝑤r = 𝑤e

HQC-RMRS-128 [46, 16, 31] [384, 8, 192, 3] 17 669 128 66 75
HQC-RMRS-192 [56, 24, 33] [640, 8, 320, 5] 35 851 192 100 114
HQC-RMRS-256 [90, 32, 59] [640, 8, 320, 5] 57 637 256 131 149

a) Note that the RS code uses 𝔽28 .

Table 4.2 Parameter sets of HQC-RMRS according to the third round NIST submission [MAB+20].

The correctness of the encryption scheme lies in the decoding capability of the decoder during
Line 2 of Algorithm 9. 𝒞 .Dec correctly decodes 𝒗 − 𝒖𝒚 in 𝒞 if

HW(𝒔 · 𝒓2 − 𝒖 · 𝒚 + 𝒆′) ≤ 𝛿

HW((𝒙 + 𝒉 · 𝒚) · 𝒓2 − (𝒓1 + 𝒉 · 𝒓2) · 𝒚 + 𝒆′) ≤ 𝛿

HW(𝒙 · 𝒓2 − 𝒓1 · 𝒚 + 𝒆′) ≤ 𝛿 . (4.24)

The parameters for the algorithm have been chosen in a way that the resulting decryption failure
probability is lower than the specified security level of the parameter set. Besides the parameters,
an instance of HQC is defined by the used code 𝒞 . The HQC authors specify two instances with
a different concatenation of two error-correcting codes. The first one, which we call HQC-BCH, is
based on a concatenation of a BCH code in combination with a repetition code. The corresponding
parameter sets are shown in Table 4.1. The most recent instance, called HQC-RMRS, is based on
a concatenation of an RM code in combination with an RS code. The corresponding parameter
sets are shown in Table 4.2. A detailed discussion about the used error-correcting codes is given in
Section 4.3.3.

The HQC authors use a variant of the FO transformation from [HHK17] to construct an IND-CCA2
secure KEM from the PKE version of the system. Using this KEM, a random shared secret 𝐾 can
be exchanged where the sender applies encapsulation (Algorithm 10) and the receiver decapsulation
(Algorithm 11). These algorithms use three different hash functions: 𝒢 ,ℋ , and 𝒦 , which are based
on SHAKE256 with 512 bits of output. In order to counteract chosen-chipertext attacks, the decrypted
message is re-encrypted and compared to the original ciphertext input. Only if both ciphertexts are
equal, 𝐾 is released, otherwise decapsulation is aborted. The reference version of the third round
version of HQC returns an all-zero value in the case of a failed decapsulation. In order for the
re-encryption to be possible, the sampling of the random elements has to be deterministic, which is
ensured by deriving a seed from the message, which is then utilized to initialize the PRNG used to
derive the required randomness of the sampler.

Changes of the HQC Cryptosystem During the duration of the NIST post-quantum cryptography
competition, there have been several updates to the HQC cryptosystem. An overview of the different
updates with their respective timeline can be seen in Fig. 4.9.

53

Algorithm 10 HQC-Encapsulate

Input: pk = (𝒔 , 𝒉)
1: 𝒎

$←− 𝔽𝑘2
2: 𝜃← 𝒢(𝒎)
3: 𝑐 ← HQC-Encrypt(pk,𝒎 , 𝜃)
4: 𝐾 ←𝒦(𝒎 , 𝑐)
5: 𝒅←ℋ(𝒎)

Output: 𝐾, 𝑐 = (𝒖 , 𝒗), 𝒅

Algorithm 11 HQC-Decapsulate

Input: sk = (𝒚), 𝑐, 𝒅
1: 𝒎′← HQC-Decrypt(sk, 𝑐)
2: 𝜃′← 𝒢(𝒎′)
3: 𝑐′← Encrypt(pk,𝒎′, 𝜃′)
4: if 𝑐 ≠ 𝑐′ and 𝒅 ≠ ℋ(𝒎′) then
5: abort ⊲ The HQC reference implementation sets 𝐾 to all zeros.
6: else
7: 𝐾 ←𝒦(𝒎 , 𝑐)

Output: 𝐾

The original HQC submission for the first round of the NIST competition defined a parameter
set with the use of a concatenated BCH in combination with a repetition code (HQC-BCH). For the
second round version, the authors introduced some changes to the security proof of the system and
changed the parameters such that, e.g., parameter sets that showed a decryption failure rate above
the desired security level were discarded. In April 2020, the authors updated the system outside
the NIST standardization interval. They introduced a new variant in addition to HQC-BCH that
is based on a combination of a RM and a RS code (HQC-RMRS). The improved error correction
capability of HQC-RMRS results in a significant decrease in the parameter sizes of the algorithm,
e.g., the size of the public key is reduced by 17 % for the smallest parameter set. For the third
round, the HQC-BCH version was discarded because the HQC-RMRS version achieved a strictly
better performance. Two additional changes allowed a further reduction of parameter sizes. First,
the authors provide an improved theoretical bound for the decryption failure rate of the RM code,
allowing a precise estimation and, therefore, reduced parameter sizes. Second, the authors adapt
the transferred message size 𝑘 to the security level of the algorithm instead of fixing it to 256 for all
parameter sets. This improves the decoding capacity of the used codes, allowing further lowering
of parameter sizes. In June 2021, the authors proposed only using SHAKE256 for the required hash
function of the KEM, constructing the different functions 𝒢 ,ℋ , and 𝒦 through domain separation.
For the fourth round submission, the authors mainly mitigate published attacks on the cryptosystem.
They propose to compute the randomness 𝜃 by concatenating the message 𝒎 additionally with the
public key and a salt to mitigate a multi-ciphertext attack. In addition, they include a countermeasure
[Sen21] against the timing attack on the fixed Hamming weight sampler published in [GHJ+22].

For the description of the HQC system in this section, the specification of the third-round ver-
sion in the NIST competition is used [MAB+20]. The parameter sets for HQC-BCH as well as the
reference implementation for the actual side-channel evaluation is taken from the updated second-
round submission package from the 21.04.2020 [MAB+20]. The parameter sets for HQC-RMRS and
the corresponding reference implementation correspond to the official third-round NIST submission
package [MAB+20].

54

2016 2017 2018 2019 2020 2021 2022 2023 2024

NIST
su

bm
iss

ion

2n
d Rou

nd

(para
mete

r ch
an

ge
s)

RM+RS para
mete

rs

3rd
Rou

nd

(H
QC-BCH

disc
ard

ed
)

Hash
func

tio
n ch

an
ge

d

4th
Rou

nd

(at
tac

k mitti
ga

tio
ns

)
HQC-BCH
HQC-RMRS

Figure 4.9 Updates to the HQC cryptosystem during the NIST competition.

4.3.3 Choice of the Error-Correcting Code

The HQC cryptosystem as defined in Section 4.3.2 can be described without specifying the used
error-correcting code 𝒞 . In theory, any error-correcting code could be used to instantiate the scheme
if the parameters are chosen to satisfy Eq. (4.24) with a low enough decryption failure rate7. In HQC,
the authors instantiate their scheme as HQC-BCH, with a combination of an BCH with a repetition
code, which was later superseded by HQC-RMRS using a combination of a RM and RS code that
shows an increased error correction capability.

Code Concatenation in HQC Both versions of the HQC algorithm make use of a code concatenation
of two error-correcting codes (c.f. Section 4.2.6). This means that there is an outer code 𝒞1 and an inner

code 𝒞2
8 that are used in combination in order to encode a message 𝒎 in 𝒞 such that 𝔽𝑘2 → 𝔽𝑛1𝑛2

2 . The
two-stage process is started by encoding the message𝒎 ∈ 𝔽𝑘2 in𝒞1 resulting in𝒎1 ∈ 𝔽𝑛1

2 . Subsequently,
each coordinate 𝒎1,𝑖 of 𝒎1 for 𝑖 = 0, . . . , 𝑛1 − 1 is encoded in 𝒞2. The final codeword �̃� ∈ 𝔽𝑛1𝑛2

2 is
constructed by concatenating the result of the individual encodings as �̃� = (�̃�1,0 , . . . , �̃�1,𝑛1−1). The
decoding in 𝒞 works analogously by first decoding an input to the decoder 𝒗′ in 𝒞2 to get �̃�. This
means the individual elements 𝒗′𝑖 of 𝒗′ for 𝑖 = 0, . . . , 𝑛1 − 1 of size 𝑛2 are decoded individually. The
results are concatenated and form the 𝑛1 coordinates �̃� 𝑖 of �̃� for 𝑖 = 0, . . . , 𝑛1 − 1. This �̃� is then
decoded in 𝒞1 to retrieve the message 𝒎. The concatenation for both the encoder and decoder of
HQC is visualized in Fig. 4.10.

It is important to note that the elements in HQC are polynomials in ℛ2 and can therefore be
represented as elements in 𝔽𝑛2 . As it has been discussed in this paragraph, the result after 𝒞 .Enc(𝒎)
is an element in 𝔽𝑛1𝑛2

2 . This causes a difference of 𝑛 − 𝑛1𝑛2 in the length of the codeword and the
desired length in ℛ2. This difference comes from the fact that 𝑛 is chosen to be the smallest primitive
prime greater than 𝑛1𝑛2, which avoids algebraic attacks using polynomial factorization. In order to
again achieve the desired length in 𝔽𝑛2 , the resulting codeword �̃� is padded with zeros. Analogously
during HQC-Decrypt (Algorithm 9) only the first 𝑛1𝑛2 coefficients of 𝒗′ are used as input to 𝒞 .Dec.

Repetition and BCH Code For HQC-BCH, the code 𝒞 is constructed using a [𝑛1 , 𝑘, 𝑑𝐵𝐶𝐻] shortened
BCH code as 𝒞1 and a [𝑛2 , 1, 𝑑𝑅𝑒𝑝] repetition code as 𝒞2. Formally, the encoding is defined as

𝒞 .Enc : 𝔽𝑘2 → 𝔽𝑛1𝑛2
2 ,

𝒎 ↦→ (𝒎1,0 , . . . ,𝒎1,0︸ ︷︷ ︸
𝑛2 times

,𝒎1,1 , . . . ,𝒎1,1︸ ︷︷ ︸
𝑛2 times

, . . . ,𝒎1,𝑛1−1 , . . . ,𝒎1,𝑛1−1︸ ︷︷ ︸
𝑛2 times

),

7For completeness, it has to be noted that the resulting parameters also have to show a sufficient security margin with
respect to the best-known attacks on the underlying 2-QCSD and 3-QCSD problem.

8In the HQC submission this is named analogously as external and internal code.

55

𝒎

𝑘

𝒞1.Enc

𝒎1

𝒎1,0

𝑘2 = {𝑘𝑅𝑒𝑝 , 𝑘RM}

𝒎1,1 𝒎1,2 . . . 𝒎1,𝑛1−1

𝑛1

�̃�

𝑛1𝑛2

�̃�1,0 �̃�1,1 �̃�1,2 . . . �̃�1,𝑛1−1

𝒞2.Enc
𝒞2.E

nc
𝒞2.E

nc

𝒞 2
.E

nc

𝑛2

(a) HQC encoder

𝒗′

𝑛1𝑛2

𝒗′0 𝒗′1 𝒗′2 . . . 𝒗′𝑛1−1

𝑛2

�̃�

�̃�0 �̃�1 �̃�2 . . . �̃�𝑛1−1

𝑛1

𝒞 2
.D

ec

𝒞 2.
Dec

𝒞2.D
ec 𝒞2.Dec

𝒞1.Dec

𝒎

𝑘

(b) HQC decoder

Figure 4.10 Visualization of the code concatenation used in HQC.

56

where 𝒎1 = (𝒎1,0 , . . . ,𝒎1,𝑛1−1) = 𝒎𝑮1 and 𝑮1 ∈ 𝔽𝑘×𝑛1
2 is a generator matrix of the [𝑛1 , 𝑘, 𝑑𝐵𝐶𝐻]

shortened BCH code 𝒞1. Given an input vector 𝒗′ = (𝒗′0 , . . . , 𝒗′𝑛1−1) ∈ 𝔽𝑛1𝑛2
2 the decoding algorithm

𝒞 .Dec consists of two steps. First the algorithm decodes the vectors 𝒗′0 , . . . , 𝒗
′
𝑛1−1 separately in the

repetition code 𝒞2 using majority decoding to a vector �̃� = (�̃�0 , . . . , �̃�𝑛1−1) ∈ 𝔽𝑛1
2 , where

�̃�𝑖 =

{
1 if

∑𝑛2−1
𝑗=0 𝑣′𝑖 𝑗 ≥

⌈ 𝑛2+1
2

⌉
0 otherwise.

In the second step, the algorithm decodes �̃� in the BCH code 𝒞1 to the vector 𝒎 ∈ 𝔽𝑘2 .
The actual implemented BCH codes with parameters given in Table 4.1 are shortened versions

of the [1023, 513, 115]2 (HQC-BCH-128, HQC-BCH-192), and the [1023, 483, 121]2 (HQC-BCH-256)
BCH code. The encoding is implemented in systematic form as described in Section 4.2.4 using a
LFSR division described in [LC04, Chapter 5.3]. A syndrome-based decoder, as shown in Fig. 4.6, is
implemented to decode the shortened BCH codes. The syndromes are computed using the transpose
of the additive Fast Fourier Transformation as proposed in [BCS13]. Then, the error locator polynomial
is determined using a modification of Berlekamp’s simplified algorithm for binary BCH codes [JK95].
Finally, the error locations are computed with an additive Fast Fourier Transform [GM10].

Reed-Muller and Reed-Solomon Code For HQC-RMRS the code 𝒞 is instantiated with a [𝑛1 , 𝑘, 𝑑𝑅𝑆]
shortened RS code as 𝒞1 and a duplicated [𝑛2 , 8, 𝑑𝑅𝑀] RM code as 𝒞2. First the outer RS code is used
to encode 𝒎 into 𝒎1 ∈ 𝔽𝑛1

28 , followed by encoding each coordinate 𝒎1,𝑖 of 𝒎1 into �̃�1,𝑖 ∈ 𝔽𝑛2
2 using

the inner duplicated RM code. The duplicated encoding works in two phases. First, each 𝒎1,𝑖 is
encoded with the underlying [128,8,64] RM code to obtain �̄�1,𝑖 , which is then duplicated based on the
multiplicity 𝑠 (see Table 4.2) resulting in �̃�1,𝑖 . In other words the final encoding result is constructed
as �̃� = (�̃�1,0 , . . . , �̃�1,𝑛1−1) ∈ 𝔽𝑛1𝑛2

2 . For the decoding 𝒞 .Dec an input 𝒗′ ∈ 𝔽𝑛1𝑛2
2 is decoded to the

message 𝒎 ∈ 𝔽𝑘2 . First the individual 𝒗′𝑖 are decoded with the duplicated RM decoder (𝔇ℛℳ), which
results in the input to the RS decoder (𝔇ℛ𝒮) as an element in 𝔽𝑛1

28 . Finally, the RS decoding results
in the message 𝒎 ∈ 𝔽𝑘2 . The implemented RS codes are shortened versions of the [255, 225, 31]28

(HQC-RMRS-128), [255, 223, 33]28 (HQC-RMRS-192), and [255, 197, 59]28 (HQC-RMRS-256) codes.
The encoding is performed in systematic form as described in Section 4.2.3. A syndrome-based
decoder, as visualized in Fig. 4.5, is used for the decoding. The syndrome computation is performed
through multiplication with the parity check matrix. Subsequently, the key equation is solved using
the Berlekamp-Massey algorithm [LC04]. Further, the error locations are found as the roots of
the error-locator polynomial Λ(𝑥) through the use of an additive Fast Fourier Transform [GM10].
Finally, the error values are derived by a small modification to Forney’s formula as detailed in [LC04,
Chapter 7.3]. The duplicated RM codes are encoded through multiplication with the respective
generator matrix, while the decoder is implemented using the Hadamard transformation as detailed
in Section 4.2.5. If a tie is detected, the decoder decides on the codeword of a smaller lexicographical
order, i.e., the codeword with the smaller index.

4.4 General Attack Strategy using SCA Oracles

In this section, we propose the general concept of a chosen ciphertext attack on HQC to retrieve the
secret key 𝒚 = (𝒚(0) , 𝒚(1)) ∈ 𝔽𝑛2 , where 𝒚(0) ∈ 𝔽𝑛1𝑛2

2 and 𝒚(1) ∈ 𝔽𝑛−𝑛1𝑛2
2 . Please note that although

the secret key additionally consists of 𝒙, it is sufficient to only retrieve 𝒚, as it is the only secret
needed for a successful decryption (c.f. Section 4.3.2). First, the support distribution of 𝒚 is analyzed
in Section 4.4.1, as 𝒚 is a sparse polynomial, and therefore it is sufficient to retrieve its support. In
Section 4.4.2, the general concept of the attack on 𝒚(0) is discussed, which is based on a decoding
oracle of the used error-correcting code. Additionally, the used oracles for the attacks on HQC-BCH
and HQC-RMRS are defined. This is followed by a discussion on the retrieval of all parts of the secret

57

𝑤𝑚𝑎𝑥 HQC-BCH-128 HQC-BCH-192 HQC-BCH-256

1 5.59 % 0.11 % ≈ 0 %
2 93.20 % 77.98 % 58.99 %
3 99.86 % 99.25 % 97.99 %

Table 4.3 Probabilities that 𝒚 is generated such that the weight of all 𝒚(0)𝑖 for 𝑖 = 0, . . . , 𝑛1 − 1 is at most 𝑤𝑚𝑎𝑥 for
the different parameter sets of HQC-BCH.

key in Section 4.4.3, which consists of additionally finding 𝒚(1). Finally, in Section 4.4.4, it is shown
how to utilize partial attack results through information set decoding.

4.4.1 Support Distribution of the Secret Key 𝒚

The distribution of the non-zero positions in the secret 𝒚, i.e., the support of 𝒚, is essential for the
proposed attack. To simplify the notation, we decompose the vector 𝒚 as follows

𝒚 = (𝒚(0)0 , . . . , 𝒚(0)𝑛1−1 , 𝒚
(1)) ∈ 𝔽𝑛2 ,

where 𝒚(0)0 , . . . , 𝒚(0)𝑛1−1 ∈ 𝔽𝑛2
2 and 𝒚(1) ∈ 𝔽𝑛−𝑛1𝑛2

2 . This decomposition is visualized in Fig. 4.11.

𝒚(0)0 𝒚(0)1 𝒚(0)2
. . . 𝒚(0)𝑛1−1 𝒚(1)

𝒚(0) ∈ 𝔽𝑛1𝑛2
2 𝒚(1) ∈ 𝔽𝑛−𝑛1𝑛2

2
𝒚(0)𝑖 ∈ 𝔽𝑛2

2

Figure 4.11 Different parts of the secret key 𝒚 ∈ 𝔽𝑛2 .

Note that as described in Section 4.3.3, 𝒚 has to be larger than 𝑛1𝑛2 to withstand algebraic attacks.
Therefore, a part of 𝒚, which we defined as 𝒚(1), is not part of the codeword and is therefore not
processed by the decoder. As the proposed attack utilizes side-channel information of the decoder,
𝒚(1) can not be directly attacked. Methods to retrieve it from a known 𝒚(0) are discussed in Section 4.4.3.

The proposed method of attacking 𝒚(0) targets all codewords of 𝒞2 individually, which defines the
split of 𝒚(0) into its corresponding chunks 𝒚(0)𝑖 with 0 ≤ 𝑖 ≤ 𝑛1−1. Additionally, for all HQC parameter
sets, 𝒚 is sampled as a sparse polynomial with HW(𝒚) = 𝑤, which implies that HW(𝒚(0)𝑖) is close to
zero with high probability. It is, therefore, sufficient for a successful attack to only retrieve the support
of 𝒚(0). In the following, the support distribution of 𝒚(0) is analyzed as the attacks for the different
HQC versions have restrictions on the HW of the individual blocks 𝒚(0)𝑖 .

For the attack on HQC-BCH, there is a weight restriction on the maximum HW of all 𝒚(0)𝑖 such that
HW(𝒚(0)𝑖) ≤ 𝑤𝑚𝑎𝑥 for 𝑖 = 0, . . . , 𝑛1 − 1. The probabilities that 𝒚 is generated such that this restriction
is fulfilled for all blocks of 𝒚(0)𝑖 are shown in Table 4.3. The results are obtained through a simulation
that generates one million secret keys of the different parameters of HQC-BCH. It can be seen that
most of the secret keys show a 𝑤𝑚𝑎𝑥 of at most 3.

We show a proof of the attack strategy for HQC-RMRS with the restriction that the maximum
Hamming weight of all 𝒚(0)𝑖 is smaller than 𝑦𝑤,𝑚𝑎𝑥 , where 𝑦𝑤,𝑚𝑎𝑥 = max{HW(𝒚(0)0), . . . ,HW(𝒚(0)𝑛1−1)}.
We determine the probabilities of the different 𝑦𝑤,𝑚𝑎𝑥 by simulating the weight distribution of ten
million samples of 𝒚 with the results shown in Table 4.4.

The probability that HW(𝒚(1)) > 0 can be computed by 1 − (𝑛1·𝑛2
𝑤

)/(𝑛𝑤) . Considering the parameters
of HQC-RMRS-128, HQC-RMRS-192, and HQC-RMRS-256 we determine the respective probabilities
to be 1.85 %, 3.02 %, and 8.07 %. For HQC-BCH the resulting probabilities are 29.29 %, 0.66 %, and
1.34 % for HQC-BCH-128, HQC-BCH-192 and HQC-BCH-256, respectively. Therefore, in most cases
it suffices to determine 𝒚(0) because there are no ones in 𝒚(1).

58

𝑦𝑤,𝑚𝑎𝑥 3 4 5 6 7 8 9

HQC-RMRS-128 3.75% 48.77% 86.49% 97.44% 99.59% 99.94% 99.99%
HQC-RMRS-192 0.01% 10.74% 57.96% 88.50% 97.57% 99.56% 99.93%
HQC-RMRS-256 0.09% 20.83% 71.87% 93.94% 98.96% 99.84% 99.97%

Table 4.4 Probabilities that 𝒚(0) is generated such that max{HW(𝒚(0)0), . . . ,HW(𝒚(0)𝑛1−1)} is at most 𝑦𝑤,𝑚𝑎𝑥 for all
parameter sets of HQC-RMRS.

𝒗′

𝒗0 − 𝒚(0)0
𝒗′1 = 0 . . . 𝒗′𝑛1−1 = 0

�̃�

�̃�0 �̃�1 = 0 . . . �̃�𝑛1−1 = 0

𝒞 2
.D

ec

𝒞 2.
Dec

𝒞 2.D
ec

𝒞1.Dec

𝒎

(a) Attack on 𝒚(0)0

𝒗′

𝒗′0 = 0 𝒗1 − 𝒚(0)1
. . . 𝒗′𝑛1−1 = 0

�̃�

�̃�0 = 0 �̃�1 . . . �̃�𝑛1−1 = 0

𝒞 2
.D

ec

𝒞 2.
Dec

𝒞 2.D
ec

𝒞1.Dec

𝒎

(b) Attack on 𝒚(0)1

𝒗′

𝒗′0 = 0 𝒗′1 = 0 . . . 𝒗𝑛1−1 − 𝒚(0)𝑛1−1

�̃�

�̃�0 = 0 �̃�1 = 0 . . . �̃�𝑛1−1

𝒞 2
.D

ec

𝒞 2.
Dec

𝒞 2.D
ec

𝒞1.Dec

𝒎

(c) Attack on 𝒚(0)𝑛1−1

Figure 4.12 Visualization of the attack strategy to reveal the individual 𝒚(0)𝑖 for 0 ≤ 𝑖 ≤ 𝑛 − 1.

4.4.2 Retrieving 𝒚(0) Using a Side-Channel Oracle

With our chosen-ciphertext attack, we are able to determine all parts of the secret key 𝒚(0)𝑖 individually
and in a sequential manner. The following describes the general attack strategy using an oracle
obtained through a side-channel of the implementation. Note that the individual ways to obtain
such an oracle are detailed in the respective attack sections (Section 4.5, Section 4.6) and that for a
description of the attack strategy, it is sufficient to assume access to the oracle.

Within the HQC algorithm, the only operation utilizing the secret key is the decoding of the vector
𝒗′ = 𝒗 − 𝒖𝒚 during decryption (c.f. Algorithm 9). By setting 𝒖 = (1, 0 . . . , 0) ∈ 𝔽𝑛2 the decoder input
results in 𝒗′ = 𝒗 − 𝒚. As 𝒗 is part of the ciphertext 𝑐 = (𝒖 , 𝒗), it is controllable by the attacker. By
setting it to a valid codeword, 𝒚 can be seen as the error 𝒆 that has to be corrected by the decoder. Note
that due to the sparseness of 𝒚, it is sufficient to only retrieve its support as discussed in Section 4.4.1.
Now, the general idea of the attack is to choose 𝒗 such that the decoding result only depends on a
single 𝒚(0)𝑖 , revealing its support. This is done by setting all 𝒗 𝑖 to the all-zero codeword except for the
one corresponding to the targeted part of the secret key. The iterative attack process is visualized in
Fig. 4.12.

In the case of HQC, an attacker requires access to the individual decoder results of 𝒞2, as the
respective input consists of 𝒚(0)𝑖 subtracted from its corresponding 𝒗 𝑖 . It is not possible to directly
attack the decapsulation of HQC (c.f. Algorithm 11), as it includes a check for the validity of the

59

ciphertext that does not reveal information about 𝒎 in case of failure. Nevertheless, a side-channel
can be used in order to construct an oracle that again reveals information about the decoding result.
For the presented attacks in this thesis, a separate oracle is defined that is tailored to the respective
HQC version9. For HQC-BCH, we define a decoding oracle𝒪𝐷𝑒𝑐01 (𝒗) that is able to determine whether
an error is corrected by the BCH code (𝒞1). After the oracle has been initialized, it can be queried
for different inputs 𝒗 and returns 1 if an error had to be corrected and 0 otherwise. For HQC-RMRS,
we define an oracle that is able to determine whether the RM decoder (𝒞2) decoded to the all-zero
or a non-zero codeword in a given position. The oracle is formally defined in Definition 1. Note in
Fig. 4.12 that through setting all 𝒗 𝑖 except the targeted one to zero, the decoding result of 𝒞1.Dec can
also be used to identify the decoding result of the inner code 𝒞2.

Definition 1 (Close-to-zero Oracle). Let 𝒞 be an ℛℳ(1, 𝑚) code. Define 𝔇𝒆
0 : 𝔽𝑛𝑞 ↦→ {True, False} with

𝒆 ∈ 𝔽𝑛𝑞 to be the function given by

𝔇𝒆
0(𝒓) =

{
True, if 𝔇ℛℳ(𝒓 + 𝒆) = 0,
False, else,

where 𝔇ℛℳ denotes a decoder for the RM code.

By querying the oracle and, therefore, gaining access to the decoding result, the attack strategy
is based on two steps. First, an input 𝒗 has to be found such that the resulting codeword after the
subtraction of the corresponding 𝒚(0)𝑖 lies exactly at the decoding boundary of the 𝒞2 decoder10. An
example is to find an input that lies exactly one error above the boundary, meaning it results in a
decoding error, i.e., in the decoder not returning the all-zero codeword 0, and therefore, e.g., 𝔇𝒆

0
returns False. This implies that if we set an additional bit in the input, which is in the support of 𝒚(0)𝑖 ,
we reduce the error resulting in a successful decoding indicated by, e.g., 𝔇𝒆

0 as True. In the second
attack step, an attacker can query the oracle by successively inverting each bit of the input found in the
first step. In this process, an oracle result of True, i.e., a successful decoding to the all-zero codeword,
indicates that this position is in the support of 𝒚(0)𝑖 . This allows to retrieve the whole support of the
attacked secret key block. By repeating this approach for all 𝑛1 blocks of 𝒞2 codewords, the complete
𝒚(0) can be retrieved.

4.4.3 Retrieval of 𝒚(1)

With our attack strategy, we are able to attack 𝒚(0), as only this part acts as an input to the decoder.
Nevertheless, we discuss methods to retrieve the whole 𝒚 in this section if 𝒚(0) has been retrieved
completely and error-free. In the case that 𝒚(0) is only partially retrieved, information set decoding
can be used, as described in Section 4.4.4, which directly reveals the complete secret key 𝒚 from this
partial information.

As discussed in Section 4.4.1, the size of 𝒚(1) is given by 𝑛 − 𝑛1𝑛2, which results in the sizes shown
in Table 4.5. With the resulting sizes being reasonably small and HW(𝒚(1)) close to zero with high
probability, the remaining entries in 𝒚(1) can be found through an exhaustive search. For the HQC-
BCH-128 parameter set, a reasonable restriction for HW(𝒚(1)) has to be set in order to achieve a feasible
brute-force complexity. In the following, a brute-force method based on linear algebra is presented.

9In order to be consistent with the published version of the attacks in [SRSWZ21] and [SHR+22], the oracles are
presented as defined in the papers.

10Note that the attack strategy on HQC-BCH presented in Section 4.5 only finds codewords that are at the decoding
boundary given a maximum hamming weight of the attacked 𝒚(0)𝑖 . Therefore, not all keys of HQC-BCH can be attacked
as discussed in Section 4.4.1. In contrast, the attack strategy on HQC-RMRS reveals codewords mostly independent of the
hamming weight of 𝒚(0)𝑖 . In other words, there is a relaxed restriction on the maximum hamming weight with a sufficient
margin that allows to attack honestly generated keys.

60

𝑛 − 𝑛1𝑛2 𝒲L(HW(𝒚(1)) ≤ 2)
BCH RMRS BCH RMRS

HQC-*-128 123 5 228.42 218.43

HQC-*-192 3 11 218.05 221.91

HQC-*-256 7 37 221.47 226.19

Table 4.5 Length of 𝒚(1) that has to be found through an exhaustive search and the corresponding work factor
of the presented approach based on linear algebra.

Let 𝒥 = { 𝑗0 , . . . , 𝑗𝑡−1} denote the known support of 𝒚(0) and letℒ = {𝑙0 , . . . , 𝑙𝑤−𝑡−1} be the support of
𝒚(1) that we want to determine. First, observe that

𝒔 = 𝒙 + 𝒉𝒚 = 𝒙 + 𝑯⊤𝑛+𝑗0 + . . . + 𝑯⊤𝑛+𝑗𝑡−1
+ 𝑯⊤𝑛+𝑙0 + . . . + 𝑯⊤𝑛+𝑙𝑤−𝑡−1

,

where 𝑯 𝑖 denotes the 𝑖-th column of 𝑯 = (1, rot(𝒉)). Since 𝒔, 𝒉 and 𝒥 are known, we can compute

�̃� = 𝒔 + 𝑯⊤𝑛+𝑗0 + . . . + 𝑯⊤𝑛+𝑗𝑡−1
= 𝒙 + 𝑯⊤𝑛+𝑙0 + . . . + 𝑯⊤𝑛+𝑙𝑤−𝑡−1

.

Then, we repeatedly sample 𝑤 − 𝑡 indices 𝑙0 , . . . , 𝑙𝑤−𝑡−1 from {0, . . . , 𝑛 − 𝑛1𝑛2 − 1} and compute

�̂� := �̃� + 𝑯⊤
𝑛+𝑙0 + . . . + 𝑯⊤

𝑛+𝑙𝑤−𝑡−1

until HW(�̂�) = 𝑤. In this case, �̂� = 𝒙 which means that
{
𝑙0 , . . . , 𝑙𝑤−𝑡−1

}
= ℒ. We finally output

𝒥 ∪ {𝑙0 , . . . , 𝑙𝑤−𝑡−1} as estimation of supp(𝒚). The probability that {𝑙0 , . . . , 𝑙𝑤−𝑡−1} = ℒ is
(𝑛−𝑛1𝑛2
𝑤−𝑡

)−1

and checking whether {𝑙0 , . . . , 𝑙𝑤−𝑡−1} is equal to ℒ requires 𝑤 − 𝑡 column additions which is in
𝑂
(
𝑛(𝑤 − 𝑡)) . This results in a work factor of

𝒲L = 𝑛(𝑤 − 𝑡)
(
𝑛 − 𝑛1𝑛2
𝑤 − 𝑡

)
.

Assuming 𝑤 − 𝑡 ≤ 2, the resulting work factor is shown in the right column of Table 4.5.

4.4.4 Utilizing Partial Attack Results through Information Set Decoding

For the proposed attacks, it is important to recognize that retrieving the secret key sk = (𝒙 , 𝒚) from
the public key pk = (𝒉 , 𝒔) is equal to solving an instance of the 2-QCSD problem. This can be seen by

𝒔 = 𝒙 + 𝒉𝒚 = (𝒙 , 𝒚)
(

1⊤
rot(𝒉)⊤

)
= 𝒆𝑯⊤ ,

where 𝒆 := (𝒙 , 𝒚) ∈ 𝔽2𝑛
2 with HW(𝒙) = HW(𝒚) = 𝑤 and 𝑯 := (1, rot(𝒉)) ∈ 𝔽𝑛×2𝑛

2 . The vector 𝒔 can be
interpreted as the syndrome of the error 𝒆 and the parity-check matrix 𝑯 .

Therefore, this problem can be solved by information set decoding (ISD) algorithms like Prange’s
algorithm [Pra62] or one of the improvements, e.g., Stern’s algorithm [Ste89] revealing the complete
secret key 𝒚. The idea of Prange’s ISD algorithm is to guess an error-free information set, i.e., a set
of indices {𝐼0 , . . . , 𝐼𝑛−1} ⊂ {0, . . . , 2𝑛 − 1} such that 𝑒𝐼0 = . . . = 𝑒𝐼𝑛−1 = 0 and such that the columns
𝐼0 , . . . , 𝐼𝑛−1 of 𝑯 are linearly independent, where {𝐼0 , . . . , 𝐼𝑛−1} = {0, . . . , 2𝑛 − 1} \ {𝐼0 , . . . , 𝐼𝑛−1}. We
can use the partial attack results 𝒫 = {𝑝0 , . . . , 𝑝𝑡−1} ⊂ supp(𝒚) to reduce the complexity of a used
information set decoding algorithm. This is done by modifying the syndrome vector to include partial
information as

𝒔′ = 𝒔 + 𝑯⊤𝑛+𝑝0 + . . . + 𝑯⊤𝑛+𝑝𝑡−1 ,

61

0 10 20 30 40 50 60 70 80 90 100 110 120 130

100

200

300

𝑡

lo
g 2
(𝒲

BC
H
)

HQC-128
HQC-192
HQC-256

Figure 4.13 Complexity 𝒲BCH of Prange’s algorithm for all parameter sets of HQC-BCH as a function of 𝑡,
where 𝑡 is the number of non-zero positions in 𝒚(0) that are correctly obtained by the proposed side-channel
attack [SRSWZ21, Figure 4].

0 10 20 30 40 50 60 70 80 90 100 110 120 130

50
100
150
200
250
300

𝑡

lo
g 2
(𝒲

RM
RS
)

HQC-128
HQC-192
HQC-256

Figure 4.14 Complexity𝒲RMRS of Stern’s algorithm for all parameter sets of HQC-RMRS as a function of 𝑡,
where 𝑡 is the number of non-zero positions in 𝒚(0) that are correctly obtained by the proposed side-channel
attack [SHR+22, Figure 2].

where 𝑯 𝑖 denotes the 𝑖-th column of 𝑯 = (1, rot(𝒉)). There are two main reasons for an attacker to use
partial attack results. Either there is a limit to the number of possible oracle calls due to the number
of decryptions the attacker can observe, or the side-channel used to create the oracle does not result
in perfect oracle answers. A limit on the oracle calls allows to only attack a subset of all 𝒚(0)𝑖 and the
partial attack results consist of the successfully attacked blocks. In case of incorrect oracle results,
the partial attack results can be built by only using retrieved 𝒚(0)𝑖 that show the highest classification
results as established for attacks on other public-key cryptosystems [HIM+14, KSTS21].

In Fig. 4.13 and Fig. 4.14, the resulting work factor given the knowledge of 𝑡 elements of the support
of 𝒚(0) are shown for HQC-BCH, and HQC-RMRS, respectively. As the concrete modifications of the
respective ISD algorithms are developed by other authors, this section only presents the resulting
work factors, and the reader is referred to the published works, which is [SRSWZ21] for HQC-BCH
and [SHR+22] for HQC-RMRS. For a general approach on how to incorporate partial side-channel
attack results with information set decoding, the reader is referred to [HPR+22].

62

4.5 Attack Strategy on HQC-BCH

This section presents the attack strategy on the second round version of the HQC algorithm (HQC-
BCH) that combines a repetition code with a BCH code. First, the attack strategy is detailed in
Section 4.5.1. In Section 4.5.2, the method to construct the required oracle𝒪𝐷𝑒𝑐01 through a power side-
channel is described. Section 4.5.3 shows attack results of this oracle for a software implementation
of HQC-BCH-128 running on an ARM-Cortex M4 microcontroller. Finally, the attack strategy is
compared with related work in Section 4.5.4.

4.5.1 Attack Strategy

In this section, we propose a chosen ciphertext attack that retrieves 𝒚(0)𝑖 for 𝑖 = 0, . . . , 𝑛1 − 1. First, we
fix 𝒖 to (1, 0, . . . , 0) ∈ 𝔽𝑛2 such that the vector that is fed into the decoder of 𝒞 is given by

𝒗′ = 𝒗 − 𝒚,

as it can be seen in Algorithm 9. Now, the oracle 𝒪𝐷𝑒𝑐01 (𝒗), as defined in Section 4.4.2, can be queried
for different inputs 𝒗, and using the results allows to obtain the individual 𝒚(0)𝑖 .

To derive the required vectors 𝒗, recall that the code 𝒞 is a code concatenation consisting of a BCH
code 𝒞1 of length 𝑛1 and a repetition code 𝒞2 of length 𝑛2, and only the first 𝑛1𝑛2 positions of 𝒗′
are decoded in 𝒞 . The decoder for 𝒞 divides the first 𝑛1𝑛2 positions of 𝒗′ into chunks 𝒗′0 , . . . , 𝒗

′
𝑛1−1

of size 𝑛2 that are separately decoded in the repetition code. Decoding in the repetition code 𝒞2 is
performed by a majority voting, meaning vectors of Hamming weight at least ⌈ 𝑛2

2 ⌉ are mapped to 1
and the remaining vectors are mapped to 0. The outputs of the repetition decoder are then decoded
in the BCH code. Since the all-zero vector is in 𝒞1 and vectors of Hamming weight one11 are not
in 𝒞1, we observe the following. Setting ⌈ 𝑛2

2 ⌉ entries of 𝒗 𝑖 to 1 and 𝒗 𝑗 to the all-zero vector, where
𝑗 ∈ [0, 𝑛1 − 1] \ {𝑖}, results in two cases that we can distinguish using 𝒪𝐷𝑒𝑐01 :

1. | supp(𝒚(0)𝑖) ∩ supp(𝒗 𝑖)| > HW(𝒚(0)𝑖)
2 : This leads to HW(𝒗′𝑖) < ⌈ 𝑛2

2 ⌉ and the repetition decoder
outputs 0. Then, no error is corrected in the BCH code.

2. | supp(𝒚(0)𝑖) ∩ supp(𝒗 𝑖)| ≤ HW(𝒚(0)𝑖)
2 : This leads to HW(𝒗′𝑖) ≥ ⌈ 𝑛2

2 ⌉ and the repetition decoder
outputs 1, which is corrected in the BCH code.

This observation allows to determine the support of 𝒚(0)𝑖 in a two-step approach, where we first
determine a super support of 𝒚(0)𝑖 , which is an approximation of the support (c.f. Section 4.3.1), and
then refine these approximate locations to obtain the exact non-zero positions of 𝒚(0)𝑖 . Note that all
𝒚(0)0 , . . . , 𝒚(0)𝑛1−1 are examined separately in sequential manner.

Finding a Super Support of 𝒚(0)𝑖

In the following, we derive how to choose 𝒗 𝑖 to determine a super support of 𝒚(0)𝑖 under the assumption
that HW(𝒚(0)𝑖) ≤ 2. As shown in Table 4.3, this already covers a large part of the possible keys. Nev-
ertheless, a generalization of the proposed method to cases where HW(𝒚(0)𝑖) > 2 works accordingly.
Assuming HW(𝒚(0)𝑖) ≤ 1, a super support of 𝒚(0)𝑖 can be found by using only two patterns of 𝒗 𝑖 . For
pattern 0, we choose supp(𝒗 𝑖) = [0, ⌈ 𝑛2

2 ⌉−1] and for pattern 1, we choose supp(𝒗 𝑖) = [⌈ 𝑛2
2 ⌉−1, 𝑛2−1].

The patterns for 𝑛2 = 31 (HQC-BCH-128) are illustrated in Fig. 4.15.

11This follows from the fact that the BCH code has a minimum distance larger than 1.

63

0123456789101112131415161718192021222324252627282930

0123456789101112131415161718192021222324252627282930

0

1

Figure 4.15 Patterns of 𝒗 𝑖 to find a super support of 𝒚(0)𝑖 for 𝑛2 = 31 and HW(𝒚(0)𝑖) ≤ 1. The black part indicates
positions with value 1, and the white part positions with value 0.

0123456789101112131415161718192021222324252627282930

0123456789101112131415161718192021222324252627282930

0123456789101112131415161718192021222324252627282930

0123456789101112131415161718192021222324252627282930

0123456789101112131415161718192021222324252627282930

0123456789101112131415161718192021222324252627282930

0

1

2

3

4

5

[0, 𝑛2+1
2 − 1]

[𝑛2+1
2 − 1, 𝑛2 − 1]

[𝑛2+1
4 − 1, 𝑛2+1

2 − 2] ∪ [3(𝑛2+1)
4 − 1, 𝑛2 − 1]

[0, 𝑛2+1
4 − 1] ∪ [3(𝑛2+1)

4 − 1, 𝑛2 − 1]

[𝑛2+1
4 − 1, 𝑛2+1

2 − 2] ∪ [𝑛2+1
2 , 3(𝑛2+1)

4 − 1]

[0, 𝑛2+1
4 − 1] ∪ [𝑛2+1

2 , 3(𝑛2+1)
4 − 1]

Figure 4.16 Patterns of 𝒗 𝑖 to find a super support of 𝒚(0)𝑖 for 𝑛2=31 and HW(𝒚(0)𝑖) ≤ 2. The black part indicates
positions with value 1 and the white part entries with value 0. In addition, the support of 𝒗 𝑖 dependent on 𝑛2
is given.

If the BCH decoder has to correct an error for both patterns, it follows that HW(𝒚(0)𝑖) = 0 and in case
no error was corrected by the BCH code in both cases, we conclude that supp(𝒚(0)𝑖) = ssupp(𝒚(0)𝑖) ={⌈ 𝑛2

2 ⌉− 1}. Furthermore, if the BCH decoder has to correct an error for the first pattern but not for the
second pattern, we know that supp(𝒚(0)𝑖)∩ssupp(𝒚(0)𝑖) = [⌈ 𝑛2

2 ⌉, 𝑛2−1]. Given the BCH decoder does not
correct an error in the first case but in the second we know that supp(𝒚(0)𝑖)∩ ssupp(𝒚(0)𝑖) = [0, ⌈ 𝑛2

2 ⌉−2].
Given the HQC-BCH parameter sets and the case that HW(𝒚(0)𝑖) ≤ 2, the attack can be generalized

as follows. Instead of only two patterns, we construct six different patterns of 𝒗 𝑖 . An illustration of
the six patterns for 𝑛2 = 31 together with the general formulas for the sets dependent on 𝑛2 is given
in Fig. 4.16. Similar to before, we can determine a super support of 𝒚(0)𝑖 based on the output of the
oracle for the different patterns of 𝒗 𝑖 , where the logic is given in Table 4.6. In the table, either one or
two sets per row are shown. The union of these sets gives a super support of 𝒚(0)𝑖 , and each set has a
non-empty intersection with the support of 𝒚(0)𝑖 . The latter property is important since it reduces the
complexity of the next step.

Finding the support of 𝒚(0)𝑖

From the super support of 𝒚(0)𝑖 , we can determine supp(𝒚(0)𝑖) using the fact that all indices of 𝒚(0)𝑖 that
are not in ssupp(𝒚(0)𝑖) correspond to entries with value zero. As already discussed, we describe the
proposed method for HW(𝒚(0)𝑖) ≤ 2.

Assume that HW(𝒚(0)𝑖) = 1. We can find the support of 𝒚(0)𝑖 by setting ⌈ 𝑛2
2 ⌉ − 1 entries in 𝒗 𝑖 to 1 for

indices which are not in ssupp(𝒚(0)𝑖). Keeping these entries fixed, we iterate through all vectors 𝒗 𝑖 with
| supp(𝒗 𝑖) ∩ ssupp(𝒚(0)𝑖)| = 1. This procedure is depicted for 𝑛2 = 31 and ssupp(𝒚(0)𝑖) = {0, . . . , 14}

64

𝒪𝐷𝑒𝑐01 (Pattern ★)
ssupp(𝒚(0)𝑖)0 1 2 3 4 5

1 1 1 1 1 1 { }
0 0 - - - - { 𝑛2+1

2 − 1}
0 1 - - - - [0 : 𝑛2+1

2 − 1]
1 0 - - - - [𝑛2+1

2 − 1 : 𝑛2 − 1]
1 1 0 1 1 1 [𝑛2+1

4 : 𝑛2+1
2 − 2], [3(𝑛2+1)

4 : 𝑛2 − 1]
1 1 1 0 1 1 [0 : 𝑛2+1

4 − 2], [3(𝑛2+1)
4 : 𝑛2 − 1]

1 1 1 1 0 1 [𝑛2+1
4 : 𝑛2+1

2 − 2], [𝑛2+1
2 : 3(𝑛2+1)

4 − 2]
1 1 1 1 1 0 [0 : 𝑛2+1

4 − 2], [𝑛2+1
2 : 3(𝑛2+1)

4 − 2]
1 1 0 0 1 1 { 𝑛2+1

4 − 1}, [3(𝑛2+1)
4 : 𝑛2 − 1]

1 1 0 1 0 1 [𝑛2+1
4 : 𝑛2+1

2 − 2], { 3(𝑛2+1)
4 − 1}

1 1 1 0 1 0 [0 : 𝑛2+1
4 − 2], { 3(𝑛2+1)

4 − 1}
1 1 1 1 0 0 { 𝑛2+1

4 − 1}, [𝑛2+1
2 : 3(𝑛2+1)

4 − 2]
1 1 0 0 0 0 { 𝑛2+1

4 − 1}, { 3(𝑛2+1)
4 − 1}

Table 4.6 Super support of 𝒚(0)𝑖 depending on the oracle output for different patterns of 𝒗 𝑖 (see Fig. 4.16) and
HW(𝒚(0)𝑖) ≤ 2.

0123456789101112131415161718192021222324252627282930

0123456789101112131415161718192021222324252627282930

0123456789101112131415161718192021222324252627282930

...

0

1

14

Figure 4.17 Patterns to determine supp(𝒚(0)𝑖) from ssupp(𝒚(0)𝑖) for 𝑛2 = 31 and ssupp(𝒚(0)𝑖) = {0, . . . , 14}.

in Fig. 4.17. Every time the BCH decoder corrects an error, we know that supp(𝒗 𝑖) ∩ ssupp(𝒚(0)𝑖) ≠
supp(𝒚(0)𝑖) and when the BCH decoder does not correct an error, we can conclude that supp(𝒗 𝑖) ∩
ssupp(𝒚(0)𝑖) = supp(𝒚(0)𝑖).

For HW(𝒚(0)𝑖) = 2, we fix ⌈ 𝑛2
2 ⌉ − 2 entries in 𝒗 𝑖 to 1 for indices which are not in ssupp(𝒚(0)𝑖). In

case Table 4.6 refers to one set as the super support of 𝒚(0)𝑖 , we brute-force all vectors 𝒗 𝑖 , where
| supp(𝒗 𝑖) ∩ ssupp(𝒚(0)𝑖)| = 2. In case Table 4.6 refers to two sets, we iterate through all vectors 𝒗 𝑖 that
have a non-empty intersection with both sets. As before, every time the BCH decoder corrects an
error, we know that supp(𝒗 𝑖) ∩ ssupp(𝒚(0)𝑖) ≠ supp(𝒚(0)𝑖) and when the BCH decoder does not correct
an error, we state supp(𝒗 𝑖) ∩ ssupp(𝒚(0)𝑖) = supp(𝒚(0)𝑖).

4.5.2 Instantiation of the Decoding Oracle through a Power Side-Channel

This section introduces a method to construct a decoding oracle𝒪𝐷𝑒𝑐01 through the power side-channel,
which allows an attacker to identify whether the BCH decoder has to correct an error during the
decoding step of the decryption of HQC-BCH. As explained in Section 4.5.1, this allows the attacker

65

𝒪𝐷𝑒𝑐01 𝒖 ∈ 𝔽𝑛2 𝒗 = (𝒗0 , . . . , 𝒗𝑛1−1) ∈ 𝔽𝑛1𝑛2
2 with 𝒗 𝑖 ∈ 𝔽𝑛2

2

0 (no error) 0 (0, . . . , 0)
1 (error) 0 (HW(𝒗0) = ⌈ 𝑛2

2 ⌉, 0, . . . , 0)
Table 4.7 Ciphertext input used for the initialization of the oracle.

to retrieve the used secret key 𝒚(0). The oracle can be constructed using a t-test (c.f. Section 2.1) for POI
detection in combination with a template matching approach through a sum of squared differences
metric.

In [RSRCB20] Ravi et al. mounted a successful attack against the NIST candidates LAC [LLJ+19]
and Round5 [BBF+19] by utilizing a power side-channel that allows to distinguish whether the used
error correction had to correct an error. This section introduces their attack methodology based on
a POI-reduced template matching approach with respect to its application on HQC. The oracle 𝒪𝐷𝑒𝑐01
that returns 0 if no error had to be corrected by the BCH decoder and outputs 1 otherwise can be
constructed in a two-stage approach. In the first step, templates for the different classes are built
based on POIs identified by the t-test. In the second step, an attacker can query the oracle in the sense
that she performs template matching for the different attack traces.

In order to initialize the oracle, templates for the two different classes are built using the ciphertext
inputs shown in Table 4.7. To understand these patterns, we have to recall that the used error-
correcting code 𝒞 is a code combination consisting of a BCH code 𝒞1 and a repetition code 𝒞2 of
length 𝑛2. During 𝒞 .Dec, the repetition code uses majority decoding, which results in a codeword in
𝒞1 that is then fed to the BCH decoder. If a single HW(𝒗 𝑖) exceeds the threshold ⌈ 𝑛2

2 ⌉, the BCH decoder
has to correct an error, while otherwise, the result is the all-zero codeword, for which no correction is
required. We refer to Section 4.5.1 for a detailed explanation of how these values are derived. Please
note that an attacker does not need to know the used secret key 𝒚 in order to construct the templates.
This allows to directly build the templates on the device under attack, which significantly increases
the strength of the attack.

To start building the templates, a limited amount of 𝑁𝑡 power traces for both classes, which will
be denoted as 𝒯0 and 𝒯1, is recorded during the BCH decoding step of the function 𝒞 .Dec in the
decryption algorithm of HQC (c.f. Algorithm 9). In order to cope with environment changes during
the measurement phase, e.g., DC offsets, the individual power traces 𝒕𝒊 are normalized for both
classes. This is done by subtracting the respective mean 𝑡 𝑖 , such that 𝒕′𝒊 = 𝒕𝒊 − 𝑡 𝑖1. Now, a t-test is
used to identify measurement samples that can be used to distinguish between the two classes. Based
on these t-test results and a chosen threshold value 𝑇ℎ𝑎𝑡𝑡𝑎𝑐𝑘 both trace sets can be reduced to their
respective POIs resulting in 𝒯 ′0 and 𝒯 ′1 . Finally, the templates for both classes can be calculated as the
mean over all traces in their respective set, resulting in 𝒕0

𝒎 and 𝒕1
𝒎 , respectively.

In order to evaluate the oracle for a given ciphertext input (𝒖 , 𝒗), the corresponding power trace 𝒕𝒄
has to be captured by the attacker. The classification process is performed by an evaluation of the sum
of squared differences 𝑆𝑆𝐷∗ to both templates. The trace 𝒕𝒄 is classified as the class with the lowest
𝑆𝑆𝐷 value. Note that 𝒕𝒄 also has to be reduced to the previously found POI. If both the templates
𝒕1
𝒎 , 𝒕

0
𝒎 and attack trace 𝒕𝒄 are seen as a vector of their respective sample values, the evaluation can be

written as

𝑆𝑆𝐷0 = ((𝒕𝒄 − 𝑡𝑐1) − 𝒕0
𝒎)𝑇 · ((𝒕𝒄 − 𝑡𝑐1) − 𝒕0

𝒎)
𝑆𝑆𝐷1 = ((𝒕𝒄 − 𝑡𝑐1) − 𝒕1

𝒎)𝑇 · ((𝒕𝒄 − 𝑡𝑐1) − 𝒕1
𝒎).

4.5.3 Experimental Results

In order to evaluate the oracle𝒪𝐷𝑒𝑐01 , we implemented the reference implementation of HQC-BCH-128
(c.f. Section 4.3.2 for a description of the used submission package) on our test platform consisting

66

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Time [samples] ×107

−500

−400

−300

−200

−100

0

100

200

300

400

t‑v
al
ue

t‑test threshold (t = ±4.5)
poi selection border (Thattack = ±10)

1(a) Compute Syndromes

0 1 2 3 4 5

Time [samples] ×106

−500

−400

−300

−200

−100

0

100

200

300

400

t‑v
al
ue

t‑test threshold (t = ±4.5)
poi selection border (Thattack = ±100)

1(b) Error locator polynomial

Figure 4.18 T-test results using 1000 measurements for different functions of the BCH decoding during the
HQC decryption. The computation of syndromes corresponds to the function compute_syndromes() and the
error locator polynomial computation to the function compute_elp() of the reference implementation.

of an STM32F415RGT6 ARM Cortex-M4 microcontroller. The microcontroller is part of a CW308T-
STM32F target board, which is mounted on a CW308 UFO board running at a clock frequency of 10
MHz. The clock is provided by an external clock generator. We measured the power consumption
through an integrated shunt resistor with a PicoScope 6402D USB oscilloscope at a sampling rate of
156.25 MHz. A dedicated GPIO pin is used to provide a trigger signal to the oscilloscope, indicating
the duration of the function that is evaluated.

First, we evaluated if both classes can be distinguished through the power side-channel using our
setup. Therefore, we performed a t-test on 1000 measurements of the BCH decoder with randomly
chosen classes. As described in Section 4.3.3 and visualized in Fig. 4.6, there are three main steps
during the BCH decoding, where each step could potentially be used for the distinction. In the original
proposal of the attack methodology by Ravi et al. [RSRCB20], the authors find the computation of
syndromes a suitable operation during the decoding. The t-test results for this attack vector are shown
in Fig. 4.18a. It can be seen that there are some measurement samples with a t-value that indicates
a sufficient amount of side-channel leakage that allows to distinguish both classes. Nevertheless, we
opted to additionally examine the computation of the error locator polynomial, as seen in Fig. 4.18b.
The result shows significantly higher leakage in addition to a reduced execution time compared to
the syndrome computation. Therefore, we used the computation of the error locator polynomial as
our attack target.

In a second step, we prove the efficiency of the oracle by building the templates 𝒕0
𝒎 and 𝒕1

𝒎 using
a total of 1000 template traces (500 for each class) using only the POI given by the attack threshold
𝑇ℎ𝑎𝑡𝑡𝑎𝑐𝑘 depicted in Fig. 4.18b. The resulting templates are shown in Fig. 4.19. It can be clearly seen
that there is a significant difference between both templates. After the initialization, we evaluated
20 000 queries to the oracle, given traces with a randomly chosen class. The oracle was able to classify
all measurements correctly. In an effort to lower the required amount of traces for the initialization,
we iteratively evaluated the classification results with a decreasing number of template traces. As a
result, we were able to successfully classify all 20 000 traces with exactly two template traces for each
class.

Finally, we were able to successfully retrieve the complete secret key 𝒚 of the reference implementa-
tion of HQC-BCH-128 using our measurement setup. In addition to the traces needed to initialize the
oracle, the complete attack, given a maximum HW(𝒚(0)𝑖) = 1, requires 1532 traces to find ssupp(𝒚(0))
and 1005 traces for the final supp(𝒚(0)). In case of a maximum HW(𝒚(0)𝑖) = 2, the amount of pattern
increases to six and therefore 4596 traces are needed to find ssupp(𝒚(0)). The amount of traces to

67

0 200 400 600 800 1000 1200

Time [samples] (POI reduced)

−40

−30

−20

−10

0

10

20

30

m
ea
n
po

w
er

co
ns
um

pt
io
n

1(a) 𝒕0
𝒎

0 200 400 600 800 1000 1200

Time [samples] (POI reduced)

−40

−30

−20

−10

0

10

20

30

m
ea
n
po

w
er

co
ns
um

pt
io
n

1(b) 𝒕1
𝒎

Figure 4.19 Computed templates after the initialization step of the oracle using 500 traces for each class.

retrieve the final supp(𝒚(0)) is highly dependent on the result of ssupp(𝒚(0)) and therefore, we only
provide a worst-case estimation, which is a total of 3976 traces.

4.5.4 Discussion

The main related work to the described attack in this chapter is the attack by Wafo-Tapa et al.
[WBB+22], which exploits a timing side-channel in the BCH decoder. Although their attack targets
a timing side-channel, the general attack strategy could be used with the decoding oracle shown in
Section 4.5.2. Nevertheless, there are two main differences to the presented attack approach.

First, the method to find the supp(𝒚(0)𝑖) from knowing a super support of 𝒚(0)𝑖 is different. They
identify that ssupp(𝒚(0)𝑖) can be iteratively cut in half while proceeding only with the promising half.
In case HW(𝒚(0)𝑖) = 1, the attack of Wafo et al. determines the support of 𝒚(0)𝑖 in ⌊log2 𝑛2⌋ + 1 requests,
while our attacks requires

⌊ 𝑛2
2
⌋

requests to the oracle. As these requests have to be performed for
each block 𝑤 times, our attack requires more requests to retrieve the support of 𝒚(0)𝑖 . However, the
approach by Wafo et al. requires the output of the oracle before constructing the ciphertext 𝒗 𝑖 for
the next query of the oracle. In the case of our power side-channel attack, this would require us to
perform multiple measurements additively based on the previous attack result. In contrast, with our
attack methodology, we can obtain attack traces for finding supp(𝒚(0)𝑖) with a single measurement
campaign. From a side-channel perspective, this advantage outweighs the additional queries that are
needed. The difference in the required amount of traces can be found in Table 4.8. Additionally, a
second difference is that Wafo et al. does not provide a method to retrieve 𝒚(1).

HQC-BCH-128 HQC-BCH-192 HQC-BCH-256 Adaptive Measurements

This work 5601 7525 10 495 no
[WBB+22] 5411 5852 6631 yes

Table 4.8 Comparision of the required oracle queries for an attack with HW(𝒚(0)𝑖 ≤ 2).

68

4.6 Attack Strategy for HQC-RMRS

In this section, the developed attack against the third-round version of HQC (HQC-RMRS) is pre-
sented. First, a discussion of related work is given in Section 4.6.1, where it is shown that published
attacks on HQC-RMRS through the power side-channel are not applicable since the used RM decoder
is implemented as a maximum likelihood decoder. This section additionally presents a counterexam-
ple for the proposed attack strategy of related work. In Section 4.6.2, an attack strategy on HQC-RMRS
is presented that considers the maximum likelihood decoder of the RM code. This strategy is proven
to be effective given a nonrestrictive assumption on the maximum Hamming weight of a single block
of the secret key. Finally, in Section 4.6.3, we discuss different side-channel targets of the algorithm
that can be used to build the required oracle for the attack strategy.

4.6.1 Unapplicability of Related Work

Attacks against the current version of HQC, namely HQC-RMRS, with a combination of a Reed-Muller
and Reed-Solomon code, use parts of the implemented variant of the Fujisaki-Okamoto transformation
to build a plaintext-checking oracle. This allows distinguishing if crafted ciphertexts decrypt to the
same plaintext dependent on the secret key, again resulting in a possible attack on the whole key using
multiple queries to the oracle. Xagawa et al. [XIU+21b] use a fault injection to skip the ciphertext
comparison setup of the transformation, resulting in direct access to the plaintext, while Ueno et al.
[UXT+21] attack the used PRNG required in the transformation through a power side-channel. Both
use an adaption of an attack described in [BDHD+19, HDV20] to HQC-RMRS.

With the change of the used codes in HQC-RMRS, the first attack step, as discussed in Section 4.4.2,
namely finding an input that lies at the decoding border of the inner code, has to be changed due
to the use of a different decoder type. This is the case as the decoder of the now used RM code is
implemented as a maximum likelihood (ML) decoder, where ties are resolved in favor of the word
of smaller lexicographical order (c.f. Eq. (4.1)). Note that ML decoding is known to be very complex
and, therefore, rarely used in practice. However, for a few code classes, such as first-order RM codes,
efficient decoders are known, a fact that is exploited in the HQC-RMRS system. Most other systems
based on algebraic codes, such as Classic McEliece [ABC+20] or HQC-BCH, instead employ bounded-
distance decoders, which decode any error up to a given weight and fail if no codeword is within this
specified radius12. On the other hand, for a symmetric memoryless channel, an ML decoder always

returns (one of) the codeword(s) closest to the received word, regardless of its distance to the received
word. Importantly, this implies that the behavior of this decoder does not only depend on the number

of errors but also on the positions of these errors. An example of this behavior is visualized in Fig. 4.20.
However, this independence of the error positions in a bounded-distance decoder is essential to the

attack strategies in [BDHD+19, HDV20]. Hence, while the setup might look similar, these methods
cannot be directly applied to a system employing an ML decoder. For instance, the side-channel
attack in [XIU+21b, Section C.7]13 claims that the method for determining an additive error vector
from oracle outputs, given in [BDHD+19, Figure 7], also applies to HQC-RMRS. In the following,
we show that this leads to incorrect outputs of the algorithm, which are caused by exactly this
difference in behavior between an ML and a bounded-distance decoder, rendering their described
attack unsuccessful.

12The HQC-BCH cryptosystem employs repetition codes of odd length instead of RM codes. It is well-known that this
class of codes is perfect, i.e., the unique decoding error balls centered on the codewords fill the entire space. In this specific
case, a bounded-distance decoder with radius (𝑑 − 1)/2 is equivalent to an ML decoder. Note that first-order RM codes are
not perfect, so this special case does not apply here.

13Note that the description of the attack in [UXT+21] is based on the same assumptions, as it directly refers to [XIU+21b].

69

𝒄(1)

𝒄(2)

𝒄(3)

𝒄(4) ⌊
𝑑−1

2
⌋

(a) Different codeword

𝒄(1)

𝒄(2)

𝒄(3)

𝒄(4) ⌊
𝑑−1

2
⌋

(b) Same codeword

Figure 4.20 Decoding results of an ML decoder for two different inputs at the decoding boundary after an
additional error has been added to the input. For a), the decoding results in a different codeword 𝒄(1) while for
b), the same codeword 𝒄(3) is returned even though the input exceeds the decoding boundary by one.

Algorithm 12 Learning a String of Small Hamming Weight [BDHD+19, Figure 7]

Input: 𝑥 = (00 . . . 0) ∈ 𝔽𝑛2
2 , 𝑦 = (11 . . . 1) ∈ 𝔽𝑛2

2
1: while HW(𝑦) > 1 do
2: split at random 𝑦 = 𝑢 + 𝑣 with 𝑢 ∧ 𝑣 = 0, HW(𝑢) =

⌊
HW(𝑦)

2

⌋
, and HW(𝑣) =

⌈
HW(𝑦)

2

⌉
3: if BOO(𝑥 + 𝑢) = 1 then
4: 𝑥 ← 𝑥 + 𝑢
5: 𝑦 ← 𝑣
6: else
7: 𝑦 ← 𝑢

8: 𝑧 ← 𝑥
9: for 𝑖 = 0 to 𝑛2 − 1 do ⊲ [BDHD+19, Figure 7] skips all 𝑖 ∈ supp(𝑦)

10: 𝑥test ← 𝑥
11: 𝑥test[𝑖] ← 𝑥test[𝑖] + 1
12: if BOO(𝑥test) = 1 then
13: 𝑧[𝑖] ← 𝑧[𝑖] + 1
Output: 𝑧

Counterexample to the Attack Strategy in [UXT+21, XIU+21b] The attacks [UXT+21, XIU+21b] claim
that Algorithm 12 from [BDHD+19, Figure 7] allows for a successful attack on the individual 𝒚(0)𝑖 of
HQC-RMRS given an oracle BOO(𝒓) [BDHD+19] that is defined as

BOO(𝒓) =
{

True, if HW(𝒓 + 𝒆) ≤ 𝜏,

False, else.

In other words, the oracle provides the information whether the sum of the input 𝒓 and the error 𝒆
is corrected to zero by a bounded-distance decoder of radius 𝜏. Note that BOO(𝒓) is similar to the
oracle 𝔇𝒆

0(𝒓) (Definition 1) in this thesis, except that it assumes a bounded-distance decoder, i.e., a
fixed decoding threshold, instead of an ML decoder. However, the fixed decoding threshold of the
bounded-distance decoder is essential to Algorithm 12, and in the following we show that replacing
the BOO(𝒓) oracle with the𝔇𝒆

0(𝒓) oracle, i.e., considering an ML decoder instead of a bounded-distance
decoder, causes this algorithm to return incorrect results. Note that this choice of decoder is inherent
to the system and cannot be influenced by the attacker. The while loop in lines 1-7 of Algorithm 12
corresponds to the first step of the attack strategy (c.f. Section 4.4.2), which is to find an input that lies
exactly at the decoding boundary. Lines 9-13 of Algorithm 12 individually query the BOO oracle with
a single bit of this input flipped, which then determines if the corresponding position is set in 𝒚(0)𝑖 .

70

However, this only applies if the resulting input to the decoder is at the decoding threshold for every

position. In Example 4.6.1, a vector in ℛℳ(1, 4) is given, for which this is only the case for a subset
of positions, which leads to an incorrect output even in the case of a single error. In addition to this
counterexample, we implemented the attack strategy and performed a simulated attack by directly
accessing the RM decoder results of the HQC-RMRS reference implementation. We were not able to
correctly retrieve the support 𝒚(0)𝑖 with these simulations.

Example 4.6.1: Counterexample for Algorithm 12 using ℛℳ(1, 4)
The used ℛℳ(1, 4) code is a [16, 5, 8]2 code and therefore codewords are of size 𝑛 = 16. The
error 𝒆 is fixed to 𝒆 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). When evaluating 𝔇𝒆

0(𝒓), recall that
an ML decoder returns the codeword with the smallest HD to all other codewords according
to Eq. (4.1). The algorithm executes in the following way:

First while iteration
𝑣 (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1)
𝑢 (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) → 𝔇𝒆

0(𝑥 + 𝑢) = False

𝑦 ← 𝑢 (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)
Second while iteration

𝑣 (1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)
𝑢 (0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) → 𝔇𝒆

0(𝑥 + 𝑢) = False
𝑦 ← 𝑢 (0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Third while iteration
𝑣 (0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
𝑢 (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) → 𝔇𝒆

0(𝑥 + 𝑢) = True

𝑥 ← 𝑥 + 𝑢 (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
𝑦 ← 𝑣 (0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Fourth while iteration
𝑣 (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
𝑢 (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) → 𝔇𝒆

0(𝑥 + 𝑢) = True

𝑥 ← 𝑥 + 𝑢 (0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
𝑦 ← 𝑣 (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

HW(𝑦) = 1 Terminate while loop.

As claimed by the algorithm, 𝑥 is now an input that is at the decoding boundary, i.e., if a
position inside its support is flipped, we decode to the all-zero codeword (𝔇𝒆

0(𝑥) = True). Now
lines 9-13 of Algorithm 12 are executed:

Initialize 𝑧
𝑧 ← 𝑥 (0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Test first position
𝑥 + 𝑒(1) (1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) → 𝔇𝒆

0(𝑥 + 𝑒(1)) = True

𝑧 ← 𝑧 + 𝑒(1) (1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
Test second position

𝑥 + 𝑒(2) (0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) → 𝔇𝒆
0(𝑥 + 𝑒(2)) = True

𝑧 ← 𝑧 + 𝑒(2) (1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

71

Test third position
𝑥 + 𝑒(3) (0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) → 𝔇𝒆

0(𝑥 + 𝑒(3)) = True

𝑧 ← 𝑧 + 𝑒(3) (1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
Test fourth position

𝑥 + 𝑒(4) (0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) → 𝔇𝒆
0(𝑥 + 𝑒(4)) = False

The oracle indicates no update to z.

After the first eight positions, the algorithm has computed 𝑧 =
(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). For 𝑒(9), the difference between a bounded-distance
decoder and an ML decoder begins to affect the decoding decision:

𝑥 + 𝑒(9) (0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0) → 𝔇𝒆
0(𝑥 + 𝑒(9)) = True

𝑧 ← 𝑧 + 𝑒(9) (1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

While 𝑥 + 𝑒(9) has a HW of more than 𝑑/2, the decoder still decides for the all-zero word. This
holds for all remaining positions in 𝑥, so at the end of the algorithm, 𝑧 is given by

𝑧 = (1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) .
Hence, the strategy does not return the correct error vector in this example.

4.6.2 Attack Strategy

Algorithm 13 FindWordAtBorder

Input: Oracle function 𝔇𝒆
0, Sets ℐ̂ , ℐ̌

Output: Vector 𝒓 ∈ 𝔽𝑛2
2

1: 𝒓 ← 0
2: for 𝜉 ∈ ℐ̂ ∩ ℐ̌ do
3: if 𝔇𝒆

0(𝒓) = True then
4: 𝑟𝜉 ← 1
5: else
6: return Vector 𝒓 ∈ 𝔽𝑛2

2
7: for 𝜉 ∈ ℐ̂ \ ℐ̌ do
8: if 𝔇𝒆

0(𝒓) = True then
9: 𝑟𝜉 ← 1

10: else
11: return Vector 𝒓 ∈ 𝔽𝑛2

2

Algorithm 14 FindError
Input: Oracle function 𝔇𝒆

0, Sets ℐ1 , ℐ2
Output: Vector �̃� ∈ 𝔽𝑛2

2
1: �̃� ← 0
2: for ℐ̂ ∈ {ℐ1 , [0, 𝑛2 − 1] \ ℐ1} do
3: for ℐ̌ ∈ {ℐ2 , [0, 𝑛2 − 1] \ ℐ2} do
4: 𝒓 ← FindWordAtBorder(𝔇𝒆

0 , ℐ̂ , ℐ̌)
5: �̂� ← 𝒓
6: for 𝜉 ∈ ℐ̂ ∩ ℐ̌ do
7: 𝑟𝜉 ← 𝑟𝜉 + 1
8: if 𝔇𝒆

0(𝒓) = True then
9: 𝑒𝜉 ← 𝑒𝜉 + 1

10: 𝑟𝜉 ← 𝑟𝜉 + 1
11: �̃� ℐ̂ ∩ℐ̌ ← �̂� ℐ̂ ∩ℐ̌
12: return Vector �̃� ∈ 𝔽𝑛2

2

In this section, an attack strategy is introduced that considers the characteristics of the ML decoder
of the RM code and, therefore, again allows for the correct retrieval of 𝒚(0). The strategy is based on
two algorithms (Algorithms 13 and 14) that exploit the well-understood structure of RM codewords
as well as the support of the intersection of two codewords. The strategy is formally proven to
successfully retrieve 𝒚(0) if the Hamming weight of the respective RM block is smaller than 𝑑ℛℳ

4 . The
simulation of 𝑦𝑤,𝑚𝑎𝑥 (see Table 4.4) indicates that this condition holds for nearly all possible keys
of HQC, as 99.9 % of simulated keys show a 𝑦𝑤,𝑚𝑎𝑥 of 9 with 𝑑ℛℳ being 192 for HQC-RMRS-128
and 320 for HQC-RMRS-192/HQC-RMRS-256 (c.f. Table 4.2), respectively. First, the algorithms are
introduced with the respective lemmas leading to the final theorem of Algorithm 14. In order to

72

increase the readability, the respective proofs are given in Appendix A. Finally, this section concludes
with a discussion of the required oracle calls of the presented strategy compared to related work.

To begin, Lemma 1 shows some general results on the intersection of the supports of ℛℳ(1, 𝑚)
codewords. Note that there exists extensive literature on RM codes and their supports are well
understood. The statements in the following heavily rely on the properties of the multivariate
polynomials associated with each RM codeword as defined in Eq. (4.20). The construction of the
different polynomials of a RM code is detailed in Section 4.2.5. Note that 𝑝 + 1 is equal to the binary
inverse of the polynomial 𝑝, as an addition by 1 consists of an xor with the all-one vector.

Lemma 1. Consider two polynomials �̂� , �̌� ∈ 𝔽2[𝒙] with deg(�̂�) = deg(�̌�) = 1 and �̌� ∉ {�̂� , �̂� + 1}. Denote

𝑑 = 2𝑚−1
. Then, for any 𝑓 ∈ ℛℳ(1, 𝑚) we have

| supp(𝑓) ∩ supp(�̂� �̌�)| = HW(𝑓 �̂� �̌�) =

0, if 𝑓 ∈ {0, �̂� + 1, �̌� + 1, �̂� + �̌�}
𝑑
2 , if 𝑓 ∈ {1, �̂� , �̌� , �̂� + �̌� + 1}
𝑑
4 , else.

Using Lemma 1 allows to construct Algorithm 13 for which two polynomials �̂� and �̌� with �̌� ∉
{�̂� , �̂� + 1} are chosen, that define ℐ̂ = supp(�̂�) and ℐ̌ = supp(�̌�) as the input to the algorithm. The
resulting output 𝒓 is an input to the decoder at the decoding boundary, which concludes the first
part of the general attack strategy (c.f. Section 4.4.2). With this choice of polynomials, the algorithm
always results in an input vector that causes a specific and controllable ML decoding result as stated
in Lemma 2.

Lemma 2. Denote by �̂� , �̌� ∈ 𝔽2[𝒙] two polynomials with deg(�̂�) = deg(�̌�) = 1 and �̌� ∉ {�̂� , �̂� + 1}. Then,

for 𝑟 = FindWordAtBorder(𝔇𝒆
0 , supp(�̂�), supp(�̌�)) as in Algorithm 13 and ℱ = {�̂� , �̌� , �̂� + �̌� + 1} it holds

that 𝔇ℛℳ(𝑟 + 𝑒) ∈ ℱ and the decision is not the result of a tie in the distance with some other codeword of

ℛℳ(1, 𝑚) \ ℱ .

Due to the specific structure of the words in the set ℱ , i.e., the possible outputs of the ML decoder
for the considered input, we are now able to make a statement on the behavior of the oracle when a
single bit of this input is flipped (Lemma 3).

Lemma 3. Denote by �̂� , �̌� ∈ 𝔽2[𝒙] two polynomials with deg(�̂�) = deg(�̌�) = 1 and �̌� ∉ {�̂� , �̂� + 1}. Then, for

𝑟 = FindWordAtBorder(𝔇𝒆
0 , supp(�̂�), supp(�̌�)) as in Algorithm 13 and any 𝜉 ∈ supp(�̂� �̌�) it holds that

𝔇𝒆
0(𝑟 + 𝑢(𝜉)) =

{
True, if 𝑟𝜉 + 𝑒𝜉 = 1
False, else,

where 𝑢(𝜉) ∈ 𝔽2𝑚
2 denotes the (polynomial corresponding to the) 𝜉-th unit vector.

This is exactly the behavior required for a successful attack strategy as the decoder now is at the
decoding boundary for all positions of supp (�̂� �̌�). Now, if 𝑟𝜉 + 𝑒𝜉 = 1, the error is reduced by one,
and the decoder returns the all-zero codeword, which is indicated by the oracle 𝔇𝒆

0. This again allows
to successively test all positions in 𝒓 restricted by supp (�̂� �̌�). This restriction to the support of the
intersection between �̂� and �̌� is the reason for Algorithm 14. With this algorithm, multiple inputs
𝒓 are found through the use of Algorithm 13 initialized with different polynomials such that the
resulting supports span the whole length of a RM codeword and thus allow for a test of all positions.
Using Lemma 3 it can be derived that HW(�̂� �̌�) = 𝑑

2 and for a first-order RM code it holds that 𝑛 = 2𝑑
(c.f. Section 4.2.5). Therefore, four inputs at the decoding boundary have to be found by Algorithm 13
in order to be able to test the complete length of a codeword. Due to the structure of first-order RM
codewords it is sufficient to use all combinations of {�̂� , �̂�+1} and {�̌� , �̌�+1} as shown in Example 4.6.2.

73

Example 4.6.2: Intersection of RM Polynomials used in Algorithm 14

In this example, it is shown why it is sufficient to use all combinations of {�̂� , �̂�+1} and {�̌� , �̌�+1}
in lines 2-3 of Algorithm 14. Using a ℛℳ(1, 4) code, we choose the polynomials �̂� = 𝒑4 and
�̌� = 𝒑3 as given by Example 4.2.3, which results in

�̂� (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1)
�̌� (0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1) .

The binary inversion of these polynomials is given by an addition with the all-ones vector

�̂� + 1 (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)
�̌� + 1 (1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) .

Finally, through multiplication, the different combinations are given by

�̂� �̌� (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1)
�̂�(�̌� + 1) (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0)
(�̂� + 1)�̌� (0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)
(�̂� + 1)(�̌� + 1) (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

.

Note that the union of all supports supp(�̂� �̌�) ∪ supp(�̂�(�̌� + 1)) ∪ supp((�̂� + 1)�̌�) ∪ supp((�̂� +
1)(�̌� + 1)) includes all positions in a codeword.

Finally, in Theorem 1 it is shown that Algorithm 14 is always successful in recovering the correct
vector 𝒆, given HW(𝒆) < 𝑑

4 . Note that the theorem includes the multiplicity 𝑠 of the used RM
code (c.f. Section 4.2.5) and therefore 𝑑 = 𝑠2𝑛2−1. Accordingly, the input of the algorithm consists
of the duplicated versions of the polynomials 𝑝1 and 𝑝2, which results in ℐ1 = supp×𝑠(𝑝1) and
ℐ2 = supp×𝑠(𝑝2).
Theorem 1. Let 𝔇𝒆

0 be an oracle for the code ℛℳ×𝑠(1, 𝑚) ⊂ 𝔽𝑠2
𝑚

2 of minimum distance 𝑑 = 𝑠2𝑚−1
, where

𝒆 ∈ 𝔽𝑠2
𝑚

2 with HW(𝒆) < 𝑑
4 . Consider two polynomials 𝑝1 , 𝑝2 ∈ 𝔽2[𝒙] with deg(𝑝1) = deg(𝑝2) = 1 and

𝑝2 ∉ {𝑝1 , 𝑝1 + 1}. Then, the output of Algorithm 14 is FindError(𝔇𝒆
0 , supp×𝑠(𝑝1), supp×𝑠(𝑝2)) = 𝒆.

Required Oracle Calls The strategy, as described in this section, requires at most 4 · (2·𝑛2
4 + 𝑛2

4)
oracle calls dependent on the length of the RM code. Note that the algorithm has to be repeated
for all 𝑛1 blocks of 𝒚(0) introducing an additional factor of 𝑛1. We compare the required oracle calls
with the timing attack by Guo et al. [GHJ+22] in Table 4.9. In addition to some disadvantages of
the exploited timing side-channel (see Section 4.6.3 for a detailed discussion), this approach shows
a largely increased number of required oracle calls. In essence, their attack works by randomly
increasing the Hamming weight of an input to the RM decoder until they reach the decoding boundary.
Then, the oracle can be queried with the individual bits of the input flipped. From the now found
error positions, only those that are not self-introduced in the first step are counted as a valid part of
the support of 𝒚(0)𝑖 . Therefore, the attack steps have to be repeated until each position is evaluated and
optionally a certain threshold for each position is reached. This makes the attack non-deterministic,
and therefore, the authors report the amount of required ideal timing oracle calls as the median of
6096 attacks. For HQC-RMRS-128 our attack strategy reduces the required oracle queries by a factor
of 16.34. We additionally observed that the attack strategy shown by Guo et al. [GHJ+22] is also
useable with our close-to-zero oracle. We implemented their strategy targeting a single 𝒚(0)𝑖 block and
simulated the required oracle calls14 for 400 000 attacks with 𝑦𝑤,𝑚𝑎𝑥 in the range 1 ≤ 𝑦𝑤,𝑚𝑎𝑥 ≤ 10 given

14The simulation integrates the C reference implementation of the RM decoder and directly uses the decoding result to
build the required oracle.

74

𝒖

𝒗
𝒄 = (𝒖 , 𝒗)

𝒚

𝒗 − 𝒖𝒚 𝒞 .Dec
𝒢𝒎′

Sample
𝜃

𝒞 .Enc 𝒎′𝑮 + 𝒔𝒓2 + 𝒆

𝒎′𝑮

𝒔

𝒓1 + 𝒉𝒓2

𝒓2

𝒆
𝒓1

𝒉

=

ℋ abort

𝒦(𝒎 , 𝒄) 𝐾

no

yes

𝒅′ 𝒅
𝒖′

𝒗′

Decryption Encryption

Power side-channel [SRSWZ21] Power side-channel [UXT+21] Timing side-channel [GHJ+22]

Figure 4.21 Building blocks of the HQC-RMRS decapsulation (c.f. Algorithm 11) with the side-channel attack
targets used in related work.

a threshold of one (each position has to be evaluated once). The resulting median of the required
oracle calls is shown in the third column of Table 4.9. These numbers are reported to ensure a fair
comparison that is not influenced by the different types of oracles. To summarize, the presented
attack strategy in comparison to [GHJ+22] requires by a factor of 11.44 (HQC-128) and 12.07 (HQC-
192/256) less oracle queries when using the proposed close-to-zero oracle. In addition, it is proven
to be successful for HW(𝒚(0)𝑖) < 𝑑ℛℳ

4 , where 𝑑ℛℳ = 𝑠 · 2𝑚−1.

This work Timing Attack [GHJ+22] Strategy of [GHJ+22] using 𝔇𝒆
0

HQC-128 1152*46 18 829*46a 13 174*46
HQC-192 1920*56 - b 23 170*56
HQC-256c 1920*90 - b 23 170*90

a) The authors report a median of 866 143 oracle calls to retrieve the whole 𝒚(0). To provide comparable numbers, we report the required
calls per block.

b) Numbers not shown in [GHJ+22].
c) The same simulation results as for HQC-RMRS-192 are shown since both use the same RM code.

Table 4.9 Comparison of required oracle queries for the different attack strategies.

4.6.3 Side-Channel Targets to Build the Required Oracle

There are several possible side-channels that can be used to construct the close-to-zero oracle 𝔇𝒆
0(𝒓)

as given in Definition 1. In this section, we describe the results of directly attacking the implemented
RS decoder of the HQC-RMRS reference implementation using the power side-channel described
in Section 4.5.2. In addition, the approaches in related work are discussed, and it is shown how
or whether these side-channels can be adapted to build the required oracle for the presented attack
strategy. An overview of the different side-channel targets of the HQC decapsulation is shown in
Fig. 4.21.

Power Side-Channel of the RS Decoder It is possible to construct our required oracle from the
decoding result of the RS decoder. First, we have to recall that our oracle indicates whether the RM
decoder is able to correctly decode to the all-zero codeword or the decoding fails, and any other
codeword is returned. Transferring this behavior to be observable through the RS decoder requires
setting all the remaining 𝒚(0)𝑖 that are not attacked to zero. Then, if the RS decoder has to correct
an error, we know that the RM decoder was not able to return the correct all-zero codeword, and

75

0 100000 200000 300000 400000 500000 600000 700000 800000

Time [samples]

−600

−500

−400

−300

−200

−100

0

100

200

300

400

500

600

t‑v
al
ue

t‑test threshold (t = ±4.5)
poi selection border (Thattack = ±100)

1Figure 4.22 Resulting t-values for the error-locator polynomial computation (compute_elp()) of the HQC-
RMRS-128 reference implementation. The marked 𝑇ℎ𝑎𝑡𝑡𝑎𝑐𝑘 is used as a threshold for the actual attack.

the oracle result is False. In order to observe that the RS decoder has to correct an error, we use
the template matching approach shown in Section 4.5.2. Note that although this method targets a
BCH decoder, we can still use the approach in our setting. This is due to the fact that BCH codes are
subcodes of RS codes, and their decoder is similar as discussed in Section 4.2.4. The attack target for
building the templates is the computation of the error-locator polynomial, as it showed the highest
amount of exploitable leakage. As the input can be directly controlled by an attacker, templates
for both classes can be constructed through the power side-channel. Then, for each oracle call, the
constructed input is fed into the decapsulation and the respective power trace is compared to the
templates through the use of a sum-of-squared-difference metric. As a result, the class with the
smallest metric is chosen as the oracle result.

We evaluated the oracle with a power side-channel setup consisting of a STM32F415RGT6 ARM
Cortex-M4 microcontroller mounted on a Chipwhisperer CW308 UFO board running at 10 MHz. The
power consumption is measured through the integrated shunt resistor with a PicoScope 6402D USB-
oscilloscope running at a sampling rate of 156.25 MHz. As an attack target, we use the HQC-RMRS-128
reference implementation (c.f. Section 4.3.2 for a description of the used submission package). With
this setup, a total amount of 1000 template traces is used for the initialization of the oracle using a t-test
threshold of 100 for POI detection. The t-test results are shown in Fig. 4.22, where the shown samples
correspond to the complete execution time of the error-locator polynomial computation. Using the
initialized oracle, we are able to correctly classify 100 000 attack traces. As this number is above the
required number of oracle calls for a complete key recovery, the attack on the complete secret key is
considered successful.

Power Side-Channel of the used Hash Functions In [UXT+21], the authors show how to create a
plaintext-checking oracle for HQC-RMRS by observing a power side-channel of the used extendable-
output function SHAKE256. With their oracle, they are able to distinguish if a certain input results
in a fixed message 𝒎′ or if the result is different from this fixed message. As 𝒎′ is directly used
as an input to 𝒢 and ℋ , the authors identify these hash functions as an attack target. In order to
instantiate their oracle, they use a machine learning classifier based on a CNN. They evaluate their
CNN on the SHAKE software implementation of pqm4 [KRSS] with the same side-channel platform
and microcontroller as used in the evaluation of the RS decoder in this thesis. Using 30 000 training
traces, they achieve an accuracy of 0.998 when classifying 10 000 test traces, which can be further
increased through the combination of multiple classifications.

76

This oracle can not be directly used with the proposed attack strategy, as the resulting message
after decryption is always zero. It can nevertheless be adapted to work as our close-to-zero oracle
(Definition 1) by setting the resulting input to 𝒞 .Dec such that the input to the RS decoder is set to
its decoding boundary. This can be done by setting (𝒅ℛ𝒮 − 1)/2 blocks of 𝒚(0) that are not currently
attacked to be decoded as a non-zero value, thus acting as an error for the all-zero RS codeword.
Then the RM decoding result of the attacked 𝒚(0)𝑖 determines if the resulting message is zero (True) or
unequal to zero (False), which is observable through their oracle.

Timing Side-Channel of the used Sampler Guo et al. [GHJ+22] showed a timing side-channel in the
implementation of the sampler of the HQC-RMRS reference implementation that is used to generate
the random fixed-weight vectors 𝒆, 𝒓1, and 𝒓2. This is the case as the sampler implements rejection
sampling, which requires varying calls to the PRNG to generate potentially required additional
randomness. As the seed 𝜃 for the PRNG is derived from the message 𝒎, the amount of additional
required PRNG calls is dependent on 𝒎 and therefore also the execution time of the decapsulation.
This timing side-channel allows to build a plaintext-checking oracle for which the authors show an
attack strategy. In order for two different messages to be distinguishable through their oracle, the
initial message is chosen such that it requires at least three additional calls to the PRNG, which
has a low probability of 0.58 % for all possible messages. Due to the inherent uncertainty of timing
side-channels and this probability still leaving room for ambiguity, the authors introduce a majority
threshold for the classification of each bit. Their empirical results show a classification success rate
of 87 % with a majority threshold of five.

This oracle can not be used with the presented attack strategy as its resulting message 𝒎 is always
zero. Unfortunately, this message does not require multiple calls to the PRNG, and therefore, it is not
easily distinguishable through this timing side-channel. In contrast, the developed attack strategy
allows the usage of both described power side-channels, which show a better classification result
and eliminate the inherent uncertainty of a timing side-channel, removing the need for a majority
decision.

77

4.7 Countermeasures

In this section, countermeasures against the developed attacks in this thesis are discussed. First, a gen-
eral countermeasure against chosen-ciphertext attacks through the detection of attack-specific input
patterns is discussed in Section 4.7.1. This is followed by an evaluation of an established countermea-
sure by Merli et al. [MSS13] in Section 4.7.2 that is used to secure a decoder of an error-correcting code
in the context of Physical Unclonable Functions (PUFs). In Section 4.7.3, a countermeasure, which is
based on the insertion of additional errors before the decoding of the outer code, is presented. This
countermeasure is able to significantly reduce the side-channel leakage of the decoder but comes with
the downside of required modifications of the used code. Finally, Section 4.7.4 concludes the section
with a discussion and an outlook on future work required to develop a secure implementation of
HQC.

4.7.1 Detection of Attack Patterns

The attacks described in Sections 4.5 and 4.6 set the ciphertext for the decapsulation of HQC, such
that the secret key acts as the error added to a valid codeword. This is achieved by a ciphertext
input of 𝒖 = (1, 0 . . . , 0) ∈ 𝔽𝑛2 and successively querying the algorithm with varying 𝒄, where only
the attacked codeword of the inner code is set to a non-zero value (c.f. Section 4.4.2). Therefore, in
order to counteract these attacks, it is possible to detect the specific pattern at the beginning of the
decapsulation (Algorithm 11). If an active attack is detected, the decapsulation can be aborted before
any HQC operations are performed, resulting in no exploitable side-channel leakage.

The input 𝒖 = (1, 0 . . . , 0) can be detected through its characteristic HW of one. Additionally, this
also allows to detect all cyclic shifts of 𝒖, which would allow an attack on the shifted version of the
secret key. For the presented attack, all patterns for 𝒗 can be detected, as only one codeword of the
inner code is set to a non-zero value. Nevertheless, in practice, this detection is aggravated as the
attacker only has to make sure that the decoding result of all inner codewords, except the currently
targeted one, is the all-zero codeword. This allows an attacker to randomly choose the support of non-
targeted codewords of the inner code such that their decoding still results in the all-zero codeword, i.e.,
there are many inputs to the decoder that show the desired decoding results. Therefore, the detection
of invalid inputs has to be carefully crafted in order to not falsely discard valid ciphertexts. This shows
a strong downside of such a detection approach, as there is the possibility that an attack is adapted
to queries that cannot be detected from valid ciphertext without performing the actual decryption.
An example of such an attack has been published by Hermelink et al. [HPP21] for the lattice-based
KEM Kyber. With this attack, the authors are able to defeat their statistical countermeasure [PPHH]
that uses a test if the ciphertext follows a binomial distribution. Only ciphertexts that show a positive
result for this test get decrypted by the algorithm, thwarting published chosen-chipertext attacks.
The attack in [HPP21] defeats such a statistical test as it only has to manipulate a single bit of a valid
ciphertext, which can not be identified anymore.

Due to the mentioned downside, dedicated side-channel countermeasures for the outer code of
HQC are explored in the following sections.

4.7.2 Codeword Masking of the Outer Decoder

Merli et al. [MSS13] proposed a masking scheme in order to secure an error-correcting code against
side-channel attacks, which they call codeword masking. With their scheme, they exploit a property
of linear codes, which states that the sum of two codewords is again a codeword of the same code
𝒞 . This allows to randomly sample a second information vector 𝒖𝑚 that is encoded to the codeword
𝒄𝑚 = 𝒞 .Enc(𝒖𝑚). An input 𝒓 to a decoder can then be masked through an addition with 𝒄𝑚 before
the decoding as

𝒖′ = 𝒞 .Dec(𝒓 + 𝒄𝑚) .

78

𝒞 .Enc
𝒖𝑚 +

𝒄𝑚

𝒓

𝒞 .Dec +𝒖′ 𝒖

Figure 4.23 Visualization of codeword masking for error-correcting codes as proposed by Merli et al. [MSS13].

The resulting information vector after decoding 𝒖′ then consists of the decoding result of the combined
codewords as 𝒖′ = 𝒖 + 𝒖𝑚 . As the mask 𝒖𝑚 is known, the final unmasked decoding result 𝒖 can be
retrieved through subtraction of the mask according to

𝒖 = 𝒖′ − 𝒖𝑚 .

The concept of codeword masking is visualized in Fig. 4.23. With the choice of the mask as a valid
codeword, the error correction capabilities of the code are unaltered, making it, in principle, suitable
for the use in HQC as the amount of correctable errors has to be unaltered in order to achieve the
desired security level and decryption failure rate. A masked variant of the decoder for the outer code
in HQC-Decrypt (Algorithm 9) is shown in Algorithm 15.

Algorithm 15 Codeword masking of the outer code during HQC-Decrypt (Algorithm 9)

Input: �̃� = 𝒞2.Dec(𝒗′) ⊲ Decoding result of the inner code 𝒞2

1: 𝒎𝑚
$←− 𝔽𝑘2

2: 𝒄𝑚 = 𝒞1.Enc(𝒎𝑚)
3: 𝒎′ = 𝒞1.Dec(�̃� + 𝒄𝑚) ⊲ This results in 𝒎′ = 𝒎 +𝒎𝑚

4: 𝒎 = 𝒎′ −𝒎𝑚

Output: 𝒎

Codeword masking has been successfully utilized by Merli et al. [MSS13] in order to counteract
a CPA on the used error correction of a PUF. Their attack targets the input register of a hardware
implementation of a BCH code by using the HD of the updated register content as its power model.
With a successful attack on this input register, an attacker can infer the PUF response, which breaks
the security of the system as a used key is derived from this response. It has to be noted that the attack
targets a single point in time, i.e., the register update, and since the attack is differential, it requires
a model of the power consumption. With codeword masking, the content of the input register is
masked such that a first-order CPA is not successful anymore.

For the chosen-ciphertext attacks shown in this thesis, the attacker builds a side-channel oracle
that only needs to distinguish between two classes as detailed in the respective section of both
attacks on the different HQC versions (Sections 4.5.2 and 4.6.3). Therefore, the complete side-channel
information of the execution of the attacked decoder can be used to build the required oracle. This
leads to codeword masking not being effective for a syndrome-based decoder, as only the syndrome
calculation is masked through the additional codeword 𝒄𝑚 , while the resulting syndromes only
depend on the error as shown in Eq. (4.10), which is not affected by the masking scheme. An attacker
can build the oracle from all parts of the decoder after the syndrome computation, even if codeword
masking is used. In practice, since the highest amount of exploitable side-channel information is
obtained from the computation of the error locator polynomial (c.f. Fig. 4.18), this does not make an
attack more difficult.

4.7.3 Inserting Additional Errors

As established masking methods for error-correcting codes are not applicable, as discussed in Sec-
tion 4.7.2, a different countermeasure approach is discussed in the following. The idea of this

79

countermeasure is to insert an additional error vector 𝒆𝑚 ∈ 𝔽𝑛1
𝑞 before the decoding of the outer

code 𝒞1 during HQC-Decrypt, forcing the decoder to correct an error for all inputs. This breaks the
assumption required by the side-channel oracles discussed in Sections 4.5.2 and 4.6.3. Two different
methods for insertion of additional errors are presented in this section. First, a fixed amount of errors
is added to the input, while in a second attempt the amount of errors is chosen randomly from an
interval. Unfortunately, a downside of this approach is that it changes the desired error-correcting
capabilities of the code. This has to be considered as the parameters, and thus, the used codes are
chosen by the HQC authors such that a desired security level with its required decryption failure rate
is achieved. Therefore, this section concludes with a discussion on how to change the used code in
order to account for the additional errors.

Fixed Number of Errors In this case, the error vector 𝒆𝑚 ∈ 𝔽𝑛1
𝑞 is chosen with a fixed weight

HW(𝒆𝑚) = 𝜙 but the position of the errors is sampled randomly. Note that for 𝑞 ≠ 2, which is the case
for the RS code of HQC-RMRS, the hamming weight is defined as the number of nonzero symbols.
The resulting algorithm for the decoding of the outer code 𝒞1 is shown in Algorithm 16.

Algorithm 16 Adding a fixed Number of Errors to the outer code of HQC-Decrypt (Algorithm 9)

Input: Number of errors 𝜙, �̃� = 𝒞2.Dec(𝒗′)
1: 𝒆𝑚

$(𝑤=𝜙)←−−−−− 𝔽𝑛1
𝑞 ⊲ For 𝑞 ≠ 2 erroneous symbols are randomly chosen

2: 𝒎 = 𝒞1.Dec(�̃� + 𝒆𝑚)
Output: 𝒎

In order to discuss the effectiveness of this countermeasure, we have to recall the required oracle
results for the presented attacks. The attacks require access to an oracle that distinguishes exactly two
classes, namely 𝒞1.Dec has to correct an error or the input to the decoder is the all-zero codeword and
the decoder does not have to correct an error15. With the additional error vector 𝒆𝑚 , the two classes are
transformed to a correction of 𝜙+1 errors and the correction of 𝜙 errors, respectively. The results of a
t-test using 2000 traces of the error locator polynomial computation of the RS decoder of HQC-RMRS-
128 for different values of 𝜙 are shown in Fig. 4.24. If the countermeasure is deactivated (𝜙 = 0),
the whole computation shows exploitable leakage. In contrast, for an activated countermeasure,
the part of the computation that shows exploitable leakage is narrowed down with an increasing
amount of inserted errors. In this case, the first peak that occurs in the t-test corresponds to the
point of the computation where both classes differ in the amount of errors that have to be corrected.
Although this decreases the amount of exploitable POIs, the resulting t-values and, therefore, the
leakage is not reduced significantly. The reason for this characteristic lies in the used constant
time version of Berlekamp-Massey algorithm [WBB+22, Appendix A] that is used in the reference
implementation of HQC-RMRS. This algorithm iteratively computes the error locator polynomial for
which the implemented constant time version requires 2𝛿 − 1 iterations. Nevertheless, the algorithm
already successfully retrieves the error locator polynomial at an earlier iteration corresponding to
two times the amount of errors in �̃� + 𝒆𝑚 independently of the position of the errors. To achieve
the required constant time execution, dummy operations are performed for the remaining iterations.
Therefore, until the error locator polynomial is retrieved, actual updates are computed and both
classes (𝜙 + 1 or 𝜙 errors) are hard to distinguish, which is also shown in Fig. 4.24. For the next
iteration, an update has to be computed in the case of 𝜙 + 1 errors, while for 𝜙 errors dummy
operations are performed. This leads to distinguishable leakage, which is shown by the t-test as the
first characteristic peak. For the remainder of the computation only dummy operations are performed
for both classes. As these depend on the number of errors, they lead to different leakage for both
classes shown in Fig. 4.24 with the additional peaks for the remaining iterations of the algorithm. It

15The oracle for the attack on HQC-RMRS as defined in Definition 1 requires the oracle output of the RM code (𝒞2). As
discussed in Section 4.6.3, for the actual instantiation of this oracle, the decoding result of the RS code (𝒞1) can be used.

80

can therefore be concluded that the additional insertion of a fixed number of errors only shifts the
distinction boundary, i.e., the distinction between zero or one error is shifted to 𝜙 or 𝜙 + 1 errors, but
it is not suitable as a countermeasure for the presented attacks.

0.0 0.5 1.0 1.5 2.0

Time [samples] ×106

−1500

−1000

−500

0

500

1000

1500

2000

t‑v
al
ue

1(a) 𝜙 = 0

0.0 0.5 1.0 1.5 2.0

Time [samples] ×106

−1500

−1000

−500

0

500

1000

1500

2000

t‑v
al
ue

1(b) 𝜙 = 5

0.0 0.5 1.0 1.5 2.0

Time [samples] ×106

−1500

−1000

−500

0

500

1000

1500

2000

t‑v
al
ue

1(c) 𝜙 = 10

0.0 0.5 1.0 1.5 2.0

Time [samples] ×106

−1500

−1000

−500

0

500

1000

1500

2000

t‑v
al
ue

1(d) 𝜙 = 14

Figure 4.24 T-test results of the error locator polynomial computation of the RS decoder of HQC-RMRS-128 for
different values of 𝜙 with a total of 2000 traces.

Random Error Insertion With this countermeasure the amount of inserted errors 𝜙 is chosen ran-
domly from the set {0, . . . , 𝜙max}, resulting in Algorithm 17. Therefore, the outer decoder has to
correct a varying amount of errors for each execution of HQC-Decrypt. The t-test results for the RS
decoder of HQC-RMRS-128 for multiple 𝜙max are shown in Fig. 4.25. The results show that even for
𝜙max = 1 (c.f. Fig. 4.25a), the leakage is reduced significantly in contrast to an unsecured decoder.
Through an increase of 𝜙max, this leakage can be reduced further, with 𝜙max = 10 exceeding the
threshold of 4.5 only marginally.

Algorithm 17 Random Error Insertion for the outer code of HQC-Decrypt (Algorithm 9)

Input: Maximum amount of errors 𝜙max, �̃� = 𝒞2.Dec(𝒗′)
1: 𝜙

$←− {0, . . . , 𝜙max}
2: 𝒆𝑚

$(𝑤=𝜙)←−−−−− 𝔽𝑛1
𝑞 ⊲ Erroneous symbols are randomly chosen

3: 𝒎 = 𝒞1.Dec(�̃� + 𝒆𝑚)
Output: 𝒎

81

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time [samples] ×107

−30

−20

−10

0

10

20

30

t‑v
al
ue

t‑test threshold (t = ±4.5)

1(a) 𝜙max = 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time [samples] ×107

−30

−20

−10

0

10

20

30

t‑v
al
ue

t‑test threshold (t = ±4.5)

1(b) 𝜙max = 2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time [samples] ×107

−30

−20

−10

0

10

20

30

t‑v
al
ue

t‑test threshold (t = ±4.5)

1(c) 𝜙max = 5

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time [samples] ×107

−30

−20

−10

0

10

20

30

t‑v
al
ue

t‑test threshold (t = ±4.5)

1(d) 𝜙max = 10

Figure 4.25 T-test results for the RS decoder of HQC-RMRS-128 secured with the random error insertion
countermeasure. All results are shown for a total amount of 500 traces.

Required Changes to 𝒞 The additional inserted errors have to be compensated by an increased
error correction capability of the used code 𝒞 in order to achieve the desired decryption failure rate.
As 𝒞 is built through a code concatenation, the length of either 𝒞1 or 𝒞2 can be increased. If 𝒞2 is
enlarged, the outer code has the correct fewer errors, and therefore, this margin can be used for the
countermeasure. In the case of HQC-RMRS, the ML decoding of the used RM code implies that its
decoding probability can not be stated exactly, which makes it hard to determine the exact margin
for which additional errors can be inserted. Therefore, we only discuss an enlargement of the outer
code 𝒞1 in this thesis. This implies increasing the error correction capability such that the additional
inserted errors can be corrected, which results in

𝛿′ = 𝛿 + 𝜙max ,

where 𝛿 is the error correction capability of the unsecured code.
In the following, an adaption of the RS code is discussed, as HQC-RMRS is the current version of

the HQC cryptosystem. The length of the unshortened RS code is fixed to 𝑛1 = 28 − 1 since the code
concatenation is designed for symbols of 𝒞1 with 𝑞 = 28. Therefore, in order to achieve 𝛿′, the number
of symbols 𝑘 has to decrease as given by

𝑘 = 𝑛1 − 2𝛿′ = 𝑛1 − 2(𝛿 + 𝜙max) .
In consequence, the length of the shortened code has to increase, as the corresponding 𝑘 of the
shortened code is fixed and has to reflect the length of the shared secret of the KEM, i.e., 𝑘 = 16

82

RS code shortened RS code Overhead

[𝑛, 𝑘, 𝛿′] [𝑛1 , 𝑘, 𝛿′] 𝑛2 𝑛1𝑛2 𝑛 |pk| |𝑐|
HQC-RMRS-128 [255, 205, 15+10=25] [66, 16, 25] 384 25 344 25 349 42.8 % 42.7 %
HQC-RMRS-192 [255, 203, 16+10=26] [76, 24, 26] 640 48 640 48 661 35.4 % 35.5 %
HQC-RMRS-256 [255, 177, 29+10=39] [110, 32, 39] 640 70 400 70 507 22.2 % 22.2 %

Table 4.10 Resulting parameter sets of HQC-RMRS for 𝜙max = 10. For completeness, it has to be noted that the
correct parameter for 𝜙max should be evaluated for each parameter set individually and the shown parameter
sizes are provided as an estimate of the resulting overhead of the countermeasure.

for HQC-RMRS-128. The resulting parameters of HQC-RMRS for 𝜙max = 10 are given in Table 4.10,
where 𝑛 is chosen to be the next primitive prime larger than 𝑛1𝑛2. With the countermeasures, the
increase in the length 𝑛 results in an overhead of the public key size16 of 42.8 %, 35.4 %, and 22.2 %,
while the ciphertext size shows an increase of 42.7 %, 35.5 %, and 22.2 %.

Although the increase in the code length is able to compensate for the additional errors, the security
of the system has to be reevaluated for the now larger instances of the underlying QCSD problems.
This includes the choice of the parameters 𝑤, 𝑤r, and 𝑤e such that Eq. (4.24) is satistied. In order to
construct a secure cryptosystem, these evaluations have to be carefully performed by experts in the
field of coding theory and are considered out of scope for this thesis.

4.7.4 Conclusion

In this section, several countermeasures against the chosen-ciphertext attacks developed in this the-
sis were discussed. With the detection of characteristic attack patterns, the proposed attacks can
be prevented with low additional resources. Nevertheless, an adaption of the attacks to patterns
that can not be distinguished from valid ciphertexts without decryption again defeats this type of
countermeasure. Such an adaption has already been shown for an attack on a lattice-based system.

The established codeword masking countermeasure is not applicable due to the syndrome-based
decoder of the HQC reference implementation and the fact that side-channel information correspond-
ing to the complete decapsulation, starting from the execution of the decoder, can be used to build
the required oracle. The option to secure other decoder types of an RS code with codeword masking
was additionally evaluated in [Kai22] under the supervision of the author of this thesis. Here, the
assumption was that for a decoder that is not syndrome-based, the countermeasure is able to mask
the complete execution of the decoder. First, an implementation of a Welch-Berlekamp decoder was
developed and analyzed with the result that even though codeword masking is employed, this de-
coder still shows exploitable leakage. Further experiments show that the primary source of leakage
is the constant time pivoting strategy during the required Gaussian elimination step of the decoder.
In a second step, a list decoder for the RS code was developed. The results show that codeword
masking is also ineffective for this decoder type, as the required degree function depends on the
number of erroneous symbols, which exhibits characteristic leakage. Additionally, in order to achieve
a constant-time implementation, the decoder has to perform dummy operations after all errors have
been corrected, which is identified as another source of exploitable leakage. It can, therefore, be
concluded that codeword masking is not applicable as a countermeasure for the proposed attacks.

The random insertion of additional errors before the decoding of the outer code 𝒞1 during HQC-
Decrypt has shown to be effective as it forces the decoder to correct an error for all inputs to the
algorithm. Nevertheless, the effectiveness of this countermeasure depends on the maximum number
of additional inserted errors 𝜙max, which is limited for a particular adaptation of the used code. With
this adaptation, the used code has to be enlarged in order to be able to correct the additional inserted

16Note that the secret key of HQC is not increased in size by this parameter change as it is only stored as the seed used
for its generation.

83

errors. This ultimately increases the parameter sizes and additionally implies that the security of the
system has to be reevaluated as the instances of the underlying QCSD problems change. As changes
to the system with their required reevaluation of the security have to be performed carefully by
experts in the field, a countermeasure with such a requirement is usually not desired. Nevertheless,
the current status of the NIST competition would allow the authors of HQC to design a version of the
system with a specific error margin for this countermeasure.

For future work, a complete masking scheme of the whole HQC algorithm has to be developed in
order to provide a secure implementation against the attacks presented. Such a scheme is usually
designed in a certain model, e.g., the 𝑑-probing model [ISW03], which splits the sensitive variable
into 𝑑 + 1 shares providing security against a 𝑑-th order attack. In order to prove the security of
the masking scheme, the algorithm is split into small parts, called gadgets, for which the security is
proven individually. Multiple gadgets can then be securely composed in order to construct the masked
implementation of the whole algorithm. Work in the direction of provable masked implementations
usually targets block ciphers like AES [DR20] or sponge constructions like Keccak [Dwo15], which
consists of boolean operations and multiplications for which efficient and secure gadgets are known.
Nevertheless, the used codes of HQC utilize operations that require the development of new kinds
of gadgets for which, to the best of this author’s knowledge, no prior work exists. A first work in
this direction has been shown by Demange and Rossi [DR24], who have developed multiple novel
gadgets in order to provide a masked implementation of the Quasi-Cyclic Moderate Density Parity-
Check (QC-MDPC) code used in the code-based cryptosystem BIKE [ABB+20a].

85

Part II

Explainability for Deep Learning-based
Side-Channel Analysis (DL-SCA)

87

5 Preliminaries

This chapter provides the preliminaries for the work on DL-based SCA presented
in this thesis. It is based on parts of the following publications:

• Egger/Schamberger/Tebelmann/Lippert/Sigl: A Second Look at the ASCAD

Databases published in Constructive Side-Channel Analysis and Secure Design

(COSADE), 2022 [EST+22]

• Schamberger/Egger/Tebelmann: Hide and Seek: Using Occlusion Techniques for

Side-Channel Leakage Attribution in CNNs published in Applied Cryptography

and Network Security Workshop (ACNS), 2023 [SET23].
In particular, the presentation of the evaluation metrics in Section 5.1.4 is based on
[SET23] and the introduction to the ASCAD databases in Section 5.2 is based on
[EST+22].

5.1 Deep Learning-based Side-Channel Analysis (DL-SCA)

Machine learning techniques can be used to perform profiled side-channel attacks (c.f. Section 2.3).
In particular, this thesis discusses deep learning-based methods for side-channel analysis, where the
leakage of the device is modeled with a Deep Neural Network (DNN). A simplified distinction between
deep learning methods and other machine learning techniques lies in the required feature engineering
effort: deep learning methods can be directly applied to raw data with a light preprocessing like,
e.g., normalization, while other machine learning methods require human-engineered features in
order to produce satisfying results. The profiling stage is given by training the DNN, whereas the
trained network is used to classify the unknown attack traces in the attack phase. This section gives
an introduction to DL-based SCA.

In Section 5.1.1, the notation is introduced and the problem of performing a profiled side-channel
attack is reformulated using this notation. The elemental layers of deep neural networks and the
used types of network architectures are presented in Section 5.1.2. The training process of a neural
network is detailed in Section 5.1.3 and Section 5.1.4 introduces the used evaluation metrics of the
attack results. Finally, in Section 5.1.5, possible advantages and disadvantages of DL-based SCA are
discussed.

5.1.1 Introduction and Notation

We define the set of side-channel traces as 𝒯 and the number of available traces as 𝑁𝑡 = |𝒯 |, with
each trace consisting of 𝑁𝑠 samples. The 𝑖-th trace of a set of traces is defined as 𝒕 𝑖 and individual
samples of this trace are defined as 𝒕 𝑖[𝑗] with 𝑗 being the sample index. When referring to a range of
samples we use 𝒕 𝑖[𝑗𝑠𝑡𝑎𝑟𝑡 , 𝑗𝑒𝑛𝑑]with 𝒕 𝑖[0, 99] indicating samples 0 to 99 of the 𝑖-th trace.

In the setting of deep learning-based side-channel attacks, the available traces in 𝒯 are split into the
sets 𝒳𝑡𝑟𝑎𝑖𝑛 , 𝒳𝑣𝑎𝑙 , and 𝒳𝑎𝑡𝑡𝑎𝑐𝑘 , where each set is defined as 𝒳 = {𝑿 , 𝒚}. The feature matrix 𝑿 ∈ ℝ𝑁×𝑁𝑠
is a matrix of available side-channel traces in the set, and 𝒚 is a vector of labels associated with the
individual traces. A single feature vector 𝒙 𝑖 ∈ 𝑿 contains one side-channel trace 𝒕 𝑖 . As DL-based
side-channel attacks are profiled side-channel attacks, the goal is to use all pairs of (𝒙 𝑖 , 𝑦𝑖) ∈ 𝒳𝑡𝑟𝑎𝑖𝑛 to
learn the function 𝑦 = 𝑓 (𝒙) that provides a mapping of an input vector 𝒙 to the correct label 𝑦. In the

88

∑
𝑥2

𝑥1

𝑥0

...

𝑥𝑛

𝑤0

𝑤1

𝑤2

𝑤𝑛

𝑏

𝑔

𝒘𝑇𝒙 + 𝑏 �̂�

Figure 5.1 Visualization of a perceptron. Adapted from [Mit97, Figure 4.6].

attack phase of the profiled side-channel attack, the learned function can then be used to classify the
traces in the attack set 𝒳𝑎𝑡𝑡𝑎𝑐𝑘 to the correct label.

5.1.2 Elemental Network Layers and Used Architectures

The function 𝑓 is modeled as a DNN that consists of the composition of multiple smaller functions
called layers into a directed acyclic graph1 [GBC16]. The information on the composition of layers is
also called the architecture of a DNN. During the training of a DNN, the parameters of the individual
layers are determined such that the whole network achieves a mapping according to 𝑓 . The details
of the training of a DNN are described in Section 5.1.3. In the following, the different layers of the
architectures used in this thesis are described, starting with the description of a single perceptron, the
connection of multiple layers of parallel perceptrons as an MLP, and finally, the CNN that introduces
convolution layers before fully connected layers.

Perceptron The term neural network is inspired by neuroscience, which models the function of a
brain as multiple interconnected neurons that perform a computation on multiple inputs and forward
the result to its connected neurons. The simplest form of neural network contains a single layer with
one neuron and is called perceptron, which is visualized in Fig. 5.1. A perceptron takes a feature
vector 𝒙 = (𝑥0 , . . . , 𝑥𝑛) as input and outputs a weighted sum of all features and an additional bias 𝑏,
where the individual contribution of each feature 𝑥𝑖 is defined by its corresponding weight 𝑤𝑖 given
by a weight vector 𝒘 = (𝑤0 , . . . , 𝑤𝑛). The weight vector and bias are parameters of the perceptron
that are optimized during the training process. As the weighted sum can also be seen as a linear
combination of features, the perceptron includes an additional non-linear activation function 𝑔 that
provides non-linearity of the output2. For modern neural networks the Rectified Linear Unit (ReLU)
defined as 𝑔(𝑧) = max{0, 𝑧} (also shown in Fig. 5.1) is used as the default [GBC16].

MLPs A Multi Layer Perceptron (MLP) is based on multiple fully connected layers of parallel neurons
(also referred to as units or nodes), where the output of each neuron in a layer is connected with
all neurons in the subsequent layer. As the input features are therefore fed from the input layer over
multiple hidden layers to the final output layer, a MLP is a type of a so-called feedforward neural
network. The network architecture is called multilayer perceptron since the individual neurons of
each layer are implemented as single perceptrons. The individual layers are also called dense layers,
which are defined by the number of neurons per layer and the used activation function. For the
remainder of this thesis, the notation DENSE(𝑛𝑑) is used to describe a dense layer with 𝑛𝑑 neurons.
The input layer usually contains the feature vector 𝒙 and the output layer is based on a dense layer

1There are also recurrent neural networks that include feedback connections in the graph, which are not considered in
this thesis.

2The original perceptron fixes the activation function to a Heaviside step function but the modern usage of a perceptron
allows to freely choose a suitable activation function.

89

Hidden layerInput
layer

Output
layer (Softmax)

𝑠(𝒙)

Figure 5.2 Visualization of an MLP with two hidden layers. The architecture of the network can be described as
[INPUT(3), DENSE(4), DENSE(4), SM(2)]. Note that the activation function is implicitly included in each perceptron
of the hidden layers, while the softmax activation function is shown to emphasize its usage in the output layer.

with 𝑁𝑐 neurons, where 𝑁𝑐 is the number of possible classes for the label 𝑦. The output of each
neuron in the output layer is a score corresponding to the network’s prediction that the input belongs
to the corresponding class (or label), where a higher score indicates a higher certainty. In order
to convert the resulting scores to probabilities, the softmax activation function can be used. In the
classification setting, it is therefore usually used as the activation function of the dense output layer,
which is denoted as SM(𝑁𝑐) in this thesis. An MLP with two hidden layers is visualized in Fig. 5.2.

CNNs A Convolutional Neural Network (CNN) introduces additional convolutional layers, which
are defined by a specified amount of filters with their respective kernels that each perform a con-
volution operation on their input. An activation function is applied to the result of the convolution
for each filter in order to produce the output of the layer. The trainable parameters of a convolu-
tional layer are the individual kernel weights of each filter. We denote the convolutional layer as
CONV(𝑛 𝑓 𝑖𝑙𝑡𝑒𝑟 , 𝑛𝑘𝑒𝑟𝑛𝑒𝑙 , 𝑛𝑠𝑡𝑟𝑖𝑑𝑒), where 𝑛 𝑓 𝑖𝑙𝑡𝑒𝑟 defines the number of filters, 𝑛𝑘𝑒𝑟𝑛𝑒𝑙 the size of the kernel,
and 𝑛𝑠𝑡𝑟𝑖𝑑𝑒 the stride, i.e., the step size of the kernel during the convolution. The idea behind this
layer is that each filter is able to individually learn a more complex representation of its input features
(e.g., edges in images), while the complexity of features increases with each subsequent layer. A con-
volutional layer can be followed by a pooling layer that combines multiple features of the individual
filters of a convolutional layer into a single one, i.e., it achieves a downsampling of the input to a lower
dimension. The pooling layer is characterized by two parameters: the number of features 𝑛𝑝𝑜𝑜𝑙 , which
defines the width of the pooling window and thus the number of features to be combined, as well as
the stride 𝑛𝑠𝑡𝑟𝑖𝑑𝑒 that specifies the step size of the pooling window. There are two types of pooling
layers which differ in the combination function, where the average pooling layer POOL_avg(𝑛𝑝𝑜𝑜𝑙 ,𝑛𝑠𝑡𝑟𝑖𝑑𝑒)
uses the average and the max pooling layer POOL_max(𝑛𝑝𝑜𝑜𝑙 ,𝑛𝑠𝑡𝑟𝑖𝑑𝑒) the maximum value of the pooling
window. The classification step of a CNN is performed by a set of fully connected dense layers at
the output of the network. This requires reshaping the output of the final convolutional layer (or its
corresponding pooling layer) so that the output of the individual filters of the layer can be fed into the
first dense layer. As this process can be seen as a flattening of the filter dimension, the corresponding
layer for this task is called flatten layer, which is denoted as FLATTEN in this thesis. A CNN architecture
for a one-dimensional input data (such as a time series signal like a side-channel trace) is shown in
Fig. 5.3.

The convolutional layers of a CNN are linear, and thus they can be represented as a dense layer
where the weight vectors of the individual neurons are constraint, e.g., they are sparse (most of the
weights are zero) or several weights are shared between neurons. Therefore, compared to an MLP that
only has fully connected neurons in each layer, the memory requirements and statistical efficiency are
improved [GBC16]. Additionally, as complex features are inherently learned by the architecture, the
final fully connected layer can be significantly reduced in size in comparison with an MLP that has
to directly learn these features. An additional advantage of CNNs is that, due to the pooling layers

90

Input
layer

Convolutional
layer

Pooling
layer

Convolutional
layer Fully connected layers

Figure 5.3 Visualization of a one dimensional CNN. The architecture is described by
[INPUT(10), CONV(3, 3, 1), POOL_avg(2, 2), CONV(6, 3, 1), FLATTEN, DENSE(5), DENSE(4), DENSE(2)].

and the stride of the convolution, the networks become robust to variances (shifts in the location of
features) in the input data. This is especially of interest in the side-channel domain as it helps to
defeat hiding countermeasures that aim at reducing the SNR due to a misalignment of traces.

5.1.3 Training and Architecture Optimization

The training process of a neural network, i.e., the optimization of its parameters, is performed for a
fixed architecture, which requires that the architecture is defined before the training process. The
process of evaluating multiple architectures and adapting them based on the achieved results is called
hyperparameter optimization, where the hyperparameters include the details of the architecture
as well as parameters that define the training process itself. This optimization can be performed
manually through expert knowledge or automatically using, e.g., random grid search, Bayesian
optimization, or advanced methods like reinforcement learning. As a detailed discussion of these
methods is out of scope for this thesis, the interested reader is referred to [GBC16, Chapter 11.4].

The optimization of the network parameters, i.e., the weights of the individual neurons in each
layer, is done by minimizing the empirical risk defined by a loss function 𝐿 that describes the error
of the prediction 𝑓 (𝒙) = �̂� given the correct label 𝑦 as 𝐿(�̂� , 𝑦). For a classification task, cross-entropy
is usually used as a loss function. Using this loss function, the training of the network can be
performed by different variants of the stochastic gradient descent algorithm, which is based on the
so-called backpropagation. Backpropagation works by evaluating the loss function for a given input
feature vector 𝒙 𝑖 ∈ 𝒳𝑡𝑟𝑎𝑖𝑛 and computing the gradient of the loss function regarding the parameters
of the network 𝜽 as

∇𝜽𝐿 =
𝜕𝐿(𝑓 (𝒙), 𝑦)

𝜕𝜽
, (5.1)

where 𝜽 includes all individual weights of the neurons in each layer of the network. With the
knowledge of the gradient, the contribution of the individual parameters to the loss can be determined
with the goal of updating the parameters such that a minimum of the loss function is reached. The
update of the parameters Δ𝜽 is performed in the direction of the gradient scaled with a positive value
𝜂 called the learning rate as

Δ𝜽 = −𝜂 · ∇𝜽𝐿 . (5.2)

In order to compute the exact gradient of the loss function, all training examples3 of the training set
𝒳𝑡𝑟𝑎𝑖𝑛 have to be used. Nevertheless, the stochastic gradient descent algorithm only uses a statistical

3These examples are often called samples of the training set, which is not used in this thesis as the term sample is used
to refer to a single point in time of a side-channel measurement.

91

estimation of the gradient by dividing the training set into multiple smaller sets, called minibatches.
The estimation of the gradient for each minibatch (often also called batch) is then used to separately
update the parameters according to the learning rate. This tradeoff between the accuracy of the
gradient and required computation time is motivated by the fact that there is redundancy in the
training data, which implies that not all examples of the training set are required to compute a
reasonable approximation of the gradient, and a faster convergence due to the multiple parameter
updates [GBC16]. The training is performed for multiple passes through the whole training set,
where a single pass is called a training epoch until a specified amount of epochs or a stopping criterion
is reached. The goal of training is to achieve generalization, which means that the trained network
also correctly classifies data that is not used during the training process. Therefore, the evaluation
set 𝒳𝑣𝑎𝑙 is used to monitor the training result, e.g., after each epoch, such that a possible underfitting
or overfitting to the training data can be identified. This allows to use early stopping as a stopping
criterion, which states that the training should be stopped if the classification error of the evaluation
set does not decrease for a given number of iterations.

In practice, modern variants of the stochastic gradient descent algorithm are used. These algo-
rithms optimize the training process through the use of an individual adaptive learning rate for each
parameter [GBC16, Chapter 8.5].

5.1.4 Evaluation Metrics

In the attack phase of a DL-based side-channel attack, the trained network is used to classify each
trace 𝒕 of 𝒳𝑎𝑡𝑡𝑎𝑐𝑘 , which results in the probabilities 𝑝(𝑙|𝒕) denoted as 𝑝𝑙 ,𝒕 for each class 𝑙 at the output
of the softmax layer4. For an attack on AES, the classes are usually chosen as the S-box output of byte
𝑖 after the first round 𝑦 = S(𝑝𝑡𝑥𝑡𝑖 ⊕ 𝑘𝑖) (ID model) or its Hamming weight 𝑦 = HW

(
S(𝑝𝑡𝑥𝑡𝑖 ⊕ 𝑘𝑖)

)
(HW model), according to the label from training. Thus, to get the probabilities 𝑝𝑐,𝒕 for the 𝑁𝑐 = 256
different key byte candidates 𝑘𝑐 with 𝑐 ∈ {0, . . . , 255}, a transformation is required. In case of the
identity (ID) model, where 𝑁𝑙 = 𝑁𝑐 holds, an inversion the S-box maps to the respective key byte,
while for HW labels the 𝑁𝑙 = 9 softmax output probabilities 𝑝𝑙 ,𝒕 are assigned to 𝑁𝑐 > 𝑁𝑙 different 𝑘𝑐 ,
i.e., several 𝑘𝑐 share the same 𝑝𝑙 ,𝒕 . In the following, the 𝑁𝑐 ×𝑁𝑡 matrix P contains the 𝑝𝑐,𝒕 as its entries,
i.e., the probabilities for the candidate 𝑘𝑐 and trace 𝒕 , for all 𝑁𝑐 key byte candidates and 𝑁𝑡 = |𝒳𝑎𝑡𝑡𝑎𝑐𝑘|
traces available. Usually, a single prediction does not suffice to reliably predict the correct secret and
therefore several predictions have to be combined. This combination is computed as the product of
the probabilities 𝑝𝑐,𝒕 for a given subset of traces with cardinality𝑁 ≤ 𝑁𝑡 , which is usually determined
by the sum of logarithmic probabilities

𝑝𝑐(𝑁) =
𝑁−1∏
𝑡=0

𝑝𝑐,𝒕 =
𝑁−1∑
𝑡=0

log(𝑝𝑐,𝒕) (5.3)

to avoid numerical underflows or overflows.
Ultimately, an attacker is interested in the capability of the network to retrieve the correct value

of the attacked secret key byte denoted as 𝑘★. The key rank [PGA+23] is used as a measure for the
remaining uncertainty about the correct key value given the predictions of the network. Taking the
probabilities 𝑝𝑐 for all 𝑁𝑐 key candidates, a rank vector 𝑟𝑎𝑛𝑘 = [𝑟0 , 𝑟1 , · · · , 𝑟𝑁𝑐−1] can be computed by
sorting all 𝑝𝑐 in decreasing order with 𝑟0 presenting the most likely candidate. Now, the key rank,
which we define as KR(𝑁), represents the position of 𝑘★ in 𝑟𝑎𝑛𝑘, where a key rank of zero indicates
that the correct key is found. Note that other works frequently use guessing entropy as an attack
metric, which is defined as the mean key rank of several attacks (not to be confused with several traces
used for a single attack). We additionally express the key rank in terms of entropy in bits as

𝐻KR(𝑁) = log2 (KR(𝑁) + 1) , (5.4)
4The class index 𝑙 is used in order to emphasize that the number of classes for which the networks provides predictions

can be different from the amount possible values 𝑁𝑐 of the targeted intermediate.

92

ranging from 0 to log2 (𝑁𝑐). An entropy of 0 corresponds to a successful attack.
We additionally introduce the metric 𝑁 ′ that defines the number of traces for which the final key

rank after 𝑁𝑡 traces occurs for the first time, i.e.,

𝑁 ′ := min
𝑁
(𝑁 |KR(𝑁) ≤ KR(𝑁𝑡)) . (5.5)

The implicit assumption of the metric is that the key rank decreases with an increasing number of
traces and reaches an optimum after a certain amount. The number of traces for which the key rank
reaches zero is denoted 𝑁0. The metric provides an insight into whether additional traces would
potentially further decrease the key rank. If 𝑁 ′ = 𝑁𝑡 , the network requires all available traces for its
best performance and might still be improving with more traces. Similarly, if 𝑁 ′ << 𝑁𝑡 most likely
additional traces do not add information and the network reaches its optimal performance.

5.1.5 Advantages and Disadvantages of DL-SCA

After Maghrebi et al. [MPP16] showed that DL-based SCA is possible, there have been numerous
publications about advantages in comparison with classical profiled side-channel attacks like tem-
plate attacks. This section gives an overview of these advantages in combination with possible
disadvantages leading to a motivation for the presented work in Chapter 6 and Chapter 7.

A first advantage is that no assumption on the leakage model is needed for a DL-based SCA as
due to the universal approximation theorem any function (of the leakage) can be represented by an MLP
given it is large enough [GBC16, Chapter 6.4.1]. Therefore, the fixed assumption of a template attack
in modeling the leakage as a multivariate Gaussian distribution is not needed anymore, and the
attack can possibly benefit from a more accurate model of the leakage. Second, DL-based SCA sig-
nificantly reduces or even eliminates the required preprocessing of side-channel traces. As discussed
in Section 2.3, template attacks usually require a preprocessing of traces to identify POIs or perform
dimensionality reduction techniques. This preprocessing is needed to only build the templates from
samples with a high SNR and therefore reduce noise and limit the number of used samples in order
to achieve a feasible computational complexity. With the training of a neural network, the samples
that positively influence classification are identified through backpropagation and therefore a POI
detection is performed automatically. Nevertheless, some preprocessing steps are still required, such
as normalizing the traces and selecting a suitable sample interval that includes the computation of
the targeted intermediate. Another advantage that goes in the same direction, i.e., reduces the pre-
processing effort, is the ability of deep learning approaches to cope with a misalignment of traces. For
classical side-channel attacks, the available traces must be correctly aligned to achieve a high SNR. A
misalignment of traces is usually induced by the measurement setup through, e.g., an unstable clock
of the target device or dedicated hiding countermeasures (c.f. Section 2.4). Therefore, different align-
ment methods are frequently used in SCA to preprocess traces, but a successful realignment is not
always possible. With DL-based SCA methods, the misalignment of traces can be inherently learned
during the training process and especially CNNs have been shown to perform well on misaligned
traces due to their spatial invariance of learned features [CDP17, BPS+20]. Finally, with DL-based
SCA, it is possible to attack masked implementations without a manual combination of the respective
samples that correspond to each share of the targeted intermediate [BPS+20]. This combination is
needed to estimate the higher-order statistical moments (c.f. Section 2.4) and usually requires nar-
rowing down possible sample ranges of shares to achieve a feasible computational complexity. With
the use of a neural network, the correct combination can be learned during the training and suc-
cessful attacks have been shown for large sample ranges (≥ 10 000 samples) without preprocessing
[LZC+21, PWP22a, HAS+24].

A first disadvantage of DL-based SCA is the large number of possible hyperparameter configu-
rations that have to be evaluated in order to find the optimal model for a given implementation or
dataset, as the optimal combination is highly dependent on the attacked implementation (types of
countermeasures) or the dataset (number of available traces, samples per trace or the SNR of the

93

measurements) [KLP+22]. Usually, a full exploration of the hyperparameter space is not feasible
due to computation time and resource constraints. Therefore, the reason why an attack is not able
to retrieve the correct secret can be an ineffective or wrong network architecture, which can lead to
wrong conclusions about the security of the implementation by an evaluator. Further, as POIs are
learned during training and the network is able to approximate arbitrary functions of the leakage, it
is important to correctly understand and evaluate the datasets on which research on DL-based SCA is
conducted. This is especially important for higher-order attacks on masked implementations, where
the network is claimed to combine the leakage of multiple shares. In order to claim a successful
multivariate higher-order attack by the network, it has to be made sure that the evaluated dataset
does not contain first-order leakage or univariate leakage, which can be exploited by the network
instead of combining the leakage of multiple shares. Finally, a major downside of DL-based SCA
is the lack of explainability of attack results. As the networks perform POI detection internally, an
evaluator does not know which samples and their corresponding leakage are used in order to perform
a successful attack. Nevertheless, in order to remove these leakages and therefore again harden an
implementation, the exact leaking samples and the corresponding operations have to be identified.

5.2 ANSSI SCA Databases (ASCAD)

The ANSSI SCA Database (ASCAD) was published by researchers of the French cyber security agency
(ANSSI) in combination with their paper [BPS+20]5 that provides an in-depth study of DL-based SCA
approaches using the database. Since its publication, ASCAD is typically used as the standard dataset
for research in the field due to its public availability [BPS+18] and detailed documentation, as well as
the availability of example code for the used network architectures, which can be utilized to replicate
results and serves as a starting point for further research. Over time, the authors published multiple
versions of the database in order to facilitate research on additional attack scenarios and provide an
attack target with stronger countermeasures. This section gives an overview of the different ASCAD
databases that are used in this thesis, starting with the presentation of the underlying first-order
masked AES implementation of the databases in Section 5.2.1. This is followed by an introduction
to the different versions of the databases with their respective characteristics in Section 5.2.2. Finally,
Section 5.2.3 presents the neural network architectures that are used to attack ASCAD in this thesis.

5.2.1 AES Implementation

The used ASCAD databases in this thesis are based on a first-order boolean masked implementation
of AES with a key size of 128 bit that is written in assembly [BLPR18]. As the AES block cipher
is the primary target of research on SCA, this thesis assumes knowledge about the algorithm, and
for a detailed introduction, the reader is referred to [DR20]. The implementation masks each key
byte 𝑘𝑖 using a mask byte 𝑟𝑖6. In order to protect the S-box look-up, a table recomputation method
[PR07, RPD09] is used that computes a masked S-box (Sm) by determining for all possible entries
𝑥 ∈ {0, . . . , 255} the masked S-box output values according to

Sm(𝑥) = S(𝑥 ⊕ 𝑟𝑖𝑛) ⊕ 𝑟𝑜𝑢𝑡 , (5.6)

where 𝑟𝑖𝑛 and 𝑟𝑜𝑢𝑡 refer to the S-box input and output masks that are equal for all bytes. A block
diagram of the whole masked SubBytes operation is shown in Fig. 5.4. In total, 18 masks are required
to protect the implementation.

5Note that [BPS+20] is the peer-reviewed version of the original publication from 2018 [PSB+18], which was published
on the Cryptology ePrint Archive. For the remainder of this thesis, the peer-reviewed version [BPS+20] of the paper is used
as reference.

6Note that we use byte indices according to the AES standard in contrast to the indexing introduced with the ASCAD
databases [BPS+20] starting with index 1.

94

Sm
𝑝𝑡𝑥𝑡𝑖 ⊕ 𝑘𝑖 ⊕ 𝑟𝑖

𝑟𝑖𝑛 𝑟𝑖

𝑝𝑡𝑥𝑡𝑖 ⊕ 𝑘𝑖 ⊕ 𝑟𝑖𝑛 S(𝑝𝑡𝑥𝑡𝑖 ⊕ 𝑘𝑖) ⊕ 𝑟𝑜𝑢𝑡

𝑟𝑖 𝑟𝑜𝑢𝑡

S(𝑝𝑡𝑥𝑡𝑖 ⊕ 𝑘𝑖) ⊕ 𝑟𝑖

Figure 5.4 Masked SubBytes operation of the ASCAD implementation.

Note that for the measurements contained in the ASCAD databases, the S-box look-ups correspond-
ing to key bytes 𝑘0 and 𝑘1 are not masked. This is due to the fact that the implementation supports
a shuffling countermeasure that determines the order of S-box accesses from the values of the first
two masks 𝑟0 and 𝑟1, which are set to 0x00 to disable the shuffling and facilitate the analysis. The
sequence of the S-box accesses is therefore fixed to the following processing order of key bytes:

15 � 12 � 13 � 1 � 8 � 10 � 0 � 3 � 7 � 6 � 9 � 5 � 11 � 2 � 4 � 14, (5.7)

where the unmasked bytes are highlighted in bold. Another interesting property of the implementa-
tion is that it uses additional operations that aim at clearing the value at a destination address/register
or on the read/write bus to prevent HD leakage. An example of such an operation, which will be
referred to as security load, is done as follows

security load = Sm(S(𝑘𝑖−1 ⊕ 𝑝𝑡𝑥𝑡𝑖−1) ⊕ 𝑟𝑖−1︸ ︷︷ ︸
:=Sprev

) = S(Sprev ⊕𝑟𝑖𝑛) ⊕ 𝑟𝑜𝑢𝑡 , (5.8)

where 𝑖 denotes the byte index of the shuffled order and 𝑖 − 1 indicates the previous byte according
to Eq. (5.7). Results in Chapter 6 show that leakage of this particular operation is present in the trace
segment used for ASCAD.

5.2.2 Versions of the Database

The first ASCAD database, called ASCAD fixed key (ASCAD fix) in this thesis, was published as sup-
plementary material of [PSB+18] and contains measurements of the first-order boolean masked AES
implementation detailed in Section 5.2.1. The measurements are captured on an 8-bit ATmega8515
AVR microcontroller running at a clock frequency of 𝑓𝑐𝑙𝑘 = 4 MHz7. The database is structured into
a training and attack set and contains the required metadata for evaluation, such as the used key,
plaintext, ciphertext, and the values of random masks. ASCAD fix has the property that the same key
is used for all measurements in the database. This does not correspond to a realistic attack scenario,
as the attacker should not know the targeted key, and has some undesired implications. In Chapter 6,
this thesis shows that training and attacking on the same fixed key is an easier task for the evaluated
networks compared to training on variable keys. Additionally, it has been shown by Hoang et al.
[HHO20] that by addition of the plaintext to the used training label, the network is able to provide
correct classifications even if the traces are replaced by random values, as the network learns the
bĳection of the correct label and the plaintext. In order to provide a different attack scenario and
overcome the possible downsides of an equal key, the authors published an updated version of AS-
CAD with a variable key for the training set. This updated version is referred to as ASCAD variable
key (ASCAD variable) for the remainder of this thesis. For completeness, it has to be noted that there
exists a second version of ASCAD that includes stronger countermeasures (shuffling in combination
with affine masking) measured on a microcontroller with a modern ARM Cortex-M4 architecture
[RBT18]. This database is nevertheless not considered in this thesis.

An overview of the characteristics of both ASCAD databases is given in Table 5.1. ASCAD fix

consists of 60 000 traces and ASCAD variable provides of a total amount of 300 000 traces. Both

7https://github.com/ANSSI-FR/ASCAD/issues/2, last accessed 22nd April 2024

https://github.com/ANSSI-FR/ASCAD/issues/2

95

𝑁𝑡𝑟𝑎𝑖𝑛 𝑁𝑎𝑡𝑡𝑎𝑐𝑘 𝑁𝑠 𝑁𝑠/clock cycle Key of training set

ASCAD fix 50 000 10 000 700 50 fixed
ASCAD variable 200 000 100 000 1400 125 random

Table 5.1 Overview of the ASCAD databases.

databases show a different split of the traces into the training set 𝒳𝑡𝑟𝑎𝑖𝑛 with |𝒳𝑡𝑟𝑎𝑖𝑛| = 𝑁𝑡𝑟𝑎𝑖𝑛
8 and

attack set 𝒳𝑎𝑡𝑡𝑎𝑐𝑘 with |𝒳𝑎𝑡𝑡𝑎𝑐𝑘| = 𝑁𝑎𝑡𝑡𝑎𝑐𝑘 according to Table 5.1. The databases contain raw traces
with 100 000 (ASCAD fix) and 250 000 (ASCAD variable) samples that correspond to almost the first
two AES rounds. In order to facilitate analysis, the authors propose the usage of an excerpt of 𝑁𝑠

samples corresponding to the SubBytes operation processing the third key byte 𝑘2, which is commonly
referred to as the ASCAD database in related work. This sample range is chosen to include the leakage
of S(𝑝𝑡𝑥𝑡𝑖 ⊕ 𝑘𝑖) ⊕ 𝑟𝑖 and S(𝑝𝑡𝑥𝑡𝑖 ⊕ 𝑘𝑖) ⊕ 𝑟𝑜𝑢𝑡 with the corresponding masks such that second-order
attacks are feasible. It also implies the training label, which is chosen as S(𝑝𝑡𝑥𝑡𝑖 ⊕ 𝑘𝑖) (ID model) and
HW(S(𝑝𝑡𝑥𝑡𝑖 ⊕ 𝑘𝑖)) (HW model). Finally, it has to be emphasized that both ASCAD databases differ
in their measurement characteristics. ASCAD variable is measured with a sampling frequency of
𝑓𝑠 = 500 MS/s and ASCAD fix with 𝑓𝑠 = 200 MS/s9, which leads to 125 and 50 samples per clock cycle.

5.2.3 Used Network Architectures

Multiple CNN-based neural network architectures are used to provide the experimental attack results
in Chapters 6 and 7. This section gives an overview of the used models in combination with their
respective hyperparameters of the training process.

As a baseline, the reference architecture of the ASCAD authors is used, which is called CNNbest
for the remainder of this thesis. It is based on the popular VGG-16 [SZ15] architecture used for
image recognition or object detection tasks. In [BPS+20], the ASCAD authors perform a manual
hyperparameter search using the VGG-16 architecture as a baseline and derive CNNbest as the hy-
perparameter combination that shows the best attack results on ASCAD fix. With the publication of
ASCAD variable, the authors still use CNNbest as the reference architecture, but the input layer has to
be increased due to the increased𝑁𝑠 of the chosen trace excerpt10. For the training, a batch size of 200,
the Root Mean Square Propagation (RMSProp) optimizer, a learning rate of 𝜂 = 10−5, and a typical
amount of 100 training epochs is used. The used architectures for CNNbest are detailed in Table 5.2.

In contrast, we use four additional architectures from [RWPP21] for which the hyperparameter
search and optimization were performed automatically through the use of reinforcement learning.
The resulting architectures are tailored to a specific dataset and the used training label (ID or HW
model). All found architectures through the reinforcement learning process are small in terms
of trainable parameters and show a good attack performance. Due to the compact size of the
architectures, they are called CNNsmall for the remainder of this thesis. For the training process
of the CNNsmall architectures, we follow the authors of [RWPP21] and use a batch size of 400, the
Adam optimizer [KB15], and a custom cyclic learning rate as proposed by [Smi17]. The number of
training epochs is set to 50 for the results presented in Chapter 6 and has been increased to 100 for
Chapter 7. The resulting architectures are shown in Table 5.3. It can be seen that the amount of
trainable parameters is reduced significantly in comparison to CNNbest.

8The traces for the evaluation set 𝒳𝑣𝑎𝑙 are subtracted from the available training traces.
9There has been uncertainty regarding the used sampling frequency of ASCAD fix. The sampling frequency is not

𝑓𝑠 = 2 GS/s as provided by [BPS+20] and generally adopted by related work, as in this case, the whole trace segment
would only show 1.4 clock cycles, which is not consistent with the leakage evaluation of intermediates (c.f. Fig. 6.1).
During the work on this thesis, a sampling frequency of 200 MS/s was considered the most convincing variant. See
https://github.com/ANSSI-FR/ASCAD/issues/13, last accessed 22nd April 2024, for a discussion with the ASCAD authors.

10https://github.com/ANSSI-FR/ASCAD/blob/master/ASCAD_train_models.py, last accessed 25th April 2024

https://github.com/ANSSI-FR/ASCAD/issues/13
https://github.com/ANSSI-FR/ASCAD/blob/master/ASCAD_train_models.py

96

network architecture trainable
parameters

ASCAD fix

CNNbest (ID)

INPUT(700), CONV(64,11,2), POOL_avg(2,2), CONV(128,11,1),
POOL_avg(2,2), CONV(256,11,1), POOL_avg(2,2),CONV(512,11,1),
POOL_avg(2,2), CONV(512,11,1), POOL_avg(2,2), FLATTEN,

DENSE(4096), DENSE(4096), SM(256)

43 583 872

CNNbest (HW)

INPUT(700), CONV(64,11,2), POOL_avg(2,2), CONV(128,11,1),
POOL_avg(2,2), CONV(256,11,1), POOL_avg(2,2), CONV(512,11,1),
POOL_avg(2,2), CONV(512,11,1), POOL_avg(2,2), FLATTEN,

DENSE(4096), DENSE(4096), SM(9)

42 571 913

ASCAD variable

CNNbest (ID)

INPUT(1400), CONV(64,11,2), POOL_avg(2,2), CONV(128,11,1),
POOL_avg(2,2), CONV(256,11,1), POOL_avg(2,2),CONV(512,11,1),
POOL_avg(2,2), CONV(512,11,1), POOL_avg(2,2), FLATTEN,

DENSE(4096), DENSE(4096), SM(256)

66 652 544

CNNbest (HW)

INPUT(1400), CONV(64,11,2), POOL_avg(2,2), CONV(128,11,1),
POOL_avg(2,2), CONV(256,11,1), POOL_avg(2,2), CONV(512,11,1),
POOL_avg(2,2), CONV(512,11,1), POOL_avg(2,2), FLATTEN,

DENSE(4096), DENSE(4096), SM(9)

65 640 585

Table 5.2 Overview of the used CNNbest architectures. The CONV and DENSE layers use the ReLU activation
function. Note that the original CNNbest architecture for ASCAD fix uses a stride of one in the first convolutional
layer, while the architecture for ASCAD variable uses a stride of two. For this thesis, we use a stride of two
for both databases since even with this change, similar attack results for ASCAD fix are achieved (c.f. [BPS+20,
Figure 14] and Fig. 6.5a).

network architecture trainable
parameters

ASCAD fix

CNNsmall (ID) INPUT(700), CONV(128,25,1), POOL_avg(25,25), FLATTEN,
DENSE(20), DENSE(15), SM(256)

79 439

CNNsmall (HW) INPUT(700), CONV(16,100,1), POOL_avg(25,25), FLATTEN,
DENSE(15), DENSE(4), DENSE(4), SM(9)

8480

ASCAD variable

CNNsmall (ID) INPUT(1400), CONV(128,3,1), POOL_avg(75,75), FLATTEN,
DENSE(30), DENSE(2), SM(256)

70 492

CNNsmall (HW) INPUT(1400), CONV(8,3,1), POOL_avg(25,25), FLATTEN,
DENSE(30), DENSE(30), DENSE(20), SM(9)

15 241

Table 5.3 Overview of the used CNNsmall architectures. The CONV and DENSE layers use the Scaled Exponential
Linear Unit (SeLU) [KUMH17] activation function.

97

6 A Second-Look at the ASCAD Databases

This chapter is based on the publication Egger/Schamberger/Tebelmann/Lippert/Sigl:

A Second Look at the ASCAD Databases published in Constructive Side-Channel Anal-

ysis and Secure Design (COSADE), 2022 [EST+22].
Parts of the presented work were developed during the research internship of
Maximilian Egger, including most of the framework to generate the presented DL-
based SCA results. The visualization of the second-order CPA results in Fig. 6.4
was developed during the master thesis of Florian Lippert [Lip20].

6.1 Introduction

Most research on the ASCAD databases has tried to propose, improve, and compare deep learning
approaches in the SCA realm and consequently, little attention has been paid to the details of the
underlying datasets. The analysis of the leakage behavior has been limited to a few intermediate
values and a single key byte of the ASCAD fix dataset [BPS+20], i.e., the greater part has not yet
been analyzed in detail. Nevertheless, in order to interpret attack results and reason about the attack
capabilities of evaluated networks, a thorough understanding of the used datasets is required. This
chapter closes this gap with a detailed evaluation of both ASCAD datasets with classical SCA and
a comparison of both datasets. Additionally, in the context of this evaluation, the locations of trace
segments for all key bytes of the implementation are identified from the provided raw traces, allowing
the use of multiple attack locations for the evaluation of DL-based SCA methods. In particular, this
chapter provides results from leakage evaluation, first-order, and uni- and multivariate second-order
SCA results for all key bytes of the ASCAD AES implementation. The findings show that research
can benefit from using the different key bytes of the ASCAD databases to evaluate robustness under
varying leakage conditions. Furthermore, it is shown that for the ASCAD databases, training and
attacking on the same key is a substantially easier task for CNNs than training on randomized keys
and attacking on a fixed key. This highlights that the ASCAD variable dataset is to be preferred for
DL-based SCA research, and raises the question if results based on the ASCAD fix dataset are similar
if re-evaluated on ASCAD variable.

Related Work The main body of research is devoted to the proposal and improvement of network
architectures, and little attention has been paid to analyzing the datasets by classical SCA techniques.
Benadjila et al. [BPS+20] provide some analysis in terms of the SNRs of intermediate values related to
mask values of the round mask 𝑟2 and the output mask 𝑟𝑜𝑢𝑡 , but limit their analysis to the processing
of key byte 𝑘2 only. They show further that there is no SNR related to the unmasked value of the
S-box output of the first round S(𝑝𝑡𝑥𝑡2 ⊕ 𝑘2) for the correct key byte 𝑘2 and the respective plaintext
byte 𝑝𝑡𝑥𝑡2. Furthermore, they note that key bytes 𝑘0 and 𝑘1 are unmasked. Other works that compute
leakage behavior also use the ASCAD fix dataset and use the results for comparison with attribution
techniques that are supposed to highlight important features identified by the networks: Masure
et al. [MDP19] show the SNR of 𝑟𝑜𝑢𝑡 and S(𝑘2 ⊕ 𝑝𝑡𝑥𝑡2) ⊕ 𝑟𝑜𝑢𝑡 to compare it to their results on gradient
visualization. Timon [Tim19] computes CPA results with known values for the round mask 𝑟2 and
the S-box value S(𝑘2 ⊕ 𝑝𝑡𝑥𝑡2) ⊕ 𝑟2 to evaluate his sensitivity analysis. Kuroda et al. [KFYF21] show
first-order CPA results for all key bytes of ASCAD fix using only 30 % of available traces. As proposed

98

by Benadjila et al. [BPS+20], in most research, the third key byte 𝑘2 is selected as a target, and the
proposed POIs (in the form of the chosen trace segment) are used for training and attack. However,
there are some exceptions: Wu and Picek [WP20] simulate shuffling of the masked bytes for ASCAD

fix but do not compare attacks for different bytes. Zhou and Standaert [ZS20] compare rank results
of all 16 S-boxes of the ASCAD fix dataset and the CNNbest network from [BPS+20]. They show that
unmasked bytes can be attacked using a single trace and observe that significantly more traces are
needed for 𝑘10 compared to other bytes. However, there is no analysis of the similarities or differences
in the leakage behavior between bytes to explain the performance differences. Kuroda et al. [KFYF21]
evaluate results of all key bytes with non-profiled DL-based SCA using 34 % of the entire sample range
of ASCAD fix. Lu et al. [LZC+21] introduce an architecture that takes the entire trace of ASCAD

fix and ASCAD variable instead of the preselected POIs proposed by Benadjila et al. [BPS+20]. The
analysis is limited to 𝑘2, for which fewer traces are required for a successful attack when using the
entire trace. Bronchain et al. [BCS21] use the entire traces of ASCAD variable and derive an attack
based on template matching with LDA preprocessing. They pass the results to a belief propagation
algorithm to reduce the number of traces for an attack. The results from [BCS21, LZC+21] suggest
that training benefits from leakage points outside the proposed POI range. Rĳsdĳk et al. [RWPP21]
optimize network hyperparameter search to reduce the number of traces for a successful attack as
well as the number of trainable parameters and compare to similar approaches. They provide the
number of traces to reach an average key rank of zero for ASCAD fix and ASCAD variable datasets
simultaneously. Results suggest that ASCAD fix requires fewer traces for ID labels, while for models
using the HW label ASCAD variable can be at least as easily attacked. Regarding differences in the
difficulty of training on fixed or variable key datasets, Hoang et al. [HHO20] show that if ASCAD

fix is used and the plaintext is added as an input label to the S-box output, the model can learn the
bĳection of the S-box from the labels.

Since the publication of the paper on which this chapter is based, several related works have
been published. First, Perin et al. [PWP22a] show attack results for both ASCAD databases using
a downsampled variant of the entire trace, optimized POIs with high SNR using the entire trace as
well as the sample range proposed by the ASCAD authors. Their presented attack results also show
performance differences between the individual key bytes, which are aligned with the results shown
in this chapter. Additionally, Hajra et al. [HAS+24] used the complete sample ranges of both ASCAD
databases. The results of [SET23], which are presented in Chapter 7, use the leakage evaluation shown
in this chapter in order to interpret the results of the developed attribution methods and show that
used architectures actually exploit the additional leakage of intermediates identified in this thesis.
This is also confirmed in [YBP23] with their developed attribution method using ASCAD variable.

Contributions This chapter provides a detailed leakage analysis and classical SCA of the ASCAD
datasets that allow for new insights beneficial for deep-learning attribution techniques. A comparison
of the impact of fixed-key vs. variable-key training suggests that the ASCAD variable dataset should
be used instead of the ASCAD fix dataset. Finally, attack results for different bytes highlight that
depending on the hyperparameter architecture, differing leakage from operations is challenging for
CNNs. In particular, the contributions are the following:

• We provide a detailed leakage analysis for all bytes of the ASCAD implementation that high-
lights leakage from additional intermediate values not considered by related work. In addition,
this leakage also largely differs between individual bytes. The findings are important to better
understand how networks learn from side-channel traces, as they can be used to interpret the
results of attribution techniques.

• We show first-order and second-order univariate vulnerabilities that are unexpected for a
masked implementation, as the key byte can be recovered from a single sample. The first-
order vulnerabilities occur only for up to two bytes when using the proposed trace segments of
the ASCAD authors, while most (ASCAD fix) and all (ASCAD variable) bytes can be attacked

99

using the entire traces. This highlights a direction for future work on understanding if DL-
based SCA approaches implement multivariate higher-order attacks or rather directly exploit
these identified vulnerabilities when using the whole sample ranges contained in the ASCAD
databases.

• We show that training on the same fixed key as during the attack yields significantly better attack
results than training on variable keys for both ASCAD datasets. This suggests that results on
the ASCAD fix dataset overestimate the performance of networks and that the ASCAD variable

dataset should be used in future work.

• Finally, we provide DL-based SCA results for all key bytes of the ASCAD variable dataset
that show that traces of identical operations on the same dataset pose challenges to CNNs.
The substantial variations for different bytes indicate that, in addition to evaluating different
datasets, research benefits from using the entire ASCAD datasets to improve the robustness of
results.

Outline First, Section 6.2 presents the results of the classical side-channel analysis of both ASCAD
databases. This includes the leakage evaluation for all key bytes as well as the first- and second-order
attack results. This is followed by a presentation of the DL-based SCA results in Section 6.3. First, the
influence of the fixed key for the training set of ASCAD fix is shown, followed by the evaluation of
the attack results for all key bytes of the databases. Finally, the chapter is concluded in Section 6.4.

6.2 Classical Side-Channel Analysis of ASCAD

This section discusses the results of classical side-channel analysis for both ASCAD databases (see
Section 5.2 for an introduction to the databases). First, Section 6.2.1 presents the results of a leakage
evaluation for all key bytes of the chosen trace segment by the ASCAD authors. Additional results
are shown for the execution of an entire SubBytes operation in order to match leakage to executed
assembly instructions of the implementation. In Section 6.2.2, results of a first-order as well as
a univariate and multivariate second-order CPA are presented for all key bytes of both the trace
segment and the entire sample range of the databases.

6.2.1 Leakage Evaluation

We use the results of a leakage analysis of different intermediate values in the processing of the
protected SubBytes operation detailed in Section 5.2.1 to establish a link between the implementation
[BLPR18] and points in time of the measurements. We leverage the CPOI method (c.f. Section 2.1),
which is a correlation-based leakage detection based on profiling instead of an abstract leakage model.
The CPOI method uses 𝑘-fold cross-validation, i.e., the correlation is repeated with 𝑘 distinct test sets,
and results are averaged. In this thesis, all CPOI results are calculated using a total of 20 000 traces
and a two-fold cross-validation (𝑘 = 2).

We start the CPOI evaluation with the trace segment proposed by the ASCAD authors, which
contains the processing of key byte 𝑘2. This analysis is subsequently extended to all key bytes, where
we identify the respective trace segments corresponding to the same operations as for 𝑘2. In a second
step, we provide results for the whole masked SubBytes operation of key byte 𝑘2. This is used to fit
the different assembly instructions (with their corresponding line number in the source) to the best of
our knowledge onto the CPOI plot, allowing further research about the origin of exploitable leakage
used by a model. Our results show that the proposed segments contain additional leakage that has
not been considered in related work.

100

0 100 200 300 400 500 600 700

Time [samples]

0.0

0.5

1.0

C
PO

I

1(a) CPOI: ASCAD fix

0 200 400 600 800 1000 1200 1400

Time [samples]

0.0

0.5

1.0

C
PO

I

1(b) CPOI: ASCAD variable

0 100 200 300 400 500 600 700

Time [samples]

−50

0

SN
R
[d
B]

1(c) SNR: ASCAD fix

0 200 400 600 800 1000 1200 1400

Time [samples]

−50

0

SN
R
[d
B]

1(d) SNR: ASCAD variable

Figure 6.1 Leakage analysis of 𝑘2 for the sample ranges and state-of-the-art intermediates from [BPS+20]
proposed for both ASCAD datasets. The results of the SNR evaluation in Figs. 6.1c and 6.1d were generated
using [CB23].

Analysis of Proposed Trace Segments In order to facilitate DL-based SCA, the ASCAD authors
propose to use a subsegment of the traces that only contains some operations of the whole masked
SubBytes operation as detailed in Section 5.2.2: For key byte 𝑘2, a range of 700 (ASCAD fix) and 1400
(ASCAD variable) samples is used. The rationale for this selection is to include intermediate values
S(𝑘2 ⊕ 𝑝𝑡𝑥𝑡2) ⊕ 𝑟𝑜𝑢𝑡 and S(𝑘2 ⊕ 𝑝𝑡𝑥𝑡2) ⊕ 𝑟2 as well as the respective mask values 𝑟𝑜𝑢𝑡 and 𝑟2, allowing
for a second-order SCA attack. The leakage of these intermediates has been evaluated in [BPS+20] by
calculating SNR values for the ASCAD fix dataset.

In Figs. 6.1a and 6.1b, the difference between both datasets is shown in terms of CPOI results for key
byte 𝑘2 for the limited ranges and the state-of-the-art intermediates from [BPS+20]. For comparison,
we additionally provide an SNR evaluation in Figs. 6.1c and 6.1d, where in contrast to [BPS+20] the
SNR is visualized in logarithmic scale. As both methods perform equally well, CPOI is used for the
remainder of this chapter due to the more intuitive nature of correlation results, which are confined
to the interval between 0 and 1. By direct comparison of Fig. 6.1a and Fig. 6.1b, the leakage from
ASCAD fix measurements is present during the whole clock cycle and in addition spread among
multiple clock cycles. In contrast, ASCAD variable shows a different, temporal confined leakage
characteristic. We attribute these differences to changes in the measurement setup; see [MM13] for
a detailed discussion of setup characteristics that can induce this behavior. A possible explanation
is that the measurements in ASCAD fix are subject to low-pass filtering1. It can also be noted that
both ranges do not correspond to the same time interval. Due to the factor of 2.5 between sampling
rates (200 MS/s vs. 500 MS/s), the trace segments of 1400 samples for ASCAD variable correspond to
a shorter time interval than the trace segment of 700 samples for ASCAD fix, i.e., the first 92 samples
and the last 48 samples in Fig. 6.1a do not have a correspondence in Fig. 6.1b. Nevertheless, the
important leakages are contained in the proposed segments of both datasets.

We conclude that the leakages do not differ significantly between both datasets (except that leakage
is spread over multiple clock cycles in the ASCAD fix case) as expected from the identical underlying
implementation. In the following, we only show results for the ASCAD variable measurements
because the temporal confinement eases the match of the intermediate values from the masked
SubBytes operation (c.f. Fig. 5.4) and POIs.

1The authors revised their claim in [BPS+20] that both datasets consist of electromagnetic (EM) measurements to them
being power measurements in https://github.com/ANSSI-FR/ASCAD/issues/13, last accessed 24th April 2024.

https://github.com/ANSSI-FR/ASCAD/issues/13

101

0 200 400 600 800 1000 1200 1400

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(a) 𝑘2

0 200 400 600 800 1000 1200 1400

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(b) 𝑘3

0 200 400 600 800 1000 1200 1400

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(c) 𝑘4

0 200 400 600 800 1000 1200 1400

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(d) 𝑘5

0 200 400 600 800 1000 1200 1400

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(e) 𝑘6

0 200 400 600 800 1000 1200 1400

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(f) 𝑘15

Figure 6.2 CPOI analysis of the ASCAD variable dataset for key bytes 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6 and 𝑘15. The bytes 𝑘7 to
𝑘14 show a qualitatively similar leakage behavior as 𝑘6 and are therefore shown in Appendix B.

Comparision of Key Bytes To obtain comparable DL-based SCA results for all key bytes, it is crucial
to provide the network with input data that contains the same operations among the different key
bytes. Therefore, corresponding sample ranges for all key bytes have to be found from the entire
sample range of the databases. For this purpose, we identify the leakage of the intermediate value
S(𝑝𝑡𝑥𝑡𝑖 ⊕ 𝑘𝑖) ⊕ 𝑟𝑜𝑢𝑡 as a suitable target for alignment, as its maximum value is easily identified2 for all
key bytes. We align the sample index of this characteristic leakage in accordance with its location in
the proposed range of key byte 𝑘2. Consequently, in the case of the ASCAD fix dataset, the maximum
CPOI is fixed to sample index 492. In the ASCAD variable case, the leakage is fixed to sample index
1000. The exact sample ranges for the different bytes are given in Table 6.1.

ASCAD fix ASCAD variable

Byte min max min max

0 30 824 31 524 45 943 47 343
1 24 577 25 277 30 942 32 342
2 45 400 46 100 80 945 82 345
3 32 906 33 606 50 943 52 343
4 47 482 48 182 85 946 87 346
5 41 235 41 935 70 945 72 345
6 37 071 37 771 60 944 62 344
7 34 989 35 689 55 943 57 343

ASCAD fix ASCAD variable

Byte min max min max

8 26 660 27 360 35 942 37 342
9 39 154 39 854 65 944 67 344

10 28 742 29 442 40 942 42 342
11 43 318 44 018 75 945 77 345
12 20 413 21 113 20 941 22 341
13 22 495 23 195 25 941 27 341
14 49 565 50 265 90 946 92 346
15 18 330 19 030 15 940 17 340

Table 6.1 Sample indices for the alignment of all key bytes on CPOI values.

The CPOI results for the remaining key bytes of ASCAD variable after alignment are shown in
Fig. 6.23. To increase readability, we omit the byte index 𝑖 in the legends of the plots, and the
respective byte is given in the caption. In contrast to the leakage evaluated in the state of the art and
shown in Fig. 6.1, we identify additional leakage contained in the segments. A similarity between all

2Note that for key byte 𝑘15 of the ASCAD variable dataset there is one additional peak compared to the other bytes.
We manually corrected the range such that the same operations are contained.

3For completeness, the CPOI evaluations for all key bytes of ASCAD fix are additionally shown in Appendix B.

102

bytes is the additional leakage of 𝑝𝑡𝑥𝑡 ⊕ 𝑘 ⊕ 𝑟𝑖𝑛 from sample 300 to 500 (green color). It can also be
seen that the CPOI plots of the individual bytes largely differ in two regions, namely from samples
600 to 1000 and 1100 to 1400. In these regions, an additional leakage of either the security load (𝑘2;
dashed gray), 𝑟𝑖𝑛 (𝑘2, 𝑘3; red), 𝑟𝑜𝑢𝑡 (𝑘4; cyan), or 𝑟𝑖 (𝑘5; yellow) is present. The remaining bytes do not
show this leakage characteristic. For 𝑘15 an additional leakage of S(𝑘 ⊕ 𝑝𝑡𝑥𝑡) ⊕ 𝑟𝑜𝑢𝑡 (blue) is visible at
the beginning of the trace segment (around sample 70). A reason for this could be that 𝑘15 is the byte
that is processed first (c.f. Eq. (5.7)) and therefore registers are still empty, which leads to additional
leakage.

Two conclusions can be drawn from the CPOI evaluation in Fig. 6.2. First, there is a significant
difference between the leakage observed for the individual key bytes. As most of the related work
on the ASCAD databases has been conducted on 𝑘2, the performance of DL-based SCA for other key
bytes (with different leakage characteristics) might differ. We evaluate this assumption in Section 6.3.3.
Second, in addition to the intermediate values 𝑟𝑖 and 𝑟𝑜𝑢𝑡 provided by related work, the results show
that trace segments include additional leakage like the input mask 𝑟𝑖𝑛 and 𝑝𝑡𝑥𝑡𝑖 ⊕ 𝑘𝑖 ⊕ 𝑟𝑖𝑛 that
might be utilized by the networks for the attack. In particular, for key byte 𝑘2, there is a significant
leakage of these values that has not been considered by related work to the best of our knowledge.
The presence of leakage resulting from additional intermediate values is of interest for attribution
techniques to determine important features for DL-based SCA. The additional leakages we outline
can lead to a better understanding of attribution difficulties for the ASCAD database of existing
methods [HGG20, MDP19], which consider only the leakage evaluation by Benadjila et al. [BPS+20].
This thesis shows that the identified leakages are indeed helpful, as they allow an interpretation of
attribution results for the developed method in Chapter 7.

Analysis of the Entire Masked SubBytes Operation This section analyzes the leakage behavior of the
entire masked SubBytes operation for key byte 𝑘2 of ASCAD variable. The resulting CPOI analysis
is shown in Fig. 6.3. By analyzing the assembly code, the correlation peaks can be related to the
respective parts of the masked SubBytes operation, which are denoted by the color bars on top of
the figure in the same colors as for the parts of Fig. 5.4. The trace segment chosen by the ASCAD
authors and evaluated in the previous section is marked by a horizontal bar with the label 𝐴𝑆𝐶𝐴𝐷.
The resulting sample range mainly covers the second part of the masked SubBytes operation depicted
in Fig. 5.4, namely after the lookup of the masked S-box. We further fitted the individual assembly
instructions of the implementation onto the CPOI plot in Fig. 6.3 to ease the analysis of the leakage
origins4. The different line numbers of the implementation are depicted by vertical lines. Code
lines marked with a and b represent subcycles of assembler instructions that take more than one
clock cycle to be executed. Despite a thorough analysis and study of the microcontroller architecture
as well as the implementation, some correlation peaks and their corresponding code lines can not
be easily explained. We attribute this to leakage behavior observable between all registers of AVR
microcontrollers, as analyzed, e.g., in [SR16]. The processing of the next byte according to Eq. (5.7)
is marked by another horizontal bar and a corresponding label in Fig. 6.3. Note that since several
registers5 do not get cleared after the calculations of each key byte, the intermediate value S(𝑝𝑡𝑥𝑡⊕𝑘)⊕𝑟
is also visible during the processing of the subsequent SubBytes operation, e.g., around samples 2500
to 2800.

As a summary, it can be concluded that the trace segment chosen by the ASCAD authors includes
only a part of the whole masked SubBytes operation. This is clearly due to the fact that the authors
chose a trade-off between the size of the sample range and therefore the input size of the network,
which has an influence on the required training time and the contained information. Nevertheless,

4We map the beginning of a correlation peak to the rising edge of a clock cycle, as the highest current change is
reflected by a high leakage. We build our mapping on load and store operations that normally exhibit higher leakage for
microcontrollers as the data transfer over the bus consumes more power than normal ALU operations. The first operation,
namely the load of 𝑟𝑖 in line 407, is mapped to the corresponding first correlation peak. The second operation is the store
of the final S-box result S(𝑘𝑖 ⊕ 𝑝𝑡𝑥𝑡𝑖) ⊕ 𝑟𝑖 in line 428.

5Namely r3, r24, r26 and r27, for details, the reader is referred to the assembly implementation.

103

−2000 −1000 0 1000 2000 3000

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

ASCAD next key byte

39
6

39
7

39
8

39
9a

39
9b

40
0a

40
0b

40
1a

40
1b

40
4

40
5

40
6

40
7a

40
7b

40
9

41
0

41
2

41
3

41
4a

41
4b

41
6

41
7a

41
7b

41
9

42
0

42
3

42
4

42
5

42
6a

42
6b

42
7a

42
7b

42
8a

42
8b

43
1

43
3a

43
3b

39
0

39
3a

39
3b

39
6

39
7

39
8

39
9a

39
9b

40
0a

40
0b

40
1a

ptxt⊕ k ⊕ rin

ptxt⊕ k ⊕ r

ptxt⊕ k ⊕ r ⊕ rin

rin

rout

r

S(ptxt⊕ k)⊕ rout

S(ptxt⊕ k)⊕ r

Figure 6.3 CPOI analysis for the entire masked SubBytes operations for key byte 𝑘2 of ASCAD variable (samples
78 000 to 84 000). The indices are aligned such that samples 0-1399 correspond to the trace segment proposed
by ASCAD [BPS+20].

the narrow selection of samples omits additional information and leakages that could further be used
to improve training and attacks of DL-based SCA.

6.2.2 First/Second-Order CPA Results

One of the main benefits of DL-based SCA is that it reduces the attacker’s effort to perform higher-
order side-channel attacks. In a classical higher-order CPA, the leakage of the individual shares,
e.g., S(𝑘𝑖 ⊕ 𝑝𝑡𝑥𝑡𝑖) ⊕ 𝑟𝑖 and 𝑟𝑖 , has to be combined. The individual leakage points are not known
in a masked implementation and therefore all combinations of a chosen sample range have to be
evaluated. For large numbers of sample points, this requires large computational resources and
may even be infeasible. Therefore, a lot of effort and expertise is needed to find a promising small
sample range for an attack. With DL-based SCA, the correct combinations are learned during the
network training, reducing the attacker’s effort. In order to claim this benefit, it has to be verified
that there is no first-order or second-order univariate leakage contained in the traces. This could be
an easier target for the network since it does not need to learn the correct sample combinations but
rather learns directly from this leakage. In addition, the results of classical SCA are also valuable
to interpret DL-based attack results for the different key bytes and to perform attribution of learned
features by a network.

We, therefore, evaluate both databases regarding first-order and univariate/multivariate second-
order CPA. In order to generate the results, the Jlsca toolkit [BK] was used. For all evaluations, we use
the HW power model and target the intermediate S(𝑝𝑡𝑥𝑡 ⊕ 𝑘), which corresponds to the intermediate
used as training label. For the second-order attacks, we use the normalized (mean-free) product as
a preprocessing function to combine the respective samples and perform a CPA on the preprocessed
traces. This preprocessing has been shown to be optimal under the assumption of HW leakage
[PRB09]. For the first- and second-order univariate attacks, we use all available traces in the datasets,
while for the second-order multivariate attack, we limit the amount of attack traces to 10 000. This is
due to the vastly increasing computational complexity of multivariate attacks, as all possible sample
combinations have to be evaluated. The correlation is evaluated every 20 traces for all bytes except 𝑘0
and 𝑘1, where the correlation is updated every trace. In a first step, we show results for all key bytes
using the trace segments described in Section 6.2.1. We conclude with results using the entire sample
range of the traces contained in the databases.

104

Order 𝑘0 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6 𝑘7 𝑘8 𝑘9 𝑘10 𝑘11 𝑘12 𝑘13 𝑘14 𝑘15

ASCAD

fix

1st 19 12 – – – 1960 – – – – – – – – – –
2nd (uni.) x x 5440 2060 4900 3160 4880 9400 5180 2360 2940 5200 8580 7920 1980 2730
2nd (mult.) x x 620 280 540 260 200 480 340 1340 400 460 620 460 240 300

ASCAD

variable

1st 10 24 – – 85 700 1580 – – – – – – – – – –
2nd (uni.) x x – – – – – – – – – – – – – –
2nd (mult.) x x 560 640 900 540 880 740 680 960 900 1220 1100 1380 520 660

Table 6.2 First- and second-order CPA results for both ASCAD databases. For each key byte, the number of
traces after which a key rank of zero occurs for the first time is given. For entries marked with "–" the correct
key could not be found with the provided traces.

Evaluation of Trace Segments The attack results for the trace segments of the individual key bytes
(c.f. Section 6.2.1) are shown in Table 6.2, where we provide the amount of attack traces, after which a
key rank of zero first occurs. There are successful first-order attacks for both datasets, which should
be unexpected for a first-order secure implementation6. Namely, 𝑘5 can be successfully attacked in
both datasets and additionally 𝑘4 is retrieved in ASCAD variable. In comparison to the unmasked
key bytes 𝑘0 and 𝑘1 where at most 24 traces are sufficient, 𝑘5 requires 1960 (ASCAD fix) and 1580
(ASCAD variable) traces for a successful attack. In contrast, 𝑘4 of ASCAD variable can be attacked
with 85 700 traces, which is almost the whole attack set of the database. As ASCAD fix contains
only 60 000 measurements, it can be assumed that the CPA is not successful due to the lack of
measurements. Note that masked software implementations are known to exhibit security order
reductions due to unexpected and therefore unconsidered transitional leakage of the target platform
[BGG+15, LCGD18].

For the second-order univariate attack, we show successful attacks on all masked key bytes in
ASCAD fix, while no successful attack can be observed for ASCAD variable. A plausible explanation
of this difference is that due to differences in the measurement setup or preprocessing of ASCAD fix

(see Section 6.2.1), multivariate leakage is transformed to univariate [MM13]. The amount of required
attack traces for a successful univariate second-order attack ranges from a minimum of 1980 (𝑘14) up
to 9400 (𝑘7). In the case of a multivariate second-order attack, the results in Table 6.2 show that the
chosen amount of 10 000 traces is more than sufficient for a successful attack on all key bytes. As
this is expected behavior, we additionally provide an evaluation of the different sample combinations
that lead to a successful attack for ASCAD variable. The resulting correlation results for all sample
combinations are shown in Fig. 6.4. Note that for visualization, a convolution filter is applied to
increase the size of the found sample combination points. Furthermore, correlations of less than
4/√10000, which is an estimate of a threshold for a significant correlation derived in [MOP07, Section
6.4.2], are depicted in white. We limit the evaluation to key bytes with different leakage characteristics
as shown in Fig. 6.2, while the remaining bytes are shown in Appendix C. For all these key bytes,
it can be concluded that samples corresponding to 𝑟𝑜𝑢𝑡 (around 70) and 𝑟𝑖 (200) can be combined
with their corresponding masked S-box value (1000 and 1100). For 𝑘15, the additional leakage of
S(𝑘15 ⊕ 𝑝𝑡𝑥𝑡15) ⊕ 𝑟𝑜𝑢𝑡 allows for an additional combination with samples around index 200. Further,
key bytes that are vulnerable against first-order CPA (𝑘4, 𝑘5) show possible additional combinations.

6Note that the possibility of a first-order leak has already been discussed in https://github.com/ANSSI-FR/ASCAD/
issues/15, last accessed 18th April 2024, where a normalization step allows for a sort of second-order univariate attack if
observing a particular sample (sample 188) independently. Nevertheless, this does not have an influence in practice, as in
a masked setting, an attacker can not perform leakage evaluation to identify this sample directly but rather has to use the
maximum correlation among all samples. Additionally, due to the long review cycle of the submission this chapter is based
on [EST+22], the first order leak of 𝑘5 has additionally been identified in [KFYF21] for ASCAD fix. Nevertheless, the results
are not tailored to the corresponding trace segment identified by the ASCAD authors and only 30 % of the available traces
are used for the analysis.

https://github.com/ANSSI-FR/ASCAD/issues/15
https://github.com/ANSSI-FR/ASCAD/issues/15

105

0 200 400 600 800 1000 1200 1400

Time [Samples]

0

200

400

600

800

1000

1200

Ti
m
e
[S
am

pl
es
]

0 0.180

1
(a) 𝑘2

0 200 400 600 800 1000 1200 1400

Time [Samples]

0

200

400

600

800

1000

1200

Ti
m
e
[S
am

pl
es
]

0 0.197

1
(b) 𝑘3

0 200 400 600 800 1000 1200 1400

Time [Samples]

0

200

400

600

800

1000

1200

Ti
m
e
[S
am

pl
es
]

0 0.147

1
(c) 𝑘4

0 200 400 600 800 1000 1200 1400

Time [Samples]

0

200

400

600

800

1000

1200

Ti
m
e
[S
am

pl
es
]

0 0.211

1
(d) 𝑘5

0 200 400 600 800 1000 1200 1400

Time [Samples]

0

200

400

600

800

1000

1200

Ti
m
e
[S
am

pl
es
]

0 0.164

1
(e) 𝑘6

0 200 400 600 800 1000 1200 1400

Time [Samples]

0

200

400

600

800

1000

1200

Ti
m
e
[S
am

pl
es
]

0 0.192

1
(f) 𝑘15

Figure 6.4 Second-order attack results for 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6 and 𝑘15 of ASCAD variable. The resulting correlation
value for the different sample combinations of the correct key hypothesis is shown.

Evaluation of the Whole Dataset Finally, classical SCA results for the whole sample range of both
datasets are shown in Table 6.3. All key bytes of ASCAD variable can successfully be retrieved with
a first-order attack, while for ASCAD fix not all key bytes are attackable (𝑘8, 𝑘10, 𝑘12, 𝑘13, 𝑘15 are not
retrievable). Nevertheless, a univariate second-order attack is still only possible for ASCAD fix.

The possibility of a first-order leak using the whole trace set is worth noticing regarding the
interpretation of attack results. Bronchain et al. [BCS21] show a successful attack on all key bytes that
is constructed such that first-order leaks cannot be exploited (c.f. [BDMS22] for a detailed discussion).
In contrast, the attack methodology of Lu et al. [LZC+21] includes a POI selection step consisting of
an encoder before an attention network, making it possible that this method indeed focuses on the
first-order leakage. These examples show that a thorough understanding of the underlying dataset
is important in order to reason about the capability of a particular architecture or attack approach.
In conclusion, the availability of first-order leakage has to be considered in future work in order to
understand whether DL-based SCA implements multivariate higher-order attacks using the whole
sample range of the ASCAD databases.

6.3 DL-SCA on ASCAD: Impact of Training Scenarios and Varying Key Byte
Leakage

In this section, we evaluate the ASCAD datasets regarding DL-based SCA results. First, in Section 6.3.1
we recall the architectures CNNbest and CNNsmall that are used in our experiments. Second, in
Section 6.3.2 we evaluate the impact of training and attacking on the same fixed key compared to
using variable keys during the training process and a fixed key for the attack set. The results show

106

Order 𝑘0 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6 𝑘7 𝑘8 𝑘9 𝑘10 𝑘11 𝑘12 𝑘13 𝑘14 𝑘15

ASCAD

fix

1st 14 14 12 960 11 220 11 640 2280 15 240 10 220 – 6980 – 27 580 – – 34 660 –
2nd (uni.) x x 3960 4460 5160 3120 6540 15 560 9820 10 380 6780 6400 12 000 9160 12 840 3100

ASCAD

variable

1st 14 16 17 160 10 900 14 060 2260 7760 22 220 11 720 15 480 13 800 19 360 6120 22 200 12 740 16 520
2nd (uni.) x x – – – – – – – – – – – – – –

Table 6.3 First- and second-order CPA results using all available samples. For each key byte, the number of
traces after which a key rank of zero occurs for the first time is given. For entries marked with "–" the correct
key could not be found from the provided traces.

that the former scenario, provided by the ASCAD fix dataset, is an easier task for CNNs. As the
latter scenario is more realistic, we provide results for all key bytes of the ASCAD variable dataset in
Section 6.3.3. The results show that certain key bytes of the dataset are easier to learn than others.
Furthermore, performance differences for different bytes highlight that traces of identical operations
on the same dataset pose challenges to CNNs, and therefore research can benefit from using all key
bytes of an implementation in order to improve the robustness of results.

6.3.1 Experimental Setup

In the following evaluations, we focus on the difference of the ASCAD datasets regarding the difficulty
of training depending on the provided training data and the different bytes of the AES implementation.
For a fair comparison of the datasets, we use the ID model variants of the two CNN architectures
detailed in Section 5.2.3: The CNNbest network by Benadjila et al. [BPS+20] is a relatively large
VGG-16-based architecture, whereas hyperparameter optimization based on reinforcement learning
by Rĳsdĳk et al. [RWPP21] provides the smaller CNNsmall architecture. For both models, a five-fold
cross-validation is performed for all results, i.e., each model is trained five times with a different split
of training and attack set, reducing the effect of initial weights and data selection. The training of
CNNbest is stopped after 100 epochs while the training for CNNsmall is stopped after 50 epochs.

6.3.2 Fixed Key vs. Variable Key Training

A general question regarding DL-based SCA results is how well the models generalize. On the one
hand, hyperparameters such as the number of epochs in the training process can have an effect on the
results and the models may overfit, i.e., only learn the specific relation between features and labels in
the training dataset. On the other hand, the generalization capabilities are inherently limited by the
provided training data. The major drawback of the ASCAD fix dataset is that it uses the exact same
key during the training and the attack phase. First, the scenario is unrealistic as an attacker does not
know the correct key and can hence not train the model with the same key that is later used for the
attack. Second, the question arises whether models benefit from the tailored training set, i.e., whether
the results obtained from the ASCAD fix dataset overestimate the abilities of DL-based approaches.

To answer the question, we compare two settings: A) training and attacking are done on traces that
use the same key, and B) training is done on traces with variable key values and the attack is carried
out on traces with the same key. Setting A corresponds to the use of the ASCAD fix dataset, which
only contains traces with the same fixed key. Setting B is targeted by the ASCAD variable dataset,
which contains traces with variable keys for training and a fixed key for the attack. In order to have a
fair comparison for both settings on the same dataset, we additionally perform training on the fixed
key traces from the ASCAD variable dataset.

Fixed Key Training on ASCAD fix To provide a baseline for the fixed key training with CNNbest on
ASCAD variable, we perform training and attack on the ASCAD fix dataset. With this reference, we
can later determine whether the CNNbest architecture with the small changes proposed by the ASCAD
authors (c.f. Section 5.2.3) performs better or worse on ASCAD variable. For all training processes,

107

we use 48 000 traces for training and validation with a validation split ratio of 1/8, i.e., 42 000 training
and 6000 validation traces. For the attack, we use 12 000 traces split into 12 subsets of 1000 traces, for
which the attack is carried out separately. Hence, considering the five-fold cross-validation 60 attack
sets are available. For CNNsmall, there exists an optimized version for ASCAD variable, i.e., we do
not need the baseline.

Fixed Key Training on ASCAD variable In order to emulate training and attacking on the same key,
we use a part of the traces with a fixed key value in the ASCAD variable dataset for the training and
validation. As the results are generated on the ASCAD variable dataset, a fair comparison with the
setting of a variable key training is possible.

For the CNNbest network, the training and validation uses 48 000 traces and the attack set uses
12 000 traces from the remaining 52 000 traces. We restrict the numbers to be identical with the
ASCAD fix setting for a fair comparison. Similarly, we use 1000 traces for the attack, resulting
in 60 attack sets. For the CNNsmall network, we use 75 000 traces for training and 5000 traces for
validation, and 20 000 attack traces resulting in 100 attack sets in total. We use more traces for
training, as the model architecture has been evaluated with 100 000 traces during the reinforcement
learning and therefore tends to produce worse results with fewer traces. Nevertheless, the fixed key
scenario imposes a total limit of 100 000 traces, including training and attack set.

Variable Key Training on ASCAD variable Finally, the training on variable keys for the ASCAD

variable dataset is carried out to compare with the fixed key training. We use 48 000 traces for
training and validation, but this time with variable keys, and 12 000 traces from the fixed key traces
for the attack. The attack traces are split into subsets of 1000 traces, i.e., 60 sets in total can be
compared. For the CNNsmall network, we use 75 000 traces for training and 5000 traces for validation,
and 20 000 attack traces resulting in 100 attack sets in total. Although the training set size could
be increased in this scenario, we use the same size as for the fixed key training to keep the results
comparable.

Comparison of Results The analysis is carried out on key byte 𝑘2. We calculate the key rank for
an increasing number of traces and monitor the evolution after each trace. The performance of the
trained models is depicted in Fig. 6.5 where the median key rank from the available attack sets is
plotted against the number of evaluated traces.

The results for the ASCAD fix dataset and CNNbest in Fig. 6.5a are in line with Benadjila et al.
[BPS+20], where approximately 500 traces were needed to reach a key rank of zero using the same
model. The median key rank reaches zero at 428 traces, i.e., rank zero is reached for half of the attack
sets with less than 428 traces and for the other half with more than 428 traces. The quantiles from
0.25 to 0.75, which are visualized as filled area show that 50% of the attack sets reach a key rank of
zero between 147 and around 812 traces. From the 60 attacks sets, 12 do not reach a median key rank
of zero with the provided 1000 traces.

The fixed key training with CNNbest on ASCAD variable in Fig. 6.5b reaches a median key rank of
zero with 200 traces in half of the cases and the majority of attacks succeed with less than 341 traces.
Comparing the results for the fixed key training in Figs. 6.5a and 6.5b, CNNbest requires fewer traces
for a successful attack with the ASCAD variable dataset than with the ASCAD fix dataset. Hence,
the architecture optimized on ASCAD fix can also be used on ASCAD variable with the proposed
small changes like the size of the input layer (c.f. Section 5.2.3) and we use CNNbest to compare the
fixed key training against the variable key training on ASCAD variable. A dedicated hyperparameter
search for the ASCAD variable dataset could yield even better results. However, as we are mainly
concerned with the comparison of the effect of training sets, this is beyond the scope of this thesis.
The use of an optimized network is covered by the results generated with CNNsmall.

Finally, in Fig. 6.5c, the training of CNNbest on variable keys does not achieve perfect key recovery
for more than half of the attacks (37 out of 60) even after 1000 traces. Only a quarter of the attack sets,

108

0 200 400 600 800 1000

Traces

0

20

40

60

80

100

K
R
(m

ed
ia
n)

1(a) CNNbest: ASCAD fix

0 200 400 600 800 1000

Traces

0

20

40

60

80

100

K
R
(m

ed
ia
n)

1(b) CNNbest: Fixed key

0 200 400 600 800 1000

Traces

0

20

40

60

80

100

K
R
(m

ed
ia
n)

1(c) CNNbest: Variable key

0 50 100 150 200 250 300

Traces

0

20

40

60

80

100

K
R
(m

ed
ia
n)

1(d) CNNsmall: Fixed key

0 50 100 150 200 250 300

Traces

0

20

40

60

80

100

K
R
(m

ed
ia
n)

1(e) CNNsmall: Variable key

Figure 6.5 Median key rank for different training scenarios for key byte 𝑘2: (a) ASCAD fix, (b)-(e) ASCAD

variable. The blue area represents the results between the 0.25 and 0.75 quantiles, i.e., it contains 50% of all
results.

corresponding to the 0.25 quantile, can be attacked with less than 638 traces. Compared to the fixed
key training in Fig. 6.5b, more than five times as many traces are required for a successful attack.

The results for the different training conditions for CNNsmall in Figs. 6.5d and 6.5e show similar
results. While the optimized hyperparameter architecture achieves key recovery with fewer traces
than CNNbest, the number of traces to reach a median key rank of zero is about four times higher with
variable key training: The training on the same fixed key as during the attack in Fig. 6.5d requires
58 traces for a successful attack. On the other hand, the training on variable keys leads to a median
key rank of zero after 239 traces, and for 20 out of 100 attack sets the key byte can not be recovered
with 1000 traces.

Summary We compared the results for fixed key and variable key training on the ASCAD variable

dataset using two different network architectures. For both networks, successful attacks require at
least four times as many traces when training on a variable key compared to training on the same fixed
key as used during the attack. The results suggest that the performance of networks based on fixed
key training is overestimated. Consequently, as the ASCAD fix dataset only contains measurements
from a single key and shows unexpected univariate second-order leakage as detailed in Section 6.2.2,
future research should rely on the ASCAD variable dataset with variable training keys. We emphasize
that the results are valid for the ASCAD databases, and based on the available data, we made the
best effort to support our claim. Nevertheless, training on a random key may not be more difficult in
every scenario, especially if the whole AES execution is considered. Measurements with a variable
key could contain additional information on, e.g., the key transfer and the key schedule that could be
exploited by the models.

109

6.3.3 Training on Different Key Bytes

Following the differences in the side-channel leakage for different bytes revealed in Section 6.2, we
evaluate how networks perform when training on different key bytes of the ASCAD variable dataset.
The expectation that unmasked bytes 𝑘0 and 𝑘1 and bytes 𝑘4 and 𝑘5, which exhibit first-order leaks
are easier targets leads to the following question: 1. Are certain key bytes easier to attack independent of

the network architecture? In Section 6.2, we showed that the leakage differs between bytes. Therefore,
hyperparameter search may overfit on the leakage behavior of the byte used during the search, and
the network may not be able to generalize to other bytes even from the same implementation, which
leads to the question: 2. Do networks perform equally well on key bytes other than the one used for the

hyperparameter search? The first question addresses the properties of the dataset, while the second
directs towards the generalization capabilities of networks.

As from Section 6.3.2 a training on variable keys provides the more realistic assessment of the
capabilities of the deep-learning models, we use the ASCAD variable dataset for the analysis. For
training and validation, we use 110 000 traces with variable keys, with a validation split ratio of 1/11,
resulting in 100 000 training and 10 000 validation traces. The two architectures CNNbest and CNNsmall
are trained with traces from a key byte 𝑘𝑖 and traces from the same key byte are used to evaluate the
attacks. All 100 000 traces with the fixed key are split up into subsets of 2000 traces, i.e., 50 attack sets
are tested, yielding a total of 250 attack sets taking into account the five-fold cross-validation.

0 500 1000 1500 2000

Traces

0

20

40

60

80

100

K
R
(m

ed
ia
n)

0
1
2
3
4
5
6
7

1(a) CNNbest: Bytes 𝑘0-𝑘7

0 500 1000 1500 2000

Traces

0

20

40

60

80

100

K
R
(m

ed
ia
n)

8
9
10
11
12
13
14
15

1(b) CNNbest: Bytes 𝑘8-𝑘15

0 50 100 150 200 250 300

Traces

0

20

40

60

80

100

K
R
(m

ed
ia
n)

0
1
2
3
4
5
6
7

1(c) CNNsmall: Bytes 𝑘0-𝑘7

0 50 100 150 200 250 300

Traces

0

20

40

60

80

100

K
R
(m

ed
ia
n)

8
9
10
11
12
13
14
15

1(d) CNNsmall: Bytes 𝑘8-𝑘15

Figure 6.6 Median key rank of 250 attacks for all key bytes of ASCAD variable.

In Fig. 6.6, the median key rank of all 250 attacks is depicted for the different bytes and networks
CNNbest and CNNsmall. Table 6.4 provides further details in terms of the number of traces required
to reach a median key rank of zero. For bytes that require more than 2000 traces to converge to zero,
we repeated the attacks with 20 attack sets of 5000 traces to provide numbers for the comparison.

110

𝑘0 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6 𝑘7 𝑘8 𝑘9 𝑘10 𝑘11 𝑘12 𝑘13 𝑘14 𝑘15

CNNbest 2 2 875 95 755 28 517 401 1598 2945a 1597 931 2265a 2966a 966 830
CNNsmall 7 5 142 1210 47 29 135 104 163 214 127 118 148 176 151 108

a) Results did not converge to zero with 2000 traces. Therefore, given results are generated using 20 attack sets of 5000 traces,
corresponding to a median key rank obtained from 100 attacks compared to 250 attacks for other bytes.

Table 6.4 Traces to reach median key rank zero for all bytes of ASCAD variable.

Consequently, the median key ranks are based on a total of 100 attack sets instead of 250 attacks for
other bytes.

Regarding the question of whether specific key bytes are easier or harder to attack for both models,
a part of the expectation is confirmed by Table 6.4 and Fig. 6.6. The key bytes 𝑘0, 𝑘1, and 𝑘5 reach a
median key rank of zero with less than 30 traces compared to more than 100 (CNNsmall) and more
than 400 traces (CNNbest) for most other bytes. For the unmasked bytes 𝑘0 and 𝑘1, two traces suffice
to recover the correct key with CNNbest, which is in line with previous work that reported similar
findings on the ASCAD fix dataset [ZS20]. The CNNsmall network is also able to break 𝑘0 and 𝑘1 but
requires 7 and 5 traces, respectively. The fact that 𝑘5 is recovered with fewer traces than other bytes
with both networks can be explained by the first-order leak discussed in Section 6.2.2. Either the
network directly exploits the first-order leakage, or the leakage at least simplifies the classification
task. In either case, as the CPA requires more traces for 𝑘5 compared to the unmasked bytes 𝑘0 and
𝑘1, it is plausible that the network also requires more traces for a successful attack. Key bytes 𝑘9 and
𝑘13 require more traces compared to the other bytes for both architectures. Interestingly, both bytes
are also among the bytes that require most traces for a second-order multivariate CPA in Table 6.2.
However, the results for CNNsmall vary in a narrow range, i.e., establishing a link between CPA and
deep-learning approaches requires further research.

With respect to the question of whether the same network performs equally well among all bytes,
it has to be noted that both networks are capable of retrieving all 16 key bytes. Apart from the bytes
𝑘0, 𝑘1, 𝑘3 and 𝑘5 that require less than 100 traces for CNNbest, three groups of bytes can be identified
in the first row of Table 6.4 and Figs. 6.6a and 6.6b: 𝑘9, 𝑘12, 𝑘13 with more than 2000 traces, 𝑘8 and
𝑘10 with about 1600 traces, and the remaining seven bytes with 400 to 970 traces. The second row of
Table 6.4 and Figs. 6.6c and 6.6d shows leveled results among the different bytes for CNNsmall: apart
from 𝑘0, 𝑘1, 𝑘4 and 𝑘5 with less than 50 traces, most bytes require 100 to 150 traces. The existence of
only a few moderate outliers (𝑘8, 𝑘9, 𝑘13) indicates that the network CNNsmall performs equally well
for most key bytes. The only exception is 𝑘3, which converges to a key rank of zero with more than
1200 traces. A possible explanation is that the hyperparameters of CNNsmall are highly optimized for
the leakage pattern of 𝑘2, which occurs in most bytes. Therefore, results for CNNsmall are constant
across different bytes, except that the architecture does not capture the distinct leakage pattern of 𝑘3.

Notably, for key byte 𝑘4, which exhibits a first-order leak with more traces than 𝑘5, CNNsmall
requires fewer traces than for other bytes, while CNNbest does not show an improved performance
on 𝑘4. On the other hand, CNNbest seems to benefit from the different leakage pattern of 𝑘3 shown
in Fig. 6.2. A possible explanation is that CNNbest is oversized, i.e., its internal filters do not focus
on single events such as the first-order leakage pattern from 𝑘4. Instead, information from multiple
points is aggregated, but as the hyperparameters are not highly optimized (as for CNNsmall), differing
leakage as from 𝑟𝑖𝑛 of 𝑘3 can be exploited.

Summing up, 𝑘3 and 𝑘4 are not inherently easier to attack, but the network architecture used for the
attacks plays an important role. This shows that the byte used for hyperparameter search exhibits an
influence depending on the architecture.

111

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
attacked byte

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

tr
ai
ne

d
by

te

0

1000

2000

3000

4000

5000

1(a) CNNbest

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
attacked byte

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

tr
ai
ne

d
by

te

0

1000

2000

3000

4000

5000

1(b) CNNsmall

Figure 6.7 Cross-byte analysis on ASCAD variable for CNNbest and CNNsmall. The color bar represents the
traces required to reach a median key rank of zero. Results, where 5000 traces do not suffice to recover the key,
are depicted in white.

6.3.4 Cross-Byte Analysis

We conclude the training evaluation by performing attacks on key bytes that are different from the
one the network is trained on. The aim of this cross-byte analysis is to establish the influence of the
different leakage patterns from Fig. 6.2 on the training process. The 100 000 traces with attack traces
from ASCAD variable are split into 20 attack sets of 5000 traces resulting in 100 attacks considering
the five-fold cross-validation. The results of all possible training and attack combinations for both
networks are shown in Fig. 6.7 in terms of the number of traces to reach a median key rank of zero.
Combinations for which 5000 traces do not suffice to recover the key are depicted in white. Note that
the diagonals consist of the required traces for training and attacking on the same byte from Table 6.4.

As expected, the first two rows in Figs. 6.7a and 6.7b show networks trained on trace segments of
the unmasked bytes 𝑘0 and 𝑘1 are not able to successfully attack trace segments from the masked key
bytes. Networks trained on bytes that show a different leakage characteristic compared to the majority
of other bytes, namely 𝑘3 , 𝑘4 , 𝑘5 (c.f. Fig. 6.2), tend to only perform well on attacking the byte they
are trained for. This highlights that the different leakage characteristics (and possibly intermediate
values) are targeted by the CNNs and that trained networks do not easily generalize for attacks on
all bytes of the ASCAD variable database. Finally, for CNNsmall, the key bytes that show a similar
leakage behavior in Fig. 6.2 (𝑘2, 𝑘6-𝑘14) perform reasonably well among each other, while for CNNbest
results vary.

To conclude, attack results vary between bytes and trained networks can not easily be used for
attacks on all bytes of the ASCAD variable database. This implies that an attacker has to train a
separate model for each leakage, i.e., results from a single byte may not be representative. It has to
be emphasized that this is not a specific behavior of DL-based SCA but is also observable in classical
template attacks. Nevertheless, our results show the extent of this difference and, as most work is done
on 𝑘2, results on this byte might be implicitly expected for attacks on other bytes. Alternatively, in
order to improve generalization, training on a mixture of leakages from different bytes, which has been
shown to be effective for cross-device attacks [BCH+20], could be applied. Other more sophisticated
methods used in cross-device learning, like Domain Adaption [CZLG21] or Meta-Transfer Learning
[YSPJ21], should also be evaluated in this context. We conclude that cross-byte analysis can serve as
a first step to assess the robustness of CNN architectures on the same dataset.

112

Summary We showed that results of DL-based SCA using CNNs differ for the distinct key bytes of
the ASCAD variable dataset. For some bytes, the results are consistent for different networks, i.e.,
they are easier (𝑘0, 𝑘1, 𝑘5) or more difficult (𝑘9, 𝑘13) to learn. Results coincide with classical SCA in
Section 6.2, which highlights that an understanding of the datasets is beneficial to understand and
compare DL-based SCA results. The performance differences with the same network architecture
for different bytes highlight that traces of identical operations on the same dataset pose challenges
to CNNs. The highly optimized architecture CNNsmall shows constant results across different bytes,
except for the distinct leakage pattern of 𝑘3. With a large architecture such as CNNbest, results
vary across different bytes. Hence, we emphasize that in addition to results from different datasets,
research can benefit from using the entire ASCAD dataset to test whether models are robust under
varying leakage conditions.

6.4 Conclusion

In this chapter, we provided a second look at the ASCAD databases both in terms of classical SCA and
regarding the difficulty of CNN-based attacks. In contrast to most related work, we considered all
bytes of the implementation. The CPOI analysis demonstrated a contribution of different intermediate
values to the leakage, which has not been considered yet. Provided CPA results revealed first-
order and univariate second-order leakage for several key bytes that are unexpected for a masked
implementation. These results, along with the matching of implementation and observed leakage,
can be used to reason about a network’s learning behavior.

Subsequently, we showed that training CNNs on the same fixed key as used for the attack yields
significantly better results than training on variable keys for the ASCAD databases. Hence, the
ASCAD fix dataset can be seen as the best-case scenario from an attacker’s point of view given the
available ASCAD databases. In order to evaluate a more realistic attack, future work should be based
on the ASCAD variable dataset and a variable key training. Finally, we compared CNN attack results
for all bytes of the ASCAD variable dataset, which showed that differing leakage poses challenges to
CNNs depending on the used architecture. In addition to comparing results on different datasets,
the different key bytes of the ASCAD variable dataset can be leveraged by future work to improve the
robustness of results.

As a final remark, it has to be stressed that the ASCAD databases provide a valuable contribution
towards openly available datasets that are crucial for comparable DL-based SCA results. The pre-
sented results show that apart from the research on suitable deep-learning architectures, a thorough
analysis of the underlying datasets is required to interpret attack results.

113

7 Occlusion Techniques for DL-SCA Attribution

This chapter is based on the publication Schamberger/Egger/Tebelmann: Hide and

Seek: Using Occlusion Techniques for Side-Channel Leakage Attribution in CNNs pub-
lished in Applied Cryptography and Network Security Workshop (ACNS), 2023 [SET23].
The idea of showing occlusion results as waterfall plots was first identified in the
master thesis of Florian Lippert [Lip20] that I supervised. The framework for the
evaluation of the different occlusion methods was developed by Maximilian Egger
and has been revised by me in order to generate the shown results in this chap-
ter. The results in Fig. 7.1 have been generated using the DeepExplain framework
[ACÖG19a].

7.1 Introduction

In Chapter 6, an evaluation of the ASCAD databases is presented that highlights the downside
of the relaxed feature engineering effort of DL-based SCA in contrast to classical profiled side-
channel analysis approaches, which lies in the reduced explainability of attack results. The identified
additional leakage of intermediates or the first- and second-order leaks can be exploited by the
networks and therefore an attacker does not know which leakage is used to defeat the countermeasures
of an implementation (see Section 5.1.5 for a discussion). The work that is presented in this chapter
tries to solve this problem by developing and evaluating neural network attribution methods that can
be used to reason about the learned features/samples of a measurement trace during the training
process. This knowledge provides valuable insights for designers of masked implementations on
how to fix weaknesses in their implementations by comparison with known leakage of intermediates.
Additionally, it can also be used to reason about performance differences between classical attacks
and DL-based approaches.

In particular, this chapter proposes occlusion techniques, which work by removing (occluding)
some parts of the input and comparing the result before and after the occlusion. If the achievable
attack result is worse after the occlusion it can be reasoned that the occluded features or sample range
is used by the network. In contrast to established gradient-based attribution methods, the proposed
occlusion techniques allow a direct interpretation of results. The developed techniques are evaluated
for both ASCAD databases, and occlusion parameters that are suitable in the side-channel context are
identified. In this context, it is shown that due to side-channel measurement characteristics, multiple
adjacent samples have to be occluded simultaneously, which has not been considered in related work.
In addition, with the presented higher-order occlusion, we are able to identify leakage combinations
that are exploited by a network in order to mount a higher-order attack. Finally, the methods are
used to show that networks actually utilize varying leakage characteristics shown in Chapter 6 that
are observable for different key bytes of the ASCAD databases. The results show that occlusion is a
viable addition to established gradient-based attribution methods.

Related Work When looking at the explainability of neural networks in the side-channel context,
there are two different directions. First, the question of "What is the influence of the different elements,

e.g., a single node in a specific layer, on the training outcome?" can be answered. Wu et al. [WWJ+23] use
a method called ablation, where they successively remove parts of the network in order to identify

114

which parts of the network are needed to defeat common hiding countermeasures. A second work in
this direction is shown by Perin et al. [PWP22b]. Their approach uses an information-theoretic metric
to reason about which layer learns a specific intermediate of a masked implementation.

The second explainability direction is the question of neural network attribution, i.e., which input
features are learned by the network and therefore are significant for the inference process and hence
the classification result. In this category, the majority of techniques are gradient-based visualization
approaches that utilize a single forward and backward pass through the network. The basic method is
a so-called saliency map [SVZ14] that performs attribution by computing the absolute partial derivative
of an output class with respect to the input features. An improvement of this method, which takes
the signed derivative and multiplies it with the input feature, is called Gradient*Input [SGSK16]. A
more advanced method called Layer-wise Relevance Backpropagation (𝜖-LRP) is proposed by Bach et al.
[BBM+15]. It is computed with a backward pass on the network by using a propagation rule that maps
the found class relevance of a given layer onto the previous one until the input layer is reached. Ancona
et al. [ACÖG19b] provide an in-depth discussion about these gradient-based methods leading to their
attribution framework called DeepExplain [ACÖG19a], which can be readily integrated into common
machine learning frameworks. In the side-channel context, several of the presented methods or their
variants have been discussed. Masure et al. [MDP19] propose a method similar to Gradient*Input,
while others deviate from the general ML literature like Timon [Tim19] who uses partial derivatives
of the first layer network weights and Zaid et al. [ZBHV19] who propose a method based on weight
visualization. Perin et al. [PEC19] use a variant of 𝜖-LRP. Hettwer et al. [HGG20] extensively use
the DeepExplain framework to analyze different publicly available datasets, including ASCAD, and
conclude that 𝜖-LRP is the most appropriate method. Wouters et al. [WAGP20] use the Gradient*Input
method of DeepExplain to reason about the required filter sizes to defeat the misalignment of traces.

A second class of attribution methods can be grouped as perturbation methods. These methods
work by altering or removing (occluding) some parts of the input with the goal of comparing the
results after running a second forward pass on the network. The first occlusion method has been
proposed by Zeiler and Fergus [ZF14] in the context of image classification with CNNs where they
use a gray patch occluding parts of the image. Prediction Difference Analysis [ZCAW17] improves
this method and identifies that a multivariate analysis, e.g., modifying multiple pixels at once, has
a significant influence on explainability. Occlusion methods allow for straightforward interpretation
and are applicable to any model architecture. However, these methods suffer from large or infeasible
computation times for large input feature sizes. Additionally, the number of simultaneously occluded
features, as well as the occlusion method, significantly influence the results [ACÖG19b]. Regarding
DL-based SCA, occlusion methods have been studied by Hettwer et al. [HGG20], who additionally
evaluate the integrated 1-occlusion method of DeepExplain on their datasets. After the publication
of the occlusion methods in this chapter, Yap et al. [YBP23] published an occlusion-based method
called Key Guessing Occlusion that is able to determine one variant of a minimal set of samples for
which an attack is still possible. They perform multiple rounds of iteratively occluding single samples
with the value of zero and observe the resulting attack result while determining occluded samples
for which the occlusion does not result in an unsuccessful attack as irrelevant. Only relevant samples
are used for the next iteration until the occlusion results determine all remaining samples as relevant
for the attack’s success. Their results for 𝑘2 are in accordance with the attribution results shown in
this chapter.

Finally, Yap et al. [YBBP23] explore a different direction with the utilization of an architecture
called Truth Table Deep Convolutional Neural Network, which is built for interpretability. Using this
architecture, the authors can identify regions of POIs that are used for an attack. Nevertheless, the
attribution results are only valid for this specific architecture and can not be generalized.

Contribution This chapter investigates advanced occlusion techniques for the leakage attribution
of CNNs that are used for SCA. It has to be noted that although the developed methods are only
evaluated using CNNs, occlusion methods are inherently model-agnostic [ACÖG19b] and therefore

115

the methods should, in theory, be applicable to other network architectures frequently used in SCA,
e.g., MLPs. Nevertheless, evaluating other architectures is considered out of scope of this thesis and
is left for future work. In particular, the contributions presented in this chapter are as follows:

• We introduce 𝑛-occlusion, which allows for identifying POIs based on a trained CNN. By adapt-
ing the number 𝑛 of occluded samples, the relevant samples are narrowed down. Compared to
1-occlusion from prior work [HGG20], our approach reliably identifies leakage that is spread
across multiple samples, which is usually observed in side-channel measurements.

• We investigate the influence of the occlusion method, i.e., how samples are exchanged, and
show that the gray box method [ZF14] widely used in image recognition is not the best choice for
time series signals like side-channel measurements.

• We propose higher-order occlusion that occludes multiple parts of a trace and thus enables the
identification of POI combinations for higher-order SCA attacks.

• Finally, we employ our occlusion methods to analyze two different network architectures trained
on both ASCAD datasets. A comparison with a leakage analysis allows to foster a better
understanding of what CNNs actually deem relevant in these side-channel measurements. Our
results show that, especially for other key bytes of the ASCAD databases than the proposed third
key byte of the ASCAD authors, the networks infer information from the additional leakage
identified in Section 6.2.1.

Outline In Section 7.2, gradient-based attribution methods are revisited, highlighting their attribu-
tion difficulties for the ASCAD databases. This is followed by an introduction of the 𝑛-occlusion
method as well as its higher-order variant in Section 7.3. Within this section, suitable occlusion
parameters for both databases are evaluated, leading to a successful evaluation of the chosen trace
segment by the ASCAD authors. Using the established occlusion parameters, Section 7.4 provides
an evaluation of two additional key bytes for which occlusion shows that the networks exploit the
unique leakage of these bytes. Finally, Section 7.5 concludes this chapter.

7.2 Revisiting Gradient-based Attribution for ASCAD

In this section, we revisit gradient-based attribution methods for both ASCAD datasets and chosen
network architectures (c.f. Section 5.2.3). We use the DeepExplain framework [ACÖG19a] to generate
the so-called attribution maps using saliency maps, Gradient*Input, and the 𝜖-LRP method after
each training epoch. We choose these attribution methods since they correspond to methods used
in related work, while saliency maps and the more general Gradient*Input are similar to self-made
gradient-based methods that are not established Machine Learning (ML)-based approaches as, e.g.,
published by Masure et al. [MDP19]. Attribution maps generate an attribution value for each sample
point of the used attack traces averaged over the amount of used traces, which we denote as 𝑁𝑎𝑡𝑡𝑟 . We
additionally normalize the attribution values for each method individually by scaling them relative
to their absolute maximum.

The resulting attributions are shown in Fig. 7.1 given a training of 100 epochs on 𝑘2 using the ID
model and 𝑁𝑎𝑡𝑡𝑟 = 1000 traces. For ASCAD fix and ASCAD variable, a total of 48 000 and 100 000
training traces are used, respectively. A direct comparison with a leakage evaluation of intermediates
from Section 6.2.1 leads to the following observations:

• Gradient-based attribution does not reliably identify POIs in the setting of related works [MDP19,
HGG20], which evaluate their methods on ASCAD fix

1 corresponding to Fig. 7.1c. The resulting
1Note that both authors use modified networks for their evaluation. Masure et al. [MDP19] use a network close to

CNNbest with fewer neurons in the fully connected layers and an additional global pooling layer. Hettwer et al. [HGG20]
use their own architecture in order to facilitate an evaluation of multiple datasets.

116

0 100 200 300 400 500 600 700

Time [samples]

0.0

0.5

1.0

C
PO

I

ptxt⊕ k ⊕ rin

rin

rout

r

S(ptxt⊕ k)⊕ rout S(ptxt⊕ k)⊕ r

1(a) CPOI of ASCAD fix

0 200 400 600 800 1000 1200 1400

Time [samples]

0.0

0.5

1.0

C
PO

I

ptxt⊕ k ⊕ rin

rin

rout

r

S(ptxt⊕ k)⊕ rout S(ptxt⊕ k)⊕ r

1(b) CPOI of ASCAD variable

0 100 200 300 400 500 600 700

Time [samples]

−1.0

−0.5

0.0

0.5

1.0

A
ttr
ib
ut
io
n
[n
or
m
al
iz
ed

]

Saliency
Gradient*Input
ϵ-LRP

1(c) ASCAD fix: CNNbest

0 200 400 600 800 1000 1200 1400

Time [samples]

−1.0

−0.5

0.0

0.5

1.0

A
ttr
ib
ut
io
n
[n
or
m
al
iz
ed

]

Saliency
Gradient*Input
ϵ-LRP

1(d) ASCAD variable: CNNbest

0 100 200 300 400 500 600 700

Time [samples]

−1.0

−0.5

0.0

0.5

1.0

A
ttr
ib
ut
io
n
[n
or
m
al
iz
ed

]

Saliency
Gradient*Input
ϵ-LRP

1(e) ASCAD fix: CNNsmall

0 200 400 600 800 1000 1200 1400

Time [samples]

−1.0

−0.5

0.0

0.5

1.0

A
ttr
ib
ut
io
n
[n
or
m
al
iz
ed

]

Saliency
Gradient*Input
ϵ-LRP

1(f) ASCAD variable: CNNsmall

Figure 7.1 Gradient-based attribution results for 𝑘2 in comparison with a leakage evaluation of intermediates
from Section 6.2.1. The attribution is performed after 100 training epochs.

attribution indicates several peaks that can hardly be distinguished. In [HGG20, Fig.1], a similar
behavior is shown, while in [MDP19], the authors only achieve reliable results for an evaluation
at a specific training epoch found with early stopping.

• The methods indicate multiple POIs, which makes it difficult to identify single leakages, in com-
bination with their respective samples, that are essential for the attack success. This ambiguity
additionally prevents the identification of sample combinations that are needed to defeat the
masking countermeasure of the attacked implementation. This characteristic can be seen for
both networks trained on ASCAD variable in Figs. 7.1d and 7.1f with the extreme case of using
a saliency map for CNNbest shown in Fig. 7.1d.

• The different methods indicate divergent POIs, which is particularly visible in Fig. 7.1e, where
each method generates a different result.

Overall, the experiments show that gradient-based attribution methods generate results that are
hard to interpret. In addition, there is the problem of choosing the correct training epoch for the
attribution due to possible overfitting of the networks, as also discussed in [MDP19]. For our results,
we chose to perform attribution after the network training has finished (100 epochs). Additionally,
analyzing the results after each epoch did not improve the attribution insights significantly.

117

7.3 Improvements to the Occlusion Technique

As shown in Section 7.2, gradient-based attribution methods provide results that can be hard to
interpret. We, therefore, emphasize the importance of attribution methods that allow for a direct
and straightforward interpretation. This property is targeted by the occlusion method, where certain
features of the input are removed (occluded) to directly observe their impact on the neural network
output. The occlusion method was introduced by Zeiler et al. [ZF14] to determine important pixel
ranges for image recognition. However, the amount of occluded features as well as the occlusion
method have a significant influence on the attribution results [ACÖG19b]. This limitation has not
been investigated in the SCA context. Related work by Hettwer et al. [HGG20] only shows occlusion
results by replacing a single measurement sample with the value zero. As side-channel leakage is
usually not limited to a single sample, we provide an in-depth evaluation of several occlusion methods
in this work. All results for the remainder of this chapter are generated with the respective networks
targeting 𝑘2 (unless otherwise noted) using 100 training epochs with 48 000 traces for ASCAD fix and
100 000 traces for ASCAD variable.

In Section 7.3.1, we introduce 𝑛-occlusion that hides several samples at once. We show that the
occlusion technique can leverage the accumulated probabilities for multiple predictions, which closely
reflects the underlying SCA problem, where single observations usually do not provide sufficient
attack results. In a second step, we explore different occlusion techniques and the impact of the
occlusion window size in Section 7.3.2. Additionally, attribution results for selected datasets and
architectures are shown. Finally, in Section 7.3.3, we extend the method to higher-order occlusion
where multiple non-consecutive parts of a trace are occluded, reflecting the nature of SCA attacks on
masked implementations that require the combined leakage of multiple samples.

7.3.1 𝑛-Occlusion

The 𝑛-occlusion attribution technique requires a trained network able to recover the correct key. In
a first step, the key rank for different numbers of traces 𝑁 ∈ [1, . . . , 𝑁𝑎𝑡𝑡𝑟] is calculated from an
attack set of 𝑁𝑎𝑡𝑡𝑟 traces. The number of traces 𝑁0 required for the successful attack, i.e., such that
KR(𝑁0) = 0, determines a reference for the occlusion results. In a second step, 𝑛 samples around a
center sample ¤𝑛 are occluded in all traces of the attack set2. The modified inputs are provided to the
trained network, and the performance is evaluated similar to the reference evaluation. If the network
is not able to reach key rank 0 anymore, the occluded samples can be considered important to the
network. An increase in the number of traces to reach key rank 0 indicates that the occluded samples
are important but can be compensated with other parts of the measurements – in Section 7.3.3 we
introduce higher-order occlusion to detect combinations of important samples. Finally, the center ¤𝑛
is shifted by 𝑛 ≥ Δ𝑛 ≥ 1 samples and the procedure is repeated until the different parts of the traces
have gradually been hidden from the network. This results in 𝑀 = ⌊𝑁𝑠−𝑛Δ𝑛

+ 1⌋3 different input ranges
that can be occluded. A visualization of the method is shown in Fig. 7.2.

7.3.2 Exploring Different Occlusion Methods

With 𝑛-occlusion as defined in Section 7.3.1 there are two degrees of freedom4: the occlusion tech-
nique, i.e., how to replace occluded samples, and the occlusion window size 𝑛. We evaluate both
parameters in this section and give recommendations suitable for the ASCAD databases. The occlu-
sion technique requires a method to replace input samples that are hidden from the network as for an
attribution of the pre-trained network we can not change its architecture, e.g., the input layer. In image

2Note that a perfect centering around ¤𝑛 is only possible for odd values of 𝑛, and for even 𝑛 we define the occlusion area
left of ¤𝑛 to include the additional sample.

3Note that for Δ𝑛 > 1 we ignore the remaining samples at the end of the trace that do not fit in a complete occlusion
window of size 𝑛 anymore.

4Δ𝑛 does not impact the occlusion itself but only affects the accuracy of visualization.

118

200 400 600 800 1,000 1,200 1,400

−100

0

100

Time [samples]

Δ𝑛

¤𝑛

𝑛

Figure 7.2 Visualization of the 𝑛-occlusion method.

processing, it is common to use gray squares [ZF14] since they represent the center of the RGB value
range. An analogy to SCA measurements would be a substitution by zeros since these measurements
are usually represented by signed integers. However, this is only one possible method, which is
why we additionally investigate three other approaches for an occlusion interval 𝒐 = [𝑜0 , . . . , 𝑜𝑛−1] of
size 𝑛:

1. Substitute by a constant value, either zeros 𝒐0 = [0, . . . , 0] or the mean over all 𝑁𝑠 samples of
the 𝑁𝑡𝑟𝑎𝑖𝑛 training traces 𝒕 𝑖 as 𝒐𝑐𝑜𝑛𝑠𝑡. = [𝑡 , . . . , 𝑡]with 𝑡 := 1/(𝑁𝑠 ·𝑁𝑡𝑟𝑎𝑖𝑛) ·∑𝑁𝑡𝑟𝑎𝑖𝑛−1

𝑖=0
∑𝑁𝑠−1
𝑗=0 𝒕 𝑖

[
𝑗
]
.

2. Draw for each sample a new realization �̃� of a normal Gaussian distribution parametrized by
the mean 𝑡 and standard deviation 𝜎 of all samples in the 𝑁𝑡𝑟𝑎𝑖𝑛 training traces resulting in
𝒐𝑔𝑎𝑢𝑠𝑠 = [�̃�0 , . . . , �̃�𝑛−1]with �̃�𝑖 ∼ 𝒩(𝑡 , 𝜎).

3. Preserve the approximate shape of the input traces by a substitution with the sample-
wise mean over all training traces 𝒕[𝑗] := 1/𝑁𝑡𝑟𝑎𝑖𝑛 · ∑𝑁𝑡𝑟𝑎𝑖𝑛−1

𝑖=0 𝒕 𝑖
[
𝑗
]

resulting in 𝒐𝑎𝑣𝑔 =[
𝒕
[¤𝑛 − 𝑛−1

2
]
, . . . , 𝒕

[¤𝑛 + 𝑛−1
2
]]

for odd values of 𝑛 and 𝒐𝑎𝑣𝑔 =
[
𝒕
[¤𝑛 − 𝑛

2
]
, . . . , 𝒕

[¤𝑛 + 𝑛
2 − 1

]]
for even values of 𝑛.

To select an appropriate occlusion method, we first define some desired properties by which we
can evaluate the occlusion results afterwards. First, a good occlusion method should not significantly
change attack results when occluding a region without necessary information for the network. Second,
it should also induce the opposite, i.e., the key rank increases when a sample region with necessary
information is occluded. Finally, the key rank should also increase the more information is occluded,
i.e., with an increasing size of the occlusion window. We show the resulting key rank evolution for
different occlusion methods for both ASCAD databases using CNNbest trained with the HW model5
in Fig. 7.3. We use two different occlusion centers for comparison: The range around occlusion center
¤𝑛 = 150 (ASCAD fix) and ¤𝑛 = 175 (ASCAD variable) contains several leakages according to the
analysis in Figs. 7.3a and 7.3b, while the region around ¤𝑛 = 380 (ASCAD fix) and ¤𝑛 = 600 (ASCAD

variable) does not show any significant leakage6. Furthermore, we gradually increase the occlusion
width 𝑛 up to a full clock cycle (c.f. Table 5.1).

Influence of the Occlusion Technique Figure 7.3 shows that the chosen occlusion method has a
significant impact on the attack results. For the occlusion of important leakage in Figs. 7.3c and 7.3d
we expect the resulting key rank to increase with an increasing occlusion width since additional

5We show evaluation results for the HW model for which the best combination function for a second-order attack is
proven to be a combination of both the mask and the masked value [PRB09]. This reduces the possibility of additional
leakage that the networks are able to learn, and therefore the attribution results are easier to interpret. However, we also
evaluated training with the ID model, which shows the same characteristic but not as pronounced.

6Note that the evaluation shown in Figs. 7.3a and 7.3b uses the HW model instead of the ID model (Figs. 7.1a and 7.1b)
and with the HW model the leakage of 𝑝𝑡𝑥𝑡 ⊕ 𝑘 ⊕ 𝑟𝑖𝑛 is reduced significantly.

119

0 100 200 300 400 500 600 700

Time [samples]

0.0

0.5

1.0

C
PO

I

ptxt⊕ k ⊕ rin

rin

rout

r

S(ptxt⊕ k)⊕ rout S(ptxt⊕ k)⊕ r

1(a) CPOI (HW) for ASCAD fix

0 200 400 600 800 1000 1200 1400

Time [samples]

0.0

0.5

1.0

C
PO

I

ptxt⊕ k ⊕ rin

rin

rout

r

S(ptxt⊕ k)⊕ rout S(ptxt⊕ k)⊕ r

1(b) CPOI (HW) for ASCAD variable

0

250
n = 10

o0 oconst. ogauss oavg No occlusion

0

250

K
R
(N

)

n = 20

200 400 600 800 1000

Traces N

0

250
n = 50

1(c) ASCAD fix: ¤𝑛 = 150

0

250
n = 25

o0 oconst. ogauss oavg No occlusion

0

250

K
R
(N

)

n = 75

200 400 600 800 1000

Traces N

0

250
n = 125

1(d) ASCAD variable: ¤𝑛 = 175

0

250
n = 10

o0 oconst. ogauss oavg No occlusion

0

250

K
R
(N

)

n = 20

200 400 600 800 1000

Traces N

0

250
n = 50

1(e) ASCAD fix: ¤𝑛 = 380

0

250
n = 25

o0 oconst. ogauss oavg No occlusion

0

250

K
R
(N

)

n = 75

200 400 600 800 1000

Traces N

0

250
n = 125

1(f) ASCAD variable: ¤𝑛 = 600

Figure 7.3 Key rank evolution using different occlusion methods for both ASCAD datasets.

120

0 100 200 300 400 500 600 700

Time [samples]

0

500

1000

Tr
ac
es

N

0

2

4

6

8

H
K

R
(N

)

1
(a) ASCAD fix: 𝒐𝑎𝑣𝑔

0 100 200 300 400 500 600 700

Time [samples]

0

500

1000

Tr
ac
es

N

0

2

4

6

8

H
K

R
(N

)

1
(b) ASCAD fix: 𝒐0

0 200 400 600 800 1000 1200 1400

Time [samples]

0

500

1000

Tr
ac
es

N

0

2

4

6

8

H
K

R
(N

)

1
(c) ASCAD variable: 𝒐𝑎𝑣𝑔

0 200 400 600 800 1000 1200 1400

Time [samples]

0

500

1000

Tr
ac
es

N

0

2

4

6

8

H
K

R
(N

)

1
(d) ASCAD variable: 𝒐0

Figure 7.4 Occlusion results for the different methods with Δ𝑛 = 1, 𝑁𝑎𝑡𝑡𝑟 = 1000, and an occlusion width of a
whole clock cycle with 𝑛 = 50 (ASCAD fix) and 𝑛 = 125 (ASCAD variable).

leakage is removed. This is only observable for the sample-wise mean occlusion method (𝒐𝑎𝑣𝑔). The
other occlusion techniques do not show deterministic and comprehensible changes while being very
sensitive to the starting and ending points of the occlusion rather than the window size. For a region
without important leakage, as shown in Figs. 7.3e and 7.3f, the occlusion should not significantly
influence the attack result. A consistent behavior for both datasets is again only observable for the
sample-wise mean occlusion method (𝒐𝑎𝑣𝑔).

In order to emphasize the sensitivity of the different occlusion methods, we show the 𝑛-occlusion
results for the sample-wise mean (𝒐𝑎𝑣𝑔) and zero occlusion (𝒐0) method in Fig. 7.4. Instead of limiting
the analysis to particular samples, these waterfall plots depict the occlusion center ¤𝑛 on the x-axis
and the number of used attack traces on the y-axis. This allows to visualize the evolution of the
logarithmic key rank, according to Eq. (5.4) as remaining entropy, for a fixed window 𝑛 shifted by
a chosen Δ𝑛 with an increasing number of attack traces. For Δ𝑛 = 1, each pixel in a waterfall plot
corresponds to the final key rank after occluding the 𝑛 measurement samples around ¤𝑛. Dark colors
indicate a high key rank, i.e., the information required for a successful attack is occluded, while white
represents a successful attack with a key rank of 0 for the given 𝑁𝑎𝑡𝑡𝑟 traces. For the comparison,
we chose the zero occlusion method evaluated by Hettwer et al. [HGG20]. Since the underlying
AES implementation is equivalent for both datasets, a similar behavior would be expected - except
for differences in the measurement characteristics. This is only the case for the sample-wise mean
occlusion shown in Figs. 7.4a and 7.4c, which highlights two regions of interest corresponding to the
leakage of the masked S-box and the mask itself (c.f. the leakage evaluation in Figs. 7.3a and 7.3b)
as expected for training with the HW model. Note that the ranges for the datasets differ slightly, as
explained in Section 6.2.1, which is why the regions are not exactly aligned between both datasets.
The results of the zero occlusion method differ between both datasets and do not lead to valuable
attribution results.

We conclude from our analysis that the sample-wise mean occlusion method (𝒐𝑎𝑣𝑔) meets all criteria
for an interpretable attribution technique and is therefore used in the remainder of this thesis.

Influence of the Occlusion Width 𝑛

After establishing a suitable occlusion method, we investigate the width 𝑛 of the occlusion window.
Intuitively, the larger 𝑛, the more samples are occluded, which increases the chance of removing
leakage, which is important for the model’s inference. On the other hand, decreasing 𝑛 allows

121

0
500

1000

n = 50

0
500

1000

n = 25

0
500

1000

n = 10

0
500

1000

n = 5

0 100 200 300 400 500 600 700

Time [samples]

0
500

1000

n = 1

0

1

2

3

4

5

6

7

8

H
K

R
(N

)

1
(a) ASCAD fix

0
500

1000

n = 125

0
500

1000

n = 75

0
500

1000

n = 25

0
500

1000

n = 10

0 200 400 600 800 1000 1200 1400

Time [samples]

0
500

1000

n = 1

0

1

2

3

4

5

6

7

8

H
K

R
(N

)

1
(b) ASCAD variable

Figure 7.5 Occlusion results for different widths 𝑛 of the occlusion window for both ASCAD databases.

to narrow down the sample ranges where the main leakage occurs, allowing for a more precise
attribution of POIs. We analyze the impact of the window size for both ASCAD datasets for a training
with HW labels and Δ𝑛 = 1 in Fig. 7.5.

The results show that the occlusion window can be decreased up to a minimum width for which
the occlusion does not have an influence on the attack result anymore, i.e., the remaining leakage is
sufficient to reach a key rank of zero. For ASCAD fix (Fig. 7.5a) and ASCAD variable (Fig. 7.5b) a
width of 𝑛 < 10 does not change attack results significantly. The occlusion width in relation to the
clock cycle is smaller for ASCAD variable, since in this dataset, the leakage is much more confined
on a few samples, as it can be seen with the leakage analysis in Fig. 7.3b.

Our findings stress that the occlusion width 𝑛 has to be adapted to fit the underlying data, and an
approach like 1-occlusion [HGG20] is not suited to find relevant POIs in deep learning-based SCA.
This is because leakage in side-channel measurements is usually spread over multiple samples of a
clock cycle as a result of the low pass characteristics of side-channel measurement setups. For the
remainder of this chapter, we show results for an occlusion width corresponding to the sample range
of one clock cycle. The main leakage samples then correspond to the center of highlighted occlusion
regions, as it can be seen in Fig. 7.5.

Experimental Results Using the established parameters for the occlusion method in the previous
sections, we provide occlusion results for both databases and networks additionally using the ID
model in Fig. 7.6. The method reliably identifies POI regions with leakage required by the CNNs for
a successful attack. In comparison to gradient-based methods in Fig. 7.1, the attribution enables an
easier interpretation of results compared to the actual leakage regions shown in Figs. 7.1a and 7.1b.
All networks require the leakage of the masks, around sample 150 (ASCAD fix) and 200 (ASCAD

variable), and the masked value, around sample 525 (ASCAD fix) and 1050 (ASCAD variable) for a
successful attack. For ASCAD fix and CNNsmall the network additionally deems the leakage around
100 and 580 as relevant, which corresponds to the additional leakage of these intermediates. Note that
occlusion results for ASCAD variable and CNNbest in Fig. 7.6b are shown with an increased amount of
𝑁𝑎𝑡𝑡𝑟 = 2000 traces. In this scenario, the method identifies additional POIs around sample ranges 300
and 450, for which the network is able to compensate with other leakage given the additional traces.
An explanation is that the network has a significantly higher amount of trainable parameters than
CNNsmall, and therefore it can learn additional combinations of leakages required for a successful
attack. This could be an indicator of network overfitting to these additional leakages.

122

0 100 200 300 400 500 600 700

Time [samples]

0

500

1000

Tr
ac
es

N

0

2

4

6

8

H
K

R
(N

)

1
(a) ASCAD fix: CNNbest

0 200 400 600 800 1000 1200 1400

Time [samples]

0

500

1000

1500

2000

Tr
ac
es

N

0

2

4

6

8

H
K

R
(N

)

1
(b) ASCAD variable: CNNbest

0 100 200 300 400 500 600 700

Time [samples]

0

500

1000

Tr
ac
es

N

0

2

4

6

8

H
K

R
(N

)

1
(c) ASCAD fix: CNNsmall

0 200 400 600 800 1000 1200 1400

Time [samples]

0

500

1000

Tr
ac
es

N

0

2

4

6

8

H
K

R
(N

)

1
(d) ASCAD variable: CNNsmall

Figure 7.6 Occlusion results for a training with the ID model for both datasets and architectures.

200 400 600 800 1,000 1,200 1,400

−100

0

100

Time [samples]

Δ𝑛

¤𝑛0

𝑛

¤𝑛1

Δ𝑛

𝑛

Figure 7.7 Visualization of the higher-order occlusion method with order 𝑑 = 2.

7.3.3 Higher-Order Occlusion: Hiding Multiple Parts at Once

We have shown in the previous sections that the 𝑛-occlusion method is able to identify sample
ranges that have an impact on the attack results. Nevertheless, for higher-order attacks against a
masked implementation, leakage of multiple samples corresponding to both shares of the masked
intermediate has to be combined for a successful attack (c.f. Section 2.4). These shares are usually
processed in different clock cycles for masked software implementations (c.f. Figs. 7.1a and 7.1b). We,
therefore, introduce higher-order occlusion that hides multiple parts of the traces simultaneously to
identify important sample range combinations. This also enables the identification of POIs in the
presence of learned redundant leakage where the network is able to compensate occluded information
with leakage from other samples. For a 𝑑-th order occlusion, 𝑑 sample ranges around ¤𝑛0 , . . . , ¤𝑛𝑑−1 are
occluded and the impact on the resulting key rank is evaluated. We use the same size 𝑛 < 𝑁𝑠 and a
shift Δ𝑛 ≤ 𝑛 for all occlusion windows. A visualization of the method for 𝑑 = 2 is shown in Fig. 7.7.

In the following, we focus on second-order occlusion (𝑑 = 2), as it fits the first-order masked AES
implementation of the ASCAD databases. In Fig. 7.8, we show second-order occlusion results for
ASCAD variable and CNNbest trained with the ID model, corresponding to the first-order occlusion
shown in Fig. 7.6b. For clarity, we show the entropy of the key rank after a fixed number of traces
𝑁𝑎𝑡𝑡𝑟 = 2000 in Fig. 7.8a instead of the waterfall visualization. Figure 7.8b depicts the first occurrence
𝑁 ′ of the final key rank according to Eq. (5.5) and provides additional insights into the evolution of
the key rank. While Fig. 7.8a could also be analyzed on its own to determine important input ranges
and combinations thereof, Fig. 7.8b visualizes whether the result reaches a stable point (𝑁 ′ ≪ 𝑁𝑎𝑡𝑡𝑟 ,

123

0 200 400 600 800 1000 1200 1400

ṅ0

0

200

400

600

800

1000

1200

1400

ṅ
1

0

1

2

3

4

5

6

7

8

H
K

R
(2
0
00

)
1

(a) Final Entropy

0 200 400 600 800 1000 1200 1400

ṅ0

0

200

400

600

800

1000

1200

1400

ṅ
1

0

250

500

750

1000

1250

1500

1750

2000

N
′

1
(b) First Trace with Final Entropy

Figure 7.8 Second-order occlusion for ASCAD variable and CNNbest using the ID model for 𝑁𝑎𝑡𝑡𝑟 = 2000 and
Δ𝑛 = 20.

light colors) or the attack is still improving (𝑁 ′ close to 𝑁𝑎𝑡𝑡𝑟 , dark colors). Due to the computational
complexity of higher-order occlusion, we present results for shifting ¤𝑛 by Δ𝑛 = 20. This implies that
for the visualization in Fig. 7.8, we show the same key rank for these 20 samples centered around the
gradually shifted ¤𝑛.

Figure 7.8a can be interpreted in the way that for each coordinate (¤𝑛0 , ¤𝑛1) the resulting final entropy
of the key rank is shown, given two simultaneous occlusions at the respective ¤𝑛. After an occlusion
of the leakage corresponding to the masks (¤𝑛0 = 200) or the masked S-box (¤𝑛0 = 1050), the network
is no longer able to perform a successful attack regardless of the second occlusion center. This is
consistent with the first-order occlusion results shown in Fig. 7.6b. However, it can be seen that if
additionally the leakage corresponding to 𝑝𝑡𝑥𝑡⊕ 𝑘⊕𝑟𝑖𝑛 at (¤𝑛0 = 200, ¤𝑛1 = 400) or (¤𝑛0 = 400, ¤𝑛1 = 1050)
is occluded, the resulting key rank increases significantly. As a second observation, occluding the
leakage corresponding to 𝑟𝑖𝑛 (¤𝑛0 = 1300) significantly increases the key rank. In this case, if the
leakage of the masks is occluded in combination (¤𝑛0 = 1300, ¤𝑛1 = 200), the network is not able to
retrieve the correct secret key anymore. We conclude that in addition to a combination of both shares
of the masked S-box, the network infers information from a combination of 𝑝𝑡𝑥𝑡 ⊕ 𝑘 ⊕ 𝑟𝑖𝑛 with 𝑟𝑖𝑛7.
If one leakage part of both combinations is not available to the networks, the resulting key rank is
increased significantly.

We conclude that higher-order occlusion can be a viable tool for leakage attribution in deep learning-
based SCA to identify sample combinations for masked implementations.

7.4 Occlusion Evaluation of the ASCAD Databases

Having established the 𝑛-occlusion method and its higher-order variant, we use both methods to
show that networks trained on other key bytes of the ASCAD variable database focus on different
leakages than for the usually targeted byte two (𝑘2). We focus on the key bytes that were identified
in Chapter 6 to exhibit special leakage characteristics. The results are shown using ASCAD variable

and a training with CNNbest.
We start with an evaluation of a training on key byte 𝑘3 for which the occlusion results are shown

in Fig. 7.9.

7This observation is also confirmed by the results presented in [YBP23].

124

0 200 400 600 800 1000 1200 1400

Time [samples]

0.0

0.5

1.0

C
PO

I

ptxt⊕ k ⊕ rin

rin

rout

r

S(ptxt⊕ k)⊕ rout S(ptxt⊕ k)⊕ r

1(a) Leakage evaluation

0 200 400 600 800 1000 1200 1400

Time [samples]

0

500

1000

1500

2000

Tr
ac
es

N

0

2

4

6

8

H
K

R
(N

)

1
(b) First-order occlusion (Δ𝑛 = 1)

0 200 400 600 800 1000 1200 1400

ṅ0

0

200

400

600

800

1000

1200

1400

ṅ
1

0

1

2

3

4

5

6

7

8

H
K

R
(2
0
00
)

1
(c) Second-order occlusion (Δ𝑛 = 20)

Figure 7.9 Occlusion evaluation of a CNNbest training for key byte 𝑘3 of ASCAD variable using the ID model.

When comparing the first-order occlusion results for 𝑘3 in Fig. 7.9b with the leakage evaluation, we
find that the network requires the leakage of 𝑝𝑡𝑥𝑡 ⊕ 𝑘 ⊕ 𝑟𝑖𝑛 (¤𝑛 = 450) for a successful attack. Hence,
it is able to combine this leakage with 𝑟𝑖𝑛 to infer the correct class label. Occluding the masked S-box
(¤𝑛 = 1050) can mostly be compensated after 1500 traces. In the second-order occlusion Fig. 7.9c, it can
be seen that the network has learned redundant leakage of 𝑟𝑖𝑛 , since only if (¤𝑛0 = 950, ¤𝑛1 = 1300) is
occluded together the network is not able to reach key rank zero anymore. Please note that in contrast
to 𝑘2 (c.f. Fig. 7.1b), the leakage of 𝑟𝑖𝑛 is increased significantly.

0 200 400 600 800 1000 1200 1400

Time [samples]

0.0

0.5

1.0

C
PO

I

ptxt⊕ k ⊕ rin

rin

rout

r

S(ptxt⊕ k)⊕ rout S(ptxt⊕ k)⊕ r

1(a) Leakage evaluation

0 200 400 600 800 1000 1200 1400

Time [samples]

0

500

1000

Tr
ac
es

N

0

2

4

6

8

H
K

R
(N

)

1
(b) First-order occlusion (Δ𝑛 = 1)

0 200 400 600 800 1000 1200 1400

ṅ0

0

200

400

600

800

1000

1200

1400

ṅ
1

0

1

2

3

4

5

6

7

8

H
K

R
(1
0
00
)

1
(c) Second-order occlusion (Δ𝑛 = 20)

Figure 7.10 Occlusion evaluation of a CNNbest training for key byte 𝑘5 of ASCAD variable using the ID model.

We additionally show occlusion results for a training on key byte 𝑘5 in Fig. 7.10, which demonstrates
the case of the network having learned enough redundant leakage such that a first-order occlusion
is not sufficient to find important samples. The cause for this phenomenon is the additional and
redundant leakage of the state mask 𝑟 for 𝑘5 as indicated in the leakage evaluation (Fig. 7.10a). This

125

leads to the fact that first-order occlusion, shown in Fig. 7.10b, is not able to indicate important sample
ranges. Only second-order occlusion, shown in Fig. 7.10c, reveals that a complete occlusion of both
clock cycles containing leakage of the corresponding masked S-box value (¤𝑛0 = 1050, ¤𝑛1 = 1200)
decreases the attack performance. This indicates that the network has learned to use characteristic
leakage of 𝑟 of this key byte from more than two clock cycles.

7.5 Conclusion

In this chapter, we studied leakage explainability (attribution) techniques in the context of deep
learning-based side-channel analysis. We introduced different types of occlusion methods, which
provide a valuable addition to gradient-based approaches, whose results are often hard to interpret
and subject to the exact epoch after which they are generated. While related work performing
attribution for image classification indicates that the number of simultaneously occluded features
and the replacement technique are important, this fact has not been considered in the context of side-
channel analysis. We, therefore, introduced 𝑛-occlusion, where we occlude multiple samples at once
and additionally analyze the evolution of the resulting key rank for an increasing number of attack
traces. Our results show that replacing an entire clock cycle with the mean of each sample across all
training traces is a promising approach. In order to identify leakage combinations required for an
attack on masked implementations, we developed higher-order occlusion. Our reasoning is based on
the analysis of two different network architectures for the established ASCAD databases. With the
developed methods, we are able to show that the networks are able to actually exploit varying leakage
characteristics that are observable for different key bytes of the targeted AES implementation.

127

8 Conclusion

This thesis provides multiple contributions in the field of SCA that can be summarized as the develop-
ment and evaluation of attacks and countermeasures for two submissions of the NIST post-quantum
cryptography competition as well as advances in the field of explainability for deep learning-based
SCA.

First, one of the first works on countermeasures for software implementations of post-quantum
cryptography was presented with an evaluation of a masking countermeasure for the NTRUEncrypt
cryptosystem. Due to the maturity of the underlying mathematical problem, after a merger with a
similar system, it has been a final candidate evaluated by NIST for standardization. Two masked
implementations were presented, and their security was evaluated through first- and second-order
side-channel evaluations. In order to achieve a low performance overhead, SIMD instructions of the
target platform were used, and the possibility of a further hardening of the implementation through
an additional low overhead shuffling countermeasure was demonstrated. The remainder of the
first part of this thesis presented a comprehensive side-channel evaluation of the code-based HQC
cryptosystem that is currently one of three remaining alternative candidates for standardization. This
includes the first power side-channel chosen-ciphertext attack on the system as well as an updated
version of the attack, which is required as the authors chose to increase the performance of the
system with an updated error correction, rendering former attack strategies obsolete. The updated
attack strategy is significantly improved and does not rely on simulations to verify its success as it is
mathematically proven with high probability for the HQC parameter sets. Multiple attack vectors for
the presented attack strategies were discussed and practical side-channel attack results showed the
strength of developed attacks and therefore the necessity for the development of countermeasures.
Finally, multiple countermeasures were evaluated, showing that the established codeword-masking
countermeasure is not applicable. The developed countermeasure of inserting an additional random
number of errors before the decoding was shown to be effective but comes with the downside of
required changes to the implemented decoder, leading to the conclusion that the development of a
complete masking scheme for HQC is required.

At the beginning of the second part of the thesis, a comprehensive evaluation of the ASCAD
databases with classical SCA was performed, building the foundation for research on explainability
methods for DL-based SCA. First, a leakage evaluation was performed that, after a careful examination
of the underlying assembly implementation, revealed additional leakage contained in the chosen trace
segments of the ASCAD authors and that leakage significantly differs between targeted key bytes.
Additionally, multiple first-order leaks for both databases and univariate second-order leaks for
ASCAD fix were identified when using the selected trace segments. If the complete sample ranges
contained in the databases are used, there are first-order leaks for most bytes of ASCAD fix and
all bytes of ASCAD variable. Further, it was concluded that an attack on ASCAD fix corresponds
to the best-case scenario from an attacker’s point of view, and a more realistic attack scenario is
given by ASCAD variable. Finally, it was shown with the use of two different architectures that
DL-based SCA shows significant attack performance differences between bytes and that a network
trained on one byte can not be automatically used for an attack on other bytes. This shows the
possibility of leveraging attack results on different key bytes of ASCAD in addition to a comparison
of results for different datasets in order to improve the robustness of results. As a last contribution,
multiple advancements to the occlusion explainability method were presented. These include the
introduction of n-occlusion, as it was identified that the occlusion of a single sample is not sufficient,
and the development of higher-order occlusion, which is able to identify sample combinations that are
used by a network to perform a successful attack. After determining suitable occlusion parameters,

128

the developed higher-order occlusion method was used to show that neural network architectures
actually utilize the different leakage characteristics identified in this thesis. Therefore, it can be
concluded that the developed methods provide a valuable addition to established gradient-based
explainability methods.

Summing up, the presented work in this thesis positively influenced the implementation security of
multiple schemes in the NIST post-quantum cryptography competition. Primarily, the contributions
for the HQC cryptosystem have a practical impact, as it is still a candidate for an alternative standard.
The evaluation of ASCAD provides a foundation for future research on explainability for DL-based
SCA using these databases. In addition, identified flaws in the databases must be taken into account
when interpreting attack results, particularly when utilizing the full sample range.

Future Work In addition to the findings presented in this thesis, several directions for future work
have been identified.

There are multiple hardware accelerators for NTRUEncrypt (e.g., [FSF+19, FDNG19]) that should,
in theory, be attackable using a similar attack as discussed in this thesis. Although these accelerators
require significant resources, they may still be used in practice if a trade-off between execution
time and resources is desired. Therefore, the side-channel evaluation of these accelerators and the
development of countermeasures are required to securely use them in practice.

In the context of chosen-ciphertext attacks for the HQC cryptosystem, improvements and new
attacks that lower the number of required oracle calls and therefore attack traces are likely. Attacks that
decrease the amount of input that has to be set to a detectable value are beneficial from an attacker’s
point of view as these would decrease the efficiency by a parallel increase of the required resources
of detection-based countermeasures and can ultimately render them ineffective. The strength of
the side-channel requires the need for countermeasures and therefore the development of a complete
masking scheme for the HQC cryptosystem. This includes the development of novel masking gadgets,
especially for the decoder of the used error-correcting codes, and it should be the primary focus for
future work on countermeasures. Another direction for future work is to evaluate if the presented
attacks can be transferred to the other code-based cryptosystems Classic McEliece [ABC+20] and
BIKE [ABB+20a] that are still under consideration for standardization. Finally, the development of
a method to achieve the CCA-2 security of the algorithm without relying on a variant of the FO
transformation and thus re-encryption could significantly reduce the effort and resources required
for a protected implementation.

The presented results on DL-based SCA showed that an in-depth evaluation of used datasets
through classical side-channel analysis is required for an interpretation of attack results. Therefore,
a topic for future work is to perform this research on novel datasets or provide additional datasets
with the respective evaluation. The possibilities for future work on the presented occlusion methods
are manyfold. First, the applicability of the developed methods to other types of network architec-
tures, such as MLPs, and other datasets could be investigated. Another direction for future work
is to investigate the retraining of a model with omitted features and analyze the resulting behavior.
Finally, future work might also explore inverted occlusions without retraining, i.e., only feeding small
windows of actual data to the model instead of occluding certain regions.

129

A Proof of the Attack Strategy for HQC-RMRS

This chapter presents proofs of the lemmas and the theorem leading to the attack strategy on HQC-
RMRS in Section 4.6.2. As noted in the introduction to Chapter 4, these proofs were developed by
Lukas Holzbaur in [SHR+22] but are shown for completeness in this thesis.

Proof of Lemma 1

Proof. The first case follows from observing that 𝑓 �̂� �̌� = 0 for these polynomials1. It is well-known that
any codeword 𝑝 ∈ ℛℳ(𝑚), except the all-zero and the all-one word, i.e., any word with deg(𝑝) = 1, is
of weight 𝑑 = 2𝑚−1. Since deg(�̂�) = deg(�̌�) = 1 and �̌� ∉ {�̂� , �̂� + 1} we have deg(�̂� + �̌�) = 1. Therefore,
HW(�̂� + �̌�) = 𝑑 and we get

HW(�̂� + �̌�) = HW(�̂�) +HW(�̌�) − 2HW(�̂� �̌�)
𝑑 = 2𝑑 − 2HW(�̂� �̌�)
𝑑
2 = HW(�̂� �̌�) .

The second case follows since we have supp(�̂� �̌�) ⊂ supp(𝑓) for any 𝑓 ∈ {1, �̂� , �̌� , �̂� + �̌� + 1}. Now
consider some 𝑓 ∈ ℛℳ(𝑚) \ {0, �̂� + 1, �̌� + 1, �̂� + �̌� , 1, �̂� , �̌� , �̂� + �̌� + 1} and note that deg(𝑓) = 1. Observe
that the supports of the polynomials {�̂� �̌� , �̂�(�̌� + 1), (�̂� + 1)�̌� , (�̂� + 1)(�̌� + 1)} partition the 2𝑚 codeword
positions. Hence, by the pigeonhole principle, there exists some �̄� ∈ {�̂�(�̌� + 1), (�̂� + 1)�̌� , (�̂� + 1)(�̌� + 1)}
with

HW(�̄� 𝑓) ≥
⌈

HW(𝑓) −HW(�̂� �̌� 𝑓)
3

⌉
≥ 𝑑 −HW(�̂� �̌� 𝑓)

3 .

Further, it is easy to check that �̂� �̌� + �̄� ∈ {�̂� , �̌� , �̂� + �̌� + 1}, which implies deg(�̂� �̌� + �̄�) = 1 and
HW(�̂� �̌� + �̄�) = 𝑑. Now, towards a contradiction, assume HW(𝑓 �̂� �̌�) > 𝑑

4 . Then, we have

𝑑(�̂� �̌� + �̄� , 𝑓) = HW(�̂� �̌� + �̄�) +HW(𝑓) − 2HW((�̂� �̌� + �̄�) 𝑓)
= 2𝑑 − 2(HW(�̂� �̌� 𝑓) +HW(�̄� 𝑓))

≤ 2
(
𝑑 −

(
HW(�̂� �̌� 𝑓) + 𝑑 −HW(�̂� �̌� 𝑓)

3

))

≤ 2
(
𝑑 − 𝑑 + 2HW(�̂� �̌� 𝑓)

3

)

< 2
(
𝑑 − 𝑑 + 2 𝑑4

3

)
= 𝑑 .

As both �̂� �̌� + �̄� and 𝑓 are in ℛℳ(𝑚), this can only be true if �̂� �̌� + �̄� = 𝑓 . However, we have
�̂� �̌� + �̄� ∈ {�̂� , �̌� , �̂� + �̌� + 1} and therefore, by definition of 𝑓 , a contradiction. Now assume there exists
an 𝑓 ′ ∈ ℛℳ(𝑚) \ {0, �̂� + 1, �̌� + 1, �̂� + �̌� , 1, �̂� , �̌� , �̂� + �̌� + 1} with HW(𝑓 �̂� �̌�) < 𝑑

4 and note that this set is
closed under inversions, i.e., also contains 𝑓 ′ + 1. Then, we have HW((𝑓 ′ + 1)�̂� �̌�) > 𝑑

4 , which cannot
be true, as shown above.

1Note that 𝑓 2 = 𝑓 in 𝔽2[𝑥], so (�̂� + 1)�̂� �̌� = �̂�2 �̌� + �̂� �̌� = 2�̂� �̌� = 0.

130

Proof of Lemma 2

Proof. Denote ℱ = {�̂� , �̌� , �̂� + �̌� + 1}. First, note that the algorithm always returns a word 𝑟 such that
𝔇𝒆

0(𝑟) = False. Clearly, this statement would only be false if 𝔇𝒆
0(𝑟) = True for all steps in the for loops

of Lines 2 and 7. To see that this cannot be the case, consider the 𝑑
4 -th iteration in the for loop of Line 7.

In this iteration we have HW(𝑟) = 3
4𝑑 and supp(𝑟) ⊂ ℐ̂ = supp(�̂�), where �̂� ∈ ℛℳ(𝑚) by definition.

It follows that 𝑟 + 𝑒 is in the unique decoding ball of �̂�, since

𝑑(𝑟 + 𝑒 , �̂�) = HW(�̂� + 𝑟 + 𝑒)
≤ HW(�̂� + 𝑟) +HW(𝑒)
= 𝑑 −HW(𝑟) +HW(𝑒) < 𝑑

2 .

In this case, an ML decoder for the RM code would decide for �̂�, and it holds that 𝔇𝒆
0(𝑟) = False

and 𝔇ℛℳ(𝑟 + 𝑒) = �̂� ∈ {�̂� , �̌� , �̂� + �̌� + 1}. Note that this also implies HW(�̂�(�̌� + 1)𝑟) ≤ 𝑑
4 for any

returned word 𝑟. Now consider the case that Algorithm 13 terminates in the for loop of Line 2, i.e.,
for an 𝑟 with supp(𝑟) ⊆ (ℐ̂ ∩ ℐ̌). For this case, we show a statement that is slightly stronger than
required, namely, we prove that for any 𝑓 ∈ ℛℳ(𝑚) \ (ℱ ∪{0})we have 𝑑(𝑟+ 𝑒 , 0) < 𝑑(𝑟+ 𝑒 , 𝑓), which
implies that 𝑓 cannot be the outcome of an ML decoder2. To begin, observe that 𝔇ℛℳ(𝑟 + 𝑒) ≠ 1 since
HW(𝑟+𝑒) ≤ HW(𝑟)+HW(𝑒) < 𝑛

4 + 𝑑
4 and therefore 𝒅(𝑟+𝑒 , 0) = HW(𝑟+𝑒) < 𝑛−HW(𝑟+𝑒) = 𝑑(𝑟+𝑒 , 1),

so the ML decoder does not decode to the all-one word in this case. If HW(𝑟) ≤ 𝑑
4 , we get HW(𝑟+𝑒) < 𝑑

2
and an ML decoder always decides for 0, i.e., 𝔇𝒆

0 = True, so we can assume that HW(𝑟) > 𝑑
4 when

Algorithm 13 terminates. Denote ℱ̄ = ℛℳ(𝑚) \ (ℱ ∪ {0, 1}). Now consider some 𝑓 ∈ ℱ̄ and note
that supp(�̂� �̌�) = ℐ̂ ∩ ℐ̌ . Then, we have

𝑑(𝑟 + 𝑒 , 𝑓) = HW(𝑓 + 𝑟 + 𝑒)
≥ HW(𝑓 + 𝑟) −HW(𝑒)
= HW(�̂� �̌�(𝑓 + 𝑟)) +HW((�̂� �̌� + 1)(𝑓 + 𝑟)) −HW(𝑒)
= HW(�̂� �̌�(𝑓 + 𝑟)) +HW((�̂� �̌� + 1) 𝑓) −HW(𝑒)
≥ HW(𝑟) −HW(�̂� �̌� 𝑓) +HW((�̂� �̌� + 1) 𝑓) −HW(𝑒) .

Since 𝑓 ∉ (ℱ ∪{0, 1}) Lemma 1 gives HW(�̂� �̌� 𝑓) ≤ 𝑑
4 , so −HW(�̂� �̌� 𝑓)+HW((�̂� �̌� + 1) 𝑓) ≥ 3

4𝑑. Therefore,
we get 𝑑(𝑟 + 𝑒 , 𝑓) > HW(𝑟) + 3

4𝑑 − 1
4𝑑 = HW(𝑟) + 1

4𝑑. On the other hand, the distance of 𝑟 + 𝑒 to 0 is

𝑑(𝑟 + 𝑒 , 0) = HW(𝑟 + 𝑒)
≤ HW(𝑟) +HW(𝑒)
< HW(𝑟) + 1

4𝑑 .

Therefore, if Algorithm 13 terminates in the for loop of Line 2, the outcome of the ML decoder
cannot be a word of ℱ̄ ∪ {1}, which implies that 𝔇ℛℳ(𝑟) ∈ ℱ . Now consider the case where
Algorithm 13 terminates in the for loop of Line 7. Note that, by definition of the sets ℐ̂ and ℐ̌ , we
have supp(𝑟) ⊂ supp(�̂�) and, since the for loop of Line 2 is completed, it holds that HW(�̂� �̌�𝑟) = 𝑑

2 . To
begin, observe that

𝑑(𝑟 + 𝑒 , �̂�) = HW(�̂� + 𝑟 + 𝑒)
≥ HW(�̂� + 𝑟) +HW(𝑒)
(a)
= 𝑑 −HW(𝑟) +HW(𝑒) < 5

4𝑑 −HW(𝑟) , (A.1)

2Note that this does not imply that the outcome is 0, since one of the words of ℱ could still be closer to 𝑟 + 𝑒 than 0.

131

where (a) holds because supp(𝑟) ⊂ supp(�̂�) and HW(�̂�) = 𝑑. It follows immediately from Lemma 1
that an ℛℳ(𝑚) code can be partitioned by

ℛℳ(𝑚) = {0} ∪ {1} ∪ {�̂� + 1} ∪ ℱ ∪ { 𝑓 | HW(�̂� �̌� 𝑓) = 0,HW(�̂�(�̌� + 1) 𝑓) = 𝑑
2}

∪ { 𝑓 | HW(�̂� �̌� 𝑓) = 𝑑
4 ,HW(�̂�(�̌� + 1) 𝑓) = 𝑑

4} .

The statement holds if the distance to the words in all subsets except {0} andℱ is larger than Eq. (A.1).
We consider each subset separately:

• For 𝑓 = 1 we have

𝑑(𝑟 + 𝑒 , 𝑓) = HW(𝑓 + 𝑟 + 𝑒)
≥ HW(𝑓) −HW(𝑟) −HW(𝑒)
> 2𝑑 −HW(𝑟) − 𝑑4
>

7
4𝑑 −HW(𝑟) > 𝑑(𝑟 + 𝑒 , �̂�) .

• For 𝑓 = �̂� + 1 we have

𝑑(𝑟 + 𝑒 , 𝑓) = HW(𝑓 + 𝑟 + 𝑒)
≥ HW(𝑓 + 𝑟) −HW(𝑒)
= HW(�̂�(𝑓 + 𝑟)) +HW((�̂� + 1)(𝑓 + 𝑟)) −HW(𝑒)
= HW(�̂�𝑟) +HW((�̂� + 1) 𝑓) −HW(𝑒)
= HW(𝑟) +HW(𝑓) −HW(𝑒)
= 2HW(𝑟) + 𝑑 −HW(𝑟) −HW(𝑒)
(a)≥ 2𝑑 −HW(𝑟) −HW(𝑒)
>

7
4𝑑 −HW(𝑟) > 𝑑(𝑟 + 𝑒 , �̂�) ,

where (a) holds because HW(𝑟) ≥ HW(�̂� �̌�𝑟) = 𝑑
2 , as noted above.

• For any 𝑓 ∈ ℛℳ(𝑚)with HW(�̂� �̌� 𝑓) = 0 and HW(�̂�(�̌� + 1) 𝑓) ≥ 𝑑
4 we have

𝑑(𝑟 + 𝑒 , 𝑓) = HW(𝑓 + 𝑟 + 𝑒)
≥ HW(𝑓 + 𝑟) −HW(𝑒)
= HW(�̂� �̌�(𝑓 + 𝑟)) +HW((�̂� �̌� + 1)(𝑓 + 𝑟)) −HW(𝑒)
≥ HW(�̂� �̌�𝑟) +HW((�̂� �̌� + 1) 𝑓)︸ ︷︷ ︸

=HW(𝑓)=𝑑

−HW((�̂� �̌� + 1)𝑟) −HW(𝑒)

= 𝑑 +HW(�̂� �̌�𝑟) −HW((�̂� �̌� + 1)𝑟) −HW(𝑒)
= 𝑑 + 2HW(�̂� �̌�𝑟)︸ ︷︷ ︸

=𝑑

−(HW(�̂� �̌�𝑟) +HW((�̂� �̌� + 1)𝑟)) −HW(𝑒)

= 2𝑑 −HW(𝑟) −HW(𝑒)
>

7
4𝑑 −HW(𝑟) > 𝑑(𝑟 + 𝑒 , �̂�) .

132

• For any 𝑓 ∈ ℛℳ(𝑚)with HW(�̂� �̌� 𝑓) = HW(�̂�(�̌� + 1) 𝑓) = 𝑑
4 we have

𝑑(𝑟 + 𝑒 , 𝑓) = HW(𝑓 + 𝑟 + 𝑒)
≥ HW(𝑓 + 𝑟) −HW(𝑒)
= HW(�̂� �̌�(𝑓 + 𝑟)) +HW(�̂�(�̌� + 1)(𝑓 + 𝑟)) +HW((𝑝1 + 1)(𝑓 + 𝑟))
−HW(𝑒)

= HW(�̂� �̌�(𝑓 + 𝑟)) +HW(�̂�(�̌� + 1) 𝑓) −HW(�̂�(�̌� + 1)𝑟)
+HW((𝑝1 + 1) 𝑓)︸ ︷︷ ︸

= 𝑑
2

−HW(𝑒)

=
𝑑
4 +

𝑑
4 −HW(�̂�(�̌� + 1)𝑟) + 𝑑2 −HW(𝑒)

= 𝑑 +HW(�̂� �̌�𝑟) − (HW(�̂� �̌�𝑟) +HW(�̂�(�̌� + 1)𝑟)) −HW(𝑒)
=

3
2𝑑 −HW(𝑟) −HW(𝑒)

>
5
4𝑑 −HW(𝑟) > 𝑑(𝑟 + 𝑒 , �̂�) .

We conclude that for any 𝑓 ∈ ℛℳ \ (ℱ ∪ {0}) a word of ℱ (specifically �̂�) is closer3 to 𝑟 + 𝑒 than 𝑓 ,
and it follows that 𝔇ℛℳ(𝑟 + 𝑒) ∈ ℱ . Since the distance to the word of ℱ was truly smaller in each of
the discussed cases, i.e., not a tie, the decision is not the result of a tie in the distance with some other
word ℛℳ(𝑚) \ ℱ .

Proof of Lemma 3

Proof. Denoteℱ = {�̂� , �̌� , �̂�+ �̌�+1}. By Lemma 2, we have𝔇ℛℳ(𝑟+𝑒) C �̃� ∈ ℱ for the word 𝑟 returned
at Line 4 of Algorithm 14. By definition of ℱ , this implies that (ℐ̂ ∩ ℐ̌) ⊂ supp(�̃�), i.e., the positions
ℐ̂ ∩ ℐ̌ of �̃� are all one. Therefore, if a position in ℐ̂ ∩ ℐ̌ of 𝑟 + 𝑒 is changed from 0 to 1, the distance to
�̃� always decreases by 1 and the ML decoder output does not change. On the other hand, if a position
in ℐ̂ ∩ ℐ̌ of 𝑟 + 𝑒 is changed from 1 to 0, the distance to any polynomial of ℱ always increases by 1, the
distance to 0 decreases by 1, and the distance to any other word in ℛℳ(𝑚) \ (ℱ ∪ {0}) decreases by
at most 1. Hence, the ML decoding result changes from �̃� to 0 and the oracle returns True.

Proof of Theorem 1

Proof. For the sake of readability and ease of notation, we focus on the case of multiplicity 𝑠 = 1
in this proof. It is easy to verify that all statements also hold for 𝑠 > 1 by essentially multiplying
every weight/distance by 𝑠. Note that both Algorithms 13 and 14 are independent of 𝑠. Consider
some choice of ℐ̂ and ℐ̌ in Lines 2 and 3 of Algorithm 14. Note that there exist corresponding
polynomials �̂� ∈ {𝑝1 , 𝑝1 + 1} and �̌� ∈ {𝑝2 , 𝑝2 + 1} with supp(�̂�) = ℐ̂ and supp(�̌�) = ℐ̂ and we have
deg(�̂�) = deg(�̌�) = 1 and �̌� ∉ {�̂� , �̂� + 1} for any such choice. The for loop in Line 6 of Algorithm 14
iterates over all positions of 𝒓 in ℐ̂ ∩ ℐ̌ and queries the oracle with this bit flipped. If this changes the
oracle output to True, the corresponding bit is flipped in �̂�, with the goal of obtaining �̂� ℐ̂ ∩ℐ̌ = 𝒆 ℐ̂ ∩ℐ̌ at
the end of the loop. We consider the four different possible combinations of 𝒆𝜉 and 𝒓𝜉:

• 𝑒𝜉 = 0, 𝑟𝜉 = 0 or 𝑒𝜉 = 1, 𝑟𝜉 = 1: Flipping positions 𝑟𝜉 corresponds to setting a 0 in 𝒓 + 𝒆 to 1. By
Lemma 3, this does not change the ML decoding result, i.e., the oracle still returns False. The
bit 𝑒𝜉 is not flipped, i.e., we have 𝑒𝜉 = 𝑟𝜉, and we correctly obtain 𝑒𝜉 = 𝑒𝜉.

3Similarly to the previous case, this does not mean that the ML decoding result is necessarily �̂�, since the proof does
not hold for �̌� and �̂� + �̌� + 1.

133

• 𝑒𝜉 = 0, 𝑟𝜉 = 1 or 𝑒𝜉 = 1, 𝑟𝜉 = 0: Flipping positions 𝑟𝜉 corresponds to setting a 1 in 𝒓 + 𝒆 to 0. By
Lemma 3, this does change the ML decoding result to all-zero, i.e., the oracle now returns True.
The bit 𝑒𝜉 is flipped, i.e., we have 𝑒𝜉 = 𝑟𝜉 + 1, and we correctly obtain 𝑒𝜉 = 𝑒𝜉.

We conclude that �̃� ℐ̂ ∩ℐ̌ = �̂� ℐ̂ ∩ℐ̌ = 𝒆 ℐ̂ ∩ℐ̌ . This holds for any choice of ℐ̂ and ℐ̌ . The lemma statement
follows from observing that the corresponding sets ℐ̂ ∩ℐ̌ partition the set of all positions [0, 𝑞𝑚−1].

135

B CPOI Analysis of ASCAD fix and ASCAD
variable

For completeness, this chapter presents the leakage evaluation using the CPOI method for the re-
maining key bytes of ASCAD variable that are not shown in Fig. 6.2 as well as the results of all key
bytes of ASCAD fix. The results for ASCAD variable are shown in Fig. B.1 and for ASCAD fix in
Fig. B.2.

0 200 400 600 800 1000 1200 1400

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(a) 𝑘7

0 200 400 600 800 1000 1200 1400

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(b) 𝑘8

0 200 400 600 800 1000 1200 1400

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I
1(c) 𝑘9

0 200 400 600 800 1000 1200 1400

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(d) 𝑘10

0 200 400 600 800 1000 1200 1400

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(e) 𝑘11

0 200 400 600 800 1000 1200 1400

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(f) 𝑘12

0 200 400 600 800 1000 1200 1400

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(g) 𝑘13

0 200 400 600 800 1000 1200 1400

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(h) 𝑘14

Figure B.1 CPOI analysis of the ASCAD variable dataset for the remaining key bytes not shown in Fig. 6.2.

136

0 100 200 300 400 500 600 700

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(a) 𝑘2

0 100 200 300 400 500 600 700

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(b) 𝑘3

0 100 200 300 400 500 600 700

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(c) 𝑘4

0 100 200 300 400 500 600 700

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(d) 𝑘5

0 100 200 300 400 500 600 700

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(e) 𝑘6

0 100 200 300 400 500 600 700

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I
1(f) 𝑘7

0 100 200 300 400 500 600 700

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(g) 𝑘8

0 100 200 300 400 500 600 700

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(h) 𝑘9

0 100 200 300 400 500 600 700

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(i) 𝑘10

0 100 200 300 400 500 600 700

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(j) 𝑘11

0 100 200 300 400 500 600 700

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(k) 𝑘12

0 100 200 300 400 500 600 700

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(l) 𝑘13

0 100 200 300 400 500 600 700

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(m) 𝑘14

0 100 200 300 400 500 600 700

Time [samples]

0.0

0.2

0.4

0.6

0.8

1.0

C
PO

I

1(n) 𝑘15

Figure B.2 CPOI analysis of the ASCAD fix dataset.

137

C Second-Order Attack Results for ASCAD
variable

This chapter shows the second-order attack results for the remaining key bytes of ASCAD variable

not shown in Fig. 6.4.

0 200 400 600 800 1000 1200 1400

Time [Samples]

0

200

400

600

800

1000

1200

Ti
m
e
[S
am

pl
es
]

0 0.175

1
(a) 𝑘7

0 200 400 600 800 1000 1200 1400

Time [Samples]

0

200

400

600

800

1000

1200

Ti
m
e
[S
am

pl
es
]

0 0.190

1
(b) 𝑘8

0 200 400 600 800 1000 1200 1400

Time [Samples]

0

200

400

600

800

1000

1200

Ti
m
e
[S
am

pl
es
]

0 0.136

1
(c) 𝑘9

0 200 400 600 800 1000 1200 1400

Time [Samples]

0

200

400

600

800

1000

1200

Ti
m
e
[S
am

pl
es
]

0 0.188

1
(d) 𝑘10

0 200 400 600 800 1000 1200 1400

Time [Samples]

0

200

400

600

800

1000

1200

Ti
m
e
[S
am

pl
es
]

0 0.170

1
(e) 𝑘11

0 200 400 600 800 1000 1200 1400

Time [Samples]

0

200

400

600

800

1000

1200

Ti
m
e
[S
am

pl
es
]

0 0.207

1
(f) 𝑘12

0 200 400 600 800 1000 1200 1400

Time [Samples]

0

200

400

600

800

1000

1200

Ti
m
e
[S
am

pl
es
]

0 0.140

1
(g) 𝑘13

0 200 400 600 800 1000 1200 1400

Time [Samples]

0

200

400

600

800

1000

1200

Ti
m
e
[S
am

pl
es
]

0 0.212

1
(h) 𝑘14

Figure C.1 Second-order attack results for the remaining key bytes of ASCAD variable not shown in Fig. 6.4.

139

Related Publications by the Author

[BFM+18] Konstantin Braun, Tim Fritzmann, Georg Maringer, Thomas Schamberger, and Johanna
Sepúlveda. Secure and compact full NTRU hardware implementation. In 2018 IFIP/IEEE

International Conference on Very Large Scale Integration (VLSI-SoC), pages 89–94, 2018.

[EST+22] Maximilian Egger, Thomas Schamberger, Lars Tebelmann, Florian Lippert, and Georg
Sigl. A second look at the ASCAD databases. In Josep Balasch and Colin O’Flynn,
editors, Constructive Side-Channel Analysis and Secure Design, pages 75–99, Cham, 2022.
Springer International Publishing.

[FSF+19] Tim Fritzmann, Thomas Schamberger, Christoph Frisch, Konstantin Braun, Georg
Maringer, and Johanna Sepúlveda. Efficient hardware/software co-design for NTRU. In
Nicola Bombieri, Graziano Pravadelli, Masahiro Fujita, Todd Austin, and Ricardo Reis,
editors, VLSI-SoC: Design and Engineering of Electronics Systems Based on New Computing

Paradigms, pages 257–280, Cham, 2019. Springer International Publishing.

[FVBBR+21] Tim Fritzmann, Michiel Van Beirendonck, Debapriya Basu Roy, Patrick Karl, Thomas
Schamberger, Ingrid Verbauwhede, and Georg Sigl. Masked accelerators and instruc-
tion set extensions for post-quantum cryptography. IACR Transactions on Cryptographic

Hardware and Embedded Systems, 2022(1):414–460, Nov. 2021.

[GPK+21] Michael Gruber, Matthias Probst, Patrick Karl, Thomas Schamberger, Lars Tebelmann,
Michael Tempelmeier, and Georg Sigl. DOMREP - an orthogonal countermeasure for
arbitrary order side-channel and fault attack protection. IEEE Transactions on Information

Forensics and Security, 16:4321–4335, 2021.

[HHP+21] Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska, Thomas Scham-
berger, Silvan Streit, Emanuele Strieder, and Christine van Vredendaal. Chosen cipher-
text k-trace attacks on masked CCA2 secure Kyber. IACR Transactions on Cryptographic

Hardware and Embedded Systems, 2021(4):88–113, Aug. 2021.

[HPR+22] Anna-Lena Horlemann, Sven Puchinger, Julian Renner, Thomas Schamberger, and An-
tonia Wachter-Zeh. Information-set decoding with hints. In Antonia Wachter-Zeh,
Hannes Bartz, and Gianluigi Liva, editors, Code-Based Cryptography, pages 60–83, Cham,
2022. Springer International Publishing.

[KSTS21] Alexander Kulow, Thomas Schamberger, Lars Tebelmann, and Georg Sigl. Finding the
needle in the haystack: Metrics for best trace selection in unsupervised side-channel
attacks on blinded RSA. IEEE Transactions on Information Forensics and Security, 16:3254–
3268, 2021.

[RMB+23] Stefan Ritterhoff, Georg Maringer, Sebastian Bitzer, Violetta Weger, Patrick Karl, Thomas
Schamberger, Jonas Schupp, and Antonia Wachter-Zeh. Fuleeca: A lee-based signature
scheme. In Andre Esser and Paolo Santini, editors, Code-Based Cryptography, pages 56–83,
Cham, 2023. Springer Nature Switzerland.

[SET23] Thomas Schamberger, Maximilian Egger, and Lars Tebelmann. Hide and Seek: Using
occlusion techniques for side-channel leakage attribution in CNNs. In Jianying Zhou,
Lejla Batina, Zengpeng Li, Jingqiang Lin, Eleonora Losiouk, Suryadipta Majumdar,

140

Daisuke Mashima, Weizhi Meng, Stjepan Picek, Mohammad Ashiqur Rahman, Jun Shao,
Masaki Shimaoka, Ezekiel Soremekun, Chunhua Su, Je Sen Teh, Aleksei Udovenko,
Cong Wang, Leo Zhang, and Yury Zhauniarovich, editors, Applied Cryptography and

Network Security Workshops, pages 139–158, Cham, 2023. Springer Nature Switzerland.

[SHR+22] Thomas Schamberger, Lukas Holzbaur, Julian Renner, Antonia Wachter-Zeh, and Georg
Sigl. A power side-channel attack on the Reed-Muller Reed-Solomon version of the
HQC cryptosystem. In Jung Hee Cheon and Thomas Johansson, editors, Post-Quantum

Cryptography, pages 327–352, Cham, 2022. Springer International Publishing.

[SMS19] Thomas Schamberger, Oliver Mischke, and Johanna Sepulveda. Practical evaluation
of masking for NTRUEncrypt on ARM Cortex-M4. In Ilia Polian and Marc Stöttinger,
editors, Constructive Side-Channel Analysis and Secure Design, pages 253–269, Cham, 2019.
Springer International Publishing.

[SRSWZ21] Thomas Schamberger, Julian Renner, Georg Sigl, and Antonia Wachter-Zeh. A power
side-channel attack on the CCA2-secure HQC KEM. In Pierre-Yvan Liardet and Nele
Mentens, editors, Smart Card Research and Advanced Applications, pages 119–134, Cham,
2021. Springer International Publishing.

[USS+20] Florian Unterstein, Marc Schink, Thomas Schamberger, Lars Tebelmann, Manuel Ilg,
and Johann Heyszl. Retrofitting leakage resilient authenticated encryption to mi-
crocontrollers. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2020(4):365–388, Aug. 2020.

141

Bibliography

[ABB+20a] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jean-
Christophe Deneuville, Philippe Gaborit, Santosh Ghosh, Shay Gueron, Tim Güneysu,
Carlos Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Jan Richter-Brockmann,
Nicolas Sendrier, Jean-Pierre Tillich, Valentin Vasseur, and Gilles Zémor. Bit Flipping
Key Encapsulation (BIKE) - Algorithm Specification. Submission to the NIST Post-
Quantum Cryptography Standardization [Nat16], 2020. https://bikesuite.org/.

[ABB+20b] Jean-Philippe Aumasson, Daniel J. Bernstein, Ward Beullens, Christoph Dobraunig,
Maria Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas Hülsing, Panos Kam-
panakis, Stefan Kölbl, Tanja Lange, Martin M. Lauridsen, Florian Mendel, Ruben
Niederhagen, Christian Rechberger, Joost Rĳneveld, Peter Schwabe, and Bas West-
erbaan. SPHINCS+ - Algorithm Specification. Submission to the NIST Post-Quantum
Cryptography Standardization [Nat16], 2020. https://sphincs.org/.

[ABC+20] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher, Tanja Lange,
Varun Maram, ngo von Maurich, Rafael Misoczki, Ruben Niederhagen, Kenneth G.
Paterson, Edoardo Persichett, Christiane Peters, Peter Schwabe, Nicolas Sendrier, Jakub
Szefer, Cen Jung Tjhai, Martin Tomlinson, and Wen Wang. Classic McEliece - Algorithm
Specification. Submission to the NIST Post-Quantum Cryptography Standardization
[Nat16], 2020. https://classic.mceliece.org.

[ABD+20] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
CRYSTALS-Kyber - Algorithm Specification. Submission to the NIST Post-Quantum
Cryptography Standardization [Nat16], 2020. https://pq-crystals.org/kyber/.

[ABGV08] Ali C Atıcı, Lejla Batina, Benedikt Gierlichs, and Ingrid Verbauwhede. Power analysis
on NTRU implementations for RFIDs: First results. In The 4th Workshop on RFID

Security–RFIDSec, 2008.

[ACC+20] Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess,
Aaron Hutchinson, Amir Jalali, Koray Karabina, Brian Koziel, Brian LaMacchia, Patrick
Longa, Michael Naehrig, Geovandro Pereira, Joost Renes, Vladimir Soukharev, and
David Urbanik. Supersingular Isogeny Key Encapsulation (SIKE) - Algorithm Specifi-
cation. Submission to the NIST Post-Quantum Cryptography Standardization [Nat16],
2020. https://sike.org/.

[ACÖG19a] Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. DeepExplain: at-
tribution methods for deep learning, 2019. https://github.com/marcoancona/
DeepExplain.

[ACÖG19b] Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Gradient-Based Attri-

bution Methods, pages 169–191. Springer International Publishing, Cham, 2019.

[AMBD+18] Carlos Aguilar-Melchor, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit,
and Gilles Zémor. Efficient encryption from random quasi-cyclic codes. IEEE Transac-

tions on Information Theory, 64(5):3927–3943, 2018.

https://bikesuite.org/
https://sphincs.org/
https://classic.mceliece.org
https://pq-crystals.org/kyber/
https://sike.org/
https://github.com/marcoancona/DeepExplain
https://github.com/marcoancona/DeepExplain

142

[APSQ06] C. Archambeau, E. Peeters, F. X. Standaert, and J. J. Quisquater. Template attacks
in principal subspaces. In Louis Goubin and Mitsuru Matsui, editors, Cryptographic

Hardware and Embedded Systems - CHES 2006, pages 1–14, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[AR21] Amund Askeland and Sondre Rønjom. A side-channel assisted attack on NTRU.
Cryptology ePrint Archive, Report 2021/790, 2021. https://ia.cr/2021/790.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Gré-
goire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-interference and type-
directed higher-order masking. In Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, CCS ’16, page 116–129, New York, NY, USA,
2016. Association for Computing Machinery.

[BBF+19] Hayo Baan, Sauvik Bhattacharya, Scott Fluhrer, Oscar Garcia-Morchon, Thĳs
Laarhoven, Rachel Player, Ronald Rietman, Markku-Juhani O. Saarinen, Ludo Tol-
huizen, José Luis Torre-Arce, and Zhenfei Zhang. Round5 - Algorithm Spec-
ification. Submission to the NIST Post-Quantum Cryptography Standardization
[Nat16], 2019. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/round-2/submissions/Round5-Round2.zip.

[BBM+15] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-
Robert Müller, and Wojciech Samek. On pixel-wise explanations for non-linear classifier
decisions by layer-wise relevance propagation. PLOS ONE, 10(7):1–46, 07 2015.

[BCE+01] Daniel V. Bailey, Daniel Coffin, Adam Elbirt, Joseph H. Silverman, and Adam D. Wood-
bury. NTRU in constrained devices. In Çetin K. Koç, David Naccache, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems — CHES 2001, pages 262–
272, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[BCH+20] Shivam Bhasin, Anupam Chattopadhyay, Annelie Heuser, Dirmanto Jap, Stjepan Picek,
and Ritu Ranjan Shrivastwa. Mind the portability: A warriors guide through realistic
profiled side-channel analysis. In 27th Annual Network and Distributed System Security

Symposium, NDSS 2020, San Diego, California, USA, February 23-26, 2020. The Internet
Society, 2020.

[BCLvV17] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Chris-
tine van Vredendaal. NTRU Prime - Algorithm Specification. Submis-
sion to the NIST Post-Quantum Cryptography Standardization [Nat16],
2017. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/round-1/submissions/NTRU_Prime.zip.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with
a leakage model. In Lecture Notes in Computer Science, pages 16–29. Springer Berlin
Heidelberg, 2004.

[BCS13] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. McBits: Fast constant-time code-
based cryptography. In Guido Bertoni and Jean-Sébastien Coron, editors, Cryptographic

Hardware and Embedded Systems - CHES 2013, pages 250–272, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[BCS21] Olivier Bronchain, Gaëtan Cassiers, and François-Xavier Standaert. Give me 5 minutes:
Attacking ASCAD with a single side-channel trace. Cryptology ePrint Archive, Paper
2021/817, 2021. https://eprint.iacr.org/2021/817.

https://ia.cr/2021/790
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/Round5-Round2.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/Round5-Round2.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRU_Prime.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRU_Prime.zip
https://eprint.iacr.org/2021/817

143

[BDHD+19] Ciprian Băetu, F. Betül Durak, Loïs Huguenin-Dumittan, Abdullah Talayhan, and Serge
Vaudenay. Misuse attacks on post-quantum cryptosystems. In Yuval Ishai and Vincent
Rĳmen, editors, Advances in Cryptology – EUROCRYPT 2019, pages 747–776, Cham,
2019. Springer International Publishing.

[BDK+20] Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium - Algorithm Specification.
Submission to the NIST Post-Quantum Cryptography Standardization [Nat16], 2020.
https://pq-crystals.org/dilithium/.

[BDMS22] Olivier Bronchain, François Durvaux, Loïc Masure, and François-Xavier Standaert.
Efficient profiled side-channel analysis of masked implementations, extended. IEEE

Transactions on Information Forensics and Security, 17:574–584, 2022.

[BGG+15] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-Xavier
Standaert. On the cost of lazy engineering for masked software implementations. In
Marc Joye and Amir Moradi, editors, Smart Card Research and Advanced Applications,
pages 64–81, Cham, 2015. Springer International Publishing.

[BGP+10] Lejla Batina, Benedikt Gierlichs, Emmanuel Prouff, Matthieu Rivain, François-Xavier
Standaert, and Nicolas Veyrat-Charvillon. Mutual information analysis: a comprehen-
sive study. Journal of Cryptology, 24(2):269–291, October 2010.

[BIK+24] Elie Bursztein, Luca Invernizzi, Karel Král, Daniel Moghimi, Jean-Michel Picod, and
Marina Zhang. Generalized power attacks against crypto hardware using long-range
deep learning, 2024. https://arxiv.org/abs/2306.07249.

[BK] Cees-Bart Breunesse and Ilya Kizhvatov. Side-channel toolkit in Julia (Jlsca). https:
//github.com/Riscure/Jlsca.

[BLPR18] Ryad Benadjila, Victor Lomné, Emmanuel Prouff, and Thomas Roche. Secure AES128
encryption implementation for ATmega8515, 2018. https://github.com/ANSSI-
FR/secAES-ATmega8515/tree/master/src/Version1.

[BPS+18] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Elenora Cagli, and Cécile Dumas.
ASCAD (ANSSI SCA Database), 2018. https://github.com/ANSSI-FR/ASCAD.

[BPS+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile Dumas.
Deep learning for side-channel analysis and introduction to ASCAD database. J. Cryp-

togr. Eng., 10(2):163–188, 2020.

[CB23] Gaëtan Cassiers and Olivier Bronchain. SCALib: A side-channel analysis library.
Journal of Open Source Software, 8(86):5196, 2023.

[CD23] Wouter Castryck and Thomas Decru. An efficient key recovery attack on SIDH. In
Carmit Hazay and Martĳn Stam, editors, Advances in Cryptology – EUROCRYPT 2023,
pages 423–447, Cham, 2023. Springer Nature Switzerland.

[CDH+19] Cong Chen, Oussama Danba, Jerey Hostein, Andreas Hülsing, Joost Rĳneveld, John M.
Schanck, Peter Schwabe, William Whyte, and Zhenfei Zhang. NTRU - Algorithm
Specification. Submission to the NIST Post-Quantum Cryptography Standardization
[Nat16], 2019. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/round-2/submissions/NTRU-Round2.zip.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural networks
with data augmentation against jitter-based countermeasures. In Wieland Fischer and

https://pq-crystals.org/dilithium/
https://arxiv.org/abs/2306.07249
https://github.com/Riscure/Jlsca
https://github.com/Riscure/Jlsca
https://github.com/ANSSI-FR/secAES-ATmega8515/tree/master/src/Version1
https://github.com/ANSSI-FR/secAES-ATmega8515/tree/master/src/Version1
https://github.com/ANSSI-FR/ASCAD
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/NTRU-Round2.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/NTRU-Round2.zip

144

Naofumi Homma, editors, Cryptographic Hardware and Embedded Systems – CHES 2017,
pages 45–68, Cham, 2017. Springer International Publishing.

[CGTZ23] Jean-Sébastien Coron, François Gérard, Matthias Trannoy, and Rina Zeitoun. High-
order masking of NTRU. IACR Transactions on Cryptographic Hardware and Embedded

Systems, 2023(2):180–211, Mar. 2023.

[CHWZ17] Cong Chen, Jeffrey Hoffstein, William Whyte, and Zhenfei Zhang. NTRUEncrypt -
Algorithm Specification. Submission to the NIST Post-Quantum Cryptography Stan-
dardization [Nat16], 2017. https://csrc.nist.gov/CSRC/media/Projects/Post-
Quantum-Cryptography/documents/round-1/submissions/NTRUEncrypt.zip.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound
approaches to counteract power-analysis attacks. In Advances in Cryptology - CRYPTO

’99, volume 1666 of Lecture Notes in Computer Science, pages 398–412. Springer, 1999.

[CK14] Omar Choudary and Markus G. Kuhn. Efficient template attacks. In Aurélien Francillon
and Pankaj Rohatgi, editors, Smart Card Research and Advanced Applications, pages 253–
270, Cham, 2014. Springer International Publishing.

[CK18] Marios O. Choudary and Markus G. Kuhn. Efficient, portable template attacks. IEEE

Transactions on Information Forensics and Security, 13(2):490–501, 2018.

[CRR03] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton S.
Kaliski, Çetin K. Koç, and Christof Paar, editors, Cryptographic Hardware and Embedded

Systems - CHES 2002, pages 13–28, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[CZLG21] Pei Cao, Chi Zhang, Xiangjun Lu, and Dawu Gu. Cross-device profiled side-channel
attack with unsupervised domain adaptation. IACR Transactions on Cryptographic Hard-

ware and Embedded Systems, 2021(4):27–56, Aug. 2021.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage models:
From probing attacks to noisy leakage. In Advances in Cryptology – EUROCRYPT 2014,
pages 423–440. Springer Berlin Heidelberg, 2014.

[DR20] Joan Daemen and Vincent Rĳmen. The Design of Rĳndael - The Advanced Encryption

Standard (AES), Second Edition. Information Security and Cryptography. Springer, 2020.

[DR24] Loïc Demange and Mélissa Rossi. A provably masked implementation of BIKE key
encapsulation mechanism. Cryptology ePrint Archive, Paper 2024/076, 2024. https:
//eprint.iacr.org/2024/076.

[DS16] François Durvaux and François-Xavier Standaert. From improved leakage detection
to the detection of points of interests in leakage traces. In Marc Fischlin and Jean-
Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016, pages 240–262,
Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[Dwo15] Morris Dworkin. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Func-

tions. Federal Inf. Process. Stds. (NIST FIPS), National Institute of Standards and
Technology, Gaithersburg, MD, 2015.

[EST+22] Maximilian Egger, Thomas Schamberger, Lars Tebelmann, Florian Lippert, and Georg
Sigl. A second look at the ASCAD databases. In Josep Balasch and Colin O’Flynn,
editors, Constructive Side-Channel Analysis and Secure Design, pages 75–99, Cham, 2022.
Springer International Publishing.

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRUEncrypt.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRUEncrypt.zip
https://eprint.iacr.org/2024/076
https://eprint.iacr.org/2024/076

145

[FDNG19] Farnoud Farahmand, Viet B. Dang, Duc Tri Nguyen, and Kris Gaj. Evaluating the
potential for hardware acceleration of four NTRU-based key encapsulation mechanisms
using software/hardware codesign. In Jintai Ding and Rainer Steinwandt, editors, Post-

Quantum Cryptography, pages 23–43, Cham, 2019. Springer International Publishing.

[FGMDP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga, and
François-Xavier Standaert. Composable masking schemes in the presence of physi-
cal defaults & the robust probing model. IACR Transactions on Cryptographic Hardware

and Embedded Systems, 2018(3):89–120, Aug. 2018.

[FHK+20] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas
Porin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei
Zhang. Falcon - Algorithm Specification. Submission to the NIST Post-Quantum
Cryptography Standardization [Nat16], 2020. https://falcon-sign.info/.

[FSF+19] Tim Fritzmann, Thomas Schamberger, Christoph Frisch, Konstantin Braun, Georg
Maringer, and Johanna Sepúlveda. Efficient hardware/software co-design for NTRU.
In Nicola Bombieri, Graziano Pravadelli, Masahiro Fujita, Todd Austin, and Ricardo
Reis, editors, VLSI-SoC: Design and Engineering of Electronics Systems Based on New Com-

puting Paradigms, pages 257–280, Cham, 2019. Springer International Publishing.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[GGJR11] Benjamin Jun Gilbert Goodwill, Josh Jaffe, and Pankaj Rohatgi. A testing methodology
for side-channel resistance validation. In NIST non-invasive attack testing workshop,
volume 7, pages 115–136, 2011.

[GGP+15] Cezary Glowacz, Vincent Grosso, Romain Poussier, Joachim Schüth, and François-
Xavier Standaert. Simpler and more efficient rank estimation for side-channel security
assessment. In Gregor Leander, editor, Fast Software Encryption, pages 117–129, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

[GHJ+22] Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson,
and Robin Leander Schröder. Don’t reject this: Key-recovery timing attacks due to
rejection-sampling in HQC and BIKE. IACR Transactions on Cryptographic Hardware and

Embedded Systems, 2022(3):223–263, Jun. 2022.

[GJ20] Qian Guo and Thomas Johansson. A new decryption failure attack against HQC.
In Advances in Cryptology – ASIACRYPT 2020, pages 353–382. Springer International
Publishing, 2020.

[GLG22] Guillaume Goy, Antoine Loiseau, and Philippe Gaborit. A new key recovery side-
channel attack on HQC with chosen ciphertext. In Jung Hee Cheon and Thomas
Johansson, editors, Post-Quantum Cryptography, pages 353–371, Cham, 2022. Springer
International Publishing.

[GM10] Shuhong Gao and Todd Mateer. Additive fast fourier transforms over finite fields. IEEE

Transactions on Information Theory, 56(12):6265–6272, 2010.

[GMK16] Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-oriented masking: Com-
pact masked hardware implementations with arbitrary protection order. In Proceedings

of the 2016 ACM Workshop on Theory of Implementation Security, TIS ’16, 2016.

[GP99] Louis Goubin and Jacques Patarin. DES and differential power analysis the “duplica-
tion” method. In Çetin K. Koç and Christof Paar, editors, Cryptographic Hardware and

Embedded Systems, pages 158–172. Springer Berlin Heidelberg, 1999.

https://falcon-sign.info/
http://www.deeplearningbook.org

146

[HAS+24] Suvadeep Hajra, Manaar Alam, Sayandeep Saha, Stjepan Picek, and Debdeep
Mukhopadhyay. On the instability of softmax attention-based deep learning mod-
els in side-channel analysis. IEEE Transactions on Information Forensics and Security,
19:514–528, 2024.

[HCY19] Wei-Lun Huang, Jiun-Peng Chen, and Bo-Yin Yang. Power analysis on NTRU Prime.
IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020(1):123–151,
Nov. 2019.

[HDV20] Loïs Huguenin-Dumittan and Serge Vaudenay. Classical misuse attacks on NIST round
2 PQC. In Mauro Conti, Jianying Zhou, Emiliano Casalicchio, and Angelo Spognardi,
editors, Applied Cryptography and Network Security, pages 208–227, Cham, 2020. Springer
International Publishing.

[HGG19] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. Applications of machine learn-
ing techniques in side-channel attacks: a survey. Journal of Cryptographic Engineering,
10(2):135–162, 2019.

[HGG20] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. Deep neural network attribution
methods for leakage analysis and symmetric key recovery. In Kenneth G. Paterson
and Douglas Stebila, editors, Selected Areas in Cryptography – SAC 2019, pages 645–666,
Cham, 2020. Springer International Publishing.

[HGSSW03] Nick Howgrave-Graham, Joseph H. Silverman, Ari Singer, and William Whyte. NAEP:
Provable security in the presence of decryption failures. Cryptology ePrint Archive,
Paper 2003/172, 2003. https://eprint.iacr.org/2003/172.

[HGSW05] Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte. Choosing param-
eter sets for NTRUEncrypt with NAEP and SVES-3. In Alfred Menezes, editor, Topics

in Cryptology – CT-RSA 2005, pages 118–135, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the
Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin, editors, Theory of

Cryptography, pages 341–371, Cham, 2017. Springer International Publishing.

[HHO20] Anh-Tuan Hoang, Neil Hanley, and Maire O’Neill. Plaintext: A missing feature for
enhancing the power of deep learning in side-channel analysis? Breaking multiple
layers of side-channel countermeasures. IACR Transactions on Cryptographic Hardware

and Embedded Systems, 2020(4):49–85, Aug. 2020.

[HIM+14] Johann Heyszl, Andreas Ibing, Stefan Mangard, Fabrizio De Santis, and Georg Sigl.
Clustering algorithms for non-profiled single-execution attacks on exponentiations.
In Aurélien Francillon and Pankaj Rohatgi, editors, Smart Card Research and Advanced

Applications, pages 79–93, Cham, 2014. Springer International Publishing.

[HPP21] Julius Hermelink, Peter Pessl, and Thomas Pöppelmann. Fault-enabled chosen-
ciphertext attacks on Kyber. In Avishek Adhikari, Ralf Küsters, and Bart Preneel, edi-
tors, Progress in Cryptology – INDOCRYPT 2021, pages 311–334, Cham, 2021. Springer
International Publishing.

[HPR+22] Anna-Lena Horlemann, Sven Puchinger, Julian Renner, Thomas Schamberger, and
Antonia Wachter-Zeh. Information-set decoding with hints. In Antonia Wachter-Zeh,
Hannes Bartz, and Gianluigi Liva, editors, Code-Based Cryptography, pages 60–83, Cham,
2022. Springer International Publishing.

https://eprint.iacr.org/2003/172

147

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key
cryptosystem. In Joe P. Buhler, editor, Algorithmic Number Theory, pages 267–288, Berlin,
Heidelberg, 1998. Springer Berlin Heidelberg.

[HPS14] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. An Introduction to Mathematical

Cryptography. Springer New York, 2014.

[HPS+17] Jeff Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, William Whyte, and
Zhenfei Zhang. Choosing parameters for NTRUEncrypt. In Helena Handschuh, editor,
Topics in Cryptology – CT-RSA 2017, pages 3–18, Cham, 2017. Springer International
Publishing.

[HRSS17] Andreas Hülsing, Joost Rĳneveld, John M. Schanck, and Peter Schwabe.
NTRU-HRSS-KEM - Algorithm Specification. Submission to the NIST Post-
Quantum Cryptography Standardization [Nat16], 2017. https://csrc.nist.
gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-
1/submissions/NTRU_HRSS_KEM.zip.

[HS00] Jeffrey Hoffstein and Joseph Silverman. Optimizations for NTRU. Public-Key Cryptog-

raphy and Computational Number Theory, De Gruyter Proceedings in Mathematics, pages
77–88, 2000.

[IEE09] IEEE. IEEE standard specification for public key cryptographic techniques based on
hard problems over lattices. IEEE Std 1363.1-2008, pages 1–81, 2009.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against
probing attacks. In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, pages
463–481, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[JK95] L.L. Joiner and J.J. Komo. Decoding binary BCH codes. In Proceedings IEEE Southeastcon

’95. Visualize the Future, pages 67–73, 1995.

[KAA21] Emre Karabulut, Erdem Alkim, and Aydin Aysu. Single-trace side-channel attacks
on w-small polynomial sampling: With applications to NTRU, NTRU Prime, and
CRYSTALS-DILITHIUM. In 2021 IEEE International Symposium on Hardware Oriented

Security and Trust (HOST), pages 35–45, 2021.

[Kai22] Tim Kaiser. Side-channel countermeasures for chosen-ciphertext attacks on HQC.
Master’s thesis, Technical University of Munich, October 2022.

[KB15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, 2015. http://arxiv.org/abs/1412.
6980.

[KFYF21] Kunihiro Kuroda, Yuta Fukuda, Kota Yoshida, and Takeshi Fujino. Practical aspects on
non-profiled deep-learning side-channel attacks against AES software implementation
with two types of masking countermeasures including RSM. In Proceedings of the 5th

Workshop on Attacks and Solutions in Hardware Security, ASHES ’21, page 29–40, New
York, NY, USA, 2021. Association for Computing Machinery.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Advances

in Cryptology — CRYPTO’ 99. CRYPTO 1999, volume 1666 of Lecture Notes in Computer

Science (LNCS), pages 388–397. Springer, Berlin, Heidelberg, 1999.

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRU_HRSS_KEM.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRU_HRSS_KEM.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRU_HRSS_KEM.zip
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

148

[KLP+22] Marina Krček, Huimin Li, Servio Paguada, Unai Rioja, Lichao Wu, Guilherme Perin,
and Łukasz Chmielewski. Deep learning on side-channel analysis. In Lejla Batina,
Thomas Bäck, Ileana Buhan, and Stjepan Picek, editors, Security and Artificial Intelli-

gence: A Crossdisciplinary Approach, pages 48–71, Cham, 2022. Springer International
Publishing.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In Neal Koblitz, editor, Advances in Cryptology — CRYPTO ’96, pages
104–113, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

[KRS19] Matthias J. Kannwischer, Joost Rĳneveld, and Peter Schwabe. Faster multiplication in
ℤ2𝑚 [𝑥] on Cortex-M4 to speed up NIST PQC candidates. In Robert H. Deng, Valérie
Gauthier-Umaña, Martín Ochoa, and Moti Yung, editors, Applied Cryptography and

Network Security, pages 281–301, Cham, 2019. Springer International Publishing.

[KRSS] Matthias J. Kannwischer, Joost Rĳneveld, Peter Schwabe, and Ko Stoffelen. PQM4: Post-
quantum crypto library for the ARM Cortex-M4. https://github.com/mupq/pqm4.

[KSTS21] Alexander Kulow, Thomas Schamberger, Lars Tebelmann, and Georg Sigl. Finding the
needle in the haystack: Metrics for best trace selection in unsupervised side-channel
attacks on blinded RSA. IEEE Transactions on Information Forensics and Security, 16:3254–
3268, 2021.

[KUMH17] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-
normalizing neural networks. In Advances in Neural Information Processing Systems,
volume 30, 2017.

[LBM11] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. Side channel attack: an
approach based on machine learning. In COSADE 2011 - Second InternationalWorkshop

on Constructive Side-Channel Analysis and Secure Design, 2011.

[LC04] Shu Lin and Daniel J. Costello. Error Control Coding (Second Edition). Prentice-Hall, Inc.,
USA, 2004.

[LCGD18] Yann Le Corre, Johann Großschädl, and Daniel Dinu. Micro-architectural power simu-
lator for leakage assessment of cryptographic software on ARM Cortex-M3 processors.
In Junfeng Fan and Benedikt Gierlichs, editors, Constructive Side-Channel Analysis and

Secure Design, pages 82–98, Cham, 2018. Springer International Publishing.

[Lip20] Florian Lippert. Understanding deep learning for side-channel analysis. Master’s
thesis, Technical University of Munich, 2020.

[LLJ+19] Xianhui Lu, Yamin Liu, Dingding Jia, Haiyang Xue, Jingnan He, Zhenfei Zhang,
Zhe Liu, Hao Yang, Bao Li, and Kunpeng Wang. LAC - Algorithm Speci-
fication. Submission to the NIST Post-Quantum Cryptography Standardization
[Nat16], 2019. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/round-2/submissions/LAC-Round2.zip.

[LSCH10] Mun-Kyu Lee, Jeong Eun Song, Dooho Choi, and Dong-Guk Han. Countermeasures
against power analysis attacks for the NTRU public key cryptosystem. IEICE Transac-

tions on Fundamentals of Electronics, Communications and Computer Sciences, E93.A(1):153–
163, 2010.

[LZC+21] Xiangjun Lu, Chi Zhang, Pei Cao, Dawu Gu, and Haining Lu. Pay attention to raw
traces: A deep learning architecture for end-to-end profiling attacks. IACR Transactions

on Cryptographic Hardware and Embedded Systems, 2021(3):235–274, Jul. 2021.

https://github.com/mupq/pqm4
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/LAC-Round2.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/LAC-Round2.zip

149

[MAB+20] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy,
Jun Bos, Jean-Christophe Deneuville, Arnaud Dion, Philippe Gaborit, Jérôme Lacan,
Edoardo Persichetti, Jean-Marc Robert, Pascal Véron, and Gilles Zémor. Hamming
Quasi-Cyclic (HQC) - Algorithm Specification. Submission to the NIST Post-Quantum
Cryptography Standardization [Nat16], 2020. https://pqc-hqc.org/.

[MDP19] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. Gradient visualization for general
characterization in profiling attacks. In Ilia Polian and Marc Stöttinger, editors, Con-

structive Side-Channel Analysis and Secure Design, pages 145–167, Cham, 2019. Springer
International Publishing.

[Mit97] Tom M. Mitchell. Machine learning. McGraw-Hill, New York, 1997.

[MM13] Amir Moradi and Oliver Mischke. On the simplicity of converting leakages from
multivariate to univariate. In Guido Bertoni and Jean-Sébastien Coron, editors, Cryp-

tographic Hardware and Embedded Systems - CHES 2013, pages 1–20, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks - revealing

the secrets of smart cards. Springer, 2007.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking crypto-
graphic implementations using deep learning techniques. In Claude Carlet, M. Anwar
Hasan, and Vishal Saraswat, editors, Security, Privacy, and Applied Cryptography Engi-

neering, pages 3–26, Cham, 2016. Springer International Publishing.

[MPW21] Ben Marshall, Dan Page, and James Webb. MIRACLE: MIcRo-ArChitectural Leakage
Evaluation: A study of micro-architectural power leakage across many devices. IACR

Transactions on Cryptographic Hardware and Embedded Systems, 2022(1):175–220, Nov.
2021.

[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error-

correcting codes, volume 16. Elsevier, 1977.

[MSS09] Amir Moradi, Mohammad Taghi Manzuri Shalmani, and Mahmoud Salmasizadeh.
Dual-rail transition logic: A logic style for counteracting power analysis attacks. Com-

puters & Electrical Engineering, 35(2):359–369, 2009.

[MSS13] Dominik Merli, Frederic Stumpf, and Georg Sigl. Protecting PUF error correction
by codeword masking. Cryptology ePrint Archive, Paper 2013/334, 2013. https:
//eprint.iacr.org/2013/334.

[MWK+22] Catinca Mujdei, Lennert Wouters, Angshuman Karmakar, Arthur Beckers, Jose
Maria Bermudo Mera, and Ingrid Verbauwhede. Side-channel analysis of lattice-
based post-quantum cryptography: Exploiting polynomial multiplication. ACM Trans.

Embed. Comput. Syst., nov 2022. Just Accepted.

[Nat16] National Institute of Standards and Technology - Computer Security Division.
Post-Quantum Cryptography Standardization, 2016. https://csrc.nist.gov/
projects/post-quantum-cryptography.

[Nat20] National Institute of Standards and Technology. NIST IR 8309: Status report on the
second round of the NIST post-quantum cryptography standardization process, 2020.
https://doi.org/10.6028/NIST.IR.8309.

https://pqc-hqc.org/
https://eprint.iacr.org/2013/334
https://eprint.iacr.org/2013/334
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://doi.org/10.6028/NIST.IR.8309

150

[Nat22] National Institute of Standards and Technology. NIST IR 8413: Status report on the
third round of the NIST post-quantum cryptography standardization process, 2022.
https://doi.org/10.6028/NIST.IR.8413-upd1.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rĳmen. Threshold implementations
against side-channel attacks and glitches. In Peng Ning, Sihan Qing, and Ninghui Li,
editors, Information and Communications Security, pages 529–545, 2006.

[PEC19] Guilherme Perin, Baris Ege, and Lukasz Chmielewski. Neural network model assess-
ment for side-channel analysis. Cryptology ePrint Archive, Paper 2019/722, 2019.
https://eprint.iacr.org/2019/722.

[Pet60] W. Peterson. Encoding and error-correction procedures for the Bose-Chaudhuri codes.
IRE Transactions on Information Theory, 6(4):459–470, 1960.

[PGA+23] Kostas Papagiannopoulos, Ognjen Glamočanin, Melissa Azouaoui, Dorian Ros,
Francesco Regazzoni, and Mirjana Stojilović. The side-channel metrics cheat sheet.
ACM Comput. Surv., 55(10), feb 2023.

[PPHH] Thomas Poeppelmann, Peter Pessl, Daniel Heinz, and Julius Hermelink. Vor-
richtung und Verfahren zum Entschlüsseln einer verschlüsselten Bitfolge. Ger-
man Patent DE102021213560A1, 2023. https://patents.google.com/patent/
DE102021213560A1.

[PPM+23] Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla Batina. SoK: Deep
learning-based physical side-channel analysis. ACM Comput. Surv., 55(11), feb 2023.

[PR07] Emmanuel Prouff and Matthieu Rivain. A generic method for secure SBox implemen-
tation. In Information Security Applications, pages 227–244. Springer Berlin Heidelberg,
2007.

[Pra62] E. Prange. The use of information sets in decoding cyclic codes. IRE Transactions on

Information Theory, 8(5):5–9, 1962.

[PRB09] Emmanuel Prouff, Matthieu Rivain, and Regis Bevan. Statistical analysis of second
order differential power analysis. IEEE Transactions on Computers, 58(6):799–811, 2009.

[PSB+18] Emmanuel Prouff, Remi Strullu, Ryad Benadjila, Eleonora Cagli, and Cecile Dumas.
Study of deep learning techniques for side-channel analysis and introduction to ASCAD
database. Cryptology ePrint Archive, Paper 2018/053, 2018. https://eprint.iacr.
org/2018/053.

[PT20] Thales Bandiera Paiva and Routo Terada. A timing attack on the HQC encryp-
tion scheme. In Kenneth G. Paterson and Douglas Stebila, editors, Selected Areas in

Cryptography – SAC 2019, pages 551–573, Cham, 2020. Springer International Publish-
ing.

[PWP22a] Guilherme Perin, Lichao Wu, and Stjepan Picek. Exploring feature selection scenar-
ios for deep learning-based side-channel analysis. IACR Transactions on Cryptographic

Hardware and Embedded Systems, 2022(4):828–861, Aug. 2022.

[PWP22b] Guilherme Perin, Lichao Wu, and Stjepan Picek. I know what your layers did: Layer-
wise explainability of deep learning side-channel analysis. Cryptology ePrint Archive,
Paper 2022/1087, 2022. https://eprint.iacr.org/2022/1087.

https://doi.org/10.6028/NIST.IR.8413-upd1
https://eprint.iacr.org/2019/722
https://patents.google.com/patent/DE102021213560A1
https://patents.google.com/patent/DE102021213560A1
https://eprint.iacr.org/2018/053
https://eprint.iacr.org/2018/053
https://eprint.iacr.org/2022/1087

151

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA): Mea-
sures and counter-measures for smart cards. In Isabelle Attali and Thomas Jensen,
editors, Smart Card Programming and Security, pages 200–210, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg.

[RBT18] Emmanuel Prouff Ryad Benadjila, Louiza Khati and Adrian Thillard. Hardened library
for AES-128 encryption/decryption on ARM Cortex M4 achitecture, 2018. https:
//github.com/ANSSI-FR/SecAESSTM32.

[REB+21] Prasanna Ravi, Martianus Frederic Ezerman, Shivam Bhasin, Anupam Chattopadhyay,
and Sujoy Sinha Roy. Will you cross the threshold for me? Generic side-channel assisted
chosen-ciphertext attacks on NTRU-based KEMs. IACR Transactions on Cryptographic

Hardware and Embedded Systems, 2022(1):722–761, Nov. 2021.

[RLMI21] Thomas Roche, Victor Lomné, Camille Mutschler, and Laurent Imbert. A side journey
to titan. In 30th USENIX Security Symposium (USENIX Security 21), pages 231–248.
USENIX Association, August 2021.

[Rot06] Ron Roth. Introduction to Coding Theory. Cambridge University Press, 2006.

[RPD09] Matthieu Rivain, Emmanuel Prouff, and Julien Doget. Higher-order masking and
shuffling for software implementations of block ciphers. In Lecture Notes in Computer

Science, pages 171–188. Springer Berlin Heidelberg, 2009.

[RSRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin. Generic
side-channel attacks on CCA-secure lattice-based PKE and KEMs. IACR Transactions

on Cryptographic Hardware and Embedded Systems, 2020(3):307–335, Jun. 2020.

[RWPP21] Jorai Rĳsdĳk, Lichao Wu, Guilherme Perin, and Stjepan Picek. Reinforcement learn-
ing for hyperparameter tuning in deep learning-based side-channel analysis. IACR

Transactions on Cryptographic Hardware and Embedded Systems, 2021(3):677–707, Jul. 2021.

[SA08] François-Xavier Standaert and Cedric Archambeau. Using subspace-based template
attacks to compare and combine power and electromagnetic information leakages. In
Elisabeth Oswald and Pankaj Rohatgi, editors, Cryptographic Hardware and Embedded

Systems – CHES 2008, pages 411–425, Berlin, Heidelberg, 2008. Springer Berlin Heidel-
berg.

[Sch17] Thomas Schamberger. Towards secure post-quantum cryptography: Power analysis of
NTRUEncrypt on ARM Cortex-M4. Master’s thesis, Technical University of Munich,
2017.

[Sch18] John M. Schanck. A comparison of NTRU variants. Cryptology ePrint Archive, Report
2018/1174, 2018. https://eprint.iacr.org/2018/1174.

[Sen21] Nicolas Sendrier. Secure sampling of constant-weight words – application to BIKE.
Cryptology ePrint Archive, Paper 2021/1631, 2021. https://eprint.iacr.org/
2021/1631.

[SET23] Thomas Schamberger, Maximilian Egger, and Lars Tebelmann. Hide and Seek: Us-
ing occlusion techniques for side-channel leakage attribution in CNNs. In Jianying
Zhou, Lejla Batina, Zengpeng Li, Jingqiang Lin, Eleonora Losiouk, Suryadipta Majum-
dar, Daisuke Mashima, Weizhi Meng, Stjepan Picek, Mohammad Ashiqur Rahman,
Jun Shao, Masaki Shimaoka, Ezekiel Soremekun, Chunhua Su, Je Sen Teh, Aleksei
Udovenko, Cong Wang, Leo Zhang, and Yury Zhauniarovich, editors, Applied Cryp-

tography and Network Security Workshops, pages 139–158, Cham, 2023. Springer Nature
Switzerland.

https://github.com/ANSSI-FR/SecAESSTM32
https://github.com/ANSSI-FR/SecAESSTM32
https://eprint.iacr.org/2018/1174
https://eprint.iacr.org/2021/1631
https://eprint.iacr.org/2021/1631

152

[SGSK16] Avanti Shrikumar, Peyton Greenside, Anna Shcherbina, and Anshul Kundaje. Not just
a black box: Learning important features through propagating activation differences,
2016. https://arxiv.org/abs/1605.01713.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, oct 1997.

[SHR+22] Thomas Schamberger, Lukas Holzbaur, Julian Renner, Antonia Wachter-Zeh, and
Georg Sigl. A power side-channel attack on the Reed-Muller Reed-Solomon version
of the HQC cryptosystem. In Jung Hee Cheon and Thomas Johansson, editors, Post-

Quantum Cryptography, pages 327–352, Cham, 2022. Springer International Publishing.

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model for differential
side channel cryptanalysis. In Cryptographic Hardware and Embedded Systems – CHES

2005, pages 30–46. Springer Berlin Heidelberg, 2005.

[SM15] Tobias Schneider and Amir Moradi. Leakage assessment methodology. In Cryptographic

Hardware and Embedded Systems – CHES 2015, page 495–513, Berlin, Heidelberg, 2015.

[Smi17] Leslie N. Smith. Cyclical learning rates for training neural networks. In 2017 IEEE

Winter Conference on Applications of Computer Vision (WACV), pages 464–472, 2017.

[SMS19] Thomas Schamberger, Oliver Mischke, and Johanna Sepulveda. Practical evaluation
of masking for NTRUEncrypt on ARM Cortex-M4. In Ilia Polian and Marc Stöttinger,
editors, Constructive Side-Channel Analysis and Secure Design, pages 253–269, Cham,
2019. Springer International Publishing.

[SMY09] François-Xavier Standaert, Tal G. Malkin, and Moti Yung. A unified framework for the
analysis of side-channel key recovery attacks. In Advances in Cryptology - EUROCRYPT

2009, pages 443–461. Springer Berlin Heidelberg, 2009.

[SR16] Hermann Seuschek and Stefan Rass. Side-channel leakage models for RISC instruction
set architectures from empirical data. Microprocess. Microsystems, 47:74–81, 2016.

[SR20] Jaime Sevilla and C. Jess Riedel. Forecasting timelines of quantum computing, 2020.
https://arxiv.org/abs/2009.05045.

[SRSWZ21] Thomas Schamberger, Julian Renner, Georg Sigl, and Antonia Wachter-Zeh. A power
side-channel attack on the CCA2-secure HQC KEM. In Pierre-Yvan Liardet and Nele
Mentens, editors, Smart Card Research and Advanced Applications, pages 119–134, Cham,
2021. Springer International Publishing.

[Ste89] Jacques Stern. A method for finding codewords of small weight. In Gérard Cohen
and Jacques Wolfmann, editors, Coding Theory and Applications, pages 106–113, Berlin,
Heidelberg, 1989. Springer Berlin Heidelberg.

[SVCO+10] François-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth Oswald, Benedikt
Gierlichs, Marcel Medwed, Markus Kasper, and Stefan Mangard. The world is not
enough: Another look on second-order DPA. In Masayuki Abe, editor, Advances in

Cryptology - ASIACRYPT 2010, pages 112–129, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[SVZ14] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps, 2014. https:
//arxiv.org/abs/1312.6034.

https://arxiv.org/abs/1605.01713
https://arxiv.org/abs/2009.05045
https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1312.6034

153

[SWM+24] Travis L. Scholten, Carl J. Williams, Dustin Moody, Michele Mosca, William Hurley,
William J. Zeng, Matthias Troyer, and Jay M. Gambetta. Assessing the benefits and
risks of quantum computers, 2024. https://arxiv.org/abs/2401.16317.

[SWUH21] Marc Schink, Alexander Wagner, Florian Unterstein, and Johann Heyszl. Security and
trust in open source security tokens. IACR Transactions on Cryptographic Hardware and

Embedded Systems, 2021(3):176–201, Jul. 2021.

[SZ15] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In Yoshua Bengio and Yann LeCun, editors, 3rd International

Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 2015.

[Tim19] Benjamin Timon. Non-profiled deep learning-based side-channel attacks with sen-
sitivity analysis. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2019(2):107–131, Feb. 2019.

[UXT+21] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and Nao-
fumi Homma. Curse of re-encryption: A generic power/EM analysis on post-
quantum KEMs. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2022(1):296–322, Nov. 2021.

[VCMKS12] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-Xavier
Standaert. Shuffling against side-channel attacks: A comprehensive study with cau-
tionary note. In Advances in Cryptology – ASIACRYPT 2012, pages 740–757. Springer
Berlin Heidelberg, 2012.

[vWWB11] Jasper G. J. van Woudenberg, Marc F. Witteman, and Bram Bakker. Improving differen-
tial power analysis by elastic alignment. In Aggelos Kiayias, editor, Topics in Cryptology

– CT-RSA 2011, pages 104–119, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[WAGP20] Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel. Revisiting a
methodology for efficient CNN architectures in profiling attacks. IACR Transactions on

Cryptographic Hardware and Embedded Systems, 2020(3):147–168, Jun. 2020.

[WBB+22] Guillaume Wafo-Tapa, Slim Bettaieb, Loïc Bidoux, Philippe Gaborit, and Etienne Mar-
catel. A practicable timing attack against HQC and its countermeasure. Adv. Math.

Commun., 16(3):621–642, 2022.

[WP20] Lichao Wu and Stjepan Picek. Remove some noise: On pre-processing of side-channel
measurements with autoencoders. IACR Transactions on Cryptographic Hardware and

Embedded Systems, 2020(4):389–415, Aug. 2020.

[WWJ+23] Lichao Wu, Yoo-Seung Won, Dirmanto Jap, Guilherme Perin, Shivam Bhasin, and
Stjepan Picek. Ablation analysis for multi-device deep learning-based physical side-
channel analysis. IEEE Transactions on Dependable and Secure Computing, pages 1–12,
2023.

[WWZ+17] An Wang, Ce Wang, Xuexin Zheng, Weina Tian, Rixin Xu, and Guoshuang Zhang. Ran-
dom key rotation: Side-channel countermeasure of NTRU cryptosystem for resource-
limited devices. Computers & Electrical Engineering, 63:220–231, 2017.

[WZ21] Antonia Wachter-Zeh. Lecture notes for channel coding, 2021. https://www.ce.cit.
tum.de/en/lnt/teaching/lectures/channel-coding/.

[XIU+21a] Keita Xagawa, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi Homma. Fault-
injection attacks against NIST’s post-quantum cryptography round 3 KEM candidates.

https://arxiv.org/abs/2401.16317
https://www.ce.cit.tum.de/en/lnt/teaching/lectures/channel-coding/
https://www.ce.cit.tum.de/en/lnt/teaching/lectures/channel-coding/

154

In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT

2021, pages 33–61, Cham, 2021. Springer International Publishing.

[XIU+21b] Keita Xagawa, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi Homma. Fault-
injection attacks against NIST’s post-quantum cryptography round 3 KEM candidates.
Cryptology ePrint Archive, Report 2021/840, 2021. https://ia.cr/2021/840.

[XPOZ23] Zhuang Xu, Owen Pemberton, David Oswald, and Zhiming Zheng. Reveal the invisible
secret: Chosen-ciphertext side-channel attacks on NTRU. In Smart Card Research and

Advanced Applications, pages 227–247. Springer International Publishing, 2023.

[YBBP23] Trevor Yap, Adrien Benamira, Shivam Bhasin, and Thomas Peyrin. Peek into the black-
box: Interpretable neural network using sat equations in side-channel analysis. IACR

Transactions on Cryptographic Hardware and Embedded Systems, 2023(2):24–53, Mar. 2023.

[YBP23] Trevor Yap, Shivam Bhasin, and Stjepan Picek. OccPoIs: Points of interest based on
neural network’s key recovery in side-channel analysis through occlusion. Cryptology
ePrint Archive, Paper 2023/1055, 2023. https://eprint.iacr.org/2023/1055.

[YSPJ21] Honggang Yu, Haoqi Shan, Maximillian Panoff, and Yier Jin. Cross-device profiled
side-channel attacks using meta-transfer learning. In 2021 58th ACM/IEEE Design

Automation Conference (DAC), pages 703–708, 2021.

[ZBHV19] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli. Methodology
for efficient CNN architectures in profiling attacks. IACR Transactions on Cryptographic

Hardware and Embedded Systems, 2020(1):1–36, Nov. 2019.

[ZCAW17] Luisa M Zintgraf, Taco S Cohen, Tameem Adel, and Max Welling. Visualizing deep
neural network decisions: Prediction difference analysis. In International Conference on

Learning Representations, 2017.

[ZCD21] Xiaohan Zhang, Chi Cheng, and Ruoyu Ding. Small leaks sink a great ship: An eval-
uation of key reuse resilience of PQC third round finalist NTRU-HRSS. In Debin Gao,
Qi Li, Xiaohong Guan, and Xiaofeng Liao, editors, Information and Communications

Security, pages 283–300, Cham, 2021. Springer International Publishing.

[ZF14] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional net-
works. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors,
Computer Vision – ECCV 2014, pages 818–833, Cham, 2014. Springer International Pub-
lishing.

[ZS20] Yuanyuan Zhou and François-Xavier Standaert. Deep learning mitigates but does not
annihilate the need of aligned traces and a generalized ResNet model for side-channel
attacks. J. Cryptogr. Eng., 10(1):85–95, 2020.

[ZWW13] Xuexin Zheng, An Wang, and Wei Wei. First-order collision attack on protected NTRU
cryptosystem. Microprocess. Microsyst., 37(6–7):601–609, aug 2013.

https://ia.cr/2021/840
https://eprint.iacr.org/2023/1055

155

Acronyms

ASCAD fix ASCAD fixed key
ASCAD variable ASCAD variable key
𝜖-LRP Layer-wise Relevance Backpropagation

AES Advanced Encryption Standard
ANSSI Agence nationale de la sécurité des systèmes

d’information
ASCAD ANSSI SCA Database

BCH Bose-Chaudhuri-Hocquenghem
BIKE Bit Flipping Key Encapsulation

CCA-2 Adaptive Chosen Ciphertext Attack
CMOS Complementary Metal-Oxide-Semiconductor
CNN Convolutional Neural Network
CPA Correlation Power Analysis
CPOI Correlation Point of Interest

DL deep learning
DNN Deep Neural Network
DOM Domain-Oriented Masking
DPA Differential Power Analysis
DUT Device Under Test

ECC Elliptic-Curve Cryptography
EM electromagnetic

FO Fujisaki-Okamoto

HD Hamming distance
HQC Hamming Quasi-Cyclic
HW Hamming weight

ID identity
IoT Internet of Things

KEM Key Encapsulation Mechanism

LDA Linear Discriminant Analysis
LFSR Linear Feedback Shift Register

MIA Mutual Information Analysis
ML maximum likelihood
ML Machine Learning

156

MLP Multi Layer Perceptron

NIST National Institute of Standards and Technology
NTT Number Theoretic Transform

PCA Principal Component Analysis
PKE Public Key Encryption Scheme
POI point of interest
PRNG Pseudo Random Number Generator
PUF Physical Unclonable Function

QC-MDPC Quasi-Cyclic Moderate Density Parity-Check
QCSD Quasi-Cyclic Syndrome Decoding

ReLU Rectified Linear Unit
RF random forest
RM Reed-Muller
RMSProp Root Mean Square Propagation
RS Reed-Solomon
RSA Rivest-Shamir-Adleman

SCA Side-Channel Analysis
SeLU Scaled Exponential Linear Unit
SIMD single instruction, multiple data
SNR Signal-to-Noise Ratio
SPA Simple Power Analysis
SVM Support Vector Machine

Credits

Figs. 4.11, 4.14, 4.21 and 4.22 and Table 4.9 are reproduced with permission from Springer Nature from
Schamberger/Holzbaur/Renner/Wachter-Zeh/Sigl: A Power Side-Channel Attack on the Reed-Muller

Reed-Solomon Version of the HQC Cryptosystem published in Post-Quantum Cryptography (PQCrypto),
2022 [SHR+22].

Figs. 6.1 to 6.7 and Tables 6.1 to 6.4 are reproduced with permission from Springer Nature from
Egger/Schamberger/Tebelmann/Lippert/Sigl: A Second Look at the ASCAD Databases published in
Constructive Side-Channel Analysis and Secure Design (COSADE), 2022 [EST+22].

Figs. 7.1 to 7.10 are reproduced with permission from Springer Nature from Scham-
berger/Egger/Tebelmann: Hide and Seek: Using Occlusion Techniques for Side-Channel Leakage At-

tribution in CNNs published in Applied Cryptography and Network Security Workshop (ACNS), 2023
[SET23].

	1 Introduction
	2 Side-Channel Analysis
	2.1 Leakage Evaluation
	2.2 Unprofiled Side-Channel Attacks
	2.3 Profiled Side-Channel Attacks
	2.4 Countermeasures

	I Attacking and Securing Post-Quantum Cryptography
	3 Practical Evaluation of Masking for NTRUEncrypt on ARM Cortex-M4
	3.1 Introduction
	3.2 NTRUEncrypt
	3.2.1 Notation and Representation of Polynomials
	3.2.2 Algorithm Description
	3.2.3 Operations on Polynomials

	3.3 CPA Attack on NTRUEncrypt
	3.4 Masking Countermeasure
	3.4.1 Sequential Implementation
	3.4.2 Parallel Implementation
	3.4.3 Optional Shuffling Countermeasure
	3.4.4 Performance Evaluation

	3.5 Side-Channel Evaluation Results
	3.5.1 CPA on Ternary Polynomials
	3.5.2 Second-Order Attacks on the Masking Countermeasure
	3.5.3 Second-Order Attack on the Combination of Masking and Shuffling

	3.6 Discussion

	4 Chosen-Chiphertext Attacks on Hamming Quasi-Cyclic (HQC)
	4.1 Introduction
	4.2 Error-Correcting Codes
	4.2.1 Introduction to Error-Correcting Codes
	4.2.2 Linear Block Codes
	4.2.3 Reed-Solomon (RS) Codes
	4.2.4 Bose-Chaudhuri-Hocquenghem (BCH) Codes
	4.2.5 Reed-Muller (RM) Codes
	4.2.6 Concatenated Codes

	4.3 HQC
	4.3.1 Notation
	4.3.2 Cryptosystem
	4.3.3 Choice of the Error-Correcting Code

	4.4 General Attack Strategy using SCA Oracles
	4.4.1 Support Distribution of the Secret Key
	4.4.2 Retrieving the Largest Part of the Secret Key Using a Side-Channel Oracle
	4.4.3 Retrieval of Remaining Part of the Secret Key
	4.4.4 Utilizing Partial Attack Results through Information Set Decoding

	4.5 Attack Strategy on HQC-BCH
	4.5.1 Attack Strategy
	4.5.2 Instantiation of the Decoding Oracle through a Power Side-Channel
	4.5.3 Experimental Results
	4.5.4 Discussion

	4.6 Attack Strategy for HQC-RMRS
	4.6.1 Unapplicability of Related Work
	4.6.2 Attack Strategy
	4.6.3 Side-Channel Targets to Build the Required Oracle

	4.7 Countermeasures
	4.7.1 Detection of Attack Patterns
	4.7.2 Codeword Masking of the Outer Decoder
	4.7.3 Inserting Additional Errors
	4.7.4 Conclusion

	II Explainability for Deep Learning-based Side-Channel Analysis (DL-SCA)
	5 Preliminaries
	5.1 Deep Learning-based Side-Channel Analysis (DL-SCA)
	5.1.1 Introduction and Notation
	5.1.2 Elemental Network Layers and Used Architectures
	5.1.3 Training and Architecture Optimization
	5.1.4 Evaluation Metrics
	5.1.5 Advantages and Disadvantages of DL-SCA

	5.2 ANSSI SCA Databases (ASCAD)
	5.2.1 AES Implementation
	5.2.2 Versions of the Database
	5.2.3 Used Network Architectures

	6 A Second-Look at the ASCAD Databases
	6.1 Introduction
	6.2 Classical Side-Channel Analysis of ASCAD
	6.2.1 Leakage Evaluation
	6.2.2 First/Second-Order CPA Results

	6.3 DL-SCA on ASCAD: Impact of Training Scenarios and Varying Key Byte Leakage
	6.3.1 Experimental Setup
	6.3.2 Fixed Key vs. Variable Key Training
	6.3.3 Training on Different Key Bytes
	6.3.4 Cross-Byte Analysis

	6.4 Conclusion

	7 Occlusion Techniques for DL-SCA Attribution
	7.1 Introduction
	7.2 Revisiting Gradient-based Attribution for ASCAD
	7.3 Improvements to the Occlusion Technique
	7.3.1 n-Occlusion
	7.3.2 Exploring Different Occlusion Methods
	7.3.3 Higher-Order Occlusion: Hiding Multiple Parts at Once

	7.4 Occlusion Evaluation of the ASCAD Databases
	7.5 Conclusion

	8 Conclusion
	A Proof of the Attack Strategy for HQC-RMRS
	B CPOI Analysis of ASCADfixed and ASCADvariable
	C Second-Order Attack Results for ASCADvariable
	Related Publications by the Author
	Bibliography
	Acronyms

