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Abstract

In today’s world, the amount of threat actors with access to sophisticated tools and methods
has grown. They attack a wide range of IT, from simple personal computers to critical IT
infrastructure. For some threat actors, attacking systems is merely a business model to generate
profit. Others, which could include nations, use attacks as a potent tool to sway the outcomes of
modern global conflicts in their favor. Despite years of research for sophisticated defenses and
hardening mechanisms, the sad reality is that some IT systems will eventually be compromised
in these attacks. Despite even better protection mechanisms, tools to analyze sophisticated
attacks in a post-mortem scenario and ways to deploy new defenses faster are also required.

Therefore, this dissertation takes a multifaceted approach, focusing on three core areas: Effi-
cient memory forensics on Linux systems, approaches to utilize the in-depth system knowledge
in forensics analysis tools to add new security features dynamically to existing systems, and the
strategic use of honeypots to better understand threat actor behavior.

To improve memory forensics, we developed a novel tool, Katana, aiming to transcend
the limitations of existing approaches by offering configuration-agnostic memory forensics
capabilities to analyists. The effectiveness of Katana is evaluated through an empirical analysis
on all popular Linux distributions. Katana demonstrated in all cases that it can extract important
information from the system where traditional approaches fail. We also developed an anti-
forensic framework named RandCompile to test the limits of Katana. This framework employs
the methods of Software Diversity and can, if all features are enabled, significantly reduce the
effectiveness of Katana, but not fully prevent it.

Furthermore, we study how runtime information and hot patching features of the Linux
operating system, cannot only assist forensic analysis but also be used to hotpatch a new security
feature into the Linux kernel. More specifically, we invented a Linux kernel module capable
of capturing a memory snapshot to enable a forensic analysis. Furthermore, we developed
FridgeLock to showcase how an exemplary security feature—Suspend Time Memory Encryption—
could be added without recompiling the kernel.

Last, we study honeypots and how common they are on the internet by performing an internet-
wide scan. A comprehensive analysis is conducted to assess the significance of stealthiness in
effectively attracting hackers. We have been able to find known open-source honeypots on the
public internet as well as unknown ones. Our validation showed that our methods classify a
honeypots correctly in more than 99 percent of the cases.
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Zusammenfassung

In der heutigen Welt professionalisieren Angreifer ihre Werkzeuge und Tools, um eine möglichst
breite Palette von (kritischen) IT-Infrastrukturen anzugreifen. Für einige Angreifer ist dies nur
ein lukratives Geschäftsmodell, während es für andere (z.B. Staaten) sogar zu einem Werkzeug
geworden ist, um die modernen Konflikte unserer Welt zu ihren Gunsten zu beeinflussen. Trotz
jahrelanger Forschung nach ausgeklügelten Verteidigungs- und Härtungsmechanismen, werden
auch heutzutage immer wieder IT-Systeme kompromittiert. Es ist daher notwendig noch bessere
Werkzeuge zur Analyse und Beweissicherung nach einem Angriff (Post-Mortem-Szenario) und
neue Mechanismen zur schnellen Bereitstellung neuer Abwehrmaßnahmen zur Verfügung zu
haben.

Diese Dissertation konzentriert sich auf drei Bereiche: Effiziente Memory-Forensik auf Linux-
Systemen, Nutzung des Systemwissens der Memory-Forensik, um bestehenden Systemen dy-
namisch neue Sicherheitsfunktionen hinzuzufügen, und die Untersuchung des Angreiferver-
haltens mithilfe von Honeypots. Um die Memory-Forensik zu verbessern, haben wir Katana
entwickelt, dass im Gegensatz zu bestehenden Tools eine Analyse eines Linux-Systems ohne Ken-
ntnis der exakte Build-Umgebung vornehmen kann. Die Wirksamkeit von Katana wurde durch
eine empirische Analyse von Speicherabzügen aller gängigen Linux-Distributionen getestet.
Katana hat in allen Fällen gezeigt, dass es die für eine forensisch Analyse relevanten Informatio-
nen aus einem System extrahieren kann, wo traditionelle Ansätze versagen. Zusätzlich haben
wir ein Anti-Forensik-Framework namens RandCompile entwickelt, um die Grenzen des von
Katana verfolgten Ansatzes zu testen. Dieses Framework nutzt Software Diversity und kann, in
der stärksten Ausbaustufe, die Wirksamkeit von Katana und anderen forensischen Frameworks
erheblich reduzieren.

Darüber hinaus untersuchen wir, wie Laufzeitinformationen und Hot-Patching-Funktionen
des Linux-Betriebssystems nicht nur die forensische Analyse unterstützen können, sondern auch
zum dynamischen Hinzufügen einer neuen Sicherheitsfunktion in den Linux-Kernel verwendet
werden können. Wir haben hierfür ein Linux Kernel Modul programmiert, dass ohne die Build-
Umgebung des Wirtskernels Speicherabbilder erstellen kann. In einem zweiten Projekt haben
wir FridgeLock entwickelt, um zu zeigen, wie eine beispielhafte Sicherheitsfunktion – Suspend
Time Memory Encryption – zu einem System nachträglich hinzugefügt werden kann.

Abschließend untersuchen wir Honeypots und ihre Häufigkeit im Internet durch einen in-
ternetweiten Scan. Dessen Ergebnisse wurden auf bekannte und unbekannte Honeypots hin
untersucht. Wir konnten bekannte Open-Source-Honeypots sowie neue, bisher Unbekannte
finden. Unsere Validierung zeigte eine korrekte Klassifizerung in mehr als 99 Prozent der Fälle.

vii





Contents

1 Introduction 1

2 Topic 1: Effective Linux Kernel Forensics 3
2.1 Memory Forensics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The Linux Kernel Boot Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Address Space Layout Randomization . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Structure Layout Randomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Linux Kernel Configurability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Linux’s Runtime Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Topic 2: Analyzing Real-World Threats through Honeypots 15
3.1 Honeypot Types and Their History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Research Methods 19
4.1 Virtual Machine Introspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Automated Program Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Binary Lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Software Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Internet-wide Scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6 Differential Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.7 Binary Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.8 Microbenchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Core Publications 27
5.1 FridgeLock: Preventing Data Theft on Suspended Linux with Usable Memory

Encryption (ACM CODASPY 20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Katana: Robust, Automated, Binary-Only Forensic Analysis of Linux Memory

Snapshots (RAID 22) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Looking for Honey Once Again: Detecting RDP and SMB Honeypots on the

Internet (Euro S&PW 22) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

ix



Contents

5.4 RandCompile: Removing Forensic Gadgets from the Linux Kernel to Combat its
Analysis (ACSAC 23) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Final Remarks 31
6.1 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Published Version of Papers 35
Katana: Robust, Automated, Binary-Only Forensic Analysis of Linux Memory Snapshots 35
RandCompile: Removing Forensic Gadgets from the Linux Kernel to Combat its Analysis 55
Looking for Honey Once Again: Detecting RDP and SMB Honeypots on the Internet . 69
FridgeLock: Preventing Data Theft on Suspended Linux with Usuable Memory Encryption 81

Bibliography 87

Licences and Permission Statements 93

x



Publications
Ordered by date of publication

Martin Geier, Fabian Franzen, and Samarjit Chakraborty. Hardware-accelerated data acquisition
and authentication for high-speed video streams on future heterogeneous automotive processing
platforms. In 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages
1–6. IEEE, 2018.

Tobias Holl, Philipp Klocke, Fabian Franzen, and Julian Kirsch. Kernel-assisted debugging of
linux applications. In Proceedings of the 2nd Reversing and Offensive-oriented Trends Symposium,
pages 1–9, 2018.

Fabian Franzen, Manuel Andreas, and Manuel Huber. FridgeLock: Preventing data theft on
suspended linux with usable memory encryption. In Proceedings of the Tenth ACM Conference on
Data and Application Security and Privacy, pages 215–219, 2020.

Maximilian von Tschirschnitz, Ludwig Peuckert, Fabian Franzen, and Jens Grossklags. Method
confusion attack on bluetooth pairing. In 2021 IEEE symposium on security and privacy (SP),
pages 1332–1347. IEEE, 2021.

Fabian Franzen, Tobias Holl, Manuel Andreas, Julian Kirsch, and Jens Grossklags. Katana:
Robust, automated, binary-only forensic analysis of linux memory snapshots. In Proceedings of
the 25th International Symposium on Research in Attacks, Intrusions and Defenses, pages 214–231,
2022.

Fabian Franzen, Lion Steger, Johannes Zirngibl, and Patrick Sattler. Looking for honey once
again: Detecting rdp and smb honeypots on the internet. In 2022 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW), pages 266–277. IEEE, 2022.

Fabian Franzen, Andreas Chris Wilhelmer, and Jens Grossklags. Randcompile: Removing
forensic gadgets from the linux kernel to combat its analysis. In Proceedings of the 39th Annual
Computer Security Applications Conference, pages 677–690, 2023.

xi





Chapter 1

Introduction

Computer systems have become an ubiquitous part of our society. However, with the increase of
digitalization, our society’s dependence on information technology has reached a level where its
stability has become crucial. This has lately become apparent again with the escalation of the
Russian-Ukrainian war and the war between Hamas and Israel.

The Google Threat Analysis Group (TAG), which is responsible for countering threats to
Google services and the overall internet, has recently published two reports about the nature
and the impact of these armed conflicts [1], [2].

Since 2012, Iran is known to attack key organizations in the middle-east including Israel.
With the start of the Hamas the attacks on Israel have been intensified. Also cyber attacks
on institutions in the US and Albanina (a NATO member state) have occurred. While not all
attacks can be correctly attributed, there is a general increase of cyber attacks for espionage,
desinformation to shift the public opinion pro Hamas and disruption attacks with wiper malware.
Likewise, Israel seems to have attacked Iran and caused disruptions to payment systems in
several Iranian gas-stations [1].

While cyber-espionage is known to be a problem for years, Google TAG stated in 2023 in
the context of the Russian-Ukrainian war: "Importantly, this marks the first time that cyber
operations have played such a prominent role in a world conflict". During the first four months
of 2022 (the begin of the conflict), Mandiant (part of Google) has observed more destructive
cyberattacks in Ukraine than in the previous eight years. One notable example, is the attack to
Viasat KA-SATs broadcasting service shortly before Russia’s invasion of Ukraine, which affected
not only Ukraine but also thousands of Enercon’s wind turbines in Germany [2].

Furthermore, the Federal Ministry for Information Security in Germany (BSI) reported that
ransomware is still the predominant malware in 2023 [3]. Many threat actors in this field have
matured in professionalism and occasionally do not even attack companies themselves anymore
but sell their tools to other groups willing to perform the actual attacks. Despite all the security
research conducted in the past, the number of weaknesses and critical vulnerabilities discovered
in software is still high [3].

Although effective security concepts, potential attack vectors, and corresponding defense
mechanisms have been researched for decades, the methods for analyzing attacks and threat
actors must become even more effective to keep up with the emerging threat landscape. In the
case of ransomware, a bug in the ransomeware itself might recover the encryption key used and
allows for a recovery of the data without paying the ransom. Furthermore, an effective way to
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1 Introduction

analyze a past attack might be the only way to assign it to a known group or state. As these
attributions can have severe legal or political consequences, it is crucial to do this correctly and
effectively. Even if it is impossible to attribute an attack to a threat actor, an attack analysis will
show weaknesses in the current system and maybe new attack patterns that system operators
can use to detect future attacks in Intrusion Detection Systems.

Therefore, this theses tries to tackle two different topics out of the area of threat analysis
research. The first topic is Effective Linux Kernel Forensics, which aims at easing the analysis after
an attack to a Linux-based system has occurred. While the field of forensics on Linux systems
has received a considerable amount of research from 2003 to 2014, the advances have not
transitioned into operational tools. This indicates unresolved issues that need to get resolved.
Furthermore, a forensic analysis, which will reveal the needed information about the steps an
attacker took into the system, requires a deep knowledge of the inner workings of the Linux
kernel. Otherwise, an analyst cannot make sense out of the data his tools collect. As we will see,
the runtime data of the Linux operating system, which enables forensic analysis, can also be
used to add security functionality to an already deployed system in an automated manner. To
showcase this method, we developed FridgeLock, which adds Suspend Time Memory Encryption
into an already compiled kernel. This capability allows developers to design security features
for existing systems without the need to update them. In the case of a legacy system, this might
be the only effective way to deploy such a feature. Details are outlined in Chapter 2.

This thesis furthermore analyzes the honeypot ecosystem in the public IPv4 address space of
the Internet. Honeypots are used to attract hackers and study their methods and have, therefore,
a similar purpose as a forensic analysis. Honeypots have proven to be a valuable tool to gain
insights about ongoing attacks, which is vital, as stated above. As they are specially prepared
systems, the forensic analysis of break-in attempts is more straightforward than the analysis
of previously unknown ones. The systems usually keep dedicated log files and network packet
dumps that allow for a detailed step-by-step recovery of the path of an attacker. However, the
need for stealthiness requires the use of Virtual Machine Introspection tools, which function
similarly to forensic analysis tools. While literature reports them to be a useful tool in practice,
we realized that several of the openly available tools have become outdated and that the malware
samples that we where able to obtain with them are faulty. Therefore, we conducted an internet-
wide scan of the overall IPv4 address space for honeypots to detect these implementations and
to measure how widespread they are in use. Furthermore, our scanner can also detect protocol
implementations that emulate popular network protocols closely but not perfectly, which could
indicate the presence of an unknown high honeypot implementation. Further, we study how
the stealthiness of a honeypot influences its chance of being attacked. Our data offers insights
into the mutual relationship between server administrators and attackers on the Internet. The
details are outlined in Chapter 3.
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Chapter 2

Topic 1: Effective Linux Kernel Forensics

While forensics, in general, is the art of reconstructing events at a crime scene and holds high
importance, digital forensics plays a crucial role in modern cybersecurity and law enforcement by
investigating digital devices and uncovering evidence. In Chapter 1, we have already described
a few of the new challenges that arose in the past years and why tools being able to reconstruct
the series of events after a security incident are in high demand. In this chapter, we will delve
into the challenges of Memory Forensics, why Memory Forensics is of particular interest even
though it has received a significant amount of research in the past, and the unique challenges
that exist on the Linux operating system.

Linux is a major, widely used open source operating system and, therefore, also of central
interest to the security research community. The Android operating system for smartphones is
based upon the Linux kernel with a few additional patches. According to Statista, Android has
a market share of about 70 percent among mobile operating systems at the end of 2023 [4].
Likewise, Linux is very popular in cloud scenarios. According to Microsoft Azure, more than 60
percent of their customers are using Linux [5].

A key advantage of Linux is its openness, which allows various communities to study the inner
workings of the operating system, experiment with them, and add additional features as needed.
Hardware and platform developers can develop and test their systems for the Linux kernel and
share drivers and successful new features back with the community for the integration in the
mainline kernel. However, not every feature is necessary for every use case and passes the bar
for integration into the Linux mainline branch. The open nature of Linux renders this less of a
problem for the vendor if he is willing to spend the effort on maintaining an out-of-tree patch
for the kernel. He can still use the patch on his own devices or offer it to interested users for
download and installation.

Linux is used on very memory constrained IoT devices with low CPU and memory resources
as well as on systems with multiple CPUs and terabytes of main memory. To allow for all these
different use cases, the Linux kernel developers have invented a modular configuration system.
The build configuration of a kernel describes which specific implementation should be chosen
for the kernel to be built (see Section 2.5 for details). To allow even further flexibility, the Linux
kernel allows for dynamic loading of modules at runtime that can be built without the need to
compile the whole kernel. This allows every system developer to create an optimal kernel for
his (potentially very narrow and specific) use case.

3



2 Topic 1: Effective Linux Kernel Forensics

2.1 Memory Forensics

Digital Forensics covers analysis of security incidents of an IT system, like a classic forensic
investigation at a crime scene. During a forensic analysis, usually the following questions are
asked: What happened on the system? Who performed which actions? What data got leaked?
This information can be restored from logs of the operating system or application specific tools,
temporary files created during processing of data, or firewall logs.

Memory Forensic is a sub-branch of Digital Forensics focusing on the volatile random access
memory (RAM). While digital evidence can also be collected from disks, some data usually exists
only in the RAM of the system under investigation, e.g. disk encryption keys, memory-resident
code fragements, personal communication via e-mail or modern instant messaging solutions
like Signal if they do not write a history to disk. However, this information might still be present
a long time in the system, even after the termination of the respective process. In a case of a
carefully crafted attack, attackers might overlook traces they have left in system memory. This
makes Memory Forensics, which focuses on the main memory instead of artifacts found on disk,
an interesting field of research [6] and in some cases the only tool left to obtain information
about a past attack.

When analyzing a system, the first step is to take a snapshot of the memory, which can be
archived as digital evidence and then analyzed by multiple tools without the need for the original
device. As the operating system is a central building block of every computer system, which
must hold information about running processes and open network connections, it is also a
central source of information for the forensic analysis tools. Even if the analyst is only interested
in the specific data of a selected process, the help of the operating system data structures might
be needed, because they contain for each and every process the memory layout. As the memory
snapshot may just be a copy of the physical RAM, no alternate information source to obtain a
mapping between virtual and physical addresses might be available.

Simple data, like the kernel’s log messages, can often be extracted by a simple search for
ASCII printable strings in the memory dump. For more complex tasks, a dedicated forensic
tool is advisable. A popular framework for forensic analysis of a system’s memory snapshot is
the Volatility framework [7]. Volatility is written in Python, and the different analysis methods
are organized into separate plugins. The plugins rely heavily on the deterministic layout of
the operating system’s data structures which the framework provides to them through the use
of debugging information of the operating system under analysis. In 2011, Google forked the
Volatility project to reorganize the codebase and named the fork Rekall Forensic [8]. However,
the project was abandoned in 2020, and active development seems to continue in the original
project.

To get a better understanding of what information can potentially be extracted from system
RAM, we will describe the different phases of the Linux kernel boot process and their influence
on the information which are stored in the system RAM in the following section.
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Figure 2.1: System memory in the different phases of boot

The boot process involves many steps and differs depending on CPU architecture and kernel
version involved. Therefore, our description can only be an incomplete description highlighting
the most relevant parts for this thesis. Figure 2.1 shows the memory contents of a off-the-shelve
Linux system from system startup to the start of the first user space process. At startup, the
system memory contains just the boot code of the hardware manufacturer and the bootloader.
Furthermore, depending on the architecture, additional memory mapped regions might be
present to allow the operating system to interface with the present hardware. By writing or
reading to predefined locations, data can be exchanged between the CPU and the hardware. At
this early stage during boot, the bootloader is in charge of loading the operating system into
main memory. This might include decompressing it, checking its cryptographic signature in case
of a secure boot environment, before it finally hands over the execution to it.
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2 Topic 1: Effective Linux Kernel Forensics

In case of the Linux operating system, the kernel will continue this boot process. Traditionally,
literature describes this step as the operating system querying the hardware or its firmware (i.e.
the BIOS) and configuring it to its needs [9]. However, there are also some security relevant
concepts that come into play during boot that are less well known. First of all, there is Kernel
Address Space Layout Randomization (KASLR), which is as concept explained in further detail
in Section 2.3. While this feature can be disabled on a Linux system, it is enabled by default.
When enabled, the kernel is relocated to a random position in main memory as one of the first
steps after the control has been transferred to the OS. For the randomization, the kernel tries to
obtain some entropy from the hardware to seed its cryptographically secure random number
generator. As next step in the boot process, the hardware is set up, e.g. the different cores of
the system, networking hardware and other input/output devices. Furthermore several runtime
data structures are allocated like dedicated heaps for dynamical allocation of kernel objects.
Examples for these dynamic kernel objects are information objects about the running processes,
the files currently opened by them, received network data and many more. These data structures
are allocated as they are needed during the trace of execution and usually not erased when they
are freed. Instead, they are cleared when they are handed over to a not trustworthy userspace
process. To manage available memory, the kernel has multiple memory management systems
that are layered on top of each other. The SLAB allocator manages small sized kernel objects
and requests the needed memory from a page allocator which manages whole physical pages of
memory.

When all these steps are completed, the Linux kernel starts the init process (PID 1) as first
process of the system, which in order starts various child processes that create the login prompt
or offer other services to the user or the network. The memory for the userspace process is
requested from the page allocator as needed.

On many systems, the boot loader places an initial ramdisk next to the kernel in system RAM
from which the init process (PID 1) is started. The ramdisk contains Linux Kernel Modules
needed during early boot which are loaded by the init process and modprobe tool. This dynamic
approach allows kernel drivers not to be compiled into the kernel, saving memory if they are
not needed during operation. This could be the case, if the hardware, the specific file system
implementation or another Linux feature is not present or needed on the current installation.
Optionally, the kernel can verify the integrity of the loaded modules by checking if cryptographic
signatures of the modules are correct and signed by the respective Linux distributor. Furthermore,
additional software to prompt the user for the disk encryption key is run if full disk encryption
is enabled, before proceeding. Eventually, after all necessary modules have been inserted, the
early init process mounts the real root file system into the kernel and runs a real init process
like systemd.

It should be noted again, that memory is in general not securely erased when it is not needed
anymore, but only when it is given to a non trustworthy instance1. Therefore, fragments of the

1There are exceptions to this rule. I.e. the .init segment is unloaded during boot
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2.3 Address Space Layout Randomization

boot loader could still be in memory after the second and third userspace processes have been
spawned, assuming the system has enough available memory. As a result, a malware infection
at boot time could potentially be reconstructed for a long time by forensic analysis.

2.3 Address Space Layout Randomization

While the potential of information that could be excavated using memory forensics is huge,
several security mechanisms of today’s systems modify a deterministic memory layout and
complicate the process of memory forensics. We will describe these in the following.

Address Space Layout Randomization (ASLR) for userspace programs and its counterpart
for the operating system Kernel Address Space Layout Randomization (KASLR) are exploit
mitigation mechanisms in software. The idea of Address Space Layout Randomization is to
add some diversity into a software system, so that a wide-spread piece of software can not be
attacked with a single exploit using the exact same steps for every system [10]. In the case of
ASLR, the code and data of userspace programs will be loaded to random addresses in virtual
memory on program startup instead of deterministic ones. Because of that, every executed
program will (depending on the entropy of the randomization) have a slightly different memory
layout. For Linux, the PAX team, which has proposed numerous security improvements for Linux,
suggested and discussed ASLR as early as 2002 [11]. KASLR follows the same idea: During
the early boot stages, the location of operating systems executable code and data is copied to
a new randomized position and the old version is abandoned. In contrast to userspace ASLR,
the operating system can randomize its position in physical and virtual memory, to harden it to
attacks from hardware or its drivers which also deal with physical addresses. For Linux, the
position in the physical memory and its position in virtual memory are both randomized.

This randomization mitigates binary exploitation attacks in many cases, because these usually
require knowledge of pointer values to existing code fragments or data structures. For example,
in Return Oriented Programming (ROP), an attacker will use existing code snippets (from the
OS/userspace program) and puzzle them together to create a new malicious program. The
puzzling is usually done beforehand by the attacker and coded into the exploit. However, if
the concrete pointers (memory addresses) of the code fragments are not available, the attack
cannot be performed or the exploit must obtain these addresses from other sources prior to
the attack. In a non-ASLR scenario, an attacker can extract the necessary pointers on his own
machine if he obtains a copy of the software. On most systems, software products are compiled
only once by the software vendor (or distributor) and then simply copied – without modification
– to all machines. This is the case for all popular operating systems such as Windows, Linux and
MacOS.

The effectiveness of (K)ASLR depends on the secrecy of the chosen memory locations. If an
attacker can guess or leak them from the running system, he can defeat the defense. This has
led to discussions in the past about whether KASLR can provide an effective defense for the

7



2 Topic 1: Effective Linux Kernel Forensics

Linux operating system, as it had several bugs that resulted in the leakage of memory addresses
to userspace applications. In some cases, memory addresses have also been intentionally used
in kernel system logs for debugging purposes. The situation is made worse by the fact that the
Linux kernel is only randomized once at boot time and can have a fairly long uptime, giving an
attacker a larger window to guess a valid address [12]. Nevertheless, KASLR and ASLR are now
used on all major operating systems and have developed into a proven defense mechanism.

2.4 Structure Layout Randomization

As ASLR only works against attacks that rely on the knowledge of memory locations such as ROP,
it is ineffictive against memory corruption attacks that work without. Consider the C program
snippet in Listing 2.1, which shows the implementation of a create_non_root_user function.
The function create a user object on the program heap, intializes it with no permissions and
reads in the name of the new user from the terminal. It contains a buffer overflow in line 16, as
the fgets is allowed to read more bytes into the name field than it can contain. In this setting
an attacker can easily craft a username that overflows into the is_admin field of the user struct
and that will be evaluated to true later on in the program (this part is not shown here).

1 #include <stdlib.h>
2 #include <stdbool.h>
3 #include <stdio.h>
4

5 struct user {
6 char name [16];
7 bool is_admin;
8 };
9

10 typedef struct user* userp;
11

12 userp create_non_root_user () {
13 userp new_user = malloc(sizeof(struct user));
14 new_user ->is_admin = 0;
15 // Buffer Overflow. is_admin is only 16 bytes long , but reading 255

from terminal.
16 fgets(&new_user ->name , 255, stdin);
17 return new_user;
18 }

Listing 2.1: Buffer-Overflow inside a structure

This exploit would not be affected by the use of (K)ASLR, as it does not require the use of
a single memory address. However, the potential impact of the attack could be quite severe.
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While it might be questioned, how often this example occurs in real world programs, there are
similar scenarios where (K)ASLR does not offer effective protection.

This has led to the development of Structure Layout Randomization, which randomizes the
data layout of structures in C. In contrast to (K)ASLR, it is not in wide-spread use and is only
used as an optional feature inside the Linux kernel to mitigate binary exploitation attempts.
It allows a developer to mark critical data structure with a special compiler attribute, which
causes the compiler to reshuffle the fields of the structure at compile time. In the example
above, this would lead to two possible outcomes: The structure layout is not changed and
the program remains exploitable or the layout is reversed, which would result in a program
that is not exploitable2 in the way sketched above. The defense becomes more effective with
larger data structures, because more variations become possible. At least, like as (K)ASLR, this
mitigation results in an increase of software diversity and, therefore, decreases the chance of
single easy exploit for all deployments of the software.

Unfortunately, this mitigation has a severe drawback that limits its effectiveness in practice:
It is applied at compile time, which means that a security-aware user needs to compile their
own Linux Kernels for the machines under his control. If the binary artifact becomes public,
Structure Layout Randomization will – like (K)ASLR when addresses are leaked – become much
less effective.

While this feature was primarly meant as a binary exploitation defense, it also limits the use
of forensic tools that investigate the contents of the OS memory to reconstruct series of the
events. These tools are further discussed in Section 2.1.

2.5 Linux Kernel Configurability

As mentioned, the Linux kernel is built using a flexible configuration system (KConfig). KConfig
gives the user high flexibility in choosing which components the compiler should include in the
build of the final kernel. Depending on the target CPU architecture and platform, different device
drivers, debugging features, scheduling algorithms, and security features might be required.
For example, a resource-constrained IoT device might not need support for the symmetric
multiprocessing (SMP) feature if it contains only a single CPU core.

Depending on the features enabled, the number of functions and compilation units included
in the compiled kernel changes, resulting in a smaller or larger kernel. It also changes the layout
of the kernel’s core data structures. Let’s consider the feature for symmetric multiprocessing
(SMP) and its impact on the data structure that represents a task in Linux (the task_struct).
A simplified definition of it is depicted in Listing 2.2.

If the kernel is built with the feature CONFIG_SMP, the data structure has 72 bytes in size and
the linked list tasks, which form the linked list between all running processes, is located at an

2It should be noted that the buffer overflow on the heap might result in other exploitation scenarios, but these will
most likely necessitate the use of memory addresses during exploitation
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1 struct task_struct {
2 /* Per task flags (PF_*), defined further below: */
3 unsigned int flags; /* offset 0 */
4

5 #ifdef CONFIG_SMP
6 /* CPU the process is running on */
7 int on_cpu; /* offset 4 */
8 #endif
9

10 /* Linked list of all running tasks */
11 struct list_head tasks; /* offset 8; size 16 bytes */
12 #ifdef CONFIG_SMP
13 /* Load average */
14 int avg; /* offset 24 */
15 #endif
16

17 /* Description of virtual address space */
18 struct mm_struct *mm; /* offset 32 */
19 /* Process IDentifier */
20 pid_t pid; /* offset 40 */
21 /* Security privileges of the current process */
22 const struct cred __rcu *cred; /* offset 48 */
23 /* The process name */
24 char comm [16]; /* offset 56 */
25 }; /* size 72 bytes */

Listing 2.2: The task_struct of the Linux 6.9 kernel (simplified for clarity)

eight byte offset relative to the start of the structure. In the other case, where a user disables
this feature, the CONFIG_SMP feature, the preprocessor will remove the fields on_cpu and avg
from the structure. To fill the gaps in the memory layout, the compiler will move the memory
location of the remaining structure fields towards the beginning.

The challenges of high configurability of the Linux kernel has already been subject to academic
research. In 2014, Tartler et al. [13] found the Linux 3.2 kernel to have more than 12,000
configurable features which control over 89,000 #ifdef blocks. This causes a numerous
problems: First, the parts of the Linux kernel which are not enabled are not even compiled and
therefore not checked for syntax errors. Second, a static program analysis of the Linux kernel
becomes even harder to perform. While analysis tools can barely analyze a single configuration of
the Linux kernel, the complete analysis of all variants of such a huge software project is infeasible.
The kernel developers try to mitigate the first problem by cautiously auditing new patches and
generating various random kernel configurations (generated by make randconfig) in their
continuous integration system [14]. However, this probabilistic approach seem to miss errors.
The Vampyr tool managed to find hundreds of configuration dependent bugs [13] in the kernel.
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Vampyr functions by analyzing the dependencies of the configurable features and generating a
small set of distinct configurations which have a offer a maximal coverage to the analysis tool.

Besides its impact on analysis tools, drastically data layout changes through small changes of
configuration and code have also implications on the dynamic module system of Linux. This
dynamic module system allows the Linux kernel to load drivers and optional functionality as
Linux Kernel Module (LKM) from disk. These LKMs can be build independently and can be
loaded into the kernel when needed. However, an configuration might not be available, if the
kernel has become outdated or is build by a hardware device vendor who does not share its
configuration.

2.6 Linux’s Runtime Information

Besides features that add randomness to the kernel, there are also features that allow for
reasoning about its structure. First, the Linux Kernel maintains a table of its exported functions
with the corresponding addresses in memory. This table is needed during the load of Linux
Kernel Modules to integrate the module with the rest of the kernel.

Furthermore, the Linux Kernel can contain information symbol names and addresses of
all functions that are still visible in the final build step. This feature is named Kallsyms and
allows the kernel to offer augmented backtraces (in case of an error), live patching of security
vulnerabilities, and tracing features (e.g., ftrace) to the user. This feature is almost always
enabled in Linux systems and has existed since version 2.6.4 (released in 2004). While the
storage format of the Kallsyms information has changed a few times over the last decades, it
still can be used as a vantage point for further analysis (more details can be found in the core
publication in Section 5.2)

2.7 Challenges

As depicted in Section 2.1, major forensic tools like Volatility and Rekall Forensic require the exact
debugging information to perform their analysis tasks. However, a change in the Linux kernel
configuration or the activation of Structure Layout Randomization will render existing debugging
symbols outdated. Even worse, the debugging information of the Linux kernel does not soley
depend to its configuration but also to its exact version of the kernel to analyze. However, this
complicates forensic analysis in practice: A small change in the kernel configuration or a bugfix
which includes a change to a core data structure could cause the forensic tool to malfunction.
While this problem could theoretically be solved by a (central) authority that maintains an
archive of different major Linux kernels used in production, this approach has failed. The
Volatility foundation used to run a central GitHub Repo collecting such information. While
this repository has only tried to cover major and well-known Linux distributions like Ubuntu,
Red-Hat and OpenSuse, this repository has become outdated.
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Even if this central repository approach would work, an analyst would still be unable to
perform a forensic analysis of a Linux-based IoT device running a customized kernel of it’s
vendor.

This leads us to our fist research question:

Research Question 1
Can memory forensic tools be built which do not need to know the exact
Linux kernel configuration and which would even work in the presence of
Structure Layout Randomization (or other defense mechanisms based on
Software Diversity)?

To solve this problem, we will investigate if Linux’s own runtime information (see Section 2.6)
are suitable vantage points for a deeper analysis.

As described in Section 2.5, not only forensic analysis is affected by the configurability of the
kernel, but also the creation of LKMs that allow the user to extend the kernel with new security
features. To update old systems as well as new systems, it would be beneficial if we could
construct a LKM which loads into an existing kernel without knowing its configuration. Such
an LKM could i.e. add security features to an device which hardware vendor does not support
anymore. Furthermore, the Linux kernel developers marked not all functions of the kernel
usable for the use by LKMs and seem to have focused on functions for device drivers. Some
kernel functions, which would be crucial to implement a post-deployment security solution, are
however not exported.

However, if we can solve RQ1, we gain very precise knowledge about the inner functions of
the operating system under analysis. Therefore, using configuration-agnostic memory forensic
methods could enable the development of security solutions for such systems, which we will try
to showcase.

Research Question 2
How easily can we add a security feature to a deployed (preferably without
knowing its configuration), already compiled Linux kernel using the new tools
that aid memory forensic?

2.8 Contributions

We published the paper Katana: Robust, Automated, Binary-Only Forensic Analysis of Linux
Memory Snapshots and developed a framework to make Linux memory forensic viable for
systems where the Linux kernel configuration is not known at analysis time. Katana generates
the needed information for its analysis plugins from reliable patterns in the machine code of the
Linux operating system under analysis. While this approach mispredicts around 20 percent of
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data structure layouts, Katana correctly predicts the most important ones for forensic analysis.
We validated this by evaluating 45 realistic memory snapshots taken from Android, various
Linux distributions, and two IoT devices. The Katana framework succeeds in performing the
classic forensic analysis tasks of Volatility on all snapshots without prior preparation, whereas
Volatility’s own analysis plugins fail due to imprecise debugging information. Examples of these
classic analysis tasks are the listing running processes, listing loaded kernel modules, and extracting
the history of opened files. Katana also offers an alternative implementation for grabbing the
memory on the currently running system. The toolkit that was used by Volatility beforehand
required knowledge of the Linux kernel configuration, which is not available in our assumed
use case.

Furthermore, we published the paper RandCompile: Removing Forensic Gadgets from the Linux
Kernel to Combat its Analysis. This paper summarizes the current state of memory forensic
frameworks including Katana and tested different anti-forensic techniques. The outcome is
the RandCompile plugin for the GCC compiler. RandCompile adds further elements of Software
Diversity into the Linux kernel to make an off-the-shelf kernel more resilient against common
memory forensic frameworks. During our evaluation of RandCompile, we tested the limits of our
Katana framework. Katana has shown to have a high resilience against simple manipulations
of the ABI inside the Linux kernel. Additional strategies like adding bogus arguments to the
ABI were required to defeat a considerable set of Katana’s analysis methods. We conclude that
anti-forensic is possible, but only with significant efforts for the operating system developer.

Last but not least, we suggested in FridgeLock: Preventing Data Theft on Suspended Linux
with Usuable Memory Encryption a method to also protect the userspace memory from forensic
actions if the machine is suspended. This tool serves two purposes. First it complements
RandCompile which only aims at protecting data structures that are placed in kernel space.
Second, it showcases that a security feature can be added to an already deployed Linux system
using the Linux kernels own runtime information (kallsyms and kprobes, see Section 2.6), which
are also used by Katana to enable the reconstruction of data layouts.
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Chapter 3

Topic 2: Analyzing Real-World Threats through
Honeypots

A honeypot is a dedicated machine whose sole purpose is to get attacked by an adversary. It
is not used in normal operations and can, therefore, be safely compromised by an attacker.
There are multiple reasons for a network operator to deploy a honeypot. First, he might deploy
it in his network to distract an attacker from machines that contain actual production data.
As honeypots should be attacked, they appear to an attacker less secured and are, therefore,
usually attacked first. Since a honeypot is not used during normal operations, every incoming
connection is part of an attack and can be easily classified as malicious. Therefore, the honeypot
can serve as an early warning system for an ongoing attack [15].

Second, a network operator might want to analyse ongoing hacking attempts on his systems.
He can deploy a honeypot and analyze the attempts of the attacker to break into the system. He
can study the attacker’s tools and methods, generate signatures for the malware deployed on
the honeypot and feed them into the anti-virus system, or generate signatures of the network
activity for the use in Intrusion Detection Systems.

It should be noted that using a dedicated machine enables the analyst to deploy additional
monitoring, isolation, and logging mechanisms beforehand to even record attackers seeking to
hide their traces. Because of this, they are a valuable tool for studying the threat landscape.

3.1 Honeypot Types and Their History

The first documented usage of a honeypot-like system dates back to 1986. Back then, Clifford
Stoll, who administered a few computer systems at Lawrence Berkley Lab, discovered an attacker
on one of the machines he was responsible for. Instead of deactivating the attacker’s accounts on
the production system, he decided to leave his account active and study his steps and methods
to better protect the remaining computers on the network in the future [15]. It should be noted
that the system the attacker gained access to was a production system and, therefore, according
to the above definition, not a honeypot. However, the idea of a system whose sole purpose is to
study attackers and their methods was born.

In 1999, the Honeynet Project was founded as a non-profit security research organization
which aimed to support research in the area of honeypots, raise awareness, and develop honeypot
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tools to gain insights on real-world attacks in the public internet [16]. The Honeynet Project is
still active today and has published many honeypot implementations and threat analysis tools
over the years, including Honeyd, Glutton, and Sebek2.

During the long development period of honeypots, different types have evolved, which we
will describe in the following:

Low-Interaction honeypots are honeypots that are simple and easy to deploy. Usually these
honeypots are a reimplementation of software that is known to be subject of attacks. A
known vulnerability might be emulated in the reimplementation so that it can be exploited
by an attacker. Furthermore, additional logging functionality is commonly added to the
honeypot, which simplifies the post-attack analysis. However, the reimplementation is
rarely feature complete. Therefore, an attacker can detect the different behaviour of the
low-interaction honeypot and abort his attack.

High-Interaction honeypots aim to mimic a lifelike system as closely as possible. They often
modify genuine system software to contain additional logging and monitoring capabilities
or are implemented as proxies, making minimal changes to the protocol exchange. There-
fore, the honeypot should not be distinguishable from the original software. However,
as high-interaction honeypots are based on the full original software, they are harder to
build, need more resources than their low-interaction counterparts and are also harder
to maintain. High-Interaction honeypots might utilize virtualised machines with virtual
machine introspection (see Section 4.1) to isolate the logging and monitoring system from
the vulnerable software stack.

Related to classical honeypots are Tarpits. Tarpits are honeypot-like software packages that
are designed to slow down an adversary. This can already be done at the networking level by
delaying acknowledgement messages of incoming network packets. However, Tarpits can also
be implemented at the application level. This has been done for the HTTP and SMTP protocol,
to delay harvesting e-mail addresses and the delivery of spam through SMTP servers.

A significant amount of research has already been performed in the field of honeypots. They
have been used at client- [17] and server-side [15], [18]–[20] to analyze threats. For example,
the client-side honeypot created by Wang et al. [17] crawled the internet for webpages that
exploit the user’s web browser. An example of a server-side honeypot is the Dioneaea honeypot,
which emulates a number of network protocols like MySQL, Microsoft’s SMB, and FTP. The
emulated version of Microsoft’s SMB protocol is still vulnerable to CVE-2017-0143 (known as
the WannaCry vulnerability) and respective malware uploaded to the system is saved for later
analysis. Likewise, received malware for the other protocols is captured.

Honeypots have also been adapted to capture threats to Industrial Control Systems and IoT
devices [21], [22]. Furthermore, they are also deployed in industry. Akamai, a commercial
provider for cloud and content delivery services, offers an industry product that involves honeypot
technology [23].
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3.2 Challenges

Running and deploying a honeypot comes with its own set of challenges. First, attackers come
and go and their tools change. A honeypot deployed today may attract different attackers with
different goals than it did years ago. Second, depending on the number of attacks, a honeypot
may need to be deployed for a period of several months to collect statistically relevant results.

Third, because honeypot systems have intentional weaknesses, special care must be taken
to properly sandbox the honeypots so that they do not pose a threat to other systems on
the same network or to other systems on the Internet. In some cases, these risks may be
legal rather than technical. Consider a threat actor such as North Korea, a country subject to
international sanctions and embargoes. Is a company funding such a state by allowing it to
mine cryptocurrency on a honeypot system? While a good access control system can limit the
resources an attacker can access on the honeypot, honeypots are typically not monitored 24
hours a day, 7 days a week. There remains a risk of attackers using a previously unobserved
attack vector to circumvent the restrictions and abuse the honeypot for some time. During our
experiments, we interviewed representatives of a DAX company who were very hesitant to take
the risk due to liability issues.

Forth, because high-interaction honeypots are often patched from real software rather than
rewritten from scratch, maintenance requirements increase, as does the overall complexity
of the system. This is especially true when the monitored software changes regularly due to
updates, requiring close human supervision during operation.

Despite the amount of research that has been done on honeypots, many of the open source
honeypot implementations available on GitHub are outdated and no longer maintained. In an
experiment conducted in the early days of this research, Dioneaea collected malware samples
that were corrupted and not executable. While it remained unclear if the malware was already
sent out corrupted by the attacker or was corrupted during the collection, the very limited
amount of up-to-date studies on the prevalence of honeypots in the Internet, documentation,
and resources on this topic suggested further research. While there is a single study by Vetterl et
al. [24] which provides measurements on the prevalence of honeypots for the FTP, HTTP, and
SSH protocols, there is no study available for widely used Microsoft-based protocols like SMB
and RDP.

This leads us to our next research question:

Research Question 3
What honeypots are currently used in the public internet, how do they operate,
and how common are they?

Furthermore, we observed that there is a lack of modern studies on how cautiously attackers
act to avoid honeypot deployments. Because of the high maintenance effort, honeypot operators
want to avoid maintaining a high-interaction honeypot where possible.
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3.3 Contributions

In the paper Looking for Honey Once Again: Detecting RDP and SMB Honeypots in the Internet
we answer the third research question. We conducted an internet-wide scan to detect known
and unknown honeypots for two major protocols of the Microsoft Windows operating system.
The RDP protocol is used by Microsoft Windows to offer remote desktop services and SMB is
commonly used to exchange files between computer systems in a cooperate network. We utilized
differential fuzzing to find a set of distinctive packets that can detect the known honeypots.
Furthermore, we probed all available versions of the Windows operating system. Afterwards, we
used this information to scan our collected dataset for abnormal answers which could indicate
the presence of a honeypot.

In our experiments we could clearly identify several known honeypots in the internet. Further,
we identified those systems that do not use Microsoft’s implementation Schannel for building up
RDP TLS connections, but the OpenSSL library. While the latter is very popular in the open-source
community, this library has never been used by Microsoft in a any implementation of RDP. Our
verification showed a high reliability (99 percent correct) of our scanning classifications.

Further, we set up multiple honeypots ourselves for the RDP, HTTP, and SSH protocol to check
if attackers change their behaviour depending on the honeypot used. While we have not been
able to fully validate our results due to insufficient data, our results suggest that stealthy high
interaction honeypots receive more sophisticated commands than low-interaction honeypots.
Likewise, the amount of packets exchanged with the attackers is higher than on low-interaction
honeypots. Human attackers are more likely to abort attacks on low-interaction honeypots than
automated tooling. While this was to be expected, we reconfirmed this hypothesis on today’s
threat landscape. We observed the following attacker types:

1. Credential Stuffing Attacks: Some attacker just tested various credentials and immedi-
ately disconnected upon a successful login. These attack seem to happen regardless of the
honeypot technology used.

2. Querying OS and Machine Details: Some attackers logged into our system, checked the
operating system / kernel version installed, and collected information about the CPU and
memory resources available on the machine. These attacks seem to happen regardless of
the honeypot technology used (even if an attacker was able to detect the honeypot in the
early stages of the protocol).

3. Crypto Concurrency Mining: Other attackers installed mining software to utilize the
machine resources to mine crypto concurrencies like Bitcoin. This is less likely on low-
interaction honeypots.

4. Botnet/Proxy For Other Attacks: Some attackers tried to add the respective honeypots
to their botnet or used the hosts as a proxy to attack other servers / websites. This is less
likely on low-interaction honeypots.

18



Chapter 4

Research Methods

In this chapter, a fundamental overview about the relevant research methods for this thesis will
be given. For the publications Katana: Robust, Binary-Ony Forensic Analysis of Linux Memory
Snapshots and RandCompile: Removing Forensic Gadgets from the Linux Kernel to Combat its
Analysis the most relevant concepts are described in Section 4.1, Section 4.2, and Section 4.4.
For the construction of new honeypots and for the comparison to existing deployments in the
Internet, the core methods are outlined in Section 4.5 and Section 4.6.

4.1 Virtual Machine Introspection

Virtual Memory Introspection (VMI) was originally introduced as an intrusion detection mecha-
nism by Garfinkel et al. [25] in 2003. The problem they faced was that an intrusion detection
software system running on the same host that the system is monitoring could be compromised
at the same time as the host and therefore not be able to raise an alarm about the attack. On the
other hand, a network based intrusion detection system is less effective and, therefore, also not
an optimal solution, because it can only monitor the traffic and not the interactions of potential
malware with the host.

Their solution was to place their malware detection system in the Virtual Machine Monitor
(VMM) on the host. In order to enforce a separation between virtual machines the VMM is
isolated from introspection and manipulation attempts of the guest VMs running. However, in
contrast to a network based solution, it is able to inspect not only communication of the VM
that is leaving the host, but also inspect and manipulate the CPU registers and main memory.
According to Garfinkel et al. [25], the structure of the operating system is known a priori.
Therefore, the VMI system is by definition aware of the memory layout for interacting with the
operating system data structures.

Notable frameworks for VMI are LibVMI [26] and its predecessor XenAccess [27], [28]. Further-
more, there is the toolkit Panda [29], which offers a framework for building dynamic analysis
for virtualised systems (see Section 4.2). The existing plugins for operating system introspection
of the Panda toolkit can be expanded with own plugins.

Besides these toolkits for building up own analysis systems, there are also fully developed VMI
systems like the Drakvuf Sandbox sandbox for stealthy malware analysis [30], [31]. Furthermore,
there is the WhiteRabbit VMI framework [32], which injects itself into an already deployed

19



4 Research Methods

system. Furthermore, while not dedicated to the inspection of virtual machines, but to systems
of all kind, the Volatility and Rekall Forensic toolkits are also closely related to the field of VMI.

4.2 Automated Program Analysis

A program analysis is a formal and algorithmic reasoning process over a given computer program.
In general, this kind of analysis is necessary, when one program needs information about the
behaviour of another one. A typical example most computer scientists will be familiar with is
a compiler. A compiler reasons about the source code and in case of an optimizing compiler
transforms it into machine code. As a programmer might have left parts in the program that are
not in active use and, therefore, a optimizing compiler will performs a dead code analysis over
the different functions to eliminate dead code.

Besides compilation, program analysis has also many other applications such as correctness
proofs, reverse engineering, vulnerability scanning, and other automated tests for bugs. There
are plenty notable scientific examples of static analysis tools. In 2016, Stephens et al. [33]
proposed Driller, which leverages fuzzing and selective concolic execution to find and exploit
memory corruption bugs in the DARPA Cyber Grand Challenge. Furthermore, the LLVM Project
and the GNU Compiler Collection Project both released static analysis tools to find bugs in C and
C++ programs.

Program analysis can be conducted using static or dynamic methods. However, not both
methods are suitable for every use case.

Static Analysis works by just analyzing a given program without running it. Therefore, all
possible cases are considered in the analysis. While this method works well for small
problem instances, it quickly becomes computationally infeasible if the analysis should
be conducted on a complete program or a set of communicating programs. In practice,
this leads to a over approximation of possible program paths and values and, oftentimes,
therefore to false positives. Furthermore, methods such as symbolic execution suffer from
the path explosion problem.

Dynamic Analysis works by analyzing a program currently running. Usually, the program is
instrumented (i.e. the original source code or machine code is modified at predeemed
points of interest) and than executed. In contrast to static analysis tools, only inputs
that can also occur in a given part of a program. This usually reduces false negatives in
program analysis while discarding cases that occurred in runs that have not been observed.

Usually program analysis includes multiple analysis steps for the purpose of a bigger reasoning.
Classical steps are:

Control-Flow Analysis aims to transform a given program into a control-flow graph where the
nodes are locations in the program. All edges in these graph connect other nodes which
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can be reached from this specific location in the program. Instructions inside the program
can be divided into control flow changing and non control flow changing instructions.
Non control flow changing instructions are defined as instructions that only have a single
succeeding instruction regardless of the current execution context. To simplify the graph,
a series of non control flow changing instructions form a basic block that shape the nodes
in the control flow graph.

Data-Flow Analysis aims to transform a given program into a data-dependence graph. In this
graph, nodes are usually formed by the variables occurring in the program. An edge
depicts the flow of information from a source variable or result of a function into another
variable. A flow of information is present if the value of a variable can influence the value
of another variable. A data-flow analysis requires a prior control-flow analysis [34].

Code-Coverage Analysis is performed in dynamic program analysis settings. It tracks what
execution paths in the control flow graph have been covered by the dynamic analysis.
Dynamic methods, such as program testing through Fuzzing usually seek to increase
coverage to increase the completeness of the analysis.

4.3 Binary Lifting

To ease program analysis for compiled binary programs to a set of different CPU architectures,
the machine code is usually lifted to a intermediate representation. In turn, this intermediate
representation is than analyzed. Therefore, all program analysis algorithm only need to support
the single intermedia representation and do not need to deal with the complexity of each
instruction set. Because of this, this concept is frequently used by decompilers that aim to
transform the compiled machine code representation of various different instruction sets back
to semantically equivalent source code. As the source code form is usually easier to read and
understand, decompilers are valuable tools for reverse engineers.

We based all of Katanas program analysis functionality on top of the open sourced Ghidra
decompiler, which uses P-Code as intermediate representation. P-Code has support for many
popular CPU architectures out there, such as X86, x86-64, ARMv7, ARM64, MIPS, Sparc,
PowerPc and many more. However, this is not the sole existing intermediate representation.
Over the years, multiple evolved based on the needs of the performed analysis tools build upon.
Other notable intermediate representations are LLVM-IR, which is used internally by the LLVM
Compiler Project, and VEX, which is used by the angr program analysis framework.

It should be noted, that lifted code can also be used to transpile (i.e. swap the instruction set
of a program) from one instruction set to another one.
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4.4 Software Diversity

The concept of Software Diversity has already been suggested by Forrest et al. [35] back in 1997.
Software diversity targets to reduce the potential attack vectors that arise from the fact that
software functions in the exact same way on all deployed systems. Small variations might be
sufficient to render an exploit for a memory corruption vulnerability unusable. In the Linux
kernel KASLR (see section 2.3) is a widely deployed and Structure Layout Randomization an
optionally available defense (see section 2.4).

Software Diversity can be applied at compilation time or at runtime. Usually solution operating
at runtime will increase the startup time of the respective program in order to perform the
randomization. However, compilation time solutions will randomize the layout only once and
not on every startup. As Software Diversity relies on the secrecy of the concrete randomization
applied, the diversified binary cannot be made distributed to multiple users or made public. It is
necessary, that every user creates their on individual binary of the software and that an attacker
cannot easily access the binary on disk before the attack. While this might be time consuming,
it is still feasible on server and desktop machines, but infeasible on resource constrained devices
(such as IoT devices or smartphones) [36]. We would like to remind the reader, that these is
one of the reasons while structure layout randomization is not commonly deployed: It would
require every user to compile his own Linux kernel, which would require a substantial amount
of CPU resources. A potential solution to this problem a hybrid approaches, which generate
metadata at compile time that enable a rapid diversification at installation time [37].

In the past decades, also other ways to create Software Diversity in operating systems and
user space programs have been discussed:

Introduction of NOP instructions The insertion of nonfunctional code by the compiler will result
in a different binary layout of the executable code. This makes ROP attacks harder as
the attacker cannot guess the exact position of the ROP gadgets in the binary without an
additional information leakage that reveals pointers to the executable code [35].

Reordering of code parts In many cases a compiler can reorder the basic blocks at control
flow branches. Instead of basic blocks, it is also possible to reorder the linkage of whole
functions at runtime. This has been proposed and implemented for the Linux kernel [38]
in 2020, but is not a mainlined feature as of today.

Reordering memory layout This approach is taken by Structure Layout Randomization. But
instead of the data layout of structures, also other parts of the memory layout can be
changed. Forrest et al. [35] suggests to add gaps on the stack of the program. This would
influence the relative offsets of the local variables stored on it. As further addition, they
suggest to transform a program so that the stack frames get randomly allocated on the
heap.
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Hiding values by XOR encryption Pointer values can be encrypted with a cheap encryption
operation (like XORing it with a random key) to hide them. This has been done by
Williams-King et al. [39] to randomize the return addresses of a patched operating system.
In his approach these addresses would have been artifacts that might would have been
useful to an attacker.

It should be noted that the line between Software Diversity and Software Obfuscation is blurry.
Larsen et al. [36] name also classic obfuscation techniques as Control Flow Flattening as method
to archive Software Diversity.

The concepts of software diversity are heavily used in our research paper RandCompile:
Removing Forensic Gadgets from the Linux Kernel to Combat its Analysis, where we discuss them
as a potential defense mechanism against forensic tools. In order to operate, these tools make a
lot of assumptions about the inner workings of the binary and, in case of Volatility and Rekall
Forensics heavily rely on precomputed information from static distributed binaries.

4.5 Internet-wide Scans

To study real-world software deployments of internet-connected software, a systematic scan
of the entire IPv4 address space is a viable option to gather high-quality research data. While
the IPv4 address space could contain up to 232 hosts, a systematic scan of the whole address
space has become feasible on a machine with a high-speed gigabit internet connection [40].
Furthermore, the number of routable and usable IPv4 addresses in the public internet is lower
than 232, which further reduces the effort needed for scanning. E.g. not all subnets advertise a
route and are, therefore, not reachable from the vantage point from where the scan is conducted.
Other IPs are reserved for special purposes (e.g. broadcast addresses) and cannot be used to
address a host.

There are several examples of previous internet-wide scans that seek to measure security
across the internet. First, there is the EFF SSL Observatory [41], which contains a dump of
all publicly used HTTPS certificates in 2010. Second, the authors of the LogJam vulnerability
performed an internet-wide scan to evaluate how frequent weak Diffie-Hellman parameters are
on HTTPS and SSH servers on the public internet. This research influenced the security settings
of several major internet browsers [42].

As internet-wide studies have shown to be powerful, several online-services have evolved that
conduct internet-wide scans and publish their results. Such services are, for example, Censys and
Shodan.io. Unfortunately, these services do not collect all data we needed for our exploratory
study about honeypot deployments in the internet. Where applicable, we compare their data to
our own data for verification, but have collected our own data using the ZMap scanner [40].
ZMap performs a TCP-SYN scan of selected TCP ports on the target hosts. It generates the
list of IPs to scan via a generator function that enumerates the overall IPv4 address space in
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a non-sequential order. This avoids traffic peaks in the network of single organisations that
might have the capacity to deal with a fast internet scan. Responsive IPs with an open port are
reported to a second scanning stage that performs a deeper analysis. This second stage consists
in the research paper Looking for Honey Once Again: Detecting RDP and SMB Honeypots in the
Internet out of a custom Python scanner that sends a set of distinctive packets to classify the
host. The answers and classifications are saved for later analysis.

4.6 Differential Fuzzing

Fuzzing has become a popular software testing technique especially in the security domain and
gained a lot of interest from industry and research. Google started the OSS-Fuzz project back in
2016, which is continuously fuzzing more than 1000 software projects since then [43]. The
concept of fuzzing is straightforward: a fuzzer generates a random input, feeds this input into
the program to test, and memorizes inputs that have resulted in a crash or other abnormal
behavior. In its simplest form, fuzzing is straightforward to implement and use, yet it remains
surprisingly effective, which is probably the reason why it has become so popular. Nevertheless,
a significant amount of time and resources have been dedicated to the development of more
sophisticated techniques for generating inputs that are more likely to result in a crash, to enhance
the rate at which new inputs can be tested, and to group related crashes.

In contrast to usual fuzzing, differential fuzzing feeds the same input into multiple different
program implementations. Input that causes different behaviour in different implementations
indicates an error in one implementation [44]. This strategy for finding and pining down errors
in computer programs is less frequently used. However, one use case has been in the past the
testing of C compilers [44], [45]. Likewise as in conventional fuzzing, the effectiveness of this
testing methods depends on the quality of the chosen inputs.

In the field of security research, Differential Fuzzing has proven to be useful for side-channel
analysis (see DifFuzz [46] and Stacco [47]). Side-Channels must be avoided in cryptographic
algorithms as small differences in memory consumption or timing may result in loss of secret
key material and, therefore, to a catastrophic failure of security.

We have adapted the concept of Differential Fuzzing for the use in our research paper Looking
for Honey Once Again: Detecting RDP and SMB Honeypots in the Internet to identify differences
between the respective honeypot implementations and the original implementation. We tested
two categories for fuzzing. At first, a protocol aware fuzzer that knows about the layout of
the network packets and can choose meaningful values for the different fields in each packet.
Second, we developed a fuzzer that records and replays parts of the network communication.
During the replay, random bits are applied to the sent network packet. Both fuzzers send their
crafted packets to the benign implementation and the other to the respective honeypots. A
varying answer from one of the parties denotes a payload that could qualify as a most distinctive
packet, which is a packet designed to create the maximum number of different answers between
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all benign and honeypot implementations. A similar approach for the detection of honeypots
has been taken by Vetterl et al. [24], however we have extended the methods to the RDP and
SMB protocols, which are more complex. For more details about this research, see Chapter 7.

4.7 Binary Instrumentation

Binary instrumentation describes a technique to modify an existing program by inserting ad-
ditional code for additional functionality into it. This code can modify the programs original
behavior, analyze or monitor it. Like program analysis, binary instrumentation can be done
in two main ways: statically and dynamically. Static instrumentation changes the binary file
on disk, while dynamic instrumentation modifies it while the program is running. Binary
instrumentation can alter the behaviour of programs that haven’t been prepared for it.

Instead of instrumenting the binary executable, instrumentation can also be performed at
compilation time. In this case, the compiler inserts patch points, where a dynamic system can
later divert control flow or apply a needed instrumentation directly. Adding the transformations
at the compiler stage, has semantic and performance advantages, which has proven to be useful
for fuzzing and profiling applications. Unfortunately, in practice source code is not always
available so compile time instrumentation is not always an option [48].

Examples for dynamic binary instrumentation (DBI) frameworks for userspace programs are
Intel PIN, Frida, DynamicRIO, or Valgrind. These tools have been developed with different use
cases in mind. Frida targets the community of reverse engineers and security researchers [49],
while Valgrind has been designed as a heavyweight instrumentation framework with support
for shadow values. These shadow values enable Valgrind, for example, to search for undefined
variables at runtime [50]. Depending on the tool used, there is also support for attaching to a
process already running (i.e. this is supported by Frida and Intel PIN).

This is particularly useful for creating a stealthy honeypot of an existing windows service
(like the remote desktop service). For our research on honeypots, we used a DBI framework to
monitor the existing RDP service, which handles remote desktop connections, of Windows. We
added additional probes to record the screen that is rendered out to attackers and to record
their keystrokes and mouse events. As the original implementation of the service is the original
implementation of Microsoft, we deem this honeypot to be indistinguishable from a regular
Windows RDP service.

DBI was also used for our work on FridgeLock. The kernel development community has
created their own dynamic instrumentation mechanisms, because the DBI frameworks being
presented so far are unusable inside an operating system. The kprobes feature of the kernel
allows code to be added to the beginning of most Linux kernel functions (except functions
declared as private within a compilation unit, which can be inlined into other functions by the
compiler). Complementary, kretprobes can be used to add code that will be executed at function
exit.
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By using these two features, we can realize many features without explicit support of Linux
(see Chapter 7 for details).

4.8 Microbenchmarks

For a wide acceptance of security hardening mechanisms, its performance impact plays a crucial
role. Users often prioritize systems that not only offer robust protection but also operate
seamlessly without significant performance degradation. Therefore, we evaluated also the
performance overhead of security defenses that evolved during the course of this thesis. In the
proof of concept implementation in our research paper RandCompile: Removing Forensic Gadgets
from the Linux Kernel to Combat its Analysis we use the lmbench microbenchmark [51].

A microbenchmark, such as lmbench, focuses on measuring the performance of specific
components or subsystems within a larger system. Unlike macrobenchmarks that evaluate
overall system performance, microbenchmarks delve into the intricate details of individual
functionalities. In the case of lmbench, it meticulously scrutinizes various aspects of the Linux
kernel’s performance, offering insights into CPU, memory, and I/O operations. It benchmarks
latency and throughput of various system calls.
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Chapter 5

Core Publications

This chapter contains a one-page summary of each core publication in chronological order.

5.1 FridgeLock: Preventing Data Theft on Suspended Linux with Usable
Memory Encryption (ACM CODASPY 20)

Abstract

To secure mobile devices, such as laptops and smartphones, against unauthorized physical data
access, employing Full Disk Encryption (FDE) is a popular defense. This technique is effective
if the device is always shut down when unattended. However, devices are often suspended
instead of switched off. This leaves confidential data such as the FDE key, passphrases and
user data in RAM which may be read out using cold boot, JTAG or DMA attacks. These attacks
can be mitigated by encrypting the main memory during suspend. While this approach seems
promising, it is not implemented on Windows or Linux. We present FridgeLock to add memory
encryption on suspend to Linux. Our implementation as a Linux Kernel Module (LKM) does
not require an admin to recompile the kernel. Using Dynamic Kernel Module Support (DKMS)
allows for easy and fast deployment on existing Linux systems, where the distribution provides a
prepackaged kernel and kernel updates. We tested our module on a range of 4.19 to 5.3 kernels
and experienced a low performance impact, sustaining the system’s usability.

Contributions of the Author

The author invented the idea and concept of a Linux kernel module that hooks into the suspend
API of Linux and performed the encryption of the RAM there. While the idea of suspend time
memory encryption was not new, we were the first who added this feature to the Linux kernel
without the need of recompiling the whole Linux kernel. Furthermore, he was heavily involved
in evaluating the final implementation, the paper writing and editing process.

Copyright & Link to Original Publication

Licenced to ACM. Permission granted for use inside the author’s dissertation.
https://dl.acm.org/doi/10.1145/3374664.3375747
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5.2 Katana: Robust, Automated, Binary-Only Forensic Analysis of Linux
Memory Snapshots (RAID 22)

Abstract

The development and research of tools for forensically analyzing Linux memory snapshots have
stalled in recent years as they cannot deal with the high degree of configurability and fail to
handle security advances like structure layout randomization. Existing tools such as Volatility
and Rekall require a pre-generated profile of the operating system, which is not always available,
and can be invalidated by the smallest source code or configuration changes in the kernel. In
this paper, we create a reference model of the control and data flow of selected representative
Linux kernels. Using this model, ABI properties, and Linux’s own runtime information, we apply
a configuration- and instruction-set-agnostic structural matching between the reference model
and the loaded kernel to obtain enough information to drive all practically relevant forensic
analyses. We implemented our approach in Katana, and evaluated it against Volatility. Katana
is superior where no perfect profile in- formation is available. Furthermore, we show correct
functionality on an extensive set of 85 kernels with different configurations and 45 realistic
snapshots taken while executing popular Linux distributions or recent versions of Android from
version 8.1 to 11. Our approach translates to other CPU architectures in the Internet-of-Things
(IoT) device domain such as MIPS and ARM64 as we show by analyzing a TP-Link router and a
smart camera. We also successfully generalize to modified Linux kernels such as Android.

Contributions of the Author

Idea, Design, concept, and first proof of concept implementations of Katana have been created
by the author. Later on, the co-author Manuel Andreas suggested and implemented a P-Code
extension for the structural matching. Co-Author Tobias Holl implemented the Module-based
Snapshot Creation mechanism, Julian Kirsch helped out in the early reversing parts needed to
implement the match algorithm. Furthermore, the author was heavily involved in writing the
final text for the paper, editing, and designing and performing the final evaluation.

Copyright & Link to Original Publication

This publication is an Open Access publication under the Creative Commons Attribution-
NonCommercial-ShareAlike Internation 4.0 Licence.
https://dl.acm.org/doi/abs/10.1145/3545948.3545980
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5.3 Looking for Honey Once Again: Detecting RDP and SMB Honeypots on the Internet (Euro S&PW 22)

5.3 Looking for Honey Once Again: Detecting RDP and SMB Honeypots
on the Internet (Euro S&PW 22)

Abstract

Honeypots are a widely used technique to observe the spread of malware and the emergence of
new exploits. Attackers are said to avoid connecting to honeypots as they reveal the attacker’s
methods, tools, and exploits. However, there is limited proof for that assumptions in the
literature. In this study, we will fingerprint existing honeypot implementations and develop
new ones that are not detectable by the fingerprints generated. While different honeypot
implementations have been fingerprinted in the past, we see a lack of studies covering Windows-
related protocols such as Remote Desktop Protocol (RDP) and Server Message Block (SMB)
honeypots. However, these protocols have seen at least two major security vulnerabilities in
the past 5 years and are commonly exploited. We adapted existing fingerprinting algorithms
to allow an accurate identification of RDP and SMB honeypots checking how implementations
behave in error conditions. We present a new improvement, namely the inclusion of system
TLS stack features previously not used for honeypot detection. We are the first to perform an
internet-wide scan searching for RDP and SMB honeypots. We are able to effectively uncover
the presence of two common open-source honeypots for RDP and SMB each. We identified
84 instances of Heralding (RDP), 1123 instances of RDPY (RDP), 60 instances of Impacket
(SMB), and 1461 instances of Dionaea (SMB) during our scans. Furthermore, we found several
hosts, which do not use Microsoft’s SChannel TLS stack, but advertise themselves as Windows
machines. This indicates the presence of a Man-in-the-Middle (MitM) box and could be a sign
of a honeypot. Eventually, we analyzed how attackers interact with detectable honeypots. We
deployed instances of RDP honeypots ourselves and found that credential guessing attackers
seem to avoid them. This proves that RDP and SMB honeypots are fingerprintable and that even
MitM-box-based high-interaction honeypots leave detectable traces.

Contributions of the Author

The author developed the differential fuzzer for the RDP protocol used in this study. Furthermore,
he obtained the fingerprints of all RDP honeypots and derived a set of distinctive packets to
uncover honeypots. He was heavily involved in the editing process of the paper and performed
the validation part.

Copyright & Link to Original Publication

©2022 IEEE. Reprinted, with permission, from Conference Proceedings: 2022 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW)
https://doi.org/10.1109/EuroSPW55150.2022.00033
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5.4 RandCompile: Removing Forensic Gadgets from the Linux Kernel to
Combat its Analysis (ACSAC 23)

Abstract

Recently proposed tools such as LogicMem, Katana, and AutoProfile enable a fine-grained
inspection of the operating system’s memory. They provide insights that were previously only
available for Linux machines specifically instrumented for cooperation with virtual machine
introspection frameworks. An overly controlling cloud operator can now regularly deep-inspect
VMs under their control. In this paper, we investigate how the concept of software diversity
can be employed to remove structural information from the Linux kernel to harden it against
automated analysis by the aforementioned tools. Furthermore, we give a systematic overview
about the methods used by common automated memory forensic frameworks to gather their
data. We found that all of them rely on a small set of features to provide their functionality.
We employ a mixture of small targeted obfuscations to the memory layout and randomization
of the ABI between functions in the Linux kernel as they provide predictable artifacts across
different compilers, kernel configurations and the presence of Structure Layout Randomization.
We provide an implementation of our ideas in RandCompile, which is composed of a small patch
set for the 5.15 Linux LTS kernel and a compiler plugin. RandCompile seeks to remove structural
information artifacts, which we call forensic gadgets, to eliminate all leverage points for further
analysis of the tools mentioned above. Our approach does not require major modifications
to the kernel code base and only has a negligible performance impact (less than 5% percent),
which is less than other major security or debugging features enabled by default in the Linux
kernel.

Contributions of the Author

The author had the initial idea and designed the implementation concept of RandCompile based
upon a GCC plugin. Co-Author Andreas Chris Wilhelmer implemented the parameter order
randomization, which has been completed by the author with the addition of pointer encryption
and printk format externalization. Furthermore, the author conducted the literature survey and
systematization of knowledge of other forensic frameworks and performed the final evaluation
of RandCompile’s performance against their analysis methods. He was heavily involved in
creating and editing of the final paper submitted to the conference.

Copyright & Link to Original Publication

This publication is an Open Access publication under the Creative Commons Attribution-
NonCommercial-ShareAlike Internation 4.0 Licence.
https://dl.acm.org/doi/10.1145/3627106.3627197
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Chapter 6

Final Remarks

6.1 Recent Developments

Since the development of the Katana framework, other works of interest have been published in
the area of Memory Forensics. In 2023, the Fossil tool [52] was proposed. The authors suggest an
OS-agnostic way to memory forensics. They observed that core data structures like linked lists
are implemented in consistent patterns with only minor deviations across different operating
systems. By scanning inside the memory for these patterns, they have been able to reconstruct
the process list of Windows, Linux, macOS and other lesser known operating systems using the
same algorithms. While the usage of Fossil does not require handwritten rules (as Katana does),
it still requires that the analyst knows a seed value. This is a value that is definitely present in
the container data structure the analyst looks for. In case of the process list, this could be the
name of a single process. This is a notable improvement that will ease the analysis, but so far
Fossil is not capable of performing analysis that requires deep knowledge of the data structures.
An example of such an analysis is the listing of recently opened files, which Katana can perform.

In his PhD thesis, Oliveri [53] pointed out that the developed platform independent memory
acquisition module of Katana, which we have created as successor to Lime, does require the
disabling of the interrupts of the system. This could stop the system from correct operations
in some cases. This is true, but rarely a limitation in practice. A system which is suspected
as compromised rarely needs to function normally, but is disconnected from the operational
business network beforehand.

In 2023, Spahn et al. [19] conducted an internet-wide scan looking for vulnerable and publicly
available instances of container orchestration tools. They found vulnerable instances of dockerd,
Kubernetes and Apache AirFlow instances. In a second step, they designed a high-interaction
honeypot to capture attackers themselves. Their honeypot setup for Docker and Kubernetes
involved patching the Docker source code to insert additional logging and tracing functionality.
The Apache AirFlow honeypot was realized through a transparent TLS proxy that re-encrypts all
traffic. They recorded a considerable amount of scanning traffic and attacks that aim to mine
cryptocurrencies.
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6.2 Conclusion

In the following section we will recap the research questions of Chapter 2 and Chapter 3 and
discuss our results.

Research Question 1
Can memory forensic tools be built which do not need to know the exact
Linux kernel configuration and which would even work in the presence of
Structure Layout Randomization (or other defense mechanisms based on
Software Diversity)?

We proofed this by building Katana. While the reconstruction of data structure layouts
performed by Katana is less precise than old approaches based on debugging information, it is
better than all solutions available if a kernel configuration is not available for forensic analysis.
We verified this hypothesis on a set of 85 kernels with differing configurations. If the Linux
kernel configuration does not match the Volatility profile exactly, Katana will achieve better
analysis results. Additionally, we tested 45 memory snapshots of popular Linux distributions
and showed that Katana can perform all classical analysis tasks of Volatility.

The recent developments in the area of Memory Forensics, outlined in Section 6.1, further
stress the academic interest in these kinds of tools. While the approach presented by Oliveri et
al. [52] is promising, they are not aware of the specifics of the Linux kernel and can, therefore,
not perform the same kind of in-depth structure analysis that Katana is capable of.

We also found that forensic research could have applications in reverse engineering since
Structure Layout Randomization is sometimes enabled by vendors to obfuscate their modified
Linux kernels. Aside from that, forensic has the potential to release reverse engineers from a
legal burden. According to German and European law, analyzing software by observation is
legal in all cases [54]. Consider the case of a Linux-based IoT device with a proprietary user
space application. While legally obliged, the manufacturer might be reluctant to provide the
kernel sources or configuration used. A forensic tool could modify the Linux operating system of
the IoT device and directly observe the running process with forensic methods or inject further
monitoring functionality to allow for an in-depth analysis of a proprietary user space application.
As the Linux kernel is licensed under the General Public Licence (GPL), this testing setup should
not violate any copyright claims of the device vendor.
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Research Question 2
How easily can we add a security feature to a deployed (preferably without
knowing its configuration), already compiled Linux kernel using the new tools
that aid memory forensic?

While developing Katana, we created a memory acquisition module that can be built and
injected into the kernel without the need for the exact build environment. This is a novel feature
that is not provided by classical Linux kernel modules. Further, we developed FridgeLock to
add suspend time memory encryption to an already compiled Linux kernel. In contrast to the
memory acquisition kernel module, FrideLock showcases the addition of a more complex security
feature into an already deployed system. It can dynamically adapt to the running host kernel
(e.g., if the kernel retrieves a security patch) using the Dynamic Kernel Module Support (DKMS)
framework of Linux. We conclude that it is indeed possible to add non-trivial security features
to an already compiled and deployed Linux system. This technique can be used in environments
where the system administrator does not want to maintain his own fork of the Linux kernel,
which, for example, necessitates a build server and an own package repository. However, the
maintenance effort of a separate dynamic kernel module is likely too high to be practical in many
application scenarios. The kernel would benefit from a more comprehensive and stable API to
its internal core components. For example, when we designed FridgeLock, the kernel did not
provide an API to access the currently loaded disk encryption keys, which is essential to perform
user space encryption before the system is suspended. Furthermore, the Linux kernel still does
not allow dynamically loaded Linux Security Modules (LSMs). LSMs offer a way to implement
fine-grained access control policies on a Linux system as the LSM is queried during almost all file
operations. While existing LSMs like SELinux [55] and AppArmor [56] are quite comprehensive,
we found it difficult to modify their standard policies in practice. In many scenarios, it is easier
to program the rules instead of writing them in the domain-specific language of existing LSMs.

With the advent of eBPF [57], the situation improves. With the release of Linux 5.7, a LSM
based upon eBPF exists that allows dynamic additions of security policies to the Linux kernel.
This feature has already been adopted by companies like CloudFlare in production in favor
of classic LSMs [58]. Eventually, our implementation strategy still fills a gap where security
features are urgently needed and a matching Linux API does not exist yet.
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Research Question 3
What honeypots are currently used in the public internet, how do they operate,
and how common are they?

We conducted an internet-wide scan to detect known and unknown honeypots for two major
protocols of the Microsoft Windows operating system during our research for the paper Looking
for Honey Once Again: Detecting RDP and SMB Honeypots in the Internet. We were able to
identify around 2600 active honeypot instances that different parties deployed. While several
institutions like Deutsche Telekom publicly announce that they operate honeypots [59], the
exact number of similar honeypot installations was previously unknown. There might be further
instances placed in firewalled subnets to which we could not connect during our scan.

Additionally, we found that the majority of honeypots are deployed within the network of
cloud providers. The cloud provider networks containing the highest prevalence of honeypots
are Amazon AWS, followed by Choppa.com, DigitalOcean, and NetCup (a German cloud hosting
provider known for lax firewall filtering policies).

We further found multiple signs of unknown high-interaction honeypots for the RDP protocol.
On a cluster of machines, the RDP protocol is implemented using an OpenSSL stack to perform
the TLS encryption while the rest of the protocol follow the Microsoft specification of the protocol
precisely. This is abnormal, because Microsoft uses its own TLS implementation Schannel for
RDP, which behaves different than OpenSSL. We conclude that the operator of these machines
installed a TLS interceptor based on OpenSSL that forwards the traffic to the respective RDP
servers. Please note that this requires the TLS interceptor to exchange the host certificates of
the server in upper protocol layers as well and is not trivial. We could not verify if the network
operators set up the intercepting machines as honeypots or for other purposes. The recent
developments show that other research groups also try to understand the threat landscape by
using very similar methods. This yields the conclusion that high-interaction honeypots are build
by modifying benign software to limit detection possibilities.

However, there is still room for further research: With the help of program analysis, the
methods of machine learning, and AI, a given program might automatically be converted into a
high-interaction honeypot. This would reduce the significant initial effort of creating honeypots
and allow for faster development.
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Chapter 7

Published Version of Papers

In the following chapter, the author’s versions of all core publications of this thesis, as they
have been submitted to the respective conference venues, are reprinted in chronological order.

35



Katana: Robust, Automated, Binary-Only Forensic Analysis of
Linux Memory Snapshots

Fabian Franzen
Technical University of Munich

Munich, Germany
franzen@sec.in.tum.de

Tobias Holl
Technical University of Munich

Munich, Germany
tobias.holl@tum.de

Manuel Andreas
Technical University of Munich

Munich, Germany
manuel.andreas@tum.de

Julian Kirsch
Technical University of Munich

Munich, Germany
kirschju@sec.in.tum.de

Jens Grossklags
Technical University of Munich

Munich, Germany
jens.grossklags@in.tum.de

ABSTRACT
The development and research of tools for forensically analyzing
Linux memory snapshots have stalled in recent years as they can-
not deal with the high degree of configurability and fail to handle
security advances like structure layout randomization. Existing tools
such as Volatility and Rekall require a pre-generated profile of the
operating system, which is not always available, and can be invali-
dated by the smallest source code or configuration changes in the
kernel.

In this paper, we create a reference model of the control and data
flow of selected representative Linux kernels. Using this model,
ABI properties, and Linux’s own runtime information, we apply
a configuration- and instruction-set-agnostic structural matching
between the referencemodel and the loaded kernel to obtain enough
information to drive all practically relevant forensic analyses.

We implemented our approach in Katana1, and evaluated it
against Volatility. Katana is superior where no perfect profile in-
formation is available. Furthermore, we show correct functionality
on an extensive set of 85 kernels with different configurations and
45 realistic snapshots taken while executing popular Linux distri-
butions or recent versions of Android from version 8.1 to 11. Our
approach translates to other CPU architectures in the Internet-
of-Things (IoT) device domain such as MIPS and ARM64 as we
show by analyzing a TP-Link router and a smart camera. We also
successfully generalize to modified Linux kernels such as Android.
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1 INTRODUCTION
Memory forensics offers unique insights into the internal state
of operating systems and userspace programs. Frameworks such
as Volatility and Rekall have shown that it is possible to extract a
large variety of information from memory dumps and have proven
useful after malware and ransomware infections or to obtain disk
encryption keys during governmental investigations [15].

The starting point for any such investigation is a memory dump
of the target system, which can be easily obtained from virtual ma-
chines. This setting is also known as Virtual Machine Introspection
(VMI). However, deriving semantic meaning from a VMI view of
a virtual machine is a non-trivial challenge, commonly referred
to as the semantic gap problem [3]. To bridge this gap, automated
approaches use information collected over the lifetime of the virtual
machine (e.g., instruction traces [5, 9, 23]) or rely on explicit support
by the guest operating system in order to interpret data they obtain
through a VMI interface [20]. On regular PCs, bare-metal servers,
smartphones, and IoT devices, memory dumps can be extracted by
injecting a driver or module into the running operating system or
by using hardware debugging interfaces such as JTAG.

Traditional tools like Volatility and Recall Forensics do not han-
dle forensic investigations of Linux adequately and their analyses
have become outdated over time. These tools extract the neces-
sary information about the structure of the OS using debugging
information to form a profile containing the memory location and
layout of crucial OS data structures. However, debugging informa-
tion about the target is not always readily available and in those
cases these tools cannot be used. Especially Linux imposes unique
challenges to a forensic analyst in need of a profile: There is a
plethora of kernel binaries with slightly varying behaviors that
a separate profile needs to be generated for. This is caused by a
myriad of compile-time configurations and the kernel’s support for
different compilers and compiler versions, each pursuing its own
code generation strategy [25]. Consider the current definition of the
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task_struct structure: In Linux 5.8.14, it contains 66 preprocessor
directives influencing the number and position of its members.

In most commercial operating systems, on the other hand, the
limited customizability means that there is often an easy path for
obtaining additional debugging information. For instance, we can
retrieve Windows debugging symbols from the Microsoft symbol
server based on an extractable identifier from a memory dump.

In the Linux context, however, most of this information is still en-
coded in the guest operating system. Even if no explicit support for
forensic tools is present and no debugging information is available,
the code of the system itself still needs to be able to load and unload
drivers or to examine stack frame information for crash reports,
etc. Our own implementation Katana exploits this in a code-based
approach to deduce a profile usable for forensic analysis.

Concurrent to our own work, AutoProfile [19] was proposed
suggesting a similar code-based approach to ours. Furthermore,
LogicMem [21] utilizes a runtime information-based approach. In
contrast to code-based approaches analyzing the code in the .text
segment, only the memory dump of the volatile runtime data of the
operating system is used (e.g., the task list) in a Prolog inference
system to deduct a profile. We will further discuss similarities and
differences in Section 7.

The key contributions of our work are as follows:
• We provide an implementation of code-based profile genera-
tion and release it to the public2. In contrast toAutoProfile,
our implementation, Katana, is based on Ghidra’s interme-
diate representation P-Code and works across architectures.
We evaluate it on x86-64, ARM64 and MIPS.
• Furthermore, we analyze how the created profile generalizes
to the full Linux kernel and modern analysis plugins, while
existing works (like AutoProfile and LogicMem) focus on
a small set of structures for a limited set of partially outdated
Volatility analyses.
• We prove that Memory Extraction can also be done in a
binary-only setting by using a Linux Kernel Module (LKM),
as it was possible by using the LiME LKM in Volatility.
• We perform an extensive evaluation of Katana on 85 self-
compiled kernel builds with different configurations across 7
kernel versions, and perform various real-world analyses on
45 different kernels from common Linux distributions includ-
ing Android. We demonstrate Katana’s cross-architectural
capabilities by analyzing memory dumps of MIPS-based de-
vices (a TP-Link router and a camera), as well as an ARM
memory dump.

2 BACKGROUND
In order tomotivate our design decisions for the analysis framework
Katana, we first discuss two mechanisms used internally by the
Linux kernel to organize the mapping between symbolic names and
virtual addresses. Afterwards, we explain the details of structure
layout randomization; a relatively new (April 20173) security feature
of the Linux kernel. Then, we discuss why the wide variety of
configuration options of the Linux kernel drastically complicates

2Our tools and pre-generated databases for Linux 3.7 – 5.15 are available at
https://github.com/tum-itsec/katana.
3https://www.openwall.com/lists/kernel-hardening/2017/04/06/14

forensic analysis. Finally, we provide a quick introduction to P-Code;
the intermediate representation we built Katana upon.

2.1 Volatility and Rekall
Volatility4 is an open-source framework for memory forensics with
support for all three major operating systems (Windows, MacOS,
and Linux). In our work, we primarily refer to Volatility as a com-
parison, since it is by far the most commonly used tool, even though
it was not designed to work with differing configurations and struc-
ture layout randomization. Volatility supports a large variety of
analysis passes such as listing the currently running processes,
loaded kernel modules, active file descriptors and active network
connections. Additionally, analyses scanning for known rootkit
artifacts and integrity checking are available. Development appears
to have stalled since the most recent stable release of Volatility 2.6
in 2016, resulting in many of the currently existing analyses failing
on recent kernel versions.

In order to function, the Volatility framework relies on a “profile”,
which contains the layout of important kernel structures and the
relative location of vital global variables. The analysis plugins then
utilize this information to locate and parse the kernel’s internal
data structures in the memory dump in order to produce their
reports. On Linux, these profiles are usually generated from the
kernel debugging symbols.

In 2013, Volatility was forked to streamline the codebase. This
fork became the Rekall Forensics5 frameworkmaintained by Google,
but has been abandoned now. While a few analysis plugins might
work differently, Rekall functions in the same way as Volatility.

2.2 Kernel Symbol Table
The symbol table (symtab) contains the virtual addresses of ex-
ported functions and variables that the kernel provides to loadable
kernel modules (LKMs). If an LKM wants to log a message using
the exported printk function, a lookup in the symtab is performed
at module load. As LKMs can be loaded during runtime, complete
information about exported symbols must be available during run-
time, a circumstance used by Katana.

Note that even for kernels compiled with all optional features
disabled6—i.e., even if LKM support is disabled—the kernel still
contains a symbol table. It is essential to Linux’s functioning and
cannot be removed. The exact layout of the kernel symbol table
changed over time, but it remains easily discoverable in a memory
dump. Details can be found in Figure 6 in Appendix A.

2.3 Kallsyms
Kallsyms provides another way to resolve symbol names to virtual
addresses during runtime. The kernel uses it to augment backtraces
with symbol names for KGDB and requires it for Ftrace, Kprobes,
and other modern kernel security features like control flow integrity
checking and live patching. Kallsyms-enabled kernels contain a list
of kernel symbols that is extracted during compilation, compressed,
and saved in the data sections of the generated Linux image.

4https://www.volatilityfoundation.org/releases
5http://www.rekall-forensic.com/
6make tinyconfig
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In contrast to the symtab, the kallsyms mechanism is aware of
the addresses of non-exported kernel functions. If the configuration
option KALLSYMS_ALL is enabled, it even includes names and virtual
addresses of symbols that reside in the data section. As such, the
number of symbols on which kallsyms may provide information is
magnitudes larger than what can be learned from symtab.

Code running in the kernel can access the kallsyms system by
querying one of two exported functions: kallsyms_on_each_symbol
(introduced in 2.6.30; 2009) allows code to iterate over all symbols
that are stored, while kallsyms_lookup_name (introduced in 2.6.4;
2004) does a name-based symbol lookup of the respective address.

This interface has been stable since its introduction, but can be
disabled at compile time as it is an optional feature. Fortunately,
as we will see in Section 4, most systems leave the mechanism
activated, including the symbols in the data section (KALLSYMS_ALL).

2.4 Structure Layout Randomization
Since version 4.13, the Linux kernel has offered structure layout
randomization as an additional security feature. If enabled, the
spatial order of members of structures marked with the attribute
__randomize_layout is shuffled at compilation time. Structures con-
taining only function pointers will always be shuffled, if not ex-
plicitly forbidden by using __no_randomize_layout. The shuffling is
realized as a compiler plugin, which adds an additional optimization
pass to the compilation pipeline. Shuffling is implemented deter-
ministically, based on a 256-bit random seed. This design decision
enables a shuffled kernel to load kernel modules that were compiled
later than the main kernel image, but has the serious drawback that
distributions need to publish the random seed, making security
gains in general-purpose distributions questionable.

2.5 Kernel Configuration
Because Linux targets a wide variety of use cases, it provides a
large number of compile-time switches that can be used to enable,
disable, and modify certain features in the kernel. Each of these
Kconfig variables is available to both the kernel’s custom Kbuild
build system and the source code, where they allow conditional
compilation of certain code fragments or source files (e.g., to con-
figure support for specialized hardware). The same system is used
to select which features are not embedded in the kernel but are
provided through kernel modules, and to configure a large number
of other settings ranging from the relatively benign (e.g., the default
host name) to critically important (e.g., CPU endianness).

This significantly complicates any analysis of the Linux kernel,
because measurements obtained on one configuration may not be
valid on another. Moreover, rare combinations of configuration
options may affect the system in unexpected ways or reveal subtle
bugs [25]. For our purposes, the key differences between different
configurations are the functions that are available for analysis and
the layouts of structures in the kernel: Since many features add
members related to their functionality to core kernel types, many
different configuration switches can independently change the lay-
outs of these types. This creates a vast number of possible structure
layouts even when randomization is disabled. For example, the
presence or absence of the 66 conditionally compiled segments in

the task_struct structure on Linux 5.8.14 depends on 56 different
Kconfig variables.

2.6 P-Code
P-Code is an intermediate representation specifically designed for
reverse engineering applications and is implemented by the popular
software reverse engineering suite Ghidra7.

Processor-specific instructions are lifted to a corresponding se-
quence of P-Code operations. This means that analyses built on top
of P-Code are architecture-agnostic, as long as the lifting process
is implemented for the architecture in question. Currently, Ghidra
has support for a broad range of architectures (the current ver-
sion claims to support 77 architecture variants), including the most
popular ones such as x86-64, MIPS, ARM, Sparc, PowerPC, etc.

Another advantage of P-Code is that it greatly simplifies imple-
mentation of higher-level analysis: The number of different P-Code
operations is limited to around 60, while CISC instruction sets such
as x86-64 are much more complex with somewhere between 1000
and 4000 distinct instructions depending on the method of counting.

Ghidra itself uses P-Code internally to implement many of its
analyses, the most notable being its decompiler.

3 KATANA
In the following, we discuss a new, binary-only, fully automated
approach for performing forensic memory analysis.

3.1 Design Goals
When we built Katana, we placed special emphasis on the provi-
sion of forensic analysis capabilities in a post-mortem, binary-only,
automated, and robust fashion. Below, we briefly explain each of
our design goals.

Post-Mortem Availability In many cases, it is desirable to
monitor a production system that has not previously been prepared
for forensic analysis. To this extent, our analysis approach needs
to be able to operate on a physical memory snapshot containing a
vanilla Linux kernel and user space without the presence of special
debugging information, the respective kernel configuration, or the
System.map file. A snapshot of the architectural state of the CPU
(containing model-specific registers and control registers) can be
present to speed up analysis, but is not strictly required.

Katana supports many different sources of memory snapshots,
whether acquired using physical tools (e.g., JTAG), using hypervisor
support (e.g., to analyze a compromised VM), or directly from the
target system (e.g., /proc/kcore). For situations in which we would
need Katana’s output in order to obtain a memory dump in the first
place (e.g., IoT devices without JTAG ports), we provide a kernel-
mode memory dumping utility (UDM) that can be used without
detailed knowledge about the target system (cf. Section 3.7).

Binary Only All information about the system should be de-
rived from the compiled kernel and the respective data structures.
We do not require the source code or the build toolchain of the ker-
nel at analysis time, even if some custom kernel patches are applied.
Of course, there are some limits to how many changes Katana will
be able to accommodate, but commonly used kernels with such
modifications (e.g., Android) are supported out-of-the-box. This
7https://ghidra-sre.org/
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Figure 1: Design of Katana

eases the analysis of embedded devices such as Wi-Fi routers and
IoT cameras that do not use “standard” off-the-shelf Linux distri-
butions, where manufacturers may be hesitant to provide source
code or debugging information even upon request.

Robust Automated Layout Derivation Katana should be
capable of finding all required data structures on its own, without
the analyst having to provide external information, such as the
kernel version or the layout of core data structures by means of a
profile-like database. This includes information such as the virtual
and physical KASLR bases, as well as the binary layout of ran-
domized kernel structures. This property offers a highly valuable
complement to existing analysis frameworks such as Rekall and
Volatility, as both struggle with the presence of KASLR, structure
layout randomization, or configuration changes that propagate to
the binary layout of the Linux kernel. The necessary maintenance
effort is minimized as Katana adjusts to changes in the kernel
source code and configuration without manual intervention, which
still remains the predominant method in existing tools to solve this
problem [2].

3.2 Overview
Katana operates in four core steps illustrated in Figure 1. Before
analysis ➊, a memory dump must be obtained from a virtual ma-
chine or a bare-metal device (e.g., via our UDM or as ELF-Core file).
➋ We scan the virtual address space for the kernel’s symbol table
to obtain a list of functions and their respective virtual addresses.
➌ Using this list, we invoke the kallsyms_on_each_symbol iterator
function using the popular Unicorn emulator [18] to obtain a more
complete list of symbols provided by the kernel and all loaded mod-
ules. ➍ We match the code within the memory snapshot against a
pre-generated database of accessor functions, which are known to
access or modify specific members of data structures. This matching
step is made architecture and instruction encoding independent
by first lifting the identified function to P-Code and processing
the resulting operation sequence. Suitable candidates for accessor
functions and information about invariant members are generated a
priori using a custom analysis plugin for the GNU C compiler (GCC)
that observes the compilation of a reference kernel. We distribute
pre-generated databases for all kernels between versions 3.7 and
5.15 and some older kernels alongside Katana (depicted as Kernel
DB in Figure 1).

Katana infers the layout of frequently used kernel structures in
a completely automated fashion based on the analysis results of the
GCC plugin. The analysis is remarkably robust in an overwhelming

number of cases, as the most important types are used at various
locations in the kernel resulting in a large number of potential
accessor functions. Should the analysis fail to obtain the structure
layout from any function, it can easily recover using the remaining
functions.

The output of step ➍ is called profile and could be used to drive
different kinds of forensic analysis tasks, e.g., listing all running
processes of a system. Katana has its own set of analysis plug-
ins (➎), but the profile could also be converted to drive analyses
implemented in the Volatility or Rekall frameworks.

3.3 Database Generation
To find the structure members we are interested in, we introduce
the notion of an accessor function. As the name indicates, this is
a kernel function that accesses a certain structure member. Note
that while pure accessor functions, which only have the designated
purpose of returning the value of a certain struct member, are
a rather uncommon programming construct in the Linux kernel,
there are plenty of functions which just access the desired data. For
example, the send_sig_all function in the kernel enumerates all
processes while sending a signal to each process. Katana can make
use of this fact to derive the location of the process list, sidestepping
the actual signaling purpose of the function. As such, a myriad of
functions can serve as accessor functions in the context of our work.
We generate a mapping between accessed structure members and
accessing functions using a GCC compiler plugin.

It is important to note that basing the analysis on the output
of a GCC compiler plugin does not contradict the binary-only de-
sign goal of our work. In fact, the source code analysis needs to
be performed only once on a kernel version reasonably close to
that of the target memory dump and can then be reused for other
memory dumps. Version and configuration mismatches are only
an issue if the code base of the relevant accessor functions changes
significantly. Otherwise, such a mismatch may mean missing out
on additional information that would have been present if changes
are taken into account, or a few of the results of the GCC plugin
becoming invalid. Neither will significantly worsen the analysis
results. We can further improve accuracy by selecting the database
matching to the Linux version, which can be extracted from the
memory dump without the use of accessor functions. We evaluate
the impact of configuration differences in Section 4.

GCC’s plugin system allows inserting arbitrary transformation
and optimization passes between those that are performed by de-
fault. We insert a custom non-modifying compiler pass behind the
einline pass, at which point many short functions that will always
be inlined (e.g., those marked in code with the always_inline at-
tribute) are already inlined. At this stage, GCC represents each
function using an intermediate language called GIMPLE. This rep-
resentation still closely resembles the structure of the original code,
albeit transformed into static single assignment (SSA) form.

We locate accesses of structure members by recursively walking
the operand trees in each of the GIMPLE statements and searching
for COMPONENT_REF (member access) and MEM_REF (dereference) nodes.
The context in which each node appears reveals how the structure
member is used. For example, if the accessed member is passed into
a function call, the function argument will refer to an SSA node.
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Performing a dataflow analysis across the SSA assignments yields
a COMPONENT_REF node that refers to the member in question.

In order to support many different kernel versions with different
required minimum/maximum GCC versions, the plugin supports
any GCC version starting with version 4.8. Using this setup, we
generated databases of structure accesses for Linux kernels starting
at version 2.6.33, although earlier kernels may also be supported.

3.4 Obtaining Kernel Symbols
With any memory snapshot, the first step is to map virtual ad-
dresses to physical memory. If the memory dump already comes
with page table information, or if it contains the location of the
page tables in register data (such as on x86 via the CR3 register),
this is straightforward. Otherwise, we can identify candidate page
tables in memory by their recursive structure, validate them based
on architecture-specific constraints, and find the kernel page table
by choosing the candidate with the largest number of valid ker-
nel memory mappings. Memory dumps created by our toolkit (c.f.
Section 3.7) already contain paging information.

Reading the Kernel Symbol Table Armed with the virtual
to physical mappings, we scan the virtual address range for the
location of the Linux kernel symbol table (.ksymtab; described in
more detail in Appendix A). By using the .ksymtab data, Katana
obtains the locations of exported function starts and global variables
in the memory dump.

Augmenting the Symbol List Using Kallsyms We are now
equipped with the names and addresses of all symbols the Linux
kernel exports using the EXPORT_SYMBOL macro. This list can be
substantially augmented using additional information provided by
the kallsyms mechanism.

The kallsyms_on_each_symbol function has been present in the
kernel since version 2.6.30. It iterates through all symbols known to
the kallsyms mechanism. For each iteration, this function transfers
control to a user-provided callback function. With the informa-
tion contained in the symbol table, Katana is able to find the
location of kallsyms_on_each_symbol in virtual memory and to sub-
sequently invoke it in the context of the memory snapshot. To be
tolerant to implementation changes, such as the presence of the
KALLSYMS_RELATIVE_BASE configuration flag, we execute this func-
tion in the Unicorn CPU emulator. Inside the emulator, we call
kallsyms_on_each_symbol with a prepared callback function as a
parameter. The emulated code will in turn hand control to the call-
back function for every entry present in the kallsyms database. This
allows us to obtain a list of memory locations of all non-static Linux
kernel functions. In the event that KALLSYMS_ALL is enabled, we are
also able to retrieve the addresses of symbols residing in the data
segment of the kernel.

In the unlikely case that kallsyms is fully disabled in the analysis
target, it is necessary to solve the function identification problem
using another approach. On its own, the information derived from
only the symbol table is insufficient to obtain good results. However,
this is not an issue in practice: kallsyms is enabled on all systems
we analyzed (including resource-constrained IoT devices), and a
required dependency for other kernel features (cf. Subsection 2.3).

Because using the kallsyms API allows modules to circumvent
licensing restrictions in the kernel, the kallsyms_on_each_symbol

function is no longer exported (but still available internally) starting
with Linux 5.7. In this case, we recover its location using the related
kprobes API, which is ordinarily used to place arbitrary breakpoints
in kernel code and returns the address where the breakpoint has
been set.

3.5 Automated Structure Layout
Reconstruction

In order to reason about the contents of the concrete memory dump,
we have to infer the offsets of structure members by matching the
machine code of the accessor functions with our pregenerated Ker-
nel DB. The matching process uses several properties maintained
during the compilation process: First, each accessor function, when
not inlined, has to obey the respective architecture-dependent Ap-
plication Binary Interface (ABI). Second, certain pointer calcula-
tions, such as the container_of macro, and the use of global vari-
ables result in recognizable instruction patterns.
We derived the following analyses from these observations:

ABI to caller function How arguments are passed to a func-
tion is defined by the ABI8. During analysis, Katana will exploit
this by tainting incoming arguments and tracking every access
that happens relative to a tainted register. In the example depicted
in Figure 2, we track the value of the rdi register (or its P-Code
equivalent). Note that its value is first moved to rbx, whose value is
preserved across function calls (as specified by the ABI). Our taint
analysis would now propagate the tainted property to the assigned
register (i.e., rbx). Then, the actual dereferencing operation happens
in line 6 (➀).

ABI to callee functions Similarly, calls to non-inlined func-
tions must follow the respective ABI. Therefore, we resolve the
address of every called function (e.g., printk in Figure 2) inside the
function body to its name. If our static analysis of the C code ob-
served that a call to this function contains relevant arguments (i.e.,
a field access), Katana tracks the affected arguments backwards
by following the observed data flow (e.g., across simple assign-
ments). Inside this slice, we find the last indirect memory access,
and consider the displacement used in that instruction as a potential
offset for the target field. For example, we can see this occurring in
Figure 2, when t->pid (➁) is passed to printk.

ABI from callee functions The return value location is spec-
ified by the respective ABI as well. Similar to the way we tracked
accesses to parameters, we track pointers that are being returned
by tainting the memory location that contains the return value after
a successful function call.

ABI from caller function Just as functions that are being
called must return their result in a predetermined location, the
function we are currently analyzing has to as well. If the currently
analyzed function returns a struct member, we will follow the data
flow backwards to identify the last indirect memory access that
affected the return register. In our imaginary function foobar, the
pid member of t is returned (➃). The data flow analysis shows that
the value in eax (the ABI-specified return register) comes from an
access with relative offset 0x3e0.

8For example, on x86-64, the System V ABI mandates that the first six arguments of a
function have to be passed in the registers rdi, rsi, rdx, rcx, r8, and r9.
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Source code:
1 int foobar(struct task_struct *t)

2 {

3 printk(KERN_DEBUG "Hey!\n");

4 if(t->mm ➀ != NULL) {

5 printk(KERN_INFO "PID: %d IPID: %d\n", t->

pid ➁ , init_task ->pid ➂ );

6 }

7 return t->pid ➃ ;

8 }

x86-64 disassembly (Intel syntax):
1 push rbx

2 mov rbx ,rdi

3 mov rdi ,0 xffffffff821fb5d4 # "Hey!"

4 call ffffffff810b9229 # <printk >

5 cmp QWORD PTR [rbx+0x3e0] ➀ ,0x0

6 je out
7 mov esi ,DWORD PTR [rbx+0x490] ➁

8 mov edx ,DWORD PTR [rip+0x131d6fb] ➂ # <init_task +0x490 >

9 mov rdi ,0 xffffffff821fb5dc # "PID: %d..."

10 call ffffffff810b9229 # <printk >

11 out:
12 mov eax ,DWORD PTR [rbx+0x3e0] ➃

13 pop rbx

14 ret

➊ Access via calling function parameter
➋ Access via ABI to callee functions
➌ Access via global properties
➍ Return of a local member
Visible structure offsets
Composed offset

Figure 2: Structure accesses in an example piece of C code, and the result of compiling them to assembly using GCC 9.

Access to globals Global variables in the kernel have to be ac-
cessed either relative to the current instruction pointer or through
the variable’s absolute address. While scanning a function, when-
ever such a reference to the data segment is encountered, we obtain
the closest known symbol location before that address and treat
the difference (within some reasonable limits) as the offset for the
respective field. From the information stored in our database, we
infer which of the fields was accessed. In Figure 2, foobar accesses
the pid member of the global variable init_task (➂). This pattern
also allows us to deduce the locations of some missing globals if
KALLSYMS_ALL is disabled.

The container_ofmacro To implement features such as linked
lists and hashtables, the Linux kernel often uses the container_of

macro to access parent objects containing other objects. For exam-
ple, task_struct objects contain themember tasks of type list_head.
In turn, list_head contains a member next, pointing to the next
object in the list. Typically, one would expect next to directly point
to the following task_struct object, however, it actually points to
the tasks member inside the next task_struct. This allows the ker-
nel to implement code that traverses these lists of type without
depending on the offset of the list_head inside each of the stored
objects. However, to access the actual object referenced by the list,
the pointer to the next list entry needs to be adjusted by that offset,
which is done in kernel sources by using the container_of macro.

We observed that in a large majority of cases, Ghidra will emit an
INT_ADD P-Code operation with a negative immediate as opposed
to a more natural INT_SUB operation with positive immediate.
This Ghidra-specific heuristic is consistent across architectures in
version 10.0.4 of Ghidra upon which we evaluated Katana. As
we observed similar patterns in the underlying machine code, we
believe this pattern will also be present in the lifting behavior of
future versions. During analysis, we collect these unusual arith-
metic operations and attempt to match them with known uses of
the container_ofmacro, which we detect in the AST with our GCC
plugin. Then, the displacement is likely the inverse of the offset of
the member referenced by the container_of macro.

Invariantmembers All techniques listed so far are driven by
Katana’s ability to identify and exploit ABI features of the machine
code during the invocation of a function. However, there are some
important members, which are accessed only inside a long call
chain of multiple static functions that are inlined into the calling
function. Due to additional compiler optimizations, these functions
are usually not matchable to the original dataflow for Katana.
Instead, these members can be partially recovered by relying on
a database of invariant members, i.e., structures that are not at all
covered by #ifdefs (and therefore do not change with configuration
changes) and are not marked for randomization. We extract these
members using our compiler plugin and use them in our majority
voting process with a double vote, but they can still be overruled
given sufficient contradictory evidence.

Specifics of P-Code and the overall algorithm As men-
tioned earlier, Katana’s structural matching is performed on P-
Code, which we acquire by accessing the Ghidra API. The classic
[reg+offset*mul] instruction pattern on x86-64 seen in Figure 2 is
decomposed into several P-Code instructions. We track P-Code’s
equivalent to registers and memory locations (so-called “varnodes”)
and emulate mathematical calculations on constants in order to
accurately follow the data flow. On every LOAD and STORE operation,
we determine if we can match the accessed object to our database.
Using P-Code also makes our analysis agnostic to compiler specifics,
because the semantics of the lifted representations remain the same
and will also be matched by our algorithm. Further details about
the lifting process can be found in Appendix C.

Our analyses are complicated by the fact that the compiler applies
various optimizations during compilation. The compiler is free to
reorder operations, as long as the data flow permits it, to inline
functions, and to eliminate dead code. We do not match conditions
between the source code and the machine code, meaning that each
time the control flow branches, inaccuracies may be introduced. To
address this, we perform a weighted majority voting on all offsets
recovered for a single struct member. The weights are applied
based on the type of analysis that the offset was recovered from and
reflect correctness probabilities that we empirically obtained from
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Algorithm 1: P-Code to source code database matching
S ← recovered function symbols;
D← access database for similar kernel version;
O ← ∅, mapping of members to offsets;
foreach recovered function f ∈ S do

A← ∅, ordered set of accesses;
foreach P-Code instruction i ∈ f do

if i is a structure member access on some o then
▷ Recover source or sink s and offset δ
s , δ ← taint-tracking(o);
A← A ∪ {(s, δ )};

end
if i is a register access with fixed offset δ < 0 and
|δ | < |δmax | then
A← A ∪ {(containerof, −δ )};

end
end
foreach P-Code analysis λ do

R← reference accesses from database D(f , λ);
foreach matching access a ∈ λ(A) do

▷ Fetch type t and memberm
t ,m← next(R);
O(t ,m) ← O(t ,m) ∪ {offset(a)};

end
end

end

analyzing the 85 kernels displayed in Table 3. Together with this
majority voting, we will see in Section 4 that these transformations
do not harm our analysis in almost all cases if the field inside
the structure is accessed frequently enough. Katana may pick an
incorrect candidate for a struct offset in a single accessor function,
but can correctly vote out the final offset.

A broad overview of our P-Code-to-database matching is de-
picted in Algorithm 1. We sequentially iterate over the P-Code
instruction stream of every recovered function, following direct
branches and analyzing both control flows of conditional branches,
combining their results and removing duplicates. When we en-
counter an instruction that could conceivably be a structure mem-
ber access, we follow our description of the taint tracking informa-
tion both forwards (where the result of the member access passes
to data sinks such as function call arguments) and backwards (to
data sources such as global variables and function parameters) as
described above, and log the sink or source and the recovered off-
set in an ordered list of accesses. Candidate accesses using the
container_of macro are treated similarly, but no taint tracking is
necessary. After obtaining the set of accesses for a function, we
separately consider each of our analysis passes. Reference accesses
from the database (containing type and member information) for
that specific analysis pass are matched one-by-one to the accesses
obtained from P-Code (which contribute the recovered offset).

3.6 Analysis Plugins
In total, Volatility implements 66 different analyses for Linux mem-
ory dumps. However, 14 analyses either do not work correctly as
per Volatility’s own source-code comments (e.g., linux_arp) or work
only on extremely outdated Linux versions. Therefore, creating a
profile for these analyses and executing them would not allow for
a fair evaluation on modern kernels. Instead, we identified and
reimplemented a set of important analyses found in existing work
(e.g., in Ligh et al. [15] and in Volatility) and include them directly
into the Katana framework. This design decision also allows us to
enable fallback access patterns for complex analyses and to avoid
using excessive structure accesses where it is not needed to fulfill
the analysis task. These excessive structure accesses tend to happen
in Volatility’s analyses as its profiles are always correct. Unlike for
Katana, relying on unnecessary structure accesses therefore does
not increase the probability that the whole plugin fails.

We have reimplemented the following analyses in Katana:

• We obtain the current kernel version banner from a global
symbol.
• We extract the kernel dmesg ringbuffer logging output from
the memory dump. The corresponding Volatility plugin is an
example of an outdated plugin, because the internal struc-
tures have changed in version 5.10 (released in December
2020) and Volatility has not adapted its analysis.
• We derive the list of modules currently loaded in the kernel.
• We obtain a process listing from the snapshot. This includes
both the process names, execution state, and the user ID
with whose permissions the process is running. From there,
we use the memory mappings stored by the kernel to pro-
duce ELF core files containing the virtual address space of
each userspace process. This allows us to match memory
segments in the snapshot to their respective processes. The
resulting core files can then be analyzed using classical re-
verse engineering, debugging, or forensic analysis tools.
• Based on the process list information, we retrieve informa-
tion about environment variables, a list of currently opened
files, and currently open sockets and active network con-
nections akin to the netstat command. Using this informa-
tion, an analyst can quite accurately reconstruct the state of
userspace processes at the time the snapshot was taken.
• We also provide the ability to list all network neighbor tables
including the ARP table. This allows the analyst to recon-
struct a list of IPv4 and IPv6 machines the analysis target
was communicating with at snapshot time.
• An analysis walking through the kernel heap’s set of allo-
cated and formerly allocated objects is included. Of particular
interest is the heap cache containing dentry (directory entry)
objects. We associated each of these objects with correspond-
ing metadata, which allowed us to build a timeline of file
accesses. Volatility’s’s’s dentry_cache plugin performs essen-
tially the same analysis, but has not been updated since 2014
and requires a global symbol that was removed with Linux
3.6 (dated September 2012). Therefore, it operates only on
kernels that use the SLAB allocator, while we also support
newer kernels with the now-default SLUB allocator. Further-
more, additional security features (i.e., pointer mangling of
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free list pointers) have been developed since then and are,
therefore, not supported.
This plugin is one example requiring the knowledge of many
kernel structures, where our own implementation utilizes
an alternative access strategy if a key structure offset could
not be recovered.

3.7 Module-based Snapshot Creation
While capturing a memory dump from a virtual machine or via
hardware debugging primitives such as JTAG should generally
be preferred, these approaches are often highly specific to each
device or virtualization environment, and not all devices expose
the necessary interfaces for this kind of access.

For analyzing Android devices, for example, it has been an es-
tablished practice to insert a kernel module to dump the system
memory from within the same privilege domain as the operating
system. One frequently used solution that takes this approach is
the LiME toolkit [15, p. 580].

However, building a kernel module generally requires access to
the kernel headers, the kernel configuration, and the seed used in
structure layout randomization, none of which are available in a
binary-only analysis setting. Unfortunately, it is also not feasible to
precompile LiME for the different kernels one may encounter: Linux
kernel modules are generally compatible only with the specific
version of the kernel for which they were compiled.

To allow also for memory snapshot acquisition in a binary-only
setting, the Katana framework includes a module that adapts dy-
namically to the targeted kernel version. The snapshotting pro-
cesses is described in the following. First, a custom loader and the
LKM are compiled for the target architecture (currently x86-64,
ARM64, and 32-bit MIPS systems are supported). Second, the loader
and the LKM are transferred to the analysis target. Afterward, the
loader will analyze the existing kernel modules on the system and
alter the .modinfo section of the LKM accordingly, parameterize
the LKM with the exact Linux version, and issue the insmod sys-
tem call to insert the LKM. The LKM is designed to avoid direct
accesses to structure members that are influenced by kernel con-
figuration options, because their offsets are still unknown at this
point in time. Where APIs have changed over the years, we use the
injected kernel version information to choose between alternative
implementations.

In a last step, our module sends a full memory dump of any
supported system to a server on the local network, including the
full page table of the CPU on which the memory dump is taken. The
server can then carry out the snapshot analysis steps of Katana.
Our kernel module is loadable on any Linux kernel since version
2.6.18 (dated September 2006) and enables us to obtain memory
snapshots in situations where other tools may not be usable. These
situations could arise when the device does not allow direct physical
exfiltration, e.g., with an Android phone or a bare-metal server. Such
devices usually do not offer debugging interfaces like JTAG.

4 LAB EVALUATION: COMPARISON TO
VOLATILITY

For the first part of our evaluation, we create lab conditions (i.e., ker-
nels with debug symbols for ground truth) such that we can quanti-
tatively evaluate the performance of Katana. In consequence, this
experiment illustrates the magnitude of the impact of varying ker-
nel structures in practice compared to profiles created heuristically
by Katana.

To conduct this experiment, we first assess the accuracy of the
structure layouts recovered by Katana in the presence of different
randomized kernel configurations, and compare the results with the
fields required by Volatility’s’s for its various analyses. We utilize
Volatility’s own analyses here for a fair comparison, but exclude 14
analyses that do not work correctly (see Section 3.6).

Experiment Setup To evaluate our automated structure lay-
out recovery, we analyzed 85 different builds of 7 kernel versions
and compared the recovered member offsets with the debugging
symbols for these kernels. More specifically, to cover a large range
of kernel versions, we chose to evaluate Katana on five current
long-term support versions, an older, now unsupported, LTS ver-
sion, and a recent stable kernel version. For each kernel version,
we generate a reference database for Katana based on that kernel
version’s default configuration (defconfig). Afterwards, we compile
additional variants of each kernel version with modified configura-
tions, and examine how well the reference database generalizes to
the changes.

To generate test kernels, we make use of Kbuild’s randconfig op-
tion, which randomizes the features that are enabled in the kernel.
While some of these kernels may not be bootable, this produces
a set of unbiased configurations, in which features and their cor-
responding data structures differ from the reference kernel. Using
this process, we generate 10 different configurations of varying size
on each of the 7 kernel versions we investigated. Support for x86-64
with SMP multithreading, printk, and kernel module support is
forcibly enabled on all kernels. Where supported, we generate two
kernels with the default configuration and structure layout ran-
domization enabled. Furthermore, we save ground truth structure
layout information for all kernels. In order to avoid booting each of
the 85 kernels — after all, some of them might not even be bootable
— we let Katana extract structure offsets from the .text sections
of the unbooted kernel images.

We identify the structures and members required by Volatility’s
analyses by inspecting their implementation. For these members,
we compare the structure offsets that Katana extracted from the
kernel images against the ground truth information. Since Volatility
uses the offsets of the reference profile to power the 52 analysis
plugins, we have to consider a single differing offset in the target
kernel as leading to analysis failure.

Results Across the 70 different kernels with randomized con-
figurations, we correctly recover between 65.4% and 79.3% (average:
73.58%) of all members identified by the reference database. This
also includes fields used only internally by drivers or other spe-
cialized code that may not even be active on the target system and
that would usually be irrelevant for forensic analysis. However, it
would be incorrect to exclude these members from the statistical
evaluation ahead of time, because they may become interesting for
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future analyses, and a manual review of all members is impossible.
On average, wrong offsets are recovered by Katana for 15.14% of
members (8.1% – 20.8%), and no value can be recovered for the
remaining 11.28% of members (6.4% – 16.9%).

Due to the structure differences introduced by the configuration
changes, Volatility’s is able to successfully perform only 9 to 15
of the 52 analyses (median: 10), while Katana correctly recovers
enough offsets to perform between 19 and 44 analyses (median:
34.5).

If structure layout randomization is enabled, Katana’s perfor-
mance improves further: We now correctly recover an average of
86.46% of known offsets. Again, Katana significantly outperforms
Volatility; we manage to run between 25 and 36 analyses (median:
34), while Volatility can only perform exactly 15 on each of the 8
tested kernels.

On the reference kernels for each version, Volatility’s (with per-
fect debugging information) is able to run all 52 analyses. Katana
correctly recovers the offsets of 85.17% of known members on
average, and can perform between 34 and 43 of the 52 analyses.
Figures 3 and 4 summarize these results; details can be found in
Table 3, including the total number of members to which offset
recovery relates9.

In general, we can see that, when ground truth information is
not available, Katana outperforms Volatility with regard to the
number of correctly performed analyses. Often, Katana can still
execute central analyses including listing processes (linux_pslist,

9Note that since kernels with structure layout randomization contain un-randomized
debugging information, we instead report the number of members as observed by our
GCC plugin during compilation, which for Linux 4.19 and 4.14 differs significantly
from the set of members reported by debugging information.

supported 41x by Katana, but by Volatility only in the 7 ref-
erence kernels) and environment (linux_psenv, 68x vs. 7x), net-
work connections (linux_netstat, 66x vs. 7x), and module list-
ings (linux_lsmod 78x vs. 42x). Where Katana fails to perform
Volatility’s analyses, this is most frequently caused by the archi-
tectural differences between the two: Volatility generally opts to
require more structure members than strictly necessary for the
analysis (e.g., linux_check_syscall verifies the integrity of the sys-
tem call table, but needs to recover a file from memory in order to
do so, even though both syscall numbers and the target pointers
are known ahead-of-time), and 11 of the plugins perform integrity
checking with the goal of detecting the presence of malware (e.g.,
linux_check_inline_kernel), which requires a particularly large
number of members. Since analyses are all-or-nothing, i.e., a single
misidentified member leads to analysis failure, there is a significant
threshold effect: slight differences in recovery can lead to large dif-
ferences in the number of successfully performed analyses. This can
be observed, e.g., in the kernels with structure layout randomization
for kernels 5.8.14 and 5.4.70.

5 REAL-WORLD EVALUATION
To evaluate Katana in real-world usage scenarios, we cannot rely
on the availability of ground-truth information. Instead, we exe-
cuted all of our implemented analyses (see Section 3.6) on a set of
test systems and manually validated the correctness of the output.
The set contains a variety of popular Linux distributions, snapshots
from non-x86 architectures, a VM infected with malware, and off-
the-shelf IoT devices. Our results are described in the following
sections.

5.1 Linux Distributions and Variants
To obtain a comprehensive overview of common Linux kernel con-
figurations, we collected a broad variety of popular Linux distri-
butions and variants including Android, with 45 kernels ranging
from version 3.9.5 (June 2013) to 5.11.16 (May 2021). We generate
snapshots of fully booted QEMU virtual machines using QEMU’s
dump-guest-memory command and analyzed them with all analysis
plugins we implemented.

We found that the kallsyms feature is enabled on all of the dis-
tributions and release versions examined, and that KALLSYMS_ALL
(adding global variables and non-exported functions to the set of
symbols available through kallsyms) is enabled on all systems ex-
cept for Debian Jessie and Android 9.

We were able to successfully recover the kernel version banner,
dmesg ringbuffer contents, and the fullmodule listing on all memory
dumps except for Android 11, where we mis-predicted an offset. In
all other cases, Katana recovered the offsets for the module struct,
and the address of the internal linkage symbol modules successfully.
On the other three Android snapshots, Katana correctly recovered
the offsets in the module struct, but no modules were loaded.

Our more complex analyses were able to automatically produce
task listings and core dumps for the userspace processes as well as
the list of open file descriptors for all 45 images. We verified that
the generated core dumps matched the memory maps reported by
the /proc entry for that process on the virtual machines themselves.
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Enumerating the processes’ environment variables succeeded
on all but two images (where empty environment strings were
reported). Network-related analyses appeared to be more fragile:
listing the ARP table and network connection information both
succeeded in 35 of the images. Our analysis of the kernel cache
to discover a history of file accesses succeeded on all but seven
images taken from standard Linux distributions, but failed on all
taken from Android systems.

A listing of themembers used by our analysis passes can be found
in Appendix B. Furthermore, a detailed listing of all Linux systems
showing which of our analyses work can be found in Table 2.

5.2 IoT Devices
Katana is specifically designed to also support forensic analysis
of IoT devices. IoT devices are by nature restricted to binary-only
approaches, since many vendors do not publish debugging symbols,
build configurations, or modifications to the kernel source. We
therefore evaluate Katana on two MIPS-based physical devices
and one ARM64-based VM (results are also included in Table 2).
All analyses were performed cross-architecture against a database
generated on x86-64.

Katana was able to perform all of our analyses except the file
access history on the memory dump from an ARM64 VM running
Linux 4.1910. On a TP-Link TL-WR740N router and a Tapo C200
smart camera, Katana managed to recover all data necessary to
correctly extract both system (modules, dmesg log, etc.) and pro-
cess information (including environment variables and open file
descriptors). Missing offsets for some rarely used members pre-
vented us from running some of the more complex analyses (e.g.,
the file access history). The router contains a MIPS 32-bit big endian
processor running an extremely outdated Linux 2.6.31; the camera
runs Linux 3.10 on a little-endian MIPS 32-bit chip. We attached
to both devices using UART and produced memory dumps using
Katana’s custom dumper.

5.3 Real-World Malware Analysis
In order to prove Katana’s practical utility in a realistic post-
compromise scenario (malware infection with persistence), we de-
ployed a sample11 of the RedXORmalware [13], whichwe randomly
selected from VirusShare, on an isolated virtual machine (Ubuntu
18.04, Linux 4.15) and analyzed a memory snapshot using Katana.
We were able to successfully recover the malware (and its process
image) from the list of processes. From the memory dump, Katana
also obtained a timeline of file accesses and the list of files currently
open at the time the snapshot was taken (revealing the source of the
infection and its persistence mechanism), and observed that there
were no currently open network connections or sockets. Our results
(obtained in a post-mortem setting) closely matched those obtained
both by malware analysis frameworks using live introspection, and
manual analysis [13]. Detailed results can be found in Appendix D.

10At the time of evaluation, QEMU did not implement dumping memory of ARM64
guests, so we deferred to using Katana’s memory dumper instead (Appendix 3.7).
11SHA256: 4f159f6a745752e3211ca1146830c86075fd8f5db60f704605a57db904dc
f5c5

5.4 Performance
We evaluated Katana’s performance on the real-world snapshots
from Section 5.1. Overall, Katana performs fast enough to be used
on a daily basis by an analyst. We exclude the IoT device snapshots
from the data below due to their significantly smaller size.
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Figure 5: Performance on differently sized memory snap-
shots

Database Generation During our evaluation, we did not ob-
serve a noticeable impact of our GCC plugin on kernel compilation
times. This means that creating the database of accessor functions
is approximately as fast as normal defconfig kernel build (about five
minutes on our hardware, depending on the kernel version), and
can be performed using multiple cores. We used an AMD Ryzen
2950X with 32GB of RAM and compiled the kernel with eight par-
allel threads (-j8). During normal analysis, this database will be
precomputed in almost all cases; we will distribute databases for
kernels 3.7 through 5.12 alongside Katana.

Layout Reconstruction Locating the symbol table took be-
tween 32 and 193 seconds depending on the symbol table layout,
for an average of 72 seconds. Emulating kallsyms takes between 1.5
and 6.1 seconds; the impact on end-to-end performance is negligi-
ble. Recovering the structure layout using Ghidra takes the largest
amount of time. On average, processing any of the 45 non-IoT snap-
shots listed in Table 2 took 883 seconds, with values between 10.5
and 18.5 minutes.

Analyses The time taken for further analysis is generally neg-
ligible. All analyses, except those for which userspace paging needs
to be reconstructed (environment variables, and process core dump
creation), finished within six seconds on all 45 non-IoT snapshots.
This matches the speed of comparable Volatility analyses. The file
access history had both the highest average and maximum run-
time, at 2.4 and 6.2 seconds, respectively. The performance impact
of recreating userspace paging greatly depends on the amount of
memory that needs to be mapped and its page table layout. For ex-
ample, extracting 4.5GB of core files across 107 processes from the
Android 10 snapshot took 169s, while memory dumps with fewer
processes were much faster (on average, 32 seconds for 470MB of
output).

Impact of Snapshot Size The size of the memory dump itself
does not significantly affect the end-to-end analysis time. This is
due to the fact that the analysis is strongly affected by what data
is in the snapshot, rather than how much. Figure 5 compares the
average performance of each of the layout reconstruction steps
for otherwise identical memory dumps of different sizes (averaged
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over multiple dumps). We see that the overall performance is essen-
tially independent of the size of the snapshot. This is expected for
kallsyms emulation and later steps (the size of the input to these
steps is bounded by the specifics of the kernel in question, rather
than the amount of kernel data). The symbol table search does scale
with memory size, but only slightly — more time is spent validating
matches than actually scanning the memory.

6 DISCUSSION
Using P-Code allowsKatana to target a wide range of devices when
an appropriate P-Code implementation is available. We showed
its effectiveness for analyzing targets such as Linux distributions
(cf. Section 5.1) and IoT devices (cf. Section 5.2). Even a mismatch
between the architecture of the generated database of accessor
functions and the running kernel still allowed Katana to provide
valuable forensic information. In case Katana produces false pos-
itives, an analyst should easily be able to tell them apart from
accurate information. During our evaluation, we only encountered
results that could be misinterpreted as a false negative once: the
empty module list on Android kernels.

6.1 Design Decisions and their Impact
In previous iterations of Katana, we based our analysis implemen-
tation on the Capstone disassembler and its metadata. During the
transition to P-Code, we observed a general increase in accuracy
of our analyses when compared to the assembly-based approach.
Ghidra’s ability to derive higher-level meaning from machine code
during the lifting process (a feature heavily relied upon by Ghidra’s
decompiler) greatly improved the quality of our results, and we
profited from out-of-the-box support for multiple architectures.

Preserving additional information on invariant members and in-
jecting it into the majority vote provides a significant improvement
in the recovery rate compared to only using accessor functions. In
essence, this combines the Volatility approach of assuming offsets
never change (which we can guarantee in the case of invariant
members as long as the kernel was not modified) with the acces-
sor function approach (which allows us to overrule the former
in case our assumptions are not correct). This maintains most of
the flexibility of the latter while still benefiting from ground-truth
information.

We decided to re-implement some of Volatility’s analyses with
Katana in order to update the analyses to work with recent ker-
nels and to reduce dependence on technically optional structure
members. Volatility can assume these are always known because
of perfect profiles, but this makes it significantly more difficult for
Katana to fully drive Volatility’s analyses in cases where almost
all, but not all members are recovered correctly.

Instead of relying on ABI characteristics for matching, another
naïve approachwould be to utilize BinDiff to perform an instruction-
to-instruction matching at binary level and match the changed
offsets to structure members. However, this is particularly sensi-
tive to changes in optimization level or compiler version and to
larger code changes (e.g., #ifdefs). We found that even if we let
BinDiff utilize kallsyms information for function identification, a
precise instruction-to-instruction matching cannot be performed
in the majority of cases (e.g., Figure 9), and mapping instructions

to structure members remains a difficult task. Even with debugging
information available, DWARF can only map address ranges to line
ranges, which is a too coarse to identify individual accesses.

6.2 Rootkit Resilience
Finally, we discuss our ideas in the context of Direct Kernel Struc-
ture Manipulation (DKSM) [1]. This usually necessitates a lengthy
discourse on the presence of rootkits and the implications for the
trustworthiness of any results obtained from an infected system.
We acknowledge that Katana could be circumvented by attackers
who manipulate the data structures, with potentially disastrous
implications for the analysis results. However, we would like to
point out that a DKSM attack not only has to change the desired
core data structure of the operating system, but also every single
accessor function operating on such structures to maintain system
stability. This is a challenging task for an attacker, especially be-
cause updating the kernel code means that Katanawill also receive
the updated information from the newly generated code. The only
way for an attacker to adapt would be to carefully rearrange the
basic blocks of the functions inspected by our approach in a way
that disassembly logic becomes oblivious to the member locations
within structures. This is a non-trivial task, even for an advanced
attacker.

Other approaches such as LogicMem [21] are much easier to
fool. LogicMem starts its analysis by scanning the memory for
the string "swapper/0" to find the first process in the task list. A
rootkit with full access to kernel memory might create a fake task
list and rename the "swapper/0" process afterwards. While it is
possible to create a second kernel image in memory containing
wrong offsets, it is not easily possible to hide the .text segment of
the operating kernel. In such a case, Katana can detect that two
conflicting kernels are placed in memory and warn the analyst.

As Katana’s ideas rely solely on the structure of the .text seg-
ment of the kernel, the structure layout derivation is not affected by
attacks like Direct Kernel Object Manipulation (DKOM). Of course,
analysis passes that access manipulated objects may still be im-
peded by DKOM, but not to a greater extent than other tools that
analyze memory.

6.3 Real World Impact
We showed that Katana can perform vital analyses of Volatility
on most major Linux distributions, even without the presence of
debugging symbols or in the presence of distributor patches. While
the Volatility Foundation maintains a repository of pre-generated
profiles for most major Linux distributions, this repository has
become outdated and can, by design, not include every custom
kernel built for IoT devices. If no ready-to-use profile is available,
an analyst might consider switching to Katana in order to avoid
the lengthy process of creating a Volatility profile. Moreover, those
profiles can be generated only for kernels where debugging infor-
mation is published, which is not the case for distributions with
self-compiled kernels (e.g., Gentoo), rolling release distributions
where the kernel quickly becomes outdated (e.g., Arch Linux) or
IoT devices where manufactures are hesitant to provide access to
build toolchains, kernel configurations, and source code. Here, a
binary-only analysis is the only viable option.
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Katana can also be used to generate profiles suitable for Volatil-
ity in order to allow reusing existing analyses. However, Volatility’s
codebase is barely maintained and stuck on Python 2. Its Python 3
successor, Volatility 3, does not yet support many Linux analyses.
Other binary analysis frameworks like Avatar2 [17] could also be
enriched with forensic information. Taken together, we believe
Katana closes an important gap in obtaining forensic information
on Linux.

7 RELATEDWORK
Our closest competitor is AutoProfile [19], which evolved as con-
current research to our own. It is also based on code-based analysis
extracting structure offsets from the kernel’s code segment. While
the overall derivation approach is similar, there are important differ-
ences. First, we base our analysis on Ghidra’s P-Code intermediate
representation whereasAutoProfile’s taint engine is deeply based
on x86-64 and currently only supports this architecture. The lead
author stated to us on request that even though extending Auto-
Profile to other architectures would be possible, it would require a
substantial amount of engineering effort. Furthermore, we showed
Katana’s capabilities to perform analysis cross-platform, i.e. to
analyze a MIPS-based IoT device with a x86 profile, which is not
possible at all with AutoProfile. Second, we do not rely on the
repeated use of an SMT solver in the final processing step to resolve
conflicting structure offsets. Repeated solving of an SMT problem
containing constraints for all structures in the kernel will take a
substantial amount of time. We assume this to be the key reason for
our much quicker analysis (AutoProfile claims an analysis time
of 8 hours for a 2 GB memory dump vs 20min in case of Katana).

LogicMem [21] solely analyzes the volatile runtime data of the
Linux operating system and focuses on finding the task list inside
the memory dump. This limits the number of analyses that can be
performed to structures that are related to the task_struct structure
definition. Particularly, an analysis on heap objects of the kernel is
not possible. In contrast to Katana, generating the inference rules
for every structure involves manual work. Furthermore, LogicMem
is unable to handle structure layout randomization.

Besides these two recent proposals, a multitude of methods for
monitoring the state of virtual machines (VMs) using the hypervi-
sor have been suggested. These approaches are typically grouped
into Guest Assisted, Debugger Assisted, Compiler Assisted, Binary
Analysis, and Manual [2]. In the following, for every group, we
highlight a few selected approaches.

Manual Approach Despite the fact that manual analysis is
a tedious task, it is still chosen by a majority of academic foren-
sic analysis projects [2]. Manual approaches rely on the human
to solve the semantic gap problem and as such are naturally not
scalable. VMscope [11] intercepts all CPU instructions executed on
the VM. If an instruction performing a system call is encountered,
the corresponding handler is executed. These handlers were imple-
mented manually for every supported system call, each of which
derives semantic meaning from the respective system call operation.
RAMPARSER [10] attempts to recover key fields of a specific set
of kernel structs. These key fields are recovered by reverse engi-
neering certain manually picked functions that access or modify
them. Additionally, heuristics that are specific to the respective

kernel struct are employed to further deduce offsets to key struct
fields. This has been shown to work well, but requires substantial
manual effort for each specific struct and field that needs to be
recovered. Other manually assisted approaches like Panorama [27]
and Ekkys [7] rely on manual reconstruction of important kernel
abstractions like processes or files.

In contrast to the previously named tools, there are also signature-
based tools that perform the memory snapshot analysis in a bottom-
up way, i.e., the analysis does not start from a known global pointer.
Instead, a brute-force scan of all available memory is performed in
order to detect interesting kernel structures. This memory scanning
technique allows detection of kernel objects that have intentionally
been hidden by malware, for example, by disconnecting it from
the global object graph. However, all signature based detection
tools generate their signatures from known kernel structure layouts
[6, 14]. Most likely this is done to keep the false positive rate low.

Debugger Assisted Approach Besides Volatility and Rekall,
which have already been discussed, also libVMI12 can be put into
this category with the same drawbacks.HookMap [26] leverages the
System.map file to obtain the position of kernel symbols. However,
the System.map file severely limits possibilities of analysis as no
knowledge of the layout of kernel structs is contained.

Binary Analysis Approach Binary analysis approaches do
not rely on any external information like debugging symbols and
instead operate only on the raw binary image. RAMAnalyzer [28]
starts out the analysis by scanning the binary image for a specific
crash information string, which is generated early on in the Linux
Kernel boot process. This string contains the position of certain
symbols that enable recovery of the page global directory. Access to
kallsyms then allows recovery of exported and unexported kernel
symbols. To conduct analysis on the recovered symbols, structure
layouts are identified in a fashion similar to RAMPARSER [10]. In
contrast to RAMAnalyzer, Katana automatically recovers a wide
variety of structure fields and, therefore, eases development of
future analyses, which might require a completely new set of fields.

BinDiff [29] andDiaphora [12] are frameworks that aim to match
functions between different versions of the same binary. They do
not recover structure layouts by themselves. ORIGEN [8] uses Bin-
Diff ’s binary-to-binary matching in order to translate layout in-
formation between kernels. To identify structure accesses (“offset
revealing instructions”) in the reference kernel, they rely on a com-
bination of static and dynamic analysis (including tracing dynamic
allocations of the target types). Then, ORIGEN obtains a one-to-one
instruction matching using BinDiff, and attempts to recover the off-
sets from the equivalent instruction in the target kernel. However,
the large number of different structures makes a manual tagging
approach of all potentially interesting types an infeasible task, and
obtaining full coverage in live execution is even more difficult: E.g.,
consider a rare access that only happens under specific hardware
conditions — ORIGEN’s dynamic analysis cannot find the access
and, in turn, will not be able to recover the offset. Furthermore,
ORIGEN’s evaluation on the kernel is limited to the task_struct;
adding further types seems to require tedious manual work.

Compiler Assisted Approach InSight [24] constructs a map
of kernel objects by starting with global objects and following the

12http://libvmi.com/
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pointer members of each object. However, many code paths in the
Linux kernel cast pointers to a different type or perform various
other operations to them before actually accessing the pointed to
memory. To avoid analysis faults caused by this dynamic behavior,
InSight performs static code analysis on the kernel source code in
order to infer the dynamic behavior of pointer members.

SigGraph [16] utilizes a custom compiler pass to infer the graph
structure formed by pointers between different kernel objects of
interest. By performing a brute-force scan over the entire memory,
it is possible to find instances of the targeted data structures.

Guest Assisted Approach Guest-assisted approaches gen-
erally require access to the running system, such that either a
program can be installed on the guest or the OS itself can be modi-
fied. Therefore, these approaches are not suitable for a post-mortem
analysis setup. Virtuoso [5], VMST [9], TZB [4], PoKeR [22], and
Hybrid-Bridge [23] try to solve the semantic gap problem by con-
verting an in-guest analysis program to an out-of-guest analysis
program, by recording one or many instruction/memory access
traces of the overall system. The instruction traces are translated
to an out-of-guest analysis program.

8 CONCLUSION
We presented Katana, a tool for Linux forensics. It derives symbol
information of the running Linux system from the symtab and ex-
tends them with the symbol information made available through
the kallsyms feature. From there, Katana is able to partially recon-
struct the memory layout of central operating system structures in
a fully automated way so that essential analyses of Volatility can
be conducted. Our database generation is based on the concept of
accessor functions, whose disassembly leaks information about the
memory layout of kernel structs.

Furthermore, we are the first who conducted a large study on how
code-based profile generation approaches perform for all structures
in the Linux kernel using a set of modern analysis plugins on an
extensive set of 85 different kernels. Another important result of
our research is that forensic profiles can generalize from a default
kernel configuration to other kernel configurations (like those used
by most major distributions) and CPU architectures sufficiently
well in order to perform common forensic analysis tasks.

We conclude that the combination of aggregate symbol informa-
tion and structure layout derivation from compiled machine code
is a promising approach for building robust, automated and binary-
only analysis tools. Katana, which we release to the public, serves
as a prototype implementation of our vision to enhance practical
Linux forensics, and hopefully sparks further research ideas.
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ff123123 134ea15 ff12310a

ff123123 134ea15

ffffffffff123123 ffffffff8134ea15

kallsyms_on_each_symbol\x00

0xffffffff8134ea15 printk:
0xffffffff8134ea15 sub rsp, 58h
0xffffffff8134ea19 lea rax, [rsp+60h]
0xffffffff8134ea1e mov [rsp+28h], rsi

.

.

.

0xffffffff8134ea58 add rsp, 58h

0xffffffff8134ea5c retn

. . .

.ksymtab
(since 5.4)

.ksymtab
(4.19 – 5.3)
.ksymtab
(until 4.18)

.kstrtab

.text

&printk = &d + d
d

namespace

Figure 6: Structure of the symbol table on x86-64

A SYMBOL TABLE LAYOUT
The symtab is separated into two sections compiled into the kernel
ELF file. The first section (.kstrtab or .ksymtab_strings) contains
the ASCII representation of the names of all symbols separated by a
zero byte (optionally compressing strings with matching prefixes).
A second section (.ksymtab) contains pointers to the symbol names
and their actual locations in memory. Figure 6 shows the structure
of the symbol table across kernel versions. For space efficiency,
on some 64-bit kernels starting with Linux 4.19, 8-byte absolute
references inside .ksymtab were replaced by 4-byte relative virtual
addresses: this encoding scheme replaces an absolute value a with
the relative distance d between the target and the storage location
of d. Since Linux 5.4, symbols are additionally organized in name-
spaces to optionally limit symbol visibility within subsystems13.
This feature requires an additional 4-byte relative virtual address
pointing to the name of the namespace to which the symbol belongs.
During analysis, we scan for all possible variants.

B ANALYSIS PASSES
Table 1 lists the members of which we need to reconstruct the off-
sets for the first few of the analyses described in Section 5. Extract-
ing any task-based information additionally requires the init_task

symbol (available via the symtab), the module list requires the
kallsyms-only modules variable (remember that data symbols are
only available in presence of the KALLSYMS_ALL configuration op-
tion). The Linux version banner and Dmesg log only require global
variables but no structure members.

C P-CODE LIFTING
In the following, we will give a more detailed example of how
x86-64 assembly maps to P-Code. For this, we depicted a simple
imaginary kernel function pcode in Figure 7 that accesses a member
of its parameter and stores it in a local variable. Afterwards, the

13https://lkml.org/lkml/2018/7/16/566

Analysis Data type Member

Modules
list_head next
module list
module name

Task listing

cred uid
list_head next
mm_struct pgd
task_struct comm
task_struct cred
task_struct mm or active_mm
task_struct pid
task_struct state
task_struct tasks

Open files

dentry d_name
dentry d_parent
fdtable max_fds
fdtable fd
file f_path
files_struct fdt
fs_struct root
list_head next
mount mnt (from Linux 3.3)
path dentry
path mnt
qstr name
task_struct comm
task_struct files
task_struct fs
task_struct pid
task_struct tasks
vfsmount mnt_mountpoint (from Linux 3.3)

Environment

list_head next
mm_struct pgd
mm_struct env_start
mm_struct env_end (optional)
task_struct comm
task_struct mm or active_mm
task_struct pid
task_struct tasks

Table 1: Structuremembers used for the first few of the anal-
yses described in Section 5

address of mmap_sem inside the local variables object is passed to the
function down_read. When the first parameter access occurs, it is
performed by a simple mov instruction with relative displacement
to the register rdi.

In P-Code, values including registers and memory locations are
both represented by varnodes: triples consisting of the relevant
address space (RAM, registers, constants, and temporary values),
an offset, and a size. Operations transform one or more input varn-
odes into an (optional) output varnode given an opcode such as
INT_ADD that dictates the semantics of the operation. Here, the
mapping (Kernel DB) between varnodes and x86-64 registers is
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Source code:
1 int pcode(struct task_struct *t)

2 {

3 struct mm_struct* mm = t->mm;

4 down_read (&mm ->mmap_sem);

5 return 0;

6 }

x86-64 disassembly:
1 sub rsp , 0x8

2 mov rdi , QWORD PTR [rdi + 0x380]

3 add rdi , 0x38

4 call 0xffffffff810b9229

5 xor eax , eax

6 add rsp , 0x8

7 ret

P-Code operations:
1 (reg , 0x20 , 8) INT_SUB (reg , 0x20 , 8), (const , 0x8 , 8)
2 (uniq , 0x30 , 8) INT_ADD (reg , 0x38 , 8), (const , 0x380, 8)

3 (uniq , 0x38 , 8) LOAD (const , 0x1b1 , 4), (unique , 0x30 , 8)

4 (reg , 0x38 , 8) COPY (unique , 0x38 , 8)
5 (reg , 0x200 , 1) INT_CARRY (reg , 0x38 , 8), (const , 0x38 , 8)

6 (reg , 0x20b , 1) INT_SCARRY (reg , 0x38 , 8), (const , 0x38 , 8)

7 (reg , 0x38 , 8) INT_ADD (reg , 0x38 , 8), (const , 0x38, 8)

8 (reg , 0x207 , 1) INT_SLESS (reg , 0x38 , 8), (const , 0x0 , 8)

9 (reg , 0x206 , 1) INT_EQUAL (reg , 0x38 , 8), (const , 0x0 , 8)
10 (reg , 0x20 , 8) INT_SUB (reg , 0x20 , 8), (const , 0x8 , 8)

11 (------------) STORE (const , 0x1b1 , 8), (reg , 0x20 , 8), (const , 0

xffffffff810b7320 , 8)

12 (------------) CALL (ram , 0xffffffff810b9229 , 8)
13 (reg , 0x200 , 1) COPY (const , 0x0 , 1)

14 (reg , 0x20b , 1) COPY (const , 0x0 , 1)

15 (reg , 0x0, 4) INT_XOR (reg , 0x0, 4), (reg , 0x0, 4)

16 (reg , 0x0, 8) INT_ZEXT (reg , 0x0 , 4)

17 (reg , 0x207 , 1) INT_SLESS (reg , 0x0, 4), (const , 0x0 , 4)

18 (reg , 0x206 , 1) INT_EQUAL (reg , 0x0, 4), (const , 0x0 , 4)
19 (reg , 0x200 , 1) INT_CARRY (reg , 0x20 , 8), (const , 0x8 , 8)

20 (reg , 0x20b , 1) INT_SCARRY (reg , 0x20 , 8), (const , 0x8 , 8)

21 (reg , 0x20 , 8) INT_ADD (reg , 0x20 , 8), (const , 0x8 , 8)

22 (reg , 0x207 , 1) INT_SLESS (reg , 0x20 , 8), (const , 0x0 , 8)

23 (reg , 0x206 , 1) INT_EQUAL (reg , 0x20 , 8), (const , 0x0 , 8)
24 (reg , 0x288 , 8) LOAD (const , 0x1b1 , 8), (reg , 0x20 , 8)

25 (reg , 0x20 , 8) INT_ADD (reg , 0x20 , 8), (const , 0x8 , 8)

26 (------------) RETURN (reg , 0x288 , 8)

Varnode x86-64 register

(reg, 0x20, 8) rsp
(reg, 0x38, 8) rdi
(reg, 0x0, 4) rax

Figure 7: Example of the mapping between x86-64 and P-Code operations.

displayed in the table in Figure 7. In the corresponding P-Code op-
erations, we can see that the relative displacement is carried out by
an INT_ADD operation that stores the result in a temporary varn-
ode. Then, the actual dereference happens in the LOAD operation,
with the result ending up in another temporary varnode. Finally,
the acquired value is copied to the varnode representing rdi. As
a result, in order to find the member offset we are looking for, we
simply need to search for an INT_ADD operation carried out on
the varnode used in the LOAD operation.

Now, imagine our GCC plugin reported that the first parameter
to a call to down_read was identified as a member access. When we
encounter a CALL P-Code operation, we can map the input address
back to its symbol and realize that down_read was called. Next, we
will ask Ghidra for the varnode representing the first parameter
in a function call as mandated by the calling convention. Having
figured out the varnode of interest, we can now trace backwards to
the first P-Code operation writing to this varnode. Quickly, we will
arrive at the INT_ADD operation and can identify that the second
input varnode represents the immediate offset 0x38.

D MALWARE ANALYSIS RESULTS
In this section, we will present the analysis results obtained from
a RedXOR-infected machine (Subsection 5.3) in more detail, and
examine how they compare to data obtained from a live sandbox14
and manual analysis (cf. [13]).
Process memory We used Katana to recover the userspace mem-
ory mappings of the malware process. While the human-readable

14https://www.virustotal.com/gui/file/4f159f6a745752e3211ca1146830c8
6075fd8f5db60f704605a57db904dcf5c5/behavior

part of the output (Figure 8a) only reveals the process PID, name,
and UID, we can use the recovered memory layout to dump the
memory contents of the process to disk. Analyzing the resulting
file in a reverse engineering tool like IDA Pro or Ghidra reveals
the malware’s functionality. To our knowledge, the sample is not
packed or obfuscated, so reverse engineering the sample directly is
possible. However, in a forensic post-mortem setting, we may not
have access to the sample until we extract it from the snapshot.
Open files Listing the open file descriptors (Figure 8b) reveals that
the target process was started from a terminal (standard input is
bound to /dev/pts/0), but that it redirected its output to /dev/null.
It maintains an open reference to /var/tmp/.2a4D53 as file descriptor
3 — which is consistent with both the automated analysis report
and the manually reverse-engineered description of the backdoor’s
behavior.
File access history To discover other files accessed by the mal-
ware that are not currently open, we recover dentry objects from
the allocator’s memory cache (see Section 5), and create a timeline
of accesses ordered by the access time (extracted from the entry’s
inode if it was present, and shown in Figure 8c). Besides the afore-
mentioned temporary file, we observe the malware’s accesses to
its persistence mechanism in /etc/rc*.d, where it masquerades
as a polkit service [13]. In entries accessed by RedXOR, the UID
and GID appear corrupted; they take the correct values of 0 (for
root) and 1000 (for the default user) for the other entries. To con-
serve space, we only show the entries related to RedXOR here, but
other user activity (related to package updates and extracting the
malware sample) is visible as well.
Network connections Live analysis suggests that — at least ini-
tially — only a single DNS resolution takes place. On our virtual
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PID: 2859 (4f159f6a745752e ) State: 0x1 MM 0xffff92bb80f4c200 UID 0x00
Task struct @ 0xffff92bbb61c2e00 CR3 (0xffff92bb57392000 0x17392000)

(a) Extracted process metadata: PID, UID, name, memory mapping, and the root of the page table of the process.

2859 (4f159f6a745752e ) [0]: /pts/0
2859 (4f159f6a745752e ) [1]: /dev/null
2859 (4f159f6a745752e ) [2]: /dev/null
2859 (4f159f6a745752e ) [3]: /var/tmp/.2a4D53
2859 (4f159f6a745752e ) [4]: /dev/null

(b) Open file descriptors of the RedXOR process.

Timestamp Size Flags UID GID Inode Path
Fri Jun 04 2021 18:33:42 53901 m... 0 1314742961 2015032758 1320912 /var/tmp/.po1kitd-update-k
Sun Jun 06 2021 18:48:15 53901 .a.b 0 1314742961 2015032758 1320912 /var/tmp/.po1kitd-update-k

26 ma.b 0 1314742961 2015032758 263584 /etc/rc2.d/S99po1kitd-update
26 ma.b 0 1314742961 2015032758 263671 /etc/rc3.d/S99po1kitd-update
26 ma.b 0 1314742961 2015032758 263672 /etc/rc4.d/S99po1kitd-update
0 ma.b 0 1314742961 2015032758 525379 /var/tmp/.2a4D53

(c) File access history (note the corrupted UID and GID).

Figure 8: Excerpts of Katana’s output analyzing a machine infected with the RedXOR malware.

machine setup, DNS lookup uses a local resolver stub, which shows
up on the list of network connections (next to mDNS discovery,
DHCP, and the CUPS printer server). However, the snapshot did
not capture the shortlived DNS query, because the socket is closed
immediately once the DNS server responds.

Katana is also able to correctly recover the process’ environment
variables and other system information (e.g., the ARP table), though
they do not appear to contain any additional indicators of malware
infection.
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Ubuntu 21.04 5.11 10.3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓

Ubuntu 20.10 5.8 10.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓

Ubuntu 20.04 5.8 9.3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Ubuntu 19.10 5.3 9.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Ubuntu 19.04 5.0 8.3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ubuntu 18.10 4.18 8.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Ubuntu 18.04 4.15 7.3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ubuntu 17.10 4.13 7.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ubuntu 17.04 4.10 6.3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ubuntu 16.10 4.8 6.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ubuntu 16.04 4.4 5.4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ubuntu 15.10 4.2 5.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ubuntu 15.04 3.19 4.9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ubuntu 14.10 3.16 4.9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ubuntu 14.04 3.13 4.8 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓p

Ubuntu 13.10 3.11 4.8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓6 ✓

Debian 11 5.10 10.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

Debian 10 4.19 8.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Debian 9 4.9 6.3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

Debian 8 3.16 4.9 ✓a ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

CentOS 8 4.18 8.3 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓

CentOS 7 3.10 4.8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓6 ✓

Fedora 31 5.3 9.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Fedora 30 5.0 9.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fedora 29 4.18 8.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Fedora 28 4.16 8.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fedora 27 4.13 7.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fedora 26 4.11 7.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓p

Fedora 25 4.8 6.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fedora 24 4.5 6.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fedora 23 4.2 5.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fedora 22 4.0 5.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fedora 21 3.17 4.9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fedora 20 3.11 4.8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓6 ✓

Fedora 19 3.9 4.8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓6 ✗n
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OpenSuse 15.0 4.12 7.3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗n

OpenSuse 42.1 4.1 4.8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗n

Arch 21-05-01 5.11 10.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Arch 20-02-01 5.5 9.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗d ✗

Arch 19-04-02 5.0 8.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Arch 19-02-01 4.20 8.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓p

Android 8.1 3.18 4.9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓6 ✗

Android 9 4.4 4.9 ✓a ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗u ✗

Android 10 4.14 9.0c ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗u ✗

Android 11 5.4 12.0c ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗

Debian 10 (ARM64) 4.19 10.2.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

WR740N (MIPS32) 2.6.31 4.3 ✓a ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

Tapo C200 (MIPS32el) 3.10 4.8 ✓a ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

c Android kernel compiled using Clang instead of GCC
a Kallsyms is enabled, but no KALLSYMS_ALL
6 IPv6 disabled in the target system
d Recovery leads to incorrect destination addresses only
u Analysis is unable to recover UNIX sockets
p Recovery cannot find SLUB’s per-CPU caches of partially filled slabs
n Recovery fails due to a missing offset for SLAB’s kmem_cache->num

Table 2: Katana used on multiple Linux memory snapshots

➊

➋

Figure 9: BinDiff fails to map the access at ➊ to the equivalent access at ➋, instead claiming the instruction was removed.
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Ref. 1 2 3 4 5 6 7 8 9 10 R1 R2

5.8.14
Number of members 57560 13053 15139 17831 17206 26504 37480 38341 59736 55701 40570 56651 56651
Profile coverage (%) 100.0 86.2 82.6 74.5 73.2 57.2 61.9 48.4 46.3 49.3 50.9 99.5 99.5
Correct / Wrong (%)
− Overall 84.8 / 9.5 73.5 / 11.2 74.3 / 11.6 65.4 / 20.4 66.2 / 18.6 68.2 / 18.8 72.3 / 19.0 70.3 / 18.9 73.3 / 19.7 74.1 / 19.4 72.7 / 18.1 86.1 / 8.1 86.1 / 8.1
− Required by Volatility 80.9 / 6.4 77.3 / 8.5 78.0 / 8.5 75.9 / 9.9 70.3 / 9.4 75.2 / 7.3 78.7 / 9.2 71.5 / 8.8 77.3 / 9.2 81.6 / 7.8 76.6 / 9.2 79.0 / 9.4 81.9 / 7.2

Katana (analyses) 43 38 38 36 40 41 38 38 38 38 38 25 34
Volatility (analyses) 52 15 15 10 9 10 10 9 10 10 10 15 15

5.4.70
Number of members 55783 12534 15088 18593 18986 25118 34954 28084 33007 68099 73932 55912 55912
Profile coverage (%) 100.0 99.9 92.7 90.2 84.8 82.8 61.8 66.8 65.4 50.4 45.7 99.5 99.5
Correct / Wrong (%)
− Overall 84.9 / 9.6 74.7 / 8.4 72.8 / 11.5 77.4 / 8.5 70.2 / 15.3 79.3 / 9.4 73.3 / 16.4 72.9 / 14.3 72.5 / 16.0 71.8 / 20.8 73.6 / 17.6 86.2 / 8.0 86.1 / 8.1
− Required by Volatility 79.5 / 7.5 75.3 / 8.9 76.0 / 8.2 76.7 / 7.5 77.4 / 6.2 72.9 / 7.1 76.4 / 7.9 78.3 / 7.7 73.3 / 5.5 81.5 / 7.5 70.7 / 7.9 79.7 / 9.1 80.4 / 7.7

Katana (analyses) 42 41 41 42 43 44 41 41 42 33 42 25 36
Volatility (analyses) 52 15 14 15 10 9 10 10 10 10 9 15 15

4.19.150
Number of members 53305 11907 13662 15591 19105 21505 34953 19766 20933 38619 57069 64239 64239
Profile coverage (%) 100.0 99.9 96.2 85.4 85.7 76.6 65.8 83.0 81.9 57.4 53.7 100.0 100.0
Correct / Wrong (%)
− Overall 84.4 / 9.1 76.3 / 8.3 66.9 / 18.3 76.9 / 8.3 70.4 / 16.0 77.4 / 11.1 73.5 / 16.8 70.0 / 17.1 71.3 / 15.6 70.6 / 19.3 74.5 / 18.0 86.5 / 7.0 86.5 / 7.0
− Required by Volatility 86.3 / 4.1 83.6 / 7.5 80.8 / 10.3 79.3 / 8.1 81.5 / 6.8 87.0 / 5.5 80.8 / 10.3 78.1 / 7.3 77.4 / 7.5 76.7 / 9.6 84.2 / 8.2 73.3 / 6.2 73.3 / 6.2

Katana (analyses) 35 35 28 41 29 41 29 30 33 29 30 34 34
Volatility (analyses) 52 15 10 15 10 15 10 13 10 9 10 15 15

4.14.200
Number of members 50852 11604 14345 14053 17953 14116 30092 26208 44598 32069 71410 60379 60379
Profile coverage (%) 100.0 99.9 94.2 92.8 76.5 86.7 67.5 69.3 61.6 63.0 43.2 100.0 100.0
Correct / Wrong (%)
− Overall 85.0 / 9.8 77.2 / 8.2 78.0 / 8.7 78.1 / 8.1 77.2 / 9.1 67.8 / 17.0 74.6 / 16.0 73.5 / 17.2 75.2 / 17.8 70.0 / 19.6 72.2 / 19.7 87.1 / 7.7 87.1 / 7.7
− Required by Volatility 84.2 / 7.9 80.4 / 8.8 80.4 / 8.8 81.8 / 8.1 81.8 / 5.4 72.9 / 11.8 78.9 / 10.6 80.3 / 10.6 80.9 / 13.2 72.3 / 12.8 77.0 / 12.5 77.6 / 9.9 77.6 / 9.9

Katana (analyses) 35 37 37 43 38 32 30 23 28 20 24 34 34
Volatility (analyses) 52 15 15 15 15 14 9 10 10 10 10 15 15

4.9.238
Number of members 48029 11278 11715 15081 16326 19487 26984 26324 29047 41700 42290
Profile coverage (%) 100.0 99.9 99.3 90.1 87.7 82.4 72.8 68.9 60.8 57.5 58.0
Correct / Wrong (%)
− Overall 85.4 / 9.8 76.6 / 9.4 76.1 / 9.8 77.8 / 9.9 72.3 / 16.4 72.9 / 16.3 72.9 / 17.8 71.6 / 18.4 73.3 / 17.2 73.9 / 18.9 76.4 / 15.1
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d− Required by Volatility 87.6 / 5.2 83.2 / 6.0 83.9 / 5.4 83.2 / 6.0 78.5 / 10.7 82.0 / 8.6 81.2 / 9.4 80.5 / 10.7 82.8 / 9.0 79.7 / 12.6 81.9 / 9.4
Katana (analyses) 37 36 36 36 28 28 28 24 33 19 27
Volatility (analyses) 52 15 15 15 10 10 10 10 14 10 10

4.4.238
Number of members 45633 10842 12416 12708 12091 13093 21366 24967 46264 47216 30369
Profile coverage (%) 100.0 99.9 99.3 91.9 94.9 92.1 80.9 65.1 46.8 53.7 60.9
Correct / Wrong (%)
− Overall 86.0 / 9.8 77.2 / 9.9 78.2 / 11.4 77.4 / 10.1 70.6 / 16.7 71.4 / 16.6 73.4 / 17.8 73.6 / 17.8 73.6 / 18.9 76.0 / 17.6 72.0 / 19.7
− Required by Volatility 88.4 / 4.5 84.1 / 5.3 85.4 / 5.3 85.4 / 4.6 73.8 / 9.7 75.2 / 8.3 78.8 / 9.9 77.5 / 13.2 78.6 / 11.0 77.9 / 10.3 80.7 / 12.4

Katana (analyses) 38 37 36 38 26 30 26 23 26 27 25
Volatility (analyses) 52 15 15 15 10 10 10 10 9 10 10

3.10.108
Number of members 39518 8285 9323 10123 13084 13953 18697 22406 28845 18267 21546
Profile coverage (%) 100.0 99.9 93.5 89.2 87.2 78.1 69.4 69.8 59.8 62.7 53.6
Correct / Wrong (%)
− Overall 85.7 / 9.7 75.5 / 10.8 76.1 / 10.4 76.1 / 11.1 76.0 / 13.4 73.2 / 16.6 71.9 / 18.2 74.0 / 18.7 74.6 / 17.7 72.3 / 16.9 73.5 / 16.3
− Required by Volatility 91.4 / 4.9 86.1 / 5.1 86.1 / 5.1 86.7 / 5.1 88.6 / 4.4 80.9 / 9.2 82.3 / 8.9 84.6 / 9.9 87.7 / 8.0 86.1 / 8.9 80.3 / 9.2

Katana (analyses) 34 37 37 37 34 28 27 25 29 33 27
Volatility (analyses) 52 15 15 15 14 10 13 10 13 10 10

Table 3: Performance of Volatility and Katana in the presence of kernel configuration variations
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ABSTRACT
Recently proposed tools such as LogicMem, Katana, and AutoProfile
enable a fine-grained inspection of the operating system’s memory.
They provide insights that were previously only available for Linux
machines specifically instrumented for cooperation with virtual
machine introspection frameworks. An overly controlling cloud
operator can now regularly deep-inspect VMs under their control.

In this paper, we investigate how the concept of software di-
versity can be employed to remove structural information from
the Linux kernel to harden it against automated analysis by the
aforementioned tools. We employ a mixture of small targeted ob-
fuscations to the memory layout and randomization of the ABI
between functions in the Linux kernel as they provide predictable
artifacts across different compilers, kernel configurations and the
presence of Structure Layout Randomization.

We provide an implementation of our ideas in RandCompile,
which is composed of a small patch set for the 5.15 Linux LTS kernel
and a compiler plugin. RandCompile seeks to remove structural
information artifacts, which we call forensic gadgets, to eliminate all
leverage points for further analysis of the tools mentioned above.
Our approach does not require major modifications to the kernel
code base and only has a negligible performance impact (less than
5% percent), which is less than other major security or debugging
features enabled by default in the Linux kernel.
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vacy→ Operating systems security.
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1 INTRODUCTION
Forensic analysis frameworks such as Volatility [12], Rekall Foren-
sics [15], but also virtual machine introspection tools such as lib-
VMI [30] or the operating system introspection plugins of the
Panda.re toolkit [31] allow an analyst to observe an operating sys-
tem during its execution. All aforementioned tools require a precise
description of the operating system’s data structures — called a
profile — and a set of handcrafted analysis procedures to extract
the information relevant to the analyst from the memory dump. In
practice, a profile is often generated from debugging information
created by the compiler. These classical approaches have high anal-
ysis accuracy, can access all information available in the memory
dump, and can, therefore, offer a wide variety of introspection fea-
tures to the analyst. Unfortunately, this high flexibility and accuracy
come with drawbacks in practice: First, it is difficult to keep the
analysis procedures up to date with operating system development
[27]. Second, creating, maintaining, distributing, and identifying
the appropriate profile for the operating system data structures
has shown to be challenging. This is especially true for the Linux
operating system as vital data structures are affected by myriads of
compile time options. Furthermore, software diversity mechanisms
such as Structure Layout Randomization may alter their layout.

Inferring forensic profiles used to be a major challenge if debug-
ging information was unavailable or did not perfectly match the
actual data structures. Since 2021, LogicMem [32], AutoProfile [28],
and Katana [13] have been proposed to solve this problem. They
derive a Linux profile solely from a memory dump at analysis time.
The latter two utilize artifacts of the Application Binary Interface
(ABI) between functions that is unaffected by kernel configuration
and compiler choice. Furthermore, we see OS-agnostic forensics
grow as a research field with the development of Fossil [27] and
HyperLink [36]. These tools offer a less precise analysis, but still
provide useful information by detecting implementation patterns
shared across different OSes (e.g., the linked list of all processes).

While the advent of these tools is good news for analysts per-
forming post-mortem forensics on systems after a security incident,
it also makes it possible for malicious cloud providers to collect
data on the behavior of all virtual machines under their control.
Using the mentioned tools, generating process listings, inspecting
the kernel log buffer, and – in the case of Katana – reconstructing
the list of recently opened files of the running processes would be
possible for a malicious cloud provider. Moreover, Structure Layout
Randomization, a mainlined kernel hardening technique that in-
terferes with common forensic tools, is not effective against many
modern analysis approaches. This leaves cautious users with no
defense against hypervisor attacks.

1
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In 2022, Marth et al. [24] showed the resulting consequences by
constructing a rootkit that could infect – starting from the ARM
TrustZone – an unknown kernel residing in the normal world of
the CPU. They followed the methods of LogicMem and Hyper-
Link to allow their rootkit to function even in the presence of
KASLR, Structure Layout Randomization, and an unknown kernel
configuration.

In this paper, we propose RandCompile, a set of small compile-
time modifications for the Linux 5.15 kernel that complements
Structure Layout Randomization. By obfuscating only two fields of
the central structure for managing process information and chang-
ing the ABI between functions through a compiler plugin, we will
prevent analysis by forensic frameworks.

In summary, we make the following contributions:
• We collect the leverage points for analysis of different mem-
ory forensic frameworks (see Section 2). We call these lever-
age points Forensic Gadgets.
• We implement RandCompile, which consists of a plugin for
the GCC compiler and a dedicated patch set for the Linux
5.15 kernel. RandCompile can be used to remove many
Forensic Gadgets from the Linux kernel, has a negligible
performance overhead (less than 5%), and can be used in
addition to Structure Layout Randomization.
• We evaluate the effectiveness of the modifications of Rand-
Compile against the existing forensic frameworks and root-
kits and demonstrate that RandCompile provides effective
protection against all of them.
• We release RandCompile1 to the public.

2 THE STATE OF LINUX MEMORY FORENSICS
In this section, wewill summarize the various techniques and frame-
works commonly used to perform memory forensics on Linux.

2.1 Threat Model
All forensic frameworks, virtual machine introspection tools or
rootkits discussed in the following abuse a common threat model
for a normal system. In the worst case, they run with the highest
privilege in the hypervisor and, therefore, can directly read from,
write to, and execute from any memory location that is not pro-
tected by full memory encryption such as AMD-SEV. If tools run
in a post-mortem setting, they will require at least a full memory
dump including the state of all CPU registers, which reveal the
position of the currently used page table. In general, we also need
to assume that the adversary has full access to the compiled Linux
kernel binary including its modules (i.e., by scratching it out of
a memory dump, or stealing it from a disk, SD-Card or a central
distribution server).

Note that a hypervisor-level malware author might not need to
embed all heavyweight machinery for program analysis including
tools such as the Ghidra decompiler, the angr symbolic execution en-
gine or the Z3 SMT solver. Instead, we can generally assume that the
machine has some sort of internet connection that allows offloading
of these analyses to some remote machine. This assumption reduces
implementation complexity for an analyst or attacker.

1https://github.com/tum-itsec/randcompile

2.2 Classical Approaches and Their Drawbacks
As previously mentioned, memory forensic tools generally require—
aside from the actual memory dump—a profile that describes the
data structures inside it. This can be generated from debugging
information, i.e. Volatility and Rekall Forensics function in this way.
Because of their exact knowledge of the operating system data
structures, they can potentially extract all information that the
Linux kernel has saved. This includes, for example, the list of pro-
cesses currently running, the list of loaded kernel modules, the
environment variables set for each process, the internal dmesg log
ringbuffer of the kernel, the list of currently opened files or sockets,
and the MAC addresses in the ARP cache of the system.

Unfortunately, profiles can be sensitive to even slight changes
in Linux kernel versions and configuration; so central repositories
with profiles can quickly become outdated [13]. Moreover, debug-
ging information for generating a profile might be unavailable if
the analysis target is an outdated Linux distribution, an embedded
system, where the vendor does not release debugging information,
an Android system, or a custom kernel build by an individual [32].

Last but not least, a system operator might choose to enable
Structure Layout Randomization. Without Structure Layout Random-
ization, a compiler will place members of C-style structs in the same
order as they have been declared by the programmer. However, in
many cases the exact memory layout of C-structs is not relevant to
the functionality of the program. Structure Layout Randomization
allows the developer to selectively relax this constraint and will
instruct the compiler to reorder the members of selected structure
types. Because of this, an analyst cannot easily recreate a profile for
such a kernel, even if he is aware of the exact kernel version and con-
figuration. Structure Layout Randomization was originally meant to
implement software diversity, which seeks to introduce uncertainty
into a software system in order to prevent attacks. Such attacks can
be binary exploitation attacks, side channel analysis and reverse
engineering [19]. We will explain Structure Layout Randomization
further in Appendix A.

2.3 Profile Inference Tools
If no debugging information is available, profile inference tools
come into play that can derive a profile solely from the runtime
data, themachine code inside thememory dump, or combinations of
both approaches. We will describe important facets of the different
tools in the following subsections.

2.3.1 LogicMem. To derive a profile from a memory dump, this
tool constructs invariants (or rules) for interesting data structures
from the Linux kernel’s source code before the actual analysis. An
example of such a rule is the order rule: The fields required for the
implementation of a kernel feature are removed and added via the
ifdef preprocessor directive. If the feature is enabled, the fields
are inserted and all fields from the insertion point are shifted in
memory. LogicMem can use the order, which stays constant, or
match a sequence of fields not interrupted by an ifdef as a block.

Furthermore, the rules of LogicMem place restrictions on values
a field of a specific type can get assigned. For example, pointer type

2

56



RandCompile: Removing Forensic Gadgets from the Linux Kernel to Combat its Analysis ACSAC ’23, December 4–8, 2023, Austin, TX, USA

Tool Year Analysis Subject FG
1:

Sp
ec
ia
lc
o
m
m

FG
2:

Sy
m
bo

lT
ab

le
s

FG
3:

A
BI

C
on

st
ra
in
ts

FG
4:

O
rd
er

of
Fi
el
ds

FG
5:

Po
in
te
r
G
ra
ph

Recovery Scope

Linux-specific
Katana [13] 2022 Offset Revealing Instructions ✗ ✗ All kernel structures
Trustzone Rootkit [24] 2022 Kernel Runtime Data ✗ task_struct->{tasks, comm, pid, cred, state}
LogicMem [32] 2022 Kernel Runtime Data ✗ ✗ ✗ ✗ Handwritten rules for selection of data struc-

tures (task_struct, mm_struct, cred, . . . )
AutoProfile [28] 2021 Offset Revealing Instructions ✗ ✗ ✗ All kernel structures
OS-agnostic
Fossil [27] 2023 Kernel Runtime Data ✗ ✗ Container data structures
HyperLink [36] 2016 Kernel Runtime Data ✗ ✗ Process enumeration

Table 1: Comparison of forensic frameworks capable of analyzing the Linux kernel without debugging symbols. Focus is taken
on research that has evolved since 2020.

fields need to contain a valid memory address2 or a NULL pointer,
while strings need to consist out of printable characters.

Unfortunately, LogicMem is not able to infer these rules auto-
matically, so the authors of LogicMem had to infer the ruleset man-
ually according to their algorithm. Therefore, in its current form,
LogicMem can only reconstruct the layout of the task_struct
and other structures for which the authors have created rules.

LogicMem enriches its analysis by global symbols located via
the kernels’ symbol table. To eliminate false candidates of this table,
LogicMem searches for the well-known string swapper/0, which
is stored inside the comm field of the init_task, and searches
backwards for the ELF header of the kernel.

LogicMem’s use of order rules limits the functionality of the tool
when Structure Layout Randomization is enabled [32].

2.3.2 AutoProfile and Katana. Both tools perform code-based pro-
file inference. The executable machine code of the operating system
is itself contained inside the memory dump, which includes infor-
mation about how the code accesses the data. Such sequences of
instructions that can be used to recover an offset are called offset-
revealing instructions. If Structure Layout Randomization is applied,
the machine code is changed accordingly to address the change in
the structure layout. Katana can match an offset-revealing instruc-
tion in machine code to the Linux source code and infer a profile.
An example of how an offset-revealing instruction looks like on
x86-64 architecture will be given in Section 3.4.

However, the Linux kernel is a complex and large piece of soft-
ware and both analysis tools need identifiable points – matchable
between source and machine code – to start the matching process
between offset-revealing instructions and the type specified in the
source code. The authors of Katana refer to these functions as
accessor functions [13]. Both tools utilize the symbol table of Linux
2LogicMem requires the page table being currently in use and can, therefore, derefer-
ence pointers to check them for validity.

and symbol information collected by the kallsyms mechanism3 as
those reveal a majority of the addresses of the kernel’s functions.

Beginning from each function, a search for offset-revealing in-
structions is started and structurally matched with its source code.
To perform the matching, ABI constraints are used. While the soft-
ware diversity introduced by compiler optimizations (such as in-
lining, function splitting, basic block reordering, . . . ) makes this
matching difficult, the compilation process leaves matchable pat-
terns behind.

2.3.3 HyperLink and TrustZone Rootkit. HyperLink is a forensic
tool that can enumerate the running processes without knowledge
of the source code. The developers observed that many operating
systems made similar design decisions for the organization of the
process list.

In case of FreeBSD, Windows, Mac OS X, and Linux the data
structure for a process contains a linked list of all processes and a
process name stored in close, constant proximity of the pointer. For
example, HyperLink scans for the string swapper/0 on Linux.
Afterward, HyperLink looks for all pointers in close proximity.
Each of them is dereferenced multiple times and checked for a
string that appears at a constant offset in all cases. If such a pointer
is found, the linked list of all tasks is found.

In 2022, Marth et al. [24] combined this approach with the ideas
of LogicMem. In addition to the process name and the linked list
pointer, they require the location of the PID field and cred pointer
inside the task_struct to elevate the privileges from TrustZone.
To work in the presence of Structure Layout Randomization, they
do not use order rules like LogicMem, but semantic rules: The PID
of the first process must start at 1 and increase as the process list is
traversed, which is true for the first few processes [24].

3The kallsym symbol collection enables stack-traces, live-patching of specific func-
tions and function tracing features

3
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2.3.4 Fossil. The tool does not create a profile in the direct sense.
It can use one or multiple seed values (such as names of special
processes) known to an analyst to identify the process list in the
overall pointer graph of thememory dump. PIDs can be identified by
looking for integers in ascending order similar to Marth et al. [24].
In contrast to the previous approach, Fossil is capable of exploring
the pointer structures inside operating systems in an OS-agnostic
way. It has built-in support for various container data types such
as doubly linked lists, arrays, and trees. Given the seed value of the
first task (i.e., swapper/0 on Linux), it can locate the containing
data structure and explore other instances of this type by following
the list pointers even in presence of Structure Layout Randomization.

2.4 Forensic Gadgets
We noticed that all forensic tools share similar leverage points for
their analysis. We will refer to these leverage points as Forensic
Gadgets and summarize our findings in Table 1.

FG 1 – Special comm Values. The data structure containing all
relevant process information on Linux (task_struct) contains
a fixed length 16 byte string that is embedded directly inside the
structure. Multiple frameworks search for the hardcoded names
of the first or the first two tasks: swapper/0 and init. During
our experiments, we found that the first string is only contained
once in memory dumps if only kernel addresses are considered.
Therefore, if such a string is found it usually directly reveals the
location of one task_struct instance.

FG 2 – Symbol Tables. The information encoded in the Linux
kernel’s own symbol tables or the kallsymsmechanism – containing
additional symbol information for tracing and readable stack traces
– is used. These reveal the location of several global symbols (like
the first task in the process list, i.e., the init_task symbol).

FG 3 – ABI Constraints. The System V ABI mandates the order in
which function arguments are passed into functions. This is conve-
nient for a profile generation tool, if the argument to a function is
retrieved from a structure or used to get a member from a structure.
In this case, the function can be used to match a point in the data
flow graph of the assembly instructions with the data flow in the
source code. The same is true for the return values of functions.

FG 4 – Order of Fields. LogicMem and AutoProfilemake exten-
sive use of order rules for fields within a structure. Even if the offset
of a field inside a structure changes if a field is added or removed
by a source code or configuration change, the order of the fields
stays constant. Therefore, an identified field of a structure allows to
eliminate possibilities for fields before or after the respective mem-
ber. Note that this gadget is not available when Structure Layout
Randomization is enabled.

FG 5 – Pointer Graph. An analysis tool can check if a pointer 𝑃 is
of a specific type 𝐴 by dereferencing it and checking the memory
layout constraints of type 𝐴 on the memory location that 𝑃 leads
to. Furthermore, an analysis tool can check for specific structures
of pointer chains. Consider the check for a cyclic linked list (e.g.,
the list of all running processes). A cyclic linked list is found if a
pointer chain ends in its starting pointer and all pointers contain
resolvable addresses in virtual memory or the NULL value.

3 RANDCOMPILE
RandCompile’s modifications seek to harden the Linux system
against easy access to its structural information, which is needed
by analysts or attackers having the capabilities described in Sec-
tion 2.1 to complete a reverse engineering or runtime information
extraction task. Hardening means that an analyst needs to spend
more computational resources or manual reverse engineering work
to complete the task.

To remove the most critical sources of information for all afore-
mentioned tools, we chose to implement three core obfuscations
in RandCompile: First, by using a compiler plugin, we aim to re-
move the ABI patterns (FG 3) from the Linux kernel. Second, we
suggest marking more structures for randomization, since the exist-
ing protection offered by Structure Layout Randomization already
impedes the analysis of tools using the FG 4 gadget. Third, we
made a few selected changes to the Linux kernel code to enable
pointer encryption on core pointers (targeting FG 5) and string
encryption for the comm field (FG 1). Table 2 summarizes which
feature of RandCompile addresses a particular forensic gadget and
which implementation method was chosen. The modifications are
described in greater detail in the following subsections.

During the design of RandCompile, we preferred mitigations
that can be applied to the Linux kernel in an easy manner as well as
changes not degrading the performance of the running system in a
notable way. Modifications such as pointer and string encryption
are simple, but force an analyst into the more complicated inspec-
tion of the runtime code, whose analysis is now impeded by ABI
randomization. We did not build a complete obfuscation framework
for the Linux kernel, because perfect obfuscation is in general not
possible [1, 14].

3.1 String and Pointer Encryption
Multiple frameworks utilize the fact that the first task in the task
listing is always namedswapper/0 (FG 1). This is defined as a con-
stant in the kernel code4 and used throughout all papers we found
using the comm field in their analysis. Note that the field comm is
usually not used for listing the running processes in commands like
ps, but predominately inside debugging messages for the Linux
kernel log ring buffer dmesg. The process name5, which the ps
command displays by default, is read from the virtual memory map-
ping of each process on demand, along with the arguments of each
process. Therefore, this name is not always present in the memory
mapping of the kernel. Using RandCompile, we can obfuscate the
string by injecting a encryption function in the set_task_comm
function and the get_task_comm macro.

As part of RandCompile’s kernel patches, these functions are
patched to perform a simple XOR encryption with a key generated
at compile time for each kernel configuration. The key is stored
as a constant inside the machine code of both functions. The cor-
responding getter and setter functions are marked for inlining to
prevent an analyst from looking them up in the symbol table (FG
2) and calling them.

4include/linux/init_task.h: #define INIT_TASK_COMM
"swapper"
5Accessible from userspace through /proc/<pid>/cmdline
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Forensic Gadgets Transformation

FG-1 FG-2 FG-3 FG-4 FG-5 GCC Plugin Manual

String and Pointer Encryption ✓ ✓ ✓

Better Data-Order Randomization ✓ ✓

Externalize printk Format Strings ✓ ✓

Adding Bogus Parameters with Artificial Memory Accesses ✓ ✓

Table 2: Features of RandCompile targeting different Forensic Gadgets

Pointer encryption for the fields tasks.{next, prev} is re-
alized in a similar fashion. These two pointers form a circular linked
list connecting all task_structs of the running processes. This
linked list is recovered by all frameworks that utilize FG 5. By
utilizing the fact that all instances of the task_struct share
the same data layout, an analysis tool can verify its assumptions
about the type of a field by iterating through the list and testing
its presumed rules for a field on every instance stored inside the
list. By encrypting the pointers with an XOR-key that is accessed
via inlined functions by the kernel, an analysis framework cannot
traverse the list in an easy manner (addressing FG 5).

3.2 Better Data-Order Randomization
The Forensic Gadget FG 4 is already partially addressed by the
Structure Layout Randomization feature inside the kernel. However,
the kernel developers have marked only very few structures for
randomization; presumably those that have previously been used
for exploiting the kernel. To optimize the protection against forensic
tools, more structures should be marked for randomization. In
our 5.15 kernel, we found that out of the 72 structure types that
could possibly get included into the task_struct, only 8 have
Structure Layout Randomization enabled. Therefore, RandCompile
adds Structure Layout Randomization support to all types for which
LogicMem’s authors generated rules.

Another problem becomes apparent, if we inspect the implemen-
tation of linked lists.We can observe that they are realized by embed-
ding a list_head structure containing the relevant pointers into
the task_struct. While all fields inside the task_struct get
randomized, the order of the fields inside the list_head struc-
ture stays the same. This yields small sections of data not being
randomized.

Regarding the linked list of all tasks (field tasks), RandCom-
pile embeds the list pointers directly inside the task_struct,
eliminating the list_head structure. This allows Structure Lay-
out Randomization to randomize the pointers to different locations.
However, this requires specialized list traversal methods for the re-
spective type. The special treatment of the tasks pointer is justified
by the importance in the forensic work we studied (see Section 2),
but it might be advisable to lift other fields of container data struc-
tures up to the task_struct type, too.

3.3 Externalize printk Format Strings
Obtaining the contents of the kernel log buffer is trivial, as the log
messages are saved in readable ASCII text in a continuous memory
region inside the kernel. An analyst can obtain a substantial part of

Figure 1: Overview of printk string externalization

its contents by looking for continuous sequences of ASCII-printable
characters contained in the memory dump. A popular utility for
this is strings.

Unfortunately, the kernel log buffer is also a valuable leverage
point for profile generation frameworks. If the kernel reads mem-
bers of structures and passes their values to the printk function,
the function call can be used to deduce the offsets of the parame-
ters within the respective source struct. Furthermore, the constant
nature of the format string allows for the easy creation of a precise
mapping of each individual instance of a function call to its source
code location, even if it is called multiple times within the function
under consideration and despite any potential reordering efforts.

Using logging strings or other string constants inside binary
artifacts are known to be good starting points for many reversing
tasks [17] and commercial obfuscation products are known to ob-
fuscate them in special ways to prevent analysis [16]. Therefore,
we conclude that this artifact needs special attention.

In order to impede the analysis of profile generation tools, our
compiler plugin extracts the format strings for printk, if they
are constant and known at compilation time, and replaces them
with a unique identifier. This process is visualized in Fig. 1. During
compilation with GCC, RandCompile assigns each constant format
string a unique identifier. This identifier is generated by hashing
the location of the format string in the source code together with a
random seed value, which is created before each compilation run
of the Linux kernel.
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[    0.456668] @~!a8f5f167f44f 732845:::nokaslr:::-19872!~@

[    0.460537] @~!e341450e51b6 1234:::kernel/module.c:::1:::1108:::module_put+0x57/0x70!~@

[    0.461330] @~!64aec91f1814 948833:::sh:::1234!~@

[    0.456668] Kernel command line: nokaslr

[    0.460537] WARNING: CPU: 0 PID: 1234 at kernel/module.c:1108 module_put+0x57/0x70

[    0.461330] [...] remount are deprectated (pid=1234, comm=sh)

dmesg | dmesgfilt mapfile

Figure 2: Reintegration of the format strings into the log

1 unsigned long start = . . ., end = . . .;
2 mm_walk_ops prot_none_walk_ops = . . .;
3 pgprot_t new_pgprot = vm_get_page_prot(...);
4 error = walk_page_range(current->mm❶, start❷,

end❸, &prot_none_walk_ops❹, &new_pgprot❺);

Figure 3: Invocation of the functionwalk_page_rangewith
Forensic Gadgets

In a second step, the format string is scanned for format spec-
ifiers and a replacement for the format string is generated that
contains only the identifier and the format specifiers in randomized
order. The parameters for the printk function are adjusted ac-
cordingly. If printk is invoked with less than a threshold of three
parameters, RandCompile will insert additional bogus parameters
from the function context. This will result in almost unreadable
kernel log messages being printed out on the kernel console when
being queried by the dmesg utility.

For the kernel console, this is usually wanted if the kernel runs
in a virtualized environment. System operators usually do not want
to disclose information to the hypervisor, if it is operated by a
cloud operator that cannot be fully trusted. Nonetheless, benign
cloud customers might want to decode the kernel log messages to
a readable format. Usually, they will obtain this using the dmesg
utility, save it and transfer it to a machine under their control. There,
they can decode it using the dmesgfilt utility, which we provide
alongside with RandCompile. Further, dmesgfilt works similar
to the c++filt utility and will scan for the character sequence
that marks the replacement in the dmesg output. Matching strings
are looked up in the mapping file, created during compilation of
the Linux kernel. The whole process is shown in Fig. 2. During
this reintegration process previously introduced bogus parameters
(marked in red) will be discarded. In the end, the user is left with a
fully reconstructed dmesg log.

3.4 Parameter Order Randomization
In order to make matching with source code harder, our plugin
will randomize the order of the parameters in as many Linux ker-
nel functions as possible. Consider the following function call to
walk_page_range that is visualized in Fig. 3 and its compiled
version in Fig. 4.

The AMD64 Architecture Processor Supplement of the System
V ABI specification mandates that function parameters are stored
in the 6 registers rdi, rsi, rdx, rcx, r8 and r9 in this order on
invocation [23]. Therefore, the first parameter (❶) is guaranteed to
be passed to the function using the rdi register on a Linux kernel
for the x86-64 platform. An automatic profile generation program

1 mov rcx❹,0xffffffff82019c60
2 mov rdx❸,r12
3 mov rsi❷,rbp
4 mov QWORD PTR [rsp+0x20],rax
5 lea r8❺,[rsp+0x20]
6 mov rax,QWORD PTR gs:0x16d00
7 mov rdi❶,QWORD PTR [rax+0x440]
8 call ffffffff811bacd0 <walk_page_range>

Figure 4: Corresponding assembly code generated by GCC
for Fig. 3

can track the data flow back to the pointer dereference operation
necessary to get mm from current and, therefore, determine the
offset (0x440) of mm in task_struct.

In order to prevent such analysis, we introduce a compiler pass
to shuffle the order of parameters passed to functions in the com-
piler’s middle end. Manipulating the ABI between functions at this
point allows us to leverage GCC’s various architecture-independent
optimization passes to optimize away potential inefficiencies and to
avoid constant instruction patterns that could be easily matched by
an analysis framework. As a result, a profile inference tool would
now need to check all parameters of the walk_page_range func-
tion instead of only the first to recover the offset of mm in Fig. 4.

The main problem of this reordering approach is that parame-
ters of a function with few parameters will be moved to the same
position rather frequently. Therefore, functions with only one pa-
rameter will not be changed at all, functions with two parameters
will experience a swap in parameters in 50% of the cases, and so
on. To combat this, RandCompile adds bogus parameters to func-
tions with less than 6 parameters. These additional parameters are
also considered for parameter order randomization. We chose to
not artificially push the number of function arguments beyond 6,
since the System V call ABI designates only that many registers
for efficient passing of pointer-like arguments. Further parameters
would be passed to the function on the stack, which would intro-
duce performance issues, as memory accesses are in general much
slower than accessing registers. Nonetheless, RandCompile will
fully randomize the order of parameters if a function should have
already more than 6 parameters.

This results in any actual parameter remaining in its original
spot approximately 15% ( 16 ) of the time (or less if the function has
more than 6 parameters). An unaware analysis tool may, therefore,
correctly reconstruct the offset in some cases.

3.5 Adding Bogus Parameters with Artificial
Memory Accesses

Although our reordering approach outlined above raises the re-
ordering quality for functions with a very low parameter count, not
all of these parameters will be sourced from memory and assigned
using offset-revealing instructions. In those cases, analysis tools
expecting a parameter to be originating from a structure will not
predict a wrong offset, but no offset at all. Thus, without artificially
inserting offset-revealing instructions during bogus parameter gen-
eration, some fields of structs that get accessed by many different
functions can still be reconstructed using statistical analysis.
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To combat this,RandCompile can also fill bogus parameters with
accesses to data structures already passed to a function. Consider
again the example from Fig. 4. This function would receive a bogus
argument in order to have 6 parameters. Instead of filling this
parameter with zero, RandCompile will fill it with an equally sized
value that is randomly read from a memory range residing inside of
the bounds of current. We show the resulting AST modification
of RandCompile (translated back to C-syntax) in Fig. 5 and the
matching compiled down version in Fig. 6.

The offset for new parameters will not be chosen completely
randomly. This would result in plenty of potential random off-
set candidates and a set of correct offsets if the parameters have
been randomized to their original position. Therefore, tools such
as Katana – using a majority voting approach [13] in the last step
of determining the final offset – could still find the correct one, as
the random ones are of low chance to occur more than once. Thus
truly random offsets simply lead to a vast increase in random noise,
whereas the remaining 15% of cases in which the actual parameter
can be found in its original register uphold the pattern exploited
by Katana in the first place.

Instead, we added a pseudorandom offset selection to our bogus
argument generation. This generates a set of 𝑛 plausible alternative
offsets for a particular field in a deterministic way, which will give
bogus parameters a reasonable chance to be considered plausible in
the majority voting of Katana, while still being random enough to
hide the correct value. Note that the matching process of analysis
tools is not perfect. Empirically, we found the value 𝑛 = 3 to be best
suited for our needs. We describe our experiments more closely in
Appendix B; Figure 8 visualizes the process.

3.6 Practical Implementation Aspects
We chose to implement our approach as a middle-end GCC plu-
gin, allowing for a combination with the existing structure layout

1 unsigned long start = . . ., end = . . .;
2 mm_walk_ops prot_none_walk_ops = . . .;
3 pgprot_t new_pgprot = vm_get_page_prot(...);
4 struct mm_struct *tmp = (char*)current)+0x10;
5 error = walk_page_range(&prot_none_walk_ops❹,

end❸, start❷, current->mm❶, tmp❻,
&new_pgprot❺);

Figure 5: The function walk_page_range randomized with
RandCompile

1 mov rdi❹,0xffffffff82019c60
2 mov rsi❸,r12
3 mov rdx❷,rbp
4 mov QWORD PTR [rsp+0x20],rax
5 lea r9❺,[rsp+0x20]
6 mov rax,QWORD PTR gs:0x16d00
7 mov r8❻,QWORD PTR [rax+0x10]
8 mov rcx❶,QWORD PTR [rax+0x440]
9 call ffffffff811bacd0 <walk_page_range>

Figure 6: Corresponding assembly code generated by GCC
and RandCompile for Fig. 5

randomization plugin of the Linux kernel. Furthermore, middle-
end plugins are architecture-agnostic and have access to almost
all information of the original AST created by the C-parser, which
is present as a GIMPLE tree. In the middle-end phase, the GCC
compiler has not yet performed any register allocation or most of
its optimizations.

4 EVALUATION
First, we evaluate the effect of RandCompile on all the tools col-
lected in Section 2. We pay special attention to Katana and the
HyperLink/TrustZone rootkit as their power is not affected by the
existing Structure Layout Randomization feature of the Linux kernel.
In the case of Katana, we did a thorough evaluation, including
tests with its available implementation on different versions of our
5.15 kernel. First, we test the kernel with RandCompile disabled,
then with variants of RandCompile’s hardening configurations.
Subsequently, we evaluate how each of RandCompile’s obfuscation
mechanisms contributes to its overall protection.

For our comparison with the HyperLink/TrustZone rootkit, we
reimplemented HyperLink as a plugin for GDB and integrated addi-
tional analyses from the TrustZone rootkit. These additional anal-
yses reveal, for example, the PID in addition to solely the process
name. The evaluation of RandCompile against Fossil is done on a
theoretical basis as Fossil requires an analyst to manually interpret
the data. Finally, we check if RandCompile impedes the overall
performance of a system by using the microbenchmark lmbench3.

4.1 Impact on Forensic Frameworks
4.1.1 HyperLink and TrustZone Rootkit. We will evaluate Hyper-
Link and the TrustZone rootkit together, because both tools share
the same implementation ideas. To provide the rootkit functionality,
the rootkit implemented recovery of additional layout information
and we will, therefore, focus our analysis on it (see Section 2.3.3).

We reimplemented the rootkit as a Python plugin for GDB, where
it can be used in conjunction with QEMU to perform the first three
analysis steps: 1) the recovery of the process list in memory; 2)
the identification of the tasks.next pointer so that the rootkit
can find the userspace process of the attacker process and elevate
its privileges; 3) the identification of the comm and pid fields, so
that the target process can be identified inside the list. The missing
final step eventually uses the knowledge gathered by the first steps
to perform the elevation of the privileges to root. In the original
implementation, the rootkit looked for a field with the same offset
on all tasks in the process list with ascending PIDs without gaps.
We modified this rule. On our 5.15 kernel for x86-64, we just require
an integer field with ascending numbers and removed the no gaps
constraint as there are gaps, even in the processes started early at
boot on our system.

We found that using RandCompile does not allow the rootkit to
find the initial location of the init_task symbol. This is because
the rootkit uses the hardcoded string "swapper/0" to find it. Instead
of two occurrences in memory without RandCompile (one in the
physmap6, one in the normal virtual memory in the kernel), our
version of the rootkit now finds four occurrences. Again, these are

6In addition to the virtual memory mappings, Linux maps all its physical memory
continuously to one point in virtual memory.
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effectively two occurrences because each search hit has a corre-
sponding hit in the physmap of the kernel. However, these two hits
are not located inside the init_task symbol, but on the kernel
stack. We consider these to be leftovers from printk statements dur-
ing kernel boot, where the comm string was accessed to print a log
message. We inspected the search hits on the kernel stack, but could
not find a pointer nearby that referred to the actual init_task.

Furthermore, the pointer encryption will not allow our rootkit
implementation to find the next and prev pointer even when we aid
the tool by artificially feeding it with the location of theinit_task
as a starting point.

Eventually, the rootkit verifies that the correct tasks.next
pointer has been found by checking whether the prev pointer
leads to the pointer from which we originated. The prev pointer
is found by a constraint induced by the list_head structure
containing both pointers in pairs. This structure is not randomized
and forces the compiler to put the prev pointer directly after
the next pointer. However, inside a RandCompile kernel these
two pointers have been moved into the scope of the surrounding
task_struct, so that this structural constraint does not hold
anymore.

4.1.2 Katana and AutoProfile. An effect on Katana is already no-
ticeable in the first analysis step, i.e., the collection of the kernel
symbols. Katana collects these by calling a function to iterate over
all symbols saved in the kallsyms database in an emulated envi-
ronment representing the execution on the analysis machine. As
Katana assumes default calling conventions, the registers are not
correctly set up and no symbols are collected. For further analysis,
we will patch Katana to parse symbol information without calling
kernel functions. This gives us more insights into the effectiveness
of each transformation step of RandCompile.

For this, we disable RandCompile completely, set the 5.15 kernel
to its default configuration with Structure Layout Randomization
enabled, and initiate Katana to create a profile for forensic analysis.
Next, we check to see if Katana’s analysis plugins are still working.
For each analysis, we check which part of the profile was needed
for the plugin to work, and how many fields within that profile
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List Modules ✓ ✓ ✓ ✓ ✓

Members reconstructed 2 2 2 2 2
Task Listing ✓ ✗ ✗ ✗ ✗

Members reconstructed 6 5 5 4 4
List Files ✓ ✗ ✗ ✗ ✗

Members reconstructed 16 15 8 7 7
Dmesg Log ✓ ✓ ✓ ✓ ✗

Table 3: Evaluation of the effectiveness of RandCompile’s
different code transformations against Katana

were inferred correctly. We selected a subset of four of Katana’s
analysis plugins for this practical evaluation and refer to it as Base
state. The selected analyses are: 1) listing the modules currently
loaded into the Linux kernel, 2) listing the running processes, 3)
listing the opened files of the running processes, and 4) extracting
the kernel dmesg log ring buffer. Each analysis needs a certain set
of layout information in order to function and the analysis will
fail if even a single member could not be restored. Thus, only one
incorrect offset (e.g., a missing tasks pointer) would, for example,
cause the whole task listing analysis to fail.

As can be seen in Table 3, Katana is able to perform all analyses
on a pure Base kernel (i.e., not modified by RandCompile). If we
redo the analysis with a fresh profile for a kernel withRandCompile
fully enabled, only the listing of currently loaded kernel modules
analysis is still working.

Table 3 also shows the analysis results of Katana for differ-
ent weakened variants of RandCompile. RandCompile (no bogus)
refers to a kernel with a naive reordering of arguments as described
in Section 3.4, RandCompile (-printk, -memref) and RandCompile
(-printk) refer to kernels with bogus arguments added to function
calls (see Section 3.5), without and with the dmesg log obfuscation
of Section 3.3.

If only the randomization of argument order (RandCompile (no
bogus)) is applied, the recovery rate of structure members drops
for the task listing and list files analysis. This is in line with our
expectations: Both analyses are more complex and require more re-
covered offset information. Nonetheless, the drop is small. For both
analyses only one member cannot be reconstructed. If we enable
the addition of arguments filled with zero values (RandCompile
(-printk, -memref)), the discovery rate of Katana drops drastically
for the list of open files analysis.

Adding randomization, especially to printk, which must also
be applied to the format string (see Section 3.3), has no visible effect
on the recovery rate for all analyses but the dmesg log. However, the
number of votes for members is reduced, making it less likely that
the correct offset can be reconstructed (see Table 4 in the Appendix
for more detailed numbers).

Taking a more detailed look at the number of votes cast for
each member by Katana in Table 4, we can see that RandCompile
has the most impact on those members that are encountered and
reconstructed via a variety of different function calls.

In particular, this applies to mm, for which initially more than
100 occurrences to vote on had been found. Adding and shuffling
artificialNULL parameters was able to reduce this number tomerely
15 occurrences. Since no alternative offsets were presented by this
approach, however, a significant bias towards the correct offset
persists. If we replace the artificial NULL parameters with actual
values sourced from memory instead, we can see that the total
number of occurrences rises again but the bias shifts towards a
wrong offset, causing Katana to select the wrong offset.

All our insights should also apply to AutoProfile, which we
only evaluate conceptually. AutoProfile is implemented similarly
as Katana with a few differences. The authors decided to use
the angr framework instead of Ghidra. Furthermore, rather than
using majority voting, Z3 is used as a constraint solver. The more
artificially introduced or otherwise wrongly deduced offsets exist,
the more complex it becomes to create a valid matching. Looking
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at mm, we can also see a clear increase in available options for this
heuristic, potentially defeating AutoProfile’s analysis attempts.

We can leverage the fact that our plugin can reliably prevent
reconstruction of more commonly used members and that partial
reconstruction of kernel data structures still prevents all but one of
the tested analysis procedures.

4.1.3 LogicMem. Unfortunately, we could not run LogicMem on
our memory dumps as the authors did not document the input for-
mat required and we have not been able to deduce it from their code
in reasonable time. Instead, we did an inspection of the ruleset the
authors derived from the Linux kernel and LogicMem’s source code.
The LogicMem authors decided to move away from their original
Prolog implementation that considered all facts available to a new
Python implementation for performance reasons [3]. In contrast
to the original, this implementation does not fully utilize their fact
database. For example, LogicMem relies heavily upon the presence
of the now obfuscated comm string and the encrypted tasks list
pointers. They only consider the constraint of a constant offset
between the comm and tasks.next field for the detection of the
latter (like HyperLink). The presence of a detectable comm and
the tasks field is, therefore, a hard requirement for LogicMem to
function. As this requirement is programmed in and not expressed
through rules we expect that LogicMem can also not be easily
repaired.

Last but foremost, many of the LogicMem rules rely on order
constraints that are invalidated in the presence of Structure Layout
Randomization. As we have extended the usage of Structure Layout
Randomization to several structures that have not been protected
before, LogicMem’s recovery rules for additional structures will
also fail (e.g., files or fdtable). While LogicMem was already
not able to recover a working profile for the task_struct with
Structure Layout Randomization, the amount of information it could
use now is even further reduced.

4.1.4 Fossil. To detect virtual addresses, Fossil requires a Boolean
oracle function (called Ω), which the analyst needs to provide. It
should be capable of deciding whether an offset in the memory
dump is a valid pointer. When analyzing a RandCompile kernel,
this function cannot be provided for our encrypted pointers without
first reverse engineering the compiled kernel. Because of that, Fossil
will be unable to detect the doubly linked list of all processes. How-
ever, as Fossil can make sense of other container structures, it might
detect subsets of processes that are connected via unencrypted
pointers.

Furthermore, the encryption of the comm string will not allow an
analyst to use this as a seed to obtain one of the subsets mentioned
above. Besides comm, we are not aware of any other easily obtain-
able string seed an analyst can use. It is the only string that is di-
rectly included inside the task_struct. Note that the cmdline
string does not reside in kernel space memory, but in the memory
of each userspace process. While we have not evaluated the effects
of RandCompile on Fossil, we conclude that easy leverage points
for analysis are removed here, too.

4.2 Runtime Performance Impact
We deployed our test kernels in a VM with 1 GB of RAM on a ma-
chine with an AMD Ryzen Threadripper 2950X processor we had
exclusive access to. We tested RandCompile’s performance using
lmbench37’s latency benchmarks and show the results in Fig. 7. All
measured latencies have been normalized to one for better readabil-
ity, as the respective system calls vary in speed by several orders
of magnitude. The baseline measurement has been generated with
an identical kernel configuration including active Structure Layout
Randomization but with all of RandCompile mitigations disabled.
Further, we added error bars indicating the standard deviation.

In general, RandCompile (with all transformations enabled; de-
picted as Full) adds less than 1-3 percent overhead to the system.
In the worst case, it degrades system performance by no more than
6 percent (open/close benchmark). In the best case, no overhead is
measurable. For comparison, the runtime overhead of the kernel’s
own Ftrace feature, which is enabled by default on almost all Linux
distributions, is 4 percent for the open/close system call benchmark.
Like enabling RandCompile, enabling Ftrace causes every function
in the kernel to be modified by the compiler. However, here the
compiler adds a patch point filled with NOP instructions until the
user enables Ftrace at run time. Note that the 4 percent decrease in
performance is measured with Ftrace disabled by the user.

Predominantly, the performance overhead seems to be caused
by the introduction of additional bogus arguments (see Section 3.4).
Pointer and string encryption (Only Obf.) as well as the shuffling
of their parameters (NoBogus) do not add performance overhead
that cannot be explained by noise.

The slowdown caused by adding bogus arguments to functions
with less than six arguments (see Section 3.5; depicted as NoMem-
Ref ) was unexpected. While our change is not equivalent to chang-
ing the order of the registers in the ABI, we assumed that setting
CPU registers to zero is a neglectable operation on modern CPUs.
Nonetheless, the performance of stat is degraded by up to 8.53%
(open/close). We assume that our implementation interferes with
various optimizations of the GCC compiler (i.e., the constprop opti-
mization creating specialized functions with our bogus parameters
removed) running after RandCompile’s compilation pass.

5 RELATEDWORK
Approaches like our parameter-order randomization (Section 3.4)
are also implemented in obfuscators like Tigress [7]. However, Ti-
gress reports issues with variadic args and indirect function calls,
which RandCompile can handle to the necessary extent when
compiling the Linux kernel.

Instead of obfuscating the memory image, an operating system
might also limit itself to detecting if it is currently being analyzed
by a hypervisor [34]. However, in a forensic setting, this is not
practicable as the virtual machine cannot alter its state once the
memory dump has been taken.

An approach that also uses GCC to implement a variety of
data structure randomization techniques is presented by Stanley
et al. [33]. Their approach includes layout randomization for data
structures and stack layout reordering for function parameters, to

7https://github.com/intel/lmbench
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counter large-scale binary exploitation attacks by introducing soft-
ware diversity. It is similar to our approach in that it also performs
some sort of randomization that affects the order of function pa-
rameters. However, it does work on a different abstraction level,
does not randomize functions containing varargs at all and uncon-
ditionally excludes functions with indirect calls.

Of course, a function’s calling convention is only a small part
of any program’s ABI. Some other approaches, which are in part
architecture-specific or language-specific, target other parts of bi-
naries’ ABIs to harden them against binary exploitation and reverse
engineering. One such approach targeting the Itanium C++ ABI
standard’s handling of vTables, which are used to model polymor-
phism in C++ programs, has been presented by Demicco et al. [10].
Junod et al. [18] present a language-independent, LLVM-based
code obfuscation tool. The tool changes a program’s control flow
by merging functions and inserting additional instructions. But,
besides simple reordering approaches, some techniques presented
have a measurable effect on performance and code size.

Crane et al. [9] and Larsen et al. [19] present a discussion of the
current state and limitations of code randomization approaches as
well as software diversity in general. Furthermore, they discuss the
reasons for the lack of widespread adoption of existing techniques
other than address space- and structure layout randomization.

Almost all of the approaches mentioned above have the primary
goal of hardening software against binary exploitation, reverse
engineering and code reuse attacks. Since our plugin is primarily
intended to be used as a supplement to Structure Layout Random-
ization on the Linux kernel, we chose to use the same compile-time
randomization technique as the Linux kernel’s implementation of
this technique. Related approaches are described by Chen et al. [6]
and Lin et al. [22]. However, Lin et al. [22] suggest randomizing
projects differently if recompiled at different times, which would
prevent plugins like kernel modules in the context of Linux.

There is also an academic implementation of dynamic structure
layout randomization [5], which periodically re-randomizes data
structures at runtime. Unlike classical static approaches, this tech-
nique introduces a high average performance overhead of 15% and,
to our knowledge, has not been widely adopted.

6 DISCUSSION
In the following section, we will discuss the potential impact of our
research and name open issues.

Correctness. To the best of our knowledge, the modifications
of RandCompile will not impede the normal functioning nor the
security of the overall system. Like other compiler optimizations,
ABI randomization and pointer encryption are semantically sound
transformations of well-defined programs. For example, the ABI
is not consistent across architectures and not mandated by the
C-standard. However, it is not uncommon in the Linux kernel to
make assumptions about the layout of the generated code and
the compiler optimization being performed. Certain functions are
implemented in pure assembly and expect standard calling con-
ventions. Similarly, functions implemented in C can be called from
inline assembly sections or assembly sections. RandCompile han-
dles these cases by scanning for such functions beforehand and
does not consider them for ABI-randomization through the use of a
blacklist. Likewise, string and pointer encryption do not change the
semantics of a program. If we encrypt a value on store and decrypt
it on load this operation is transparent to the underlying program.

Security Considerations. The use of pointer and string encryption
raises the question of where to store the key securely inside the
kernel. RandCompile stores the encryption key of a structure field
as an immediate value of a machine code instruction inside the code.
A simple analysis for high-entropy values that would unveil it in
main memory is usually not efficient there. At least on x86-64 and
ARM, machine code is stored in variable-length encoding that has
a high entropy. This forces an analyst to perform an analysis of the
Linux kernel text segment, but the matching of the corresponding
encryption key for the field requires the tools to solve the problem
faced by Katana and AutoProfile. These tools are impeded in their
usability by the usage of ABI randomization.

A further concern might be if the encryption of values might
create new forensic gadgets revealing the position of interesting
objects in memory. Kernel pointers are easily identifiable because
they are usually 8-byte aligned, have a canonical form on x86-64
and ARM and yield a valid memory location if dereferenced. An
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encrypted value cannot get dereferenced without knowledge of the
key and, therefore, cannot reveal knowledge about the location of
other objects in memory.

Moreover, the initial search for the string swapper/0, which is
padded with zeros to a fixed 16-byte value, will hit by chance with
a significantly lesser probability than a search for a 16-byte high-
entropy value. Through the introduction of string encryption, we
increased the number of false positives that an analyst will face.

Binary Exploitation Defense. Randomizing the ABI of function
calls inside the kernel makes its exploitation harder, because kernel
exploits frequently call kernel functions [25]. In 2022, an exploit for
the Linux kernel was presented [29] that calls the set_memory_x
function in order to elevate its privileges. If such functions are ran-
domized, the attacker needs to guess the right calling convention for
this function. Furthermore, the encryption of pointers is a common
exploit mitigation strategy to prevent an attacker from modifying
vital pointers in the GNU libc [21] and on Windows. While Kernel
Address Space Layout Randomization (KASLR) already protects
the kernel by randomizing the load address of the kernel on each
startup and Stack Canaries usually protect the return address from
overflows on the kernel stack, stack-based and heap-based buffer
overflows can still be exploited in the kernel code. Structure Layout
Randomization was originally also designed to combat exploitation
through the software diversity concept. This is especially interest-
ing in remote exploitation scenarios or if the local administrator
does not give read rights to the /boot folder with the Linux kernel.

Full Memory Encryption Using AMD-SEV. Given the availability
of confidential computing technologies such as AMD-SEV, one may
debate whether our approach is needed to combat forensic analysis.
AMD-SEV provides virtual machines with the ability to transpar-
ently encrypt their memory, making it completely inaccessible to
other virtual machines and even the hypervisor.

However, AMD-SEV is only available on AMD CPUs, not of-
fered by every cloud provider, and has been subject to several
bugs [11, 20, 26, 35] since its introduction. In 2021, Buhren et al.
presented a hardware architectural attack on AMD-SEV that allows
an attacker with physical access to obtain the encryption keys for
the main memory and a fully decrypted dump of its memory con-
tents [4]. Attacks that exploit bugs in hardware drivers to generate
a memory decryption oracle despite the presence of AMD-SEV are
another prominent problem [20]. Considering these attacks, we
believe RandCompile can meaningfully complement AMD-SEV as
a defense-in-depth measure by cloud customers or stand on its own
in cases where AMD-SEV is not available.

Kernel Modules. RandCompileworks across the boundaries of C
translation units. All modifications to the ABI and the keys used for
obfuscation are derived in a deterministic way from a static seed.
This approach is also taken by the Structure Layout Randomization
feature. Therefore, Linux kernel modules compiled with RandCom-
pile support kernel modules precisely under the same conditions
as a kernel compiled with Structure Layout Randomization, i.e. the
utilized randomization seed must be available when the module is
compiled.

Influence on Debugging. As RandCompile’s purpose is to im-
pede the reasoning about the kernel structure for analysis and

reverse-engineering tools, this feature will make a Linux kernel less
debuggable. Because of that, the Linux kernel should be compiled
without RandCompile when conducting active development on
the kernel. However, this does not affect the usefulness of Rand-
Compile, since other security features like KASLR and Structure
Layout Randomization will be disabled likewise in this case. Debug-
ging information can be modified and stored separately from the
executable kernel such that debugging is still possible if a critical
bug should occur on a production system.

Limitations and Future Work. While already sufficient to address
attack approaches of state-of-the-art tools, RandCompile could be
more usable if all transformations would be applied in an automated
way. This would allow its application on a wide range of Linux ker-
nels without the need for large-scale source code changes. Pointer
and string encryption are currently only implemented for a few
fields in a manual way. This is because, an alias and flow analysis
is needed to identify all locations that read or write to a specific lo-
cation in memory to make sure that encryption and decryption are
performed consistently. However, we believe that there is still room
for further compiler assistance to perform more of these transfor-
mations. This would allow to encrypt more strings and pointers (on
non-performance-critical paths) to further increase the resilience
against high-entropy attacks trying to sidestep RandCompile. This
could also permit to include protections against FG 2 Symbol Tables,
which are currently not included in RandCompile.

Second, wewould like tomore closely investigate the blacklisting
feature to support the use of precompiled modules and drivers for
the Linux kernel as they appear in the Android ecosystem. Through
the blacklisting of all imported functions of kernel modules, these
modules should function without changes. This support should
already be there today. However, further research is needed to
evaluate if RandCompile’s protection is still sufficient in these
cases. Presumably, drivers use only a small surface of the Linux
kernel API and structures, which would not affect the protection at
all, but this is unknown so far.

7 CONCLUSION
We have presented RandCompile, a tool to remove Forensic Gadgets
from the Linux kernel. Without these gadgets, all forensic tools
we are aware of are impeded in their analysis capabilities. Primary
use cases for RandCompile are the hardening of a system against
automated forensic analysis by a malicious cloud provider, rootkit
attacks and reverse engineering (see Section 2.1). Likewise, it could
be leveraged by distributors of Android or IoT devices to hinder
reverse engineering of proprietary kernel modules on their devices.
Furthermore, like Structure Layout Randomization, which is already
deployed inside the Linux kernel, it can also harden the system
against binary attacks if the Linux kernel’s binary is unknown to
an attacker. This could be the case if the system is attacked via a
network connection. We have also argued that RandCompile can
be used in addition to AMD-SEV to offer a system that is more
fault-tolerant to future attacks.
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A STRUCTURE LAYOUT RANDOMIZATION
Structure Layout Randomization is a compiler plugin that has been
introduced into the Linux kernel source tree back in 2017 with
release 4.13. The compiler plugin was originally developed as part
of the GRSecurity project, but was later mainlined into the Linux
kernel. Its purpose is to harden Linux during compilation against
memory corruption attacks. Without Structure Layout Randomiza-
tion, a compiler will place members of C-style structs in the same
order as they have been declared by the programmer. However, in
many cases the exact memory layout of C-structs is not relevant to
the functionality of the program. Structure Layout Randomization
allows the developer to selectively relax this constraint and will
allow the compiler to reorder the members of specially marked
structure types. ABI compatibility through different translation
units is guaranteed by basing the shuffling process on a seed shared
between the different translation units.

This concept has been discussed in academia since 2008 [2, 8]
with the original goal to harden the software against binary ex-
ploitation attempts if attackers are unable to access the executable
binary. This is the case, if an attack is performed remotely or if
the attacker is sandboxed in some way. An attacker cannot make
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Figure 8: Visualization of offset selection for bogus argument
generation from a randomized example struct as employed
by RandCompile

targeted modifications to data structures in the Linux kernel, if the
layout of the data structures is randomized at compile time.

As a side effect, this feature negatively affects forensic profile
generation tools as we describe in more detail in Section 2.

There are ongoing efforts to integrate Structure Layout Random-
ization into the Clang compiler8 to create feature parity between
GCC and Clang. However, Structure Layout Randomization is cur-
rently only available if the kernel is compiled with GCC using the
respective plugin in the kernel source tree.

B OFFSET CANDIDATE CONSTRUCTION
Our bogus argument generation method (explained in Section 3.5),
uses a two-stage pseudorandom offset selection method that we
visualized in Figure 8.

In the first stage, we select a set of 𝑛 valid offsets within a given
data structure to represent a valid memory location from which
a value the size of a pointer can be sourced. In the example from
Figure 8 these correspond to the subset of valid offsets marked in
yellow on the left-hand side. The parameter 𝑛 needs to be set at
compile-time and should be chosen depending on the number of
registers used to pass parameters to functions according to our
calling convention as well as the average number of pre-existing
parameters per function call. To keep this pseudorandom selec-
tion consistent for a given member across all instances of a given
struct, we use information specific to this struct- and mem-
ber type to deterministically modify the random seed. This step is
important to ensure that the number of used offsets is limited to

8https://reviews.llvm.org/D121556
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tasks
# most votes 3 2 2 1
# second most votes 3 1 1 -
# correct votes 3 2 2 1
# total votes 9 3 3 1
# offsets voted on 3 2 2 1
pid
# most votes 12 6 7 4
# second most votes - - - -
# correct votes 12 6 7 4
# total votes 12 6 7 4
# offsets voted on 1 1 1 1
comm
# most votes 33 23 28 10
# second most votes 1 1 1 1
# correct votes 33 23 28 10
# total votes 35 24 29 11
# offsets voted on 3 2 2 2
mm
# most votes 91 9 14 10
# second most votes 4 2 10 9
# correct votes 91 9 10 10
# total votes 105 15 43 32
# offsets voted on 9 6 13 11
pgd
# most votes 27 15 17 14
# second most votes - - - -
# correct votes 27 15 17 14
# total votes 27 15 17 14
# offsets voted on 1 1 1 1

Table 4: Detailed view of results for Task Listing Analysis:
Comparison of votes received for most voted, second most
voted and correct member, as well as number of different
offsets voted on for each member

the predetermined amount across all function calls and compilation
units.

In a second step, we then select one offset from the 𝑛 potential
choices selected in step one and use it to determine the memory
location relative to the struct base that can be dereferenced to
initialize our bogus parameter. The dereferenced value (see can-
didate 8, Figure 8) may not align with actual struct members,
but must be contained entirely within the struct. Since we are
selecting from the already reduced subset this time, we do not want
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to consistently do so across various function calls. Thus, the infor-
mation used to deterministically modify the random seed is based
on function-specific information during the second step.

This creates a model that allows us to easily adapt the frequency
of bogus offsets for function parameters to our specific needs by
choosing 𝑛 accordingly: A lower 𝑛 increases the frequency of ap-
pearance of any given bogus offset but decreases the overall number
of wrong offsets encountered by Katana. This may increase the
feasibility of trial- and error approaches to obtain the correct off-
sets, but makes wrong offsets more likely to prevail during the
majority voting procedure used by Katana to select the correct
one. A high 𝑛, on the other hand, increases the number of potential
offsets available to Katana but risks bogus offsets degenerating
into random noise due to their low frequency of appearance when
compared to the correct one.

For AMD64-based systems, 𝑛 ≤ 5 appears to be a reasonable
choice, since at most 6 registers are used to pass parameters to called
functions. This means that in a program with only single-parameter
function calls, a total of five unused registers are available to serve
as storage for bogus parameters. Accordingly, in this simplified
scenario, we could set 𝑛 to 5 to present Katana with 6 offsets
appearing equally often, only one of which being correct. In a
more realistic scenario, we would usually have an average number
of function parameters that is greater than one, thus decreasing
the number of unused registers available to be filled with bogus
parameters. Hence, setting 𝑛 to 3 or 4 is more reasonable depending
on the specific configuration of the program at hand.
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Abstract—Honeypots are a widely used technique to observe
the spread of malware and the emergence of new exploits.
Attackers try to avoid connecting to honeypots as they reveal
the attacker’s methods, tools, and exploits.

While different honeypot implementations have been
fingerprinted in the past, we see a lack of studies covering
Windows-related protocols such as Remote Desktop Pro-
tocol (RDP) and Server Message Block (SMB) honeypots.
However, these protocols have seen at least two major
security vulnerabilities in the past 5 years and are commonly
exploited.

We adapted existing fingerprinting algorithms to allow
an accurate identification of RDP and SMB honeypots
checking how implementations behave in error conditions.
We present a new improvement, namely the inclusion of
system TLS stack features previously not used for honeypot
detection. We are the first to perform an internet-wide scan
searching for RDP and SMB honeypots. We are able to
effectively uncover the presence of two common open-source
honeypots for RDP and SMB each.

We identified 84 instances of Heralding (RDP), 1123
instances of RDPY (RDP), 60 instances of Impacket (SMB),
and 1461 instances of Dionaea (SMB) during our scans.
Furthermore, we found several hosts, which do not use
Microsoft’s SChannel TLS stack, but advertise themselves as
Windows machines. This indicates the presence of a Man-in-
the-Middle (MitM) box and could be a sign of a honeypot.
Eventually, we analyzed how attackers interact with de-
tectable honeypots. We deployed instances of RDP honeypots
ourselves and found that credential guessing attackers seem
to avoid them.

This proves that RDP and SMB honeypots are finger-
printable and that even MitM-box-based high-interaction
honeypots leave detectable traces.

Index Terms—honeypots, Internet scanning, RDP, SMB

1. Introduction

Honeypots have become a settled and well-researched
technique to watch the emergence of exploits on different
services on the Internet. They allow researchers to detect
the rise of new exploits and to keep track of how widely
specific vulnerabilities are being exploited.

Attackers have an interest in detecting and avoiding
honeypots, as they do not want to draw attention to their
specific exploitation techniques and tools [1]. Tools could
be as simple as the list of passwords most often tried by

an attacker, which a system administrator, in turn, may
then place on a weak-password list.

Despite much research having been conducted on
honeypots, security researchers still suggest new usage
scenarios and designs. For example, in 2020, an improved
ICS honeypot to catch malware directed at industrial
control systems (ICS) [2] and a specialized honeypot for
hardening neural networks against attacks [3] have been
proposed.

Organizations analyzing the Internet have also shown
interest. Portals like Censys.io and Shodan.io allow rea-
soning about the number of services on the Internet. Their
data often includes information about security vulnerabil-
ities and used software. Detecting honeypots is a logical
next step. Shodan.io started the Honeyscore project to
detect honeypots specifically for ICS [4] and announced
they will directly annotate their search results with honey-
pot tags [5]. This indicates the interest of the industry in
further developing honeypot detection techniques. Unfor-
tunately, they do not share their detection methods with
the public.

The Windows world has received less attention by
researchers, but faced at least two wormable security
vulnerabilities in the recent past. First, CVE-2017-0144 in
Microsoft’s Server Message Block (SMB) protocol, which
is exploited by the EternalBlue exploit. Second, BlueKeep
(CVE-2019-0708) is a vulnerability in Microsoft’s Remote
Desktop Protocol (RDP). Multiple security researchers
reported the use of honeypots to monitor the attacks [6].
SMB and RDP protocol traffic is in the top 7 on SurfNet’s
Internet telescope data [7]. However, existing research
primarily targets SSH, HTTP, ICS, and Telnet honeypots,
but no Windows protocols such as RDP and SMB as we
will discuss further in Section 2.

In this paper, we present the results of an internet-wide
scan for RDP and SMB honeypots. We created a small set
of network packets that allow for a fast internet-wide scan
following the methods of Vetterl et al. [8] with extensions
we describe further in Section 4. The set allows for an
accurate classification of the hosts, as we demonstrate by
performing an internet-wide scan to estimate the number
of honeypots of selected open-source implementations.
Moreover, we illustrate how unique features of the Mi-
crosoft SChannel and OpenSSL TLS implementation can
be used to detect abnormal RDP stacks.
Our contributions can be summarized as follows:

(i) We present how existing honeypot fingerprinting
approaches can be adapted to detect SMB and RDP hon-
eypots. We implemented our ideas in our own honeypot
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detector. Furthermore, we conducted a 34-day experiment
to collect evidence that attackers avoid RDP honeypots.

(ii) We show that a fingerprintable TLS stack allows
improved distinction between Windows and non-Windows
hosts.

(iii) We performed internet-wide scans for RDP and
SMB hosts and present numbers on the spread of selected
open-source honeypots for these protocols.

(iv) We verified our results by connecting to a random
subset of each of our classification groups and found that
we have only classified 5 out of 1097 hosts incorrectly
(i.e., less than 1%). In the honeypot classification groups,
we have not identified a single misclassified host.

(v) We publish1 our scanning and detection tools in
order to support reproducibility such that others can use
and improve upon our work. Additionally, we provide our
dataset on request to interested researchers. In contrast
to existing data from Censys and Shodan, our dateset
includes the raw exchanged data in unparsed form and
covers multiple protocol versions.

2. Related Work

Many honeypot detection approaches [7]–[10] are
based on detecting shortcomings in the honeypot im-
plementation of the respective protocol. However, the
detection can also be based on the combination of ser-
vices offered [11] or how the honeypot interacts with
other services on the Internet [12]. Several open-source
honeypots offer a wide set of services they can emulate.
A host offering myriads of different services is unusual,
especially if running services requires different operating
systems. An example for interaction based detection is
HoneypotHunter [12]. It checks for SMTP honeypots by
connecting to potential open SMTP relays and sending an
e-mail, addressed to a server under the detector’s control.
If the attacker does not receive an inbound connection
on his server, especially if the host announced correct
delivery, a honeypot has been found.

Vetterl et al. [8] detected SSH, Telnet, and HTTP hon-
eypots by fuzzing honeypots and their real-world counter-
parts. Out of these data, they derived a most distinctive
probe being used to perform an internet-wide scan. We
based our research on this idea and will discuss it fur-
ther in Sec. 4. In 2019, Morishita et al. [7] investigated
the prevalence of 14 open-source honeypots in Censys
Internet scanning data. They derived signatures based on
protocol banners, HTTP responses, and error responses.
However, they only analyze FTP, SSH, Telnet, SMTP,
HTTP, and IMAP honeypots. They found about 17k hon-
eypots for different protocols.

Honeypots and honeynets, a whole network of hon-
eypots, have also been detected by abusing timing and
network characteristics. In 2006, network packets travel-
ing through the honeynet implementation honeyd were
known to have a round-trip time of a multiple of ten
due to characteristics of the OS and the simulation [13].
Another network latency-based detection for honeynets,
which takes other fields of TCP/IP packets into consid-
eration, is discussed in [14]. Holz et al. [1] propose the
detection of so-called high-interaction honeypots, which

1. https://github.com/tum-itsec/looking-for-honey-once-again

are instrumented or sandboxed versions of the real ser-
vice through artifacts of the virtualization environment or
emulator.

The detection of honeypots has also found its way
into the products of internet-scanning companies such as
Shodan. Shodan implemented Honeyscore [4], which fo-
cuses on ICS honeypots and is reported to become a stan-
dard feature in their search engine [5]. Honeyscore uses
a mixture of the discussed detection features. First, they
consider if a service has too many open network ports.
Second, they consider if a service is running in an unusual
IPv4 address space (i.e., a PLC in the Amazon EC2 cloud).
Third, they search if a service response matches known
honeypot configurations. Lastly, they employ machine
learning in an undisclosed manner for detection [2].

The interaction between honeypots and attackers has
also received research interest. In 2018, Metongnon et al.
[15] have analyzed data of the SurfNet network telescope
and compared it with the incoming traffic on their telnet
honeypots. In 2019, Ghiette et al. [16] conducted a large-
scale study to fingerprint attackers of SSH servers by using
features such the SSH banner of the client, the MD5 hash
of the offered crypto algorithms and the passwords used
at login attempts.

3. Background

RDP as well as SMB have a rich feature set and
a long history. In the following, we introduce the basic
functionality of both protocols before we outline our ideas
for fingerprinting and honeypot detection in Section 4.

3.1. RDP

The Remote Desktop Protocol (RDP) allows for re-
mote access and maintenance of the Windows operating
system. Microsoft released RDP 5.1 and 5.2 together with
Windows XP and Windows Server 2003 and continuously
developed it ever since; now RDP 10 for Windows 10/11
and Windows Server 2016 onward is available [17]. Be-
sides its primary screen sharing functionality, it offers
additional features like clipboard sharing, redirection of
peripherals such as smart card readers and drives to the
RDP server. The huge amount of features inhibits a free
reimplementation, even though the protocol is described as
part of the Microsoft Open Specifications program [18].

Nonetheless, RDP is also used by third parties to offer
remote control to non Windows operating systems. For
example, a popular open-source implementation is XRDP
for Unix-based operating systems; Oracle also offers a
closed-source extension for VirtualBox to enable access
to virtual machines using RDP.

Figure 1 shows the initial steps of the RDP protocol
which are embedded in the TPKT format. RDP’s security
evolved over time and covers multiple security modes. The
client and server agree upon which mode should be used
during the first steps of the protocol (Step 1 in Figure 1). In
the context of our work, the following modes are relevant:
PROTOCOL RDP: This mode must be supported by the
client and indicates the use of standard RDP security;
a mode where encryption and integrity protection can
be done in the RDP protocol itself. Step 2 and 3 in
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Client Server
TPKT-Header / X.224 Connection Request

(1) TPKT-Header / X.224 Connection Response

(Only PROTOCOL SSL) TLS Handshake
(2)

(Only CredSSP) CredSSP Auth
(3)

MCS Connect Initial PDU

(4) MCS Connect Response PDU

(Further steps needed for

connection establishment)

Figure 1. The first steps of the RDP protocol.

Figure 1 are skipped in this case. Most of the selectable
cryptographic primitives in this mode (such as RC4 and
MD5) are outdated nowadays.
PROTOCOL SSL: After the first message exchange, the
negotiation phase, both parties establish a secure channel
via the TLS protocol. Authentication of the server is
realized through an X.509 certificate. Authentication of
the client is done by the user entering their credentials
into the login UI after all other negotiations are finished.
PROTOCOL HYBRID: The authentication of the user is
done immediately after the TLS handshake has finished.
All further negotiations are done afterwards. Microsoft
refers to this mode also as Network Level Authentication
(NLA). Authentication of the user could be done via a
classic (username, password) tuple, by passing a Kerberos
ticket, or by using a smart card.

Note that only in the PROTOCOL HYBRID mode the
user has to authenticate itself early in the third step. In all
other modes listed above, the server will willingly provide
a lot of information and commit resources on establishing
the connection before the user is authenticated. Therefore,
recent Windows installations suggest the use of Network
Level Authentication, which is equivalent to enforcing
PROTOCOL HYBRID during connection establishment
(from Windows Server 2008 R2 onward).

3.2. SMB

The Server Message Block protocol (SMB) is primar-
ily used by Windows operating systems to share locally
stored files with other machines in the same network to
allow browsing, editing, and deletion. Besides sharing
files, it also offers inter-process communication, e.g., in
the form of named pipes. On top of that, Microsoft Remote
Procedure Calls (MSRPC) can be used.

Microsoft released SMB 1.0 together with Windows
2000 and SMB 3.1.1 with Windows 10. Windows supports
end-to-end encryption and integrity protection since SMB
3.0. Beforehand, SMB offered none of these services,
rendering it an easy target to attackers and making the
protocol unsuitable for communication over an untrusted
network such as the Internet. Therefore, many network
operators filter the default SMB port 445. Nevertheless,
around 1M hosts are offering their SMB service on the
Internet according to Censys data.

Besides the implementation in Microsoft Windows,
Samba has become the most prominent open-source im-

plementation of SMB. We chose two versions, 3.5.6,
as it is the last version of Samba without support for
SMBv2 and 4.10.0, being the latest version available to
Ubuntu 19.10 at the time of our experiments. Furthermore,
commercial competitors such as Visuality Systems have
also implemented SMB.

SMB communication starts by negotiating a dialect
(e.g., “NT LANMAN 1.0” or “SMB 2.002”) with the
server. If backward compatibility is required, the negotia-
tion is started by sending an SMBv1 negotiation packet. A
list of supported dialects is sent alongside this negotiation
packet, similar to TLS. If backward compatibility is not
desired, a connection can also start with an SMBv2 packet.
The server selects one dialect from the offered list and
responds with its choice.

After dialect negotiation, the sequence continues with
the Session setup phase. During this phase, the user is
authenticated via the Simple and Protected GSSAPI Nego-
tiation (SPNEGO) that uses the General Security Service
API (GSSAPI) and which in turn transports authentication
mechanisms such as Kerberos or the NT Lan Manager
Protocol (NTLM). The server can choose to authenticate
the user without credentials and grant access to the server
anonymously.

3.3. Honeypot Implementations

Honeypot implementations are grouped into low,
medium and high-interaction honeypots. Low- and
medium-interaction honeypots focus on easy deployment
and maintenance while implementing only basic function-
ality. High-interaction honeypots try to mimic a service
indistinguishable from the original and are often based on
virtual machines to minimize operational risks.

We focused on finding open-source implementations
for RDP and SMB mentioned above. We identified two
honeypot implementations respectively, which we will
describe in the following.
Heralding (RDP) Heralding [19] focuses on catching
login credentials of everybody logging into the system.
Therefore, it is not in focus of the developers to provide a
complete protocol implementation. RDP connections are
terminated early if the credentials are not submitted during
connection establishment.
RDPY (RDP) Another honeypot implementation for the
RDP protocol is RDPY [20], written in Python 2 on
top of the Twisted framework. The first commit dates
back to the year 2013. Since then, it has been heavily
developed until 2015, but no RDP protocol related fix hap-
pened afterwards. RDPY supports PROTOCOL_SSL and
PROTOCOL_RDP security. However, if the administrator
does not create an X.509 certificate, PROTOCOL_SSL
will be disabled. In contrast to Heralding, an attacker can
complete the full RDP connection sequence and will be
able to watch an emulated screen. During operation as
honeypot, content and events on the emulated screen are
replayed from a session recorded beforehand. In order to
create a recording, RPDY is used in a preparation phase
as a proxy to a regular server. The implementation proxys
the requests to the regular server and records all screen
update and keypress events. Afterwards, the recording is
replayed to every attacker. This allows the honeypot to
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TABLE 1. FEATURES OF ANALYZED HONEYPOT IMPLEMENTATIONS

Honeypot Age RDP SMB
RDPSec SSL Hybrid v1 v2 v3

Impacket 2003 4 4 4
Dionaea 2009 4
RDPY 2013 4 4

Heralding 2012 4

mimic a real system as long as the attacker does not try
to interact with the system.
Dionaea (SMB) Dionaea [21] is a honeypot for a wide
range of protocols. Since its initial git commit back in
2009, it advertises support for over 14 protocols, including
FTP, HTTP, Memcached, MSSQL, SMB, SIP and UPNP.
The Dionaea core is implemented in the C programming
language with support for Python modules implementing
most of its protocol logic. Dionaea does not offer RDP
support. SMB support is implemented in Python and
restricted to SMBv1.
Impacket (SMB) Impacket is a collection of Python
classes for working with networking protocols especially
from the Windows domain. This includes high level
implementations of SMBv1, SMBv2, and SMBv3 [22].
While Impacket is not a honeypot on its own, we found
honeypot implementations using this library during our
Internet scans. The library is provided by SecureAuth,
a security company, and seems to be solely developed
for the needs of penetration testers. SecureAuth provides
numerous examples how to use the library in this field,
e.g., an exploit for the SMB Relay Attack (CVE-2015-
0005).

Besides the honeypots mentioned, further implemen-
tations targeting SMB are for example DTK or Smoke
Detector (see also [23] for a more complete survey of
popular honeypot implementations). However, these im-
plementations have stalled in their development since
2005 and we will therefore not consider them here.

Table 1 summarizes the different characteristics of se-
lected honeypots. These honeypots can also be combined
to cover multiple protocols or scenarios. An example are
the T-Pot Docker and virtual machine images created
by T-Systems, which also hosts T-Pot actively for their
Sicherheitstacho project2. It contains all presented tools
but Impacket.

3.4. TLS Fingerprinting

As our approach will leverage the fact that many
honeypots implement their services without taking the
TLS stack into consideration, we provide a short overview
of TLS fingerprinting techniques. We found that modern
RDP implementations mainly use TLS 1.2. Therefore, we
will not describe the specifics of the more recent TLS 1.3.

During the establishment of a TLS connection, the
cipher suite for encryption and integrity protection as well
as the algorithms for key exchange need to be negotiated.
In addition, the client can present a set of supported TLS
extensions. The server decides which extension subset is
accepted and signals this together with the selected cipher
in the Server Hello Message.

2. https://www.sicherheitstacho.eu/start/main

This property was used by research [24], [25] and
different groups to fingerprint TLS clients. Notable tools
are JA3 [26], Cisco Mercury [27] and Cisco Joy [28].
They are based on similar approaches, creating a hash
of the mentioned parameters of the TLS Client Hello
to identify implementations. JA3 provides an additional
extension JA3s to fingerprint servers besides clients. The
server behavior is not only influenced by the used im-
plementation but also by each Client Hello because it
can only select offered properties for a successful hand-
shake. Therefore, JA3s relies on the combination of client
and server fingerprints. In order to proactively get server
fingerprints, JARM [29] was developed. It fingerprints a
server based on its behavior for 10 manually crafted Client
Hellos.

The approach presented in this paper is based on
our observation of two further characteristics. First, if
the server agrees on a PFS-enabled cipher, an algorithm
for key exchange needs to be negotiated. We observed
frequent use of ECC here. If chosen, the curve needs to
be agreed upon before the key exchange can happen.

Second, TLS allows multiple handshake messages to
be packed together inside a single TLS record packet.
The SChannel Service Provider (SSP) implementation
of Windows packages does this. In contrast, OpenSSL
creates a TLS record for each handshake message.

4. Our Honeypot Detector

SMB and RDP are both complex protocols that are
very hard to implement identical and feature-complete
with respect to a reference implementation when devel-
oping a low- to medium-interaction honeypot.

Following the methods of Vetterl et al. [8], we fuzzed
all RDP and SMB implementations we are aware of to find
the most distinctive probe. In an optimal case, a single
packet can be used to classify all hosts. In contrast to
Vetterl et al., we use a set of distinctive packets to increase
the resilience of our scanner to unknown implementations.
Our request set is still small enough to enable scan speeds
high enough to perform an internet-wide scan.

Where applicable, we also fingerprint the TLS stack
used by the respective implementation. Furthermore, our
fingerprinting tool does not consider the specifics of the
operating system TCP stack. Some fingerprinted imple-
mentations also support other operating systems such as
Linux.

We created two separate tools to create and compare
fingerprints of known RDP and SMB implementations
respectively. We created the fingerprints on our lab in-
stances of all mentioned honeypots and benign Windows
installations. Afterwards, we tested the fingerprints on
real-world instances of Windows Server 2012, 2016, 2019
in the Amazon EC2 cloud and Microsoft Azure. We found
that the Windows end-user versions share RDP and SMB
server code with the server versions (see Table 7).

4.1. Packet Similarity Scoring

In order to check for the similarity of the collected
packet exchanges, we developed a parser for the SMB
and RDP protocol which tokenizes a single response
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into multiple labeled fields. The fields of two responses
are compared by checking if their values are identical,
in a certain range or have certain bits enabled. Fields
containing random values, length indicators (where differ-
ent lengths are allowed), timestamps or fields containing
configurable values are ignored during comparison. The
similarity score is eventually set to be 1

1+n where n is
the number of differing fields. Thereby, the similarity
decreases the more fields inside the responses are found
to differ.

One notable exception is the parsing of TLS traffic
occurring inside RDP traffic. For the sake of simplicity,
we only partially parse the TLS traffic and convert it into
a single synthetic tokenized packet. This synthetic packet
contains all relevant characteristics of the TLS handshake
mentioned in Section 3.4.

4.2. Differential Fuzzing for Fingerprinting

Equipped with a metric to calculate the similarity of
two packets, we can build a small fuzzer upon these.
The fuzzer constructs a packet, sends it to each imple-
mentation, and utilizes the similarity scoring to decide
if a notable difference between the answers exists. The
responses are then compared to each other according to
the similarity metric mentioned above. The request packet
generating the set of responses least similar to each other
is selected as the most distinctive probe.

For RDP, we utilize a bit mutation strategy of the first
packet. For SMB, we construct the set of all reasonable
combinations of values inside the request packet fields
to find the most distinctive probe. While this fuzzing
approach is simple, it is sufficient to identify fields in
the protocol causing distinguishable answers for each
implementation.

4.3. Our RDP scanner

Based on out fuzzing, the protocol field with the most
notable impact on the server responses is the proposed
security mode of the client (see Sec. 3.1). Therefore, we
establish four connections with the target host. Three of
them are regular connection attempts, advertising all major
security modes (PROTOCOL_RDP, PROCOTOL_SSL, and
PROTOCOL_HYBRID). This is done because some imple-
mentations choose to downgrade from or directly refuse
connection attempts advertising support for certain secu-
rity modes. The fourth connection contains an invalid set
length field, triggering different error handling behavior
between Heralding and RDPY and all Windows versions.
Regular Windows versions close the connection with a
Connection Reset. RDPY closes the connection by sending
a regular TCP FIN packet to the client and Heralding
sends the client an RDP Negotation Failure Message.

Still, in many cases just collecting the first packet ex-
change for each connection does not provide enough infor-
mation to differentiate between implementations. There-
fore, depending on the negotiated connection type we try
to either establish a TLS connection and send the next
packet over TLS or send it unencrypted. Note that the TLS
fingerprint of Heralding and RDPY is not affected if the
implementations are operated on a non-Linux operating

system. Both packages rely on OpenSSL and do not
switch to the native operating system TLS stack.

If the server accepts our PROTOCOL_HYBRID at-
tempt, the protocol proceeds with Network Level Au-
thentication (NLA) after the TLS handshake. We send a
regular SPNEGO packet, starting the exchange of security
mechanisms of both parties, but abort the connection
directly afterwards in order to avoid supplying credentials
for ethical reasons (see Sec. 5.1).

In case of a PROTOCOL_RDP or PROTOCOL_SSL
connection, we proceed with the second step and send
an encrypted or unencrypted version (dependent on the
security mode setting) of the client capabilities which we
recorded as well from the standard Windows RDP client.

We found that all Windows Servers which can be
rented in the Amazon EC2 and Azure cloud have NLA
enabled by default.

Because of the limited information we are able to
obtain in an NLA enforced environment, it is impossible
to distinguish Windows 10, Windows 8 and the different
versions of the Windows Server 2012, 2016, 2019 solely
on the characteristics of exchanged RDP packets.

The flag field of the RDP Negotiation Response PDU
has two flags which are only available in recent RDP
versions. If NLA login is not enforced, we can find more
distinguishing features in the second round trip of the
protocol. We show an example of which fields can vary
in the responses of the second round trip in Table 6. It
shows the relevant parts of the reference responses to
the PROTOCOL_RDP packet. Packet headers that do not
contribute to the fingerprint are intentionally left blank.
Some implementations, e.g., Windows 10, do not respond
to the second packet because they discontinue the connec-
tion after receiving it, which also counts as distinguishing
behavior.

4.4. Our SMB scanner

We found the following fingerprintable implementa-
tion pitfalls for SMB: If no common dialect can be nego-
tiated between client and server, different implementations
have different ways of discontinuing the connection, some
sending error codes while some close the connection
without sending additional data. Furthermore, our fuzzer
found different behavior by setting reserved fields to non-
zero values or by setting other fields to values that are
not reasonable in the current context. For fields inside the
request which have corresponding fields in the response, it
is up to the implementation whether such atypical values
are ignored by mirroring them or by resetting them to
zero.

Lastly, another valuable factor contributing to the fin-
gerprint of an implementation is the combination of the
Native OS and Native LAN Manager fields inside the
second packet in an SMBv1 protocol sequence. It can
offer hints about the platform and operating system or
environment which the server runs on and while honeypots
can trivially replace this information, it does contribute to
the overall fingerprint.

Therefore, our final SMB scanner establishes four
connections to a scanned host, each having a different
function:
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1) An SMBv1 packet checking if the targeted host
supports SMBv1 (as we consider this to be a
requirement for a honeypot, see Sec. 5.5)

2) A packet that checks if the targeted host supports
anonymous login

3) A packet checking for the support of the most
recent version SMBv3

4) A specifically crafted packet that we found to
trigger the most distinctive responses from im-
plementations that we consider in our work

5. Internet-wide Scan

In order to test our ideas and developed tools, we
conducted an internet-wide scan. We will describe its
execution and its results in this section.

5.1. Ethical Considerations

We follow the principles of informed consent [30] and
best practices [31]: we avoid the collection of personal or
sensitive data and we try to avoid causing any harm to
online servers during our active scans. None of the scan
probes we send have affected our test machines negatively.

As described in Section 4, both the RDP and SMB
protocol usually provide enough data for fingerprinting
before we have to actually login into the machine. Since
we do not provide any credentials to our targets, we do
not consider it as a hacking attempt.

We took precautions to minimize the impact of our
scans, following established practices as, for instance,
described in [32]. In particular, we maintain a block list
to avoid scanning systems that have in the past indicated
to us that they want to be excluded from scans. Our
abuse email address is published in the WHOIS and all
abuse emails are forwarded to us by our IT department.
We assess the impact of our scans in terms of potential
harm to other systems and human beings, as proposed by
the Menlo report [30]. We use a relatively low scanning
rate to minimize any impact and respond immediately
to complaints. All our scanning hosts run a web server
which provides information on the scan including an email
contact. We received 9 new requests regarding our scan
activities, added IP addresses of eight requests to our block
list and resolved one request, allowing us to continue scans
as research project.

5.2. Setup

For our Internet-wide scan to find honeypots, we com-
bine the implemented detectors with ZMap [32]. ZMap
provides us the possibility to scan the complete IPv4
address space searching for hosts with open RDP (3389)
or SMB (445) ports. If a host with an open port is detected,
it is directly handed to the respective honeypot detector.
This combination of ZMap as a stateless, fast Internet-
wide scanning tool and our implemented stateful detector
allows fast but informative scans.

Due to the properties of ZMap to focus on a single
protocol and port to drastically decrease scan duration,
we scanned SMB and RDP sequentially. Each scan was
conducted with a rate of 20 000 packets per second to
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reduce the impact on target systems. For each scan, we
use an up-to-date BGP dump from our local upstream
provider with the complete set of reachable prefixes as a
ZMap allow list to reduce the scan duration. This excludes
all address ranges from the scan that are not announced
by any AS and thus not reachable. Furthermore, we use
a self-administered block list to prevent scanning targets
which requested to be excluded from our scans. This block
list was created over time based on abuse mails received
by our research group to follow the ethical considerations
described in Section 5.1. The list is solely built from
requests to be excluded from active scans not including
any external sources. The block list contains different
addresses and prefixes covering 5.7M addresses in total.
With the given setup and rate, each scan probes 2.8 billion
IP addresses (67% of the complete IPv4 address space)
and has a duration of around 37 hours.

5.3. Classification Results

During our internet-wide scan started on March 26th
2021 we discovered in total 7.5M hosts with an open
RDP port. We could successfully assign 2.1M hosts to
known RDP implementations. Regarding SMB, we found
2.7M hosts with an open port 445 during the scan started
on the March 30th 2021. 1.1M hosts were categorized
after a successful connection could be completed. For
both protocols, we only label a connection with a specific
implementation if the fingerprint matches exactly. Results
can be seen in table 2 and we will describe the results for
both protocols separately.

56.7% of the RDP scans and 57.2% of the SMB scans
resulted in an error. For both protocols more than 97% of
the errors were caused by a closed connection. Either a
host is not reachable at all or it closes the connection after
seeing our initial RDP connection attempt. This means
most likely that those hosts do not provide the respective
service behind the scanned port or that the port was
erroneously reported by ZMap. In the remaining cases
(less than 3%), we are not able to parse the answer of the
host. We assume this is due to missing functionality in our
parser or the host offers a different service. 14.2% of RDP
hosts and 1.1% of the SMB hosts are not categorizable.
Hosts are considered as not categorizable, if they do not
match one of our recorded fingerprints.
RDP We were able to find 1207 matches with the Herald-
ing and RDPY honeypots with 100% similarity. Predomi-
nantly, we found instances of RDPY in a configuration
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TABLE 2. SCAN RESULTS OF OUR INTERNET WIDE SCAN.

Category RDP SMB

Total ZMap results1 7 577 919 2 704 250

Categorizable2 2 125 428 1 125 838
Regular Implementations 1 940 159 1 124 317

Windows 8 & 103 1 401 465 96 361
SChannel 1 401 452
non-SChannel 13

Windows 10 (no NLA) 96 003
SChannel 96 003

Windows 8 (no NLA) 35 126
SChannel 35 126

Windows 7 357 179 685 701
No Data 296 065
SChannel 61 113
non-SChannel 1

Windows XP 36 823 3834
No data 36 823

XRDP 13 355
non-SChannel 13 355

VirtualBox 208
No data 208

Samba 3.5.6 153 071
Samba 4.10.0 181 931
YNQ 2741
Misc. implementations4 678

Honeypots 1207 1521
Heralding 84

non-SChannel 84
RDPY 50

OpenSSL 50
RDPY (no TLS) 1073

No data 1073
Dionaea 1461
impacket 60

Non RDP/SMB protocols 245 300
HTTP 185 948
SSH 59 352

Uncategorizable2 1 080 773 31 152

Errors 4 310 480 1 547 260
Unparseable 11 649 36 395
Connection closed9 3 127 932 1 419 216
No connectivity8 1 170 899 91 649

1 ZMap only reports hosts with an open port. An open
port is no proof the respective service is also provided.

2 Hosts are only labeled with a classification if the finger-
print shows an exact match.

3 and Windows Server 2012R2, 2016 and 2019
4 Combined set of different rare implementations.
5 Unknown Non-RDP protocol
7 Hosts which did not respond to all of our packets pre-

venting an exact classification
8 Hosts without any response to our scanner despite being

reported by ZMap
9 Hosts which we established a connection with but closed

the connection before sending any data

TABLE 3. TOP 10 AUTONOMOUS SYSTEMS HOSTING HONEYPOTS

CO ASN Organization SMB RDP Total

US 16509 AMAZON 232 167 399
US 20473 CHOOPA 126 95 221
US 14061 DIGITALOCEAN 102 90 192
DE 197540 netcup 66 72 138
TW 1659 TANet 131 1 132
US 8075 MICROSOFT 48 25 73
US 63949 Linode 33 37 70
US 14618 AMAZON 41 28 69
US 15169 GOOGLE 35 32 67
US 22773 Cox Communications 50 3 53

not offering PROTOCOL_SSL and always falling back
to standard RDP security. Furthermore, we observed that
the RDP port is frequently used for non RDP services.
If a response packet of a host does not appear to be a
valid TPKT, we classified it as non-RDP. Investigating
this response class, we found several hosts answering with
HTTP/1.1 400 Bad request indicating an HTTP
server. Moreover, we found many SSH banners sent in
response to our probe indicating an SSH server.

We found the RDP stacks of Windows 8 and Windows
10, which are also used in Windows Server 2012 and 2019
respectively, predominantly used. In about 1.4M cases the
hosts enforce the use of Network Layer Authentication
(see Section 3.1) which gives our scanner only limited
opportunity for fingerprinting. In almost all cases, the
Windows hosts have a fingerprint which indicates the
use of S-Channel the Microsoft Windows TLS implemen-
tation. However, a few hosts show perfect match with
Windows, but have a fingerprint indicating the use of a
non-Microsoft TLS library.

We also found Windows 7 and XP hosts unwilling
to negotiate a TLS based connection with our scanner,
but downgrading us to Standard RDP security for unclear
reasons. This is marked in Table 2 as No Data.

SMB 1521 hosts have responded to our probe packets in
exactly the same way as our lab instances of Dionaea and
Impacket. With 60%, a majority of hosts that can be clas-
sified use Windows 7 followed by Samba 4.10.0 (16.3%)
and Samba 3.5.6 (14.3%). Further analyzing the set of
values we found inside the NT Lan Manager field, we
discovered numerous rarely appearing and some almost
undocumented implementations of the SMB protocol such
as smbx (Apple), Alfresco CIFS and SXLM for which
we had no fingerprint from lab tests. Since we did not
expect any honeypot to mimic them, we categorized them
as Misc. implementations without further comparison of
their fingerprint.

RDP + SMB The two IP address sets of identified RDP
and SMB honeypots are not distinct. With 606 mutual
addresses, around 40% combine honeypots for the RDP as
well as for the SMB protocol on the same host. This high
overlap supports our finding that the presented method-
ology is able to detect honeypots. Selective searching of
the hosts on portals like Censys.io or Shodan.io reveals
that these hosts usually offer services associated with the
honeypots Dionaea and cowrie, a honeypot for SSH and
Telnet. We found eight hosts that mix an RDP honeypot
with an Impacket installation, supporting our argument
that Impacket is indeed used for building up honeypots.

Furthermore, hosts of 36 RDP honeypots have an open
SMB port which can not be classified as a honeypot.
Out of these, 35 SMB connection attempts ended in a
premature session exit, indicating an unresponsive service.
The one remaining host is classified as uncategorized,
however the handshake sequence has some similarity with
Windows XP, which could indicate an unknown honeypot
implementation. Vice versa, 87 SMB honeypots addition-
ally have an open RDP port reported by ZMap. In 77 cases
our scanner was not able to successfully establish a RDP
connection, in eight cases a non-RDP service answered
our probe and two hosts have not been classified.
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5.4. AS Coverage

To highlight the widespread usage of detectable hon-
eypots by a multitude of different organizations and
providers, we analyze the distribution of honeypots across
autonomous systems (AS). Figure 2 shows the distribu-
tion of all identified honeypots across ASes. 50% of all
detected SMB honeypots are located on only 12 ASes
but the remaining 50% are spread across 314 ASes. RDP
honeypots are located in more ASes with a total coverage
of 325 but with 50% located in 10 ASes, a majority can
again be found in a small subset. Table 3 lists the top
10 ASes based on the total amount (SMB and RDP) of
honeypots. It can be seen that multiple listed organizations
are mainly cloud providers, (e.g., Amazon, DigitalOcean,
and Netcup) and research networks (AS1659 is the Taiwan
Academic Network). While some honeypots might be
hosted by the cloud hosting organizations themselves, a
majority is most likely set up by the provider’s customers.
Some of these hosting providers are also known to be
scanning and research friendly. That might be an expla-
nation for smaller hosters appearing in this top list. Based
on these results, we infer that these types of honeypots
are a widely used tool across various ASes.

5.5. Result Validation

In the following, we will describe our attempts to val-
idate our scanning results by using additional indicators,
because of the lack of ground-truth data for the Internet.
We already observed in Section 5.3 that hosts offering
both analyzed services are highly likely to have both
services classified as honeypot. This is a clear indicator
that these hosts are honeypots.

Additionally, we automatically connect to hosts of
each category using established open-source tools and col-
lect their diagnostic data where possible. If an automatic
validation is not possible for a category, we fall back
to manual methods. Table 4 summarizes our validation
results. Unresponsive machines were most likely taken
offline during the time period between scan and verifica-
tion. We miss-classified less than 1% of responsive hosts.
Additionally, none of the hosts in the honeypot group was
miss-classified.

5.5.1. RDP Validation. First, we check if hosts being
classified as normal Windows machines have been labeled
with the correct Windows version. To achieve that, we uti-
lize rdesktop3 to obtain a screenshot of 100 target hosts in
each category in an automated way. This is only possible
for hosts not enforcing NLA. The captured screenshots
of the login screens can then be quickly checked by
using an image recognition algorithm or a human analyst
if they match the respective version of Windows. The
results are shown in Table 4, only one Windows 10 host
is misclassified.

Second, we check if the honeypots have been labeled
correctly by our scanner tooling. Unfortunately, the screen
scraping approach is not viable to detect the selected
honeypots. As RDPY only replays pre-recorded sessions,
a human analyst will quickly notice that keypresses are

3. https://github.com/rdesktop/rdesktop

TABLE 4. VERIFICATION RESULTS

Correct Incorrect Unresponsive
/ Error

RDP 448 5 127
Heralding 1 29 0 1
RDPY 1 29 0 1
RDPY (no TLS)1 18 0 12
Windows 10 (no NLA) 89 1 10
Windows 8 (no NLA) 77 0 23
Windows 7 (no NLA) 58 0 32
Windows Server 2003 55 4 41
XRDP 93 0 7

SMB 649 0 863
Dionaea 628 0 (9)2 824
Impacket 1 21 0 39

Total 1097 5 951
1 Only manually verified
2 Manual additional test deemed all hosts as honeypots

not displayed and that he is viewing how somebody else
is using the machine. However, to a screen scraping tool,
the host will appear as a benign machine. Heralding is
unable to go through the whole connection sequence and
will terminate the connection early and never continue to
a point where a user can see the Windows login screen.
Therefore, we connect to 30 instances of each honeypot
category manually and analyze the exchanged packets and
check if the machine reacts to mouse movements.

During our manual verification process, we observed
that many of the Heralding honeypots use the same
subject and issuer names in the TLS certificates and
that they show the abnormal protocol behavior described
above. This strengthens our assumption that these hosts
are indeed Heralding honeypots. Multiple RDPY instances
share desktop session replays they present to the con-
necting user. Foremost, we observed a login screen of
Windows 8/10 fading in, but a few instances presented us
with a full Windows 7 desktop session where somebody
moves the mouse on the desktop while our test user did
not interact with the system.

We also performed manual validation on the small set
of non-SChannel hosts being classified as regular Win-
dows instances. As our classifier showed good precision
for regular hosts, we believe that a real windows host
is involved in the connection. We conclude that the con-
nection is interrupted by a MitM-box. The non-SChannel
Windows machines appear to be fully functional. Dialogs,
for example, the accessibility menus, react normally.

5.5.2. SMB Validation. We connect to each host using
the tool smbclient4, which is capable of showing the
offered file shares of an SMB server. We observed that
the shares offered to a client by Dionaea are configurable
in the most recent versions, but we assume many users
might not change the default values. We connected to
all Dionaea honeypots and found that 628 hosts have
not switched the offered default shares and displayed
comments. Nine hosts presented a different list of file
shares. We manually connected to these instances and
found that the share names are only slightly altered and
that the connection dies with unusual error codes when we

4. https://www.samba.org/samba/docs/current/man-html/smbclient.1.
html
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browse around. For the validation of Impacket instances,
we observed that the amount of free disk space that is
displayed to the user while browsing through offered files
is a hardcoded value in the source code. Therefore, we
employ this as a detection feature.

6. Attacker Behavior Analysis

To study how attackers react to detectable honeypots
and how they adopt their behavior, we deployed multiple
instances of RDP honeypots at various cloud providers.
We captured their traffic and analyzed the performed
attacks.

6.1. Setup

Our honeypots were deployed in the Amazon EC2
cloud from June 17 to July 19, 2021 (34 days). To reduce
the influence of the previous owner of the IP address we
received from Amazon, we assigned a new IPv4 address
obtained from the Amazon EC2 pool to each of our hon-
eypots every 7 days. All traffic was captured and recorded
in PCAP files using the EC2 infrastructure during our
experiment. Because RDP is already the default remote
acccess protocol for Windows machines in the EC2 cloud
and our scans identified more open RDP servers than SMB
servers we decided to only set up RDP honeypots. For
the comparison, we use an unmodified Windows Server
2019, an instance of RDPY (the most common RDP
honeypot detected during our scans) and two instances
of PyRDP [33], a pure MitM honeypot for the Windows
RDP protocol (one in the default configuration, and one
in “no downgrade” (ND) mode to decrease the detection
surface).

To analyze the potential impact of the high con-
centration of honeypots in the autonomous systems of
a few cloud providers, we rented a single Linux host
in AS 197540 (netcup), AS 14061 (DIGITALOCEAN)
and AS 6724 (STRATO) each, and set up a host in a
research network, namely AS 209335 (TUM). On the
rented hosts, we use iptables NAT to transparently
forward the RDP traffic to our EC2 installation. In order
to evenly spread the traffic from these proxies over the
EC2 honeypots, each incoming connection is sorted into
a hash bucket (iptables HMARK) based on the source
IP of the client. Therefore, the IP appears to be a different
honeypot depending on the client IP. However, as long as
a client keeps its IP address, it will always connect to the
same honeypot instance.

6.2. Results

We found that our honeypots seem primarily subject
to credential guessing attacks, where an attacker tries out
different well known usernames and weak passwords.

Fig. 3 visualizes the distribution of incoming connec-
tions between our machines. We categorized the incoming
traffic for each honeypot into three categories: (1) RDP
traffic, which is indicated by a TPKT header starting with
a 0x3 byte, (2) an empty request, which is a completed
TCP three-way handshake resulting in a connection that is
immediately closed afterwards, and (3) non RDP traffic,
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Figure 3. Traffic distribution between our honeypot implementations
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Figure 4. Traffic distribution between our honeypot implementations

where a client sends a non-empty request not matching
the criteria of (1). However, all honeypots received less
than 1% of (2) empty requests and less than 0.2% of (3)
non-RDP traffic on the RDP port. We removed these con-
nections from the dataset prior to analysis. We observed
connections from Censys.io and Shodan.io of type (2) and
we expect the remaining to be opened by lesser known
Internet scanning services.

Our non-honeypot Windows Server 2019 seems to
be preferred by attackers over our remaining honeypots.
Fig. 4 illustrates the number of RDP connections to our
honeypots over time. The traffic originates primarily from
three attacks on our honeypot infrastructure on June 20,
July 10, and July 16, 2021.

The first attack on 20th of June is mainly caused by
a massive amount of connections originating from a /24
IP subnet from a single autonomous system (ASN 49505,
Selctel, located in Russia). The honeypots on the Amazon
EC2 instance were attacked directly via their respective
IPs and not via one of our forwarding proxies.

About 40% of the connections established on July 10
originate from two IPs that are likewise located in the
same AS and that have not communicated with any other
honeypot. Furthermore, about 6% of the connections were
proxied from AS 197540 (netcup) on this day and spread
almost evenly across all honeypots with the Windows
Server 2019 in a slight lead.

The traffic peak on July 16 consists of about 23% out
of connection attempts from ASN 209335. Despite prox-
ied traffic being balanced across targets, most connections
( 63 %) were made to the Windows Server 2019, followed
by PyRDP ( 13%) and RDPY ( 1%). Unfortunately, our
proxy setup does not allow us to further trace the connec-
tions back to the original IPs of the attacker.

The data suggests that honeypots are indeed avoided
by attackers even if they are just doing credential stuffing
attacks. We observed that multiple hosts in an IP address
range seem to collaborate, i.e., a host A sends an initial
probe, terminates the connection and processes our answer
internally. Afterward, host B gets notified by A if the
host is of interest and performs further scanning or an
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attack. This pattern is provably present for probes we
received from Censys.io as the scanning machines have
meaningful RDNS records and the the targeted attacks on
two honeypots on July 10 suggests that attacking host act
likewise. For a more in depth analysis, this experiment
needs to be repeated at larger scale.

7. Discussion

Our analysis relies on active internet-wide scans and is
therefore affected by inaccuracies due to the heterogeneity
of the Internet and the impact of a single vantage point.
Data from internet-wide scans always shows a certain de-
gree of noise due to the fact that the Internet is built from
individually managed components. This impacts the data
quality and classification rate as shown in Table 2. While
some of the hosts reported by ZMap can not be classified
due to connection timeouts or unspecified behavior, others
even provide different services on the scanned port. Fur-
thermore, internet-wide scans from a single vantage point
might not be able to reach the complete Internet as shown
recently by Wan et al. [34], which can affect our results.

Nevertheless, we avoid inaccuracies with strict con-
straints in our classification methodology. Our fingerprints
ignore all configurable options in the respective implemen-
tations we are aware of. A mismatch between fingerprints
therefore indicates a difference in implementations, rather
than in configurations. On the one hand, this allows us
to provide a meaningful and accurate lower bound of
existing honeypots spread across a multitude of ASes and
organizations. On the other hand, we consider many hosts
to be uncategorizable.

A few of the classifications might be caused by the
heterogeneity of the Internet. Other factors include differ-
ences caused by different patch levels of the SMB and
RDP implementation. In samples we took from the Un-
categorizable group, we find a large amount of Windows
hosts with varying operating system versions for which
we rejected the correct classification label because of our
strong matching criteria. However, we believe this does
not impair our ability to find known honeypot implemen-
tations as their fingerprint is quite unique and not subject
to much change. The RDPY source code has not changed
in its protocol handling for 6 years, and Dionaea saw its
latest change in the module responsible for the handling
of SMB back in 2017.

7.1. What about high interaction honeypots?

We believe that hosts that we classified as Non-
SChannel Windows RDP Hosts are likely high interaction
honeypots, where the TLS connection is interrupted by a
non-SChannel MitM-box in order to observe the traffic.
Unfortunately, 13 exact matches with Windows enforce
NLA, so that we could not further investigate if the
classification is correct without ethical issues caused by
providing login credentials.

During analysis of our Internet scans, we became
aware of the Wallix Redemption MitM-box for RDP5 and
the PyRDP [33] MitM honeypot. Both use OpenSSL for
re-encryption of the traffic, with a clearly distinguishable

5. https://github.com/wallix/redemption

fingerprint. The one non-NLA-enforced host could be
such a PyRDP honeypot: It reacts to user input in a
meaningful way (e.g dialog boxes and keyboard actions
are processed), and allows “normal” interaction with the
system (e.g. the Disconnect button actually disconnects
the session) despite the abnormal SSL stack.

If we relax the 100% similarity constraint, we were
able to find other hosts that behave like Windows ma-
chines, do not require login on connect, and are attached to
the AS of DigitalOcean. To our knowledge DigitalOcean
does not offer or officially support Windows machines.
Furthermore, we found similar implementations in their
network offering different Windows versions with the
same TLS certificate. In contrast to the 13 hosts mentioned
above, these hosts downgrade the protocol security level
from PROTOCOL_HYBRID to PROTOCOL_SSL, which
we have never observed in a unmodified Windows version
during our tests, being another indicator for an abnormal
RDP stack.

We believe that our data set has more interesting
high-interaction honeypots in the Uncategorized Hosts
section. However, our existing results already show that
this detection method is viable.

7.2. Why should we care?

Our experiments confirm that also commonly used
RDP and SMB honeypots are fingerprintable and that
a fingerprint can easily be created. In Section 6 we
conducted a study to check if fingerprinting techniques
are applied by attackers. While the observation time of
one month is not long enough for a final answer, our
experiment data suggets that this is the case even if we
have not observed their exact fingerprinting technique. It
is also worth noting that both PyRDP instances (with we
would classify as a high interaction honeypot) received
less attack traffic, indicating that more care needs to be
taken with regards to details like the abnormal TLS stack.

We suggest the following improvements to honeypot
implementers and operators:
Employ differential fuzzing yourself. Implementers can
use the presented fingerprinting methods themselves in
order to minimize the observable behavioral gap between
their honeypot and the original protocol implementation.
Be careful about the TLS stack implementation. If you
are operating a MitM box in order to monitor encrypted
TLS traffic in a protocol of interest, select a TLS imple-
mentation that matches the target machine. For example,
SChannel has a standardized API on Windows, which
allows third-party code to use it. This seems to not be
widely known.

8. Conclusion

We demonstrated a viable approach to detect three
popular honeypots and one popular framework to create
SMB honeypots (Impacket) on the Internet. Our validation
has shown that exact fingerprint matches allow identifica-
tion of a host with high accuracy.

We reused existing concepts such as the use of er-
roneous requests and the method of a most distinctive
probe to separate honeypots from regular implementa-
tions. However, our results indicate that TLS fingerprints
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are well suited to be combined with a honeypot detector.
The results of our experiment on self-hosted honeypots
suggest that attackers also employ fingerprinting methods
to avoid both low- and high-interaction honeypots.
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taishvili, R. Wang, T. Bao, and G.-J. Ahn, “Honeyplc: A next-
generation honeypot for industrial control systems,” in Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Commu-
nications Security, 2020, pp. 279–291.

[3] S. Shan, E. Wenger, B. Wang, B. Li, H. Zheng, and B. Y. Zhao,
“Gotta catch’em all: Using honeypots to catch adversarial attacks
on neural networks,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, 2020, pp.
67–83.

[4] Shodan.io, “Honeyscore,” https://honeyscore.shodan.io/.

[5] ShodanHQ, “Honeyscore announcement,” https://twitter.com/
shodanhq/status/1311661444765806593, 10 2020, Twitter.

[6] R. Blog, “Nicer protocol deep dive: Internet exposure of
remote desktop (rdp),” https://blog.rapid7.com/2020/10/23/
nicer-protocol-deep-dive-internet-exposure-of-remote-desktop-rdp/,
2020.

[7] S. Morishita, T. Hoizumi, W. Ueno, R. Tanabe, C. Gañán, M. J.
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Appendix

TABLE 5. TOP 50 AUTONOMOUS SYSTEMS HOSTING HONEYPOTS

CO ASN Organization SMB RDP Total

US 16509 AMAZON 232 167 399
US 20473 CHOOPA 126 95 221
US 14061 DIGITALOCEAN 102 90 192
DE 197540 netcup 66 72 138
TW 1659 TANet 131 1 132
US 8075 MICROSOFT 48 25 73
US 63949 Linode 33 37 70
US 14618 AMAZON 41 28 69
US 15169 GOOGLE 35 32 67
US 22773 Cox Communications 50 3 53
HK 135377 UCLOUD 26 25 51
FR 16276 OVH 17 22 39
CA 32613 IWEB 2 34 36
CN 132203 TENCENT 9 26 35
CA 25820 IT7NET 30 0 30
JP 2500 WIDE-BB WIDE Project 30 0 30
CN 45102 Alibaba 20 9 29
IT 137 GARR 12 16 28
JP 2497 Internet Initiative Japan 25 1 26
GB 9009 M247 12 10 22
DE 3320 DTAG 9 13 22
LT 56630 MELBICOM 8 10 18
JP 9370 SAKURA Internet Inc. 9 7 16
HK 136907 HUAWEI CLOUDS 9 3 12
US 7922 COMCAST 0 11 11
JP 2514 NTT PC Communications 6 5 11
JP 4713 NTT PC Communications 6 4 10
CN 45062 NETEASE 0 10 10
FR 12876 Online SAS 1 8 9
CZ 5588 GTS Central Europe 6 3 9
IT 3269 Telecom Italia 2 7 9
IN 4755 TATA Communications 4 5 9

MY 38182 Extreme Broadband 9 0 9
US 46562 PERFORMIVE 2 6 8
DE 51167 CONTABO 3 5 8
CA 31798 DATACITY 0 8 8
US 63473 HOSTHATCH 4 4 8
CA 136258 OBrainStorm Network Inc 4 4 8
EE 206804 ESTNOC 2 6 8
AU 133159 Mammoth Media Pty Ltd 4 4 8
RS 8400 TELEKOM SRBIJA 7 0 7
AR 263812 IPXON Networks 3 4 7
CN 4134 CHINANET 0 7 7
IR 58224 PJS 7 0 7
ES 39020 COMVIVE 3 3 6
GR 6799 OTENET 3 3 6
NL 6830 Liberty Global 2 4 6
JP 9355 NICT 1 5 6
HK 137280 Kingsoft cloud corporation 3 3 6
US 36352 COLOCROSSING 3 3 6

TABLE 6. RESPONSE COMPARISON FOR PROTOCOL RDP

Field name X
R

D
P

W
in

10

W
in

8

W
in

7

W
in

X
P

R
D

PY

H
er

al
di

ng

T.125 Conn. Resp.
...
Domain Parameters
Max Channel IDs 22 6 34 34 6 22 6
...

RDP Server Data
Server Core Data
...
Length 12 6 16 12 6 16 6
Early Capability Fl. 6 6 1 6 6 0 6

...

TABLE 7. MAPPING BETWEEN WINDOWS END-USER AND SERVER
VERSIONS

End-user Server

XP 2003
7 2008R2
8 2012R2
10 2016, 2019
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ABSTRACT
(Dataset/Tool Paper) To secure mobile devices, such as laptops and
smartphones, against unauthorized physical data access, employing
Full Disk Encryption (FDE) is a popular defense. This technique
is effective if the device is always shut down when unattended.
However, devices are often suspended instead of switched off. This
leaves confidential data such as the FDE key, passphrases and user
data in RAM which may be read out using cold boot, JTAG or DMA
attacks. These attacks can be mitigated by encrypting the main
memory during suspend. While this approach seems promising, it
is not implemented on Windows or Linux.

We present FridgeLock to add memory encryption on suspend
to Linux. Our implementation as a Linux Kernel Module (LKM)
does not require an admin to recompile the kernel. Using Dynamic
Kernel Module Support (DKMS) allows for easy and fast deploy-
ment on existing Linux systems, where the distribution provides a
prepackaged kernel and kernel updates. We tested our module on
a range of 4.19 to 5.3 kernels and experienced a low performance
impact, sustaining the system’s usability. We hope that our tool
leads to a more detailed evaluation of memory encryption in real
world usage scenarios.
ACM Reference Format:
Fabian Franzen, Manuel Andreas, and Manuel Huber. 2024. FridgeLock:
Preventing Data Theft on Suspended Linuxwith UsableMemory Encryption.
In Proceedings of CODASPY ’20. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Our society and businesses rely on the availability of secure com-
puting devices such as notebooks or desktop PCs. As data theft
may result in disclosure of important business secrets or sensitive
personal information, these devices need to be protected from unau-
thorized access. A threat special to portable devices is that they can
be easily stolen once unattended.

To counter the risk of data theft, many businesses and individuals
rely on FDE to protect sensitive data on their devices. Without the
appropriate passphrase or smart card, attackers will not be able to
extract sensitive information from a switched off device. Depending
on the Operating System (OS), FDE can be employed e.g. using
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CODASPY ’20, March 16–18, 2020, New Orleans, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Microsoft Bitlocker, Linux dm-crypt or Apple FileVault. Considering
smartphones, both iOS and Android have also integrated FDE[7].

As a plus, iOS minimizes the presence of sensitive material in
RAM using encryption aware storage controllers with secure RAM
for key material. This reduces the attack surface to adversaries
capable of obtaining a memory dump, but does not fully mitigate it
as applications may still store sensitive information in RAM.

Common solutions do not protect this temporary data, such
as passphrases or the FDE key, if the device is not fully switched
off. We believe many users, not switching off their devices for
faster wake up, are unaware of this attack surface. Attacks using
physical properties of the hardware (e.g. cold-boot attacks [10])
or using unsecured peripheral connectors could be leveraged by
an adversary to extract it. Such connectors could be JTAG, DMA-
enabled ones (like Firewire [1] or Thunderbolt) or free memory
DIMM sockets [21].

Unfortunately, hardware trust anchors like Trusted Platform
Modules (TPMs) are usually only involved in the initial authentica-
tion process at boot. After successful authentication, the FDE key
typically resides outside the TPM in normal unsecured RAM. IOS
stores the FDE key solely on its Secure Enclave Processor[13], never
exposing it to the main CPU. However, such special coprocessors
are not available on off-the-shelf laptops or PCs.

Suspend-time memory encryption approaches, proposed in pre-
vious research, en-/decrypt memory during suspend and resume
cycles. This has the advantage that once suspended, the FDE key no
longer needs to be present on the system. As a result, even attackers
with control over the CPU cannot read sensitive memory contents.
Moreover, suspend-time encryption only impacts performance dur-
ing suspension and resumption, but not during runtime. When
pursuing the goal to protect unattended devices, suspend-time en-
cryption represents an efficient and secure approach if specialized
hardware is not available. Unfortunately, previous research only
provided kernel patches for Linux, which have quickly become
outdated as the kernel evolves. Therefore, we still lack an easy-to-
use implementation to prove that this concept works in real-world
setups. In summary, we make the following contributions:

• We provide FridgeLock, a tool to study the impact of suspend
time memory encryption on real world setups.
• FridgeLock is designed as an LKM, such that suspend time
memory encryption can easily be tested on a large number
of Linux distributions without the need to recompile their
kernel. We achieve this using DKMS to recompile the LKM
in case of security updates. This results in a solution more
agnostic to kernel changes.
• We tested our module on various distributions on the x86
platform and provide performance measurements, showing
a user-acceptable performance for real world usage.
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2 RELATEDWORK
Several lines of work for protecting sensitive data in main memory
exist. Key hiding techniques [6, 9, 16, 19] offload specific keys, such
as the FDE key, from RAM to CPU or GPU registers and caches
and execute the cipher exclusively on-chip. Besides being platform-
dependent and hardly portable, key hiding mechanisms usually
have a strong impact on performance. These mechanisms only
protect a specific key and its associated cipher frommemory attacks,
but leave all other sensitive parts of main memory unprotected.
Further, attackers gaining privileges on the system can directly
access the keys, whereaswith our approach, thememory encryption
key is not available when the system is suspended.

Hardware-assisted memory encryption architectures [4, 20, 23]
transparently encrypt main memory throughout the whole runtime
of the system, keeping the encryption key and cipher computation
off the main application processor. However, these architectures
are not available on end user systems. Architectures designed by
major hardware vendors, like AMD Secure Encrypted Virtualiza-
tion (SEV) or Intel Multi-Key Total Memory Encryption (MKTME),
target server systems only. Their goal is to protect memory against
physical attackers and, at least in case of SEV, from a malicious or
compromised hypervisor. SEV, for instance, stores the encryption
key in an isolated coprocessor but has been demonstrated to be vul-
nerable against various side-channel attacks [14, 15, 22] allowing
to extract encrypted memory in plaintext or to obtain privileges on
encrypted guests. This shows that the reliable protection of main
memory at all times poses a hard challenge.

Processors for consumer devices rather offer extensions to pro-
vide secure enclaves, such as ARM TrustZone, or Intel Software
Guard Extensions (SGX). Enclaves enable shielded execution of
sensitive code and the storage of data secure from both memory
attacks and compromised OSs. These extensions can be leveraged
as building blocks for security architectures, for instance, for use
as isolated environments for encryption key storage and cipher
execution [11].

Runtime memory encryption has also been realized in software.
Some approaches leave a portion of memory unencrypted in a
sliding window while most of the main memory is encrypted
[5, 8, 17, 18]. In general, software-based runtime encryption ap-
proaches come with a notable impact on performance and can not
provide memory protection against attackers gaining privileges on
the system.

We base ourmemory encryption approach on Freeze &Crypt [12].
Further suspend-time approaches for x86 platforms are Transient
Authentication [3] and Hypnoguard [24]. Transient Authentication
encrypts mainmemory using a hardware token that provides the en-
cryption keys [2]. When the token is removed, user space processes
get suspended and their memory encrypted. Because suspension
and resumption took about eight seconds, an application-aware
mode was proposed. This allowed the protection of only specific
assets using an API, which requires modifying applications.

Hypnoguard [24] hooks en-/decryption of memory into phases
of suspension and resumption where the OS is no longer, respec-
tively not yet, active. This allows to encrypt the whole memory
without considering process mappings and without requiring ker-
nel support but has the disadvantage that the kernel’s support for

hardware devices (such as displays, keyboards) is not available. The
design requires implementing custom hardware-specific crypto
routines and drivers to interact with hardware devices, such as for
passphrase input. A TPM is used to protect the encryption while
the cipher is executed in Intel’s Trusted Execution Technology
(TXT) environment. These design decisions make Hypnoguard less
applicable in practice, while we require only adding an LKM to a
system.

3 DESIGN
Like most of the previous approaches, FridgeLock targets Linux,
because of the availability of source code. Further, we believe that
memory encryption could be ported to other OSs if we can show
feasibility on one of them. In this section, we derive the design of
FridgeLock, based on the following design goals:

Easy Integration All existing academic approaches we are
aware of are implemented as kernel patches, which forces
the end user to recompile their kernel if they want to protect
their system and, additionally, on every kernel update. To
allow for a wide potential user base and to ease kernel up-
dates with prepackaged distribution updates, we developed
FridgeLock as an LKM. This allows distribution of Fridge-
Lock as a binary or through dynamic compilation on every
kernel update using DKMS.
Ultimately, we hope that FridgeLock will be integrated into
the Linux kernel.

Low Performance Overhead We seek to keep the impact on
performance as low as possible to not adversely impact
user experience. Our LKM only hooks into the suspend and
wakeup procedures, where small additional delays should
be acceptable.

Protection of Sensitive Data Sensitive user data should be
protected from adversaries under our assumed attackermodel.

3.1 Attacker Model
We assume that an unattended device is stolen from a user in sus-
pended state. In this state, the device is inspected by the attacker.
Afterwards, the attacker can bypass all software and hardware mit-
igations (e.g. SEV) somehow. We only consider attacks where the
device is lost once i.e. a device can not be stolen and given back.
This excludes (1) evil-maid attacks where the attacker could e.g.
corrupt the system and wait for the unknowing user to return,
and (2) attacks involving an evil hardware vendor, who attacks the
system from the HW side before it is stolen. As our design is not
based on hardware trust anchors, we do not necessarily assume that
TPMs or Secure Enclaves on the CPU are correctly implemented.
An attacker may be able to execute arbitrary code (e.g. injected via
JTAG or DMA) at any privilege level after the device is stolen.

Furthermore, our used cryptographic primitives (AES) and its
operating mode (AES-XTS) have to be correctly implemented to be
effective. This attacker model should be reasonable, given that e.g.
TRESOR [16] was broken under similar assumptions [1].

3.2 Confidential Data in Memory
Given the goals and the attacker model, we evaluated the assets in
the Linux kernel that need protection:
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(A0) Filesystem. The files on disk including sensitive user and
system owned files. These files are protected by FDE.

(A1) Page Cache. Opened files from disk may be cached in
RAM in the page cache. As these are basically (partial) copies
of files on disk, these can contain sensitive data.

(A2) Filesystem Metadata. Metadata of the filesystem such
as filenames, modification times and folder structure. Less
critical than actual file contents, but nonetheless sensitive.

(A3) Userspace memory. The active Virtual Memory Areas
(VMAs) of running processes. May contain private keys,
passphrases and (partial) copies of data from disk.

(A4) Free’d Pages. The Linux kernel does not clear pages that
have just been released by the kernel or by a userspace
process (e.g. explicitly or process termination).

(A5) Kernel Objects. For example, task_struct, i.e., internal
information of running processes. It contains a CPU register
snapshot, the process name, and a kernel stack reference.

(A6) Linux Keyring. The Linux keyring is a central key stor-
age inside the kernel. More specifically the CIFS filesystem
uses the keyring to store passphrases to accessed shares.

(A7) Disk encryption keys. The dm-crypt module is respon-
sible for FDE and stores its keys outside of the Linux keyring.

(A8) Arbitrary Device Buffers. Any hardware might store
sensitive I/O-data such as keystrokes.

In contrast to these assets, e.g. the Linux Text Segment or the
Firmware and Bootloader Code do not require protection under our
chosen attacker model as we exclude evil maid attacks.

3.3 Integration into Linux Power Management
In order to put the system into the S3 sleep state (Suspend-To-Ram),
the Linux kernel first suspends execution of userspace processes
(called freezing). This is necessary to stop processes from interfer-
ing with the suspend process.1 Kernel threads are not frozen by
default, but freezable kernel threads (e.g. threads that could cause
the suspend process to fail) are stopped directly after the processes.
Finally, the kernel notifies device drivers to put their device into a
power saving sleep state. When this process is finished, execution
on the CPU is halted until an interrupt initiates the resume, where
this procedure is done vice versa.

We split FridgeLock into two parts: An LKM and a non-encrypted
helper process running in userspace. The LKM is responsible for
process memory encryption, for protecting the other assets, and for
spawning the helper process right before suspension. The helper
process is responsible for memory and disk encryption key man-
agement during wakeup cycles. For this purpose, the userspace
process queries the current user for the decryption passphrase after
system wakeup.

The LKM integrates with Linux power management
using the device power management subsystem (through
register_pm_notifier()) and through the device driver power
management API (i.e. dev_pm_ops). In order to get access to this
API, we register a virtual device together with a driver FridgeLock
provides. Combined, this offers the following hooking points
crucial to our design:
1see Documentation/power/freezing-of-tasks.txt in the kernel sources for fur-
ther information.

(1) On Early Suspend: Before the system is going to freeze the
processes.

(2) On Late Suspend: After the system has frozen the processes.
(3) On Resume: Before the system is going to thaw the processes.
In the following, we describe FridgeLock’s tasks from initializa-

tion to suspension and resumption:
Initialization Time. At its initialization, the LKM creates a

character device for ioctl-based communication with the
helper process to: (1) force the helper process to sleep until
system resume, (2) to send the read-in FDE passphrase to
our LKM after entry and (3) to probe for encrypted parti-
tions needing protection. Moreover, it hooks into the device
mapper infrastructure to obtain the FDE key on set, which
we make use of to encrypt the userspace memory.

Hook 1. In case of a system suspend, the LKM is notified
through hooking point (1) and starts the helper process.
Moreover, it sets a bit on the helper process which causes
the regular freezer to skip this process.

Hook 2. At hooking point (2), when all other userspace pro-
cesses are frozen, we encrypt the memory map of the user-
space processes (except for special mappings). Further, we
evict filesystem caches and overwrite unused pages with ze-
ros afterwards. As a last step, we wipe out the FDE key. For
the actual encryption operations, we utilize the kernel crypto
API. This allows using hardware crypto accelerators, such
as AES-NI, resulting in extremely fast encryption speeds.
We encrypt each page individually and utilize AES-XTS as
cipher mode as our encryption requirements are almost iden-
tical to typical FDE, for which AES-XTS is recommended
by NIST [? ]. We use the physical page addresses as IVs to
guarantee unique IVs for every page. To wipe and restore
the FDE key, FridgeLock relies on the suspend, resume and
message operations of the dm-crypt module.

Hook 3. On resume (3), the LKM wakes the helper process.
The helper, in turn, asks the user for the FDE passphrase and
restores the prior state of all dm-crypt devices using the reg-
ular cryptsetup toolchain. The LKM then decrypts userspace
memory before the system returns to normal operation.

4 IMPLEMENTATION
In the following, we describe the implementation of our FridgeLock
prototype, first our userspace helper followed by the LKM.

Userspace Helper. We partitioned our userspace helper into two
parts, which we call Stage 1 and Stage 2. Figure 1 reflects that the
LKM spawns the Stage 1 helper process at hooking point (1). The
Stage 1 process discovers the dm-crypt volumes on the system
that need to be suspended, see Figure 1. Furthermore, it sets up
an initramfs like tmpfs containing the Stage 2 helper process and
its necessary runtime environment, e.g. libcryptsetup. The Stage 1
process then chroots into this new environment and executes the
Stage 2 process inside the chroot. This chroot operation is necessary
because the rootfs is not available between wakeup and passphrase
entry of the user. The Stage 2 process is responsible for signaling
the discovered volumes to the LKM via an ioctl, which will suspend
and wipe the keys at hooking point (2). Further, the process asks
the user for the passphrase for resumption (see hooking point 3,
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Kernel LKM Helper
Hook (1)

Spawn Stage 1 Discover
dm-crypt
devices

Prepare
tmpfs

Spawn
Stage 2

ioctl
dm-crypt devices

Hook (2)

Encrypt userspace

Wipe FDE key

Drop caches

Main CPU halt

Figure 1: Sequence diagram of the suspend procedure.

omitted from Figure 1). On startup, the discovered volumes are
received as parameters from the Stage 1 process and transferred to
the LKM via an ioctl. The LKM, in turn, suspends execution of the
Stage 2 process and returns control to the kernel.

Kernel Module. After our LKM gets notified of completed process
freezing, see hooking point (2) in Figure 1, it iterates through the
dm-crypt volumes received by the Stage 1 process and suspends
them using the device mapper kernel component. This suspend
operation ensures that the encryption key is securely wiped from
RAM and makes any further IO operation on the affected volume
to be blocking until resumption. Before suspension of the dm-crypt
volumes, it will place a kprobes based hook to extract the FDE key,
which we use to encrypt userspace. The projects arch-luks-suspend2
and its successor go-luks-suspend3 provide an implementation to
remove the FDE key during suspension. We utilized parts of their
implementation to realize our Stage 2 process.

Afterwards, the virtual address space encryption of all userspace
processes takes place as follows. We start by iterating through all
VMAs of our helper process. To avoid their encryption, we mark all
pages belonging to those VMAs as "already encrypted" by setting a
flag on the kernel struct page. In the next step, we iterate through
all frozen userspace and kernel tasks, encrypt their VMAs and thus
their pages in-place. Before carrying out the encryption of a page,
we first check if the "already encrypted" flag is set, then if the page
belongs to a special region (e.g. DMA or device memory), and if
not encrypt it and set the flag. This approach ensures that neither
the VMAs of our helper process nor mapped hardware memory,
unaware of our encryption, are encrypted. On resume, we use our
kprobes hook into the device mapper to observe the FDE key set of
the helper process and re-obtain it in the LKM.

Certain functionality of our LKM requires usage of unexported
kernel functions. In order to call these functions anyways, we uti-
lized the exported kernel function kallsyms_lookup_name, which
is able to resolve a symbol’s name to its address in memory. We
2https://github.com/vianney/arch-luks-suspend
3https://github.com/guns/go-luks-suspend

resolve all unexported functions at module initialization and are
thus able to call them at any point through function pointers. If no
specialized hooking mechanism is provided by the kernel, we use
kprobes and kretprobes to intercept function calls.

We utilized the /proc/sys/vm/drop_cachesmechanism to clear
the page cache. Using this mechanism, the kernel can be advised
to drop page cache, dentries and inodes from memory. We instru-
mented the invalidate_page_cache function, which is part of the
inode clearing procedure of the kernel, using the kprobes frame-
work. This instrumentation simply zeros out pages belonging to
inodes that are going to be erased.

5 EVALUATION
5.1 Completeness of Protection
Our implementation addresses (A0), (A1), (A3), (A4), (A7) by con-
struction. Asset (A2) is partially protected as dropping the page
cache also contains inode and dentry structs. However, this does not
include all filesystem metadata. Moreover, the Linux keyring (A6)
and arbitrary hardware buffers (A8) are not sufficiently protected.
In the case of (A6), an API to stop kernel threads from accessing the
invalid keys that a key-wipe would leave behind is missing. In the
case of (A8), various drivers store their buffers at arbitrary locations
(e.g. in the device memory itself, the kernel heap or kernel stack).
Protecting these buffers would require knowing every drivers exact
implementation.

Furthermore, we experimentally verified our approach by com-
paring a QEMU snapshot of an un- and FridgeLock-protected virtual
machine. In both cases, a test program loads known confidential
data from disk and places them in memory. Moreover, several ap-
plications like Firefox are started. While a scan of the unprotected
dump did reveal the FDE key and multiple copies of the confi-
dential test data, the protected instance did not. Additionally, we
analyzed the snapshots for secrets of the remaining applications us-
ing AESKeyFinder (proposed by [10]), which searches for expanded
AES keys. Our results showed that the unprotected snapshot reveals
several keys, while our protected snapshot does not.

5.2 Performance
We tested FridgeLock on a Dell XPS 15 9550 with an Intel i7 6700HQ
(2.6 GHz, 4 cores), 16 GB RAM (DDR4 2133MHz) and a PM951
Samsung 512GB SSD. The performance of FridgeLock is linearly
dependent on the memory usage of the running processes, i.e., on
the amount of memory to en-/decrypt.

Therefore, we constructed three scenarios to test FridgeLock:
➀ A minimal scenario with only a basic set of processes (init +
bash without xserver, userspace footprint 77MB), ➁ an average
load scenario (Gnome + a few Firefox instances, userspace footprint
5,5GB) and ➂ a high load scenario where all RAM is occupied by
userspace. The results are visualized in Figure 2. On system resume,
about the same time span is needed for decryption of the processes.
The overall decryption time is dominated by passphrase entry; the
cryptographic operations take the same time as for encryption.
Additionally, no time is spent on clearing caches during resume.
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Figure 2: Overall measured system suspend time.

5.3 Maintainability
To implement our LKM, we were forced to load unexported func-
tions via kallsyms_lookup_name and place kprobes hooks where
necessary. Theseworkarounds are generally discouraged as they are
likely to break across different kernel releases, but are currently a ne-
cessity due to the lacking kernel API. While developing FridgeLock,
we experienced both the kernel API and the unexported functions
to undergo breaking changes, leading us to believe frequent main-
tenance of our LKM is necessary. We want to emphasize that this
issue is just as present in a kernel patch implementation with the
difference being that our LKM would possibly erroneously succeed
building if an unexported function changed functionality or signa-
ture due to the nature of loading them via kallsyms_lookup_name.
However, this could be avoided by additional automatic validation
outside of compilation.

6 CONCLUSION
We presented FridgeLock, a tool for suspend time memory encryp-
tion on Linux. FridgeLock enables the protection of important assets
in userspace and kernel memory on a suspended machine with de-
ployed FDE. We successfully tested FridgeLock on x86 systems with
kernel versions 4.19 to 5.3. Our evaluation on a mid-end notebook
with 16GB RAM shows that FridgeLock’s performance overhead is
sufficiently small for use in practice, even in worst-case scenarios.
This performance overhead is even more negligible considering it
only affects suspend and resume operations.

Furthermore, our implementation as an LKM with userspace
components results in an effortless installation and maintenance
process for the end user through packaging and DKMS support.
As usability is usually in direct conflict with security we deem the
high usability of FridgeLock to be its strongest point.

Nonetheless, FridgeLock is currently not able to protect all sen-
sitive assets in the kernel. First, the LKM design decision limits
access to kernel internal structures. Even if the location in memory
is known, we can not easily wipe information as we may not know
all places where it is accessed in advance. Second, device drivers
may contain numerous buffers with I/O data containing sensitive
information through which we can not easily iterate. For instance,
the keyboard driver may still contain the last typed passphrases
before suspend. We consider the extension of the FridgeLock tool
to locate and protect these buffers to be future work.

AVAILABILITY
To encourage open research, we open sourced our work at GitHub:
https://github.com/fridgelock-lkm/fridgelock.
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