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Abstract 
This paper introduces a novel approach for monitoring 
concrete pouring. Traditional manual tracking methods 
are tedious, while automated solutions, such as Computer 
Vision (CV)-enabled methods, are challenged with 
occulted data and limited adaptability to diverse crane 
behaviour patterns. We propose a knowledge graph-
enhanced CV method that combines context knowledge 
with object recognition. This approach analyses tower 
crane behaviours and their interactions with workers, 
truck mixers, and building elements, providing a detailed 
and resilient interpretation of concrete pouring progress. 
Preliminary findings reveal the method’s capacity to 
interpret incomplete data and comprehend complex site 
dynamics, demonstrating promising potential in a real-
world scenario. 
Introduction 
Concrete pouring is a common and critical construction 
activity, significantly impacting both the completion time 
and cost of construction projects (Wang et al., 2022). The 
crane plays a pivotal role in this activity, as the “crane-
and-skip” method emerging as one of the most prevalent 
techniques for concrete pouring (Lu et al., 2003). In this 
process, concrete is mixed and then poured into the skip 
on the ground by workers; then the crane lifts the skip to 
one or more locations requesting concrete; once in 
position, the skip is tilted or manipulated to pour, before 
the empty skip is lowered back to the mixer for refill. 
Traditionally, monitoring the progress of concrete 
pouring processes has been manual and approximate, 
where the total volume of concrete delivered to the site is 
used as an indirect indicator of pouring progress (Lu & 
Anson, 2004). This method merely provides a rough 
estimate of the progress, and cannot capture nuances 
related to the pouring process, such as the cycle time of 
crane lifts and the waiting time of truck mixers. 
Consequently, it provides limited insight into the 
bottlenecks of critical site resources (e.g., crane 
availability) and yields minimal contributions to crucial 
decisions that impact site productivity (e.g., hiring extra 
cranes) (Hu et al., 2021). 
To gain insights into the pouring process, which requires 
a large volume of data, Computer Vision (CV) has 
emerged for automated data acquisition and analysis. For 
instance, Gong and Caldas (2010) developed a CV-based 
method to track crane hooks and concrete buckets (i.e., 
skips), enabling the analysis of concrete pouring states 

(e.g., bucket readiness, pouring into specific columns) and 
cycle times. Nevertheless, these CV-based methodologies 
often confront adaptability challenges. They rely on the 
assumption of continuous and uninterrupted concrete 
pouring, following an overly rigid crane behaviour pattern 
in each pouring operation (e.g., the buckets have to return 
to the mixer after each pouring). Meanwhile, these 
methods often necessitate project-specific parameters, 
such as designated loading and unloading zones, to 
streamline data interpretation (Yang et al., 2014).  
These rigid rules in data analyses often misalign with the 
dynamic environment of construction sites, leading to 
inaccurate data interpretations and limited generalisability 
in different construction projects. Compounding this issue 
are hardware limitations, such as cameras missing crucial 
frames or occlusions blocking the view. These limitations 
will also disrupt the crane behaviour pattern recognition, 
leading to inaccuracies or frequent relocating of cameras.  
Therefore, an adaptable reasoning mechanism is required 
that ensures enhanced robustness and greater 
generalisability for monitoring concrete pouring. 
Knowledge Graphs (KGs) offer significant potential to 
elevate the reasoning capabilities of CV systems (Fang et 
al., 2020). KGs enable machines to comprehend complex 
relationships and enriched contexts within data, going 
beyond mere visual recognition (Pfitzner et al., 2023a).  
By integrating KG and CV, the authors propose a 
universally adaptable interpretation of concrete pouring 
processes. In later sections, the paper includes a literature 
review on concrete pouring monitoring and KG-enhanced 
CV systems in the construction industry, followed by a 
detailed description of our methodology and a case study 
from an active construction site in Munich. It concludes 
with a discussion of the method’s contributions, 
limitations and potential improvements. 

Literature review 
Methods of Monitoring Concrete Pouring 
Over the past decades, continuous research has focused on 
monitoring concrete pouring, with relevant studies 
summarised in Table 1. Initially, this monitoring was 
mainly for quality control, aiming to predict concrete 
curing conditions and strength development (Moon & 
Yang, 2017). The process involved manual 
documentation of the concrete pouring time into 
formwork and environmental factors, such as humidity, to 
ensure compliance with curing standards.  



Table 1: Literature on Monitoring Concrete Pouring 

Reference Year Tracked 
item 

Tracking 
Mechanism 

Collected data Outputs Limitation 

(Lu & 
Anson, 
2004) 

2004 Concrete 
Mixer 

Retrieving 
information 
from 
manually 
prepared 
documents 

Site arrival 
/departure time; 
Location and 
element type for 
pouring; 
Pouring method. 

A productivity 
evaluation (i.e., 
volume/time) for 
different pouring 
methods 

A coarse granularity of tracking 
at a dozen of truck trips level; 
Not revealing delays in concrete 
pouring states and related 
resource bottlenecks. 

(Moon & 
Yang, 
2010) 

2010 Concrete 
Mixer and 
concrete 
pump 

Radio-
frequency 
identification 
device (RFID) 

Site arrival 
time, mixer 
entering/ 
leaving work 
zone time.  

Total amount of 
poured/remaining 
concrete; 
Average pouring 
speed;  
Estimated time to 
complete. 

A coarse granularity of tracking 
at a truck trip level; 
Manual installation of RFID 
tags; 
Not revealing delays in concrete 
pouring states and related 
resource bottlenecks. 

(Gong & 
Caldas, 
2010) 

2010 Bucket Computer 
Vision (CV) 

Buckets’ 
presence in 
user-specified 
waiting zone 
and column 
zones;  
Buckets’ 
absence 
(indicating their 
loading). 

Durations of each 
user-defined 
pouring states for a 
particular pouring 
activity. 

Assuming uninterrupted 
pouring; 
The case study merely focuses 
on the pouring of two columns;  
Relying on fixed states in the 
column pouring and site-
specific spatial context; 
Requiring meticulous/dynamic 
planning of camera locations. 

(Yang et 
al., 2014) 

2014 Crane jib Computer 
Vision (CV) 

Crane jib 
trajectory and 
its overlap with 
site layout.  

State durations of 
concreting pouring 
and non-concrete 
pouring activities. 

Assuming concrete mixers’ 
locations are fixed; 
Replying on site-specific spatial 
context and observed 
probability when differentiating 
concrete pouring states. 
 

(Danel et 
al., 2022) 

2022 Crane Crane inbuilt 
motion 
trackers and 
load sensor 

Slewing angle, 
trolley distance, 
hoist height, and 
load weight. 

State durations of 
concreting pouring 
activities. 

Assuming uninterrupted 
concrete pouring process;  
Relying on a standard crane 
behaviour pattern.  
 

(Wang et 
al., 2022) 

2022 Crane 
cable and 
bucket 

Computer 
Vision (CV) 

Concrete 
buckets’ 
presence in a 
meticulously 
planned imaged 
area (e.g., on the 
top of the dam 
to be poured).  

Cycle time of crane 
lifts. 

Assuming uninterrupted 
concrete pouring processes;  
Relying on a standard crane 
behaviour pattern; 
Requiring meticulous locating 
of camera; 
Not revealing delays in concrete 
pouring states and related 
resource bottlenecks. 
 

(Kim et 
al., 2023) 

2023 Sound Classifying 
site sound 
with deep-
learning 
algorithms to 
recognise 
concrete 
pouring 

Acoustic signal 
from 
construction 
sites. 

Start and finish time 
of concrete pouring;  
Abnormal concrete 
pouring such as the 
impact sound of the 
vibrator’s formwork 
and the sound of 
concrete slowly 
leaking. 

Focusing on the safety of 
concrete pouring;  
Not revealing productivity-
related insights (e.g., cycle 
times). 



Lu & Anson (2004) analysed hundreds of digital quality 
control records to explore the link between concreting 
speed and pouring methods. Their work provided 
significant insights for enhancing productivity through 
method selection. However, their reliance on manual data 
collection leads to a coarse tracking granularity (e.g., 
dozens of truck mixer trips) and restricts insights for site 
management. 
The introduction of IoT devices creates a shift towards 
automated, sensor-based tracking methods. Moon & Yang 
(2010), for instance, employed RFID technology to 
monitor the movement of truck mixers on-site, enhancing 
tracking to a granularity of individual trips. Kim et al. 
(2023) used acoustic sensors combined with deep learning 
algorithms to pinpoint the state when concrete is poured 
into formwork. While it does not monitor every state of 
the concrete pouring process, such as loading the 
concrete, this method further refines the granularity for 
tracking to specific pouring states. Danel et al. (2022) 
further advanced the tracking by using in-built crane 
sensors to monitor every state of the concrete pouring 
process, thereby uncovering prolonged delays caused by 
resource miscoordination. However, IoT methods often 
struggle to gather context information efficiently, limiting 
their ability to correlate lift operations with overall 
construction progress.  
Recent research has turned to CV for more nuanced 
monitoring. CV methods typically consist of two steps: 
object recognition and reasoning. Object recognition 
identifies concrete-related resources in images, while 
reasoning interprets the actions of these objects. Gong & 
Caldas (2010) were among the first to apply CV in this 
field. They detected concrete buckets and mapped them 
onto predefined work zones in the images to identify 
specific pouring states with an accuracy of 84.7%. 
However, the need for user input limited their method’s 
applicability. In contrast, Wang et al. (2022) applied CV 
to dam construction, tracking concrete buckets and crane 
cable interactions to indicate pouring cycles, achieving an 
even higher accuracy (>99%). However, the method 
assumed an uninterrupted pouring process, which is 
unrealistic for building construction. Yang et al. (2014) 
focused on crane jib recognition to track crane movements 
in relation to site layout plans, allowing for the 
recognition of mixed crane operations (i.e., concrete 
pouring and other lifting activities). Yet, this required 
distinct separation of concrete and other materials’ 
loading zones and relied on observed site-specific 
probabilities in the reasoning process, potentially limiting 
adaptability to other sites. 
In addition to the generalisability issue, one of the main 
challenges with these CV methods is their struggle to 
correlate crane operations with specific building elements 
and to detect the particular causes of idling. For example, 
they were often unable to identify scenarios where 
concrete buckets were in position but left unattended. 
These limitations highlight the imperative need to develop 
a reasoning mechanism that can adapt to varied site-

specific parameters (e.g., site layouts) and effectively 
highlight the interactions between concrete pouring 
resources (e.g., cranes, buckets, workers, and mixers) and 
construction products (e.g., building elements). 

Leveraging the Knowledge Graph to Enhance CV in 
Construction Applications 
Knowledge Graphs (KGs) are poised to significantly 
augment the reasoning capabilities of CV, providing a 
universally applicable, generalisable context. By focusing 
on universal heuristics, such as the spatial relationships 
among objects (e.g., workers), KGs actively process and 
interpret CV outcomes, transforming raw data into 
information and enabling the derivation of new insights. 
In the construction industry, KG-enhanced CV systems 
have shown particular promise in safety management. 
Fang et al. (2020) demonstrated this by developing a KG-
based CV system that identifies potential hazards through 
the spatial relationships among workers, PPE, and heavy 
machinery. Lee and Yu (2023) employed a KG to 
standardise and identify safety hazards in mobile 
scaffolding use, effectively pinpointing common misuses, 
including absent outriggers or missing guardrails. Both 
KGs perform spatial analysis of relevant objects to 
identify unsafe conditions or behaviours. 
Unlike unsafe behaviours that often occur in isolated 
instances, construction activities, such as concrete 
pouring, typically consist of multiple states following a 
specific sequence. Therefore, solely specifying spatial 
relationships may only allow for a rough productivity 
evaluation at a broader level (e.g., site level) rather than 
recognising specific construction activities (Pfitzner et al., 
2023a). To link planned sequences to actual site 
conditions, Braun et al. (2020) proposed a graph-based 
method to derive construction sequences from BIM 
models, overlay the sequence with detected objects, and 
thereby compensate for data gaps caused by occlusions. 
This application underscores the capability of KGs to 
embed sequence information.  
However, the sequence of concrete pouring states (i.e., 
lifting states) is more dynamic. Addressing this challenge, 
Hu et al. (2023) utilised a KG to organise heterogeneous 
data from motion trackers, weight sensors and images for 
recognising crane lifting states (e.g., pick-up, suspend). 
This approach embeds dependencies of states instead of a 
standard sequence to allow flexibility. Thus, it is able to 
understand complex operations, such as those with 
multiple unloads in one lift. Despite its effectiveness in 
crane operation recognition, Hu et al.’s approach falls 
short in differentiating concrete pouring from other lifting 
activities and in linking crane operations to specific 
building elements. Moreover, their method is not tailored 
for enriching CV data. This underscores the necessity for 
a specialised KG tailored for concrete pouring processes 
and CV data formats. Such a KG should be proficient in 
interpreting concrete pouring operations, distinguishing 
between various lifting activities and linking pouring 
operations to building elements seamlessly. 



Methodology 
Overview of the approach 
The scope of this study is to determine the utility of the 
crane in concrete pouring activities and associate crane 
operations with building progress. The underlying 
purpose of activity monitoring is to optimize the 
coordination of concrete delivery schedules, thereby 
mitigating overproduction and minimizing material waste 
during concrete pouring. Streamlining the concrete 
pouring process could condense construction timelines 
and elevate resource utilization. 
We use semantic knowledge derived from the state 
dependencies in concrete pouring and BIM model to fuse 
CV object recognition results. As a result, we 
automatically monitor the pouring process in fine 
granularity (i.e., states), with the elapsed time of distinct 
process states recorded to provide precise insight into the 
required time for pouring diverse building zones. The 
results are anticipated to facilitate detailed control of 
construction progress.  
The CV-based pipeline, shown in Figure 1, is developed 
to convert raw image and geometry data to precise 
process-level information. Instead of using data-heavy 
video streams, a low frequency of input images is chosen 
to avoid extensive computation times for processing long 
construction periods. 
CV methods (a) are applied to extract information from 
the images. This step includes interpreting spatial 
dependencies in the context of the concrete pouring phase. 
In addition, the information is mapped to the BIM model 
using grid-based zones. 
The knowledge graph (b) is used to determine unseen 
states and to link the as-planned geometry data. Unknown 
states are predicted based on their predecessors and 
successors. This predictive capability is particularly 
valuable in addressing data acquisition limitations, such 
as missing frames or occlusion, ensuring a robust analysis 
of individual pouring states while considering the as-
planned quantities. 
CV-based state recognition 
The computer vision part contains three steps: Object 
detection, spatial-temporal reasoning, and geometric 
projection. 

A YOLOv8 model is used for object detection, covering 
the following classes: concrete_bucket, hook, 
concrete_mixer, hose, and worker. The model is deployed 
on image sequences representing the concrete pouring 
states. Figure 2 illustrates the distinct states of the 
concrete pouring process: Loading the concrete bucket at 
the concrete mixer, moving the bucket to the building 
element, and filling the building element’s formwork with 
concrete. To derive these instant states from the images, 
spatial reasoning is necessary.  

 
Figure 2: Spatial relationships of concreting cycle 

In the case of crane-and-skip concrete pouring, the 
location of the concrete bucket and its relation to other 
elements defines the current action. Fig. 2 shows the 
essential scenarios of the concrete bucket to determine the 
process state: “Loading”, “Moving”, and “Pouring”. At 
the start of the process, the concrete bucket moves close 
to the concrete mixer to be filled by a worker. The bucket 
stays for a period of time (e.g., 30s) and then gets lifted 
by the crane. Intersection over Union (IoU) is used to 
determine the bounding boxes’ spatial dependency.  

 
Figure 3: As-planned zones and volumes [m3] derived from the 
BIM model and projected base point of the hose (light green). 

Figure 1: Overview of pipeline 



Subsequently, the bucket moves to the building element, 
and the pouring state starts. During the pouring state, a 
hose is rolled down, and a worker controls the nozzle of 
the hose to fill the formwork. Like in the “Loading” 
scenario, the activity is derived by interpreting the spatial 
relationships of the bounding boxes using IoU. During the 
“Pouring” state, workers and the hose are within the area 
underneath the bucket. The “Moving” state is computed 
based on the known order of process steps, discussed in 
the following section.  
To compare the as-performed pouring volumes to the as-
planned volumes, the image information is enriched. First, 
the as-performed quantities are computed using known 
volumes of the concrete mixer and bucket. Second, the as-
planned volumes are generated using the BIM model, 
illustrated in Fig 3. The quantities of the BIM model are 
computed storey-wise to specific zones of a grid. The grid 
contains the quantity of all building elements within one 
zone. The location of the hose is projected to the BIM 
model using a perspective transformation approach 
presented by the authors in previous publications (Pfitzner 
et al., 2023b). As the hose traverses a specific zone, the 
as-performed data gets linked with the as-planned data. 
Based on the expected concrete amount of a specific zone, 
the amount of poured concrete is validated. Moreover, the 
amount of wasted concrete can be detected. A detailed 
investigation of geometry mapping is outside this paper’s 
scope and will be discussed by the authors in future 
publications. 
Ontological model for process reasoning 

 
Figure 4: Ontological model 

The ontological model, shown in Fig. 4, is designed 
according to the states representing the concrete pouring 
process. The process’s states are defined by the time-
dependent actions of the concrete bucket. As such, the 
bucket nodes have a timestamp property and a 
relationship to their predecessors and successors. This 
ensures that the bucket’s current, past, and future actions 
can be determined based on the bucket’s significant area. 
The significant area is defined by typical construction-
related dimensions; it encompasses the space beneath the 
bucket and incorporates a buffer, considering the objects 
utilising the bucket manifest beneath it. 

Unseen states are parts of the process that cannot be 
detected on the frames. This is the case when the concrete 
bucket moves. The predecessor and successor 
relationships are utilised to compute the missing 
information. The unseen states of the concrete pouring 
cycle are determined based on the four different 
relationship patterns shown in Fig. 5. If the detected state 
changes, the bucket’s state is considered to be “Moving” 
in between, encompassing both scenarios “moving from 
mixer” and “moving from building elements”. In addition 
to that, the appearance of the concrete mixer is an 
indicator of pouring. If there is no mixer on-site, the crane 
is not involved in the pouring process.  

 
Figure 5: Relationship patterns for process reasoning 

Once the relationship patterns are detected in the graph, 
the state information is stored in the equivalent state 
nodes. Subsequently, the process chain is created by 
sequential states containing start and end times. This has 
the advantage of querying the elapsed times 
straightforwardly. The start of the process chain is defined 
by the first time the concrete bucket gets loaded by the 
concrete mixer. The process chain ends once the bucket 
no longer returns to the concrete mixer and has moved 
away from the element. The link to the as-planned zones 
is created through the projected tip of the hose once it 
intersects with the corresponding zone. The process chain 
is used to investigate the elapsed time of individual states, 
the number of cycles, and the amount of concrete used 
during the process. 

Case Study 
The case study, shown in Fig. 6, was conducted on a 
building construction project near Munich, Germany. The 
building was partially constructed using cast-in-place 
concrete pouring. 

 
Figure 6: BIM model and crane camera perspective from the 
construction project 



Data and setup 
The images were taken every 30 seconds from fixed crane 
cameras at diverse heights and perspectives. The dataset 
consists of a total number of 270k images. The annotated 
image dataset containing 325 images was split by 80/20. 
An additional model trained on the MOCS dataset 
(Xuehui et al., 2021) was included in the pipeline to detect 
workers. The model training on a Nvidia RTX 8000 GPU 
took 0.98 hours. To receive the as-planned geometry, we 
used an existing IFC model of the building. A Neo4j 
server was set up in a docker environment to host the 
labeled property graph. Four concrete pouring examples 
were investigated with a total number of 623 images. 

Results 
The YOLOv8 model was trained on 79 epochs and 
reached an mAP score of 92.1 %, as shown in Table 2. 
The hose class performed weaker than the other classes 
due to fewer occurrences in the dataset. 

Table 2: Object detection results 

class Precision Recall mAP0.5 

bucket 92.6% 98.3% 97.7% 
hook 97.6% 96.9% 99.2% 
concrete 
mixer 

98.1% 97.4% 97.8% 

hose 87.3% 77.8% 73.5% 
all 93.9% 92.6% 92.1% 

 
The model was deployed batch-wise using a self-
implemented PyTorch-based environment. The extracted 
image information was inserted into the Neo4j graph 
database using the Python library neomodel and the 
ontological model, illustrated in Figure 4. Using the 
distinct relationship patterns, the state nodes were 
generated and integrated into the graph. Based on the 
start- and end-time attributes of the state nodes, the 
elapsed time was queried. The buckets’ bounding boxes, 
timestamps, and the particular concrete pouring states 
were annotated across two datasets to evaluate the ground 
truth of all states. The first dataset contained 119 samples; 
the second dataset contained 184 samples.  

 
Figure 7: Comparison of the bucket’s pixel coordinates 
between ground truth and detection result in dataset 1 

 
Figure 8: Comparison of the bucket’s pixel coordinates 
between ground truth and detection result in dataset 2 

Figures 7 and 8 illustrate the bucket detection accuracy by 
comparing the coordinates of the buckets’ bounding 
boxes against ground truth data. The comparison is 
conducted over all timestamps across the two datasets, 
providing insights into the accuracy of the detection 
algorithm relative to the actual positions of the buckets. 
The predicted pouring states compared against the ground 
truth are shown in Figures 9 and 10. A state accuracy of 
92.44% was achieved for the first dataset and 95.11% for 
the second dataset. The consistency and precision 
depicted in Fig. 7 and 8 underscore the robustness of the 
bucket tracking mechanism. However, Fig. 9 and 10 show 
some challenges in the state reasoning. Our method 
performed better on the second dataset due to the lower 
frequency of cycles.  

 
Figure 9: States of the pouring phase in dataset 1 

In particular, states with shorter durations are more 
challenging to detect. It is important to note that exact 
moving times cannot be computed for the rare cases of 
moving time below the frames’ interval (30 seconds). 

 
Figure 10: States of the pouring phase in dataset 2 

We investigated the elapsed time of four different 
concrete pouring samples with the introduced pipeline. 
The times of the individual phases and the number of 
cycles are shown in Table 3. In general, pouring consumes 
most of the time. The results show that the process’s time 
can significantly vary depending on the construction 
scenario.  
In certain situations, precisely when waiting for the 
following concrete mixer’s arrival, the moving time of the 



bucket substantially differs. Moreover, factors like 
location and size of building elements play a substantial 
role. To allow further investigations, the amount of 
concrete volume was calculated based on the IFC model 
and included in the approach. For this step, the geometry 
from the IFC model was derived and processed using 
IfcOpenShell. Based on the building floor, the building 
elements’ vertices were projected to the corresponding 2D 
floor, and polygons were generated to define the building 
elements’ region, shown in Fig. 3. The grid was created 
using 15x15 metre cells. All building elements within a 
cell were considered and summed up to get the total 
volume amount of the cell. Finally, the correlating grid 
cell was determined based on the projected basepoint of 
the hose’s bounding box and linked within the graph. 
Further studies of this topic will be included in future 
publications of the authors.  

Table 3: Elapsed time of the specific cast-in-place states 

Sample No. 1 No. 2 No. 3 No. 4 
No. cycles 7 2 7 3 
Loading 0:13:06 0:05:04 0:20:44 0:03:31 
Moving 0:04:12 0:05:05 0:23:24 0:11:11 
Pouring 0:34:52 0:10:06 0:54:04 0:45:31 

Discussion and Future Work 
The case study results validate the feasibility of our 
proposed KG-enhanced CV approach in monitoring and 
analysing the concrete pouring process. Capturing images 
at 30-second intervals ensures sufficient granularity, 
achieving 92.44% and 95.11% accuracy in identifying 
concrete pouring states. This accuracy surpasses previous 
efforts, such as the 84.7% reported by Gong & Caldas 
(2010).  
With satisfactory accuracy, the case study also 
demonstrates our methods’ superiority in flexibility and 
extensibility through our innovative adoption of KG in 
enriching CV systems. Traditional CV methods have a 
limited application scope, often requiring site-specific 
model training and manual annotations for critical areas, 
with a lack of correlation between crane operations and 
construction progress. Our approach uses CV to identify 
basic construction objects like workers, concrete mixers, 
and buckets, enhancing detection success.  
The KG then streamlines their relationships with semantic 
context, enabling a generalisable data interpretation that 
adapts to changing construction contexts (e.g., concrete 
loading areas) without reprogramming. This facilitates 
efficient and resilient processing of diverse data across 
various construction stages, even different projects. 
Additionally, this method employs grid-based mapping to 
indirectly link crane operations with building elements. 
Although this connection is approximate, it can be further 
refined to recognise the specific elements being poured 
based on the positions of workers in a particular zone.  
As a result of this method, the data on concrete pouring 
states offers a dynamic, real-time view of on-site resource 

coordination, uncovering subtleties often missed in 
traditional monitoring. For instance, KG analysis reveals 
that prolonged “moving states” usually miss workers who 
operate the nozzle. This indicates time wasted mobilising 
workers, suggesting potential optimisations in pouring 
sequences. For instance, pouring activities should 
prioritise the occupied zones to minimise workers’ travel. 
It also informs future development of our ontological 
model, where tracking worker movements could be 
valuable as it can highlight unnecessary movements. 
Despite its innovative aspects, our approach has 
limitations. Currently, it focuses on crane-and-skip 
methods, with pump-based pouring scenarios outside our 
scope. Meanwhile, its success hinges on accurately 
detecting discrete states based on spatial relationships 
between construction elements, which can fail in cases of 
occlusion or distance. In particular, the hoses have a lower 
detection accuracy compared with other classes, 
suggesting the vulnerability of current reasoning rules. To 
address this, additional parameters and reasoning rules 
could be used to infer pouring states. For example, the 
distances between concrete buckets and workers, along 
with buckets’ moving speed, can be used for reasoning. 
Future work will also explore graph-based machine 
learning, such as graph neural networks, for automated 
state classification. 

Conclusion 
This paper introduces a KG-enhanced CV approach to 
monitoring concrete pouring. By integrating KG with CV, 
this method offers a dynamic and adaptable system 
capable of interpreting complex site dynamics and 
managing incomplete data. Achieving high accuracy rates 
of 92.44% and 95.11% in identifying concrete pouring 
states, our approach matches or surpasses earlier efforts in 
terms of data interpretation accuracy. 
The strength of our method also lies in its ability to 
efficiently process big data with diverse quality and adapt 
to changing construction contexts, such as varying 
concrete loading areas, without needing reprogramming. 
This adaptability extends across different construction 
stages and projects, showcasing its potential for broad 
applicability. Additionally, the use of grid-based mapping 
to correlate crane operations with as-planned BIM 
models, although approximate at the moment, opens 
avenues for more precise recognition of specific pouring 
elements, even when cameras are positioned at a distance. 
In general, our approach’s real-time data analysis 
capability offers a nuanced view of concrete pouring-
related resources, effectively highlighting 
miscoordinations. These insights pave the way for 
optimising resource allocation and improving site 
productivity. Anticipated further research aims to 
integrate this KG with semantic knowledge related to the 
pump-based concrete pouring method and enhance 
independence from the detection of site-specific or hard-
to-recognise objects (e.g., hoses) by analysing the spatial 
relationships of easier-to-detect objects (e.g., buckets and 



workers) or employing machine learning algorithms to 
discover patterns in KG’s topology for classification. 
In summary, our KG-enhanced CV method represents a 
significant stride in concrete pouring monitoring, offering 
improved accuracy, adaptability, and insight into 
construction processes. It promises to reshape traditional 
practices, leading to more efficient and effective 
construction project management. 
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