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Prüfende der Dissertation:
1. Prof. Dr. Daniel Rückert
2. Prof. Dr. Dr. Jens Kleesiek
3. Prof. Dr. Sotirios A. Tsaftaris

Die Dissertation wurde am 24.06.2024 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and Technology
am 08.11.2024 angenommen.





Abstract

Artificial Intelligence (AI) has become paramount in many areas over the last decade.
It has proven to be a valuable addition to medical workflows, where it can assist
doctors in precise evaluations of patient conditions. However, highly performant AI
models crucially depend on large and diverse datasets. While these datasets are
continuously generated in hospitals and medical institutions, they are inaccessible
due to the risks of privacy infringements. The term Privacy-enhancing technologies
(PETs) summarises the field of technical approaches and algorithms, which aim to
reunite AI training and the protection of its training data from unintended leakage.

In this dissertation, we investigate the use of PETs in the context of medical AI
approaches. Specifically, we demonstrate a holistic workflow comprised of various
PETs that provides protection from attackers while yielding highly performant AI
models, even outperforming expert radiologists. The most important PET in this
thesis, Differential Privacy (DP), provides mathematical bounds on the risks of
information leakage. We analyse the computational overhead DP implementations
impose on the training of AI models and provide an alternative which is competitive in
runtime and generically compatible with most AI network architectures. Furthermore,
we investigate the impact of using DP for medical AI training on the fairness and
non-discrimination of subgroups. Here, in contrast to prior work, we find that not
the representation of subgroups in the training data is driving fairness impacts, but
rather the difficulty of predicting the respective subgroup. In particular, we see that
groups with a lower prediction performance in non-private AI models suffer further
performance losses with increasing privacy guarantees. This may impact the way
of assembling datasets for the training of privacy-preserving fair AI models. Lastly,
we analyse how an appropriate level of protection can be determined and find that,
for many scenarios, typical privacy budgets are overly pessimistic. We show that by
adapting the privacy budget to a concrete threat model, the negative impact of DP
on the performance of AI models can be largely mitigated. With these contributions,
we hope to advance the widespread breakthrough of technical and mathematical
approaches to protecting patient privacy when training medical AI models.
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Zusammenfassung

Künstliche Intelligenz (KI) hat im letzten Jahrzehnt Einzug in viele Bereiche gehalten.
Es hat sich als wertvolle Ergänzung für medizinische Arbeitsabläufe erwiesen, in
dem es Ärzten hilft medizinische Fragestellungen präzise zu beantworten. Allerdings
basieren leistungsfähige KI Modelle entscheidend auf der Verfügbarkeit von umfang-
reichen und vielfältigen Datensätzen. Diese Datensätze werden zwar fortlaufend in
Kliniken und Arztpraxen generiert, allerdings sind sie bedingt durch Datenschutz-
regeln nicht verfügbar für das Training von KI-Modellen. Privatsphärenwahrende
Techniken (Privacy-enhancing Technologies, PETs) beschreiben dabei die Vielfalt
an technischen Ansätzen, die darauf abzielen das Training von KI-Modellen und
Datenschutz zusammenzubringen.

In dieser Dissertation untersuchen wir den Einsatz von PETs im Kontext von
medizinischer KI. Insbesondere zeigen wir einen ganzheitlichen Ansatz bei dem
mehrere PETs in Kombination zum Einsatz kommen um dabei Schutz vor daten-
schutzverletzenden Angriffen zu bieten und gleichzeitig hochperformante KI-Modelle
hervorzubringen, die sogar Fachärzten in der Diagnose überlegen sind. Die wichtigste
privatsphärenwahrende Technik in dieser Dissertation ist Differential Privacy (DP),
welches Grenzen über das Risiko von ungewollten Informationsflüssen mathematisch
garantiert. Wir analysieren den zusätzlichen Rechenaufwand den DP für das Training
von KI-Modellen impliziert und präsentieren eine Alternative, die vom Rechenaufwand
mit vorherigen Ansätzen mithalten kann, gleichzeitig aber nativ kompatibel mit allen
zulässigen KI-Netzwerkarchitekturen. Desweiteren untersuchen wir das Zusammenspiel
von DP und der Fairness und Nicht-Diskriminierung bei medizinischer KI. Konträr zu
vorherigen Arbeiten zeigt sich bei uns, dass nicht die Repräsentation einer Gruppe im
Datensatz die Fairness beeinflusst, sondern die Schwierigkeit der jeweiligen Prädiktion.
Insbesondere sehen wir, dass Gruppen, die bereits bei nicht-privatsphärenwahrenden
KI-Modellen schlechter prädiziert werden, zusätzliche Einbußen erfahren je stärker
der Privatsphärenschutz ist. Dies könnte beeinflussen wie in Zukunft Datensätze für
das Training von fairen und privatsphärenwahrenden KI-Modellen zusammengestellt
werden. Zuletzt analyisieren wir wie angemessen Datenschutzlevel festgelegt werden
können und stellen fest, dass in vielen Szenarien typische Privatsphärenbudgets sehr
pessimistisch sind. Wir zeigen, dass durch die Anpassung dieser Budgets an eine
konkrete Gefährdungslage der negative Einfluss von DP auf die Leistung von KI-
Modellen weitgehend abgeschwächt werden kann. Mit diesen Beiträgen hoffen wir,
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den breiten Durchbruch technischer und mathematischer Ansätze zum Schutz der
Privatsphäre von Patienten beim Training medizinischer KI-Modelle voranzutreiben.
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1 Introduction

Artificial Intelligence has become paramount in many areas of modern life. At the
latest, with the breakthrough of large language models such as ChatGPT, the general
population has become aware of the capabilities of learning procedures instead of
handcrafted algorithms. It comes with the promise to automate, improve, and
generally increase the quality of workflows, which previously could only be executed
by humans. Strongly performing Artificial Intelligence (AI) models are fuelled by
large and diverse datasets. The breakthrough of AI premised the collection of vast
datasets such as ImageNet [1]. Currently, the most popular Large Language Models
(LLMs), such as GPT-4 by OpenAI [2] or Gemini by Google [3], are presumably
trained on all publicly available data. This includes web documents, books, code,
images, audio, and videos [3]. However, even on such publicly accessible data, the
training of AI models led to privacy concerns. Most prominently, ChatGPT was
banned in Italy as authorities suspected the use of personal data for the training of
this algorithm [4]. In order to regulate “what is acceptable” in the context of AI
training, authorities have come forward with specialised legislation. Most notably, the
European Union (EU) established two legal frameworks with direct implications for
training and deploying AI algorithms: (1) The General Data Protection Regulation
(GDPR) and (2) the AI Act. The AI Act specifically regulates the requirements
for training algorithms based on their risk class. For example, it prohibits “socially
unacceptable” algorithms, such as social scoring algorithms. GDPR has a more
indirect link to the training of AI models. It regulates the protection of personal
data as a central right. Hence, if data is leaked, it must be ensured that it cannot
be assigned to one specific person and thus is “anonymous”. While this is a general
regulation without a specific focus on AI, it has strong implications, as large datasets
are a prerequisite to strong AI models.

Improvements in medical workflows through the use of AI can directly lead to
enhanced diagnoses and better and more rapid treatment, which in turn will improve
patients’ life quality and expectancy [5]. The benefit AI can provide was demonstrated
for tasks ranging from predicting SARS-Cov-2 variants to all-purpose medical LLMs
[6, 7, 8, 9]. While it is still in an early stage, there is a potential to revolutionise
medical workflows [10]. Thus, there is a demand for the use of AI models in medicine.
Yet again, there are ethical and technical challenges, which are so far unaddressed
[10]. The fact that legislative bodies are paying such attention to safe and socially
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1. Introduction

compliant aspects of AI demonstrates the societal desire to enforce ethical standards
and trustworthiness in these systems. One of them is that health data is strongly
protected, as it can contain information about diseases, genetic variants, and patients’
lifestyles, to name only a few attributes that are considered personal and private
by many. While GDPR regulates all types of data, there is often also dedicated
and stricter healthcare legislation. This leads to a situation where although large
amounts of high-quality data exist and are continuously generated, it is inaccessible for
training medical AI models. Hence, there is a tension between medical AI algorithms
dependent on large and diverse medical databases for training and the release of
such databases for AI training, which contain highly sensitive information. This
tension is further intensified as it has been shown repeatedly that safeguarding
the training data is not sufficient, as it also can be leaked from the AI model [11,
12, 13, 14, 15, 16, 17, 18]. A solution to this field of tension could be the use of
Privacy-Enhancing Technologies (PETs). These encompass a collection of techniques
which in combination, can allow a holistic workflow for a privacy-preserving way of
training AI algorithms. In particular, data governance enhancing techniques such as
Federated Learning (FL) ensure that data is processed on-site and does not need to
be transferred to a central, potentially untrusted instance. Encryption techniques
such as Homomorphic Encryption (HE) or Secure Multi-party Computation (SMPC)
allow to perform computations while ascertaining that no unauthorised reading of
the data can be performed. Most importantly, Differential Privacy (DP) is the key
privacy technique providing formal and mathematically provable guarantees on the
protection of sensitive outputs. This guarantee can be translated to an upper bound
on the success of all privacy-critical attacks, namely Membership Inference Attacks
(MIAs) [19], re-identification [20, 21], and Data Reconstruction Attacks (DRAs) [22,
23]. In this thesis, we outline how the use of PETs can mitigate the tension of training
strong AI algorithms while protecting the privacy of data owners.

Contributions This dissertation investigates how AI methods in medicine and
privacy preservation can be combined into a holistic privacy-preserving workflow as a
part of an ethical AI workflow. For this, we investigate several aspects of private deep
learning workflows in medicine and healthcare. Furthermore, we detail the current
challenges introduced by private AI training with an emphasis on the behaviour in
medical problems and under varying threat models. The main contributions can be
summarised as follows:
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• We showcase how medical workflows can benefit from a holistic privacy-preserving
pipeline. We combine several PETs covering different aspects to maintain data
governance, ensure confidentiality and guarantee privacy. By this, we can show
for the exemplary use case of classifying paediatric pneumonia on chest X-rays
that (1) data reconstruction attacks in an honest-but-curious setting can be
impeded, (2) distributed training clearly outperforms local AI models, and
(3) private AI algorithms can compete or even outperform expert radiologists.
These findings lay the foundation for the practical use of privacy-preserving AI
workflows, which in turn can unlock access to a larger wealth of health data, in
turn leading to stronger models (Section 3.1).

• We evaluate the efficiency of implementations of differentially private trainings
and optimise it further to be more generally applicable and time efficient. We
benchmark our implementation against open-source frameworks on two medical
tasks and find that at the time of our work, we have advantages in the general
applicability and memory and/or time efficiency (Section 3.2).

• We investigate the effect of DP on the fairness to subgroups on two relevant
medical imaging tasks. We find that, as opposed to the findings of previous
works, the loss penalties are not defined by the underrepresentation of a subgroup
but rather by their prediction difficulty. In particular, the underperformance
of AI models on certain subgroups appears to be exacerbated with increasing
privacy protection. Exemplarily, for the task of chest radiograph classification,
we observe that older patients, although overrepresented, suffer higher losses
on diagnostic accuracy the stronger the guaranteed privacy is. This can be
an important consideration for the design of future private AI workflows to
compensate utility penalties implied by laying a particular focus on subgroups
which are harder to diagnose (Section 3.3).

• We analyse the effect of varying threat models on the trade-off between privacy
preservation and AI performance. One of the main obstacles hindering the
breakthrough of privacy-preserving machine learning is the imposed trade-
off between AI utility and the level of privacy. However, privacy analyses are
typically based on worst-case assumptions about the adversary. We demonstrate
that relaxations about these assumptions mitigate the trade-off and, in some
cases, make it negligible (Section 3.4).
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1. Introduction

Overview of this Thesis This publication based thesis is structured as follows:
Chapter 2 outlines the research field of privacy-preserving AI in medicine. Specifically,
in Section 2.1, we introduce the field of trustworthy and ethical AI and, in particular,
privacy as a substantial component.We outline that privacy protection could not
only be legally mandated but also further improve AI models in sensitive areas
such as medicine. Section 2.2 provides detailed descriptions of all relevant Privacy-
Enhancing Technologies (PETs), in particular Federated Learning (FL), Encryption,
and Differential Privacy (DP). In Section 2.3, we provide an overview of privacy-
centred attacks on machine learning systems. Chapter 3 contains all underlying
peer-reviewed publications. Lastly, in Chapter 4, we discuss the implications of our
publications and give an outlook on potential future research directions.
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2 Background

2.1 Trustworthy and Ethical AI

We begin by outlining the characteristics of medical datasets and how these correspond
to the components of an ethical and trustworthy AI workflow. In particular, we
outline the aspects of privacy preservation and its current challenges.

2.1.1 Medical Dataset Characteristics

AI has pushed the borders of the possibilities in modern medicine. It can boost
the early detection rate of breast cancer by 5− 13% [24]. It can outperform expert
cardiologists in diagnosing cardiovascular diseases [25]. It can even automatically
identify clusters of leukaemia patients with distinct risks of disease progression without
knowing about the outcome beforehand [26]. However, medical datasets and tasks
have their unique challenges. Medical data is created in vast amounts in hospitals,
medical practices and care centres. These datasets are continuously annotated with
high-quality labels as doctors and medical professionals assess the measured data
and the patient’s condition, i.e., diagnose and treat the diseases. However, at the
same time, most AI models used for medical purposes are trained on small datasets.
For example, most algorithms approved by the US Food and Drug Administration
(FDA) are trained on less than 1 000 data samples [27]. Several factors cause this
discrepancy: For one, regulatory obstacles need to be overcome when training with
medical data. Ethics committees and data protection officers must agree to trials
where medical data is used. Moreover, the data is typically bound to their respective
source institutions. At the same time, while large and diverse datasets are often
inaccessible, medical tasks are often more complex compared to other use cases.
In many cases, examination results are high-dimensional measurements, such as
Magnetic Resonance Imaging (MRI) images or Electrocardiogram (ECG). Medical
practitioners are trained for years in order to be able to correctly interpret these.
Moreover, the relevant information is often subtle and very localised, such as a
metastasis in an organ in the MRI or a missing spike on the ECG. Thus, large and
diverse datasets are necessary to contain and, by that, allow to learn subtleties and
variability over patients. The combination of small datasets, which is harmful to the
generalisation of AI models and the complexity of tasks, leads to algorithms which
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2. Background

Non-Maleficence

ResponsibilityTransparency

Privacy

Justice & Fairness

Figure 2.1: Aspects of Ethical AI. Jobin et al. [28] identified five guiding
principles for the implementation of ethical AI. This thesis is focused on the aspect
of privacy for medical AI and also investigates the interaction with fairness.

are often overly tailored to one specific use case. The immediate drawback is that
these models are extremely susceptible to minor changes in the data, such as different
measurements (e.g. by using devices from other vendors) or anomalous data, which
was not contained in the training set.

In summary, medical tasks are challenging, but the wealth of existing data could
enable accurate and robust AI models. Although the data exists, it is inaccessible
due to legal and ethical requirements. Hence, AI systems fulfilling these requirements
are not only mandated from an ethical perspective but likely also the prerequisite to
generalist models.

2.1.2 Components of Trustworthy and Ethical AI

Current AI models are often considered black boxes, where the internal processes are
not transparent. However, for the reliable use of AI in sensitive contexts, those models
must adhere to basic ethical principles and guidelines [28]. Jobin et al. [28] identify a
global agreement on five guiding ethical principles: Transparency, Privacy, Justice &
Fairness, Non-Maleficence, and Responsibility (see Figure 2.1). Furthermore, they find
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2.1. Trustworthy and Ethical AI

additional principles often linked to ethical AI: Beneficence, Freedom & Autonomy,
Trust, Sustainability, Dignity, and Solidarity. It is an ongoing research effort to
investigate how each ethical principle can be technically implemented for AI systems.
In this thesis, we focus on privacy and its potential technical implementations and
implications for medical AI models. Privacy has a somewhat exceptional position
within these principles, as technical privacy guarantees fulfilling legal definitions by
design could unlock access to larger amounts of data. This could, in turn, also boost
adherence to other ethical principles. For example, a model without information about
a certain subgroup will likely produce larger error rates and thus discriminate. In
addition to privacy, we also touch upon the aspect of Justice and Fairness, specifically
the interaction with privacy. We note that while other aspects of ethical AI and their
technical implementations deserve equal attention, these are out of the scope of this
thesis.

Privacy

The main focus of this thesis is the safeguarding of privacy while training medical
AI models. In this section, we define privacy and outline the challenge of achieving
privacy, particularly outlining why current anonymisation approaches are insufficient
and lead to data governance issues.

What is Privacy? Privacy is a social concept, and its exact definition has been
refined repeatedly. Perhaps the first characterisation from 1890 defines privacy as “the
right to be let alone” [29]. While this fulfils an aspect of privacy many people can likely
relate to, follow-up works have identified that this definition is not complete. Jourard
[30], or Westin [31] emphasise the control over information. Specifically, Westin defines
privacy as “the claim of individuals, groups, or institutions to determine for themselves
when, how, and to what extent information about them is communicated to others”
[31]. Nissenbaum remarked that the control of information flow is not sufficient for
a description of privacy, but the appropriate flow of information corresponding to
contextual norms is important for maintaining privacy [32]. For example, it is likely
considered privacy-conformant for a medical doctor to discuss a patient’s condition
with a colleague but not with someone unrelated to the medical procedure. Solove
moves away from describing privacy as a monolithic definition and instead defines
privacy recursively as the solution to a privacy problem [33, 34, 35]. This naturally
complements PETs as technical solutions to privacy problems. We have also presented
a definition of privacy, which is based on an axiomatic characterisation of the aspects
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2. Background

of it [36], incorporating the findings of prior works. Our definition aims for the
unification of social science and technical aspects when reasoning about privacy.

There are also various legal frameworks with the goal of imposing privacy. Medical
data contains a wealth of sensitive information about patients, ranging from obviously
identifying attributes such as names, birth dates, and insurance numbers to more
indirect features, such as genetic variants, anomalies, or disease history. Legislation,
such as the GDPR, therefore, usually requires the assurance of patient’s anonymity.
By this formulation, anonymity is achieved if there is a guarantee preventing to
re-assign published data, e.g., the weights of an AI model, to a specific person. In
technical terms, this corresponds to the notion of predicate singling-out attacks
[20]. This type of attack aims to infer a set of attributes which uniquely identify an
individual. As this is highly dependent on the available side information, we focus
in this thesis on two side-knowledge independent attacks, which are closely related:
Membership Inference Attacks (MIAs) and Data Reconstruction Attacks (DRAs).
Notably, MIAs are the simplest and DRAs the hardest attack. Hence, the success
of re-identification is lower and upper bounded by the success of these attacks. For
more details, we refer to Section 2.3.

Current Implementation of Privacy The overwhelming majority of current
approaches aim to achieve anonymity of datasets by removing identifiers such as
names, birth dates and other highly identifying information. Anonymisation here
summarises approaches where these obvious identifiers are removed entirely. In
contrast, pseudonymisation describes approaches where identifiers are replaced and
a mapping remains, which allows for a later identification of a pseudonymised data
sample. There are also more sophisticated variants, such as k-anonymity [37]. Here,
the data is discretised in a way such that each value in a column appears at least k-
times. Although there is a strong common belief in practice that these procedures are
safe, it is not substantiated as non-removed features can still allow for re-identification.
This is especially critical for medical data which inherently contains a wealth of
identifying information, from rare diseases to genetic information to the shape of the
patient’s body. Exemplary, the latter has been demonstrated by Schwarz et al. [38],
who could match facial photographs to MRI scans of patients. This illustrates the
main problem of anonymisation and pseudonymisation, including k-anonymity: All
of them are vulnerable to the introduction of side information. In fact, the original
publication of k-anonymity already identified the existence of side-information as a
vulnerability [37]. Thus, despite their name, current anonymisation procedures fall
short of fulfilling the legal requirements of anonymous data.
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2.2. Privacy Enhancing Technologies

Data governance Another aspect to consider when training AI models is the
governance, i.e. the possession and control, of patient data. Typically, datasets are
centralised and copied from their original sources. However, this may induce legal
and administrative problems. For example, patients may request the deletion of their
data, which is granted in certain legislation, e.g., in the GDPR is incorporated in
the right to be forgotten. To avoid this, a strict data tracking system would need
to be implemented to have information about each data sample’s copies, usage, and
storage location. An alternative is to train AI models decentralised, where the data
remains at the original owners, and the AI models are sent and trained on-site. Thus,
no copies of the data are distributed. We will further explain this concept, which is
commonly known as Federated Learning (FL) in Section 2.2.

Fairness

A second key principle of ethical AI besides data privacy is the justice and fairness of AI
models [28]. While there are varying definitions, fairness is often expressed as the non-
discrimination of subgroups, especially those which are underrepresented. Specifically,
whether AI models are robust to introducing biases against underrepresented groups.
Several works have drawn substantial attention by showing that biases are often
transferred from biased datasets and/or protocols into the models [39, 40, 41, 42].
Especially in the medical field, where AI models are used in delicate tasks, it is
crucial –at the very least– to know about such biases. Notably, it has been shown that
underrepresented groups are often underdiagnosed by medical AI models and thus
may not receive timely attention [43]. It is an active research direction to counteract
these biases [42]. However, many studies conclude that the most effective solution
is the implementation of an unbiased data acquisition protocol, where protected
attributes, such as sex, age or socio-economic status, are accounted for [42, 44]. In
this thesis, we are interested in the interaction of PETs and the subgroup fairness of
AI models.

2.2 Privacy Enhancing Technologies

This section presents the most important techniques that provide technological
solutions to mitigate data governance, confidentiality, and privacy issues. An overview
of a holistic workflow comprised of these techniques can be found in Figure 2.2.

9



2. Background
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Figure 2.2: Comparison of standard AI training pipeline with a privacy-
preserving pipeline. (a) Typical AI training workflow: The data from multiple
sites is sent to the AI practitioner, who assembles the data and trains the model.
(b) Example for a Privacy-preserving Machine Learning Pipeline: The data remains
at the sites. The AI practitioner sends the model to each site (Step 1). A copy of
the model is trained on the respective local data at each site. Differential Privacy
protects each data point in the training process (Step 2). The trained and privatised
AI models of all sites are aggregated using SMPC. The individual models remain
secret while the aggregated model is decrypted (Step 4). The aggregated model from
all sites is sent back to the AI practitioner (Step 5). This process is iterated either
until convergence or until privacy budgets are exhausted.

2.2.1 Federated Learning

In a typical AI workflow, data is collected and centrally aggregated to locally train a
model. However, this process requires the copying and distribution of data. Especially
for medical data, it can be a legal requirement that its governance remains at the data
owner, typically the healthcare provider. Furthermore, legislation such as the GDPR
imposes a right to be forgotten, which is practically infeasible if several copies of the
data exist. A solution to maintain governance over the data and train AI models
could be Federated Learning (FL). FL [45] describes the decentralised training of AI
models. Here, the data does not need to be collected to one compute node where the
training is happening. Instead, the model is trained on the servers where the data
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is already stored, and the model updates from all data servers are aggregated. The
use of this approach has been demonstrated for CoViD-19 classification [46], cancer
detection [47], and industrial drug discovery [48]. However, FL is often mistakenly
considered a means to provide data confidentiality or privacy, which is not the case.
It has been repeatedly demonstrated that federated learning makes AI training even
more vulnerable to data leakage [11, 12, 15, 16]. Hence, for achieving privacy, FL
must be combined with other techniques providing these properties presented in the
next sections.

2.2.2 Encryption Techniques

When transferring and aggregating AI models of different sites in a FL setting,
preventing unauthorised access to the per-site updates is often desirable or even
necessary. Encryption techniques are an established and reliable way of providing
confidentiality for various scenarios. Standard protocols such as RSA [49] are used
for various applications such as browsing, messaging or file transmission. These
standard protocols are typically designed to encrypt the message of a sender, which
can only be decrypted by the receiver. A special form of encryption is a protocol
where computations can be performed on the encrypted data. This would allow the
training of a neural network where the processor could not see the network weights
or the data but just perform the computations. This family of protocols is commonly
referred to as Homomorphic Encryption (HE) [50]. However, so far, the practical use
of HE is limited, as these protocols only support very few mathematical operations
[51] and are computationally costly [52]. Yet, first works demonstrated the use of HE
for the application of AI models [53].

An alternative are so-called Secure Multi-party Computation (SMPC) schemes
[54, 55]. These allow several participants to perform computations jointly without
any of the participants being able to read the data on their own. These protocols are
often more flexible and computationally efficient compared to HE. Thus, they pose
a good approach for tasks such as aggregating local models in a federated learning
setup, where the participants would like to conceal their individual contributions.

The main difference between HE and SMPC from a methodological point of view
is that HE protocols rely on a key-based encryption technique where anyone with the
encryption key can read the data, whereas SMPC does not use encryption keys and
the data can only be decrypted in collaboration of a certain number of participants.
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2. Background

2.2.3 Differential Privacy

Differential Privacy (DP) is the key technique discussed in this thesis. In the following,
we will explain the relevant background knowledge and try to give intuitive access to
this topic. The section is mostly based on Dwork et al. [56] and Kaissis et al. [57].

Conceptually, DP is designed as a way to release “answers” about a dataset while
limiting the contribution of each individual and, by that, protecting their privacy.
For this, DP introduces a “privacy budget” or inversely a “privacy loss”. We are
using these terms in the following interchangeably. The privacy budget regulates how
likely it is that information about specific data samples in the training dataset can be
inferred. In other words, it defines the maximum contribution of an individual to the
outcome. Dwork et al. [56] frame DP as a promise given to the data owner that DP
ascertains that they are not affected by the use of their data. A key factor here is the
privacy budget, as larger privacy budgets increase the probability of being affected.

DP is a collection of techniques which provide mathematical guarantees on the
maximum influence of individual data samples on the output of a function. More
formally, for a randomised Mechanism M : X → Y , all databases D,D′ ∈ X , which
differ in exactly one entry, for all S ∈ Y ⊆ Range(M), and a function f , (ε, δ)-DP is
satisfied if

Pr(M(f(D)) ∈ S) ≤ eεPr(M(f(D′)) ∈ S) + δ. (2.1)

This guarantee is provided by the randomness in the mechanismM. More concretely,
only by the introduction of randomness in the process DP can provide theoretical
guarantees. The parameters ε and δ define how “private” the mechanism is. However,
as we will outline later in this section, a single pair of (ε, δ) is not sufficient to measure
the privacy loss. Intuitively and with a bit of terminological laxity, ε can be thought
of as a factor to the “risk” of inferring information about a data sample, while δ is
the probability that the actual risk is higher.

Additive Noise Mechanisms

As alluded to in the previous section, the key to obtaining privacy guarantees is the
introduction of randomness into a process. Additive noise mechanisms are a family
of randomised mechanisms providing DP guarantees, which introduce randomness by
the addition of calibrated noise to the release of a query. These are the predominant
approaches in privatising numerical queries. In order to choose the “right amount
of noise” for a specific query, the randomness is calibrated on the global sensitivity
∆ of the query function f . If the space X is equipped with an ℓp-norm (∥·∥p), the
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2.2. Privacy Enhancing Technologies

sensitivity is defined as

∆p(f) = sup
D≃D′

{∥f(D)− f(D′)∥p} . (2.2)

The sensitivity can be thought of as how much “signal” of one individual is at most
in the output of f . Given this global sensitivity, we can define an additive noise
mechanism

M(f(D)) = f(D) + Z(0, ξ) (2.3)

ξ ∝ ∆p(f), (2.4)

where Z is a probability measure, and the ℓp-norm is an appropriate measure for the
sensitivity.

The two prevalent additive noise mechanisms are the Laplacian and the Gaussian
mechanism. In the following, we briefly compare both and outline their advantages
and drawbacks. As the names suggest, the mechanisms are characterised by the
addition of noise sampled from a Laplacian or a Gaussian distribution. The Laplacian
mechanism allows for desirable (ε, 0)-DP, where δ = 0, implying that there are no
events possible where the actual occurred privacy loss is larger than the guarantee.
The main advantage of the Gaussian mechanism is that for repeated queries (such
as AI training), it allows a more efficient composition and tighter accounting of the
privacy loss [58] (a concept which we further explain in Section 2.2.3). Apart from
these key differences, Laplacian noise is also more peaked around its expectation,
which often results in small deviations. For this reason, it is optimal for continuous
queries and small privacy budgets [59, 60]. However, it also has “heavy tails”,
i.e., values with large magnitude (outliers) are more likely compared to Gaussian
noise. In contrast, strong outliers are substantially less likely for Gaussian noise. In
multi-dimensional settings, for the standard Laplacian mechanism satisfying (ε, 0)-
DP, the sensitivity is measured by the ℓ1-norm, while for the Gaussian mechanism
satisfying (ε, δ)-DP, both ℓ1 and ℓ2-norm can be used. Notably, depending on the
situation, the ℓ1 and ℓ2-norm can drastically differ in a high-dimensional setting.
Specifically, it holds that the ℓ2-norm is always less than or equal to the ℓ1-norm. As
the added noise is proportional to the sensitivity –which is calculated by the norm–
and lower noise is preferable to get more accurate results, the ℓ2 norm and, thus,
the Gaussian mechanism is preferable in high-dimensional settings. In summary,
the Laplacian mechanism allows pure ε-DP, whereas the Gaussian mechanism has
advantages for repeated and/or high-dimensional queries. As neural network trainings
are repeated high-dimensional queries, the Gaussian mechanism is the predominant
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2. Background

way of implementing DP guarantees for AI models. Hence, we will focus on the
Gaussian mechanism in the following.

The Gaussian Mechanism is described as

M(f(D)) = f(D) +N (0, σ2I), (2.5)

where σ is the variance based on the sensitivity and privacy budget, and I is the
N -dimensional identity matrix, with N being the number of dimensions of the output
of the query f(D). Intuitively, we can interpret the relation of sensitivity and noise
multiplier as a signal-to-noise ratio ∆

σ
, where the sensitivity defines the maximum

signal, whereas the “strength” of the noise σ distorts the data.
With these preliminaries, the details of the databases can be abstracted away to

obtain the most revealing –and by that, least private– output of the query as the
least overlapping distributions of two outputs:

M(f(D)) ∼ N (0, σ2I) (2.6)

M(f(D′)) ∼ N (∆2(f), σ2I) (2.7)

If this pair of distributions exists, it stands for the outputs on the worst-case pair of
databases. These are also referred to as dominating pair [61]. DP can be interpreted as
measuring the similarity of the dominating pair to quantify how “private” a mechanism
is. There are various ways to measure the similarity between these distributions. In
the following, we will focus on the hypothesis testing interpretation of DP, which
allows for a very intuitive interpretation of the provided guarantees. However, we
note that there are other relevant interpretations, such as Rényi-DP, which measures
the similarity as information-theoretic divergence between the distributions [62, 63].

Hypothesis Testing Interpretation

The problem of the adversary to decide whether a given privatised output originates
from D or D′ can be formulated as a statistical hypothesis test. The null hypothesis
H0 would be that it stems from D, and an alternative hypothesis H1 that the output
comes from D′. Both hypotheses are simple and well-specified, meaning they are
fully defined with no unknown parameters. As we know the probability density
functions for both hypotheses from the dominating pair, the Neyman-Pearson Lemma
can be applied [64]. The lemma states that the optimal test for rejecting the null
hypothesis is to compare the likelihood ratio to a cutoff threshold. Specifically, the
null hypothesis is rejected if the likelihood ratio is less than or equal to this threshold.
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Figure 2.3: Visualisation of the hypothesis testing interpretation of a
Gaussian Mechanism. The dominating pairM(D) andM(D′) define how private
a mechanism is. The distance between f(D) and f(D′) is, at most, the sensitivity
∆. The “broader” the distributions are, i.e., the higher σ, and by that, the more
overlap they have, the more private the output is. Depending on their overlap and
the cutoff threshold c chosen by the adversary, the limits on the True Positive Rate
(TP, green and blue) and False Positive Rate (FP, yellow and blue) of the adversary
are bounded. Figure based on [57].

Based on this cutoff threshold, the adversary can trade off the False Positive Rate
(FPR) and True Positive Rate (TPR) (see Figure 2.3). Having simple and well-defined
hypotheses implies that the adversary has all knowledge about the process, including
the exact function f , the datasets D and D′ and the mechanism Therefore, they
can not systematically achieve a classification with a better FPR-TPR trade-off
(which is also known as Receiver-Operator Characteristic (ROC)-curve) to correctly
assign the privatised output to the input. This holds even for the introduction of
side information (in contrast to anonymisation) or any post-processing. Thus, the
privacy guarantee over the released query cannot be deteriorated by any further
computation and thus also holds for any subsequent output. We reiterate that D and
D′ are datasets which differ in exactly one row and their outputs f(D) and f(D′)
exhaust the sensitivity of f . Thus, deciding whether the output stems from D or D′

is effectively a MIA, where an adversary has to decide whether a given data sample
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Figure 2.4: Correlation of a privacy-profile and (ε, δ). The optimal ROC-curve
of a worst-case MIA adversary describes how private a mechanism is. From this
profile, all (ε, δ)-pairs describing this mechanism can be recovered, where eε is the
slope of any tangent and δ is the corresponding intercept. Source: [57].

was included in a query. Hence, by bounding the success of the hypothesis test, the
use of DP implicitly also limits the success of MIAs.

The ROC-curve of an adversary describes how private a mechanism M is. The
closer the curve is to the diagonal (i.e., random guessing), the more private the
mechanism is. Vice versa, the closer the curve is to the upper left corner (i.e., 100%
TPR, 0% FPR), the more revealing the mechanism is. From this privacy profile, all
valid (ε, δ) pairs, which the mechanism fulfils, can be recovered. For any point on the
ROC-curve where a tangent can be placed, the slope of the tangent is equivalent to
eε, while the intercept of the TPR-axis is δ (see Figure 2.4). For this reason, it is
not sufficient to describe a mechanism solely by one (ε, δ)-pair. It also follows that
for mechanisms with intersecting privacy profiles, it is not exactly clear which one is
“more private”. In contrast, for mechanisms with non-intersecting privacy profiles, i.e.,
one mechanism dominates the other, the one closer to the diagonal is always more
private [65].
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Privacy Guarantees for AI Models

Given these preliminaries, we now focus on introducing DP guarantees to the training
of AI models. While there are other methods [66], the dominating approach when
training private AI models is privatising the intermediate gradients. Neural networks
typically have no bound on the output space, i.e., the sensitivity of the function
f , where f is calculating a gradient over the weights of a neural network given a
specific input is unbounded. A possible solution to limiting the sensitivity of the
objective function in training the AI model is implemented by the Differentially
Private Stochastic Gradient Descent (DP-SGD) algorithm [67]. Here, the sensitivity
is artificially bounded by clipping the norm of the per-sample gradients to a pre-
defined bound. As per-sample implies, this only holds if the output (i.e. the gradient)
depends on the input of only one sample. In this context, a sample describes the data
of the instance over which the guarantee is given over. It can be given for each image
(per-image guarantee), but in the case of patients contributing multiple data samples,
also over the entire data of one patient (per-patient guarantee). The importance
of separating the clipping of sample gradients stems from the fact that gradients of
multiple samples with higher norms (i.e. sensitivity) can cancel each other out and,
by that, avoid being clipped. Therefore, the noise would be calibrated incorrectly,
and no valid privacy guarantee would be provided.

Once each per-sample gradient is clipped to a pre-defined norm, the additive noise
can be calibrated on the clipping threshold. However, neural network training is
an iterative process where each data sample is typically presented many times to
the network. Hence, all data samples have a repeated privacy loss. Therefore, an
important question is how these repeated privacy losses can be accumulated. This
problem is typically referred to as privacy accounting. The simplest way of accounting
for the privacy loss of multiple iterations over one sample is the addition of all privacy
losses of this data sample. For n iterations, where each is (ε, δ)-DP this yields a
final privacy budget of (nε, nδ). However, this accumulates quickly to large values,
which are undesirable. Even using the strong composition theorem, which allows for
a more efficient accounting of repeated (ε, δ)-DP queries (fulfilled by the Gaussian
mechanism), calls for large noise scales for typical privacy budgets and AI trainings.
This hindered the breakthrough for the use of DP in AI training, as the injection of
large amounts of noise obstructs well-performing networks.

A solution to this problem was proposed by Abadi et al. [68], who derived the
so-called moments accountant. Most importantly, they found an effective method of
composing privacy losses by tracking the moments of the privacy loss random variable.
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Moreover, they incorporated the fact that in AI training data samples only have a
low probability of being used in an iteration. Specifically, the probability of a sample
used in a training step is defined by the sampling ratio q = L/N , where L is the batch
size and N is the overall dataset size. Hence, only with probability q information
about a sample flows to the model. This effect is known as subsampling amplification.
Since then, more sophisticated methods for accounting have been established, such as
Rényi-accounting [63] or PRV-accounting [69]. All of them are motivated by having a
tight estimate of the true privacy loss the lowest amount of noise is injected into the
training process for a given privacy budget and, by that, obtaining better performing
models.

2.2.4 Disparity between Private and Non-Private AI
Training

DP limits the contribution of individual data samples to the output and, by that,
allows the use of data while providing mathematical guarantees for patient privacy.
However, it comes at a cost: Generally, PETs and in particular DP-SGD introduce
new challenges, which may impede the applicability in practice. One research question
in this thesis is how to mitigate or resolve these problems. At the same time, DP
also introduces favourable properties. In this section, we outline challenges and open
research questions when applying DP in AI training.

Privacy-utility trade-offs

Arguably, the so-called privacy-utility trade-off is the main challenge preventing the
widespread breakthrough of DP when training AI models on sensitive datasets. It
describes the effect of stronger privacy guarantees typically leading to weaker per-
formance of the resulting private AI models. This imposes a dilemma on practitioners
as both of these goals –strong AI models and protection of patient privacy– are
important and may be ethically and/or legally mandated [28]. This is because the
applications of AI in critical fields such as medicine, lower performing AI models can
imply misdiagnosed patients, which may directly or indirectly affect the treatment
outcome and life quality. The technical reasons for this are twofold. Most obviously,
the introduction of noise calibrated to the sensitivity of the algorithm limits the
information about the data. While this is necessary to guarantee the privacy of
the patient data, it implies that the signal from which the model learns is overlaid
by noise and, therefore, may mislead the search for an optimal set of weights. In
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Figure 2.5: Visualisation of the effects on the gradient during DP-SGD.
Per-sample gradients g1 and g2 are clipped to a maximum sensitivity ∆. The average
of clipped gradients ĝclip is further distorted by the addition of noise with scale σ
calibrated to the sensitivity ∆. The direction of the resulting privatised gradient
can substantially differ from the non-private gradient ĝ and introduce a bias in the
learning process. Figure based on [70].

addition to that, clipping the output to a maximum sensitivity as done in DP-SGD
can introduce a bias in the learning process [71, 72, 73, 70] (see Figure 2.5). Hence,
it is important to find appropriate values for the clipping norm and the strength of
the noise, which yield the optimal trade-off between privacy protection and model
utility. These performance losses are further exacerbated as other methods which
often improve the performance in standard AI training –such as large models or
contrastive pretraining– are not straightforward compatible with DP, which we further
explain in the following sections.

Increased computational requirements

A practical challenge of providing DP guarantees in the training of AI models is
the additional computational overhead. Frameworks for the training of deep neural
networks, such as PyTorch [74], are optimised to efficiently compute the average
gradient of a batch of input data samples. However, DP-SGD requires the calculation
of per-sample gradients. While, in theory, the operations are closely related, in
practice, the algorithms are less optimised and thus impose additional time and
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memory requirements for the training of private AI models. This can be a particular
concern for the training of larger models (such as LLMs), large datasets, or restricted
compute resources. Mitigating this increased computational overhead is an active
research and engineering field [75, 76].

Impact on Subgroup Fairness

An important aspect of critical areas such as medicine is that AI tools work equally
well for all patient subgroups. In other words, it is ethically and legally mandated
not to systematically discriminate against patients with specific ethnicity, age, sex, or
other characteristics [28]. However, several studies have found that DP can negatively
affect fairness characteristics of AI models [77, 78, 79, 80, 81, 82, 83]. So far, the
effect is not entirely understood and is part of an ongoing research direction.

Other remarks

While the above aspects are investigated in detail in the following sections of this
thesis, there are other impacts of DP on AI training, which we would like to briefly
remark on here.

Privacy and Generalisation Although DP introduces new challenges, there are
also findings which indicate positive effects on the training of AI models. A key
problem of machine learning is how to get models to learn from a limited set of data
samples to not only perform well on the training data but also on unseen data. In
other words, how to find a trade-off between learning enough to “understand” the
problem and generalise without learning the specific training data “by heart” and
memorise. Following this observation, it has been shown that DP can lead to a better
translation of training performance to test time performance [84]. Furthermore, for
the same reason, DP leads to provable robustness guarantees, as small perturbations
in the input do not largely impact the output [85]. At the same time, it has been
shown that learning, to a certain extent, requires memorisation of out-of-distribution
samples [86]. DP guarantees that each sample’s influence is bounded, which implies
that the memorisation of individual data samples is bounded [86]. Thus, this can, in
turn, contribute to the privacy-utility trade-off.

Further challenges DP training has further intricacies, complicating the straight-
forward adoption of non-private training processes. One key difference to standard AI
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training is that DP-SGD requires that gradients are calculated per sample. However,
batch normalisation [87], which is one of the most common neural network layers,
intermixes the information of the samples in a batch by calculating a statistic over all
samples and, based on that, rescales them. As previously outlined, this violates the
assumptions of DP-SGD. Therefore, batch normalisation must be replaced by other
normalisation layers, which normalise each sample individually. Typical choices for
this are group normalisation [88] or kernel normalisation [89]. The latter, which was
recently published, does not impose performance losses compared to standard batch
normalisation anymore [90]. Still, many pre-trained models and architectures cannot
be used out of the box and must be adapted to be privacy-conformant. Another
difference to standard AI training is that using a weighted sampling scheme to draw
data from the dataset is not straightforward when training on imbalanced training
data. This is because current accounting methods assume that all samples are equally
likely. While simple approximations to obtain valid guarantees exist [84], there is
a lack of tight accounting methods for weighted data sampling. On this note, we
remark that the weights for such a sampling scheme are often based on count queries,
which also have to be differentially private. The privacy budgets must be offset
against the total privacy budget to maintain a complete picture of the privacy loss.
Related to that, a crucial part of standard AI training is a tuning of hyperparameters
in order to retrieve the optimal model for a specific dataset. Yet, this can lead to
information leakage in differentially private machine learning, which is not captured in
the privacy budget [91]. Although there are procedures to mitigate this problem [91],
it is often neglected in practice. Lastly, it is also important to note that the privacy
loss of repeated private queries accumulates. This implies that if a pre-defined privacy
budget of a specific dataset is used, this data cannot be used for other procedures.
In other words, data cannot be used for an arbitrary amount of AI trainings but is
consumed once the privacy budget is expended. These considerations are also relevant
to the idea of “data economics” [92].

2.3 Privacy Attacks on AI Models

Implementing defence mechanisms to provide privacy guarantees for the training of
AI models premises an understanding of attack vectors. In this section, we outline
the most important types of privacy-related attacks and provide an overview of the
relation to formal privacy guarantees provided by DP.
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Figure 2.6: Options for various threat models. The threat model describes
the capabilities of an adversary in a certain scenario. In a worst-case threat model,
the adversary (1) knows the input dataset, (2) can observe all intermediate steps
(gradients), (3) can manipulate model architecture and weights, and (4) can modify
hyperparameters used for training. The assumptions for real-world adversaries are
often not as strong. In particular, the knowledge about the input data is limited for
malicious adversaries. Honest-but-curious adversaries do not manipulate or modify
any parts of the training pipeline but only observe the outputs.

2.3.1 Threat models

Threat models are a concept from security research used to describe an attacker’s
capabilities on the system (see Figure 2.6). It is crucial to clearly describe these when
analysing the attack’s success –i.e. the risk– as it can vary drastically for stronger
or weaker adversaries. For example, an adversary that can infiltrate a modified
model architecture designed to memorise sensitive data has a much higher chance of
succeeding in reconstructing this data than an adversary that only observes [16]. In
literature, there are three typical threat models, which we refer to in the following
as worst-case, malicious, and honest-but-curious. While the worst-case threat model
stems from DP literature, malicious and honest-but-curious come from general AI
and especially FL attack research. Hence, the latter two focus on practical scenarios,
while the worst case is more used for theoretical risk assessment. In more detail,
the threat models can be described as follows: (1) The worst-case threat model
considers an adversary with unlimited capabilities and full knowledge of the scenario.

22



2.3. Privacy Attacks on AI Models

Notably, this includes unbounded computational power and knowledge about the
data in question. This attacker only lacks knowledge of (a) the answer to the attack’s
question, e.g., in the case of a MIA, whether a given data sample was used in training,
and (b) in the case of DP, the exact random noise, which was used in the mechanism.
This threat model is the predominant model in DP literature. While studying these
adversaries is primarily of a theoretical nature, the analysis has one crucial advantage:
The resulting analyses of such adversaries are absolute worst-case bounds, implying
that irrespective of the power or side knowledge that can be added, no result can
produce a higher attack success than these adversaries. This includes that the results
are robust to any form of post-processing. However, the risk estimates are often
very pessimistic for any practical case. Examples of such attacks and analysis can
be found in Nasr et al. (Dataset) [93] for MIA, and Hayes et al. [23] for DRA. (2)
The malicious threat model considers adversaries who actively interfere with the
setup in order to gain their optimal advantage in performing the attack. This can
include modifications to the model architecture, hyperparameters or other training
details. However, the notable difference to worst-case adversaries is that they do not
have unlimited power and knowledge, rendering them as powerful and also a realistic
threat to AI systems. Examples are described by Nasr et al. (Poison) [93], Fowl et al.
[15], Boenisch et al. [16] or Feng & Tramèr [94]. (3) In the honest-but-curious threat
model, an adversary attempts to infer information about the training data without
interfering with the setup. Specifically, these adversaries only distil information from
a given scenario, including fixed pre-defined model architectures and hyperparameters.
Examples are demonstrated by Nasr et al. (API) [93] and Geiping et al. [11]. Notably,
in literature, there is also a common distinction between white-box (i.e. the adversary
can observe and potentially manipulate intermediate steps) and black-box access (i.e.
the adversary only observes the final output, depending on the definition, even just
the predictions without weights). From a theoretical point of view, it has been shown
that for the success of a MIA, these scenarios are equally susceptible [95].

2.3.2 Attack Types

A wide variety of attacks has been developed aiming to undermine various aspects
of AI systems, most importantly, privacy of input data and utility of the model.
We refer to Usynin et al. [96] for an overview. In this thesis, we focus on privacy-
centred attacks and within those on Membership Inference Attacks (MIAs) and Data
Reconstruction Attacks (DRAs). An overview can be found in Figure 2.7.
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Figure 2.7: Types of privacy attacks on machine learning models. Member-
ship Inference Attacks are the simplest attacks, revealing just one bit of information,
namely if a data sample was used for training an AI model. Data Reconstruction
Attacks, at the other extreme, aim to recover the full input but are the hardest to
perform. Attribute Inference Attacks are a trade-off between information recovery
and complexity as they recover only some attributes of the input, e.g., age, genetics
or medical history of the patient’s input data.

Membership Inference Attacks

In a MIA, an attacker attempts to infer whether a given data sample was part of
the input to the neural network during training [97]. Revealing this information
can –depending on the scenario– be privacy critical. For example, it can reveal a
patient’s diagnosis if their data was used in a specific application [97]. However, MIA
is the simplest and weakest attack as it recovers the least amount of information,
namely a binary state: Member or Non-member. For this reason, MIA is –just like a
worst-case threat model– attractive for theoretical analysis. If the success of a MIA
is bounded, it is also bounded for any other type of attack. Notably, the hypothesis
testing interpretation of DP immediately provides a bound for the success rate of a
MIA by a worst-case adversary. The bounds have also been formalised for weaker
adversaries, which do not have exact knowledge of the training data, allowing to also
provide theoretical risk bounds for more realistic adversaries [98]. Empirically, it has
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been shown that the bounds provided by DP are tight and relaxing the threat model
decreases the attack success [93].

Data Reconstruction Attacks

While MIA recovers the least amount of information, DRAs, also known as model
inversion attacks, are on the other end of the spectrum by attempting to recover
the full information, i.e. the exact input. Hence, these are the most challenging but
strongest attacks for an attacker and thus, any weaker attack will achieve at least the
same success rate.

Empirical DRAs Several empirical works have shown that reconstructing the
input data works well to a certain extent: In an honest-but-curious scenario, the
predominant approaches are based on gradient matching, i.e. optimising a random
noise image, which yields the same gradient as the one observed by the adversary [11,
12]. Nearly perfect reconstructions are achievable if the adversary can also manipulate
the setting in their favour in a malicious threat model [15, 16]. Moreover, it has
been shown that specifically Diffusion Models [99, 100] as generative models are
vulnerable to leaking their input data [17]. Several works [22, 14, 18] demonstrated
that input data can also be reconstructed from trained model weights in an honest-
but-curious threat model. However, these have certain limitations, either having
strong assumptions on the model architectures or limited reconstruction quality.
Feng & Tramér showed that by manipulating the architecture, which they term
privacy backdoors, these limitations vanish [94]. So far, there has been no attack
that successfully reconstructed input data of an arbitrary model without observing
intermediate steps or manipulating the architecture (black-box attacks).

Theoretical Bounds on DRAs To formalise theoretical bounds on the success of
reconstruction attacks and specifically under the use of DP as a privacy-preserving
mechanism, Balle et al. [22] proposed the notion of (η, γ)-Reconstruction Robustness
(ReRo). Based on an arbitrary reconstruction error function and a prior over the
input data, they measure what the probability γ is that the actual reconstruction
error is lower or equal to a fixed threshold η. If any defence mechanism can guarantee
a limit on γ for a specific value of η, it is considered (η, γ)-ReRo.

Balle et al. [22] proved that DP fulfils (η, γ)-ReRo. In other words, any mechanism
that fulfils the requirements imposed by DP, including DP-SGD, also provides bounds
on the success of reconstructing input data. Hayes et al. [23] derived tight bounds for
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a worst-case adversary attempting to achieve (0, γ)-ReRo under DP. Notably, this
analysis is based on an adversary with access to a prior set containing the target data
sample. The attack is then successful if the adversary can match the output (i.e., the
model or gradient) to the correct input sample. Thus, while this analysis is valuable
for the theoretical understanding of risks, it may have limited real-world significance.
Currently, it remains an open challenge to provide tight and real-world applicable
bounds on the success of reconstruction attacks under DP conditions.

Attribute Inference Attacks

As outlined in the previous sections, MIA represents the minimal information recovery,
while DRA recovers the full information. Hence, the question arises if there is a
middle ground which recovers sufficient information. This would have stronger
implications on breaches of privacy compared to MIA, but at the same time might
achieve higher success than DRAs. A family of attacks fulfilling this definition are
Attribute Inference Attacks (AIAs). As the name suggests, these attempt to infer
specific attributes from the model about its input data, which are privacy critical
[101]. This is especially critical in combination with Predicate Singling Out (PSO)
[20, 21], which attempt to infer enough attributes to uniquely identify an individual.
Allowing such an attack is explicitly prohibited by the GDPR [20]. Again, DP can
serve as a provable defence against this type of attack [20].
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3.1 End-to-end privacy preserving deep learning

on multi-institutional medical imaging

Synopsis: Using large, multi-national datasets for high-performance medical ima-
ging AI systems requires innovation in privacy-preserving machine learning so models
can train on sensitive data without requiring data transfer. Here we present PriMIA
(Privacy-preserving Medical Image Analysis), a free, open-source software framework
for differentially private, securely aggregated federated learning and encrypted infer-
ence on medical imaging data. We test PriMIA using a real-life case study in which
an expert-level deep convolutional neural network classifies paediatric chest X-rays;
the resulting model’s classification performance is on par with locally, non-securely
trained models. We theoretically and empirically evaluate our framework’s perform-
ance and privacy guarantees, and demonstrate that the protections provided prevent
the reconstruction of usable data by a gradient-based model inversion attack. Finally,
we successfully employ the trained model in an end-to-end encrypted remote inference
scenario using secure multi-party computation to prevent the disclosure of the data
and the model.

Contributions of thesis author: code development, experiment design and evalu-
ation, paper writing.

Copyright: Copyright ©2021, The Author(s), under exclusive licence to Springer
Nature Limited
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The rapid evolution of artificial intelligence (AI) and machine 
learning (ML) in biomedical data analysis has recently 
yielded encouraging results, showcasing AI systems able to 

assist clinicians in a variety of scenarios, such as the early detection 
of cancers in medical imaging1,2. Such systems are maturing past 
the proof-of-concept stage and are expected to reach widespread 
application in the coming years as witnessed by rising numbers 
of patent applications3 and regulatory approvals4. The common 
denominator of high-performance AI systems is the requirement 
for large and diverse datasets for training the ML models, often 
achieved by voluntary data sharing on behalf of the data owners 
and multi-institutional or multi-national dataset accumulation. It’s 
common for patient data to be anonymized or pseudonymized at 
the originating institution, then transmitted to and stored at the 
site of analysis and model training (known as centralized data shar-
ing)5. However, anonymization has proven to provide insufficient 
protection against re-identification attacks6,7. Therefore, large-scale 
collection, aggregation and transmission of patient data is critical 
from a legal and an ethical viewpoint8. Furthermore, it is a funda-
mental patient right to be in control of the storage, transmission and 
usage of personal health data. Centralized data sharing practically 
eliminates this control, leading to a loss of sovereignty. Moreover, 
anonymized data, once transmitted, cannot easily be retrospectively 
corrected or augmented, for example by introducing additional 
clinical information that becomes available.

Despite these concerns, the increasing demand for data-driven 
solutions is likely to increase health-related data collection, not only 
from medical imaging datasets, clinical records and hospital patient 
data, but also for example via wearable health sensors and mobile 

devices9. Hence, innovative solutions are required reconcile data 
and protect privacy. Secure and privacy-preserving machine learn-
ing (PPML) aims to protect data security, privacy and confidential-
ity, while still permitting useful conclusions from the data or its use 
for model development. In practice, PPML enables state-of-the-art 
model development in low-trust environments despite limited local 
data availability. Such environments are common in medicine, 
where data owners cannot rely on other parties’ privacy and confi-
dentiality compliance. PPML can also provide guarantees to model 
owners that their model will not be modified, stolen or misused, 
for example by its encryption during use. This lays the groundwork 
for sustainable collaborative model development and commercial 
deployment by alleviating concerns of asset protection.

Evidence from prior work
Recent work has shown the utility of PPML in biomedical science 
and medical imaging in particular. For instance, federated learning 
(FL) is a decentralized computation technique based on distribut-
ing machine learning models to the data owners (also referred to as 
computation nodes) for decentralized training instead of centrally 
aggregating datasets. It has been proposed as a method to facilitate 
multi-national collaboration while obviating data transfer. In the set-
ting of the COVID-19 pandemic10,11 FL was used to allow the reten-
tion of data sovereignty and the enforcement of local governance 
policies over data repositories. In medical imaging, recent studies5,12 
demonstrated that federated training of deep learning models on 
brain tumour segmentation or breast density classification performs 
on-par with local training and that it fosters the inclusion of data 
from more diverse sources, leading to improved generalization. 

End-to-end privacy preserving deep learning on 
multi-institutional medical imaging
Georgios Kaissis   1,2,3,4,13, Alexander Ziller   1,2,4,13, Jonathan Passerat-Palmbach3,4,5, Théo Ryffel   4,6,7, 
Dmitrii Usynin   1,2,3,4, Andrew Trask4,8, Ionésio Lima Jr4,9, Jason Mancuso4,10, Friederike Jungmann1, 
Marc-Matthias Steinborn   11, Andreas Saleh11, Marcus Makowski1, Daniel Rueckert2,3 and 
Rickmer Braren   1,12 ✉

Using large, multi-national datasets for high-performance medical imaging AI systems requires innovation in privacy-preserving 
machine learning so models can train on sensitive data without requiring data transfer. Here we present PriMIA 
(Privacy-preserving Medical Image Analysis), a free, open-source software framework for differentially private, securely 
aggregated federated learning and encrypted inference on medical imaging data. We test PriMIA using a real-life case study in 
which an expert-level deep convolutional neural network classifies paediatric chest X-rays; the resulting model’s classification 
performance is on par with locally, non-securely trained models. We theoretically and empirically evaluate our framework’s per-
formance and privacy guarantees, and demonstrate that the protections provided prevent the reconstruction of usable data by 
a gradient-based model inversion attack. Finally, we successfully employ the trained model in an end-to-end encrypted remote 
inference scenario using secure multi-party computation to prevent the disclosure of the data and the model.
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However, FL in itself is not a fully privacy-preserving technology. 
Previous studies13,14 demonstrate that inversion attacks can recon-
struct images from model weights or gradient updates with impres-
sive visual detail. Moreover, in the setting of inference-as-a-service15, 
exposure of the model to a non-trusted third party can enable 
model misuse or outright theft. Therefore, FL must be augmented 
by additional privacy-enhancing techniques to truly preserve pri-
vacy. For example, FL with secure aggregation (SecAgg) of weights 
or gradient updates or differential privacy (DP) can prevent data-
set reconstruction attacks, and the utilization of secure multi-party 
computation (SMPC) protocols during model inference can protect 
the models in use. We provide an overview of these techniques in 
our previous work16.

Aim and contributions
The clinical application of PPML in medical imaging requires the 
development of frameworks for security and privacy, and their vali-
dation on non-trivial clinical tasks. Here we present PriMIA, a free, 
open-source framework for end-to-end privacy-preserving decen-
tralized deep learning on medical images. Our framework incorpo-
rates differentially private federated model training with encrypted 
aggregation of model updates as well as encrypted remote inference. 
Our contribution provides the following innovations:

•	 We demonstrate the training of a deep convolutional neural 
network (CNN) on the clinically challenging task of paediat-
ric chest radiography classification using FL augmented with 
PriMIA’s privacy-enhancing techniques over the public Internet.

•	 Our framework is compatible with a wide range of medical 
imaging data formats, easily user-configurable and introduces 
functional improvements to FL training (weighted gradient 
descent/federated averaging, diverse data augmentation, local 
early stopping, federation-wide hyperparameter optimization, 
DP dataset statistics exchange), increasing flexibility, usability, 
security and performance.

•	 We examine the computational and classification performance 
of models trained with and without privacy-enhancing tech-
niques against models trained centrally on the accumulated 
dataset, personalized models trained on subsets of the data and 
against expert radiologists on unseen real-life datasets to evalu-
ate various scenarios typical in medical imaging research.

•	 We assess the theoretical and empirical privacy and security 
guarantees of our framework and provide examples of applying 
a state-of-the-art gradient-based model inversion attack against 
the models under a number of training scenarios.

•	 Finally, we showcase the utilization of the trained model in a 
secure inference-as-a-service scenario without the disclosure of 
either the data or the model in plain text and demonstrate the 
improvements in inference latency of our SMPC protocol.

Library functionality
PriMIA was developed as an extension to the PySyft/PyGrid eco-
system of open-source PPML tools. PySyft (https://github.com/
OpenMined/PySyft) is a Python framework allowing the remote 
execution of machine learning tasks (for example, tensor manipula-
tion) and for encrypted deep learning by interfacing with common 
machine frameworks such as PyTorch. PyGrid provides server/cli-
ent functionality for the deployment of such workflows on servers 
and edge computing devices. A detailed description of the generic 
functionality provided by these frameworks can be found in our 
previous work17. PriMIA builds upon this functionality towards 
medical-imaging-specific applications by being natively compat-
ible with medical imaging data formats such as DICOM and able to 
operate on medical datasets of arbitrary modality and dimension-
ality (for example, computed tomography, radiography, ultrasound 

and magnetic resonance imaging). Outside of the above-mentioned 
PPML techniques, it offers solutions to common challenges in 
medical imaging analysis workflows, such as dataset imbalance, 
advanced image augmentation, federation-wide hyperparameter 
tuning functionality. Furthermore, it provides an accessible user 
interface for applications ranging from local experimentation 
on the user’s machine to distributed training on remote compute 
nodes to facilitate the application of PPML best practices in medical 
consortia. The source code and documentation for the library and 
the publicly available data are provided at https://doi.org/10.5281/
zenodo.454559918.

Case study, system design and threat model
We present a case study for the application of PriMIA on clinical 
data by training an 11.1 million parameter ResNet18 CNN19 on 
the paediatric pneumonia dataset originally proposed by Kermany 
et al.20 on cloud compute nodes over the public Internet with the 
aim of classifying paediatric chest radiographs into one of three cat-
egories: normal (no signs of infection), viral pneumonia or bacterial 
pneumonia. Pneumonia is a leading cause of paediatric mortality21. 
Chest radiography is routinely performed for differential diagnosis 
and therapy selection, but classifying paediatric chest radiographs 
is challenging. The case study is set up according to the following 
real-life scenario:

FL training phase. A confederation of three hospitals wishes to 
train a deep learning model for chest radiography classification. As 
they neither possess enough data on their own nor the expertise 
to train the model on this data, they enlist the support of a model 
developer to orchestrate the training on a central server. In the 
training phase, we refer to the hospitals holding patient data as the 
data owners. We utilize the term ‘model’ throughout the manuscript 
to refer to the structure and parameters of a deep neural network. 
We assumed an honest-but-curious threat model as defined previ-
ously22 for the training phase. Here, participants trust each other to 
not actively undermine the learning protocol with utility degrada-
tion in mind, for example by actively supplying adversarial inputs 
or low-quality data (honest). However, individual participants and 
colluding groups of participants are assumed to actively attempt to 
extract private information from other participants’ data (curious). 
Our framework’s privacy-enhancing techniques are designed to 
protect from this behaviour, which we describe in detail in later sec-
tions. In brief, DP gradient descent23 extends the guaranteed prop-
erties of DP to deep neural network training. Specifically, it bounds 
the worst-case privacy loss of individual patients in the datasets and 
provides privacy guarantees against model inversion/reconstruc-
tion attacks carried out against federation participants or against 
model owners at inference time. PriMIA implements DP for each 
FL node (local DP) to provide patient-level guarantees. Per-node 
privacy budgeting is performed using the Rényi Differential Privacy 
Accountant24. SMPC allows parties to jointly compute a function 
over a set of inputs without disclosing their individual contribu-
tions. During training, it is utilized to securely average the network 
weight updates (SecAgg). Additive secret sharing based on the 
SPDZ protocol25 is used for SecAgg. The training phase is shown in 
Fig. 1. It concludes with all participants holding a copy of the fully 
trained final model.

Remote inference phase. Once fully trained, the model can be used 
for remote inference. In our case study, we assume that a different 
data owner, in this case a physician at a remote location holds some 
patient data and wants to receive an inference result for diagnostic 
assistance from the model. The inference service is provided over 
the internet by the model owner. The data and model owners do not 
trust each other and wish their data and model to remain private. 
PriMIA’s SMPC protocol guarantees the cryptographic security of 
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both the model and the data in the inference phase. The AriaNN 
framework described in our previous work26 is used, which we have 
adapted to end-to-end encrypted inference.

A common SMPC technique25 is the utilization of cryptographi-
cally secure random numbers (cryptographic primitives) generated 
ahead of time (so-called offline phase) to accelerate certain compu-
tations. The trusted system (for example, a hardware device) provid-
ing these primitives is referred to as a cryptographic provider and is 
not involved in the actual inference procedure (online phase), nor 
does it ever come in contact with any party’s data. In fact, a ‘stockpile’ 
of cryptographic primitives can be provided to the protocol partici-
pants ahead of time to be used up over multiple inference proce-
dures. The encrypted inference process is summarized in Fig. 2.

Classification performance
We trained FL models without SecAgg or DP (DP-/SecAgg-), with 
SecAgg only (DP-/SecAgg+) and with both techniques (DP+/
SecAgg+). Furthermore, we trained a model on the entire dataset 
pooled on a single machine (centrally trained) and separate mod-
els on the individual data owners’ subsets of the dataset (personal-
ized). The centrally trained model represents the centralized data 
sharing scenario described in the introduction. The personalized 
models each represent a single institution training exclusively on 
their own data, a typical case in current medical imaging research 
workflows. FL aims to enable the training of models that are better 
than personalized training and—ideally—as good as the centrally 
trained model.

We tested the classification performance of the models on the val-
idation set and against the classification performance of two expert 
radiologists on test set 1 (145 images) and against clinical ground truth 
data on test set 2 (345 images). We used accuracy, sensitivity/specific-
ity (recall), receiver-operator-characteristic-area-under-the-curve 
(ROC-AUC) and the Matthews correlation coefficient (MCC)27 for 

assessment. Details can be found in the Methods section. Model 
and expert classification performance on the datasets can be found 
in Table 1.

The FL model trained with neither SecAgg nor DP performed 
best with no statistically significant difference to the centrally 
trained model. The addition of SecAgg to the model slightly, but 
non-significantly reduced performance. Both FL models and the 
centrally trained model significantly outperformed the human 
observers. The DP training procedure (ϵ = 6.0, δ = 1.9 × 10−4 at an 
α-value (divergence order) of 4.4) significantly reduced model per-
formance, however the model still performed statistically on par 
with human observers and retained stable performance on the 
out-of-sample data of test sets 1 and 2. We note that the ϵ-value 
represents the total privacy budget spent at the end of training. The 
personalized models trained only on the data owners’ individual 
data subsets performed approximately on par only on the valida-
tion data, but significantly worse on the out-of-sample data of test 
sets 1 and 2, indicating poor generalization. The statistical evalu-
ation of these results alongside inter-rater/model agreement met-
rics can be found in Supplementary Section 2 and Supplementary 
Tables 1 and 2.

Training and inference performance benchmarking
To assess the performance ramifications of PriMIA’s 
privacy-enhancing techniques, we benchmarked the training and 
inference performance in a variety of scenarios, shown in Fig. 3. 
Training timings were measured as average time per batch at a con-
stant batch size to decouple them from dataset size. Compared to 
training locally, FL incurs a performance penalty due to network 
communications, which is further increased by the addition of 
SecAgg and DP, yielding a threefold increase in training time when 
both SecAgg and DP are used. Large neural network architectures 
require proportionally longer to train due to network transfer 
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Locally
trained
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Secure aggregation

Securely aggregated model

Central
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model
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updated
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a b c

Fig. 1 | Overview of the FL training phase in the PriMIA case study. Three data owners (hospitals) wish to cooperate to train a model; a central server 
orchestrates the training. a, At the beginning of training, the central server sends the untrained model (red) to the computation nodes (hospitals/data 
owners) for training. b, Until convergence is achieved, the models are trained locally at each hospital. Intermittently, the models (coloured) are securely 
averaged (SecAgg). The SecAgg procedure occurs only between the three data owners. The SMPC protocol guarantees that the individual models cannot 
be exposed by other participants. After SecAgg, the updated model (green) is redistributed for another round of training. c, After the final iteration, the 
central model is updated with the (now fully trained) securely aggregated model (green) and can be used for inference.
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requirements, providing justification for the use of the ResNet18 
architecture in our study compared with larger ResNets. The addi-
tion of more worker nodes led to a linear increase in times when uti-
lizing SecAgg due to the communication overhead of the protocol. 
However, due to the small number of operations per round, the pro-
tocol scales well to multiple parties: linear regression analysis of the 
scaling yielded t(w) = 0.57w + 2.61 with t expressing time in seconds 
and w the number of workers (R2 = 0.98, p < 0.001, N = 100 samples 
per number of workers tested). Training time was nearly constant 
without SecAgg. Training times per batch were constant for larger 
dataset sizes, signifying that training duration is dependent only on 
dataset size all other things being equal. Lastly, we benchmarked 
our encrypted inference implementation26 based on the function 
secret sharing (FSS) protocol28, which offers increased efficiency in 
the evaluation of comparison operations, max-pooling and batch 
normalization layers compared to the widely used SecureNN29. The 
utilization of FSS for encrypted inference significantly reduced infer-
ence times. In particular, in the high-latency setting, FSS yielded 
a proportionally better performance in comparison to SecureNN. 
Implementation details can be found in the Methods section and 
the statistical evaluation can be found in Supplementary Section 3.

Model inversion attack
Prior work13,30 has demonstrated that model inversion attacks are 
able to reconstruct features or entire dataset records (in our case, 
chest radiographs), rendering them a threat to patient privacy in FL 
settings. To exemplify the susceptibility of models trained with and 
without the privacy-enhancing techniques offered by PriMIA, we 
utilized the improved deep leakage from gradients attack31,32 with 
small modifications detailed in the Methods section. We chose this 
method because it was the first technique shown to be highly effec-
tive against the ResNet18 architecture used in our case study. Figure 
4 shows exemplary results from the chest radiography case study. 

We utilized the pixelwise mean squared error (MSE), signal-to-noise 
ratio (SNR) and Fréchet inception distance (FID) metrics for quan-
tifying attack success. Empirical evaluation yielded that the attack’s 
success depends highly on the L2-norm of the gradient updates and 
the batch size used. To thus generate a best-case baseline of a highly 
successful attack, we attacked the centrally trained model with a 
batch size of one at the start of training, when the loss magnitude 
(and thus gradient norm) is highest. The attacks on the FL model 
with SecAgg used for our case study were not successful, most likely 
due to the high effective batch size of 600. Consistent with DP’s 
privacy guarantees, the attacks were ineffective when DP training 
was used. Results showing that DP negates the attack even when the 
model is attacked locally or when SecAgg is not used are shown in 
Supplementary Section 5 and Supplementary Fig. 2.

To further underline the high risk of privacy-centred attacks 
in the healthcare imaging setting and thus the importance of 
privacy-enhancing techniques for collaborative model training, 
we performed additional experiments on the publicly available 
MedNIST dataset and were able to recover images disclosing sensi-
tive patient attributes when DP was not utilized. No images could 
be recovered with DP in place (Fig. 5). Further details on the attack 
and the statistical evaluation can be found in the Methods and 
Supplementary Sections 4 and 6.

Discussion
We’ve presented PriMIA, an open-source framework for 
privacy-preserving FL and encrypted inference on medical images. 
We’ve demonstrated the decentralized collaborative training of an 
expert-level deep convolutional neural network in the challenging 
clinical task of paediatric chest radiography classification. Further, 
we’ve showcased end-to-end encrypted inference, which can be 
leveraged for secure diagnostic services without the disclosure 
of confidential data or exposure of the model. Our work serves 

Secure multi-party computation
Encryption by
secret sharing

Data owner Model owner

Data owner

a b c

Encrypted
result

Decrypited
result

“Bacterial”
“Normal”
“Viral”

Encrypted
result

Fig. 2 | Overview of the encrypted inference process. The data owner (in this case, a physician located at a remote location) requests an inference 
result from the model over the Internet but wants the confidential patient data they hold to remain secret. Similarly, the model owner provides inference 
as a service but wants to keep their model confidential. The use of SMPC enables the following scenario. a, Initially the data owner and model owner 
respectively encrypt the data and model using secret sharing. This process relies on splitting the data/model into shares, which in themselves do not 
contain any usable information and can therefore be exchanged (shared) with the other party. b, Inference is then carried out by jointly computing a 
function (in this case the neural network inference procedure) using SMPC. c, The data owner receives an encrypted result, which only they can decrypt.
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as the first step towards the implementation of next-generation 
privacy-preserving methods in medical imaging workflows. It 
applies to both multi-institutional research and to enterprise model 
development settings, allowing the preservation of data governance 
and sovereignty over confidential patient health data. Our frame-
work can be used in inference-as-a-service scenarios in which 
diagnosrsquo support can be provided remotely with theoretical 
and empirical guarantees of privacy, confidentiality and asset pro-
tection. PriMIA represents a targeted evolution of our previous 
work17 towards healthcare-sector-focused deployment. Although 
we focused on a classification task for the presented case study, 
PriMIA is highly adaptable to a variety of medical imaging analy-
sis workflows employing different network architectures, datasets 
and more. We present an additional case study focused on semantic 
segmentation in computed tomography scans of the abdomen in 
Supplementary Section 7 and Supplementary Fig. 3, to demonstrate 
this flexibility.

Model classification performance. Recent work has evaluated the 
ramifications of data quality (overly homogeneous/independent 
and identically distributed data versus overly heterogeneous data) 
and distributed system topology on federated model performance, 

for example generalization to out-of-sample data. In our case study, 
models trained with FL performed on par with the centrally trained 
model similar to ref. 5 and outperformed human observers. Models 
trained only on subsets of the data (personalized models) showed 
drastically diminished performance on out-of-sample data. Since 
personalized model training is the standard in most mono-centric 
medical imaging studies, this finding serves as a reminder that 
the inclusion of larger quantities of more diverse data from mul-
tiple sources enabled through FL can allow the training of models 
with better generalization performance, as is demanded by current 
best practices33. DP model training is able to offer objective privacy 
guarantees and resilience against model inversion attacks30,32. The 
utilization of DP diminished model performance, which was, how-
ever, still on par with human observers. At the same time, the DP 
guarantees achieved (ϵ = 6) by the selected model are only moder-
ate. This phenomenon (privacy–utility trade-off) is a well-known 
observation in the still nascent area of deep learning with DP. For 
instance, previous work23 reached an ϵ-value of approximately 8 
on the CIFAR-10 dataset and another study reported34 ϵ-values 
between 6.9 and 8.48. Both studies also report a diminished per-
formance by the final model. We regard methods to improve the 
training of DP models as a promising direction for future research.

Table 1 | Classification performance comparison of models on the validation set and test sets 1 and 2

Accuracy Sensitivity/specificity ROC-AUC MCC

Val Test 1 Test 2 Val Test 1 Test 2 Val Test 1 Test 2 Val Test 1 Test 2

Federated DP–/SecAgg– 0.89 0.89 0.90 0.95 0.88 0.90 0.92 0.92 0.93 0.84 0.84 0.85

0.86 0.88 0.88

0.86 0.94 0.93

Federated DP–/SecAgg+ 0.88 0.88 0.89 0.98 0.88 0.89 0.90 0.92 0.92 0.83 0.83 0.83

0.86 0.88 0.88

0.78 0.91 0.91

Federated DP+/SecAgg+ 0.85 0.85 0.84 0.97 0.87 0.86 0.89 0.88 0.87 0.78 0.76 0.77

0.76 0.81 0.83

0.82 0.85 0.86

Centrally trained 0.92 0.90 0.91 0.96 0.90 0.93 0.93 0.93 0.94 0.87 0.85 0.87

0.90 0.88 0.89

0.87 0.94 0.92

Personalized 1 0.89 0.67 0.63 0.90 0.96 1.00 0.92 0.72 0.71 0.83 0.48 0.47

0.88 0.19 0.25

0.88 0.71 0.65

Personalized 2 0.87 0.69 0.58 0.88 0.85 0.91 0.90 0.74 0.67 0.80 0.51 0.37

0.85 0.65 0.29

0.87 0.41 0.50

Personalized 3 0.87 0.68 0.66 0.86 0.68 1.00 0.90 0.75 0.79 0.80 0.50 0.48

0.90 0.79 0.72

0.84 0.53 0.00

Expert 1 - 0.79 - - 0.96 - - - - - 0.70 -

0.47

0.88

Expert 2 - 0.79 - - 0.96 - - - - - 0.68 -

0.84

0.41

Federated, model trained with federated learning; DP+/–, model trained with (+) or without (–) DP gradient descent; SecAgg+/–, model trained with (+) or without (–) SecAgg; Centrally trained, model 
trained on the entire dataset on a single machine. Personalized 1–3, models trained only on the data owner’s local data set. Expert 1/2, human experts. Sensitivity/specificity metrics refer to normal/
bacterial/viral, respectively.
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Functional improvements to FL. To increase framework usabil-
ity and flexibility as well as FL model performance, our frame-
work includes the following functional improvements. (1) Besides 
incorporating adaptive client optimization in the form of the 
Adam optimizer recently shown to yield improved convergence 
results35, we include a wide range of advanced image augmentation 

techniques including MixUp, which has been shown to encom-
pass privacy-enhancing attributes36. (2) We implement techniques 
to address imbalances in data volume between nodes (local early 
stopping), as well as between dataset classes (class-weighted gra-
dient descent and federated averaging37). (3) We include facilities 
to carry out centrally coordinated hyperparameter optimization 
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Fig. 3 | Results of training and inference benchmarks. a–d, Timing benchmarks in the training phase. All times shown in white are relative to the baseline 
for a batch size of 8 at a constant synchronization rate of 1 averaged over 100 runs. For DP, a microbatch size of 1 was used. The baseline is provided in 
parentheses. Bars denote standard deviation. Centrally trained: local training. DP+/– and SecAgg+/–: with/without DP gradient descent/SecAgg. a, 
Training latency for local training in various scenarios. b, The influence of neural network model parameters. Models shown: CNN architecture included 
with PriMIA (2.0 million parameters), ResNet18 (11.1 million parameters), VGG16 (15.2 million parameters), ResNet50 (21.2 million parameters) and 
ResNet151 (42.5 million parameters). c, The influence of the number of workers (data owners) in the federation. d, The influence of the dataset size per 
worker between one (1×) and three (3×) times the amount of data. As times shown are per batch, timings are independent of dataset size. e, Timing 
benchmark in the inference phase. FSS, function secret sharing-based inference (ours). SNN, SecureNN protocol29. 100 repetitions each. Latency, average 
10-round-trip ping latency.
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Fig. 4 | Overview of the gradient-based privacy attacks against PriMIA using the paediatric pneumonia dataset. a, Left to right: the target image 
(original); best-case reconstruction derived from attacking the centrally trained model early during training with a batch size of 1; typical case of an 
attack against the FL model trained with SecAgg (effective batch size 600, epoch 5 of 20); worst-case attack performed against a model trained with 
DP. b, Normalized metrics of attack success. Lower values for pixel-wise MSE and FID (mirroring human perception of similarity) and higher values for 
signal-to-noise ratio indicate increased success, respectively. c, Attack success, measured as relative signal-to-noise ratio dependent on the model’s global 
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over the entire confederation using the Tree-Structured Parzen 
Estimator algorithm38. Experimental data showcasing the utiliza-
tion of our hyperparameter selection framework to search for the 
optimal FL model can be found in Supplementary Section 1 and 
Supplementary Fig. 1. All above-mentioned training optimiza-
tions are implemented locally on the nodes and do not negatively 
impact privacy guarantees. Hyperparameter tuning, however, 
must be considered when DP is utilized, as it relies on multiple 
training repetitions.

Discussion on privacy-enhancing techniques. The inclusion of 
methods offering provable privacy and security guarantees in the 
FL process is a crucial step towards the widespread implementation 
of privacy-preserving AI technologies8. The successful reconstruc-
tion of images from unprotected models in our attack experiments 
underline the risks of such attacks to patient privacy, which has also 
been discussed in previous work6,39. DP training provides objective 
privacy guarantees in case of attacks against the model both by con-
federation members and during inference and is not limited to the 
gradient-based inversion attack we use in our example. SecAgg uti-
lizing SMPC only discloses the aggregate model update to the par-
ties, even in case up to n − 1 out of n parties collude to reveal data. 
The DP secure aggregation of dataset statistics (means and standard 
deviations) we propose can protect FL participants from data leak-
age, especially when non-imaging data is included in model build-
ing (for example clinical records, in which the means of features 
such as age represent sensitive information). Finally, encrypted 
inference reveals no information about the data or the model to 
either party.

Compared with fully homomorphic encryption protocols40 rely-
ing on key-based cryptography, whose implementation for neural 
network training and inference is impeded by the computational 
complexity of the encryption process and the performance decrease 
due to function approximation for for example activation func-
tions, communication overhead has traditionally been the limit-
ing factor for SMPC. In our recent work, we introduced AriaNN26, 
an SMPC protocol leveraging function secret sharing (FSS)28 and 
building upon SPDZ25. It represents an alternative to protocols like 
SecureNN29 or Falcon41, and computes private comparisons with 
a single round of communication. This renders FSS substantially 
more communication-efficient than other SMPC protocols, espe-
cially when parties are geographically distant and communicate 
with high latency, for example when performing inference over the 
public web as showcased in our study. Through the present use-case, 
we confirm the results obtained in our previous work on other data-
sets: secure inference gains proportionally greater benefits from the 
FSS protocol in the high-latency setting. Thus, we propose its utili-
zation over SecureNN in cases a reduction in latency is desired in an 
honest-but-curious setting.

Comparison to prior work. Several current works aim to intro-
duce PPML techniques to biomedical imaging: Silva et al.42 pres-
ent a front-end FL framework for biomedicine, but do not consider 
DP, SecAgg or encrypted inference. Xu and colleagues (https://
bit.ly/3pl5dD1) provide a framework for FL using homomorphic 
encryption for SecAgg, but do not utilize DP or provide encrypted 
inference capabilities. Sheller et al.43 showcase an FL use-case based 
on segmentation. They do not assess either DP, SecAgg or the 
option for encrypted inference. Li et al.44 also demonstrate an FL 
segmentation task. Their DP implementation relies on an alterna-
tive technique (sparse vector) and the framework does not provide 
secure aggregation or encrypted inference. The work by Lu and 
colleagues45 demonstrates FL with DP, however their use-case is 
focused around pathology slides and does not employ SecAgg or 
provide encrypted inference capabilities. Li et al.46 utilize DP, how-
ever assume a fixed sensitivity and do not conduct privacy analysis. 
Their framework does not offer SecAgg or encrypted inference.

Limitations. We consider the following limitations of our work. 
The computational requirements for deploying our system are sub-
stantial, and the latency resulting from encrypted inference is still 
very high compared to unencrypted inference, despite the proposed 
protocol improvements. The underlying remote execution environ-
ment currently offers experimental graphics processing unit (GPU) 
support, with full support planned for an upcoming version. The 
success of FL models is largely dependent on high data quality on 

Original DP–/SecAgg– DP+/SecAgg+a
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Fig. 5 | Overview of the gradient-based privacy attacks against PriMIA 
using the MedNIST dataset in a variety of scenarios. The original image is 
shown (original) alongside the reconstruction results from a model trained 
without secure aggregation or DP (DP–/SecAgg–) as well as a model 
trained with DP and SecAgg (DP+/SecAgg+). In every case, the attack 
reveals confidential information about the patient when the model is trained 
without privacy-enhancing techniques. a, Breast MRI revealing absence 
of the right breast, likely due to operative removal due to breast cancer. b, 
Breast MRI revealing breast implants. Both a and b also allow assumptions 
about the patient’s sex. c, Cranial computed tomography image at the level 
of the nose. Facial contours reconstructed from such images can lead to 
personal identification39. d, Abdominal CT at the level of the liver, allowing 
visualization of a hypodense lesion in the left liver lobe in the reconstructed 
image. In every case, using DP thwarts the attack, disallowing any usable 
image features from being visualized. CT images licensed under the 
Creative Commons CC BY-SA 4.0.
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the nodes. The auditing and curation of the data and its quality, 
methods to quantify the contribution of individual datasets to the 
model or to detect local overfitting are still under investigation47. 
Our library is designed to be used in an honest-but-curious regime, 
which we believe to represent the standard in healthcare consortia. 
Thus, although we provide comprehensive privacy protection mea-
sures, we included no specific countermeasures against malicious 
contributions of low-quality or adversarial data to the FL process 
or to verify/guarantee to the data owner that the model used in the 
inference setting is the one promised. Furthermore, we point out 
that discussions of the theoretical threat model are a level of abstrac-
tion that cannot fully represent the complexity of real-life situations. 
For instance, threat modelling is typically undertaken on the level 
of FL participants representing entire hospitals, however this can-
not take every individual person working for these hospitals and 
their specific motivations into account. Similarly, questions about 
participant reimbursement or model ownership in FL were out-
side the scope of our current investigation. Further studies in this 
developing field are required to fully illuminate such details. Lastly, 
as mentioned above, the utilization of DP causes a direct trade-off 
between model privacy and utility. Future work will need to address 
this trade-off through improved privacy analysis and training tech-
niques, as the privacy guarantees of current studies, including the 
ϵ-value of around 6.0 seen in our study, are not yet sufficiently rigor-
ous to be considered generally applicable.

Conclusion
We present a free, open-source software framework for 
privacy-preserving FL and end-to-end encrypted inference on 
medical imaging data, which we showcase in a clinically relevant 
real-life case study. Further research and development will enable 
the larger-scale deployment of our framework, the validation of our 
findings on diverse cross-institutional data, and further the wide-
spread utilization of PPML techniques in healthcare and beyond.

Methods
Dataset collection. For model training, we used the previously proposed 
paediatric pneumonia dataset20. The dataset was reviewed by a specialist radiologist 
for image quality and representativeness and included 5,163 training images in the 
above-mentioned three categories, as well as a validation set of 624 images. For FL 
model development, the training set was randomly subsampled into three equally 
sized non-overlapping partitions. Class balance between nodes was not enforced.

For model testing on unseen data, we retrospectively collected 497 chest 
radiographs of the same classes of an age-matched cohort from two university 
hospitals (test set 1: 145 images (43 bacterial, 68 normal, 34 viral), test set 2: 
352 images (120 bacterial, 126 normal, 106 viral)). Ethics committee and data 
protection votes for data collection and exchange were granted by all institutions 
waiving the requirement for informed consent in this retrospective study (protocol 
number 111/20 S-KH). All procedures were carried out in accordance with 
clinical best practices, applicable laws and regulations as well as the Declaration of 
Helsinki. Ground-truth labels for the dataset were generated from clinical records 
based on validated laboratory results and clinical parameters (c-reactive protein 
(CRP), body temperature, antibiotic response for bacterial, sputum or sweat 
polymerase chain reaction (PCR) and/or absence of bacterial infection signs for 
viral) as well as clinical assessment of specialist paediatricians/neonatologists not 
involved in image evaluation.

Model training. Privacy-preserving processing of dataset statistics. For the training of 
neural networks, data is typically pre-processed by mean subtraction and division by 
the standard deviation. In federated learning, dataset statistics from the local nodes 
or aggregated statistics from all nodes can be used. Additionally, the provision of the 
final model in an inference setting requires these statistics for rescaling incoming 
images. However, dataset statistics can contain private information that should 
not be shared, especially in case non-imaging data is included (for example, age in 
the case of clinical record data). Hence, we propose and implement differentially 
private secure aggregation of dataset statistics. Here, sensitivity-calibrated Laplacian 
noise is added to the statistics to satisfy a user-defined ϵ DP value before SMPC is 
used to average them, and they are then stored on the central server for later use. 
Before inference starts, the data is rescaled with the (differentially private) securely 
aggregated mean and standard deviation of the training set. For training, the nodes 
use their local dataset statistics. Thus, data leakage is prevented, especially in the 
case individual nodes contain few, or just one, dataset(s).

Model architecture, hyperparameters and augmentation. We used the ResNet18 
architecture19, pretrained on ImageNet48, with the final average pooling layer 
replaced by a single linear layer with 512 units and randomly initialized with the 
Kaiming Uniform initializer49. Images were cropped to squares such that the entire 
chest section of the radiograph is preserved and resized to 224×224 pixels.

The following standard augmentation techniques were employed: random 
horizontal flips, random affine transformations, Gaussian noise injection. 
In extension, we used the Albumentations library50 to apply the following 
transformations: random changes in the gamma value and brightness, blurring, 
optical distortions, grid shuffles/dropouts/distortions, elastic transforms, changes 
in hue-saturation-value (HSV) colour space, inverting images, cutouts of the 
image, artificial shadows, fog, solarizations and sun flares. We also provide 
the option for histogram equalization or contrast-limited adaptive histogram 
equalization (CLAHE), both as an augmentation and a standardization technique. 
The individual augmentations were introduced with a probability p1 and 
augmentation was activated overall with a probability p2. Furthermore, we applied 
a modified variant of MixUp augmentation51 by which the mixing parameter (λ) is 
randomly sampled from a uniform distribution similar to that in ref. 36.

Training was performed for 40 epochs using the Adam optimizer52 with a 
log-linearly decreasing learning rate initially set at 10−4. PriMIA caches models 
automatically after each round, and selects the model with the highest validation 
set Matthews correlation coefficient (MCC). The centralized model was trained by 
pooling all data on a single machine and training the model on the accumulated 
dataset. Personalized models were trained on the respective nodes using only the 
local dataset. PriMIA implements the ability to carry out centrally coordinated 
automated hyperparameter tuning on the entire federation or locally, which was 
used to determine the best model in every case according to highest validation set 
MCC. An example is provided in Supplementary Section 1 and Supplementary Fig. 
1. Model hyperparameters are centrally set for all nodes, but image augmentation, 
local early stopping and weighted gradient descent are performed locally and 
independently on the nodes. Federated training and inference experiments were 
conducted over the public Internet on cloud instances with 32 CPU cores at 3.1 
GHz and 64 GB of random access memory (RAM). Centralized model training was 
performed on a server with 36 CPU cores at 2.4 GHz and 512 GB of RAM.

Differentially private model training. DP model training entails several additional 
considerations. We describe these alongside PriMIAs DP implementation and the 
process of training the final DP model at length in Supplementary Section 8. In 
brief, PriMIA implements DP gradient descent23 based on clipping the gradient 
L2-norm of each individual sample, then adding calibrated Gaussian noise. This 
process occurs on each node independently with independent noise sources 
(local DP). We considered the paediatric pneumonia dataset private, therefore 
did not perform hyperparameter optimization based on multiple training runs. 
Furthermore, due to the relatively small size of the dataset, we determined it 
would not be possible to train the model with sufficient utility while maintaining 
acceptable privacy guarantees. Hence, we used the pre-training technique described 
previously23 and employed a publicly available dataset trained on a related task to 
determine the optimal parameters for the DP mechanism and pre-train the model. 
Details can be found in Supplementary Section 8.2.2 and Supplementary Fig. 4.

Training topology, gradient descent and secure aggregation. We selected the 
hub-and-spoke system topology due to its reported improved final model 
performance over techniques such as incremental or cyclical training5,43 and its 
higher flexibility with respect to node availability and asynchronous training53. 
In PriMIA training is carried out asynchronously in rounds. Initially, the model 
is sent from the central server to all computation nodes. During each round, 
nodes locally perform a variant of gradient descent in which gradient updates are 
weighted inversely by the frequency of the individual dataset classes present on 
the node (class weighted gradient descent). After a number of batches (denoted by 
σ) have been processed on every node, the updated models are securely averaged 
(SecAgg54) using the FSS SMPC protocol (see below), before being distributed back 
to the nodes. For model averaging, we utilize class-weighted federated averaging37 
whereby the central model updates are weighted by the class frequency on the 
nodes before a new training round begins.

Model synchronization and the σ parameter. Previous work has investigated the 
federated synchronization rate parameter (σ) as central in controlling network 
input/output and training duration55. We found the choice of this parameter to also 
affect model performance and training time, and it has recently been described 
as an important open research target in FL with respect to the optimal trade-off 
between model accuracy and training time47. We provide further details on these 
findings in Supplementary Section 10 and Supplementary Fig. 6.

Measures against FL training deterioration. Literature findings and our own 
evidence indicate that, in case one of the federation’s nodes contains less data 
than others, continuing training beyond convergence until other nodes have 
completed training can lead to overfitting or training collapse. Alternatively, not 
including the updates from this node can lead to catastrophic forgetting56 of the 
node’s data and reduced generalization performance. We empirically determined 
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that local early stopping, that is, terminating training on the local node once the 
node’s local dataset is exhausted, then using the state of the node’s local model for 
all future update steps until a full round of training is completed, led to improved 
training performance.

Secure multi-party computation protocols. Function secret sharing. FSS belongs 
to the family of SMPC protocols, in which several parties share a secret (for 
example, data or a model) to ensure privacy. A party alone holds a random share 
of the private value and cannot reconstruct the value on their own. A quorum of 
parties (sometimes all parties) need to collaborate to reconstruct the private data. 
The terms encrypted and obfuscated are used interchangeably in this scenario to 
denote secret-shared data.

Unlike classical data secret sharing schemes like SecureNN29, where a 
shared input [[x]] is applied on a public function f, FSS applies a public input 
x on a private shared function [[f]]. Shares or keys ([[f]]0, [[f]]1) of a function 
f satisfy f(x) = [[f]]0(x) + [[f]]1(x). Both approaches output a secret shared 
result. In our case, assume two parties respectively own shares [[y]]0 and [[y]]1 
of a private input y, and they want to compute [[y ≥ 0]]. They receive some 
cryptographic primitives (see below), namely each get a share of a random 
value (or mask) [[α]] and a share of the shared function [[fα ]] of fα: x → (x ≥ α). 
They first mask their shares of [[y]] using [[α]], by computing [[y]]0 + [[α]]0 and 
[[y]]1 + [[α]]1 and then revealing these values to reconstruct x = y + α. Next, they 
apply this public x on their function shares [[fα ]]j=0,1, to obtain a shared output 
([[fα ]]0(x), [[fα ]]1(x)) = [[fα(y + α)]] = [[(y + α) ≥ α]] = [[y ≥ 0]]. Previous studies 
on FSS57,58 have shown the existence of such function shares for comparison which 
perfectly hide y and the result. For more details about the concrete implementation 
of FSS we refer to our previous work26. SMPC and the FSS protocol provide 
theoretical security guarantees in the honest-but-curious regime. FSS offers 
high communication efficiency and can be thus employed to reduce transaction 
latency. FSS is based in part on the SPDZ protocol25. To increase efficiency for 
specific mathematical operations (for example multiplication) by reducing the 
rounds of communication required to perform the operation, protocols such 
as SPDZ partition encrypted operations into an offline phase, during which no 
communications between parties take place, and an online phase, where parties 
communicate. During the offline phase, a trusted third party, referred to in 
PriMIA as a cryptographic provider (and in ref. 25 as a trusted dealer), provides 
cryptographic primitives. In practice, it is not a requirement for parties to use 
the PriMIA cryptographic provider, as the framework can be modified to use a 
trusted third party of their own choosing. These primitives can be computed in 
advance as they require no knowledge of the exact functions evaluated during the 
online phase, and the cryptographic provider does not participate in the online 
phase in which these computations take place. A schematic representation of the 
two phases and further terminology are provided in Supplementary Section 9 and 
Supplementary Fig. 5.

Secure aggregation. The SecAgg operation, consisting of a private addition and 
a public multiplication is performed using the additive secret sharing scheme 
of the underlying SPDZ25 protocol. The protocol is designed such that random 
shares are distributed between participants, which individually contain no usable 
information and only the sum of their contributions (that is, the aggregated model 
updates) are revealed. Collusion between up to n − 1 out of n participants (in the 
case study, two out of three) is insufficient to disclose the other participant’s private 
information. SecAgg is performed without a need for cryptographic primitives or 
the cryptographic provider.

Secure inference. Secure inference represents a transaction between two parties, by 
which the data owner wishes to receive the model’s prediction without disclosing 
their data, and the model owner wishes to keep their model hidden. We adapt our 
previous work on AriaNN26, based on FSS, for encrypted inference to leverage its 
high communication efficiency, which allows the evaluation of private comparisons 
with minimal communication overhead. Such comparison operations are 
important for example for the evaluation of maximum pooling layers or rectified 
linear units. The cryptographic primitives provider is again not required for the 
actual inference process (online phase), which occurs exclusively between the two 
parties. In our framework, the data owner initiates a request to the system, the data 
and model are obfuscated by secret sharing and inference takes place using SMPC. 
Secure inference scenario is thus—in the sense described above—an end-to-end 
encrypted transaction, whereby both the data and the model is obfuscated. This 
guarantees both parties single-use accountability, that is, the guarantee that the 
data and model can be used for no other purpose than the one explicitly designated 
by the involved parties.

We note that while the data enjoys information-theoretic secrecy guarantees, 
the party requesting inference has access to the model’s predictions and can 
perform black-box membership inference59 or model inversion attacks60. PriMIA’s 
DP training procedure provides effective protection against such attacks30,32,59 to the 
individuals whose data was used to train the model used for inference.

Classification performance assessment. Classification performance was evaluated 
as follows. For expert readers, accuracy, sensitivity/specificity (recall) and MCC27 

were calculated on test set 1. The model’s performance was evaluated in terms of 
accuracy, sensitivity/specificity (recall), ROC-AUC MCC on the validation set 
and on both test sets. MCC was employed due to its invariance to class imbalance 
and its indication of prediction concordance alongside quality of classification, 
leading to recent recommendations for its use over the usually employed accuracy 
or F1-Score metrics61. McNemar’s test was used to test for statistical significance in 
classification performance. Cohen’s κ (kappa) was used to test inter-rater/-model 
agreement. Statistical significance is defined as p < 0.05.

Inference and training latency assessment. We compared the average ± standard 
deviation duration in seconds of 1 epoch of training over 100 epochs as well as 
the average ± standard deviation duration of one inference transaction over 100 
transactions in three settings: utilizing inter-process communication locally (using 
the PySyft VirtualWorker abstraction (no latency), utilizing the websocket/HTTP 
protocol on the local network (LAN) (low latency) and utilizing the public Internet 
(WAN) (high latency) with a 10-round-trip ping latency of 100 ms. Student’s t-test 
was used to assess statistical significance.

Model inversion utilizing gradient updates. To exemplify the susceptibility of 
models trained without privacy-enhancing techniques against adversarial agents 
that attempt to expose sensitive data, we employ the Improved Deep Leakage from 
Gradients, iDLG, method with modifications as proposed previously32, itself a 
variant of previously shownn techniques31,62. iDLG was found highly successful 
against the ResNet18 architecture used in our case study. We additionally modified 
the attack following newer evidence from63 by utilizing the AdamW optimizer 
and initializing images with uniform sampling to further improve its success. The 
overview of the attack is as follows:

	1.	 Adversary generates a randomized pair of a dummy model update and a cor-
responding label

	2.	 Adversary captures the gradient update submitted by an honest client
	3.	 Using a suitable cost function, the adversary attempts to minimize the differ-

ence between the honest update and the dummy update
	4.	 The algorithm is repeated until either the loss starts diverging or the final 

iteration is reached

In the original implementation of the protocol, the difference between gradients is 
calculated using

||ΔW′
− ΔW||

2
= ||

δl(F(x′, W), y′)
δW

− ΔW||
2

where x′ and y′ are the data point and its label respectively, while W and W′ 
are the victim’s and attacker’s gradient respectively. Following Geiping et al.’s 
implementation, we used the cosine similarity metric and utilized images of 
size 224 × 224, as authors show that this is the upper bound for acceptable 
reconstruction quality32. The empirical evaluation of various batch sizes showed 
that larger batch sizes drastically reduce the success of the reconstruction. We 
indicate an averaged model update from n parties each trained with a batch size 
of k to have been trained with an effective batch size of n × k. Our observation 
matches ref. 32 which shows batch sizes above eight to substantially deteriorate 
the attack. We furthermore found the L2-norm of the gradient update to strongly 
influence attack success. Thus, attacks at the beginning of training, when the 
loss (and thus the gradient with respect to it) is largest, were most successful. A 
low MSE value did not always signify a successful attack, since a specific model 
update can be generated by more than one image, resulting in noise that is able to 
mimic the update, but not the corresponding data. To improve attack evaluation, 
we also supply signal-to-noise ratio and perceptual metrics which more robustly 
assess the reconstruction quality and human perception of image similarity as 
performed in32,64–66. As an active attack, iDLG can be executed by an adversarial 
client or central server. We note that in the case of an adversarial central server, 
the usage of SMPC prevents the disclosure of individual model updates, therefore 
only allowing the adversary to utilize averaged model updates instead. For the 
attacks on the FL system we assumed that one out of three data owners is an 
adversary. For the ‘baseline’ attack on the centralized model, we used a batch size 
of 1. Attacks were performed against 100 randomly selected images from the 
training set. For the gradient norm experiments, 100 gradient samples were taken 
at equispaced intervals during model training. Batch size experiments were carried 
out under identical circumstances only varying batch size. Model and dummy 
image initialization was deterministically set for all experiments. Each attack was 
performed in triplicate with at most 24,000 iterations per run and the instance with 
the highest cosine similarity was selected. One way analysis of variance (ANOVA) 
followed by the Student’s t-test were used to assess statistical significance between 
the MSE, SNR and FID scores. Details of the attack against the MedNIST dataset 
can be found in Supplementary Section 6.

Data availability
The paediatric pneumonia dataset is publicly available from Mendeley Data at 
https://doi.org/10.17632/rscbjbr9sj.3. The MedNIST dataset was assembled  
by B. J. Erickson (Department of Radiology, Mayo Clinic) and is available at  
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https://github.com/Project-MONAI/MONAI/. The MSD Liver Segmentation 
Dataset is available at http://medicaldecathlon.com. test sets 1 and 2 contain 
confidential patient information and cannot be shared publicly. Source data are 
provided with this paper.

Code availability
The current version of the PriMIA source code is publicly available at  
https://github.com/gkaissis/PriMIA and permanently archived at https://doi.
org/10.5281/zenodo.454559918. PriMIA includes source code from PySyft  
(https://github.com/OpenMined/PySyft), PyGrid (https://github.com/
OpenMined/PyGrid) and Opacus (https://github.com/pytorch/opacus) re-used 
under open-source licence terms.
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3.2 Medical imaging deep learning with

differential privacy

Synopsis: The successful training of deep learning models for diagnostic deployment
in medical imaging applications requires large volumes of data. Such data cannot be
procured without consideration for patient privacy, mandated both by legal regulations
and ethical requirements of the medical profession. Differential privacy (DP) enables
the provision of information-theoretic privacy guarantees to patients and can be
implemented in the setting of deep neural network training through the differentially
private stochastic gradient descent (DP-SGD) algorithm. We here present deepee, a
free-and-open-source framework for differentially private deep learning for use with the
PyTorch deep learning framework. Our framework is based on parallelised execution
of neural network operations to obtain and modify the per-sample gradients. The
process is efficiently abstracted via a data structure maintaining shared memory
references to neural network weights to maintain memory efficiency. We furthermore
offer specialised data loading procedures and privacy budget accounting based on the
Gaussian Differential Privacy framework, as well as automated modification of the
user-supplied neural network architectures to ensure DP-conformity of its layers. We
benchmark our framework’s computational performance against other open-source
DP frameworks and evaluate its application on the paediatric pneumonia dataset, an
image classification task and on the Medical Segmentation Decathlon Liver dataset in
the task of medical image segmentation. We find that neural network training with
rigorous privacy guarantees is possible while maintaining acceptable classification
performance and excellent segmentation performance. Our framework compares
favourably to related work with respect to memory consumption and computational
performance. Our work presents an open-source software framework for differentially
private deep learning, which we demonstrate in medical imaging analysis tasks. It
serves to further the utilisation of privacy-enhancing techniques in medicine and
beyond in order to assist researchers and practitioners in addressing the numerous
outstanding challenges towards their widespread implementation
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Medical imaging deep learning 
with differential privacy
Alexander Ziller1,2,4,5, Dmitrii Usynin1,2,3,4,5, Rickmer Braren1, Marcus Makowski1, 
Daniel Rueckert2,3 & Georgios Kaissis1,2,3,4*

The successful training of deep learning models for diagnostic deployment in medical imaging 
applications requires large volumes of data. Such data cannot be procured without consideration 
for patient privacy, mandated both by legal regulations and ethical requirements of the medical 
profession. Differential privacy (DP) enables the provision of information-theoretic privacy guarantees 
to patients and can be implemented in the setting of deep neural network training through the 
differentially private stochastic gradient descent (DP-SGD) algorithm. We here present deepee, a free-
and-open-source framework for differentially private deep learning for use with the PyTorch deep 
learning framework. Our framework is based on parallelised execution of neural network operations to 
obtain and modify the per-sample gradients. The process is efficiently abstracted via a data structure 
maintaining shared memory references to neural network weights to maintain memory efficiency. 
We furthermore offer specialised data loading procedures and privacy budget accounting based on 
the Gaussian Differential Privacy framework, as well as automated modification of the user-supplied 
neural network architectures to ensure DP-conformity of its layers. We benchmark our framework’s 
computational performance against other open-source DP frameworks and evaluate its application 
on the paediatric pneumonia dataset, an image classification task and on the Medical Segmentation 
Decathlon Liver dataset in the task of medical image segmentation. We find that neural network 
training with rigorous privacy guarantees is possible while maintaining acceptable classification 
performance and excellent segmentation performance. Our framework compares favourably to 
related work with respect to memory consumption and computational performance. Our work 
presents an open-source software framework for differentially private deep learning, which we 
demonstrate in medical imaging analysis tasks. It serves to further the utilisation of privacy-enhancing 
techniques in medicine and beyond in order to assist researchers and practitioners in addressing the 
numerous outstanding challenges towards their widespread implementation.

Artificial Intelligence (AI) is a heavily data-centric domain: the success of machine learning (ML) models depends 
on the quality and quantity of data that is available during training. This is especially problematic in applications 
such as medical image analysis, in which high quality data is sparse and data utilisation is restricted. Medical 
data is highly sensitive, and regulatory, ethical and moral requirements restrict its sharing. These restrictions, 
although crucial, hinder the development of algorithms that generalise well and therefore prevent widespread 
deployment. Recent work1 finds that even algorithms approved for diagnostic use are often trained on small (i.e. 
less than 1000 cases), single centre datasets. Considering that state-of-the-art generic computer vision models 
are customarily trained on datasets such as ImageNet2 containing orders of magnitude more images, it becomes 
readily apparent that the access to more data will be strictly necessary for the development of the majority of deep 
learning applications in medical imaging to achieve the same success. Privacy-preserving machine learning is 
a nascent area of AI which proposes to bridge the gap between data utilisation and data protection through the 
application of privacy-enhancing techniques3. Among these, collaborative learning protocols such as federated 
learning have arguably witnessed the widest publicity4. They allow a confederation of clients to train ML models 
in a decentralised fashion and without sharing the raw data. However, a number of works suggest5–7 that on its 
own, federated learning is an insufficient measure of privacy preservation. In the setting of medical imaging, 
this can result in catastrophic privacy loss for affected patients. Prior work demonstrates that federated learning 
without additional privacy-enhancing techniques can be reverse-engineered to reconstruct high-fidelity images 
which encode diagnostic information about patients, such as the absence of a breast indicative of a prior history 
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of breast cancer8. Moreover, three-dimensional medical imaging can be volumetrically rendered to reconstruct 
facial contours which enable patient re-identification9. Lastly, even when identifying attributes are not directly 
present in the image, the exploitation of side information by adversaries in the setting of linkage attacks, proven 
to represent a highly effective method for membership inference10, is also applicable to medical imaging data-
bases given that large-scale public datasets of medical images are being assembled and—increasingly—publicly 
released. Thus, solutions based on information-theoretic privacy measures are required to provide comprehensive 
and quantifiable guarantees to the involved parties. Differential privacy (DP)11 has arisen as the gold standard in 
this regard. In brief, DP is the attribute of an algorithm to be approximately invariant to the inclusion or exclu-
sion of individual patients, providing them with formal and quantifiable privacy guarantees. Although formally 
an information-theoretic privacy guarantee, in practice DP is typically achieved through computationally secure 
means, that is, an addition of carefully calibrated noise to the training process, making individual contributions 
indistinguishable from each other. In their seminal paper, Abadi et al.12 demonstrated the successful application 
of DP in the training of deep neural networks, termed differentially private stochastic gradient descent (DP-SGD). 
However, the authors of this and subsequent works noted that the utilisation of DP-SGD unavoidably negatively 
affects the utility of the resulting models, a well-known effect termed the privacy-utility trade-off13. Addressing 
this trade-off14 and ultimately enabling the widespread real-world utilisation of privacy-preserving ML in medi-
cal imaging and beyond requires the introduction of robust software tools, suitable for implementation within 
widely-used deep learning libraries and implementing current best practices.

We here present deepee, a software framework for differentially private deep learning based on the PyTorch15 
machine learning library. Our main contributions can be summarised as follows:

•	 We present a technical implementation of the DP-SGD algorithm based on parallelised execution, which 
makes our framework universally compatible with any neural network layer while enabling substantial per-
formance improvements.

•	 We implement state-of-the-art tools for production-level DP-SGD application including cryptographically 
secure random noise generation, automatic architecture modifications and privacy budgeting based on the 
Gaussian Differential Privacy (GDP) framework which offers a tight analysis of privacy consumed.

•	 We benchmark our toolkit against comparable DP-SGD implementations and analyse the behaviour of DP-
SGD in the setting of two medical imaging deep learning tasks: classification and semantic segmentation

•	 Our framework is aimed at facilitating the application of DP-SGD to arbitrary data by non-experts. For this 
purpose, it exposes standardised application programming interfaces, is highly compatible with the PyTorch 
deep learning framework and automatically enforces the relevant details to ensure the formal correctness of 
the DP-SGD algorithm application.

•	 The source code of our framework is documented in detail, fully tested and available publicly and freely under 
a permissive, open-source license to enable easy maintenance, rapid detection and correction of potential 
security vulnerabilities and to encourage open-source contributions.

Two notable works have presented DP frameworks for the PyTorch machine learning library based on different 
technical implementations. The Opacus framework16 provides an implementation of the DP-SGD algorithm based 
on temporarily caching intermediate backpropagation results. This enables very high performance for specific 
deep neural network layer types. However, it does not ensure generic compatibility with any given neural network 
operation unless the procedure for obtaining said backpropagation results is explicitly defined on the user’s side. 
At the time of writing, the framework’s privacy analysis is still based on Rényi DP (RDP)17, whose guarantees are 
not as tight as Gaussian DP (GDP). The Pyvacy18 framework implements a generic version of DP-SGD based 
on serial execution. Despite its broad compatibility, this implementation is highly computationally inefficient, 
rendering it impractical for production-level use. The framework also lacks cryptographically secure random 
number generation and utility functions for automatic neural network architecture modification.

The TensorFlow Privacy framework19 and previous work based on the JAX machine learning framework20 
share some characteristics of our library, such as utilisation of the GDP accounting technique or parallelisation, 
but they are based around different base libraries and thus are not directly comparable to our work.

Results
Technical overview.  We begin by providing a brief technical overview of our framework. Implementa-
tion details can be found in the “Methods” section. In brief, deepee implements the DP-SGD algorithm in a 
memory-efficient and parallelised manner by increasing the efficiency of the per-sample-gradient calculation 
step drastically compared to serial processing. This occurs by creating one zero-memory-cost reference to the 
network’s weights for each sample in the minibatch, then performing a simultaneous (parallelised) forward 
and backward pass. This process introduces no additional assumptions about the network’s architecture and 
thus allows the application of the DP-SGD algorithm to any neural network architecture. This represents an 
improvement compared to prior work, which requires substantial user effort to manually specify the per-sample 
gradient calculations for unsupported layer types (e.g. pixel shuffle or transposed convolutions, transformers, etc.) 
or relies on performing forward and backward passes serially, thus magnifying time complexity. The framework 
furthermore is designed to guarantee the formal correctness of the DP-SGD procedure by e.g. removing Batch 
Normalisation layers from the architecture, employing cryptographically secure random noise and automatic 
privacy budgeting.

In the following, we demonstrate the utilisation of our framework in the settings of medical image classifica-
tion and semantic segmentation. We present model performance in private and non-private settings to evaluate 
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the expected privacy-utility trade-offs. Moreover, we compare our library’s computational performance with 
alternative implementations of the algorithm offered by the Opacus and Pyvacy frameworks.

Chest radiography classification.  The classification model achieved a mean receiver-operator character-
istic area-under-the-curve (ROC-AUC) of 0.848 (range 0.814 to 0.881) in the private setting and of 0.960 (range 
0.946 to 0.971) in the non-private setting (DeLong-test p < 0.001 , N = 10 ). GDP accounting yielded a privacy 
budget ( ε ) of 0.52 at a noise multiplier of 3.0 and an L2 clipping norm of 1.0, a tighter result than 0.62, which 
would have resulted from the utilisation of RDP analysis ( δ = 10−5 ). We observed that relaxing the privacy 
parameters (noise multiplier and clipping norm) resulted in a significant increase in classification performance 
of the private model (ROC-AUC in the relaxed privacy setting 0.882, range 0.868 to 0.899, DeLong-test vs. the 
strict privacy setting p < 0.001 , N = 10 ) for an ε of 2.69 (GDP accounting) or 2.81 (RDP accounting). Even 
in the relaxed setting however, the model still significantly underperformed compared to non-private training 
(DeLong-test vs. non-private training p < 0.001 , N = 10 ). These results are summarised in Table 1.

Semantic segmentation of computed tomography images.  In the semantic liver tissue segmenta-
tion task, the non-privately and privately trained models produced nearly identical results: The mean Dice coef-
ficient achieved by the privately and the non-privately trained models was 0.943 (range 0.941 to 0.945), and 0.950 
(range 0.948 to 0.951, N = 5), respectively. This segmentation performance of the privately trained model was 
attained at an ε of 0.12 (GDP) or 0.35 (RDP) and a δ-value of 10−5 , resulting from a noise multiplier of 5.0 and 
an L2 clipping norm of 0.5, indicating that the provision of strict privacy guarantees was possible in this setting 
without a notable trade-off in model performance. Results are summarised in Table 2.

Computational performance comparison.  Table 3 presents a comparison of the computational perfor-
mance and memory consumption of our framework versus the Opacus and Pyvacy libraries in the classification 
and segmentation settings. We found our framework to offer significantly faster computational performance 

Table 1.   Classification performance (measured as mean receiver-operator characteristic area-under-the-curve 
(ROC-AUC)) on the paediatric chest radiography binary classification dataset. Ranges in angled brackets. 
The non-private model significantly outperformed the private model in both the high-privacy setting and 
the relaxed privacy setting, while the private model trained with relaxed privacy guarantees significantly 
outperformed the private model with strict guarantees.

Model ROC-AUC​ GDP ε RDP ε

Non-private 0.960 [0.946 to 0.971] ∞ ∞

Private 0.848 [0.814 to 0.881] 0.52 0.64

Private (relaxed) 0.882 [0.868 to 0.899] 2.69 2.81

Table 2.   Segmentation performance (measured by the mean Dice coefficient) on the liver semantic 
segmentation dataset. Ranges in angled brackets. The privately trained and the non-privately trained models 
performed on par despite the provision of stringent privacy guarantees in the privately trained setting.

Model Dice coefficient GDP ε RDP ε

Non-private 0.950 [0.948 to 0.951] ∞ ∞

Private 0.943 [0.941 to 0.945] 0.12 0.35

Table 3.   Computational performance (median time for N = 25 batches of 32 examples in seconds over N = 5 
repetitions) and mean peak memory consumption (one batch of 32 examples in MiB, N = 6 repetitions) of 
the compared frameworks for the classification and segmentation benchmarks. Ranges in angled brackets. 
The Segmentation (Transposed Conv.) row showcases framework performance in a U-Net architecture using 
transposed convolutions. Opacus is incompatible with this layer type.

Task deepee (ours) Opacus Pyvacy

Classification
38.82 s [38.67 to 39.08] 16.39 s [16.29 to 16.69] 73.11 s [72.41 to 75.40]

6366 MiB [6201 to 6448] 7014 MiB [6816 to 7213] 2044 MiB [1992 to 2102]

Segmentation
70.89 s [70.41 to 71.01] 78.47 s [78.08 to 79.86] 97.89 s [97.26 to 99.16]

9770 MiB [9508 to 9829] 9909 MiB [9812 to 10112] 2085 MiB [1890 to 2205]

Segmentation (Transposed Conv.)
47.27 s [45.12 to 51.15] – 64.68 s [62.76 to 66.32]

12014 MiB [11598 to 12249] – 1537 MiB [1399 to 1620]
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in the segmentation setting compared to Opacus (Student’s t-test p < 0.001 ) and Pyvacy ( p < 0.001 ). Opacus 
significantly outperformed our framework ( p < 0.001 ) and Pyvacy ( p < 0.001 ) in the classification task. (All 25 
batches of 32 examples over N = 5 repetitions).

Our framework required significantly less memory than Opacus in both the classification and segmentation 
setting (Student’s t-test p < 0.001 ). Pyvacy, due to serial processing of the individual samples in each minibatch 
suffers from a drastically diminished computational performance, however requires significantly less memory 
than both other frameworks as a result of only needing to cache a single sample’s gradients at a time (Student’s 
t-test p < 0.001 , all N = 6 repetitions).

Moreover, to exemplify our framework’s compatibility, we benchmarked an additional U-Net architecture 
utilising transposed convolutions as described in the original work21. The Opacus framework is incompatible 
with transposed convolutions and could thus not be assessed. Pyvacy, while requiring less memory ( p < 0.001 ), 
again was significantly slower per batch compared to deepee ( p < 0.001).

Discussion
Here we present a novel technical implementation of the DP-SGD algorithm which we demonstrate and bench-
mark in the setting of medical image analysis. We found our technique’s computational performance and memory 
consumption to be comparable to state-of-the-art frameworks without a requirement for user-side modifications. 
Our framework thus provides formal privacy guarantees regardless of the dataset, learning task and of model 
selection. Moreover, by leveraging the current state-of-the-art in DP analysis, we demonstrate tighter privacy 
bounds compared to previous DP accounting techniques. The two applications presented provide evidence for 
the usefulness of our DP-SGD algorithm in real-world medical image processing.

Medical imaging represents a domain in which privacy-utility trade-offs are especially problematic, as mod-
els that generalise well require large and diverse multi-centre datasets during training and must not divulge 
personal test data once deployed. Such demands are—for example—placed on ML models utilised for remote 
diagnosis-as-a-service22, where expert-level algorithm performance is expected, while the model may be exposed 
to probing by malicious third parties. Formal security and secrecy mechanisms such as model encryption can 
only partially address this requirement, as even encrypted models have been found to leak sensitive information 
in previous work23,24. Similarly, distributed learning techniques such as federated learning, often touted as being 
“privacy-preserving” because the data does not leave its owner, have been proven ineffective against attackers 
who participate in the training protocol and are able to capture updates submitted by other participants5,6. Dif-
ferentially private model training therefore stands as the only formal mechanism for privacy protection, able to 
shield models from feature reconstruction, model inversion and membership inference attacks6,25. Moreover, 
recent work demonstrates that DP can reduce the susceptibility of models to other adversarial interference such 
as back-door attacks26, which can be attributed to the increased robustness of DP models imparted through the 
regularising properties of noise addition27.

Inherent to these beneficial properties of DP model training is—however—also an unavoidable net reduction 
in model utility. We identify three key components of this utility penalty: (1) Diminished task-specific perfor-
mance, e.g. in classification or segmentation tasks; (2) computational performance penalties through an increase 
in training time and memory consumption and (3) incompatibilities of the DP-SGD algorithm with the neural 
network architecture. Our work attempts to address all three of these points.

The use-cases chosen in our study, image classification and segmentation, represent two typical workflows in 
medical imaging analysis. Interestingly, we observed a marked performance decrease in the private classification 
task compared to non-private model training even under relaxed privacy guarantees. Semantic segmentation 
was possible under very strong privacy notions with unexpectedly strong performance. The only other work 
to report an ε-value in a medical image segmentation task28 utilises a different DP technique, whose utilisation 
results in a high privacy expenditure of over 120 under the study’s assumptions, compared to 0.12 in our work. 
No previous work—to our knowledge—reports ε-values for medical image classification. At present, it is not yet 
conclusively investigated to which extent the difficulty of the task, the choice of model and the specific training 
technique influence the privacy-utility trade-off. Future work will thus have to elucidate these relationships and 
expand on recent studies in this direction13,14,29.

Besides these factors, more refined techniques for privacy accounting are able to offer an improved analysis of 
the DP mechanism and thus allow higher utility. In the medical imaging domain, the combination of high utility 
and low privacy budget is particularly important. As datasets are complex, highly sensitive and typically small, 
each individual in the dataset experiences a relatively higher privacy loss. A tight privacy analysis allows training 
the models for a longer time before the privacy budget is exhausted, enabling higher task-specific performance 
and therefore, a better diagnostic prediction. Our work utilises Gaussian Differential Privacy, a recently intro-
duced DP formulation which—through a tight characterisation of the sub-sampled Gaussian noise mechanism 
utilised in DP-SGD—improves the outlook on the spent privacy budget compared to previous frameworks. It is 
expected that further advances, such as individual privacy accounting30,31 will increase the granularity of privacy 
tracking further, allowing for the preservation of even higher utility during algorithm training.

Our main technical contribution is the introduction of a parallelised execution model for the DP-SGD algo-
rithm within the PyTorch framework, which enables both fast performance and efficient memory utilisation. In 
addition, our technique-contrary to frameworks relying on the a priori specification of per-sample gradient cal-
culations such as Opacus- is compatible by default with any neural network operation including (but not limited 
to) transformer architectures or transposed convolutions, as seen above. This disparity is discussed in20, a line of 
work complementary to ours, whose authors utilise just-in-time compilation and vectorised execution to increase 
DP-SGD performance, albeit within a different machine learning framework. We moreover see a target for future 
work focused around automatic differentiation with inbuilt support for obtaining and manipulating per-sample 
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gradients. After all, the requirement to calculate per-sample gradients in current DP-SGD frameworks stems 
from the inherent design philosophy of reverse-mode automatic differentiation systems, which are focused on 
efficiently obtaining gradients for minibatches but not for individual samples. We moreover note that techniques 
concerned with approximate gradient calculations32 have some overlap with the objectives of DP-SGD, which 
inherently performs an “imprecise” gradient update step through noise addition, and could thus be utilised for 
increased performance, after considering their effect on privacy guarantees.

Similar to previous work16, our work offers the capability to automatically modify the neural network archi-
tecture in case layers incompatible with DP-SGD are included. An example of this phenomenon in the current 
work is the deactivation of running statistics collection for Batch Normalisation layers. Moreover, our framework 
includes support for cryptographically secure random noise generation which is crucial to avoid vulnerabilities 
associated with default pseudo-random number generators33.

We consider some limitations of our work: Our framework’s focus is to provide a generic framework for 
DP-SGD and the examples presented represent a simplification of real-life use-cases intended to illustrate its 
utilisation in medical imaging. In the segmentation case-study in particular, we provide image-level privacy guar-
antees, whereas a real-life deployment would be adjusted to offer patient-level guarantees (that is, a “summary” 
of privacy guarantees derived from the utilisation of all images of a single patient). Moreover, DP techniques 
purpose-designed for high performance in classification, such as PATE34 could yield improved privacy-utility 
trade-offs in the classification use-case compared to DP-SGD, however at the cost of not generalising well to 
other tasks such as segmentation28 and an additional assumption of a publicly available dataset that cannot be 
reliably expected in a sensitive setting, such as medical imaging.

In conclusion, our work aims to facilitate the utilisation of differentially private deep learning in everyday 
practice. It is well-suited to privacy-sensitive tasks such as medical imaging analysis. We publicly release our 
framework and experiments in the hope that it will stimulate future research and lead to the design of improved 
algorithms and training techniques to enable privacy-preserving machine learning with improved algorithm 
utility in medical imaging and beyond.

Methods
Framework implementation details.  User‑facing components.  Our framework provides the following 
high-level user-facing components: (1) A collection of procedures to automatically modify the neural network 
architecture in case it contains layers which are incompatible for utilisation with DP-SGD. One example is the 
Batch Normalisation layer which maintains a (non-private) running average of statistics over more than one 
training example and is thus not compatible with the notion of per-sample gradient calculations, which are 
required in DP-SGD. (2) A data structure encapsulating the user-supplied model architecture, responsible for 
the main model training and evaluation loop. This wrapper internally maintains one copy of the user-supplied 
model per sample in the minibatch, performs a parallelised forward and backward pass over the minibatch 
and abstracts the gradient clipping and noise application of the DP-SGD procedure. (3) A privacy accounting 
mechanism for keeping track of the privacy spent at each training step and including a procedure to automati-
cally interrupt the training if the privacy budget is exhausted. The system is supplemented by a cryptographically 
secure random number generator35 suitable for use on the graphics processing unit and capable of parallelising 
the random noise generation step of the DP-SGD algorithm.

DP‑SGD algorithm implementation.  We implement the DP-SGD algorithm as described in12. In brief, the algo-
rithm consists of the following steps: 

1.	 Performing a forward pass on a minibatch of samples
2.	 Calculating the gradient of the loss with respect to each sample individually (per-sample gradients)
3.	 Normalising (clipping) the per-sample gradients to a predefined L2-norm
4.	 Aggregating the per-sample gradients by averaging or summing over the minibatch axis
5.	 Adding calibrated Gaussian noise to the resulting gradient vector

In practice, step (2) of the above-mentioned procedure is the most time-consuming subroutine of the algorithm, 
as automatic differentiation systems are not designed with per-sample gradient computation in mind. To tackle 
this problem, our framework first creates a copy of the neural network for each sample in the minibatch and 
then performs step (1) of the algorithm above in parallel by dispatching one execution thread per minibatch 
sample. Thus, the backpropagation procedure yields per-sample gradients per definition (step (2) above). This 
approach has several benefits: It is computationally efficient as it is performed in parallel over the minibatch 
leveraging multi-threaded execution on e.g. the graphics processing unit (GPU). Moreover, memory only needs 
be allocated once for the neural network weights (as all copies share the same weights). Lastly, the process is 
entirely generic and can be used for any arbitrary neural network architecture without the requirement for user 
interaction. A similar technique to ours, albeit based on serial execution instead of a parallelised forward pass 
and only demonstrated for convolutional neural networks, is presented in36, reportedly going back to (unpub-
lished) work by Goodfellow et al.

Datasets.  Classification task.  We evaluated our framework on a classification task on chest radiographs 
from the Paediatric Pneumonia dataset originally described in37. Originally, the task was formulated as three-
class classification, however we merged the viral and bacterial pneumonia labels to obtain a binary classification 
task, in which the algorithm attempts to predict whether the radiograph shows signs of pneumonia or not. The 
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dataset contains 1339 training images of healthy patients and 3824 images of patients that present evidence of 
pneumonia. The dataset is pre-split into a training (n = 5163) and a test set (n = 624). We further split the train-
ing set into 85% training data (n = 4389) and 15% validation data (n = 774). To account for class imbalance, we 
weighted the resulting loss by one minus the proportion of the dataset of the class. Data augmentation was per-
formed using affine transformations (rotation, scaling, translation, shearing). Every occurence of an image from 
the same patient, regardless whether it was augmented or not, was counted against the total privacy expenditure. 
We trained the models for 20 epochs using the Adam optimiser in the non-private setting and the Stochastic 
Gradient Descent (SGD) optimiser in the private setting. Learning rates were determined using a learning rate 
finding algorithm38 and set to 0.005 in both settings. Learning rate scheduling with halving of the learning rate 
on stagnation of the validation loss for two consecutive epochs was employed.

Semantic segmentation task.  For the semantic segmentation task, we used the Medical Segmentation Decath-
lon (MSD) Liver segmentation dataset39. We split the available data into a training set (n = 5184), a validation 
set (n = 640) and a held-out test set (n = 2560), mindful to enforce strict patient independence between the 
training/validation sets and the test set. The task was re-formulated as a binary segmentation task, in which the 
liver tissue pixels (including tumours) are labelled as 1 and the background as 0. For augmentation purposes, 
affine transformations (rotation, translation, scaling, flipping) alongside random Gaussian noise were applied to 
the input images. Every occurence of an image from the same patient, regardless whether it was augmented or 
not, was counted against the total privacy expenditure. The model was trained for 20 epochs in the non-private 
setting. In the private setting, we limited the number of epochs to 5 in order to maintain a low privacy budget. 
Learning rates were determined using the same learning rate finding algorithm and set to 0.01, while utilising 
the Adam optimiser in both cases. Learning rate scheduling was performed in the same manner as for the clas-
sification task.

Model training.  For the classification task, we utilised the same model architecture in the private and non-
private setting, namely a VGG-1140 architecture with Batch Normalisation. However, in order to satisfy the 
assumptions essential for DP training, the collection of running statistics of Batch Normalisation layers was disa-
bled for both non-private and DP training. For the segmentation task, we use a modified U-Net architecture21 
utilising VGG-11 with Batch Normalisation as a backbone41. Similarly to the classification task, the running 
statistics collection was disabled. The δ-parameter was set to 10−5 in all cases.

Computational performance and memory benchmarks.  For the purposes of computational per-
formance benchmarking we measured the time to train for 25 steps with a minibatch size of 32 on the tasks we 
presented above, i.e., binary classification on 224x224 sized images and the segmentation of 256x256 images. 
Each measurement was repeated five times.

For memory utilisation benchmarking, a minibatch size of 32 images at a resolution of 256× 256 was used, 
with a single channel for the classification benchmark and three channels for the segmentation benchmark. 
All benchmarks were conducted in triplicate to ensure stability between runs and repeated on two operating 
systems, macOS 11.2.3 and GNU Linux on the 5.4.0-72 kernel (total N = 6 runs). Peak memory consumption 
was measured using the Python programming language (CPython v. 3.8.8) standard library module resource.

Statistical methods.  Areas under the ROC-curve were compared using the DeLong-test as described in42. 
Continuous variables were compared using the Student’s t-test. Bonferroni’s correction was used for three-way 
comparisons with the adjusted statistical significance threshold set to p = 0.016.

Accession codes
The deepee framework and code to reproduce the experiments is available at https://​github.​com/​gkais​sis/​deepee. 
The paediatric pneumonia dataset is available from https://​data.​mende​ley.​com/​datas​ets/​rscbj​br9sj/3. The liver 
segmentation dataset is available from http://​medic​aldec​athlon.​com.
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3. Publications

3.3 Preserving fairness and diagnostic accuracy in

private large-scale AI models for medical

imaging

Synopsis:
Artificial intelligence (AI) models are increasingly used in the medical domain. How-
ever, as medical data is highly sensitive, special precautions to ensure its protection
are required. The gold standard for privacy preservation is the introduction of differ-
ential privacy (DP) to model training. Prior work indicates that DP has negative
implications on model accuracy and fairness, which are unacceptable in medicine and
represent a main barrier to the widespread use of privacy-preserving techniques. In
this work, we evaluated the effect of privacy-preserving training of AI models regard-
ing accuracy and fairness compared to non-private training.We used two datasets:
(1) A large dataset (N = 193 311) of high quality clinical chest radiographs, and (2)
a dataset (N = 1 625) of 3D abdominal computed tomography (CT) images, with
the task of classifying the presence of pancreatic ductal adenocarcinoma (PDAC).
Both were retrospectively collected and manually labeled by experienced radiologists.
We then compared non-private deep convolutional neural networks (CNNs) and
privacy-preserving (DP) models with respect to privacy-utility trade-offs measured as
area under the receiver operating characteristic curve (AUROC), and privacy-fairness
trade-offs, measured as Pearson’s r or Statistical Parity Difference.We find that, while
the privacy-preserving training yields lower accuracy, it largely does not amplify
discrimination against age, sex or co-morbidity. However, we find an indication
that difficult diagnoses and subgroups suffer stronger performance hits in private
training.Our study shows that – under the challenging realistic circumstances of a
real-life clinical dataset – the privacy-preserving training of diagnostic deep learning
models is possible with excellent diagnostic accuracy and fairness.

Contributions of thesis author: code development, experiment design and evalu-
ation, paper writing.

Copyright: Copyright ©2024, The Author(s). This is an open access article
distributed under the terms of the Creative Commons CC BY license, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

50



communicationsmedicine Article

https://doi.org/10.1038/s43856-024-00462-6

Preserving fairness and diagnostic
accuracy in private large-scale AI models
for medical imaging
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Soroosh Tayebi Arasteh 1,6 , Alexander Ziller 2,3,6 , Christiane Kuhl1, Marcus Makowski 2,
Sven Nebelung 1, Rickmer Braren 2, Daniel Rueckert 3, Daniel Truhn 1,7 &
Georgios Kaissis 2,3,4,5,7

Abstract

Background Artificial intelligence (AI) models are increasingly used in the medical domain.
However, asmedical data is highly sensitive, special precautions to ensure its protection are
required. The gold standard for privacy preservation is the introduction of differential privacy
(DP) to model training. Prior work indicates that DP has negative implications on model
accuracy and fairness, which are unacceptable in medicine and represent a main barrier to
thewidespreaduseof privacy-preserving techniques. In thiswork,weevaluated theeffect of
privacy-preserving training of AI models regarding accuracy and fairness compared to non-
private training.
Methods We used two datasets: (1) A large dataset (N = 193,311) of high quality clinical
chest radiographs, and (2) a dataset (N = 1625) of 3D abdominal computed tomography (CT)
images, with the task of classifying the presence of pancreatic ductal adenocarcinoma
(PDAC). Both were retrospectively collected and manually labeled by experienced
radiologists. We then compared non-private deep convolutional neural networks (CNNs)
and privacy-preserving (DP) models with respect to privacy-utility trade-offs measured as
area under the receiver operating characteristic curve (AUROC), and privacy-fairness trade-
offs, measured as Pearson’s r or Statistical Parity Difference.
Results We find that, while the privacy-preserving training yields lower accuracy, it largely
does not amplify discrimination against age, sex or co-morbidity. However, we find an
indication that difficult diagnoses and subgroups suffer stronger performance hits in private
training.
ConclusionsOur study shows that – under the challenging realistic circumstances of a real-
life clinical dataset – the privacy-preserving training of diagnostic deep learning models is
possible with excellent diagnostic accuracy and fairness.

The development of artificial intelligence (AI) systems for medical appli-
cations represents a delicate trade-off: On the one hand, diagnostic models
must offer high accuracy and certainty, as well as treat different patient
groups equitably and fairly. On the other hand, clinicians and researchers

are subject to ethical and legal responsibilities towards the patients whose
data is used for model training. In particular, when diagnostic models are
published to third parties whose intentions are impossible to verify, care
must be undertaken to ascertain that patient privacy is not compromised.

1Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany. 2Institute of Diagnostic and Interventional Radi-
ology, Technical University of Munich, Munich, Germany. 3Artificial Intelligence in Healthcare and Medicine, Technical University of Munich, Munich, Germany.
4Department of Computing, Imperial College London, London, United Kingdom. 5Institute for Machine Learning in Biomedical Imaging, Helmholtz Munich,
Neuherberg, Germany. 6These authors contributed equally: Soroosh Tayebi Arasteh, Alexander Ziller.7These authors jointly supervised this work: Daniel Truhn,
Georgios Kaissis. e-mail: soroosh.arasteh@rwth-aachen.de; alex.ziller@tum.de; dtruhn@ukaachen.de; g.kaissis@tum.de

Plain Language Summary

Artificial intelligence (AI), in which computers
can learn to do tasks that normally require
human intelligence, is particularly useful in
medical imaging.However, AI shouldbeused
in a way that preserves patient privacy. We
explored the balance between maintaining
patient data privacy and AI performance in
medical imaging. We use an approach called
differential privacy to protect the privacy of
patients’ images. We show that, although
training AI with differential privacy leads to a
slight decrease in accuracy, it does not
substantially increase bias against different
agegroups, genders, or patientswithmultiple
health conditions. However, we notice that AI
faces more challenges in accurately
diagnosing complex cases and specific
subgroups when trained under these privacy
constraints. These findings highlight the
importance of designing AI systems that are
both privacy-conscious and capable of reli-
able diagnoses across patient groups.
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Privacy breaches can occur, e.g., through data reconstruction, attribute
inference or membership inference attacks against the shared model1.
Federated learning2–4 has been proposed as a tool to address some of these
problems. However, it has become evident that training data can be reverse-
engineered from federated systems, rendering them just as vulnerable to the
aforementioned attacks as centralized learning5. Thus, it is apparent that
formal privacy preservation methods are required to protect the patients
whose data is used to train diagnostic AI models. The gold standard in this
regard is differential privacy (DP)6.

Most, if not all, currently deployed machine learning models are
trained without any formal privacy-preservation technique. It is especially
crucial to employ such techniques in federated scenarios, wheremuchmore
granular information about the training process can be extracted, or even
the training process itself can be manipulated by a malicious participant7,8.
Moreover, trained models can be attacked to extract training data through
so-called model inversion attacks9–11. We also note that such attacks work
better if the models have been trained on less data, which is especially
concerning since even most FDA-approved AI algorithms have been
trained on fewer than 1000 cases12. Creating a one-to-one correspondence
between a successful attack and the resulting “privacy risk” requires a case-
by-case consideration. The legal opinion (e.g., the GDPR) seems to have
converged on the notion of singling out/ re-identification. Even from the
aspect ofnewer legal frameworks, suchas theEUAIact,whichdemand “risk
moderation” rather than directly specifying “privacy requirements,”, DP
can be seen as the optimal tool as it can quantitatively bound both the risk of
membership inference (MI)13,14 and data reconstruction15. Moreover, this
was also shown empirically for both aforementioned attack classes16–19. It is
also known that DP, contrary to de-identification procedures such as k-
anonymity, provably protects against the notion of singling out20,21.

DP is a formal framework encompassing a collection of techniques to
allow analysts to obtain insights from sensitive datasets while guaranteeing
theprotectionof individual datapointswithin them.DP thus is aproperty of
adataprocessing systemwhich states that the results of a computationover a
sensitive dataset must be approximately identical whether or not any single
individual was included or excluded from the dataset. Formally, a rando-
mizedalgorithm(mechanism)M : X ! Y is said to satisfy (ε, δ)-DP if, for
all pairs of databases D;D0 2 X which differ in one row and all S � Y, the
following holds:

Pr MðDÞ 2 Sð Þ≤ eε Pr MðD0Þ 2 Sð Þ þ δ; ð1Þ

where the guarantee is given over the randomness ofM and holds equally
when D and D0 are swapped. In more intuitive terms, DP is a guarantee
given from a data processor to a data owner that the risks of adverse events
which can occur due to the inclusion of their data in a database are bounded
compared to the risks of such events when their data is not included. The
parameters ε and δ together form what is typically called a privacy budget.
Higher values of ε and δ correspond to a looser privacy guarantee and vice
versa.With some terminological laxity, ε can be considered ameasure of the
privacy loss incurred, whereas δ represents a (small) probability that this
privacy loss is exceeded. For deep learning workflows, δ is set to around the
inverse of the database size.Wenote that, althoughmechanisms exist where
δ denotes a catastrophic privacy degradation probability, the sampled
Gaussian mechanism used to train neural networks does not exhibit this
behavior. The fact that quantitative privacy guarantees can be computed
over many iterations (compositions) of complex algorithms like the ones
used to train neural networks is unique to DP. This process is typically
referred to as privacy accounting. Applied to neural network training, the
randomization required byDP is ensured through the addition of calibrated
Gaussian noise to the gradients of the loss function computed for each
individual data point after they have been clipped in ℓ2-norm to ensure that
their magnitude is bounded22, where the clipping threshold is an additional
hyperparameter in the training process.

DP does not only offer formal protection, but several works have also
empirically shown the connection between the privacy budget and the

success ofmembership inference16 anddata reconstruction attacks17,19,23.We
note that absolute privacy (i.e., zero risk) is only possible if no information is
present24. This is, for example, the case in encryption methods, which are
perfectly private as long as data is not decrypted. Note that training models
e.g., via homomorphic encryption does, however, not offer such perfect
privacy guarantees, as the information learned by the model is actually
revealed at inference time through the model’s predictions. Thus, without
the protection of differential privacy, no formal barrier stands between the
sensitive data and an attacker (beyond potential imperfections of the attack
algorithm, which are usually not controllable a priori). DP offers the ability
to upper-bound the risk of successful privacy attacks while still being able to
draw conclusions from the data. Determining the exact privacy budget is
challenging, as it is amatter of policy. The technical perspective can provide
insight into the appropriate budget level, as it is possible to quantify the risk
of a successful attack at a given privacy budget compared to themodel utility
that can be achieved. The trade-offs between model utility and privacy
preservation are also a matter of ethical, societal and political debate. The
utilization of DP also creates two fundamental trade-offs: The first is a
“privacy-utility trade-off,” i.e., a reduction in diagnostic accuracy when
stronger privacy guarantees are required25,26. The other trade-off is between
privacy and fairness. Intuitively, the fact thatAImodels learn proportionally
less about under-represented patient groups27 in the training data is
amplified by DP, leading to demographic disparity in the model’s predic-
tions or diagnoses28. Both of these trade-offs are delicate in sensitive appli-
cations, such asmedical ones, as it is not acceptable to havewrongdiagnoses
or to discriminate against a certain patient group.

The need for the use of differential privacy (DP) has been illustrated by
Packhäuser et al.29, who showed that it is trivial to match chest x-rays of the
same patient, which directly enables re-identification attacks; this was
similarly shown in tabular databases by Narayanan et al.30. The training of
deep neural networks on medical data with DP has so far not been widely
investigated. Li et al.31 investigated privacy-utility trade-offs in the combi-
nation of advanced federated learning schemes and DPmethods on a brain
tumor segmentation dataset. They find that DP introduces a considerable
reduction in model accuracy in the given setting. Hatamizadeh et al.23

illustrated that the use of federated learning alone can be unsafe in certain
settings. Ziegler et al.32 reported similar findings when evaluating privacy-
utility trade-offs for a chest x-ray classification on a public dataset. These
results also align with our previous work17, where we demonstrated the
utilization of a suite of privacy-preserving techniques for pneumonia clas-
sification in pediatric chest X-rays. However, the focus of this study was not
to elucidate privacy-utility or privacy-fairness trade-offs, but to showcase
that federated learningworkflows can be used to train diagnostic AImodels
with good accuracy on decentralized data while minimizing data privacy
and governance concerns. Moreover, we demonstrated that empirical data
reconstruction attacks are thwarted by the utilization of differential privacy.
In addition, thework did not consider differential diagnosis but only coarse-
label classification into normal vs. bacterial or viral pneumonia.

In this work, we aim to elucidate the connection between using formal
privacy techniques and the fairness towards underrepresented groups in the
sensitive setting of medical use-cases. This is an important prerequisite for
the deployment of ethical AI algorithms in such sensitive areas.However, so
far, prior work is limited to benchmark computer vision datasets33,34. We
thus contend that the widespread use of privacy-preserving machine
learning requires testing under real-life circumstances. In the current study,
we perform the first in-depth investigation into this topic. Concretely, we
utilize a large clinical database of radiologist-labeled radiographic images,
which has previously been used to train an expert-level diagnosticAImodel,
but otherwise not been curated or pre-processed for private training in any
way. Furthermore, we analyze a dataset of abdominal 3D computed
tomography (CT) images, where we classify the presence of a pancreatic
ductal adenocarcinoma (PDAC). This mirrors the type of datasets available
at clinical institutions. In this setting, we then study the extent of privacy-
utility and privacy-fairness trade-offs in training advanced computer vision
architectures.
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To the best of our knowledge, our study is the first work to investigate
the use of differential privacy in the training of complex diagnostic AI
models on a real-world dataset of this magnitude (nearly 200,000 samples)
and a 3D classification task, and to include an extensive evaluation of
privacy-utility and privacy-fairness trade-offs.

Our results are of interest to medical practitioners, deep learning
experts in the medical field and regulatory bodies such as legislative insti-
tutions, institutional review boards and data protection officers and we
undertook specific care to formulate our main lines of investigation across
the important axes delineated above, namely the provision of objective
metrics of diagnostic accuracy, privacy protection anddemographic fairness
towards diverse patient subgroups.

Our main contributions can be summarized as follows: (1) We study
the diagnostic accuracy ramifications of differentially private deep learning
on two curated databases of medically relevant use-cases. We reach 97% of
the non-private AUROC on the UKA-CXR dataset through the utilization
of transfer learning on public datasets and careful choice of architecture. On
the PDAC dataset, our private model at ε = 8.0 is not statistically sig-
nificantly inferior compared to the non-private baseline. (2)We investigate
the fairness implications of differentially private learning with respect to
key demographic characteristics such as sex, age and co-morbidity.We find
that –while differentially private learning has amild fairness effect – it does
not introduce significant discrimination concerns based on the subgroup
representation compared to non-private training, especially at the inter-
mediate privacy budgets typically used in large-scale applications.

Methods
Patient cohorts
We employed UKA-CXR35,36, a large cohort of chest radiographs. The
dataset consists of N = 193,311 frontal CXR images of 45,016 patients, all
manually labeled by radiologists. The available labels include: pleural effu-
sion, pneumonic infiltrates, and atelectasis, each separately for right and left
lung, congestion, and cardiomegaly. The labeling system for cardiomegaly
included five classes “normal,” “uncertain,” “borderline,” “enlarged,” and
“massively enlarged.” For the rest of the labels, five classes of “negative,”
“uncertain,” “mild,” “moderate,” and “severe” were used. Data were split
into N = 153,502 training and N = 39,809 test images using patient-wise
stratification, but otherwise completely randomallocation35,36. Therewas no

overlap between the training and test sets. SupplementaryTable 1 shows the
statistics of the dataset, which are further visualized in Supplementary
Figs. 1 and 2.

In addition, we used an in-house dataset at KlinikumRechts der Isar of
1625 abdominal CT scans from unique, consecutive patients, of which
867 suffered from pancreatic ductal adenocarcinoma (PDAC) (positive)
and 758 were a control group without a tumor (negative). We split the
dataset into 975 train and 325 validation and test images respectively.
During splitting wemaintained the ratio of positive and negative samples in
all subsets.

The experiments were performed in accordance with relevant
national and international guidelines and regulations. Approval for the
UKA-CXR dataset by the Ethical Committee of the Medical Faculty of
RWTH Aachen University has been granted for this retrospective study
(Reference No. EK 028/19). Analogously, for the PDAC dataset, the
protocol was approved by the Ethics Committee of Klinikum Rechts der
Isar (Protocol Number 180/17S). Both institutional review boards did
not require informed consent from subjects and/or their legal guar-
dian(s) as this was a retrospective study. The study was conducted in
accordance with the Declaration of Helsinki.

Data pre-processing
We resized all images of the UKA-CXR dataset to (512 × 512) pixels.
Afterward, a normalization scheme as described previously by Johnson
et al.37 was utilized by subtracting the lowest value in the image, dividing by
the highest value in the shifted image, truncating values, and converting the
result to an unsigned integer, i.e., in the range of [0,255]. Finally, we per-
formedhistogram equalization by shifting pixel values towards 0 or towards
255 such that all pixel values 0 through 255 have approximately equal
frequencies37.

We selected a binary classification paradigm for each label. The
“negative” and “uncertain” classes ("normal” and “uncertain” for cardio-
megaly)were treated as negative, while the “mild,” “moderate,” and “severe”
classes ("borderline,” “enlarged,” and “massively enlarged” for cardiome-
galy) were treated as positive.

For the PDAC dataset, we clipped the voxel density values of all CT
scans to an abdominal window from −150 to 250 Hounsfield units and
resized to a shape of 224 × 224 × 128 voxels.

Fig. 1 | Differences between the private and non-private training process of a
neural network. a Images from a dataset are fed to a neural network and predictions
are made. b From the predictions and the ground truth labels, the gradient is cal-
culated via backpropagation. ((c), upper panel) In normal training all gradients are

averaged and an update step is performed. ((c), lower panel) In private training, each
per-sample gradient is clipped to a predetermined ℓ2-norm, averaged and noise
proportional to the norm is added. This ensures that the information about each
sample is upper-bounded and perturbed with sufficient noise.
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Deep learning process
Network architecture. For both datasets, we employed the ResNet9
architecture introduced in ref. 38 as our classification architecture. For
the UKA-CXR dataset, images were expanded to (512 × 512 × 3) for
compatibility with the neural network architecture. The final linear
layer reduces the (512 × 1) output feature vectors to the desired number
of diseases to be predicted, i.e., 8. The sigmoid function was utilized to
convert the output predictions to individual class probabilities. The full
network contained a total of 4.9 million trainable parameters. For the
PDAC dataset, we used the conversion proposed by Yang et al.39 to
convert themodel to be applicable to 3Ddata, which in brief applies 2D-
convolutional filters along axial, coronal, and sagittal axes separately.
Our utilized ResNet9 network employs the modifications proposed by
Klause et al.38 and by He et al.40. Batch Normalization41 is incompatible
with DP-SGD, as per-sample gradients are required, and batch nor-
malization inherently intermixes information of all images in one
batch. Hence, we used group normalization42 layers instead with 32
groups to be compatible with DP processing. For the CXR dataset we
pretrained the network on the MIMIC Chest X-ray JPG dataset v2.0.0
(MIMIC-CXR),43 consisting ofN = 210,652 frontal images. All training
hyperparameters were selected empirically based on their validation
accuracy, while no systematic/automated hyperparameter tuning was
conducted.

Non-DP training. For the UKA-CXR dataset, the Rectified Linear Unit
(ReLU)44,45 was chosen as the activation function in all layers. We per-
formed data augmentation during training by applying random rotation
in the range of [− 10, 10] degrees and medio-lateral flipping with a
probability of 0.50. The model was optimized using the NAdam46 opti-
mizer with a learning rate of 5 ⋅ 10−5. The binary weighted cross-entropy
with inverted class frequencies of the training data was selected as the loss
function. The training batch size was chosen to be 128. In the PDAC
dataset, we used an unweighted binary cross-entropy loss as well as the
NAdam optimizer with a learning rate of 2 ⋅ 10−4.

DP training. For UKA-CXR, we chose Mish47 as the activation function
in all layers. No data augmentation was performed duringDP training as
we found further data augmentation during training to be harmful to
accuracy. All models were optimized using the NAdam46 optimizer with
a learning rate of 5 ⋅ 10−4. The binary weighted cross-entropy with
inverted class frequencies of the training data was selected as the loss
function. The maximum allowed gradient norm (see Fig. 1) was chosen
to be 1.5 and the network was trained for 150 epochs for each chosen
privacy budget. Each point in the batchwas sampledwith a probability of
8 ⋅ 10−4 (128 divided by N = 153,502). For the PDAC dataset, we chose a
clipping norm of 1.0, δ = 0.001 and a sampling rate of 0.31 (512/1 625).
In both cases, the noise multiplier was calculated such that for a given
number of training steps, sampling rate, and maximum gradient norm
the privacy budget was reached on the last training step. For the UKA-
CXR dataset, the indicated privacy guarantees are “per record” since
some patients have more than one image, while for the PDAC datasets,
they are “per individual.”

Quantitative evaluation and statistical analysis
The area under the receiver operating characteristic curve (AUROC) was
utilized as the primary evaluation metric. We report the average AUROC
over all the labels for each experiment. The individual AUROCas well as all
other evaluation metrics of individual labels are reported in the supple-
mentary information (Supplementary Tables 2–8). For the UKA-CXR test
set,we usedbootstrappingwith1000 redraws for eachmeasure to determine
the statistical spread48. For calculating sensitivity, specificity, and accuracy, a
threshold was chosen according to Youden’s criterion49, i.e., the threshold
that maximized (true positive rate – false positive rate).

To evaluate the correlation between results of data subsets and their
sample size, Pearson’s r coefficient was used. To analyze fairness betweenT
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subgroups, the statistical parity difference50 was used which is defined as

PðŶ ¼ 1jC ¼ Minority Þ � PðŶ ¼ 1jC ¼ Majority Þ ð2Þ

where Ŷ ¼ 1 represents correct model predictions and C is the group in
question. Intuitively, it is the difference in classification accuracy between
the minority and majority class and thus is optimally zero. Values larger
than zero mean that there is a benefit for the minority class, while values
smaller than zero mean that the minority class is discriminated against.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
High classification accuracy is attainable despite stringent priv-
acy guarantees
Table 1 shows an overview of our results for all subgroups. Supplementary
Tables 2–8 show the per-diagnosis evaluation results for non-DP and DP
training for different ε values. On the UKA-CXR dataset our non-private
model achieves anAUROCof 89.71% over all diagnoses. It performs best on
pneumonic infiltration on the right (AUROC=94%) while struggling the
most to accurately classify cardiomegaly (AUROC=84%). Training with DP
decreases all results slightly yet significantly (Hanley &McNeil-test p-value <
0.001, 1 000 bootstrapping redraws) and achieves an overall AUROC of
87.36%. The per-diagnosis performance ranges from 92% (pleural effusion
right) to 81% AUROC (congestion). We next consider classification per-
formance at a very strong level of privacy protection (i.e., at ε < 1).Here, at an
ε-budget of only 0.29, ourmodel achieves an averageAUROCof 83.13%over

all diagnoses.Avisual overview is displayed inFig. 2,which shows the average
AUROC, accuracy, sensitivity, and specificity values over all labels.

On the PDAC dataset, we found that, while non-private training
achieved almost perfect results on the test set the loss in utility for private
training at ε = 8 is statistically non-significant (Hanley&McNeil-test p-value:
0.34, 3 independent experiments) compared to non-private training. Again,
with lower privacy budgets, model utility decreases, but even at a very low
privacy budget of ε= 1.06, we observe an average AUROC score of 95.58%.

Moreover, for UKA-CXR, the use of pre-training helps to boostmodel
performance and reduce the amount of additional information the model
needs to learn “from scratch” and consequently reduces the privacy budgets
required (refer to Supplementary Fig. 3). This appears to primarily benefit
the under-represented groups in the dataset. Conversely, non-private
training, whether initialized with pre-training weights or trained from
scratch, tends to yield comparable diagnostic results, as the latter network
can leverage a greater amount of information.Thesefindings are in linewith
the observations on the PDAC dataset (where no pretrained weights were
available), namely that, at low privacy budgets, specific patient groups suffer
a higher discrimination.

For the purpose of further generalization, we replicated the experi-
ments using three other network architectures. All threemodels displayed a
trend consistent with the utility penalties we observed for ResNet9 in both
DP and non-DP training (see Supplementary Fig. 4). For further details, we
refer to the supplementary information.

Diagnostic accuracy is correlated with patient age and sample
size for both private and non-private models
Fig. 3 shows the difference in classification performance on the UKA-CXR
dataset for each diagnosis between the non-privatemodel evaluation and its

Fig. 2 | Average results of training with differential privacy (DP) with different ϵ
values for δ= 6 ⋅ 10−6. The curves show the average (a) area under the receiver
operating characteristic curve (AUROC), (b) accuracy, (c) specificity, and (d) sen-
sitivity values over all labels, including cardiomegaly, congestion, pleural effusion
right, pleural effusion left, pneumonic infiltration right, pneumonic infiltration left,
atelectasis right, and atelectasis left tested on N = 39,809 test images. The training

dataset includes N = 153,502 images. Note, that the AUROC is monotonically
increasing, while sensitivity, specificity and accuracy exhibit more variation. This is
due to the fact that all training processes were optimized for the AUROC. Dashed
lines correspond to the non-private training results. Source data are provided as a
Source Data file.
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Fig. 3 | Evaluation results of training with differential privacy (DP) and without
DP with different ϵ values for δ= 6 ⋅ 10−6. The results show the individual area
under the receiver operating characteristic curve (AUROC) values for (a) cardio-
megaly, (b) congestion, (c) pleural effusion right, (d) pleural effusion left, (e)

pneumonic infiltration right, (f) pneumonic infiltration left, (g) atelectasis right, and
(h) atelectasis left tested onN = 39,809 test images. The training dataset includesN =
153,502 images. Dashed lines correspond to the non-private training results. Source
data are provided as a Source Data file.
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private counterpart compared to the sample size (that is, the number of
available samples with a given label) within our dataset. At an ε = 7.89, the
largest difference of AUROC between the non-private and privacy-
preserving model was observed for congestion (3.82%) and the smallest
differencewas observed for pleural effusion right (1.55%, see Fig. 3).Ofnote,
there is a visible trend (Pearson’s r: 0.44)whereby classes inwhich themodel
exhibits good diagnostic performance in the non-private setting also suffer
the smallest drop in the private setting. On the other hand, classes that are
already difficult to predict in the non-private case deteriorate the most in
terms of classification performance with DP (see Supplementary Fig. 9).
Both non-private (Pearson’s r: 0.57) and private (Pearson’s r: 0.52) diag-
nostic AUROC exhibit a weak correlation with the number of samples
available for each class (see Supplementary Fig. 9). However, the drop in
AUROCbetween private and non-private training is not correlatedwith the
sample size (Pearson’s r: 0.06). On the PDAC dataset, patients with a tumor
are overrepresented and in the non-private case diagnosedmore accurately.
Not surprisingly, the classification performance is thus also higher for pri-
vate trainings except for the most restrictive privacy budget (see Supple-
mentary Figs. 5–8).

Furthermore, we evaluated ourmodels based on age range and patient
sex (Table 1 and Figs. 4 and 5). Additionally, we calculated statistical parity
difference for those groups to obtain ameasure of fairness (Table 1). On the
UKA-CXR dataset all models performed the best on patients younger than
30years of age. It appears that, theolderpatients are, the greater thedifficulty
for the models to predict the labels accurately. Statistical parity difference

scores are slightly negative for the age groups between 70 and 80 years and
older than 80 years for all models, indicating that the models discriminate
slightly against these groups. In addition, while for the aforementioned age
groups the discrimination does not change with privacy levels, younger
patients becomemore privileged as privacy increases. This finding indicates
that – formodels which aremost protective of data privacy – young patients
benefit themost, despite the groupof younger patients being smaller overall.
For patient sex,models show slightly better performance for female patients
and slightly discriminate against male patients (Table 1). Statistical parity
does not appear to correlate (Pearson’s r: 0.13) with privacy levels.

On the PDAC dataset, we observed that, for all levels of privacy
including non-private training, classification performance was worse for
female patients compared tomale patients, who are over-represented in the
dataset. However, there is no trend observable between the privacy level and
the parity difference. When analysing results of subgroups separated by
patient age,we observed similarly toUKA-CXR that in all settings, statistical
parity differences are on average better for younger patients compared to
older ones. Just as in the UKA-CXR dataset, we found that the more
restrictive the privacy budget is set, the stronger the privilege enjoyed by
younger patients. We furthermore observed that the control group (i.e., no
tumor)has anover-representationof bothmalepatients andyoungpatients,
which consequently both exhibit betterperformance compared to the rest of
the cohort. Conversely, female patients as well as older patients, have a
higher chance of misclassification and are more abundant in the
tumor group.

Fig. 4 | Average results of training with differential privacy (DP) with different ϵ
values for δ= 6 ⋅ 10−6, separately for samples of different age groups including [0,
30), [30, 60), [60, 70), [70, 80), and [80, 100) years.The curves show the average (a)
area under the receiver operating characteristic curve (AUROC), (b) accuracy, (c)
specificity, and (d) sensitivity values over all labels, including cardiomegaly,

congestion, pleural effusion right, pleural effusion left, pneumonic infiltration right,
pneumonic infiltration left, atelectasis right, and atelectasis left tested onN = 39,809
test images. The training dataset includes N = 153,502 images. Dashed lines in
corresponding colors correspond to the non-private training results. Source data are
provided as a Source Data file.
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Discussion
The main contribution of our paper is to analyse the impact of strong
objective guarantees of privacy on the fairness enjoyed by specific patient
subgroups in the context of AI model training on real-world medical
datasets.

Across all levels of privacy protection, training with DP still yielded
models exhibiting AUROC scores of 83% at the highest privacy level and
87% at an ε = 7.89 on the UKA-CXR dataset. The fact that the model
maintained a relatively high AUROC even at ε = 0.29 is remarkable, and we
are unaware of any prior work to report such a strong level of privacy
protection at this level of model accuracy on clinical data. Our results thus
exemplify that, through careful choice of architectures and best practices for
the training of DP models, the use of model pretraining on a related public
dataset, and the availability of sufficient data samples, privately trained
models require only very small additional amounts of private information
from the training dataset to achieve high diagnostic accuracy on the tasks
at hand.

For the PDAC dataset, even though private models at ε = 8.0 are not
significantly inferior compared to non-private counterparts, the effect of the
lower amount of training samples is observable at more restrictive privacy
budgets. Especially at ε ≤ 1.06, the negative effect of private training on the
discrimination of patients in certain age groups becomes noticeable. This
underscores the requirement for larger training datasets, which the objective
privacy guarantees of DP can enable through incentivizing data sharing.

Our analysis of the per-diagnosis performance of models that are
trained with and without privacy guarantees shows that models dis-
criminate against diagnoses that are underrepresented in the training
set in both private and non-private training. This finding is not unusual

and several examples can be found in51. However, the drop in perfor-
mance between private and non-private training is uncorrelated to the
sample size. Instead, the difficulty of the diagnosis seems to drive the
difference in AUROC between the two settings. Concretely, diagnostic
performance under privacy constraints suffers the most for those
classes, which already have the lowest AUROC in the non-private
setting. Conversely, diagnoses that are predicted with the highest
AUROC suffer the least when DP is introduced.

Previous works investigating the effect of DP on fairness show that
privacy preservation amplifies discrimination33. This effect is limited to very
low privacy budgets in our study. Our models remain fair despite at the
levels of privacy protection typically used for training state-of-the-art
models in current literature25, likely due to our real-life datasets’ large size
and/or high quality.

The effects we observed are not limited to within-domain models.
Indeed, in a concurrent work, we investigated the effects of DP training
on the domain generalizability of diagnostic medical AI models52. Our
findings revealed that even under extreme privacy conditions, DP-
trained models show comparable performance to non-DP models in
external domains.

Our analysis of fairness related to patient age showed that older
patients are discriminated against both in the non-private and private
settings. On UKA-CXR, age-related discrimination remains approxi-
mately constant with stronger privacy guarantees. On the other hand,
young patients enjoy overall lower model discrimination in the non-
private and the private setting. Interestingly, young patients seem to
profit more from stronger privacy guarantees, as they enjoy progres-
sively more fairness privilege with increasing privacy protection level.

Fig. 5 | Average results of training with differential privacy (DP) with different ϵ
values for δ= 6 ⋅ 10−6, separately for female and male samples. The curves show
the average (a) area under the receiver operating characteristic curve (AUROC), (b)
accuracy, (c) specificity, and (d) sensitivity values over all labels, including cardio-
megaly, congestion, pleural effusion right, pleural effusion left, pneumonic infil-
tration right, pneumonic infiltration left, atelectasis right, and atelectasis left tested

on N = 39,809 test images. The training dataset includes N = 153,502 images. Note,
that the AUROC is monotonically increasing, while sensitivity, specificity and
accuracy exhibit more variation. This is due to the fact that all training processes
were optimized for the AUROC. Dashed lines correspond to the non-private
training results depicted as upper bounds. Source data are provided as a Source
Data file.
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This holds despite the fact that patients under 30 represent the smallest
fraction of the UKA-CXR dataset. The privilege of young patients is
most likely due to a confounding variable, namely the lower complexity
of imaging findings in younger patients due to their improved ability to
cooperate during radiograph acquisition, resulting in better dis-
crimination of the pathological finding on a more homogeneous
background (i.e., “cleaner”) radiographs which are easier to diagnose
overall35,53 (see Fig. 6). This hypothesis should be validated in cohorts
with a larger proportion of young patients, and we intend to expand on
this finding in future work. On the PDAC dataset, classification accu-
racy remains approximately on par between age subgroups except at
very restrictive privacy budgets, where older patients begin to suffer
discrimination, likely due to the aforementioned imbalance between
control and tumor cases and the overall smaller dataset coupled with a
lack of pre-training. The analysis of model fairness related to patient sex
for UKA-CXR shows that female patients (which – similar to young
patients – are an underrepresented group) enjoy a slightly higher
diagnostic accuracy than male patients for almost all privacy levels
and vice versa on the PDAC dataset. However, effect size differences
were found to be small, so that this finding can also be explained by
variability between models or by the randomness in the training pro-
cess. Further investigation is thus required to elucidate the aforemen-
tioned effects.

Furthermore, there is no final conclusion for which fairnessmeasure is
preferable. In our study we focused on the statistical parity difference,
however, there are other works proposing other measures. One, which
recently received attention, is the underdiagnosis rate of subgroups54. We
evaluated this for the PDACdataset and found that in principle it shows the
same trends as the statistical parity difference (see Supplementary
Tables 9 and 10).

In conclusion, we analyzed the usage of privacy-preserving neural
network training and its implications on utility and fairness for a relevant
diagnostic task on a large real-world dataset.We showed that the utilization
of specialized architectures and targeted model pre-training allows for high
model accuracydespite stringent privacy guarantees. This enables us to train
expert-level diagnostic AImodels even with privacy budgets as low as ε < 1,
which – to our knowledge – has not been shown before, and represents an
important step towards the widespread utilization of differentially private
models in radiological diagnostic AI applications. Moreover, our findings
that the introduction of differential privacy mechanisms to model training
does – in most cases – not amplify unfair model bias regarding patient age,
sex or comorbidity signifies that – at least in our use case – the resulting
models abide by important non-discrimination principles of ethical AI.We
are hopeful that our findings will encourage practitioners and clinicians to
introduce advanced privacy-preserving techniques such as differential
privacy when training diagnostic AI models.

Fig. 6 | Illustrative radiographs from the UKA-CXR dataset. All examinations
share the diagnosis of pneumonic infiltrates on the right patient side (=left
image side). Diagnosis in older patients is often more challenging due to the more
frequent presence of comorbidities and less cooperation during image acquisition
which results in lower image quality (a) 76-year-old male patient, note the presence
of a cardiac pacemaker that projects over part of the left lung. b 74-year-old male

patient with challenging image acquisition: part of the lower right lung is not
properly depicted. c 39-year-old male patient, the lungs are well inflated and
pneumonic infiltrates can be discerned even though they are less severe. d 33-year-
old male patient with challenging image acquisition, yet both lungs can be assessed
(almost) completely.
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Data availability
TheUKA-CXRdataset is not publicly accessible, in adherence to thepolicies
for patient privacy protection at the University Hospital RWTHAachen in
Aachen, Germany. Similarly, the PDAC dataset cannot be publicly shared
due topatientprivacy considerations, as it is an in-housedataset atKlinikum
Rechts der Isar, Munich, Germany. Data access for both datasets can be
granted upon reasonable request to the corresponding author. Source data
presented in Figures are available as Supplementary Data 1.

Code availability
All source codes used for UKA-CXR for training and evaluation of the deep
neural networks, differential privacy, data augmentation, image analysis,
and preprocessing are publicly available at https://github.com/
tayebiarasteh/DP_CXR. All code for the experiments was developed in
Python 3.9 using the PyTorch 2.0 framework. The DP code was developed
using Opacus 1.4.055. Considering the utilization of equivalent computa-
tional resources, the time taken for the DP training to converge was
approximately 10 times longer, in terms of total training time, than that
required for the non-DP training with a similar network architecture. All
code for the analyses on the PDAC dataset are available at https://github.
com/TUM-AIMED/2.5DAttention. All source codes for both datasets are
permanently archived on Zenodo and are accessible via56 and57.
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Synopsis: Artificial intelligence (AI) models are vulnerable to information leakage
of their training data, which can be highly sensitive, for example, in medical imaging.
Privacy-enhancing technologies, such as differential privacy (DP), aim to circumvent
these susceptibilities. DP is the strongest possible protection for training models while
bounding the risks of inferring the inclusion of training samples or reconstructing the
original data. DP achieves this by setting a quantifiable privacy budget. Although a
lower budget decreases the risk of information leakage, it typically also reduces the
performance of such models. This imposes a trade-off between robust performance
and stringent privacy. Additionally, the interpretation of a privacy budget remains
abstract and challenging to contextualize. Here we contrast the performance of
artificial intelligence models at various privacy budgets against both theoretical risk
bounds and empirical success of reconstruction attacks. We show that using very
large privacy budgets can render reconstruction attacks impossible, while drops in
performance are negligible. We thus conclude that not using DP at all is negligent
when applying artificial intelligence models to sensitive data. We deem our results to
lay a foundation for further debates on striking a balance between privacy risks and
model performance.
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Reconciling privacy and accuracy in AI for 
medical imaging
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Daniel Rueckert1,5 & Georgios Kaissis    1,2,3,5

Artificial intelligence (AI) models are vulnerable to information leakage of 
their training data, which can be highly sensitive, for example, in medical 
imaging. Privacy-enhancing technologies, such as differential privacy 
(DP), aim to circumvent these susceptibilities. DP is the strongest possible 
protection for training models while bounding the risks of inferring the 
inclusion of training samples or reconstructing the original data. DP 
achieves this by setting a quantifiable privacy budget. Although a lower 
budget decreases the risk of information leakage, it typically also reduces 
the performance of such models. This imposes a trade-off between robust 
performance and stringent privacy. Additionally, the interpretation of a 
privacy budget remains abstract and challenging to contextualize. Here 
we contrast the performance of artificial intelligence models at various 
privacy budgets against both theoretical risk bounds and empirical success 
of reconstruction attacks. We show that using very large privacy budgets 
can render reconstruction attacks impossible, while drops in performance 
are negligible. We thus conclude that not using DP at all is negligent when 
applying artificial intelligence models to sensitive data. We deem our results 
to lay a foundation for further debates on striking a balance between privacy 
risks and model performance.

The rapid rise of artificial intelligence (AI) applications in medicine 
promises to transform healthcare, offering improvements ranging 
from specific applications, such as more precise pathology detection 
or outcome prediction, to the promise of general medical AI1–5. How-
ever, recent results highlight a substantial vulnerability: AI models may 
disclose details of their training data. This can happen either inadvert-
ently or be forced through attacks by malicious third parties, also called 
adversaries. Among the most critical attacks are data reconstruction 
attacks, where the adversary attempts to extract training data from the 
model or its gradients6–17. Such attacks harbour distinct risks. On one 
hand, a successful data reconstruction attack severely undermines the 
trust of patients whose data are exposed. This not only jeopardises the 

relationship between medical practitioners and patients, but probably 
also diminishes the willingness of patients to make their health data for 
the training of AI models or for other research purposes available. This 
is problematic since the success of AI models in medicine is depend-
ent on the availability of large and diverse real-world patient datasets. 
On the other hand, a successful attack can also constitute a breach of 
patient data privacy regulations.

While privacy laws vary globally, the protection of health data 
is generally considered of high importance. For example, the Euro-
pean Union’s General Data Protection Regulation declares the protec-
tion of personal data as a fundamental right. Notably, some of these 
laws deem the removal of personal identifiers (for example, name or 
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These assumptions, also called a threat model, include an adversary 
who is able to deeply manipulate and interfere with the dataset, the 
training process, model architecture and (hyper-)parameters, and has 
access to all parameters of the DP algorithm (mechanism). Moreover, 
the canonical DP adversary is not assumed to execute a data reconstruc-
tion attack but a much simpler type of attack, namely a membership 
inference attack, which attempts to determine whether a specific 
individual’s data (which is available to the adversary) was included in 
the training dataset or not. Since there are only two possible outcomes 
of such an attack (member/non-member), membership inference must 
only reveal a single bit of information compared with a data reconstruc-
tion attack, which must successfully reveal a much larger record (for 
example, an image). Although worst-case assumptions are prudent for 
the theoretical modelling of adversaries, the DP threat model is unlikely 
to ever be encountered in practice. Moreover, the aforementioned 
membership inference attack in which the adversary has access to a 
target record and tries to determine whether it was used for training a 
specific model is arguably of very low practical relevance. Instead, data 
reconstruction attacks are probably perceived as a substantially more 
relevant privacy threat by patients. Moreover, realistic adversaries in 
the medical setting (where data is strongly guarded) can probably be 
assumed to not have access to the training data (as they would have 
little incentive to attack a model otherwise).

In this Article, we investigate whether the aforementioned typical 
DP threat model might be too pessimistic for practical use cases and 
thus impose unnecessary privacy/performance trade-offs. To investi-
gate this hypothesis, we study the privacy/performance characteristics 
of AI models trained on large-scale medical imaging datasets under 
more realistic threat models that still allow for strong privacy protec-
tion but represent a ‘step down’ from the worst-case assumptions of DP. 
Our main finding is that, even in complex medical imaging tasks, it is 
possible to train AI models with excellent diagnostic performance while 
still defending against data reconstruction attacks and thus a likely 
patient re-identification. We achieve this by training models under 
privacy budgets that would be considered too large to offer any pro-
tection against the threats considered under the worst-case DP threat 
model. This supports a recommendation for training AI models with 
DP protection by default. Therefore, although more restrictive privacy 
budgets than the ones used in our study remain relevant for use cases in 
which protection against membership inference is explicitly required, 
there exists an additional option: when high model performance is 
required but cannot be achieved without relinquishing membership 
inference protection, our findings offer a compromise whereby an 
important and relevant class of attacks can be defended against while 
fulfilling the requirement for high diagnostic accuracy.

As stated above, DP allows for a quantifiable reduction in the 
risk of privacy attacks associated with the training of AI models. In 
this work, we differentiate between three threat models, which we 
term worst case, relaxed, and realistic. DP, reconstruction risks and all 
threat models are described in detail in Supplementary Material A. An 
overview can be found in Table 1.

date of birth)—de-identification—sufficient protection. However, it 
has been demonstrated on several occasions that commonly used 
de-identification techniques such as anonymization, pseudonymization 
or k-anonymity are vulnerable to re-identification attacks18–20. This also 
holds true in the case of medical imaging data. For example, the facial 
contours of a patient can be obtained from a reconstructed magnetic 
resonance imaging scan even if their name has been removed from the 
record, thus enabling their re-identification from publicly available 
photographs21. Figuratively, this is analogous to considering passport 
photos without additional information not as personal data. Arguably, 
this highlights the tension between what is considered ‘private’ in a legal 
sense and what individuals consider acceptable in terms of informational 
self-determination. We thus contend that AI systems that process sensi-
tive data should not only rely on de-identification techniques but also 
implement privacy-enhancing technologies (PETs), that is, technologies 
that furnish an objective or formal guarantee of privacy protection.

DP as the optimal privacy preservation
Among PETs, differential privacy (DP)22 is considered the optimal pro-
tection for training AI models while moderating the privacy risk faced 
by participating patients due to its appealing properties: it provides 
a formal upper bound on the success of reconstructing data23,24 and 
satisfies requirements imposed by regulations such as the General Data 
Protection Regulation concerning re-identification19,25. Moreover, the 
privacy guarantees of DP cannot be degraded through the use of side 
information or through post-processing (two notable vulnerabilities of 
traditional de-identification schemes). Last but not least, DP satisfies 
composability, that is, its guarantee degrades predictably when multiple 
DP algorithms are executed on the same dataset. This enables the con-
cept of a ‘privacy budget’, which makes the cumulative re-identification 
risk quantifiable and can be set depending on policy or preference. We 
note that this ability to moderate risks stemming from AI applications 
is particularly beneficial, as it is also mandated by recent legal frame-
works such as the European AI act26. These properties are leading to 
DP’s increasing adoption in industry and government applications27,28.

We remark that for a holistic workflow, additional PETs are advis-
able. Cryptographic techniques such as homomorphic encryption 
or secure multi-party computation can allow performing computa-
tions on data while ascertaining that only authorized instances can 
read the private information. However, these techniques are ‘binary’, 
that is, information is perfectly private (encrypted) or non-private 
(decrypted). In particular, at the latest at inference time, the informa-
tion must be decrypted to be useful. In contrast, DP limits the prob-
ability that the output (gradient) can be correctly assigned to the input 
(data), which allows useful outputs at a guaranteed (but not perfect) 
level of privacy. Arguably, the most famous PET is federated learn-
ing, which provides a means to preserve data governance. However, 
without further protective measures, in particular DP, data can be 
reconstructed, and thus data governance is again not maintained. An 
overview can be found in ref. 29.

Despite these benefits, the effective and efficient implementation 
of DP in large-scale AI systems also presents a series of challenges. 
DP has been criticized for the fact that the choice of an appropriate 
privacy budget is delicate. Higher budgets correspond to less privacy 
protection and thus an increased risk of successful attacks, while lower 
budgets limit the information available for training. This introduces 
new challenges, namely a trade-off between privacy and model perfor-
mance, that is diagnostic accuracy for a given use case. Furthermore, 
this trade-off also depends on the specific input data and learning 
task, which can vary drastically between scenarios. Arguably, con-
cerns about reduced model performance are a probable reason why, 
despite its benefits, DP is not yet widely implemented in medical AI. 
After all, finding a trade-off between diagnostic accuracy and privacy 
represents a complex technical and ethical dilemma. This dilemma is 
best understood as DP is underlain by a worst-case set of assumptions.  

Table 1 | Overview of the capabilities of an adversary in the 
threat models analysed in this study

Worst case Relaxed Realistic

Model architecture and 
weight

Yes Yes Yes

Hyper-parameter Yes Yes Yes

Dataset access Yes Partially No

Perfect reconstruction 
algorithm

Not applicable Yes No

Risk analysis Theoretical Theoretical Empirical
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The key contribution of our work is to investigate the realistic 
risks posed by a type of adversary who is still very powerful but can be 
reasonably assumed to exist in real-world medical AI model training 
use cases. An overview is displayed in Fig. 1. In the next section, we will 
show that perfectly defending against such adversaries is possible while 
maintaining a diagnostic model performance competitive with that of 
a model trained without any privacy protection.

Results
Set-up
Our evaluation focuses on how various privacy risks on multiple 
real-world characteristic datasets (compare Table 2) correlate with 
the algorithm’s performance. We provide details on the datasets and 
our rationale for choosing these in Supplementary Material B1 and 
on the evaluation metrics in B2. First, we show the correlation of the 
AI performance on our datasets with privacy budgets. Second, we 
illustrate the implications of a certain privacy budget in a risk profile, 
summarizing the reconstruction risk under different threat models. 
We recall that a threat model corresponds to the set of assumptions 
over the attacker, where we give the theoretical bounds for a worst-case 

and a slightly relaxed adversary. Both are more pessimistic than any 
real-world scenario. Thus, we add a third threat model representing 
the worst ‘realistic’ case.

In Table 3, we list the best possible AI model performance and cor-
responding reconstruction risk for all datasets and privacy budgets. 
The risk is three-tiered: (1) The upper bound of a worst-case adversary. 
This is the maximum risk under this setting and cannot be increased 
by post-processing or side information. (2) The upper bound of a mini-
mally relaxed adversary as introduced in ref. 24. (3) The reconstruction 
success of the real-world adversary. We argue that—for practical use 
cases—protection against such a real-world attacker suffices. By listing 
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Fig. 1 | Comparison of a worst-case and a realistic threat model. a, Adversaries 
can have various capabilities depending on the setting. b, The combination of the 
adversary’s capabilities defines the threat model. In a worst-case analysis, they 
have all capabilities. However, access to the database is a pessimistic, practically 
irrelevant scenario. c, The necessary privacy protection depends on the threat 
model. In a worst-case threat model, the adversary only needs to match the 

model and gradient to an image in the database. In a practically more relevant 
scenario, the image must be reconstructed from the model and gradient. Here, 
much less privacy protection is necessary. d, The more stringent the privacy 
protection is chosen, the higher the impacts on the model performance are. 
Thus, if a realistic threat model is considered appropriate, models can perform 
better.

Table 2 | Overview of characteristics of our datasets

Dataset Task Small Imbalanced Multi-modal

RadImageNet Classification ✓ ✓
HAM10000 Classification ✓ ✓
MSD Liver Segmentation ✓ ✓
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all three, we provide an overview of how the risk varies by changing 
assumptions about the adversary.

Performance trade-offs under varying privacy levels
Impacts on performance is substantial for small datasets. At first, 
we analyse the impact of a very restrictive (small) privacy budget 
of ε = 1 on the predictive AI performance on our datasets (Table 3). 
Across the board, we see that at these budgets, the impacts on the 
model performance are strong. Concretely, we find that on RadIma-
geNet, a standard non-private AI model reaches 71.83% on average, 
while trained at such restrictive privacy guarantee we find an average 
Matthews’ correlation coefficient (MCC) of 64.95%, which is still 90% 
of the non-private MCC score. The gap becomes much larger on the 
HAM10000 dataset, where the model performance, when trained with 
a very low privacy budget of ε = 1 is closely above the chance level at 
an MCC of 15.60%. Similarly, on the Medical Segmentation Decathlon 
(MSD) Liver dataset at restrictive privacy budgets, the average Dice 
score for the liver drops to 42.84% (non-private: 91.58%) and com-
pletely fails for the tumour with a Dice of 0.96%. This exemplifies the 
challenges of furnishing strong privacy protection when training AI 
models on small or difficult datasets.

Prediction quality under medium budgets depends on dataset. 
Next, we consider medium privacy budgets ranging from ε = 8 to ε = 32, 
which are typical choices in literature30,31. As ε is an exponential param-
eter (eε), larger values correspond to exponentially decreased privacy 
guarantees. For this reason, some argue that the guarantees provided 
by such medium budgets are meaningless22,32.

At these privacy budgets, although the performance substantially 
increases compared with the extremely restrictive privacy budget, 

the private AI models never exactly match the non-private perfor-
mance. On RadImageNet, the achieved result closely approaches 
the non-private baseline: at a privacy budget of ε = 32, the MCC is 
69.99% versus 71.83% in the non-private case. Also, for HAM10000, 
performance is strongly improved at 42.83% MCC, yet still decreased 
by 9% compared with the non-private result. Lastly, in MSD Liver, the 
liver as a larger organ can now be learned up to a reasonable Dice 
score of 79.06% at ε = 20. However, it remains far from the non-private 
performance. The prediction quality of the tumour, which is a much 
smaller and more complex structure, is especially concerning. This 
leads to a poor segmentation quality and only achieves an average 
Dice score of 5.55%, which is unsuitable for real-world applications. 
Again, we note that performance trade-offs especially impact smaller 
and imbalanced datasets.

Performance trade-offs vanish under large privacy budgets. For 
very large privacy budgets, we observe that the gap between private 
and non-private performance disappears. We recall that HAM10000 
and MSD Liver as small datasets are extremely challenging under 
restrictive DP conditions. When increasing the privacy budget to ε = 109, 
no statistically significant difference to the non-private model can be 
detected (P values: HAM10000: 0.36; and MSD Liver dataset liver: 0.10 
and tumour: 0.29, Student’s t-test). Only on RadImageNet, although the 
non-private model is still statistically significantly superior (P value: 
0.001), the private model at an ε = 1012 achieves 99% of the non-private 
baseline performance.

It is unsurprising that increasing the privacy budget mitigates the 
negative implications on the model performance. Hence, the ques-
tion that must be asked is what level of privacy is necessary for a spe-
cific setting. This cannot be answered generally and must be carefully 

Table 3 | Comparison of performance to privacy risk over multiple datasets and privacy budgets

Privacy budget Noise Test MCC Reconstruction risk

ε at δ = 8.0 × 10−7 σ Mean ± s.d. Worst case Relaxed Realistic

RadImageNet

1 0.67 64.95 ± 0.13% 0.00% 0.00% 0%

8 0.34 68.75 ± 0.13% 0.04% 0.01% 0%

32 0.267 69.99 ± 0.25% 13.18% 3.96% 0%

1012 0.054 70.83 ± 0.19% 100% 100% 0%

Non-private 0 71.83 ± 1.86% 100% 100% 100%

HAM10000

1 0.92 15.60 ± 4.13% 0.03% 0.01% 0%

8 0.47 37.48 ± 3.45% 1.22% 0.04% 0%

20 0.40 42.83 ± 2.37% 22.30% 0.78% 0%

109 0.02 51.98 ± 2.52% 100% 100% 0%

Non-private 0 51.66 ± 1.38% 100% 100% 100%

MSD Liver

Dice score liver Dice score tumour Reconstruction risk

Mean ± s.d. Mean ± s.d. Worst case Relaxed Realistic

1 9.97 42.84 ± 1.83% 0.96 ± 0.37% 1.66% 0.97% 0%

8 1.66 74.71 ± 3.14% 3.01 ± 0.96% 17.96% 3.68% 0%

20 0.96 79.06 ± 2.17% 5.55 ± 0.72% 74.24% 27.37% 0%

109 0.0054 91.20 ± 0.23% 29.73 ± 2.89% 100% 100% 0%

Non-private 0 91.58 ± 0.41% 28.38 ± 2.29% 100% 100% 100%

Test MCC denotes Matthew’s correlation coefficient on the test dataset. For all performance metrics, we give the mean ± s.d. over five runs with different random seeds. Reconstruction risk 
denotes the upper bounds for the risk of a successful reconstruction attack of a worst-case and minimally relaxed adversary, as well as the empirical success of one of the strongest ‘realistic’ 
attacks. An image is considered successfully reconstructed if the SSIM to any reconstruction is higher than 80%. Note that the noise multiplier σ is given for the empirical attack scenario where 
an adversary manipulated hyper-parameters in their favour. Noise multipliers for performance analysis are generally higher.
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considered for each use case. Important for these considerations is 
which risks are associated with a certain privacy budget, which we 
analyse next.

Worst-case bounds require small privacy budgets
Although too pessimistic for most use cases, worst-case analyses have 
the advantage of a formal guarantee, that is, an absolute upper bound 
on the risk in this scenario. When analysing the theoretical worst-case 
(highest) success of reconstruction attackers, we find that for the large 
RadImageNet dataset for budgets ε ≤ 8, the risk is <0.05%. However, 
already at ε = 32, the theoretical probability of the original data being 
reconstructed is 15%. Here, the smaller datasets are again at higher 
risk. While at ε = 1 the risk remains low, it strongly increases at ε = 8 for 
HAM10000 (0.03% to 1.22%) and MSD Liver (1.66% to 17.96%). At ε = 20 
theoretically, up to 74.24% of all data samples of the MSD Liver dataset 
can be reconstructed.

However, even minimally relaxing the threat model assumptions 
decreases the risk associated with these privacy budgets drastically. We 
recall that under this relaxed threat model, the only change compared 
with the worst case is that the attacker does not know the sample that 
is reconstructed beforehand. Yet, for theoretical analysis, there is still 
the assumption that the reconstruction algorithm is either perfect or 
fails and the risk which is then calculated is the maximum rate where 
the attacker correctly decides if the reconstruction they obtained was 
indeed the dataset sample in question. This threat model is still too 
pessimistic for any real-world use case and the analysis is mostly for 
theoretical purposes. Still, such a minimal relaxation already gives 
a much more favourable risk profile, especially for medium privacy 
budgets. Exemplarily, the risk associated with ε = 20 diminishes from 
over 20% to less than 1% for the HAM10000 dataset. Similarly, the risk 
for the MSD dataset at ε = 8 decreases from 18% to 4%. A visualization 
of the risk difference in worst-case and relaxed threat models can be 
found in Fig. 2.

Empirical protection even at large privacy budgets
The previously discussed theoretical analyses show rapidly growing 
risks associated with small and medium privacy budgets. However, as 
discussed before, we argue that these analyses are too strict for any 
‘realistic’ use case. Hence, we ask what the worst case of any practical 
scenario is and determine it to be a federated learning set-up, where 
a central server coordinates the learning on the data of distributed 
clients, which follow each training command sent by the server. This 
implies that the server can freely choose any network architecture 
and hyper-parameters. Note that any client who performs a simple 
check would notice such a malicious server. For such cases, attacks 
have been shown in literature, which analytically can recover the model 
input perfectly8,9. Moreover, it has been shown that these attacks can be 
transferred to corrupted pre-trained models17. We employ these attacks 

as empirical risk assessments. To measure the reconstruction success, 
we use the structural similarity (SSIM) score, which is a standard metric 
for image similarity33.

In contrast to the aforementioned theoretical risk bounds, we find 
that, for practical attacks, even privacy budgets considered meaning-
less (ε > 109) can provide effective protection against reconstruction. 
In Fig. 3, left, we plot how many dataset images are below an increasing 
SSIM error per privacy budget. It can be thought of as the cumulative 
distribution function of reconstruction errors. We observe that, for 
all datasets without the addition of DP constraints, nearly all images 
can be reconstructed perfectly. As soon as some privacy guarantee is 
introduced, even very generous budgets at an ε ≈ 109 provide empirical 
protection against the reconstruction of data samples. Furthermore, 
confirming previous works8,34, our threat model is still extremely pow-
erful. A server without the control of hyper-parameters but still over 
the model architecture already imposes a substantially lower recon-
struction risk. If the server does not set the batch size to one but is set 
to the real training batch size, for example, on the RadImagenet dataset 
even in the non-private case we could only reconstruct less than 5% 
of all images at a batch size of 3,328. We note that such large privacy 
budgets, which are near-universally shunned as being meaningless, 
still offer empirical protection. In other words, even a ‘pinch of privacy’ 
has drastic effects in practical scenarios. Complemented by the finding 
that performance trade-offs nearly disappear in these settings, this 
signifies a potential compromise between protection and usability.

Discussion
In this study, we explore the relationship between privacy risks and 
AI performance in sensitive applications such as medical imaging. 
Currently, practitioners are confronted with trade-offs between AI 
performance, privacy protection and computational efficiency, where 
no solution has so far been able to accomplish all of these goals. Previ-
ous work showed that DP training profits much more than standard 
AI training from a higher number of training steps30. By increasing 
privacy budgets, practitioners can reach similar trade-offs with fewer 
training steps, which further allows a broader use for practitioners 
without substantial compute resources. Moreover, prior work also 
showed that pre-training on a 4 billion image dataset allows models 
to transfer to private datasets35. However, in practice this is typically 
infeasible due to limited access to such large datasets or the com-
putational resources to train such a model. Furthermore, such data 
scales only exist for natural two-dimensional images but not yet for 
three-dimensional images, which are typical in medical imaging. There-
fore, often the choice remains for practitioners to prioritise privacy and 
sacrifice performance or to put sensitive data at risk of being leaked. 
Currently, there is no clear method to balance these two objectives, 
leaving practitioners without guidance. To make informed decisions 
on these trade-offs, broad discourse involving ethicists, lawmakers 
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and the general population is crucial. A prerequisite of this dialogue 
is understanding the risks associated with specific privacy budgets 
and the potential trade-offs in AI performance. Our study across three 
representative medical imaging datasets lays the foundation for this 
conversation. We find that real-world data reconstruction risks can be 
averted without performance trade-offs. In fact, privacy–performance 
trade-offs have so far always been based on worst-case assumptions, 
which do not overlap with realistic training settings. We postulate 
that it is more critical to prevent data reconstruction in real-world 
settings, and show that for workflow de-risking, large privacy budgets 

suffice. Even more, we find that the trade-off between privacy risks and 
model performance vanishes when using such large but protective  
privacy budgets.

It is known from previous works23,36–38 that PETs formally protect 
AI models in sensitive contexts from reconstruction attacks. While 
we note that our results are empirical, it is apparent that DP train-
ing with minimal guarantees still provides better protection than 
non-private training. Considering this finding, it seems negligent to 
train AI models without any form of formal privacy guarantee. We 
note that the threat model we consider is probably still stronger than 
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attackers encountered in practical attack scenarios. In a slightly differ-
ent threat model, where an adversary only has black-box access to the 
final trained weights of a model but has an image prior containing the 
true target point, ref. 23 found that large privacy budgets in the order 
of the dimensionality of the data suffice to prevent reconstruction 
attacks. Similarly, ref. 32 found that against reconstruction attacks, 
noise multipliers which otherwise would be seen as vacuous, suffice. 
Furthermore, ref. 39 studied the reconstruction of discrete data and 
found that privacy budgets can be much larger than previously thought 
to effectively defend against reconstruction attacks. However, for 
our threat model, we find even much larger privacy budgets than the 
aforementioned to suffice and, without a theoretical lower bound, 
the possibility exists that future attacks could achieve success closer 
to the upper bound. Owing to this, we explicitly warn readers to take 
our results as a carte blanche to use arbitrarily high privacy budgets. 
The truth lies in the middle: if the alternative is to not use any privacy 
at all, rather use DP with a very high budget.

We remark that the effectiveness of the DP protection against 
attacks at a fixed clipping norm, batch size, training duration and train-
ing set size depends only on the noise multiplier. This is a consequence 
of how DP budgets are accounted. For example, in the Rényi-DP (RDP) 

accountant40 used in our work, one step is (α,q2 2αC2

σ2
) -RDP for appropri-

ate values of the parameters α the order of the Rényi divergence, q, the 
subsampling rate (that is, batch size divided by training set size), C, the 
clip gradient norm and σ, the noise multiplier. However, our empirical 
results suggest that for all other factors being constant, even small 
noise multipliers, which imply very large privacy budgets, are sufficient 
to protect against reconstruction attacks and facilitate high-performing 
AI models. We also observed that the AI performance loss introduced 
by DP tends to be smaller on larger datasets due to less injected noise 
per sample and more information to achieve a certain privacy budget 
at consistent hyper-parameters. Yet, many medical datasets are inher-
ently small. This can have negative consequences for the applicability 
of such networks in clinical practice. For models to be effectively 
trained on such challenging datasets, when pre-training is not possible 
for reasons of data availability or computational resources, our tech-
niques reach a limit indicating a potential need to either accept elevated 
privacy risks or obtain access to more data. The solution to both prob-
lems might go hand in hand with more robust mathematical guarantees 
safeguarding data privacy. In such a scenario, we anticipate that 
patients may be more inclined to share their data, thereby allowing 
large-scale medical AI training. In such a scenario, the privacy–perfor-
mance trade-offs presented might even be more favourable than our 
findings indicate. This would be complemented by a workflow where 
multiple PETs are employed to enable various aspects to privacy. For 
example, a system using federated learning to assert the data govern-
ance remains at the original hospital, secure aggregation to conceal 
contributions from different sites and DP to limit the private informa-
tion of single patients demonstrated in previous works36 would provide 
a holistic workflow.

We note that our choice of datasets and architectures is motivated 
by medical imaging settings. In those settings, typically computational 
resources are limited and data are scarce. In fact, we are convinced 
that the widespread use of such methods will only ensue once they 
can be used by the majority of practitioners who typically lack access 
to large computing clusters. Hence, we carefully designed our study to 
cover typical and representative medical problems to provide a holis-
tic analysis with trade-offs in computational resources. Under these 
considerations, we limited ourselves to a few model architectures that 
are known to be trained efficiently (ResNet, DenseNet and U-Net) and 
datasets that represent a broad range of typical problems.

An additional technical limitation stems from the fact that the 
authors of the RadImagenet dataset41 mention that some patients 
contributed multiple images. However, we have no information about 

image-to-patient correspondence. As we calculate the privacy guarantees 
over the dataset per image, the per-patient privacy guarantee depends 
on the number of images one patient contributed and might be lower.

In conclusion, we show that even the use of nominally loose pri-
vacy guarantees still provides substantially better protection than 
standard AI training, while achieving comparable performance. This 
can facilitate a compromise between provable risk management and 
performance trade-offs, which previously prevented the breakthrough 
of DP. Further research should be directed towards analysing various 
threat models beyond the worst case. Only by illuminating the risks of 
multiple scenarios, the basis for a broad discussion among ethicists, 
policymakers, patients and other stakeholders is provided regarding 
how to trade-off privacy and performance as fundamental goals of AI 
in sensitive applications.

Methods
In this section, we report all the details necessary for our experiments 
on training models in a differentially private way on our datasets as well 
as the procedures to analyse risk profiles. Furthermore, we describe 
the rationale for several choices in our study design and describe 
hyper-parameters necessary for reproducibility.

Data
In Supplementary Material A, we describe characteristics of typical 
medical datasets. We note, that these characteristics partially amplify 
the negative performance impact by the constraints introduced by DP. 
Broadly speaking, at a constant clipping norm the amount of intro-
duced noise during the DP process determines the negative impact on 
the AI performance. At any privacy budget, the injected noise increases 
if more training steps are performed or if a higher sampling rate, that 
is, the ratio between batch size and dataset size, is used. However, the 
batch size is typically irrespective of the dataset size, which implies 
that smaller datasets typically have higher sampling rates. Further-
more, they often require more training epochs, that is, the amount of 
times the entire dataset was (on average) presented to the network. 
As a consequence, the amount of noise that is injected when training 
on small datasets compared with larger ones is increased and higher 
performance penalties are expected. Furthermore, DP bounds the 
magnitude any single sample on the training. This is important for 
training with imbalanced datasets with underrepresented classes, 
which often suffer an additional performance loss42.

For detailed descriptions of the datasets we refer to the original 
publications41,43–45. In the following, we describe modifications we 
performed and the effects on the data distribution.

For the HAM10000 dataset43, we merged classes into whether 
there is indication for immediate treatment, which is still a medically 
important distinction. By this we convert the multi-class classification 
problem into a highly imbalanced binary classification problem. We 
categorized them here as follows:

In total, this dataset has 10,015 images, of which 1,954 are labelled 
for immediate treatment and 8,061 are not.

Model training
All of our experiments were performed using an NAdam optimizer, 
which is extremely robust to learning rate changes allowing us to keep 

Treatment indication

Immediate Not immediate

Actinic keratoses and intra-epithelial 
carcinomas

Melanocytic nevi

Basal cell carcinomas Benign keratinocytic lesions

Melanomas Dermatofibromas

Vascular lesions
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a consistent learning rate of 2e−3. Input data were always normalized 
with the mean and standard deviation of all images in the training 
set. For each dataset, we perform a hyper-parameter search, where 
we evaluate for one privacy level (ε = 8) and the non-private training 
the optimal setting for architecture, batch size, loss weighting and 
augmentation. In the non-private case, we perform an early stopping 
strategy to determine the number of epochs. In the private case, this is 
not possible as the number of epochs directly influences the amount 
of added noise. However, previous works showed that longer training 
almost always yields better results30. Yet, to limit training time, we also 
search for the point of saturation. Also for reasons of computational 
complexity, we assume that the optimal settings for these parameters 
transfer to all other privacy regimes. Furthermore, we limit the choice 
of architectures to a ResNet-9 with ScaleNorm and a WideResNet40-4, 
which have in previous literature been proven to be especially suited 
for differentially private training30,46. In the segmentation case, we limit 
ourselves to a standard U-Net47,48, where we optimize the number of 
channels on the bottleneck. We then evaluate for each privacy setting 
separately the optimal clipping norm. Again for reasons of compu-
tational complexity, we evaluate this after one epoch and assume 
it transfers to longer trainings. Finally, we train for each setting five 
models with different random seeds and report the mean and standard 
deviation of the respective performance metric.

All our models are trained from ‘scratch’, that is, we have not 
pre-trained on any other dataset. This is because there is no ‘good 
choice’ of a dataset for pre-training. ImageNet, which for most com-
puter vision tasks is the standard, is not very effective for medical 
imaging tasks41. Large public databases for pre-training are scarce and 
only available for a few tasks. Furthermore, pre-training on non-public 
medical databases is unacceptable, as it risks leaking the information 
from the pre-training data, which could be just as private49,50.

We used the Opacus51 library for accounting the privacy loss. In 
particular, we used an RDP accountant, as it provides numerically the 
most stable implementation. We used an extension of the objax library52 
as implementation for the DP-Stochastic Gradient Descent algorithm.

We open source the program code used for this paper at https://
github.com/a1302z/RePrAAIMI.

RadImagenet. As described in the 'Model training' section, we analysed 
the architecture, number of epochs, batch size, loss and multiplicity 
for the non-private and one private setting (ε = 8). For the non-private 
case, we found a WideResNet40-4 using an unweighted loss function, 
a batch size of 16 and random vertical (probability of augmentation 
(Paug) = 0.2) and horizontal flips (Paug = 0.1) as augmentation to yield 
the best results. To determine the number of epochs, we used an early 
stopping strategy with a patience of five epochs and 0.1% improvement 
threshold. For the private case, a ResNet-9 trained for 50 epochs, using 
an unweighted loss function, using an augmentation multiplicity of 
four again with random vertical (Paug = 0.2) and horizontal (Paug = 0.2) 
flips with a batch size of 3,328 yielded best results. The clipping norm 
was tuned for each budget separately and was set as follows:

HAM10000. For the modified HAM10000 dataset, we found the 
ResNet-9 to perform best in private and non-private settings. In the 
non-private case, we trained with a weighted loss function at a batch 
size of 32 using random vertical flips (Paug = 0.5) as augmentation. We 
trained using an early stopping strategy using a patience of 50 epochs 
at a minimal improvement threshold of 0.1%. For the private case, we 
used an unweighted loss function at a batch size of 2,048 and trained 
for 100 epochs. We used the same augmentations as in the non-private 
case for a privacy level of ε = 109, for all others, we did not use augmenta-
tions. Clipping norms are as follows:

MSD Liver. For the MSD Liver dataset, we found for both private and 
non-private cases a U-Net with 16 channels and no augmentations to 
perform best. In the non-private case we used a weighted loss function 
(background: 0.1; liver: 0.4; tumour: 0.5) and trained at a batch size of 
two. Again, we employed an early stopping strategy with a patience of 
50 epochs and a minimal improvement threshold of 0.1%. In the pri-
vate case, we trained at a batch size of one for 500 epochs. For privacy 
budgets ε ≤ 20 we used an unweighted loss function, for higher privacy 
budgets we used the same weighting as in the non-private case.

Reconstruction risk analysis
In our empirical reconstruction attacks, there is no clear way to evalu-
ate whether a specific sample was reconstructed. For each input batch 
consisting of N samples, we receive M reconstructions. We evaluate 
this by calculating the pairwise distance between all data samples and 
reconstructions and assigning each input the reconstruction with the 
lowest distance. However, this approach loses meaning in the case of 
images, which have no structure but are entirely dark. This is the case 
for the RadImagenet dataset, where we put a constraint that only data 
samples are considered that contain more than 10% non-zero pixels.

We evaluate the practical reconstruction success by using a prin-
ciple demonstrated in previous literature8,9 adapted to our use case. 
The network architecture is slightly modified by prepending two linear 
layers in front of the actual network architecture. The first takes all 
input image pixels as input and projects them to an intermediate rep-
resentation of N bins. In our experiments, we set N = 10. This intermedi-
ate representation is afterwards projected again to the number of all 
pixels and re-sized to the original image shape. To each of the outputs, 
the mean of the intermediate representations is added. Afterwards, it 
can be processed as usual by the remaining neural network. As our 
adversary is assumed to have control over all hyper-parameters, they 
can set the batch size to one and by that enforce that no reconstruction 
of two images overlap. If now a gradient is calculated over the network, 
which is non-zero for the weights Wi and biases b of the first linear layer, 
the input x can be analytically recovered by x = ∇Wiℒ⊘ ∂ℒ

∂b , where ⊘ is 
the element-wise division. We note that, for this attack, it is irrelevant 
what network architecture comes after this imprint block. We used 
implementations provided by ref. 53.

The reconstruction error, which we use as basis for the risk analysis 
in this paper, is the minimum reconstruction error between a data sam-
ple to any reconstruction that was derived from a gradient containing 
the data sample.

Choice of privacy budgets
For our experiments on the utility trade-off, we chose several privacy 
budgets. We note that this choice was arbitrary. For all experiments, 
we used a δ = 8 × 10−7. For all settings, we evaluated ε = 1 and ε = 8, which 
are standard values in the literature30,31,46. Furthermore, we calculate 
the theoretical reconstruction bound of the worst case and relaxed 
threat models. As the already included privacy budgets at ε = 1 and ε = 8 
already showcase very low reconstruction bounds, we add one more 
privacy level for all datasets, where a large amount of samples is already 
at risk of being reconstructed. In addition, we report a privacy budget 
ε = 103N,N ∈ ℕ , where the characteristic reconstruction robustness 
curve is still similar to random noise.

Environmental impact
Lastly, we would like to give a rough estimate of the climate impact of 
this study. We assume the average German power mix that as of 2021 

ε 1 8 32 1e12

Clip norm 6.46 5.66 5 3.75

ε 1 8 20 1e9

Clip norm 18 8.5 9.5 9

ε 1 8 20 1e9

Clip norm 0.0004 0.046 0.0015 0.33
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according to the German Federal Environment Agency corresponds 
to 475 g CO2e kWh−1 (ref. 54) Only the final RadImagenet trainings (no 
hyper-parameter optimization) ran on eight NVIDIA A40s, where we 
assume a power consumption of 250 W on average, each for almost 
4 days, five privacy levels and five repetitions. Hence, this amounts 
to around 960 kWh and thus more than 450 kg of CO2e. This almost 
equals a return flight from Munich to London. Hence, we tried to limit 
our hyper-parameter searches to the necessary. In total, we assume 
that this study produced at least 2 tons of CO2e.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this study are published and publicly avail-
able. Access to RadImageNet41 must be requested at https://www.
radimagenet.com/. The HAM10000 dataset43 is available at https://
doi.org/10.7910/DVN/DBW86T. The MSD Liver dataset44,45 is avail-
able at http://medicaldecathlon.com/ and https://doi.org/10.1038/
s41467-022-30695-9.

Code availability
Our program code is available at https://github.com/a1302z/
RePrAAIMI and permanently archived under https://doi.org/10.5281/
zenodo.11184978 ref. 55. Furthermore, we created a modified version 
of53, which is available at https://github.com/a1302z/objaxbreaching 
and https://doi.org/10.5281/zenodo.11184998 ref. 56.
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4 Concluding Remarks

In this thesis, we have evaluated several aspects when combining PETs and AI in
medicine. In particular, we have investigated a real-world privacy-preserving workflow,
efficient implementations of DP-SGD, the implications on subgroup fairness in two
real-world medical tasks and lastly, the impact of relaxed threat models on the privacy
budget. With this, we hope to contribute towards a trustworthy, ethically, and legally
compliant use of AI in medicine. In the following, we discuss our findings, particularly
in terms of how they fit into the bigger picture of privacy-preserving AI and recent
developments since the publication of the manuscripts. Furthermore, we give an
outlook on potential future developments and research directions.

4.1 Discussion

End-to-end privacy preserving deep learning on multi-institutional medical
imaging We demonstrated the use of a holistic AI pipeline facilitated by the use of
various PETs, most notably FL, SMPC, and DP. It allows for distributed training,
where the contributions of each hospital are concealed, and the privacy of all patients
is preserved. Although the use of these technologies leads to reduced performance
for models trained at each site, we could demonstrate that, for the use case of
paediatric chest x-ray classification, when training this on data from all sites, it
outperforms local models as well as expert radiologists. This is based on the common
assumption that PETs enable access to more data, which can compensate for the
utility penalties of these technologies. However, to the best of our knowledge, this
assumption has not been scientifically evaluated. It, therefore, requires a legal and
sociological investigation of whether and to what extent this assumption corresponds
to the actual situation.

Medical imaging deep learning with differential privacy We developed a
framework for training AI models under DP conditions, which was competitive to
state-of-the-art frameworks at the time of publication. Moreover, our approach does
not require a mathematical specification for any neural network layer but instead
is natively compatible with all types of layers, which adhere to the assumptions
imposed by DP-SGD. Both are important aspects for the practical use of DP. Since
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the publication, several new developments have been added to the Opacus framework
[76]. Specifically, the inclusion of functorch [74] allows the just-in-time compilation of
DP-SGD training with arbitrary layers, which can lead to substantial improvements
in computational efficiency.

Preserving fairness and diagnostic accuracy in private large-scale AI models
for medical imaging As alluded to in Section 2.1, there are other important aspects
for the trustworthy and ethical use of AI, especially in sensitive areas, such as medicine.
One of them is that AI models adhere to a notion of fairness and, by that, do not
discriminate against certain subgroups. Prior work has found evidence that DP could
exacerbate the underperformance of AI models on underrepresented subgroups. In
our investigation we found that not necessarily the representation but the difficulty
of correctly predicting subgroups could be decisive. In particular, we found that the
underperformance of AI models on subgroups which already have the lowest prediction
performance in non-private trainings is further exacerbated with increasing privacy
guarantees. This could be a paradigm shift when assessing the interaction between
privacy and fairness. In particular, this could imply that when construing datasets
for a fair and privacy-preserving AI model, not all subgroups should be equally
represented, but subgroups which are harder to diagnose should be overrepresented.
Furthermore, it could be necessary to have deviating privacy guarantees for different
subgroups, i.e. subgroups on which AI performance is overly affected sacrifice privacy
budget for models, which perform equally well as on other subgroups with higher
privacy guarantees. It is open for future research to investigate the exact relationship
of subgroup performance and the influence of DP training, and if this might even
allow for a notion of “diagnosis difficulty”.

Reconciling Privacy and Accuracy in AI for Medical Imaging Perhaps
the most important unresolved drawback of using DP for the training of AI models
is the induced privacy-utility trade-off. This describes the effect of stricter privacy
preservation leading to stronger negative impacts on model performance. Hence, an
important question is what an appropriate level of privacy is for a specific setting.
This question is largely underexplored. So far, most works chose ε-values in a range
between 1 and 10, with 8 being the default value. While the range is rooted in the risk
against a MIA of a theoretical worst-case adversary, the exact value is typically not
further substantiated. In this work, we addressed the question of what level of privacy
is necessary to protect against “realistic” scenarios. Empirically, we found that even
very large –so far considered meaningless– privacy budgets can suffice. However,
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in opposition to worst-case MIA risks, this is not based on irrefutable theoretical
results, and it is conceivable that there are factors which are not considered in
this study that could lead to higher reconstruction risks. Hence, this calls for a
complementary theoretical study of the considered setting. At the time of this thesis,
this complementary study is available as a preprint [102] and remains to be published
in a peer-reviewed venue.

4.2 Outlook

We have so far discussed prospects and challenges which come along with the use
of PETs. In this section, we give an informal, speculative outlook on how relevant
open questions concerning privacy-preserving workflows for the training of medical
AI could evolve.

Will PETs Become The Standard for Medical AI? Looking at the promises
that the use of PETs brings, one may wonder why these technologies are not yet
established standards in such a sensitive area as medical AI. There are several reasons
for that: Perhaps the most trivial one is that there is a certain effort required by
practitioners to use such technologies. The principle of least effort states that animals,
people and well-designed machines, and therefore presumably also programmers,
choose the path of least resistance [103]. This can be overcome by two options:
Decreasing the resistance, i.e. simplifying the use of PETs, or blocking other paths,
e.g., by legislating the use of PETs. Hence, we promote the incorporation of these
technologies into existing widely used frameworks for AI training such as PyTorch [74],
which would arguably set down the hurdles for the use of PETs drastically. Moreover,
if this is complemented by advantages for the practitioners, such as easier access or
more data, PETs could soon be standard in many pipelines. Yet, as we have outlined
in Section 2.2.4, especially DP requires a basic understanding of the technology and
is incompatible with certain standard AI workflows. A second key reason why PETs
are not yet widely used, which not even imposing a legal requirement resolves, is most
likely the privacy-utility trade-off. While we could show that adapting the privacy
budget to the actual threat model can mitigate this trade-off, there will be situations
in which a restrictive privacy guarantee is required. Potentially, this trade-off could
also be solved with access to larger medical databases. However, as we discuss in the
next paragraph, even if PETs allow for the access to more training data, it comes
along with several open questions. Given that it is currently unforeseeable whether
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large training datasets will be unlocked, the trade-off in situations where a restrictive
privacy protection is mandated can only be resolved by technical innovations for the
privacy-preserving training of AI models. One such potential innovation are the recent
developments for DP-Follow-the-regularized-leader (DP-FTRL) as an alternative to
DP-SGD [104, 105, 106, 107]. As the name suggests, instead of performing a gradient
descent algorithm, it is based on Follow-the-regularized-leader (FTRL) algorithm
[108]. Opposed to gradient descent algorithms, which are typically trained on a
pre-defined static dataset, FTRL is an online learning algorithm. In the paradigm
of online learning algorithms, the AI network is presented sequentially with data
samples and, at each step, calculates the best predictor from all previous steps. By
this, it is also naturally compatible with FL as no aggregation strategies have to be
performed. Based on DP-FTRL, it was shown that strong predictors can be trained
under restrictive levels of privacy. However, to the best of our knowledge, no broad
comparison between DP-SGD and DP-FTRL –especially on datasets comparable to
the requirements for medical AI– has been published yet.

Will PETs Lead To More Training Data? While providing technical imple-
mentations of private AI systems is often imposed by legal requirements, it also comes
alongside a hope: The hope is that guaranteed privacy can unlock large amounts of
previously inaccessible data for the training of AI models. These increased amounts
of data leave AI practitioners dreaming of unprecedented capabilities for medical AI.
Even more, models trained on data from various regions of the world, generated by
all types of medical equipment, covering all sorts of diagnostic modalities, having
access to even the rarest conditions. In short, generalist models which can be applied
to any patient and diagnosis.

At first glance, the hope for unlocking large amounts of training data is justified:
It has been shown that, unlike anonymization procedures, the use of DP –under
certain assumptions– fulfils a necessary (but not sufficient) condition for regulations
such as the GDPR [20]. Also, empirically, it was shown that users are more inclined
to share their data if there are robust technical protective measurements in place
[109]. However, there is a catch, namely the privacy budget. It is unclear at what
level of privacy DP still complies with the legal requirements. Theoretically, the
budget could be chosen to be an incredibly large but non-infinite number. While this
gives a guarantee, it could be an extremely weak, in the extreme case, a potentially
meaningless guarantee. Finding a compromise cannot be solved on a technical or
mathematical level and will be the task of ethical, legal and political debate. However,
if such debates agree on a certain privacy budget, it implies that this budget must
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not be exceeded to fulfil legal requirements. As a consequence, medical training data
becomes a consumable good. This comes along with a multitude of open and largely
undiscussed questions: Is there only one chance to train a generalist AI model on
all available data, or should the available data be distributed for several training
sessions? Both are valid options. Training on all available data would yield the model
with the most information available. On the other hand, one could argue that there is
enough data to train several almost-perfect models. This would also mitigate the next
arising question: What if new developments allow better AI models, but the privacy
budget is already exceeded? Deep learning-based AI models have only begun about a
decade ago to be a large research field. Developments in the field are often outdated
shortly after publication. So far, it is not foreseeable that this trend will stop. Hence,
training on all available data and privacy budget would imply that until fresh large
quantities of data are generated no newer and likely superior models can be trained.
As alluded to in the first question, a possible solution could be to split up the data
and retrain the current state-of-the-art approach after a fixed schedule, e.g., once per
year, with all the data that was generated within this timeframe. However, finding
the trade-off between retraining and collecting data will be delicate here, as a low
frequency would provide more training data but could miss important improvements
in the AI development. Nevertheless, even if this trade-off is resolved, it is still
unclear who is commissioned to train such a model? Choosing the highest bidding
would follow economic models. However, the resulting AI model has the potential to
improve all current diagnostic procedures, find previously unknown correlations, and
expand the understanding of unresolved medical problems. Yet, with great power,
there must also come great responsibility [110]. Thus, it may be in the public interest
to leave control over such a model to a non-commercial entity.

4.3 Conclusion

In conclusion, this thesis broadly investigated the potentials, challenges, and possible
solutions for a privacy-preserving workflow of AI in medicine and healthcare. We
demonstrated the practicality of a privacy-preserving workflow composed of various
PETs and showed that the resulting private models can compete and even outperform
non-private locally trained models as well as expert radiologists. Moreover, we
implemented an approach that, at the time of publication, was natively compatible
with any type of DP-conformant neural network layer and competitive to state-of-
the-art frameworks in terms of runtime. Both are important factors for the practical
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use of privacy-preserving technologies. Furthermore, we investigated the interaction
of private AI models and their fairness in the classification of subgroups. Opposed to
prior works, we found it is not necessarily the representation but rather the difficulty
of the task that is driving the negative performance impact under stricter privacy
levels. This could have potential impacts on the collection of data for the training
of privacy-preserving and fair AI models. Lastly, we raised the question of how
privacy budgets are set and found that, currently, typical privacy budgets are based
on worst-case assumptions. We showed that when relaxing these assumptions to a
more realistic scenario, the privacy-utility trade-off is largely mitigated and, in some
cases, even vanishes entirely. With these contributions, we hope to facilitate a more
widespread breakthrough for privacy-preserving techniques for the AI training on
sensitive datasets such as medical data. However, there are open legal and ethical
questions that need to be part of a societal discussion about the future of AI models
in medicine and healthcare applications.
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V. Garg, R. Sarveswara, K. Händler, P. Pickkers, N. A. Aziz et al. ‘Swarm
learning for decentralized and confidential clinical machine learning’. In: Nature
594.7862 (2021), pp. 265–270.

[47] S. Pati, U. Baid, B. Edwards, M. Sheller, S.-H. Wang, G. A. Reina, P. Foley,
A. Gruzdev, D. Karkada, C. Davatzikos et al. ‘Federated learning enables big
data for rare cancer boundary detection’. In: Nature communications 13.1
(2022), p. 7346.
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1 Hyperparameter Optimisation

As described in the main manuscript, PriMIA provides the ability to perform centrally co-
ordinated hyperparameter optimisation provided by the Optuna framework [1]. By default,
the Tree-Structured Parzen Estimator algorithm [2] is utilised, but this functionality is user-
adjustable. By default, the framework will search over the following parameters: Learning
rate, optimiser parameters, learning rate scheduler restarts, weight decay, class-weighting for
the loss, federated averaging, augmentation parameters, including the probabilities of each in-
dividual augmentation, synchronisation rate and class-weighting for federated averaging. These
options are user-adjustable in case more or fewer parameters are desired.

The Optuna library we utilise offers a number of visualisations, including parameter im-
portance and parallel coordinate plots [3] of the hyperparameter optimisation procedure. We
demonstrate an example of the procedure used to determine the optimal parameters for the FL
model presented in the main manuscript in Figure 1. Moreover, we offer the option to save
the individual hyperparameter optimisation trials to a relational database back-end, which can
be used to resume runs without repeating fruitless hyperparameter combinations. Lastly, the
framework offers a number of pruning options, that is, early stopping of a run if it evolves in
an unpromising direction compared to previous runs. Further documentation can be found at
https://optuna.readthedocs.io/en/v2.0.0/.

Figure 1: Parallel coordinate plot of the hyperparameter optimisation run leading
to the FL model used in the main manuscript (DP-/SecAgg+). The top panel shows
parallel vertical axes representing the individual variables. Faint lines represent the individual
trials, connecting the corresponding variable values. The cyan line represents the ”best” trial,
and connects the optimal hyperparameters found within the run. The bottom panel shows the
evolution in MCC over the trials of the optimisation procedure ordered by ascending MCC.
Importantly, the ascending ordering of the bottom panel’s X-axis does not represent the order
in which the trials were performed. In this case, the optimal MCC accuracy was encountered
earlier during the procedure (trial 26). The ascending ordering of the trials is applied post-hoc
for visual clarity.
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2 Statistical evaluation and inter-rater/model agreement

The McNemar test was used to test for differences between the predictions of human observers
and/or the models trained using FL/ centrally as defined in the main manuscript. Results can
be found in Table 1.

Federated
DP-/SecAgg+

Federated
DP-/SecAgg-

Centrally
Trained

Federated
DP+/SecAgg+

Expert 1

Federated
DP-/SecAgg-

1.00

Centrally Trained 0.48 1.00

Federated
DP+/SecAgg+

0.04 0.02 0.01

Expert 1 0.03 0.02 0.01 0.27

Expert 2 0.02 0.01 0.01 0.24 0.88

Table 1: McNemar test results on Test Set 1. Federated : Model trained with federated
learning. DP+/-: Model trained with (+) or without (-) differentially private gradient descent.
SecAgg+/-: Model trained with (+) or without (-) secure aggregation. Centrally Trained :
Model trained on the entire dataset on a single machine. Expert 1/2 : Human experts. Bold
text signifies p<0.05. Duplicated values omitted.

As seen in the table, the FL DP-/SecAgg- and FL DP-/SecAgg+ models did not produce
significantly different predictions from each-other or from the centrally trained model (p-values
>0.05) but significantly outperformed human observers (p-values <0.05). The DP+ model
performed significantly below the models trained without DP and the centrally trained model
(p-values <0.05), but on-par with human observers (p-values >0.05).

Cohen’s κ was used to assess inter-model/observer agreement as described in the main
manuscript. Numbers close to 1.0 indicate high agreement. Results are shown in Table 2.

Federated
DP-/SecAgg+

Federated
DP-/SecAgg-

Centrally
Trained

Federated
DP+/SecAgg+

Expert 1

Federated
DP-/SecAgg-

0.99

Centrally
Trained

0.98 0.99

Federated
DP+/SecAgg+

0.94 0.93 0.91

Expert 1 0.57 0.59 0.63 0.55

Expert 2 0.60 0.62 0.60 0.59 0.51

Table 2: Cohen’s κ between models and observers on Test Set 1. Duplicate values
omitted.

Inter-observer agreement (according to McHugh [4]) was almost perfect between the mod-
els, moderate to strong between models and observers and moderate between observers. This

2



indicates high reliability of the model’s predictions on out-of-sample data and therefore good
generalisation performance.

3 Statistical evaluation of training and inference benchmarks

The statistical evaluation of the results shown in Figure 3 of the main manuscript was performed
using one-way analysis of variance (ANOVA) for results in panels A to D followed by pairwise
Student’s t-tests, and Student’s t-test for results in Panel E. Statistically significant results
were found for Panels A, B and C. In Panel A, the difference between DP-/SecAgg+ and
DP+/SecAgg- was the only non-significant result (p=0.08), all other pairwise comparisons were
significant at the p<0.001 level. In Panel B, all pairwise comparisons were significant at the
p<0.001 level. In Panel C, the only significant results were found in the middle subpanel
(DP-/SecAgg+), where all pairwise comparisons were significant at the p<0.001 level except
the comparison between 5 and 8 workers (p=0.02). In panel E, all pairwise comparisons were
significant at the <0.001 level.

4 Statistical evaluation of gradient-based attacks

The statistical evaluation of the results shown in Figure 4, panel B of the main manuscript
was performed using one-way ANOVA followed by pair-wise Student’s t-tests. All results were
significant at the <0.001 level.

5 Auxiliary reconstruction attack figures

As mentioned in the main manuscript, DP negated the attacks against the paediatric pneumonia
dataset, consistent with the guarantees DP provides. Results from the unprotected centrally
trained model, the DP-/SecAgg+ and the DP+/SecAgg+ models are shown in Figure 4 of the
main manuscript. Figure 2 shows the attack against the centrally trained model with DP as well
as the DP+/SecAgg- model. The DP training procedure again negates the attacks against the
dataset, whereas the centrally trained model without DP is susceptible to catastrophic privacy
loss.

Figure 2: Results from the gradient-based inversion attack described in the main
manuscript. Attacks were performed against the centrally trained model trained with
DP (Centrally Trained/DP+) and the FL model trained with DP but without SecAgg
(DP+/SecAgg-). Even in the best-case scenario of local training, DP negates the effects of
the attack. The original image and centrally trained model without DP (identical to the main
manuscript) are shown for reference on the left hand side.
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6 Attacks against the MedNIST dataset

As described in the section on model inversion attacks and shown in Figure 5 of the main
manuscript, we conducted additional experimentation using the MedNIST dataset1. The dataset
includes 58954 images in 6 categories with a size of 64x64 pixels. CT images in the AbdomenCT
and ChestCT categories were histogram normalised using the PIL library2. We utilised the
ResNet18 architecture described in the main manuscript. Models were trained without either
DP training or secure aggregation (DP-/SecAgg-) and with DP training and secure aggrega-
tion (DP+/SecAgg+). For the DP-/SecAgg- training, we modelled an adversary intercepting
a gradient update from a single data owner at batch size 1 immediately at the beginning of
training, representing a worst-case privacy loss scenario. The DP+/SecAgg+ model was also
trained at a batch size of 1, however -due to SecAgg-, the effective batch size was 3 (at the used
synchronisation parameter of 1, models are averaged after one training step). We did not train
the DP model to convergence, hence no final ε value for the model is provided. Gradient norms
were clipped to 1.0, the noise multiplier and sampling rates were set to 1.0. By application
of the Rényi Differential Privacy Accountant [5], one epoch of this training (19652 steps at a
sampling rate of 0.00509%) would have resulted in a privacy loss of ε=0.64 at a δ of 10−5 and
an optimal α-value (divergence order) of 9.0.

7 Liver Segmentation Case Study

To showcase PriMIA’s flexibility in configuring the framework to work with different medical
imaging modalities, we here provide an additional case study in which PriMIA is used to train
a semantic segmentation model using FL. For this, the modifications required to the PriMIA
source code are: adding the desired model architecture to the codebase, modifying the training
procedure to load the appropriate model and modifying the loss function and evaluation metrics.
Individual training settings (augmentation etc.) are set in the central configuration file. The
number of clients for training is derived automatically by the number of unique IP addresses
present in the relevant configuration file.

The task chosen was liver segmentation in computed tomography (CT) imaging. The Medi-
cal Segmentation Decathlon dataset3 liver dataset was chosen, which contains 131 training and
70 test 3D volumes. The training volumes were split into a 90% training and 10% validation set.
Images were pre-processed by conversion to 32-bit floating point numbers in the following way:
DICOM headers were parsed and acquisition pixel values were converted to Hounsfield Units.
The mean and standard deviation of the training dataset was used to normalise the training
and validation datasets. Images were resized to 256x256 pixels by nearest neighbour interpola-
tion. Hounsfield units were clipped to the range (-150, 250) to yield an abdominal parenchymal
window setting. The liver and tumour masks were merged yielding a two-class segmentation
task. The UNet model architecture [6] was utilised, but the backbone was modified to use an
untrained ResNet18 network using the SegmentationModels PyTorch library [7] and modified so
that the final layer’s logits pass through a sigmoid activation function to be bounded between
0 and 1. A batch size of 32 was selected and the Adam optimiser was used with a log-linearly
decreasing learning rate of 10−3 to 10−4 with one warm restart. L2-regularistaion was applied
with a coefficient of 10−3. No image augmentation was used. The synchronisation parameter
was set to 40. The Dice loss-function was used for training and the Dice score was employed for
evaluation [8]. The model was trained for 100 epochs and cached after every epoch; the model
with the highest Dice score was used for evaluation on the test set. The best model achieved a

1https://github.com/Project-MONAI/tutorials/blob/master/2d_classification/mednist_tutorial.

ipynb
2https://doi.org/10.5281/zenodo.596518
3http://medicaldecathlon.com
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Dice Score of 0.94 on the separate test set. An exemplary segmentation mask produced by the
model is shown in Figure 3.

Figure 3: Exemplary result from the liver FL segmentation case study. The input
image is a computed tomography slice of the abdomen on the level of the liver. The Ground
Truth segmentation mask and the Predicted segmentation masks are shown. The Overlay image
shows the predicted mask in yellow and the Ground Truth mask in purple. Non-overlapping
regions (purple shine-through) indicate model errors.

8 DP model training and additional considerations

PriMIA includes two procedures in which DP mechanisms are used: The DP secure aggregation
of dataset statistics and DP neural network training. We note that for our case studies and
analysis, we assume that the datasets on the FL nodes are disjoint. We furthermore assume that
each patient is included only once in each training dataset. We thus provide per-patient privacy
guarantees, which in our case is equivalent to per-record guarantees. Lastly we point out that we
will refer to differentially private stochastic gradient descent (DP-SGD) even in cases the Adam
optimiser was used, as the subroutine described is independent of the choice between Adam and
Stochastic Gradient Descent. (In brief, momentum-based algorithms retain a weighted moving
average of previous gradient updates. However, since the gradients stored are privatised, the
utilisation of these updates is privacy-neutral due to closure under post-processing, see below).

8.1 DP secure aggregation of dataset statistics

As described in the main manuscript, performing remote inference requires the incoming data
to be rescaled with the mean and standard deviation (=statistics) of the training dataset.
Training using PriMIA is not limited to imaging data. When non-imaging data are included
(e.g. age), such statistics can contain sensitive information which should not be disclosed. In
the case of FL, the statistics are aggregated over the federation. To prevent the leakage of
sensitive data, a differentially private mean and standard deviation query procedure is used
on each individual node. Here, a user-defined ε-value is used to determine the magnitude of
Laplacian noise added to the mean and standard deviation before it is released by the formula
VDP ← V + Lap(Lε ), where V is the value in question, L and is the L1-sensitivity of the
query. This procedure (Laplacian mechanism) is ε-DP (Proof in [9], Section 3.3). The secure
aggregation (i.e. averaging) of the thus privatised values does not impact privacy guarantees as
it represents post-processing of non-overlapping databases (Proof in [9], Proposition 2.1).
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8.2 Differentially private neural network training

8.2.1 Technical overview of the DP training procedure

We first describe the rationale behind the DP-SGD algorithm [10] and point out specific con-
siderations applicable to PriMIA. Neural network training with gradient descent can be made
to preserve (ε, δ)-DP ([9], Definition 2.4) by applying the following modifications:

1. Bounding the per-example L2 sensitivity of the gradient calculation in the backpropaga-
tion step by clipping the global gradient norm4

2. Adding random Gaussian noise to the bounded gradient before performing a gradient
descent step

Each gradient descent step can therefore be considered a differentially private release of a
gradient, which can then be freely post-processed (e.g. averaged with other gradients). See [12],
Theorem 1 for the proof.

The DP-SGD procedure therefore has two configuration parameters: The clipping norm and
a noise multiplier, which scales the noise added (in addition to the noise required to obfuscate
the gradient signal). These parameters can be selected by the user in PriMIA. Notably, selecting
the parameters does not require interacting with the dataset, as the privacy guarantees can be
calculated in advance and are independent of the data. A convenience script is provided in
PriMIA for this purpose.

In practice, this procedure, in particular subroutine (1), introduces added complexity. Reverse-
mode automatic differentiation systems do not provide access to the per-example gradients of a
minibatch by default, but only to an accumulated (either averaged or summed) gradient. The
following solutions have been introduced to tackle this issue:

• Goodfellow [13] introduces a technique which allows efficient per-example gradient com-
putation, this procedure is however limited to specific types of neural network layers and
cannot be universally applied. A variant of this technique (see comments in [14]) is used
by current DP-SGD frameworks such as Opacus5. The downside of this technique is
that the introduction of newer layer types (e.g. recurrent neural network layers) requires
layer-specific modifications for compatibility. We therefore decided against employing this
technique in PriMIA, aiming for a generic implementation. The benefit of the technique
is that it only introduces minimal computational overhead, as it leverages the native
capabilities of the automatic differentiation system.

• A universal technique for per-example gradient computation which is independent of layer
type and can be applied to any differentiable layer is the individual processing of samples
from a minibatch in separate forward and backpropagation passes. Each computed gradi-
ent is then individually processed and stored in a temporary data store. After all examples
from a minibatch have been computed, the per-example gradients are averaged or summed
(in our case averaged), the gradient descent step taken and the data store flushed. The
benefit of this technique is its abovementioned flexibility and simplicity. PriMIA uses this
technique for per-example gradient computation. Its main drawback is the increased time
complexity. Newer techniques utilising just-in-time compilation and vectorised mapping
[15] reduce this overhead significantly. However, at the time of this manuscript’s prepa-
ration, PyTorch, on which PriMIA depends, does not yet support vectorised mapping
for gradient calculations. Of note, both above-mentioned techniques introduce increased
storage requirements for the per-sample gradients in a temporary data-store.

4We note that this subroutine relies on a specific method of clipping referred to as global norm clipping as
described in [11]

5https://opacus.ai
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• A modification of the second technique was proposed in [16]. Here, instead of every sam-
ple being processed separately, so-called microbatches are used, which are subsets of the
minibatch. Processing such microbatches has the benefit of allowing (sometimes substan-
tially) faster processing. However, proportionally larger magnitude of Gaussian noise has
to be added to hide the contribution of the microbatch (for a theoretical examination
of the relationship between noise magnitude and privacy guarantees see e.g. [17]). The
microbatching technique represents a trade-off between computational speed and algo-
rithm utility. PriMIA includes the option to utilise this technique via the microbatch size
configuration parameter.

An additional consideration comes from the calculation of the privacy budget. Abadi et
al. [10] introduce the Moments Accountant technique which provides a more realistic outlook
on the true privacy cost of the DP-SGD procedure compared to naive methods of calculation
based on composition ([9], Section 3.5). However, the utilisation of this accounting technique,
relies on subsampling amplification guarantees provided by so-called Poisson sampling of the
minibatches. The utilisation of random shuffling followed by serial processing of the samples
which is common in deep learning does not satisfy this sampling scheme. PriMIA therefore
introduces a separate Poisson batch sampler for the DP training procedure. An analysis of
various sampling schemes and their guarantees can be found in [18]. Of note, PriMIA utilises
a newer version of the Moments Accountant algorithm (Rényi Differential Privacy Accountant
[5]) which is more numerically stable but otherwise provides identical guarantees.

Lastly, we point out that DP-SGD requires the modification of neural network architectures
in case they contain layers which track state over more than one minibatch during the forward
pass (which is non-private). An example are Batch Normalisation (BN) layers [19]. As these
layers track a moving average of several minibatches, their gradients cannot be clipped per-
example as -by definition- it is already averaged over multiple examples. In practice, BN layers
can be naively replaced by Group Normalisation (GN) [20] layers, which is the strategy followed
in PriMIA. More principled solutions to this challenge entail the design of differentially private
normalisation layers. Some work in this regard has recently been demonstrated [21].

8.2.2 Practical DP neural network training considerations

For the case study presented in the main manuscript, we assumed the Paediatric Pneumonia
Dataset to be private. In the setting of DP, this entails selecting a privacy budget. This budget
becomes depleted by interacting with the dataset and after it is exhausted, no further interaction
with the dataset is allowed. To reconcile the complication of training FL models on private
data with this notion, [10] propose the utilisation of a publicly available dataset for tuning the
parameters of the DP-SGD algorithm and pre-training a model. Thus, efficient transfer learning
can be employed to reach convergence in a smaller amount of training steps, a large proportion
of the model can be frozen (that is, made untrainable), therefore greatly diminishing the amount
of noise added and training becomes faster. Furthermore, hyperparameter optimisation runs
are avoided, which would quickly deplete the privacy budget.

In the current study, we used the ChestX-ray8 dataset [22], containing ca. 100,000 chest
radiographies with the following modifications: We merged the classification labels to yield a
two-class classification problem of ”normal” vs. ”abnormal” radiograph. Furthermore, we split
the test set of 25595 images into a subset of 11211 validation images and a subset of 14384 test
images.

Individual images were processed and distributed to FL nodes as detailed in the main
manuscript. We used a δ value of 1.9 ∗ 10−4 for privacy calculation during training as the
paediatric pneumonia dataset contains approximately 5000 images (see [9], page 18 for ratio-
nale). For training on the public dataset, we arbitrarily set a privacy budget of ε = 10 after
which training was automatically aborted. We performed a brute-force grid search over 15 lin-
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early spaced values of the clipping norm parameter from 0.8 to 1.2 and of the noise multiplier
parameter from 1.0 to 3.0. We trained a total of three models in this fashion:

• A ResNet18 model with BN layers replaced by GN and randomly initialised with the He
uniform initialiser (trained from scratch)

• A ResNet18 model pretrained on ImageNet with BN layers replaced by GN after training,
the final linear layer replaced by a newly initialised linear layer with 512 units (identical
model to the main manuscript except the use of GN)

• A ResNet18 model non-privately pretrained to convergence on the ChestX-ray8 dataset.
Following [10], we later used the median gradient norm of this non-private training as the
clipping norm of the privately trained model on the paediatric pneumonia dataset

Through this evaluation, we empirically determined the model pre-trained on the ChestX-
ray8 dataset to yield a beneficial privacy-utility Pareto frontier compared to ImageNet pre-
training and -especially- training from scratch. The results of this evaluation can be found in
Figure 4.

Figure 4: Empirical Pareto-curves of the models trained from scratch (Untrained),
pre-trained on ImageNet and pre-trained on the ChestX-ray8 dataset. Curves repre-
sent the privacy-utility-trade-off for various models by demonstrating the highest classification
performance reached at various ε thresholds. The Y-axis shows the MCC achieved on the sep-
arate test set. The model pretrained on ChestX-ray8 consistently Pareto-dominates the other
models. MCC gains beyond an ε-value of 6.0 are minimal. At ε = 6.0, the model achieves an
MCC of 0.78.

Based on these results, we selected an ε=6.0 as a cut-off for private model training. We
utilised the model pre-trained on the ChestX-ray8 dataset for training on the paediatric pneu-
monia dataset and froze (rendered untrainable) all but the last linear layer. At the selected
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clipping norm of 1.07 and noise multiplier of 3.0, the privately trained model on the paediatric
pneumonia dataset achieved an MCC of 0.78 at the ε cut-off of 6.0 as described in the main
manuscript, indicating efficient utilisation of the pre-training procedure.

Additional considerations

We note that further improvements in the form of optimal learning rate selection, choice of
optimiser, etc. could have yielded improved performance of our trained model. Moreover,
our procedure relies on purely independent noise sources for each institution which provides
stronger-than-required privacy guarantees without accounting for it, thus likely harming utility.
Results from newer works demonstrate the utilisation of a central noise source in addition to
independent noise to mitigate the utility penalty of our approach [23]. We leave the exploration
of such techniques as an interesting direction for future work.
Importantly, the privacy guarantees offered by our DP implementation are not specific to
PriMIA but are related to dataset size, the DP-SGD algorithm itself as well as the privacy
analysis technique and should be chosen based on user requirements. The privacy guarantee
chosen in our case study was arbitrary and represented a good empirical cut-off between privacy
and utility, with a bias towards higher model utility. Users of PriMIA can choose a different
ε-value for their individual use-case and suited to the privacy guarantees they wish to offer to
the patients included in their dataset. We note also that the choice of numerical value of ε can
be complex and the individual privacy requirements are domain dependent [24].

We chose to utilise DP-SGD since it represents an algorithm with few assumptions which
naturally fits the deep learning model development process and the flexibility of our frame-
work for different modelling use-cases. Alternative approaches to DP model training have been
proposed by Papernot et al., who introduced the Private Aggregation of Teacher Ensembles
(PATE) method [25]. The strong assumptions required for PATE render it unsuitable for our
framework. For one, PATE was not primarily designed as a collaborative training method and
requires strictly disjoint subsets of data, which cannot be assumed in FL workflows. Training
the student requires black-box access to predictions of a non-privately trained model, which in
itself poses a privacy risk [26]. DP-SGD makes no such assumption. Furthermore, the PATE
algorithm was designed for classification, while our framework aims at providing generic medi-
cal imaging analysis functionality such as segmentation, as described in the section above. The
work by Fay et al. [27] attempted to perform federated segmentation using PATE, however the
model only achieved an ε-value of around 125 while still suffering a considerable performance
penalty. More importantly, PATE requires a separate large, public unlabelled dataset repre-
senting the identical task as the one used to train the teacher models. In medical imaging, this
is problematic, as the existence of such datasets cannot be assumed. DP-SGD allows transfer-
learning on arbitrary datasets, as seen above with ImageNET and ChestX-ray8 pretraining,
both different from the three-class classification problem of our case study.

9 Secure Multi-Party Computation overview

As mentioned in the main manuscript, specific SMPC operations (e.g. matrix multiplication)
are conducted in two phases, an offline phase and an online phase. The term preprocessing
phase is also used for the offline phase. We use the terminology from SPDZ ([28]) for these
phases, as our protocol uses a similar implementation [29]. For more details, we refer to [30].

The offline phase is based on the generation of cryptographic primitives. In practice, these
consist of multiplication triples and message authentication codes. The former are required to
perform multiplications [31], the latter are utilised to ensure computational correctness. The
generation of primitives is computationally expensive, which is why it is performed in the offline
phase. After their production, the primitives are distributed to the parties for use in designated
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steps of the protocol. The entity generating the primitives is referred to in PriMIA as the
cryptographic provider. In plain terms, the cryptographic provider is a cryptographically secure
random number generator which never comes in contact with any party’s data. The parties
are only required to trust the cryptographic primitives themselves. Therefore, a cryptographic
provider disjoint from the federation can be chosen, whose interest of preserving their reputation
prevent them from engaging in dishonest behaviour. In theory, primitives can also be generated
by secure hardware devices at each participating institution of the federation, provided they are
coordinated, e.g. by a shared initialisation procedure.

During the online phase, the computations are performed between parties. Primitives are
consumed at every step of the procedure. The cryptographic provider does not participate in
this phase, which occurs between the individual parties. As noted in the main manuscript,
a “stockpile” cryptographic primitives can also be generated ahead of time and distributed
to parties to be gradually used up. Lastly, it should be noted that the utilisation of the
cryptographic provider greatly reduces the time complexity of the protocol. Protocols for two-
party-computation without cryptographic providers also exist (e.g. circuit garbling, compare
[32]) but suffer from unacceptably high latency for neural network inference, which requires a
large number of operations. An overview of the SMPC process in PriMIA is presented in Figure
5.

Figure 5: Simplified conceptual overview of the offline/preprocessing and online
phases of a SMPC protocol. In the offline phase, the cryptographic (Crypto) provider
generates cryptographic primitives and distributes them to the sites. Sites don’t trust each-other
but trust the cryptographic provider, also called a trusted third party. In the online phase, each
site (party) splits their corresponding data or model weights into shares and exchanges them
with other parties to perform computations. Cryptographic primitives are consumed during this
process. The cryptographic provider is not involved in the online phase, which occurs between
individual parties. At the end, the processed shares are united to reveal the result.

10 Synchronisation rate hyperparameter

We here describe empirical results of varying the synchronisation rate σ for otherwise identical
model hyperparameters. We recall that σ represents the number of batches trained on each node
before a(-n) (secure) aggregation pass is performed. Smaller values of σ therefore represent a
more frequent synchronisation, expected to yield the following effects:
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1. Increased input/output burden on the network. Since the models have to be synchronised
more often, network traffic is increased and a net increase in data transmission occurs

2. Increased training time. Since the sending and receiving of models as well as the (secure)
aggregation process require non-trivial time, net training time is increased.

3. Finer weight updates. Since fewer batches elapse before synchronisation takes place, lower
σ values result in reduced gradient accumulation and thus, an overall less smooth gradient
profile.

We expect point (3) to have an effect similar to batch size variation. At a constant batch size
(in our case, 200 samples), an increase in σ is thus expected to result in a smoother gradient
profile and reduced affinity for loss surface minima, risking reduced convergence. This effect is
discussed in [33], notably however, experimentation is only performed on small images (MNIST)
and no deep convolutional neural networks are included. To determine the effect of σ on model
performance, we performed the following experiment: Under otherwise identical deterministic
circumstances and using an identical dataset of 150 randomly selected images per training
node on three nodes and the full validation set, we trained 20 ResNet18 models as described
in the main manuscript with identical hyperparameters except σ, which was varied between
1 (i.e. synchronisation every batch) and 7. Total training time and validation set Matthew’s
Correlation Coefficient were noted for each of the 20 runs. Results are visualised in Figure
6. Corroborating previous findings ([33]), we conclude that the σ parameter represents both
a strong regulariser as well as a central determinant of training time and should be selected
judiciously. In the example shown, for instance, an increase of σ from a value of 1 to a value of
2 would have netted a ca. 15% decrease in training time against a ca. 2% decrease in validation
set performance.
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Figure 6: Influence of the σ parameter on model performance and training times.
The top panel shows the total training time, the bottom panel the classification performance
measured with the Matthew’s Correlation Coefficient, both as a function of the synchronisation
hyperparameter σ.
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[5] I. Mironov, K. Talwar, and L. Zhang, “Rényi differential privacy of the sampled gaussian
mechanism,” arXiv preprint arXiv:1908.10530, 2019.

[6] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomed-
ical image segmentation,” in International Conference on Medical image computing and
computer-assisted intervention, pp. 234–241, Springer, 2015.

[7] P. Yakubovskiy, “Segmentation models pytorch.” https://github.com/qubvel/

segmentation_models.pytorch, 2020.

[8] C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. J. Cardoso, “Generalised dice
overlap as a deep learning loss function for highly unbalanced segmentations,” in Deep
Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support,
pp. 240–248, Springer International Publishing, 2017.

[9] C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,” Foundations
and Trends R© in Theoretical Computer Science, vol. 9, no. 3-4, pp. 211–407, 2013.

[10] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang,
“Deep learning with differential privacy,” Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, Oct 2016.

[11] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural
networks,” in International conference on machine learning, pp. 1310–1318, 2013.

[12] J. Le Ny and G. J. Pappas, “Differentially private filtering,” IEEE Transactions on Auto-
matic Control, vol. 59, no. 2, pp. 341–354, 2013.

[13] I. Goodfellow, “Efficient per-example gradient computations,” arXiv preprint
arXiv:1510.01799, 2015.

[14] G. Rochette, A. Manoel, and E. W. Tramel, “Efficient per-example gradient computations
in convolutional neural networks,” 2019.

[15] P. Subramani, N. Vadivelu, and G. Kamath, “Enabling fast differentially private sgd via
just-in-time compilation and vectorization,” arXiv preprint arXiv:2010.09063, 2020.

[16] H. B. McMahan, G. Andrew, U. Erlingsson, S. Chien, I. Mironov, N. Papernot, and
P. Kairouz, “A general approach to adding differential privacy to iterative training proce-
dures,” arXiv preprint arXiv:1812.06210, 2018.

[17] L. Fan, K. W. Ng, C. Ju, T. Zhang, C. Liu, C. S. Chan, and Q. Yang, “Rethinking
privacy preserving deep learning: How to evaluate and thwart privacy attacks,” in Federated
Learning, pp. 32–50, Springer, 2020.

[18] B. Balle, G. Barthe, and M. Gaboardi, “Privacy amplification by subsampling: Tight
analyses via couplings and divergences,” in Advances in Neural Information Processing
Systems, pp. 6277–6287, 2018.

[19] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[20] Y. Wu and K. He, “Group normalization,” in Proceedings of the European conference on
computer vision (ECCV), pp. 3–19, 2018.

13



[21] A. Davody, D. I. Adelani, T. Kleinbauer, and D. Klakow, “Robust differentially private
training of deep neural networks,” arXiv preprint arXiv:2006.10919, 2020.

[22] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers, “Chestx-ray8: Hospital-
scale chest x-ray database and benchmarks on weakly-supervised classification and localiza-
tion of common thorax diseases,” 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Jul 2017.

[23] C. Sabater, A. Bellet, and J. Ramon, “Distributed differentially private averaging with
improved utility and robustness to malicious parties,” 2020.

[24] J. Lee and C. Clifton, “How much is enough? choosing ε for differential privacy,” in
Information Security (X. Lai, J. Zhou, and H. Li, eds.), (Berlin, Heidelberg), pp. 325–340,
Springer Berlin Heidelberg, 2011.
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Supplementary Note 1: Additional remarks on privacy-utility trade-
off

Varying model architectures
In addition to the ResNet9-architecture reported in the main manuscript, we additionally used three more
architectures: An EfficientNet B0, with 4 017 796 parameters, adhering to the original implementation
proposed by Tan et al. [1], with the sole exception of replacing all batch normalization layers with group
normalization; DenseNet121, with 6 962 056 parameters, following the original design put forth by Huang et al.
[2], again with the exclusive modification of substituting batch normalization layers with group normalization;
and ResNet18, with 11 180 616 parameters, following the original blueprint developed by He et al. [3], with
the unique alteration of replacing batch normalization layers with group normalization. All three models
displayed a trend consistent with the utility penalties we observed for ResNet9 in both DP and non-DP
training. Compare also Supplementary Figure 4.

Further datasets
To prevent domain-specific bias in our results, we employed the Artificial Intelligence for Robust Glaucoma
Screening (AIROGS) dataset [4]. This dataset comprises 101 354 RGB ocular fundus images from approx-
imately 60 000 patients of diverse ethnicities, aimed at detecting the presence of referable glaucoma. We
allocated 80% of the patients—both with and without glaucoma—to the training set, reserving the remaining
20% for the test set. Image pre-processing involved cropping and other schemes as detailed in [5] and [6].
The images were resized to a dimension of 3× 224× 224, with 3 representing the number of channels. We
adopted the same EfficientNet B0 network architecture, with identical DP and non-DP training parameters
as described earlier, with the same δ = 6 · 10−6. The network was pre-trained on the ImageNet [7] dataset.
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Supplementary Figure 10 shows a similar trend as our observations on chest radiographs regarding the
privacy-utility trade-off.
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Supplementary Figures and Tables

Training Set Test Set All
N percentage N percentage N percentage

Total 153,502 39,809 193,311
Female 52,843 (34.42%) 14,449 (36.30%) 67,292 (34.81%)
Male 100,659 (65.58%) 25,360 (63.70%) 126,019 (65.19%)
Aged [0, 30) 4,279 (2.79%) 1,165 (2.93%) 5,444 (2.82%)
Aged [30, 60) 42,340 (27.58%) 10,291 (25.85%) 52,631 (27.23%)
Aged [60, 70) 36,882 (24.03%) 10,025 (25.18%) 46,907 (24.27%)
Aged [70, 80) 48,864 (31.83%) 12,958 (32.55%) 61,822 (31.98%)
Aged [80, 100) 21,137 (13.77%) 5,370 (13.49%) 26,507 (13.71%)
Cardiomegaly 71,732 (46.72%) 18,616 (46.75%) 90,348 (46.74%)
Congestion 13,096 (8.53%) 3,275 (8.22%) 16,371 (8.47%)
Pleural effusion right 12,334 (8.03%) 3,275 (8.22%) 15,609 (8.07%)
Pleural effusion left 9,969 (6.49%) 2,602 (6.53%) 12,571 (6.50%)
Pneumonic infiltration right 17,666 (11.51%) 4,847 (12.17%) 22,513 (11.64%)
Pneumonic infiltration left 12,431 (8.10%) 3,562 (8.94%) 15,993 (8.27%)
Atelectasis right 14,841 (9.67%) 3,920 (9.84%) 18,761 (9.71%)
Atelectasis left 11,916 (7.76%) 3,166 (7.95%) 15,082 (7.80%)

Age Training Set Age Test Set Age All
Mean StD Mean StD Mean StD

Total 66 15 66 15 66 15
Female 66 15 66 16 66 15
Male 65 14 66 14 65 14
Aged [0, 30) 21 8 21 8 21 8
Aged [30, 60) 50 8 51 8 51 8
Aged [60, 70) 65 3 65 3 65 3
Aged [70, 80) 75 3 75 3 75 3
Aged [80, 100) 84 3 84 3 84 3

Supplementary Table 1: Statistics over subgroups of the UKA-CXR dataset used in this study. The upper
part of the table shows the number of samples in each group and their relative share in training and test set,
as well as the complete dataset. The lower part shows the mean and standard deviation of the age in the
subgroups again over training and test sets as well as the complete dataset.
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AUROC Accuracy Specificity Sensitivity

Cardiomegaly 0.84 ± 0.00 0.75 ± 0.00 0.71 ± 0.02 0.79 ± 0.02
Congestion 0.85 ± 0.00 0.75 ± 0.02 0.75 ± 0.02 0.79 ± 0.02
Pleural Effusion Right 0.94 ± 0.00 0.83 ± 0.01 0.83 ± 0.02 0.91 ± 0.02
Pleural Effusion Left 0.92 ± 0.00 0.83 ± 0.02 0.83 ± 0.02 0.86 ± 0.02
Pneumonic Infiltration Right 0.93 ± 0.00 0.85 ± 0.02 0.85 ± 0.02 0.86 ± 0.02
Pneumonic Infiltration Left 0.94 ± 0.00 0.86 ± 0.01 0.86 ± 0.02 0.87 ± 0.02
Atelectasis Right 0.89 ± 0.00 0.78 ± 0.01 0.78 ± 0.01 0.84 ± 0.02
Atelectasis Left 0.87 ± 0.00 0.78 ± 0.01 0.78 ± 0.02 0.81 ± 0.02
Average 0.90 ± 0.04 0.81 ± 0.04 0.80 ± 0.05 0.84 ± 0.04

Supplementary Table 2: Detailed evaluation results of training without DP. The results show the average
and individual area under the receiver-operator-characteristic curve (AUROC), accuracy, specificity, and
sensitivity values for each label tested on N = 39, 809 test images. The training dataset includes N = 153, 502
images.

AUROC Accuracy Specificity Sensitivity

Cardiomegaly 0.82 ± 0.00 0.73 ± 0.00 0.71 ± 0.02 0.76 ± 0.02
Congestion 0.81 ± 0.00 0.72 ± 0.02 0.71 ± 0.03 0.76 ± 0.03
Pleural Effusion Right 0.92 ± 0.00 0.82 ± 0.01 0.82 ± 0.01 0.88 ± 0.01
Pleural Effusion Left 0.89 ± 0.00 0.79 ± 0.02 0.79 ± 0.02 0.84 ± 0.02
Pneumonic Infiltration Right 0.91 ± 0.00 0.84 ± 0.01 0.83 ± 0.02 0.81 ± 0.02
Pneumonic Infiltration Left 0.91 ± 0.00 0.84 ± 0.01 0.84 ± 0.01 0.83 ± 0.01
Atelectasis Right 0.87 ± 0.00 0.78 ± 0.01 0.77 ± 0.01 0.81 ± 0.01
Atelectasis Left 0.85 ± 0.00 0.76 ± 0.02 0.76 ± 0.02 0.79 ± 0.02
Average 0.87 ± 0.04 0.79 ± 0.04 0.78 ± 0.05 0.81 ± 0.04

Supplementary Table 3: Detailed evaluation results of DP training with ε = 7.89, δ = 6 · 10−6. The results
show the average and individual AUROC, accuracy, specificity, and sensitivity values for each label tested on
N = 39, 809 test images. The training dataset includes N = 153, 502 images.

AUROC Accuracy Specificity Sensitivity

Cardiomegaly 0.81 ± 0.00 0.73 ± 0.00 0.70 ± 0.01 0.77 ± 0.01
Congestion 0.81 ± 0.00 0.71 ± 0.02 0.70 ± 0.02 0.77 ± 0.02
Pleural Effusion Right 0.92 ± 0.00 0.82 ± 0.01 0.81 ± 0.01 0.87 ± 0.01
Pleural Effusion Left 0.89 ± 0.00 0.80 ± 0.01 0.80 ± 0.02 0.81 ± 0.02
Pneumonic Infiltration Right 0.90 ± 0.00 0.81 ± 0.01 0.81 ± 0.01 0.82 ± 0.01
Pneumonic Infiltration Left 0.91 ± 0.00 0.82 ± 0.01 0.82 ± 0.01 0.85 ± 0.02
Atelectasis Right 0.86 ± 0.00 0.76 ± 0.01 0.75 ± 0.02 0.83 ± 0.02
Atelectasis Left 0.85 ± 0.00 0.78 ± 0.02 0.78 ± 0.03 0.76 ± 0.03
Average 0.87 ± 0.04 0.78 ± 0.04 0.77 ± 0.05 0.81 ± 0.04

Supplementary Table 4: Detailed evaluation results of DP training with ε = 4.71, δ = 6 · 10−6. The results
show the average and individual AUROC, accuracy, specificity, and sensitivity values for each label tested on
N = 39, 809 test images. The training dataset includes N = 153, 502 images.
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AUROC Accuracy Specificity Sensitivity

Cardiomegaly 0.81 ± 0.00 0.73 ± 0.00 0.68 ± 0.02 0.78 ± 0.02
Congestion 0.80 ± 0.00 0.70 ± 0.02 0.69 ± 0.03 0.76 ± 0.03
Pleural Effusion Right 0.90 ± 0.00 0.80 ± 0.01 0.79 ± 0.01 0.86 ± 0.01
Pleural Effusion Left 0.87 ± 0.00 0.75 ± 0.02 0.74 ± 0.02 0.84 ± 0.02
Pneumonic Infiltration Right 0.90 ± 0.00 0.80 ± 0.01 0.80 ± 0.02 0.83 ± 0.02
Pneumonic Infiltration Left 0.90 ± 0.00 0.83 ± 0.01 0.83 ± 0.02 0.81 ± 0.02
Atelectasis Right 0.85 ± 0.00 0.74 ± 0.02 0.73 ± 0.02 0.82 ± 0.02
Atelectasis Left 0.83 ± 0.00 0.73 ± 0.03 0.73 ± 0.03 0.77 ± 0.03
Average 0.86 ± 0.04 0.76 ± 0.05 0.75 ± 0.05 0.81 ± 0.04

Supplementary Table 5: Detailed evaluation results of DP training with ε = 2.04, δ = 6 · 10−6. The results
show the average and individual AUROC, accuracy, specificity, and sensitivity values for each label tested on
N = 39, 809 test images. The training dataset includes N = 153, 502 images.

AUROC Accuracy Specificity Sensitivity

Cardiomegaly 0.80 ± 0.00 0.72 ± 0.00 0.69 ± 0.02 0.76 ± 0.02
Congestion 0.80 ± 0.00 0.70 ± 0.02 0.69 ± 0.02 0.75 ± 0.02
Pleural Effusion Right 0.90 ± 0.00 0.80 ± 0.01 0.79 ± 0.02 0.86 ± 0.02
Pleural Effusion Left 0.86 ± 0.00 0.73 ± 0.02 0.72 ± 0.02 0.83 ± 0.02
Pneumonic Infiltration Right 0.89 ± 0.00 0.80 ± 0.02 0.80 ± 0.03 0.81 ± 0.03
Pneumonic Infiltration Left 0.89 ± 0.00 0.79 ± 0.01 0.79 ± 0.02 0.83 ± 0.02
Atelectasis Right 0.84 ± 0.00 0.74 ± 0.02 0.74 ± 0.02 0.80 ± 0.02
Atelectasis Left 0.82 ± 0.00 0.70 ± 0.01 0.69 ± 0.02 0.79 ± 0.02
Average 0.85 ± 0.04 0.75 ± 0.04 0.74 ± 0.05 0.80 ± 0.04

Supplementary Table 6: Detailed evaluation results of DP training with ε = 1.06, δ = 6 · 10−6. The results
show the average and individual AUROC, accuracy, specificity, and sensitivity values for each label tested on
N = 39, 809 test images. The training dataset includes N = 153, 502 images.

AUROC Accuracy Specificity Sensitivity

Cardiomegaly 0.79 ± 0.00 0.72 ± 0.00 0.69 ± 0.01 0.74 ± 0.01
Congestion 0.79 ± 0.00 0.67 ± 0.02 0.66 ± 0.02 0.78 ± 0.02
Pleural Effusion Right 0.89 ± 0.00 0.77 ± 0.01 0.76 ± 0.02 0.86 ± 0.02
Pleural Effusion Left 0.84 ± 0.00 0.71 ± 0.02 0.70 ± 0.03 0.84 ± 0.03
Pneumonic Infiltration Right 0.88 ± 0.00 0.80 ± 0.01 0.80 ± 0.02 0.79 ± 0.02
Pneumonic Infiltration Left 0.88 ± 0.00 0.77 ± 0.02 0.77 ± 0.03 0.83 ± 0.03
Atelectasis Right 0.83 ± 0.00 0.74 ± 0.01 0.73 ± 0.01 0.79 ± 0.01
Atelectasis Left 0.81 ± 0.00 0.70 ± 0.03 0.70 ± 0.03 0.77 ± 0.03
Average 0.84 ± 0.04 0.73 ± 0.04 0.73 ± 0.05 0.80 ± 0.04

Supplementary Table 7: Detailed evaluation results of DP training with ε = 0.54, δ = 6 · 10−6. The results
show the average and individual AUROC, accuracy, specificity, and sensitivity values for each label tested on
N = 39, 809 test images. The training dataset includes N = 153, 502 images.
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AUROC Accuracy Specificity Sensitivity

Cardiomegaly 0.79 ± 0.00 0.71 ± 0.00 0.67 ± 0.01 0.75 ± 0.01
Congestion 0.78 ± 0.00 0.68 ± 0.02 0.68 ± 0.02 0.74 ± 0.02
Pleural Effusion Right 0.88 ± 0.00 0.77 ± 0.01 0.77 ± 0.02 0.83 ± 0.02
Pleural Effusion Left 0.84 ± 0.00 0.73 ± 0.01 0.72 ± 0.02 0.80 ± 0.02
Pneumonic Infiltration Right 0.87 ± 0.00 0.79 ± 0.01 0.79 ± 0.02 0.79 ± 0.02
Pneumonic Infiltration Left 0.88 ± 0.00 0.79 ± 0.01 0.79 ± 0.01 0.81 ± 0.01
Atelectasis Right 0.82 ± 0.00 0.73 ± 0.02 0.73 ± 0.02 0.77 ± 0.02
Atelectasis Left 0.80 ± 0.00 0.71 ± 0.02 0.71 ± 0.02 0.75 ± 0.02
Average 0.83 ± 0.04 0.74 ± 0.04 0.73 ± 0.05 0.78 ± 0.04

Supplementary Table 8: Detailed evaluation results of DP training with ε = 0.29, δ = 6 · 10−6. The results
show the average and individual AUROC, accuracy, specificity, and sensitivity values for each label tested on
N = 39, 809 test images. The training dataset includes N = 153, 502 images.

PDAC

Total Male Female Youngest 25% Second 25% Third 25% Oldest 25%

ε µ σ µ σ µ σ µ σ µ σ µ σ µ σ

0.29 24.86 10.7 23.86 9.6 25.54 14.0 20.29 23.9 15.97 7.9 32.10 8.8 27.78 12.0
0.54 11.37 3.2 11.23 3.4 10.82 4.2 8.70 8.7 4.86 2.4 19.14 7.0 10.42 2.1
1.06 5.97 1.7 5.96 1.6 6.06 2.0 2.90 2.5 1.39 2.4 11.11 3.7 6.25 2.1
2.04 2.70 0.9 2.46 0.6 3.03 1.5 1.45 2.5 1.39 1.2 3.09 1.1 4.17 3.6
4.71 1.73 1.0 1.40 0.6 2.16 1.5 1.45 2.5 0.69 1.2 1.85 0.0 2.78 1.2
5.0 2.31 2.0 1.75 1.2 3.03 3.0 1.45 2.5 1.39 2.4 2.47 1.1 3.47 2.4
6.0 3.08 2.3 2.46 2.2 3.90 2.6 1.45 2.5 2.08 2.1 3.70 3.2 4.17 2.1
7.0 1.54 1.2 1.40 1.6 1.73 1.5 0.00 0.0 0.69 1.2 2.47 2.8 2.08 2.1
8.0 0.58 0.6 0.00 0.0 1.30 1.3 0.00 0.0 1.39 2.4 0.00 0.0 0.69 1.2
Non-private 0.77 0.7 0.00 0.0 1.73 1.5 0.00 0.0 2.08 2.1 0.62 1.1 0.00 0.0

Supplementary Table 9: Underdiagnosis rates of subgroups. Underdiagnosis rate is the false positive rate
of non-tumor cases. µ denotes the mean underdiagnosis rate for a certain subgroup, while σ denotes the
standard deviation.

Tumor Control PtD

N Test 173 152

ε µ σ µ σ µ σ

0.29 75.14 10.7 85.09 2.3 −9.94 13.0
0.54 88.63 3.2 86.40 2.5 2.23 5.4
1.06 94.03 1.7 85.53 3.5 8.50 4.7
2.04 97.30 0.9 87.94 1.0 9.36 0.4
4.71 98.27 1.0 90.57 1.9 7.70 2.9
5.0 97.69 2.0 91.01 2.1 6.68 4.1
6.0 96.92 2.3 91.89 1.7 5.03 4.0
7.0 98.46 1.2 90.79 1.7 7.67 2.8
8.0 99.42 0.6 95.39 3.7 4.03 3.5
∞ 99.23 0.7 97.81 1.5 1.42 1.3

Supplementary Table 10: Per Diagnosis Accuracy on the PDAC dataset. PtD is the statistical parity difference
between the tumor and control group. µ denotes the mean, σ the standard deviation over three runs.
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Supplementary Figure 1: Visual overview of the distribution over subgroups
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Supplementary Figure 3: Average results of DP training with different ε values for δ = 6 · 10−6 using
pre-trained weights versus training from scratch. The curves show the average a AUROC, b accuracy, c
specificity, and d sensitivity values over all labels, including cardiomegaly, congestion, pleural effusion right,
pleural effusion left, pneumonic infiltration right, pneumonic infiltration left, atelectasis right, and atelectasis
left tested on N = 39 809 test images. The training dataset includes N = 153 502 images. Note, that the
AUROC is monotonically increasing, while sensitivity, specificity, and accuracy exhibit more variation. This
is due to the fact that all training processes were optimized for the AUROC. Dashed lines correspond to the
non-private training results depicted as upper bounds. The pre-training was done using the MIMIC-CXR
dataset with N = 210 652 images.
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Supplementary Figure 4: Average results of training with DP with different ε values for δ = 6 · 10−6 using
different network architectures. The curves show the average a AUROC, b accuracy, c specificity, and d
sensitivity values over all labels, including cardiomegaly, congestion, pleural effusion right, pleural effusion
left, pneumonic infiltration right, pneumonic infiltration left, atelectasis right, and atelectasis left tested
on N = 39 809 test images. The training dataset includes N = 153 502 images. Note, that the AUROC is
monotonically increasing, while sensitivity, specificity, and accuracy exhibit more variation. This is due to the
fact that all training processes were optimized for the AUROC. Dashed lines correspond to the non-private
training results depicted as upper bounds.
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Supplementary Figure 5: Age histogram of the UKA-CXR dataset. a Training set. b Test set. c Overall.

Supplementary Figure 6: Distribution of comorbidities over the UKA-CXR dataset. Histograms of comor-
bidities are given for different subsets of the dataset including subjects aging in the range of a [0, 30) years
old with a mean of 0.8 ± 1.2 comorbidities, b [30, 60) years old with a mean of 1.0 ± 1.3 comorbidities,
c [60, 70) years old with a mean of 1.1 ± 1.3 comorbidities, d [70, 80) years old with a mean of 1.1 ± 1.2
comorbidities, e [80, 100) years old with a mean of 1.1± 1.3 comorbidities, as well as f females with a mean
of 1.0 ± 1.2 comorbidities, g males with a mean of 1.1 ± 1.3 comorbidities, and h overall with a mean of
1.1± 1.3 comorbidities.
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Supplementary Figure 7: Distribution of comorbidities over the training set. Histograms of comorbidities
are given for different subsets of the training set including subjects aging in the range of a [0, 30) years old
with a mean of 0.8± 1.2 comorbidities, b [30, 60) years old with a mean of 1.0± 1.3 comorbidities, c [60, 70)
years old with a mean of 1.1± 1.3 comorbidities, d [70, 80) years old with a mean of 1.1± 1.2 comorbidities,
e [80, 100) years old with a mean of 1.1± 1.3 comorbidities, as well as f females with a mean of 1.0± 1.2
comorbidities, g males with a mean of 1.1 ± 1.3 comorbidities, and h overall training set with a mean of
1.1± 1.3 comorbidities.
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Supplementary Figure 8: Distribution of comorbidities over the test set. Histograms of comorbidities are
given for different subsets of the test set including subjects aging in the range of a [0, 30) years old with a
mean of 0.9±1.4 comorbidities, b [30, 60) years old with a mean of 1.0±1.3 comorbidities, c [60, 70) years old
with a mean of 1.1± 1.3 comorbidities, d [70, 80) years old with a mean of 1.1± 1.2 comorbidities, e [80, 100)
years old with a mean of 1.1± 1.3 comorbidities, as well as f females with a mean of 1.0± 1.3 comorbidities,
g males with a mean of 1.1± 1.3 comorbidities, and h overall test set with a mean of 1.1± 1.3 comorbidities.

Supplementary Figure 9: Relation of sample size to training performance for private and performance loss
compared to non private training. Each dot marks the performance on the test set on one diagnosis of the
private model at ε = 7.89. Colors indicate the performance loss compared to the non private model.
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Supplementary Figure 10: Evaluation results of the Glaucoma detection task [4] for training with DP with
different ε values for δ = 6 · 10−6. The curves show the a AUROC, b accuracy, c specificity, and d sensitivity
values tested on N = 20 268 test images. The training dataset includes N = 81 086 images. Note, that the
AUROC is monotonically increasing, while sensitivity, specificity, and accuracy exhibit more variation. This
is due to the fact that all training processes were optimized for the AUROC. Dashed lines correspond to the
non-private training results depicted as upper bounds.
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A Threat models

Here, we provide a more concrete explanation of how the risks of re-identification through a data
reconstruction attack are moderated by Differential Privacy (DP). Concretely, we avail ourselves of
the framework of reconstruction robustness (ReRo), which will allow us to formulate an upper bound
on the success rate of data reconstruction attacks against Artificial Intelligence (AI) models trained
with DP under the specific threat models discussed below.

ReRo was introduced by [1]. It is a guarantee pertaining to an algorithm which processes sensitive
data, e.g. an AI model trained with DP. Intuitively, if at most a proportion 0 ≤ γ ≤ 1 of the total
samples used to train the model can be successfully reconstructed by an adversary with a reconstruction
error lower than η ≥ 0, then the model satisfies (η, γ)-ReRo. Recent works have proven that all models
trained with DP automatically satisfy ReRo and that for certain settings, it is possible to directly
quantify the upper bound for γ [1, 2, 3]. In other words, DP automatically provides strong and
quantifiable protection against data reconstruction attacks.

We study the ReRo guarantees of models trained with DP under three distinct sets of assumptions
about the capabilities of the adversary, i.e. three distinct threat models:

1. The worst-case threat model: This corresponds to the adversary usually considered in DP,
namely one who has unbounded computational abilities, can deeply manipulate the model’s
(hyper-)parameters and has access to the target image itself, which they can use to attack the
model. Evidently, this threat model is not realistic (as an adversary who has access to the target
point would not need to attack the model), but is used to provide guarantees when “all bets are
off”, i.e. in a so-called privacy auditing scenario when one is interested in the absolute worst-case
behaviour of a system.

2. The relaxed threat model [4]: This threat model is still quite pessimistic, as it still assumes
unbounded computational ability and access to model (hyper-)parameters. However, this adver-
sary only has restricted access to the dataset, notably, they cannot use the target image itself to
attack the model. Although it renders this threat model more appropriate for scenarios where
the dataset can be safely assumed to be kept secure, e.g. in a hospital’s database, it still makes
assumptions, which are not encountered in any practical scenario. Most importantly, the adver-
sary has a black-box reconstruction algorithm, which yields either a perfect reconstruction or
fails, and the only decision the adversary has to make is whether the reconstruction was indeed
the target data. The term relaxed stems from security research, where a relaxation denotes a
weakening of a security assumption (as can be seen in e.g. [1, 2, 5, 6, 7, 8]).

3. The realistic threat model: The final threat model considers an adversary with unbounded com-
putational ability and the power to manipulate model (hyper-)parameters but only very limited
access to information about the dataset. For example, the adversary can know the dimensions
of the images to be reconstructed but not any of their contents. We note that even this threat
model is relatively pessimistic, as it assumes an active adversary who is trusted and therefore the
actions are not reviewed by other participants. Such adversaries could manipulate the model to
their advantage in order to reconstruct training data. We term this threat model as realistic as
it stems from federated learning research, although in many cases, this could be detected simply
by inspecting the model architecture. Nonetheless, we use this threat model as it is conceivable
that such adversaries can exist in, e.g. federated learning settings in untrustworthy consortia,
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which are common in real-world settings. Protection against this threat model generalizes to all
weaker threat models, such as black-box attacks after training and adversaries lacking the ability
to manipulate the deep learning model or its hyperparameters.

Of note, it is possible to provide theoretical bounds on the reconstruction attack success rate in both
the worst-case and the relaxed threat models using the techniques presented in [2, 3]. For the realistic
threat model, we assess the attack success rate empirically. A concise overview of the aforementioned
threat models is provided in Table 1.

In summary, while conservative (i.e. worst-case or relaxed) threat models are important tools in
security research because they allow one to derive closed-form bounds on the attack success rate of
very powerful adversaries, such threat models are in most reasonable scenarios too pessimistic.

B Setup

B.1 Dataset Description

Here we outline our rationale for choosing specific datasets for our experiments. We identified four
characteristics of medical imaging datasets, which reoccur frequently: (1) Datasets are often small
compared to non-medical datasets. For example, most medical AI algorithms, which are currently
approved by the US Food and Drug Administration (FDA), are trained on less than 1 000 data samples
[9]. (2) Diagnoses occur with very different frequencies, leading to often imbalanced datasets skewed
toward more common diagnoses. In segmentation tasks, this may happen due to different spatial
extensions of objects. (3) While natural images are all captured with standard cameras as RGB
images, medical images are from multi-modal imaging devices such as computed tomography (CT),
magnetic resonance imaging (MRI), or ultrasound.

In this study, we aim to give a broad discussion of settings in medical AI. Hence, we have chosen
three datasets, which encompass the above-discussed scenarios (c.f. Table 2).

1. The RadImageNet dataset [10] contains over 1.3 million 2D images with CT, MRI, and ultrasound
scans representing three imaging modalities with 165 classification targets, which are highly
imbalanced.

2. The HAM10000 dataset [11] is a collection of 10 000 skin lesion RGB images spread across seven
categories. We intentionally amplified the class imbalance to a strong but not untypical 80 : 20
class ratio by merging classes based on the need for immediate treatment (see Section 4.1).

3. Lastly, we use the MSD Liver dataset [12, 13], a demanding image-to-image task involving just
131 CT scans annotated at voxel level. Given the small number of available training samples as
well as a segmentation task (i.e., per-pixel classification) with tumours only encompassing a tiny
fraction of each scan, it represents a very challenging medically relevant task.

To the best of our knowledge, no prior work shows the performance of AI models trained under formal
privacy guarantees on such a comprehensive and large dataset as RadImageNet or a 3D image-to-image
task as MSD Liver represents.

B.2 Metrics

To measure the performance of the models on classification tasks, we use Matthews’ Correlation
Coefficient (MCC) [14]. Opposed to more frequently used metrics such as accuracy or F1-score, it
incorporates the entire confusion matrix and, by that, is extremely robust against any class imbalance
[15]. It is also better interpretable as for random predictions it is 0 and for perfect predictions 1,
whereas the accuracy depends on the class distribution. For the segmentation task, we measure the
class-wise Dice score of the 3D volumes and report the average over all volumes for the liver and
tumour, as they are the targets of interest in our task. A perfect prediction yields a 100% Dice score.
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