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A B S T R A C T

This paper proposes an automated method for creating semantic digital building models using dense point
clouds and images. The method employs a hybrid bottom-up, top-down approach, integrating artificial
intelligence capabilities in scene understanding with domain engineering knowledge to overcome challenges
in indoor 3D reconstruction. The pre-trained PointTransformer semantic segmentation model extracts thirteen
building objects, where the wall and ceiling segments are utilized in a 3D space parsing algorithm. The
parameterized floor plan map is then generated using a data-driven approach, enabling the creation of an
extruded volumetric digital model. Additionally, the YOLO𝑉 8 object detection network recognizes doors and
windows in images derived from projected points of the wall instances. The validation results for six building
datasets with different layouts showcase the effectiveness of the proposed model reconstruction algorithm, with
a mean error of about 7 cm between the parameters of elements in digital reference models and reconstructed
models. This highlights AI’s potential in automating the creation of digital models for the real world.
1. Introduction

Today, Building Information Modeling (BIM) and Digital Twinning
have emerged as transformative technologies within Architecture, En-
gineering, Construction, and Operations (AECO). While BIM offers a
comprehensive digital portrayal of a building’s physical and functional
attributes, Digital Twins (DTs) expand upon this concept by generating
dynamic virtual replicas [1]. In contrast to static models, these replicas
faithfully emulate not only the structural components but also integrate
real-time data to mirror the evolving behaviors and performance nu-
ances of the physical asset. This capability enhances communication
and collaboration for facility management and re-design purposes [2].
At the core of these advancements lies the creation and utilization of
updated digital models encompassing geometry and semantics. These
models incorporate not only the physical shape and layout of structures
but also rich semantic data, capturing detailed information about the
components and functionalities [3,4]. This enables practitioners to
visualize and simulate different scenarios in the built environment and
refine decision-making processes for optimal outcomes.

Recently, significant progress has been made in developing sensors
and reality-capturing techniques that enable the accurate capturing
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of built environments on different scales. Laser scanning technology,
in particular, offers an accurate and efficient means to capture and
analyze building data, aiming to enhance building performance and
sustainability. The process of constructing digital building models using
the laser scanner point cloud entails the generation of a virtual replica
of the physical assets of a building. Despite the potential advantages of
high-density point cloud collection at elevated speeds and precision,
the scanning process for large-scale buildings has consistently been
associated with challenges such as complex space layouts, clutter, and
obstructions. The raw data from sensors such as images and point
clouds needs extensive processing to derive a high-end geometric–
semantic model such as building information models (BIM models)
suitable for engineering purposes.

Currently, creating high-quality digital representations from raw
remote sensing data demands significant manual effort and time. The
developed methodologies for the creation of digital building models are
predominantly sensitive to suboptimal data quality and often face chal-
lenges in effectively reconstructing meaningful objects and establishing
their interrelationships. However, creating an accurate digital building
model grounded in the concepts of BIM and DT needs a comprehensive
understanding of the intricate relationships among assets within the
built environment [5,6].
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Recent technological advancements have transformed AI techniques
into unique solutions in the realms of computer vision and computa-
tional modeling, addressing problems and tasks related to the under-
standing of complex indoor scenes. This research paper aims to propose
a novel framework for the automated creation of parametric digital
building models with rich semantics and coherent geometry (at LOD
200) using a dense laser-scanner point cloud and images. This involves
the representation of a virtual volumetric model of a building system,
where all graphical and non-graphical information, including geometric
properties and spatial relationships, is presented [7].

Most of the developed methods for creating volumetric building
models estimate the parameters of elements individually. In contrast,
our proposed method aims to integrate the advantages of the para-
metric modeling concept and model fitting through optimization to
simultaneously estimate the parameters of the entire model consis-
tently. The proposed method integrates domain engineering knowledge
in the design and construction of buildings with the capabilities of AI
techniques to formulate contextual relations between elements. This
enables the creation of a parametric digital model with consistent
geometry, offering the flexibility to adjust parameter values (such as
length, width, height, and location) during the model reconstruction
process. The resulting parametric digital building models allow for fre-
quent geometric updates throughout their operational lifespan and can
effectively meet specific operational needs, striking a balance between
information richness and practicality.

This paper outlines the principles of the developed research works
in [8,9]. In particular, the main contributions of our current research
are as follows:

• hybrid bottom-up, top-down approach for automatically creating
digital building models.

• Aligning the capabilities of AI methods in scene understanding
with domain knowledge.

• Creation of digital building models through parametric model
fitting.

• Detection of doors and windows in indoor space using an object
detection network.

• Creating digital building models corresponding to the schematic
design at LOD 200.

The paper is structured as follows: Section 2 presents an extensive
iterature review on the developed methods for creating digital building
odels using point cloud data. Section 3 offers a comprehensive the-

retical exposition of the developed methodology. Section 4 presents
everal case studies to substantiate the feasibility of the proposed ap-
roach. Lastly, Section 5 discusses the primary findings of the research
nd outlines the potential avenues for future research directions within
he field.

. Background

Over the last decade, a significant number of studies have explored
arious aspects of creating digital building models under the term
Scan to BIM’, where authors process remote sensing data to generate
igital models. According to the literature, the automatic process of
reating digital models for building structures is typically divided into
wo major steps: (1) point cloud processing for semantic data labeling
nd (2) geometry provision for representing digital models. Among
he various developed methods, this paper specifically focuses on the
econstruction of indoor digital models using point clouds.

.1. Reconstruction of indoor digital models

Point clouds are crucial tools for creating accurate 3D models of
ndoor environments. However, raw point cloud data is typically un-
tructured and challenging to interpret without proper labeling. Seman-
2

ic labeling is a critical process that involves assigning semantic labels
to individual points or groups of points based on their geometrical-
spectral attributes and features. This process is essential for distin-
guishing between structural elements within the environment. Various
algorithms and techniques, such as clustering, semantic segmentation,
and classification, can be employed through data-driven, model-driven
approaches or advanced AI techniques to achieve accurate labeling.

2.1.1. Data-driven or bottom-up approaches
Bottom-up approaches, here denoted also as data-driven methods,

involve direct interpretation from a point cloud, beginning by labeling
several random seed points and gradually extending to all points until
a higher-level surface, volume, or model is achieved. These higher
levels are commonly represented by meshes [10], voxels [11], and
planes [12]. In this regard, normal vectors, curvatures, and RGB values
are typical features used in common data-driven methods such as
Region Growing (RG), Model-based, and Edge-based to differentiate
between the geometrical and spectral details of surfaces ( Table 1).

In [13], the authors developed an automatic 3D reconstruction
framework that used the voxelized point cloud to recognize patches
such as walls, ceilings, or floors based on boundary limits. In [14],
the authors proposed a supervised region-growing method for segment-
ing unstructured point clouds using geometric features like surface
roughness and curvature. In [15], the authors proposed a Knowledge-
driven method that first segments the point cloud into five classes
(including ceilings, walls, floors, beams, and clutter) using a surface-
growing algorithm. The wall-beam center lines are then extracted to
partition the building layout space into individual rooms. Next, a series
of topological rules derived from domain knowledge are applied to
maintain the consistency of walls and beams during model reconstruc-
tion under the Manhattan assumption. In [16], the authors proposed a
pipeline for quickly extracting the vertical elements in dense building
point clouds using image processing and computer vision techniques.
In [17], the authors proposed an adaptive down-sampling method
for segmenting planar and non-planar surfaces. The proposed method
calculates changes in the normal vector direction within a specified
neighborhood to detect the edge points. A similar strategy was later
proposed in [18,19], which used a combination of geometrical features
of planar surfaces and their topological relations (e.g., distances and
parallelism) to reconstruct the indoor volumetric models.

In other studies, researchers have devised techniques employing
mathematical formulas to iteratively fit basic geometric shapes like
spheres, cylinders, and planes to points and cluster them based on the
most correlation with the predefined shapes. In [20], the authors used
the Random Sample Consensus (RANSAC) algorithm to detect planar
surfaces of main structural elements (e.g., walls, floors, ceilings, etc.)
within the point cloud. In [21], the authors developed an automated
algorithm for architectural 3D interior reconstruction from 3D point
clouds. The proposed method employs the Hough Transform to detect
3D planes and then calculate the intersection of merged planes to create
the planar building model.

2.1.2. Model-driven or top-down approaches
The top-down approaches, here denoted as model-driven methods,

ensure the geometrical coherency of building models using predefined
geometry, relations, and constraints (Table 2). In [22], the authors
proposed an automatic method for reconstructing volumetric indoor
models through multi-label optimization. The proposed approach maxi-
mizes visibility overlaps from different viewpoints in indoor spaces and
the point coverages of vertical surfaces. In [23], the authors proposed
a global optimization method for creating parametric 3D models. The
method effectively distinguishes between exterior and interior struc-
tural elements by maximizing the coverage of orthogonality points
projected onto the floor plan. To enhance their previous work, the
authors proposed a novel method for reconstructing volumetric models
for multi-story buildings [24]. They defined the creation of volumetric

digital models as an integer linear optimization problem, maximizing
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Table 1
Overview of the data-driven or bottom-up approaches for the creation of digital building models.

Reference Highlight and details Limitations

[13]
Xiong et al.
(2013)

Modeling the main structural components
Detection and modeling the doors and windows
Robust to the clutter and occlusion

Reconstruction the surface based models
Restrict to the Manhattan-world layout

[14]
Dimitrov and
Golparvar-Fard
(2015)

Use the Region Growing for points segmentation
Employing the surface roughness and local curvature features

Require parameter adjustment
Over segmentation problems

[15]
Xiong et al.
(2023)

knowledge based BIM models reconstruction
Automatic room segmentation
Combining the optimization of room segmentation and geometric

regularization

Restrict to the Manhattan-world layout
Use the distance and angle thresholds

[16]
Vega et al.
(2021)

Detection of vertical objects in large point clouds
Use the image processing over vertical projections
Use deep learning to checks the cross-sections

Require inferring geometric constraints on the target objects

[17]
Qiu et al. (2022)

Develop an adaptive down-sampling method
Keep the critical geometric/semantic information
Geometry-based segmentation to identify edge points and

non-planar points

Require thresholds adjustment

[18]
Macher et al.
(2015)

Multi-scale segmentation of building point cloud
Segment floors, rooms and planes
2D Region Growing for room segmentation
Use RANSAC to separate the 3D planes

Semi-automatic
Require thresholds adjustment
Need for classification of extracted plans into groups such

as walls, columns, etc.

[19]
Nikoohemat
et al. (2020)

Reconstruction of volumetric 3D model
Use geometric features and topological relations to classify planar

surfaces
Reconstruction of spaces based on space-enclosure
Heuristic control rules to verify the consistency of the final 3D

model

Challenges in the reconstruction of columns in walls
Sensitive to the noise points caused by glass reflection
Incapable of detection doors in the closed state

[20]
Arikan et al.
(2013)

Create polygonal models from point clouds
Use the RANSAC to separate the planes and extract the boundary

of polygons
Utilize local adjacency relations among parts to enforce the

connection of elements

Required thresholds adjustment

[21]
Dumitru et al.
(2013)

Use 3D Hough Transform plane detection algorithm
Use the Support Vector Machine (SVM) to detect opening

candidates from extracted lines in the depth images

Require parameter adjustment
Restrict to the Manhattan-world layout
the number of supporting points belonging to the volumetric bounding
surfaces and the probability of the surfaces’ visibility from locations
inside each space. In [25], the authors presented a procedural-based
hybrid method integrating shape grammar and a data-driven approach
that utilizes a reversible jump Markov Chain Monte Carlo (rjMCMC)
algorithm to guide the automated application of grammar rules in
deriving indoor digital models for both Manhattan and non-Manhattan
environments. In [26], the authors introduced a progressive model-
driven approach for the 3D modeling of indoor spaces employing
watertight predefined models. This approach initially segmented spaces
into rectangular and non-rectangular regions with an even number of
sides. Subsequently, a point density occupancy map is used to enhance
the level of detail in the intrusion and protrusion parts of models.

Generally, the major challenge of the model-driven approaches is
accurately defining the basic geometric relationships and constraints. In
contrast, data-driven methods can be utilized in more complex building
designs and allow the creation of digital building models that are
closer to the real world. However, these approaches are particularly
sensitive to data quality, especially regarding occlusion, and their
performance may decline in the presence of challenges such as clutter
or noise. Moreover, they require high-quality data to achieve optimal
performance.

2.1.3. AI techniques for reconstruction of indoor digital models
In recent years, the substantial growth of AI and machine learn-

ing (ML) concepts has yielded promising results in the field of com-
puter vision, particularly in the semantic understanding of large-scale
point cloud data (Table 3). Unlike traditional bottom-up and top-
down data-driven approaches, AI techniques and ML models can learn
3

various characteristics of different datasets without the need for manual
selection and fine-tuning of decisive features.

In this regard, in [27], the authors proposed an automated informa-
tion modeling framework to recognize construction objects and their
properties from point cloud data using an AI approach. The proposed
workflow utilized the PointNet++ architecture to accurately classify
points into twelve pre-defined classes (including building elements,
temporary structures, and equipment) based on the values of XYZRGB
and intensity characteristics. In [28], the authors developed a deep
learning method called Scan2BIM-NET to classify six building com-
ponents, including walls, ceilings, floors, beams, columns, and pipes.
The method utilizes RGB values and geometric features such as normal
vectors and curvature. It employs one CNN for assigning semantic labels
and another for assigning geometric labels, with an additional RNN
used to enforce coherence between the semantic and geometric labels.
In [29], the authors proposed a multi-step algorithm integrating laser
scanner point cloud and RGB images to enrich the geometric digital
building models. The method employs AI-based image segmentation
to extract object classes, including electrical elements, safety elements,
plumbing system elements, and other objects (door signs, board) from
images. These extracted classes are then mapped to the 3D point cloud,
segmenting it into point clusters. Subsequently, to create the digital
building model, geometric primitives’ shapes are fitted to the point
clusters.

In [30], the authors proposed an automated reconstruction method
for creating digital building models. The proposed method initially clus-
ters planar segments per wall element using a parallel region-growing
method combined with a Conditional Random Field (CRF). Next, the
parametric volumes are fitted to each cluster using least squares and
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Table 2
Overview of the model-driven or top-down approaches for the creation of digital building models.

Reference Highlight and details Limitations

[22]
Mura et al.
(2014)

Model-based method for 3D building reconstruction
Robust to the noise and clutter
Automatic room segmentation using construction of cell complex

in the 2D floor plane
Model buildings with Manhattan and non-Manhattan layout

Challenges in modeling slanted wall and ceiling with
different height

Focus on the robust extraction of the basic room shapes
without architectural details

Rely on the assumption that each room contains at least
one scan position

[23]
Ochmann et al.
(2016)

Reconstruction of parametric/volumetric building models
Use a global optimization to determine configuration of walls and

partitioning the spaces
Model buildings with Manhattan and non-Manhattan layout

Challenges in segmentation of spaces which are not
completely enclosed by walls

Require the availability of separate scans
Failure in modeling wall elements which are not connected

to other walls
Modeling only piecewise linear wall structures

[24]
Ochmann et al.
(2019)

Reconstruction of volumetric 3D building model
Employ an optimization method to arrangements of volumetric

wall entities
Incorporate hard constraints to fit a consistent volumetric model

to the observed data
Model buildings with Manhattan and non-Manhattan layout

Problem in computing 3D cell complex
Challenges in modeling the slanted walls and ceilings
Challenges in handling optimization process for very large

datasets

[25]
Tran and
Khoshelham
(2020)

Procedural modeling of indoor environments using point cloud
Employ reversible jump Markov Chain Monte Carlo (rjMCMC) to

automated application of grammar rules in the derivation of a 3D
indoor model

Model buildings with Manhattan and non-Manhattan layout

Limited to buildings with planar surfaces
Challenges in modeling the slanted walls and ceilings

[26]
Abdollahi et al.
(2023)

A progressive model-driven approach for the 3D modeling of
indoor spaces

Robust to the noise, local gaps and clutter

Restrict to the Manhattan-world layout
Over/under segmentation problems
Sensitive to the density of point cloud data
Reconstruction the surface-based models
RANSAC algorithms to extract the wall geometry parameters. Finally,
various connection types, including intersecting, orthogonal, blended,
and direct connections, are employed to reconstruct complete wall
structures with consistent topology.

In [31], the authors developed a deep learning-based automatic
pipeline that initially employs the PointNet semantic segmentation
network to identify building objects within the point clouds. Subse-
quently, the DBSCAN clustering method is utilized to separate 3D object
instances and extract their corresponding bounding boxes. Finally,
information from the extracted bounding boxes is employed to create
parametric object models. In [32], the authors proposed an automated
pipeline combining 3D deep learning and an improved morphological
approach for creating volumetric BIM models. The proposed method
uses the RandLANet semantic segmentation network to separate build-
ing components within the point cloud. Next, a morphological approach
is used to separate individual 3D spaces. Subsequently, the extracted
space boundaries are modified through an energy minimization method
using the Markov Random Field energy function. Finally, a grammar-
enhanced point-line polygon and parametric description are used to
generate the BIM models.

In [33], the authors developed an automated algorithm for creating
BIM models using the Photogrammetric point clouds. The proposed
method utilizes the DeepLab semantic segmentation network to group
elements (e.g., walls, slabs, and columns) in images collected from the
environment. Next, the inverse Photogrammetric pipeline is used to
recognize element categories in the point cloud by projecting isolated
3D planes into 2D images. Finally, the extracted information from
segmented point clouds is used to create the parametric BIM model.

In [34], authors proposed an automatic algorithm for creating ge-
ometric digital models of indoor building environments. The method
utilized a pre-trained KPConv model for the semantic segmentation of
indoor point clouds and extraction of main structural elements, such as
walls, ceilings, and floors. The extracted information is subsequently
employed to detect void spaces and rooms within the indoor envi-
ronment, serving as initial seed points for the proposed void-growing
approach in the creation of geometric digital building models. In [35],
the authors developed a multi-step data-driven algorithm enriched with
4

AI techniques for the 3D reconstruction of building models at LOD
400. The proposed approach employs an AI semantic segmentation net-
work to categorize classes such as doors, door leaves, windows, walls,
ceilings, floors, and clutter. Subsequently, a 2D projection combined
with a neighborhood graph structure is used to partition 3D space
within indoor environments. The RANSAC plane fitting algorithm is
then applied to reconstruct 3D models of walls. Finally, bounding boxes
are fitted to the points corresponding to each individual instance of
door and window elements.

Despite significant progress in the field of AI, the developed net-
works for scene-understanding tasks still face several challenges that
can impede their performance. Generally, the developed networks re-
quire numerous distinct labeled datasets to achieve optimal results
in the learning process. Acquisition of such data for indoor envi-
ronments with complex layouts and cluttered scenes is costly and
time-consuming. In addition, most AI architectures rely solely on local
and global points features for training and decision-making processes
and neglect domain engineering knowledge in building design and the
interaction of elements. Incorporating such knowledge can serve as a
key tool for overcoming common challenges in indoor digital model
reconstruction and converting problems into small, manageable tasks,
ultimately leading to improved overall accuracy in the reconstruction
of digital building models.

2.2. Door and window detection in indoor environment

One of the main tasks in reconstructing a highly detailed digital
building model is the detection and modeling of doors and windows,
which has significant applications in indoor navigation, path planning,
space management, etc. Despite the considerable demand, the auto-
matic detection of door and window elements in indoor environments
from point cloud data faces significant challenges.

During the capturing of indoor environments with a laser scanner,
doors are typically open. Also, the laser beam does not accurately
reflect off the surfaces of glass doors and windows. These result in doors
and windows appearing as void areas on walls. Consequently, most
of the proposed approaches for detecting doors and windows using
point cloud data rely on specific assumptions and are applicable only
to doors and windows in the open state. In [36], the authors proposed
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Table 3
Overview of the AI-based approaches for the creation of digital building models.

Reference Highlight and details Limitations

[27]
Park et al.
(2021)

Automatic recognizing construction objects and their properties
with deep learning approaches

Utilize the PointNet++ architecture to classify points into twelve
pre-defined classes including building elements, temporary
structures, and equipment

Challenges in presenting the relationship between objects and
the shape characterization of objects

[28]
Perez et al.
(2021)

AI based segmentation of building point cloud including planar,
nonplanar and mechanical components

Use the point s neighborhood features such as the surface
roughness, the curvature, and the normal vector

Challenges in group the clutter points into the pre-defined
main classes (walls, ceilings, floors, beams, columns, and
pipes)

[34]
Pan et al. (2022)

Fuse the laser scanning and photogrammetric technologies
Detection of small objects of different classes and texts to improve

the digital models

The manual registration of the photogrammetric and
laser-scanned point cloud

[30]
Bassier et al.
(2022)

Use a parallel region-growing method combined with a
Conditional Random Field to cluster planar segments per wall

Model buildings with Manhattan and non-Manhattan layout

Only reconstruct the wall components not the spaces
Challenge in extracting the planes of small indoor elements

such as columns and shaft panels

[31]
Park et al.
(2022)

A deep learning-based automatic pipeline for generating digital
building models

Use the PointNet semantic segmentation network to identify
thirteen building objects

Creation the parametric object models

Require parameter adjustment
Restrict to the Manhattan-world layout
Challenges to define the parametric models for all

segmented objects

[32]
Tang et al.
(2022)

Use 3D deep learning method and an improved morphological
approach for creating the parametric BIM models

Separate volumetric spaces
Model buildings with Manhattan and non-Manhattan

Low accuracy in the reconstruction of curved wall structure

[33]
Xiang et al.
(2023)

Integrating inverse photogrammetry and the deep learning based
point cloud segmentation

Creation BIM model using parametric IFC elements

Generalization of the 2D semantic segmentation (require
huge training data to cover all objects with different

shapes)
The difference between models and actual scanned objects

[29]
Pan et al. (2023)

Automatic 3D reconstruction algorithm based on the void-growing
method

Use the KPConv model for semantic segmentation of point cloud

Restrict to the Manhattan-world layout
Require parameter adjustment

[35]
Maximilian et al.
(2023)

3D reconstruction of building models at LOD 400
Use AI semantic segmentation networks to categorize classes such

as doors, door leaves, windows, walls, ceilings, floors, and clutter
Use the neighborhood graph structure to partition 3D space

Require parameter adjustment
Error in partitioning 3D space
Low accuracy in modeling doors and windows
a knowledge-based methodology for extracting window elements in
building point clouds. The method utilized information from main
structural elements, such as walls, openings, and roofs, along with fea-
tures including sizes, positions, orientations, and topology to recognize
window elements. In [37], the authors developed a projection-based
algorithm combining semantic features and material characteristics to
detect open doors and windows in laser scanner point clouds. The
method utilizes the RANSAC plane fitting algorithm to separate wall
points and subsequently projects them onto the X–Z and Y–Z planes.
Then, an improved Bounding Box algorithm is employed to identify the
empty regions among the projected wall points, representing potential
open doors and windows.

Recently, researchers have integrated geometric data from point
clouds with spectral information from RGB images to enhance the
accuracy of detection of door and window elements in closed and semi-
open states. In [38], the authors developed a robust algorithm for
detecting open, semi-open, and closed doors in indoor environments.
The proposed method utilized assumptions such as the angle between
detected door points and the corresponding adjacent wall and spectral
characteristics and shadows in RGB images to detect doors in semi-open
and closed states.

In the realm of the use capabilities of AI methods for the detection
of door and window elements, in [39], the authors proposed a hybrid
bottom-up, top-down network for 3D instance segmentation of main
elements, such as walls, ceilings, doors, and windows. The proposed
workflow comprises a soft grouping method and a refinement algorithm
that assigns multiple classes to each point to alleviate issues arising
from semantic prediction errors. In [40], the authors developed a novel
instance segmentation network for separating elements, such as doors
and windows. The proposed network utilizes a hierarchical point group-
ing algorithm to progressively merge semantically segmented points
5

into multi-scale groups, enhancing the clustering of points into instance
proposals. In [35], the authors proposed an automated workflow for
the detection and 3D modeling of key structural elements, such as
doors, door leaves, windows, walls, and ceilings in indoor point clouds.
The workflow begins by computing geometric features (e.g., planarity,
linearity, surface variation, etc.) for individual points. Subsequently, it
utilizes various semantic segmentation networks, including PointTran-
former, RandLA-Net [41], and KpConv [42], to extract main elements
segments. Finally, a bounding box fitting algorithm is employed to
create the 3D model for the detected door and window elements.

Most of the developed AI techniques for point cloud scene un-
derstanding utilize both geometric and spectral features for training
purposes. Due to the complexity of indoor environments and the simi-
larity between the geometric features of closed doors and windows with
other structural elements such as walls, distinguishing between these
points can become challenging.

2.3. Methods for representation of geometric digital models

3D visualization is a crucial requirement for the development of
digital building models, playing a key role in providing a quick and
highly detailed representation of the real world. A 3D digital model
offers crucial capabilities to experts and planners, enabling them to
navigate and simulate within the 3D environment. Meanwhile, one
of the essential features required for presenting a comprehensive and
dynamic digital representation of built environments is the ability to
update the model by adding metadata, semantics, or updating the
shapes. In this regard, various methods have been developed in the
literature to represent a 3D digital model, including implicit repre-
sentation, boundary representation (B-rep), procedural modeling, and

parametric modeling. Specifically:
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Implicit Representation: The implicit shape representation is a
method that involves defining symmetric surfaces and primitive objects
using mathematical equations in Euclidean space. Implicit methods
utilize functions, such as F(x, y, z), to represent curves and surfaces
of objects with arbitrary constructive topology [43].

Boundary Representation (B−rep): The boundary representation
method is a technique for representing 2D or 3D objects based on their
vertices, edges, and loops and their topological relationships to form
the object. In this method, vertices are defined by their coordinates (x,
y, z), and lines (straight or curved) or faces are described by parametric
equations [44].

Procedural modeling: The procedural modeling is a method used
to create diverse base models by applying a set of rules, algorithms,
or operations such as sweeping, extrusion, and chamfering. Due to its
consideration of the workflow in creating geometry and topological
integration, has the ability to update base models without creating
an entirely new model. In this context, Constructive Solid Geometry
(CSG) is known as a subset of procedural modeling that creates models
of objects by combining 3D primitive shapes (e.g., cuboids, cylinders,
spheres, cones, etc.) or a combination of them through operations such
as union, intersection, and difference [45].

Parametric Modeling: The parametric modeling is a method used
to create a dynamic geometric model that can be manipulated and
adopted by changes to its steering parameters. In the parametric mod-
els, rules create relationships between different parts of the elements,
and any change in the model is handled automatically by internal logic
arguments [46,47].

While solid modeling methods of Implicit Representation, B-rep,
and Procedural modeling offer precise and accurate representation
of models by explicitly defining boundaries and surfaces, they en-
counter challenges in handling complex relationships between elements
of the model. These methods often demand more effort for exten-
sive changes and modifications. In contrast, the parametric modeling
approach maintains a parametric format using a set of functions, fa-
cilitating effortless modification of geometry through adjustments to
parameter values, dependencies, constraints, and the incorporation of
metadata and semantic information. This adaptability proves particu-
larly advantageous in the realms of BIM and digital twinning, where
bidirectional links facilitate the updating of existing volumetric digital
models based on input values [48].

In the realm of digital building model reconstruction, existing lit-
erature defines the parametric modeling process as a combination of
model reconstruction followed by setting the geometric rules [23].
Additionally, in certain research studies, building parametric model-
ing has been conceptualized as floor plan generation through a set
of inputs and rules, capable of systematically generalizing arbitrary
constraints [49,50]. Nevertheless, an effective approach for creating
a digital building model with coherent geometry and rich semantics
should integrate the principles of parametric modeling into the model
reconstruction process. This integration ensures accurate estimation
of model parameters and guarantees consistency among the different
components of digital models.

2.4. Research gap

Today, the concept of DTs has been extended to indoor environ-
ments to support building management and planning during the op-
eration phase. Despite all the progress made, the automatic creation
of digital building models using point cloud data has always been
associated with challenges in handling large-scale data processing, un-
derstanding the topological relationships between elements, etc. These
aspects represent obstacles to the automatic creation of volumetric
digital models with rich semantics and consistent geometry.

Most developed methods for creating digital building models from
indoor point cloud data are based on data-driven bottom-up
6

approaches. In these methods, the data is initially segmented into
sub-individual segments, such as object or surface instances, and 3D
parametric models are then fitted to these objects. These methods
often require future post-processing steps to address the geometric
inconsistency. The developed model-driven approaches also utilize
domain knowledge to create 3D models with consistent geometry.
However, these approaches mainly rely on significant assumptions
(e.g., Manhattan layout, equality of height and thickness of walls) and
thresholds (e.g., angle and distance). These hinder the development of
a generalized algorithm, restricting its applicability to only a limited
range of buildings with specific layouts and designs. Nonetheless, to
tackle these issues, an effective parametric modeling approach could
additionally incorporate parametric design principles into the model re-
construction process by defining rules, dependencies, and relationships
between different parts of the digital system. This results in accurately
estimating the object’s parameters and ensures geometric consistency
between different components of digital models.

Most algorithms that detect doors and windows using point cloud
data suffer from low accuracy and often require the adjustment of
threshold values. While AI semantic segmentation models can achieve
high accuracy in separating main building elements (e.g., walls, ceil-
ings, and floors), the geometric and spectral features similarity between
door and window elements and other building elements and the pres-
ence of clutters lead to significant errors. Consequently, point cloud
semantic segmentation outcomes are not reliable enough for accurately
creating digital building models, especially for door and window ele-
ments. Additionally, methods that utilize geometric features from point
clouds and spectral information from RGB images are only feasible
when the environment is captured synchronously using the laser scan-
ner and camera sensors or the photogrammetry technique is used to
generate a point cloud from images. In our proposed method, following
the reconstruction of the digital models of the building structure, an AI
object detection network is employed to detect and model the doors and
windows elements in images of projected wall points. This approach
eliminates the need to capture images using camera sensors and can
detect the door and window elements in different states. Further in-
sights into the proposed methodology will be elaborated upon in the
subsequent section.

3. Proposed method

This section outlines the proposed workflow for creating param-
eterized digital building models using the dense RGB point cloud
(Fig. 1). The proposed hybrid bottom-up, top-down method aligns AI
capabilities in scene understanding with domain knowledge in the
design and construction of buildings to increase accuracy and effi-
ciency in large-scale raw building point cloud processing. First, an AI
semantic segmentation network separates the main building structural
elements, clutter, and furniture components within the indoor point
cloud. Subsequently, the derived information of wall and ceiling seg-
ments is utilized in a knowledge-based 3D space parser algorithm that
converts complex indoor environments into individual spaces. The top-
down approach involves designing parameterized building models that
represent the current spatial layout of the environment and mirror the
typical topology of buildings. The main idea is to utilize a data-driven
method to design a parametric digital building model with sufficient
freedom and a high consistency level, enabling the update of geometry
by manipulating and changing parameter values. The designed para-
metric model is then fitted to the observed point cloud data using an
optimization process to estimate the best values for the entire system’s
parameters, allowing it to accurately reflect the real environment. This
involves estimating dimensional parameters and simultaneously finding
the optimal location of the elements using internal logic arguments.
To enhance the LOD of the reconstructed digital model, an AI object
detection network is employed to detect doors and windows with any
state (e.g., open, semi-open, and closed) in the indoor point cloud and
integrate them into the digital building model. Further details of each

step are provided in the following subsections.
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Fig. 1. The proposed workflow for automatic creation of highly parameterized digital building model using laser scanner point cloud.
Table 4
Parameters of pre-trained semantic segmentation model using
PointTransformer network.
Parameter Value

Model:
Input channels 6
voxel size 0.04
Max voxels 50 000
Number of points per voxel 40 960
Max epoch 512

Optimizer:
Learning rate 0.01
Momentum 0.9
Weight decay 0.0001

3.1. Semantic enrichment

3.1.1. Semantic segmentation of indoor point cloud
Indoor scenes inherently involve the frequency of objects, complex

space layouts, clutter, and obstructions. Ceilings, floors, and walls are
the main structural elements of a building that play crucial roles in
determining the entire structural property and space layout. Conse-
quently, the first step in the proposed method involves performing
semantic segmentation of the indoor point cloud to separate these main
elements that comprise the building’s structure.

In this study, we utilize a pre-trained semantic segmentation model
based on the PointTransformer network [51]. The PointTransformer
is a novel and efficient semantic segmentation network that uses the
self-attention layer with a combination of simple linear layers and a
multi-layer perceptron (MLP). The PointTransformer layer is invariant
to permutation and cardinality and is thus inherently suited to point
cloud processing. Table 4 shows the configuration and values of the
hyper-parameters used in training the network. The values were se-
lected based on the recommendation in [51], which were determined
through fine-tuning within certain ranges.

To train the network and label the main structural elements within
the point cloud the Stanford 3D dataset (S3DIC) is used. The S3DIC
dataset is a well-recognized benchmark for the 3D indoor point cloud
processing tasks, comprising thirteen object classes including Ceiling,
Floor, Wall, clutter, and Furniture, and encompasses data from six dis-
tinct building areas, as illustrated in Fig. 2 [52]. Specifically, the
PointTransformer network is trained on areas 1–4 and 6 and subse-
quently evaluated its performance on semantic segmentation of area
5. This distribution is designed to fulfill the requirements of adequate
training data, effective generalization assessment, computational effi-
ciency, and the mitigation of data imbalance. As mentioned earlier,
the primary objective of this step is to separate ceiling, floor, and wall
7

points. In this context, the PointTransformer network has achieved
an average accuracy of approximately 93% for segmenting the main
structural elements, demonstrating its superiority over other AI seman-
tic segmentation networks [51]. Table 12 presents a comparison of
the overall accuracy of the indoor point cloud semantic segmentation
using the Point Transformer network with other developed network
architectures.

3.1.2. 3D space parsing
Individual rooms and spaces constitute the main building blocks,

significantly influencing the structural foundation of a building. Parti-
tioning and separating individual spaces in the environment, along with
the inference of prevailing topological relationships between them, are
important in creating an accurate and precise virtual representation of
a building.

The proposed method utilizes the developed algorithm in [8] to suc-
cessfully partition 3D spaces, including rooms, hallways, etc. (Fig. 3). In
this regard, first, the ceiling points in th distance from the wall’s points
are removed from the ceiling segment. This results in the remaining
ceiling point clouds being scattered segments that are distant from the
exterior and common shared walls. Then, the density-based clustering
method (DBSCAN) is applied to group sparsely distributed remaining
points of the ceiling segment into unique clusters [53]. This separates
points with high density within a specific neighborhood radius from re-
gions of lower density. Finally, a hierarchical nearest neighbor method
is employed to assign the closest cluster label to each 3D point in the
building point cloud space including structural elements (e.g., wall,
ceiling and floor, column, etc.) and furniture or clutter (e.g., board,
sofa, chair, etc.)(Fig. 3b).

The algorithm does not require prior knowledge, such as the layout
of indoor environments or the location of sensors, to separate the
spaces. The th distance for removing ceiling-to-wall points and the
distance tolerance for the DBSCAN clustering are the key parameters of
the employed method for 3D space parsing. These parameter values are
set based on the average width of interior walls in the type of buildings
being considered. The pseudo-code for the developed method for 3D
space parsing is presented in Algorithm 1.

In building floor plans, individual spaces are separated by common
walls and connected through openings. The adjacency graph represents
the space allocation in the scene, offering diverse processing possibil-
ities for BIM, re-purposing, and redesign applications. The adjacency
graph, denoted as 𝐺, can be represented by a symmetric matrix of
order 𝑛×𝑛. It is defined as 𝐺(𝑉 ,𝐸), where vertices represent individual
spaces, and edges indicate adjacency between two spaces. In the realm
of indoor digital model reconstruction, the adjacency graph 𝐺 plays
a crucial role in creating a parametric indoor digital model with rich
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semantics and coherent geometry, especially in representing the linkage
and interaction between individual spaces. In this research, the method
of calculating the distance between the point clouds of space instances
with a neighborhood tolerance threshold is used to determine the
adjacency relationships (Fig. 3c) [19].

Algorithm 1 3D space parsing of indoor point cloud
Input:
One point pS ∈ S, laser-scanned point cloud set S;
One point pi ∈ C, Ceiling point cloud set C;
Wall point cloud set W ;
The Ceiling to Wall points distance threshold D;
The minimum number of points per space’s cluster M ;
Function to calculate the distance of a query point pi in C from all
points of W in 3D space PointToPointcloudDist();
Function for density-based clustering of remaining Ceiling point
cloud
set C’ DBSCAN();
Function to count the number of points in clusters PointsInCluster();
Function to assign the cluster id of the remaining Ceiling point
cloud
set C’ to the Laser-scanner point cloud set S using nearest
neighbor method AssignLabelToPoints();
Initialize:
List used to save remaining Ceiling point cloud set C’ ;
List used to save all labels of DBSCAN() result l;
List used to save labels for all points in S point cloud set L;
Algorithm:
for pi ∈ C do
if PointToPointcloudDist (pi, W) < D

remove pi from C
end if

end for
l = DBSCAN(C’)
for all l’ ∈ l do
if PointsInCluster ( l) <= M

remove l’ from l
end if

end for
for pS ∈ S do
L(pS)=AssignLabelToPoints(pS,l)

end for

.1.3. Wall instances separation
Despite the semantic segmentation network’s high average accu-

acy in separating main structural elements, wall segment extraction
xhibits the lowest accuracy when compared to ceiling and floor seg-
ents. The resemblance in geometric and spectral features between
alls and other environmental elements can lead to inaccuracies in

egmenting the wall points. The proposed method employs a bottom-
p knowledge-based approach to detect the wall footprints in each
nclosed space and subsequently separate individual 3D wall instances.

The ceiling and wall elements share common outer and inner bound-
ries within an enclosed space. In this context, the boundary points of
he ceiling can be utilized to extract the footprint of the walls (i.e., the
esult of projecting the wall points into the 2D X–Y plane) for each
ndividual 3D space. Within a closed space featuring intersecting walls,
lterations in the principal component analysis (PCA) parameters of
all instances can indicate breakpoints or abrupt changes. These abrupt

hanges act as endpoints for each wall instance, signifying alterations
n curvature. In this method, the Mean Shift [54] algorithm is initially
mployed to extract the ceiling’s boundary points per spaces (Fig. 4a).
ubsequently, the PCA coefficient values are calculated for each bound-
8

ry point p by considering its k neighbor points and determining the
covariance matrix, denoted as c, through Eq. (1):

𝑐 = 1
𝑘

𝑛
∑

𝑖=1
(𝑝i − 𝑝̄).(𝑝i − 𝑝̄)𝑇 (1)

here k is the number of neighboring points, pi and p also refer to
he coordinates of the boundary points being considered. The boundary
oints are subsequently grouped into three different groups depending
n their orientation based on their PCA coefficient values. The points
arallel to the X–Z plane, the ones parallel to the Y–Z plane, and the
est that are perpendicular to the X–Y plane, but do not belong to the
revious groups. From the top view perspective (X–Y), as illustrated
n Figs. 4b and 6, these groups can be denoted as vertical, horizontal,
nd inclined classes. In this regard, the corresponding ceiling boundary
oints are classified into these three classes (as in Fig. 4b). In order to
roup the boundary points that correspond to the same wall instances
such as the pink wall in Fig. 4c), the DBSCAN clustering algorithm is
mployed, as shown in Fig. 4c. Finally, the points corresponding to each
all within the 3D space are extracted from the original point cloud
y considering the buffer b around the wall instances. The method can
ffectively separate and group wall instances based on their orientation,
articularly in datasets that may include clutter and gaps resulting from
he presence of glass or mirror materials.

.2. Digital model representation

.2.1. Design the parameterized building model
Common methods for creating solid geometric models often employ

ata-driven approaches, utilizing techniques such as the RANSAC algo-
ithm or least-squares optimization to fit lines and planes to each wall
nstance individually. Despite their reliable geometric accuracy, these
ethods frequently result in digital models with inconsistent topology,

pecifically in the spatial arrangement and connectivity of points or ver-
ices representing the surfaces and structures within the building. These
ethods often necessitate subsequent post-processing steps to address

he inconsistencies, considering certain assumptions and thresholds.
his limits the method’s applicability to specific building designs and
ay also displace the wall instance from its previously determined posi-

ion in the line-plane fitting step, thus reducing geometric accuracy. To
ddress the problems and limitations, we propose a top-down approach
o creating digital building models with rich semantics and coherent
eometry by designing a prototypical, parameterized digital model.

The first step to designing a parameterized digital building model
nvolves creating a reference model. This model can be a rough rep-
esentation of the building floor plan, generally depicting the current
ayout of spaces and the locations of walls in the environment. In
his regard, information extracted from the 3D space parsing and wall
nstance extraction steps is utilized to generate an initial floor plan
ask through a plane–plane intersection method (Fig. 5b).

After creating the initial floor plan mask, it is extended into a
D volumetric representation, this model is created with the Revit
PI. Next, a set of geometrical–mathematical rules and constraints are
onsidered and applied as internal relations between system elements
Fig. 5c). These define the type of interaction between system elements
e.g., walls, slabs, etc.) and specify the degree of freedom and the
omain of changes for the parameters of these elements. The logic
ehind these rules and constraints stems from existing engineering
nowledge in the realm of BIM and building design. For instance, office
uildings are typically designed based on the ’Manhattan world’ as-
umption. This defines the perpendicular connection between elements
nd limits their positional movement within a specific domain and
irection. As a general approach, in the designed parametric digital
uilding model, each wall instance can have one of three possible
rientations: horizontal, vertical, or inclined. We define the type of
nteraction between each wall instance and its connected walls. Fig. 6
llustrates the possible direction of movement for each sampled wall
nstance.
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Fig. 2. Semantic segmentation of indoor point cloud: (a) original point cloud of S3DIC Area (5) data, (b) the semantic segmented point cloud.
Fig. 3. 3D space parsing of the indoor point cloud using the developed method in [8]: (a) original point cloud, (b) partitioned 3D spaces, (c) the adjacency graph of 3D individual
spaces.
Fig. 4. Wall instances extraction using the developed method [8]: (a) the extracted ceiling boundary points using Mean Shift method, (b) group the boundary points based on
their orientation using PCA coefficient, (c) separated wall instances.
The design of the parameterized building models using the proposed

method maintains semantic information and enhances topological con-

sistency. This ensures that any change in the internal parameters of

a wall, such as length and height, logically affects other related wall

elements (Fig. 7).
9

3.2.2. Optimizing the parameters of digital building model

Despite the consistent semantic topology, the designed parametric
model might exhibit low geometric accuracy regarding element prop-
erty values and their positions within the environment. The initial
values of element parameters are extracted from the floor plan mask
creation step. Next, the volumetric model is further refined by fitting to



Advanced Engineering Informatics 62 (2024) 102643M. Mehranfar et al.
Fig. 5. Design the parameterized building model: (a) separated 3D wall instances, (b) initial floor plan mask, (c) digital building model extruding from floor plan mask (ceiling
were removed for better visualization).
Fig. 6. The possible movement directions for wall instances within the designed
parametric model.

Fig. 7. Designing the parameterized digital model of the building’s structure, the
process of changing the value of the parameters.

the point cloud data using the Nelder–Mead optimization method [55]
to extract optimal values for the model’s parameters (Fig. 8).

Indoor environments are often occluded by furniture and clutter.
Consequently, utilizing a data-driven model reconstruction method
that optimizes the parameters of each wall individually can result in
geometric inconsistencies in the final model, particularly in the case
of highly occluded wall instances. In this context, while using global
optimization for parametric model fitting may increase computational
complexity, it effectively maintains logical consistency throughout the
entire model reconstruction process. The algorithm utilizes the type of
movement and interaction to adjust the position and length of the wall
instances.
10
Fig. 8. Fitting the parameterized digital building model to point cloud data using
Nelder–Mead optimization.

For the optimization process, the overall Points-To-Model distance is
the objective function to create accurate geometric models by optimiz-
ing the dimensional properties and locations. This involves calculating
the distance of points from the surfaces of the digital model. In this
context, achieving the lowest value for Points-To-Model distance indi-
cates a superior adaptation of the digital model to point cloud data and
greater accuracy in estimating model parameters towards their actual
values.

Accurately estimating the width of walls shared between spaces is
the main challenging task in creating a volumetric building model.
Existing literature has introduced various techniques for estimating
wall width, relying solely on different assumptions and thresholds. The
proposed methods involve considering tolerance for detecting corre-
sponding parallel wall segments and calculating their average point
distance as thickness [24,56]. These methods are heavily influenced by
noise and clutter and require tolerance adjustment for different build-
ing data. To address the problem, we treat the width values for shared
walls as unknown parameters in the optimization problem. Walls are
considered as boxes with dimensions (width, length, height) and are
allowed to have different values during the model fitting process. Addi-
tionally, exterior walls, appearing as single planar surfaces, often yield
width values of around 1–3 cm through the optimization process. To
tackle this issue, a modification is implemented, adjusting the attributes
of these walls. Their width is considered with the minimum value
observed in the width of shared walls within the respective models.

In designing and optimizing the parametric digital building model,
the degrees of freedom are proportional to geometric complexity,
specifically the number of walls. This encompasses properties such as
wall length, width, height, and their location in 2D space ( Table 5).
These unknown parameters are incorporated into the optimization
problem as both explicit and implicit mathematical equations with
geometric constraints. The type and number of equations, as well as
unknown values in the optimization problem, vary according to the
case study.
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Fig. 9. Transforming the projected wall points into RGB images: (a) projected wall instance points, (b) resulting RGB image.
Table 5
Encoding unknown parameters of the highly parameterized digital building model.

Building element Xcorner Ycorner Parameters

Length Thickness Height

Wall (1) P1 P2 P3 P4 P5
Wall (2) P6 P7 P8
Wall (3) P9 P10 P11
... ... ... ...

Building model Rz (the parameter of rotation model around Z axis)
P1, P2 serve as the origin for applying partial 2D shift

3.3. Door and window detection

In this research, we propose a novel approach for detecting door
and window elements in an indoor environment. First, after fitting the
digital model of the building structure to the point cloud, the points
with a 1 m distance around each wall instance are extracted. This
ensures all points belonging to the wall surfaces and elements around
are well considered. Subsequently, the points belonging to one of the
two walls’ surfaces are projected onto the X–Z and Y–Z planes (Fig. 9a).
Then, a method involving griding and sampling with dimensions of d is
employed to convert the representation of the point cloud into an RGB
image (Fig. 9b). The average spectral values of the points within each
grid cell are used to estimate the spectral values of the image pixels.
In this context, setting small values for the parameter d as sampling
distance enhances image quality but results in an increase in the
processing time. The resulting images encompass points representing
the wall, doors, and windows, as well as all other elements installed
close to the surfaces of the wall, as illustrated in Fig. 9.

The proposed method leverages the advantages of AI techniques
by employing the YOLOv8 object detection network to detect door
and window instances in open, semi-open, and closed states [57].
YOLOv8 utilizes a single neural network to predict bounding boxes
and class probabilities directly. Its single-stage architecture allows for
a faster training process compared to other architectures, such as Mask
R-CNN [57,58].

To train the network, a comprehensive image dataset from two
individual sub-categories was compiled, as shown in Fig. 10. The first
dataset consists of 214 normal RGB images taken from various build-
ings at the Technical University of Munich (TUM), showcasing door
and window instances in all three possible states: open, semi-open, and
closed, with different materials such as timber, glass, and aluminum.
Additionally, another dataset comprising 89 images from projected
wall points of TUM point cloud datasets was provided to fulfill the
diverse training dataset requirement. This inclusion helps minimize
challenges arising from differences in image scale, light conditions,
and spectral values between normal RGB images and the resulting
11
Table 6
The hyperparameter values employed in training the object
detection network using the YOLOv8 architecture.
Parameter Value

Image size 640
Batch size 8
Epoch 150
Learning rate 0.001
Solver Adam

Table 7
Accuracy evaluation of trained network for door and window detection, mAP (Mean
average precision at IoU thresholds of 50 and 50–95).

Class Precision Recall mAP(50) mAP(50–95)

Doors 0.94 0.86 0.95 0.77
Windows 0.93 1.00 0.95 0.69
All 0.94 0.93 0.95 0.73

images from projected wall points. To facilitate the network training
process, bounding boxes corresponding to door and window elements
are meticulously annotated within the acquired images. Then, the an-
notated dataset is partitioned into training and validation subsets, with
ratios of 80% and 20%, respectively. This ensures an effective balance
between the robustness of model training and the rigor of assessing its
generalization performance on an independent subset. Table 6 shows
the hyper-parameters used for training the object detection network.

To assess the network’s performance, annotated element instances
in images are compared with the detected instances using standard
metrics: Precision, Recall, and mAP, using Eqs. (2)–(4):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(2)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(3)

𝑚𝐴𝑃 = 1
𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝛴𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠
|𝑇𝑃 c|

|𝐹𝑃 c| + |𝑇𝑃 c|
(4)

Where TP, TN, FP, and FN represent true positive, true negative,
false positive, and false negative, respectively. In this regard, the mean
average precision (mAP) of about 95% in the learning process high-
lights the effectiveness of the utilized object detection network in the
detection of door and window elements. As can be seen in Table 7, these
values are all above 86%. Also, the precision–recall curve, presented
in Fig. 11, illustrates the model’s capabilities in balancing precision
and recall, showcasing its ability to accurately detect relevant instances
while minimizing false positives.
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Fig. 10. The TUM image dataset provided to train the door and window detection network.
Fig. 11. The Precision–Recall Curve of training the object detection network for door
and window detection.

3.3.1. Representation of doors and windows digital model
After detecting the door and window elements in the images, the

coordinates of the detected bounding boxes are projected back from
2D onto the 3D point cloud of the corresponding walls using reverse
mapping. In some cases, the presence of gaps and defects in specific
parts of the projected wall points may result in mislabeling of detected
door and window instances. To address the problem, the heights of
the detected bounding boxes are examined. The door elements are
consistently connected to the building floor. In this context, considering
a confident distance of 25 cm, any door-bounding boxes detected
beyond this distance from the building floor height are relabeled as
windows. Also, errors in the transformation of projected wall points
into images, and the detection of door and window pixels using the
trained object detection network can lead to deviations in the dimen-
sions of the detected elements from their actual values. In this regard,
a library of door and window elements, including their dimensional
characteristics, used in the construction of buildings is compiled, a
subset of this library is shown in Fig. 13. To model the door and window
elements accurately, the closest model is selected from the library
based on dimensional parameters (width and height). Subsequently,
the selected model is utilized to replace the primitive dimensions of
the detected elements with their actual dimensional parameters. This
results in an enhancement of reconstruction accuracy for detected door
and window 3D digital models, as well as improved geometric and
structural integrity in the reconstructed digital model(Fig. 12).
12
Fig. 12. Parameterized digital building model, with the appropriate representation of
doors and windows in the reconstructed digital model.

4. Experimental result

4.1. Case study

In this research study, six distinct indoor point cloud datasets from
different buildings of the TUM city campus and NavVis company build-
ing office are considered to evaluate the performance of the proposed
method for the automatic creation of digital building models with rich
semantics and coherent geometry. The building datasets are primar-
ily utilized for educational and research purposes, featuring various
areas such as offices, libraries, meeting rooms, hallways, etc. as can
be seen in Tables 9–10. Table 8 presents the main characteristics
of the datasets. The proposed approach is implemented in Python
and MATLAB on a research computer (11th Gen Intel(R) Core(TM)
i7-1165G7, with 16.0 GB1053 memory). The considered evaluation
metrics encompass various aspects of the proposed method, includ-
ing accuracy, efficiency, and scalability in crucial terms of geometry
and semantics. This comprehensive analysis provides insights into the
potential practical implementation of the method for creating digital
building models in the real world.

4.2. Experimental results of point cloud semantic enrichment

4.2.1. Semantic segmentation of indoor point cloud
To assess the effectiveness of the employed network for accurately

labeling the points, the manually annotated ground truth data is com-
pared with the result of the semantic segmentation network. For each
dataset, the standard quality metrics of class-wise intersection over
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Fig. 13. Subset of the library of parametric door and window elements (https://www.autodesk.de & https://www.bimstore.co).
Table 8
Overview of data used in this research.

Dataset Length
(m)

Width (m) Number of
points

Avg density
(r = 1 cm)

NavVis office
building

34.03 35.41 56.244.568 9

TUM main
entrance

61.61 23.28 37.595.228 6

TUM - Floor (2) 34.42 47.70 11.308.120 2
TUM - Floor (3) 18.26 32.88 13.239.024 2
TUM - Floor (4) 19.58 34.94 10.027.980 2
TUM CMS chair 32.98 59.73 40.506.234 4

union (IoU) and mean of class-wise accuracy (mAcc) for extraction of
main structural elements are calculated (Table 11).

𝐼𝑜𝑈 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(5)

According to the results, the overall mean IOU for semantic segmen-
tation of main elements across all building datasets is about 89.5%.
In this regard, the accuracy of separation of the wall points is lower
than that of other elements. Several factors can contribute to this
challenge, including the complexity and clutter present in office spaces,
the similarity in geometric and spectral features between building
elements and furniture, as well as the presence of outlier points (related
to elements made with glass and mirrors). These challenges are often
inherent in building environments, and addressing them necessitates
13
the preparation of extensive and diverse datasets to achieve optimal
performance in training the semantic segmentation network.

To assess the performance of the employed network for extraction
of the main structural elements, a quantitative comparison is conducted
between the results of PointTransformer network and other developed
architectures, including KPConv and RandLA-Net (Table 12). The mod-
els are similarly trained with S3DIC area 1–4 and 6 datasets and tested
on building datasets.

According to Table 12, the PointTransformer model yields a higher
mean accuracy for segmenting the main structural elements compared
to other trained models. Although the KPConv and RandLA-Net net-
works also exhibit strong performance, there is an average difference
of 2.5% in overall mean accuracy compared to the PointTransformer.
In contrast to other commonly developed networks that utilize convolu-
tions, the PointTransformer network employs point transformers as the
feature aggregation operator in the core of its network. Also, despite the
KPConv and RandLA-Net network architectures that use pre-computed
kNN indices for considering local neighborhoods, the PointTransformer
utilizes a heap sort algorithm, resulting in efficient implementation
running time.

4.2.2. 3D space parsing and wall instances separation
To disjoint 3D spaces, ceiling points located within 30 cm of the

wall segment (distance threshold th) are initially excluded from the
ceiling segment. The DBSCAN clustering method with a 30 cm distance
threshold is then employed along with the nearest neighbor algorithm

https://www.autodesk.de
https://www.bimstore.co


Advanced Engineering Informatics 62 (2024) 102643M. Mehranfar et al.
Table 9
Overview of the non-Manhattan datasets and corresponding reconstructed digital building models.
Table 10
Overview of the Manhattan datasets and corresponding reconstructed digital building models.
14
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Table 11
The results of semantic segmentation on building datasets.

Dataset mAcc mIoU Ceiling Floor Wall

NavVis office building 92.6 89.1 91.1 95.5 80.8
TUM main entrance 93.5 90.8 92.4 95.9 84.1
TUM - Floor (2) 92.1 88.4 89.1 94.5 81.7
TUM - Floor (3) 93.3 91.9 93.5 96.6 85.7
TUM - Floor (4) 91.1 87.1 85.2 92.6 83.5
TUM CMS chair 92.7 89.9 91.3 94.5 83.9

Overall 92.5 89.5

Table 12
Quantitative comparison of the mean accuracy among various network architectures
used for extracting the main structural elements within the point cloud datasets.

Network PointTransformer KPConv [42] RandLA-Net [41]

mAcc (%) 92.5 89.26 90.73

Table 13
Accuracy evaluation of 3D space parsing.
Dataset Rand index(%)

NavVis office building 0.93
TUM main entrance 0.90
TUM - Floor (2) 0.91
TUM - Floor (3) 0.96
TUM - Floor (4) 0.89
TUM CMS chair 0.94

Overall 0.92

to group points in 3D space into distinct clusters. To create the adja-
cency graph of spaces, a tolerance threshold of 1 meter is considered
as neighborhood distance.

Next, the ceiling boundary points are extracted and the PCA coef-
ficients are then calculated for each point considering the 50 nearest
neighbor points. The wall instances are subsequently separated by
corresponding PCA coefficients and then grouped using the DBSCAN
clustering algorithm with a distance threshold of 1 m. Finally, a 10 cm
buffer is applied around each separated wall instance to extract the
corresponding 3D wall points within the point cloud space.

To assess the performance of the employed algorithm for 3D space
parsing, a quantitative comparison is conducted between the results of
the employed algorithm and manually partitioned spaces (Table 13).
For each dataset, the clustering similarity metric Rand Index (RI) is
calculated [59]. In this context, the overall accuracy for 3D space
parsing is 92.1%, signifying the effectiveness and performance of the
employed algorithm for partitioning 3D spaces in indoor environments.
Among all building datasets, the TUM main entrance and building (1) -
Floor (4) data have achieved lower RI similarity values in partitioning
individual 3D spaces compared to the others. In this context, the use of
glass and mirror materials in the environment results in an increase
in noise and outlier points as well as distinct void areas within the
corresponding walls. This complicates the process of extracting wall
instances and leads to errors in disjointing the corresponding space
from other spaces.

4.3. Experimental results of digital model representation

After partitioning 3D spaces and extracting the corresponding wall
instances, the initial floor plan masks are generated. Subsequently,
these masks are extended into a 3D volumetric model. The proposed
method employs the PCA technique and analyzes the 50 nearest neigh-
bors around each query point in the X–Y plane. This results in grouping
the points belonging to the closest wall surfaces with the same orien-
tation. For each building model, geometrical and mathematical rules
and constraints are considered to define the parametric relations and
15

interaction among structural elements such as walls, slabs, and ceilings.
Table 14
The values of parameters used for optimization processes.

Parameters

Problem Tolerance-X Tolerance-Obj Iterations

Volumetric digital model fitting 0.0001 0.0001 100

Table 15
Accuracy evaluation of digital model reconstruction (the values for the reported
parameters in the table are all in cm).

Parameters

Dataset Precision Recall 𝛿 location 𝛿 height 𝛿 length 𝛿 width

NavVis office building 0.96 0.85 4.9 3.2 6.5 4.8
TUM main entrance 0.68 0.81 6.2 4.2 7.3 5.7
Floor (2) 0.95 0.86 5.3 3.4 9.4 4.5
Floor (3) 0.95 1.00 4.4 6.3 6.9 4.6
Floor (4) 0.94 0.81 4.5 2.6 8.3 5.2
CMS chair 0.96 0.96 6.8 5.1 7.7 7.2

Overall 0.90 0.88 5.5 4.1 7.7 5.3

Finally, the parameterized building models are fitted to the point cloud
through the optimization process, and the optimal values for the param-
eters of the building elements are extracted. Table 14 shows the values
of optimization parameters used for creating highly parameterized
building models.

To evaluate the performance of the proposed approach for the cre-
ation of digital building models, a quantitative comparison is conducted
between the parameters of the elements in the reference models and
corresponding parameters in the reconstructed digital building models
(Table 15). In this regard, the corresponding wall elements in both
the reference and reconstructed models are identified by utilizing the
coordinates of their endpoints, considering a buffer with specific dimen-
sions of 10 cm. For each model, the accuracy of the reconstruction is
measured by calculating the corresponding Precision and Recall values
using Eqs. (2)–(3). The precision quantifies the proportion of recon-
structed actual wall elements relative to all elements reconstructed as
wall by the algorithm while recall assesses the effectiveness of the
proposed approach in the creation of all actual wall elements present
in the reference model.

The overall recall value of about 0.88% in creating all corresponding
wall instances, coupled with a mean accuracy of approximately 6 cm
in estimating models’ parameters, highlights the effectiveness of the
proposed method in creating volumetric–parametric digital building
models with diverse designs and layouts. According to Table 15, the
highest error is associated with estimating the length parameter for
wall elements. The office dataset includes furniture attached to the
walls, such as bookcases, cabinets, and glass boards, contributing to
the presence of clutter and noise. These factors introduce challenges
in the separation of 3D spaces and wall instances and subsequently
estimating the element parameters, leading to a decrease in overall
model reconstruction accuracy.

In addition, the TUM main entrance dataset has achieved the lowest
precision and recall values in the creation of the digital model. The
dataset includes two curved wall instances. Accurately separating and
modeling curved walls necessitates considering small values for the
NN value when calculating PCA coefficients and separating entire wall
points by grouping segments with different partial curvature angles. In
this regard, setting the NN value to 50 separates the entire curved wall
into individual wall patches with inaccurate orientation and location,
resulting in the creation of extra wall instances. This shows the limita-
tion of the proposed approach in separating and modeling curved wall
instances.

4.4. Experimental results of door and window detection

After fitting the structural model to the point cloud data, the pro-
jected wall points are converted into raster images using a gridding and
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Table 16
Accuracy evaluation of door and window detection (the values for the reported parameters in the table are all in cm).
Dataset Doors Windows Parameters

Precision Recall Precision Recall 𝛿 location 𝛿 dimension

NavVis office building 1.00 1.00 0.94 0.97 8.7 9.1
TUM main entrance 1.00 0.84 – – 7.1 8.7
Floor (2) 0.90 0.87 1.00 0.25 6.4 9.3
Floor (3) 1.00 0.88 1.00 0.85 8.3 6.1
Floor (4) 1.00 0.70 1.00 0.50 4.7 8.2
CMS chair 1.00 0.94 1.00 0.93 6.6 9.8

Overall 0.98 0.87 0.99 0.69 6.9 8.5
Table 17
The result of door and window detection on the projected wall points images.
d
a
t
u
t
a
t
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ampling method with a grid dimension of 5 cm. Next, the trained ob-
ect detection network is utilized to detect door and window elements
n the images (Table 17), and the detected boxes are subsequently
rojected back into point cloud space. To assess the accuracy of door
nd window detection, precision and recall metrics are computed by
omparing reference models with reconstructed digital building models
sing a 10 cm buffer. In this context, the parameters of detected
oors and windows, including their location and dimensions before
djustment, are compared with the corresponding elements’ parameters
n the reference building models.
16

a

As presented in Table 16, the overall recall values for detecting
oor and window elements across all datasets are approximately 0.87
nd 0.69, respectively. Additionally, the mean accuracy in estimating
he corresponding element parameters is about 8 cm. These findings
nderscore the effectiveness of the proposed approach in accurately de-
ecting and modeling doors and windows, including various states, such
s open, semi-open, and closed, within indoor environments. Across all
he datasets, the TUM - Floor (4) data has achieved lower recall values
han the others. Using various mirrors, glass doors, and windows,
long with the presence of different lamps and lighting, creates diverse
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lighting conditions in the point cloud space. This leads to differences
in the spectral features of the projected wall point images compared
to real RGB images. These lighting conditions pose difficulties for the
trained network in accurately detecting the elements in image pixels
and extracting their dimensional parameters. Additionally, the TUM
- Floor (2) dataset has the lowest recall value for detecting window
elements. This data includes several round window instances, present-
ing challenges for the employed object detection network specifically
designed to detect elements with box-shaped geometry.

5. Discussion

5.1. Data requirements

This research paper presents an automated pipeline for generating
parameterized digital building models from raw laser scanner point
clouds. The proposed method does not require the intensity feature as
input. Still, it utilizes RGB values for semantic segmentation of indoor
point clouds and creating images from the projected wall points for
door and window detection. According to the information reported
in Table 8, the test data utilized for validating our method exhibit
average density ranging from 2 to 9 points in a sphere of a radius of
one centimeter. Consequently, algorithm parameters were configured
accordingly. Thus, the proposed method is well-suited for effectively
processing data with similar point densities. Additionally, since the
proposed method relies on ceiling information to extract the footprint
of the walls and create the digital building model, input data must
include only points from a single floor and contain corresponding
ceiling points for each space. This method cannot handle scenarios
where points from multiple floors are mixed.

5.2. Comparison with other methods

In this section, a quantitative comparison is conducted to evaluate
the performance of the proposed method in digital building model
creation from point cloud data compared to other developed algo-
rithms. This involves a comprehensive examination of our proposed
parametric modeling approach compared to the data-driven method
presented in [35]. The developed method initially utilizes the eigenval-
ues of the covariance matrix of points to calculate geometrical features,
such as Planarity, Linearity, Surface variation, etc. These features are
then incorporated into the feature-based PointTransformer semantic
segmentation network to group the points into classes such as doors,
door leaves, windows, walls, ceilings, floors, and clutter. As access to
the utilized training data is not possible, the PointTransformer semantic
segmentation network, previously trained on S3DIC data areas 1–4 and
6, is again employed. The segmented wall points are then employed in
a 2D projection method combined with a neighborhood graph structure
to detect individual spaces within indoor environments. Subsequently,
the iterative RANSAC plane fitting algorithm is employed to reconstruct
the geometric planar 3D model for each detected space. Finally, a
bounding box fitting algorithm is utilized to model individual door
and window instances in the open state. The implemented algorithm
is tested on the building point clouds, and the resulting digital mod-
els are compared with the reference digital model. This involves the
comparison of the parameters of corresponding reconstructed elements
present in both digital building models.

According to Table 18, thanks to the applying parametric modeling
process through the optimization, our proposed method has achieved
a 1.5 cm mean accuracy superiority in estimating the dimensional
parameters of the wall elements. Specifically, the substantial 9 cm dif-
ference in estimating the parameters of doors and windows in an open
state highlights the capabilities of the proposed AI-based method for
detecting doors and windows. The proposed method in [35] utilized the
results of point cloud semantic segmentation and subsequent bounding
box fitting to model doors and windows. Due to the complexity of
17
Table 18
Quantitative comparison of the results between proposed parametric modeling approach
and the reconstruction algorithm proposed by [35] (the values for the reported
parameters in the table are all in cm).

Walls Doors and windows

Method 𝛿 location 𝛿 dimension 𝛿 location 𝛿 dimension

[35] 4.6 7.2 14.7 17.5
Ours 5.5 5.7 6.9 8.5

Table 19
Comparison of key features of the proposed method with six state-of-the-art methods.

Method Volumetric
walls

Volumetric
spaces

Topological
relation

Parametric
modeling

Door
window

Ochmann et al.
[24]

✓ × × × ×

Nikoohemat
et al. [19]

✓ ✓ × × ✓

Tran and
Khoshelham [25]

✓ ✓ ✓ × ×

Wu et al. [56] ✓ × × × ✓

Bassier and
Vergauwen [30]

✓ × ✓ × ×

Pan et al. [34] ✓ ✓ × × ✓

Ours ✓ ✓ ✓ ✓ ✓

indoor point clouds and the similarities between the geometric char-
acteristics of doors and windows with walls and other elements, the
results of detecting doors and windows from point clouds often include
noise and outliers. This, in turn, leads to substantial errors in estimating
the dimensional parameters for the detected doors and windows during
the bounding box fitting steps.

Table 19 compares the key features of the proposed method with
recent methods in creating digital building models. This involves inves-
tigating various aspects and the potential contributions of the proposed
methods in creating semantic digital models for the real world.

In this regard, most of the developed methods are capable of creat-
ing volumetric digital models of indoor spaces. However, the majority
of these methods rely only on data-driven modeling approaches. Due
to the complexity of indoor scenes and noise and outliers, data-driven
methods encounter challenges in accurately representing geometric
models and inferring and simulating topological relationships between
elements. In addition, most developed methods for detecting and mod-
eling door and window elements from point cloud data often rely
on setting various threshold values (e.g., height, density, angle) and
assumptions to identify potential door and window candidates. This ap-
proach necessitates manual calibration and adjustment, hindering the
desired level of automation. Also, some techniques require supplemen-
tary data like camera sensor images or intensity values to accurately
identify doors and windows with any state (open, semi-open, closed)
within the scanned environment. Integrating these additional data
streams complicates the computational process and adds to the overall
cost of data acquisition.

Unlike purely data-driven approaches, our proposed hybrid bottom-
up, top-down approach aligns the capabilities of AI methods in scene
understanding along with the existing knowledge in the design and con-
struction of buildings to create high-quality parametric digital building
models with correct semantics and proper relationships between com-
ponents. Thanks to the utilization of parametric modeling along with
the optimization process, the proposed method enables overcoming
obstructions and accurately estimating the model’s parameters. Ad-
ditionally, the proposed AI-based approach for detecting doors and
windows from projected wall points’ images can detect door and win-
dow elements in all three possible states: open, semi-open, and closed,
without specific threshold values.
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Fig. 14. Assessment of the impact of the different values for ceiling to wall points distance threshold and distance tolerance for the DBSCAN clustering parameters on the overall
Rand Index similarity value in 3D space parsing task.
Table 20
Overview of the essential parameters employed during the creation of digital model
using the proposed method.

Parameter Value

Semantic enrichment:
1. Ceiling to Wall points distance threshold (space parsing) 0.30 m
2. Distance tolerance for the DBSCAN clustering 0.30 m
3. Neighborhood distance for space adjacency graph 1 m
4. The number of NN points used to calculate the PCA coefficients 50

Door and window detection:
5. Grid size for converting projected wall points into images 0.05 m

5.3. Sensitivity to the parameters

Table 20 reports the crucial parameters employed in creating the
digital models using the proposed algorithm.

The ceiling-to-wall points distance and maximum distance tolerance
for the DBSCAN clustering are crucial parameters utilized in the 3D
space parsing algorithm. Setting these parameters to a default value of
30 cm for implementation was based on the average width of walls
across all data. According to Fig. 14, deviating from this value by
selecting a distance parameter less than or greater than 30 cm reduces
RI accuracy due to issues like over-segmentation or merging of indi-
vidual spaces. Additionally, the neighborhood distance for measuring
the proximity of spaces was set to 1 m. Due to the minimum and
maximum widths of 0.1 m and 0.7 m for internal dividing walls, the
assigned value produces the best result for creating the adjacency graph
of spaces.

As mentioned in Section 3.1.3., the proposed method employs the
PCA technique to group the points of the closest wall surfaces with the
same orientation. In this regard, the number of NN points for calcu-
lating the PCA coefficient was experimentally set to 50. Considering
different values for the number of NNs can affect the level of geometric
detail. Structural or architectural elements, such as columns and shaft
panels, are installed along the walls in many buildings. Although these
elements may resemble walls in appearance, their dimensional and
geometrical sizes are significantly different. In this regard, considering
only a range of about 20–30 neighboring points to calculate the PCA
coefficients can result in separating these elements from the points on
the wall surface (Fig. 15). As the main aim is to create the digital model
of the building’s structural elements and recognizing the geometric
and architectural nature of these elements using point cloud data
18
Fig. 15. Assessment of the impact of different values on the number of NN points on
calculating the PCA coefficient to separate the wall footprints.

proves challenging, a high number of neighboring points is considered.
This effectively integrates the small segments specific to these small
elements with the points on the wall instances.

Despite the effectiveness of the developed method for modeling
inclined wall instances, the proposed pipeline still faces challenges
in accurately separating and modeling curved wall instances. In this
regard, the proposed method for separating wall instances using PCA
coefficients leads to the separation of the entire curved wall into
individual wall patches with inaccurate orientation and location, re-
sulting in the creation of extra wall instances (Fig. 16). Addressing
these challenges requires a novel approach to separating the points
belonging to curved wall surfaces and formulating the geometry of
curved structures into the parametric modeling process.

To assess the impact of the grid size parameter on the overall
accuracy in detecting and modeling door and window elements, a
statistical analysis is conducted, testing different grid sizes of 5 cm,
7 cm, 10 cm, and 15 cm (Fig. 17).

According to Table 21, a grid size of 5 cm yielded the highest
accuracy, with overall recall values of approximately 87% and 69% for
detecting the door and window, respectively. In alternative scenarios
with grid dimensions of 7 cm, 10 cm, and 15 cm, an increase in the
grid size parameter leads to a decrease in the overall recall values
and a subsequent increase in the mean error in estimating element
parameters, reaching 20 cm (Fig. 18). Selecting a lower grid size value
can result in the creation of more detailed images and subsequently
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Fig. 16. Assessment of the effectiveness of the proposed method for separation of wall instances using the PCA coefficient on inclined and curved wall samples.
Fig. 17. The comparison between the results of door and window detection using projected wall point images with different grid sizes.
Table 21
Assessment of the impact of different grid size values used to convert the projected
wall points to images on the accuracy of detection and modeling of door and window
instances.

Grid size (cm) 5 7 10 15

Doors:
precision (%) 0.98 0.96 0.96 0.96
recall (%) 0.87 0.81 0.77 0.65
Windows:
precision (%) 0.99 0.99 0.99 0.99
recall (%) 0.69 0.56 0.50 0.47
Parameters:
𝛿 location (cm) 6.9 10.8 15.4 18.7
𝛿 dimension (cm) 8.5 14.1 18.7 20.6

increase the accuracy of door and window detection. However, the grid
size value is significantly related to the point density. Since the point
density ranges from 2 to 9 in a sphere with a radius of one centimeter,
selecting a 5 cm grid dimension improves the computational time cost
and ensures that each grid cell contains at least two points for the
sampling process.

5.4. Limitations

Despite diligent considerations, the proposed method’s inherent lim-
itations impact its efficacy in creating digital building models with co-
herent geometry. This section provides insights into the approach’s lim-
itations, highlighting specific areas where the proposed methodology
may face challenges.

The developed algorithm utilizes the pre-trained PointTransformer
semantic segmentation network to separate the main structural ele-
ments within the building point cloud. In this regard, the accuracy
19
and efficiency of the labeling process are contingent upon the per-
formance of the trained model, demanding a substantial volume of
diverse annotated data and significant computational power for optimal
training. Furthermore, a primary challenge in employing AI networks
for the semantic segmentation of indoor point clouds involves effec-
tively distinguishing surfaces such as walls, doors, and other elements
constructed with glass or mirrors. In this case, the laser scanner beam
does not accurately reflect off these surfaces, generating clutter. This,
in turn, poses difficulties for the semantic segmentation network in
accurately labeling points, particularly those corresponding to walls.
These challenges subsequently impact the 3D space parsing step results
and the subsequent separation of wall instances.

The proposed method leverages information from 3D space parsing
and the corresponding ceiling boundary points to separate the foot-
prints of wall instances. The process specifically concentrates on mod-
eling external walls for individual spaces and modeling corresponding
floor elements. This introduces challenges in accurately representing
the digital model for buildings that incorporate openings or staircases
within specific parts of their floors (Fig. 19).

The object detection network employed for door and window de-
tection can only detect box-shaped elements. This limitation poses
challenges in accurately detecting and parametric modeling of doors
and window elements with different geometric appearances, such as
circles or ellipses (Fig. 20). Addressing this issue necessitates the col-
lection of numerous annotated image data containing elements with
round shapes and the utilization of semantic segmentation networks for
extracting their detailed geometry. Also, due to the similar appearance
characteristics between door elements in the open state and inherent
openings in wall elements, the network cannot distinguish between
them, categorizing both as the door component. Furthermore, the
collected library of parametric door and window elements encompasses
instances with identical dimensional parameters but varying materials
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Fig. 18. The impact of different grid size values on the results of door and window detection. The door and window recall decreases with the increase of the grid size and the
error in estimating location and dimension increases. This makes clear that the best value for the grid size parameter should be the lowest, in our case 5 cm.
Fig. 19. Error in modeling the floor footprint for individual spaces using the proposed method: (a) reference digital building model, (b) the result of the proposed method for
digital building model creation.
Fig. 20. The inability of door and window detection network to detect round-shaped windows: (a) projected wall points, (b) the result of door and window detection.
and frame designs. This challenges the proposed method in selecting ap-
propriate instances that accurately represent both correct dimensional
parameters and appearance properties.

6. Conclusions

This paper presents a novel hybrid bottom-up, top-down approach
for the automatic creation of digital building models with rich seman-
tics and coherent geometry from a dense laser scanner point cloud.

Unlike pure data-driven approaches, the proposed method leverages
the advantages of parametric modeling processes to consider semantic
relationships between components and formulate their interactions.
The designed parameterized digital model is then fitted to the observed
point cloud to estimate the best values for the parameters of elements.
These not only enhance the geometric consistency of the digital model
but also enable the overcoming of prevalent obstacles and challenges
in complex building point clouds, such as noise and clutter.
20
The proposed method for the detection of doors and windows in
different states and the subsequent model creation step integrates the
capabilities of AI methods in object detection with domain engineer-
ing knowledge in design and construction. This eliminates the need
for additional processes to combine data from different sensors and
address their complex linkage issues, enhancing the integrity of element
parameters in the resulting models.

The results of testing the proposed algorithm on six distinct in-
door point cloud datasets demonstrate that the proposed approach can
automatically generate digital building models with a mean absolute
error of 7 cm in estimating the model parameters. These parameterized
digital building models are editable, allowing for further refinement
or enrichment to meet requirements and enhance decision-making for
facility management, space management, and refurbishment purposes.

Despite the promising results that could signify significant progress
in the field of ’Scan-to-BIM’, the proposed method is not able to
cover buildings constructed entirely using glass and mirror materials.
Furthermore, the developed method for detecting doors and windows is
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only capable of detecting box-shaped elements, posing real challenges
in the detection of doors and windows with round geometries.

In future works, the viability of the proposed method for cre-
ating digital building models will be examined across various real-
world datasets. Also, the potential to enhance the level of development
and semantic information of the resulting models will be explored by
incorporating digital representations of other structural–architectural
elements, such as staircases, columns, etc.
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