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Abstract

Detector technology is a key factor for the efficient use of Computed Tomography (CT) in
daily diagnostic routines. For example in cardiac and musculoskeletal imaging applications.
The current development of energy-responsive CT detector systems enables new diagnostic
possibilities. This thesis focuses on the development and evaluation of novel diagnostic
applications for energy-resolving detectors in CT. First, the physical principles of X-
ray interaction with matter are introduced and building on this the basic concepts
of clinical Dual Energy CT (DECT) are described. Two clinical applications follow,
describing spectral dynamic myocardial CT perfusion and Scout-based Dual-Energy X-ray
Absorptiometry (SDEXA), which is a novel technique opportunistically measuring the
Bone Mineral Density (BMD) in every patient based on an extended overview scan.
Dynamic myocardial perfusion on a CT device with spectral capabilities was investigated
in a phantom study and a porcine study. Contrast Agent (CA) sensitivity in low-
perfused tissue and material quantification tasks are challenging using conventional CT
detectors. The main advantages of spectral detection are the increased Signal-to-Noise
Ratio (SNR) in iodine density measurements and the resulting improved fitting of the
acquired Time Attenuation Curve (TAC) in the myocardium. Improved detection of the
under-perfused myocardium using iodine density maps was demonstrated in the phantom
study, independently of the underlying perfusion fit model. Also, the possibility of dose
reduction was demonstrated in both studies. Based on the presented results, the clinical
translation of spectral dynamic myocardial perfusion CT seems feasible and promising.
The SDEXA technique was introduced in 2019 and evaluated in the second results
chapter of this thesis regarding the most important aspects for the introduction into the
clinical routine. Measurements taken on the European Spine Phantom (ESP) showed
improved quantification accuracy compared to the reference standard Dual Energy X-ray
Absorptiometry (DEXA) in the lower spine. Compared to volumetric acquisition of BMD,
the projection-based SDEXA technique showed a high correlation in a patient cohort. The
first steps towards a fully automated pipeline for SDEXA indicate encouraging results.
Using a Convolutional Neural Network (CNN) based approach for vertebrae segmentation
the areal Bone Mineral Density (aBMD) in the lower spine can be analyzed in every patient
opportunistically. An additional analysis of microstructural parameters was performed in
an ex-vivo study on a laboratory Photon Counting CT (PCCT) setup, being a promising
approach for high-resolution applications in clinical PCCT.
The advantages of spectral detection in CT demonstrated for myocardial perfusion and
osteoporosis applications presented in this thesis have the potential to significantly improve
the diagnostic value of CT for a wide range of applications.
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Zusammenfassung

Ein Schlüsselfaktor für das breite Andwendungsspektrum der Computertomografie (CT)
in der täglichen diagnostischen Routine ist die Detektortechnologie. Beispielsweise bei
kardialen und muskuloskelettalen Bildgebungsanwendungen. Die aktuelle Entwicklung
von spektralen CT-Detektorsystemen ermöglicht neue diagnostische Möglichkeiten. Diese
Arbeit konzentriert sich auf die Entwicklung und Bewertung neuartiger diagnostischer
Anwendungen für spektrale Detektoren in der CT. Im ersten Kapitel werden physikalische
Prinzipien der Wechselwirkung von Röntgenstrahlen mit Materie beschrieben. Darauf
aufbauend werden die Grundkonzepte der Dual Energy CT (DECT) dargelegt.
Es folgen zwei Kapitel über die spektrale dynamische myokardiale CT Perfusion und über
die Übersichtsscan-basierten Dual-Energy-Röntgen-Absorptiometrie (SDEXA). Dabei
handelt es sich um ein neuartiges Verfahren zur opportunistischen Messung der Knochen-
dichte bei jedem Patienten auf der Grundlage eines erweiterten Übersichtsscans. Die
dynamische Myokardperfusion mittels spektraler CT-Bildgebung wurde in einer Phantom-
studie und einer Schweinestudie untersucht. Kontrastmittelsensitivität in schwach durch-
blutetem Gewebe und Materialquantifizierung sind mit herkömmlichen CT-Detektoren
nur schwer realisierbar. Die Hauptvorteile der spektralen Detektion sind das verbesserte
Signal-Rausch-Verhältnis bei der Messung der Joddichte im Myokard und der daraus
resultierende genauere Fit der Zeitschwächungskurven. In der Phantomstudie wurde eine
verbesserte Feststellung des schwach perfundierten Myokards nachgewiesen, unabhängig
vom zugrundeliegenden Perfusions-Fit-Modell. Auch die Möglichkeit einer Dosisreduktion
wurde in beiden Studien nachgewiesen. Basierend auf den vorgestellten Ergebnissen
scheint die klinische Umsetzung der spektralen dynamischen Myokardperfusion mittels
CT machbar und vielversprechend zu sein.
Die 2019 eingeführte SDEXA-Technik wurde im zweiten Ergebniskapitel hinsichtlich der
wichtigsten Aspekte für den Einsatz in der klinischen Routine bewertet. Messungen am
European Spine Phantom (ESP) zeigten eine verbesserte Quantifizierungsgenauigkeit an
der unteren Wirbelsäule, im Vergleich zum Referenzstandard der Dual Energy X-ray
Absorptiometry (DEXA). Zur volumetrischen Messung der Knochendichte zeigte die
projektionsbasierte SDEXA-Technik eine hohe Korrelation in einer Patientenkohorte.
Erste Schritte in Richtung einer vollautomatischen Auswertung für SDEXA zeigen vielver-
sprechende Ergebnisse. Unter Verwendung eines Convolutional Neural Network (CNN)
basierenden Ansatzes für die Wirbelsegmentierung kann die Flächenknochendichte in der
unteren Wirbelsäule in jedem Patienten analysiert werden. Eine zusätzliche Analyse der
mikrostrukturellen Parameter wurde in einer ex-vivo Studie mit einem experimentellen
Photon Counting CT (PCCT) durchgeführt. Die Mikrostrukturanalyse ist ein vielver-
sprechender Ansatz für hochauflösende Anwendungen in der klinischen PCCT.
Die Vorteile spektraler Detektoren in der CT, die in dieser Arbeit für die Anwendungen
der Myokardperfusion und Osteoporose aufgezeigt wurden, haben das Potenzial, den
diagnostischen Wert der CT für ein breites Spektrum von Anwendungen erheblich zu
verbessern.
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Bernhard; Bähr, Andrea; Kupatt, Christian; Hinkel, Rabea; Herzen, Julia; Pfeiffer, Franz;
Rummeny, Ernst; Pfeiffer, Daniela: Dynamic quantitative iodine myocardial perfusion
imaging with dual-layer CT using a porcine model. Scientific Reports 9 (1), 2019

2 Publications as co-author
Gassenhuber, Melina; Lochschmidt, Maximilian E.; Hammel, Johannes; Boeckh-Behrens
Tobias; Ikenberg Benno; Wunderlich Silke; Liesche-Starnecker Friederike; Schlegel Jürgen;
Pfeiffer Franz; Makowski Marcus R.; Zimmer Claus; Riederer Isabelle; Pfeiffer Daniela:
Multimaterial decomposition in dual-energy CT for characterization of clots from acute
ischemic stroke patients. European Radiology Experimental, 2024

Lochschmidt, Maximilian E.; Gassenhuber, Melina; Riederer, Isabelle; Hammel, Jo-
hannes; Birnbacher, Lorenz; Busse, Madleen; Boeckh-Behrens, Tobias; Ikenberg, Benno;
Wunderlich, Silke; Liesche-Starnecker, Friederike; Schlegel, Jürgen; Makowski, Marcus R.;
Zimmer, Claus; Pfeiffer, Franz; Pfeiffer, Daniela: Five material tissue decomposition by
dual energy computed tomography. Scientific Reports 12 (1), 2022

Gassert, Florian T.; Hammel, Johannes; Hofmann, Felix C.; Neumann, Jan; von Schacky,
Claudio E.; Gassert, Felix G.; Pfeiffer, Daniela; Pfeiffer, Franz; Makowski, Marcus R.;
Woertler, Klaus; Gersing, Alexandra S.; Schwaiger, Benedikt J.: Detection of Bone Mar-
row Edema in Patients with Osteoid Osteoma Using Three-Material Decomposition with
Dual-Layer Spectral CT. Diagnostics 11 (6), 2021, 953

Roski, Ferdinand; Hammel, Johannes; Mei, Kai; Haller, Bernhard; Baum, Thomas;
Kirschke, Jan S.; Pfeiffer, Daniela; Woertler, Klaus; Pfeiffer, Franz; Noël, Peter B.;
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Introduction 1
X-rays are part of the electromagnetic spectrum and are used in various applications.
After their discovery by Wilhelm Conrad Röntgen in 1895, the translation to medical
applications followed almost immediately. X-ray photons can penetrate the human body
and generate contrast in the detected intensity between different materials, mainly bone
and soft tissue. This revolutionary property, arising from the different attenuation mecha-
nisms that mainly depend on the material’s atomic number and electron density, is the
basis for using X-rays in medical imaging.
The first medical X-ray images were generated using photographic plates with an exposure
time of approximately 20 minutes [Spi95]. Later, live imaging could be performed using a
fluorescent screen, requiring significantly less exposure time. The detection process could
be optimized by using an intensifying screen fabricated out of amorphous gadolinium
oxysulfide Gd2O2S to convert the X-ray photons to visible light [Jen80]. The film base
coated in silver halide emulsion is sensitive to visible light by a photochemical reaction
of the silver halide crystals. Through this indirect conversion process with drastically
increased sensitivity, the exposure time could be reduced to approximately one second and
X-rays could be used for various medical applications without delivering a high radiation
dose.
1972 Godfrey Hounsfield introduced the first commercially available Computed Tomog-
raphy (CT) scanner. For the reconstruction of CT images, digital detection of X-rays is
crucial. The first generation of CT systems used solid scintillators like sodium iodine or
Xenon ionization chambers coupled to photomultiplier tubes [SSP21]. This design could
provide high noise-free gain. These design choices were only applicable in translate-rotate
scanners [Hou73]. A multichannel ionization chamber provided the first design, where
multiple attenuation paths could be measured simultaneously. Scintillators coupled to
photodiodes were pioneered by Siemens for third-generation scanners. Cesium iodide
was the first choice for detector systems without photomultiplier tubes. High-speed
scintillator-photodiode detectors were developed, enabling the modern fast acquisition CT
systems. The readout electronics in these systems allow a parallel evaluation of all pixels
and fast, continuous scan modes.
The indirect conversion from X-rays to visible light in the scintillator also results in
the loss of spectral information of the X-ray photons. Nevertheless, indirect conversion
processes were and are still the most common detection method in medical CT imaging.
Already in 1976, only 4 years after the first CT scanner was introduced, Alvarez and
Macovski [AM76] proposed the use of dual-energy CT imaging. With the assumption of
two dominant attenuation mechanisms, the photoelectric effect and Compton scattering,
the energy-dependent attenuation of X-rays can be determined when measured at two
different X-ray energies. Since the physical model of the energy-dependent absorption is
relatively simple, it is sufficient to separate the photons into two distinct energy groups.
Although the theoretical basis and first studies were already published in the 1970s, the
translation to clinical applications was not pursued until the last decade. The main reasons
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for this were the lack of suitable detector technology and potential clinical applications.
30 years after Alvarez and Macovski’s research, the first clinically available dual-energy
CT scanner was introduced [Flo+06; Gra+09] in 2006, having a dual-source dual-detector
design. It was mainly used in abdominal imaging of renal masses, liver lesions, urinary
calculi, and other applications [Gra+09].
The main advantage of spectral CT imaging is the possibility to calculate material density
maps by performing a material decomposition on energy-dependent measurement data. To
use a physically correct model of the energy-dependent Beer-Lambert law, where spectral
effects can be incorporated into the reconstruction process, detector-based spectral X-ray
imaging is inevitable. First introduced for computed radiography in 1990 [SH90; Erg+90],
a suitable CT detector design followed in 2011, invented by Altman et al. [Alt+11].
The Dual Layer CT (DLCT) setup showed improved Signal-to-Noise Ratio (SNR) and
Contrast-to-Noise Ratio (CNR) compared to conventional CT images [Doe+17; Ehn+18].
In DLCT systems, energy-dependent information is acquired within every scan.

This thesis will focus on the evaluation of dual-energy and spectral CT applications
in cardiac perfusion and osteoporosis imaging on a prototype DLCT system installed at
the Klinikum rechts der Isar, Technische Universität München in 2016.
In the first part, a Three-dimensional (3D) printed cardiac phantom and porcine model
were used to investigate spectral dynamic myocardial perfusion protocols. Perfusion
measurements can be an important tool for diagnosing and quantifying the functional
significance of stenosis in cardiac blood vessels. Anatomical visualization of stenosis using
Coronary Computed Tomography Angiography (CCTA) can lead to many patients with
a false positive diagnosis of functionally significant stenosis. The current state of research
shows a lack of functional diagnosis of myocardial ischemia using spectral CT protocols.
The additional benefit of spectral imaging could arise from an increased contrast sensi-
tivity compared to conventional CT. To approach this issue, a dynamic heart phantom
was designed and 3D printed in the course of this thesis. Investigations could then be
performed on this phantom model without dose or animal health considerations. The flow
of water and Contrast Agent (CA) through the phantom could be precisely adjusted, and
the occlusion of a blood vessel simulated. The harvested spectral data was processed using
different hemodynamic perfusion models. Also, a porcine model was used to investigate
the benefits of spectral dynamic perfusion for the assessment of functional parameters.
A dose reduction technique was tested using a subset of the time-dependent perfusion data.

The second part introduces a novel method for quantifying areal Bone Mineral Den-
sity (aBMD) in the lower spine, which can be used to opportunistically diagnose osteo-
porosis. Also, an approach to vertebral microstructure analysis in a Photon Counting
CT (PCCT) was investigated. There exists a treatment gap in the diagnosis of osteo-
porosis, meaning that many especially elderly women suffer from the consequences of
osteoporosis, like vertebral fractures, without being diagnosed. Despite the possibility
of effective treatment, patients do not receive appropriate treatment. To reduce the
amount of undiagnosed patients, opportunistic screening possibilities should be introduced
into the clinical workflow. Spectral CT overview scans can be used to diagnose osteo-
porosis analog to the reference standard Dual Energy X-ray Absorptiometry (DEXA).

2 Chapter 1 Introduction



The so-called Scout-based Dual-Energy X-ray Absorptiometry (SDEXA) approach was
applied in this thesis. A fully automated approach for osteoporosis diagnosis on spectral
overview data was implemented and compared to DEXA and volumetric Bone Mineral
Density (BMD) measurements. The problem of vertebra segmentation was approached
using a Convolutional Neural Network (CNN). A minimal amount of human interaction
is necessary to generate a DEXA-like aBMD report in every patient by extending the
overview scan on the DLCT to the lumbar spine region. This yields an automated oppor-
tunistic osteoporosis screening tool with only a minor increase in the dose delivered to the
patient.
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Theoretical Background 2
In this chapter, the theoretical foundation for CT imaging in medical applications is
presented. A special focus is put on the energy-resolving capabilities of DLCT and PCCT.
The theory from the generation of X-rays, interaction with matter, image reconstruction,
photon statistics, energy-resolving detection, and image artifacts is presented. The last
two sections will give an example of energy-resolving CT imaging using a digital phantom
and some insights into the noise properties of spectral CT.

2.1 Generation of X-rays

This section focuses on the generation of X-rays for use in medical CT imaging. X-rays are
electromagnetic radiation with an energy range of about 100 eV to 1 MeV Figure 2.1. An

E=hc/λ

Wavelength [m]

Photon energy [eV]

10-14 10-10 10-6 10-2 102 106 1010

108 104 100 10-4 10-8 10-12 10-16

Radiowave Microwave Infrared UV X-ray Gamma ray

Figure 2.1: The electromagnetic spectrum. The energy range of electromagnetic radiation is
schematically shown on a logarithmic scale in the range between 10 feV and 10 GeV. The nomen-
clature of electromagnetic radiation from low to high energies includes radio waves, microwaves,
infrared, visible light, ultraviolet, X-rays, and gamma rays. The energy of X-rays ranges between
approximately 100 eV and 1 MeV. The energy range of X-rays is further divided into soft X-rays
and hard X-rays. The energy range of X-rays used in medical CT imaging is between 10 keV and
150 keV. Soft tissue and bone absorption properties in this energy range differ maximally, and
therefore, optimal contrast properties are observed.

X-ray tube can be used to generate X-rays. It contains an electron emitter (cathode) and
a positively charged anode. The cathode consists of a heated filament, which thermally
emits electrons. To emit electrons, the filament, made of thoriated tungsten with a melting
point of 3,410 ◦C, is heated to a temperature of 2,100 ◦C to overcome the binding energy
of the electrons to the metal of the filament [Buz08]. The primary electrons generated
from the cathode are controlled by a cylindrical electrode, the Wehnelt cylinder [Buz08].
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The Wehnelt cylinder is negatively charged, accelerating and focusing the electrons onto
the anode. The electrons are accelerated by a high voltage, defining the peak energy of
the X-ray spectrum. Double quadrupole magnets focus and deflect the electron beam
onto a small focal spot on the rotating anode. An electron trap eliminates off-focal
radiation, which can arise from backscatter electrons [Beh16; Sch+04]. The backscattering
probability increases with the atomic number of the anode and the anode angle to the
electron beam. A small focal spot is a crucial element in CT imaging, as it is a limiting
factor for the system’s spatial resolution. The focal spot size depends on the diagnostic
application and is typically between 0.1 mm and 1.2 mm [Hud10]. X-rays are generated
via the bremsstrahlung process by decelerating and deflecting the electrons in the anode
material. The spectrum generated by the bremsstrahlung process is continuous and is
superimposed by a characteristic line spectrum. Responsible for the characteristic line
photon emittance are electrons interacting with an inner shell electron of the target
material. The inner shell electron is ejected, and an electron from an outer shell fills the
vacancy. This energy difference between the two shells is emitted as a photon. Thereby, the
characteristic X-ray intensity is far less in sum than the bremsstrahlung intensity [Buz08].
Also, the X-ray spectrum has reduced intensities at lower photon energies, as X-rays below
30 keV are absorbed in large parts within the anode material, the beryllium exit window
of the X-ray tube, and air. This effect is desirable, as low energetic photons would be fully
absorbed in the patient, not contributing to the image formation by giving contrast. The
X-ray spectrum can be filtered for thicker patients using a tin filter. The effect of filtration
can be seen in Figure 2.11. Collimator plates after the exit window of the X-ray tube are
used to collimate the X-ray beam onto the active detector array to avoid unnecessary
radiation exposure to the patient.

For the penetration of patients with a diameter of up to 50 cm, X-ray energies of up to
150 keV are required [Buz08]. Further, a high flux of X-ray photons is crucial to acquire
several thousand projections in a short rotation time of down to 250 ms [Raj+21]. Due
to the low conversion efficiency from kinetic electron energy to bremsstrahlung X-ray
energy of approximately 1% [Buz08], a high power dissipation in the form of heat has to
be carried away from the X-ray anode. The dimension and weight of the X-ray tube are
limited by the CT gantry design, preferring a small and lightweight X-ray tube. Rotating
anodes can fulfill these requirements. These X-ray generating tubes are used in all modern
CT scanners, consisting of a rotating anode, a cathode, and a vacuum tube.
A schematic of a rotating anode X-ray tube is shown in Figure 2.2.
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Figure 2.2: Schematic of a rotating anode X-ray tube. The accelerated electron beam is focused
onto a drawn-out focus spot on the anode material using a quadrupole magnet setup. When
exiting via the beryllium window and through the collimator plates, the effective focal spot size can
be described by projecting the focal spot onto the plane of the collimator plates. The anode is
rotated to evenly distribute the heat over the anode head. The cooled rotating anode design allows
a high power dissipation within a small volume. With this design, the heat can be distributed over
a larger area on the anode.
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2.2 Interaction of X-rays with matter
The basis for describing the attenuating properties of matter on X-rays is the Beer-
Lambert law. It states that the intensity of X-rays passing through matter is exponentially
decreasing with the thickness of the material. Further, the material-specific attenuation
coefficient is the proportionality factor in the exponential function. This results in the
following equation for the intensity of X-rays I(d) after passing through a material with
thickness d:

I(d) = I0 · e−µd, (2.1)

where I0 is the intensity of the X-ray beam before passing through the material, and µ
is the attenuation coefficient of the material. The material-specific attenuation is also
dependent on the energy of the X-ray beam. For inhomogeneous materials, the attenuation
coefficient is a function depending on the location within the material. The number of
X-ray counts can be written as:

Ic(d) =

∫ Emax

0
I0(E) · e−

∫ d
0 µ(E,s) ds dE, (2.2)

where I0(E) is the intensity of the X-ray beam before passing through the material at
energy E, µ(E, s) is the energy-dependent attenuation coefficient at energy E and location
s within the material, and Emax is the maximum energy of the X-ray beam. To gain a
density-independent specific measure of attenuation for a material, the mass attenuation
coefficient µm = µ/ρ is defined.
As conventional CT detectors are only able to measure the mean energy deposition
(Section 2.5), Equation 2.1 is used to describe the attenuation of X-rays at the mean
energy of the X-ray spectrum and I0 is the energy deposition of the X-ray beam without
a sample.

Ie(0) =

∫ Emax

0
I0(E) · E · dE (2.3)

The energy deposition with the sample follows Equation 2.2:

Ie(d) =

∫ Emax

0
I0(E) · E · e−

∫ d
0 µ(E,s) ds dE (2.4)

The simplification of disregarding the energy dependency of the attenuation coefficient
and spectrum is leading to beam hardening artifacts, discussed in Subsection 2.7.1.
The interaction effects of matter depend on several physical phenomena. The occurring phe-
nomena in the energy range of medical CT imaging are the photoelectric effect, Compton
scattering, and Rayleigh scattering. The photoelectric effect is the dominant attenuation
mechanism at low energies, as its interaction probability is indirectly proportional to the
third power of the photon energy. Inelastic scattering, also called Compton scattering is
the dominant attenuation mechanism at higher energies. Its energy-dependent interaction
probability is described by the Klein-Nishina formula [KN29]. Rayleigh scattering is the
elastic scattering of photons at low energies. The interaction probability is negligible
compared to the photoelectric effect and Compton scattering in the energy range of medical
CT imaging. A logarithmic plot of the energy-dependent mass attenuation coefficient of
iodine is shown on Figure 2.3, illustrating the dominant interaction mechanisms.
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Figure 2.3: The mass attenuation coefficient of iodine. The mass attenuation coefficient of iodine
illustrates the energy dependence of the attenuation coefficient. It is based on the respective
cross-sections of Rayleigh (elastic) scattering, Compton (inelastic) scattering, and the photoelectric
effect shown here for iodine (Z = 53). The K-edge is located prominently at approximately 33 keV.
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The mass attenuation coefficient is the sum of the cross-sections of the occurring physical
phenomena multiplied by the mass density ρ, the atomic number A, and Avogadro constant
NA:

µ = ρ
NA

A
σtotal. (2.5)

The total cross-section σtotal is the sum of the photoelectric cross-section σph, the Compton
cross-section σcom, and the Rayleigh cross-section σR.

2.2.1 Photoelectric effect

In the X-ray energy range, interaction appears predominantly with electrons of the
material, and interactions with nuclei can be neglected. The photoelectric effect describes
a photon’s interaction with an atom’s electron cloud. A bound electron can be ejected
into an unbound (continuum) state when the photon energy exceeds the electron’s binding
energy. This process is a superposition of a continuous part, and the edge jumps when
the impinging photon energy is large enough to eject electrons from the next atomic shell.
The vacancy is then filled with an electron from an outer shell, emitting a photon with
the energy corresponding to the energy difference of the shells. The process when the
emitted photon leaves the atom can be described as fluorescence radiation. Also, the
emitted photon can expel another electron from one of the outer shells. This effect is
known as Auger electron emission. An analytic approach to model the energy and atomic
number dependence of the photoelectric absorption cross-section σph

a (E,Z) separably
is not possible. In [Whi77], a semi-analytic approximation regarding empirical data is
made. In the absence of absorption edges, the continuous part of the cross-section for the
photoelectric effect can be approximated by

σph = Cph
Z4−5

E2.5−3.5
. (2.6)

The exact values of the exponents depend on the specific element or mixture to be
parameterized. Cph describes an empirical constant. Since biological tissue contains
mainly light elements with Z < 20, the absorption edges are located below the energy
range of a filtered CT X-ray source spectrum, and approximation 2.6 is reasonably accurate.
For heavier atoms, the separation of energy and Z dependent cross-section is not possible.
In such cases, tabulated values for the mass absorption coefficients are normally used in
spectral X-ray imaging.

2.2.2 Compton scattering

The Compton effect refers to inelastic scattering. In this process, an X-ray photon collides
with a quasi-free electron in the outer atomic shell, thereby creating a recoil electron.
Energy and momentum conservation lead to scattered photon energy decreased by the
transferred amount of energy, often expressed as an increase in wavelength,

∆λ = λ′ − λ =
h

me
(1− cosΘ). (2.7)
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Here Θ denotes the scattering angle between the wave vector k of the incoming photon
and of the scattered photon k′. The Klein-Nishina formula gives the differential cross-
section of photons scattered from a single free electron in the lowest order of quantum
electrodynamics. For an incident photon of energy E and scattered photon of energy E′,
the differential cross-section is:

dσ

dΘ
=

e2

8πm2
e

(
E′

E

)2 [E′

E
+

E

E′ − sin2Θ

]
(2.8)

Integration over the solid angle and multiplication with Z, to account for all electrons of
an atom with the atomic number Z [KN29], delivers the relation:

σcom = Z · fKN(E), (2.9)

where fKN is the energy-dependent Klein-Nishina cross-section. However, due to sim-
plifications done by Klein and Nishina, the given relation is physically not correct, and
fKN also depends on the atomic number Z [HJ80]. This simplification, however, leads to
negligibly small deviations for low Z materials in the energy range, where the Compton
effect plays an important role in the overall attenuation.
The Compton scattering of X-rays is the reason why anti-scatter grids have to be placed
in front of the detector. Scattered X-ray photons can lead to a strong deterioration of
the image quality by introducing a blur over the whole image in projection space. The
anti-scatter grid is a grid of lead strips placed directly on the detector, which only allows
X-rays to pass through in a narrow-angle range coming from the source spot. The scattered
X-rays are blocked by the grid and contribute to contrast formation, as they are scattered
into a wide angle range.

2.2.3 Rayleigh scattering
Rayleigh scattering is a quasi-elastic interaction process between X-ray photons and
an atom’s electron cloud. The photon is scattered on the bound atomic electrons and
deflected from its original path. The energy of the photon is not changed in this process.
In classical electrodynamics, all electrons of the atom are considered to be in a forced
oscillation with the frequency of the incoming photon during the scattering process. The
differential scattering cross-section per atom for small scattering angles can be described
by:

dσ

dΩ
=

r2e
2

(
1 + cos2Θ

)
Z2, (2.10)

where re is the classical electron radius, Θ is the scattering angle, and Z is the atomic
number of the atom. For large angles, scattering contributions interfere destructively.
Consequently, the probability of Rayleigh scattering in the forward direction is strongly
enhanced compared to other scattering angles. Therefore, Rayleigh scattering can result
in undesired scatter radiation reaching the detector.

2.2.4 Material decomposition
Based on the physical phenomena of X-ray interaction with matter, the mass attenuation
coefficient can be expressed as a sum of spectral basis functions. Figure 2.3 illustrates
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the energy dependency of the mass attenuation coefficient of iodine (data from National
Institute of Standards and Technology (NIST) [HS04]). Generally, the low energetic
regime is dominated by the photoelectric effect. Towards higher energies, scattering effects
become more important. Elastic scattering is about one order of magnitude lower than
the dominant effect. This observation often leads to the assumption that elastic scattering
can be neglected in X-ray imaging applications. The energy-dependent mass attenuation
coefficient of an arbitrary material without K-edges in the energy range of interest can be
parameterized by

µ(E,Z) = aphfph(E) + acfKN(E), (2.11)

with energy dependencies fph(E) = 1/E3.2 of the photoelectric effect according to [Leh+81]
and fKN(E) = σKN the energy dependency of the Klein-Nishina cross-section for the
Compton effect. The coefficients of the basis functions can be written as

ac = ρel

aph = Cphρel(Zeff)
3.8

(2.12)

with the effective electron density ρel of the material or mixture and its effective atomic
number Zeff . The exponent value of Zeff was chosen due to considerations from White et
al. [Whi77]. As fph(E) and fKN(E) originate from two different physical effects, they can
be seen as two linearly independent vectors [AM76], spanning a 2-D vector space.
Adapting the Beer-Lambert law from equation Equation 2.2 with energy-dependent
absorption coefficients µ(r⃗, E), the photon counts can be calculated via

I =

∫ ∞

0
I0(E) ·DF (E) · e−p(E)dE. (2.13)

I0(E) is the source spectrum, DF (E) the detector function and p(E) the projection or
line-integral of a monochromatic X-ray beam:

p(E) =

∫ S

0
µ(E, s)ds = Aphfph(E) +AcfKN(E) (2.14)

with

Aph =

∫ S

0
aph(r⃗)ds, Ac =

∫ S

0
ac(r⃗)ds (2.15)

where Aph and Ac denote the respective contribution of photoelectric absorption and
Compton scattering to the line-integral.
A DLCT detector capable of energy separation into two sufficiently independent parts
can be described by the detector function:

DFi(E) = Di(E) · E, (2.16)

where Di is the absorption efficiency of sensor layers one i = 1 and two i = 2. In an
ideal PCCT system, the detector function of the energy bins is a step function being
one, within the energy interval of the bin and zero otherwise. A theoretical comparison
between DLCT absorption efficiency and PCCT detector function is shown in Figure 2.12
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and Figure 2.12. By combining Equation 2.13 and Equation 2.16, the resulting equation
system can be solved numerically in order to obtain the line-integrals Aph and Ac. This
data is free of beam hardening effects, as energy dependencies are included.
By performing a Filtered Back Projection (FBP) on the CT data set of line-integrals
Aph and Ac, Equation 2.15 can be reversed and 3D data for the spatial distribution of
photoelectric effect aph(r⃗) and Compton effect ac(r⃗) coefficients can be reconstructed.
The basis material decomposition in projection space into water and bone is equivalent to
the spectral basis component decomposition. It is a simple matrix multiplication.(

Awater

Abone

)
=

(
(µρ )water(50) (µρ )bone(50)

(µρ )water(100) (µρ )bone(100)

)−1

·
(
fph(50) fKN(50)
fph(100) fKN(100)

)
·
(
Aph

Ac

)
(2.17)

where (µρ ) defines the mass attenuation coefficient and Awater, Abone the line integral over
the water and bone mass densities. The line integral can be modeled as:

p(E) =

∫ S

0
µ(E, s)ds = Awater(

µ

ρ
)water(E) +Abone(

µ

ρ
)bone(E) (2.18)

By using an unbiased estimator, the polychromatic forward model with corresponding
detector function, the X-ray spectrum and detector counts (Equation 2.13), the spectral
line integrals Awater and Abone can be estimated. FBP or more sophisticated reconstruction
techniques can recover the mass densities ρwater and ρbone from spectral line integrals.

Image-based decomposition can be performed without the exact knowledge of the X-ray
spectrum and detector function, as it happens after the reconstruction step without using
the energy-dependent Beer-Lambert law. The two sinograms from energy-dependent
measurements are reconstructed using Equation 2.1 with two measured flatfield images
I0(E1) and I0(E2) and two measured projection images I(d)E1 and I(d)E2 . The resulting
reconstructions suffer from spectral artifacts, as no energy dependence was considered. A
calibration phantom with a known attenuation coefficient is used to calculate the mean
energies E1 and E2 of the two X-ray spectra. The mean energies can be plugged into the
energy-dependent function of Equation 2.11. The left side of the equation reflects the
measured voxel data. By solving a linear equation system having two measurements and
two unknowns in every voxel, the spectral basis functions aph and ac can be calculated.
The resulting basis functions can be used to calculate material density maps or monoener-
getic images. Nevertheless, the resulting basis functions will be biased due to the spectral
artifacts in the reconstruction.

2.3 Image reconstruction
The goal of medical CT imaging is to reconstruct a 3D distribution of attenuation
coefficients of the patient. The contrast in the attenuation coefficient can then be used to
differentiate between different tissues with varying densities. The measured data represents
the line integral or projection of the attenuation coefficient along the X-ray beam.

pθ(r) =

∫ ∞

−∞

∫ ∞

−∞
µ(x, y)δ(x cos(θ) + y sin(θ)− r)dxdy (2.19)
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where pθ(r) is the measured intensity at angle θ and position s of the detector array,
µ(x, y) is the attenuation. The function pθ(r) is also called the sinogram, giving the
projection of the attenuation coefficient under all angles θ. A flat field measurement
is necessary to calculate the projection or line integral from the intensity measured at
the detector. The flat field measurement is the X-ray intensity at the detector without
placing a sample in the beam. It measures I0 in Equation 2.1 for every detector pixel. By
dividing the measured intensity by the flat field measurement, the projection pθ(r) can be
calculated. In this simplified example, the detector array is assumed to be a 1D line of
pixels, and the distribution of attenuation coefficients is assumed to be 2D. The beam
geometry is assumed to be a parallel beam geometry. The mathematical formulation of the
measurement process, creating projection images of the attenuation coefficient distribution,
is called the Radon transform. To gain the distribution of attenuation coefficients from
the measured data I(θ, ϕ), the Radon transform has to be inverted. The most widely used
algorithm for this is the FBP, although recently iterative and Artificial Intelligence (AI)
driven algorithms have gained popularity. The FBP algorithm is based on the Fourier slice
theorem. Colloquially, the Fourier slice theorem states that the Two-dimensional (2D)
frequency space of the attenuation coefficient’s Fourier transform can be populated by the
One-dimensional (1D) Fourier transform of the measured projection data. In more detail,
the Fourier slice theorem states that the 1D Fourier transform of the Radon transform of
a function f(x, y) under the angle θ is equal to the 2D Fourier transform of the function
f(x, y) evaluated at the line ϕ = x cos(θ) + y sin(θ). The Fourier slice theorem can be
expressed as follows:

F1D {Rθ {f(x, y)}} = F2D {f(x, y)}
∣∣∣∣
ϕ=x cos(θ)+y sin(θ)

(2.20)

where F is the Fourier transform and R is the Radon transform. The measurement process
retrieves the projection pθ(r) in radial sampling under the angle θ. However, it is not
trivial to reconstruct the attenuation coefficient distribution from the Fourier-transformed
projection data, as the 2D inverse Fourier transform on Cartesian coordinates would not
work on radially sampled data. The FBP algorithm solves this problem by filtering the
polar sampled measured data with a high pass frequency filter. This so-called ramp or
Ram-Lak filter arises from the Jacobian determinant when switching from cartesian to
polar coordinates. Mathematically expressed, the FBP is now the inverse process to go
from the experimentally determined projections p(θ, r) to the object function f(x, y) with
the use of the Fourier slice theorem. The object function can be expressed as an inverse
Fourier transform:

f(x, y) =

∫∫ +∞

−∞
F (u, v)e2πi(ux+vy)dudv (2.21)

=

∫∫ +∞

−∞
F (u = r cos θ, v = −r sin θ)e2πi(ux+vy)dudv (2.22)

=

∫ 2π

0

∫ +∞

−∞
Pθ(ω)e

2πiω(x cos θ−y sin θ)|ω|dωdθ (2.23)

where dudv = |r|dωdθ is the Jacobian determinant and Pθ(ω) is the 1D Fourier transform of
the projection data under the angle θ. Using the symmetry of the object Fourier transform
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with respect to the radial frequency F (r, θ) = F (−r, θ+π), one can simplify Equation 2.21
to

f(x, y) =

∫ π

0

∫ +∞

−∞
Pθ(ω)|ω|e2πiω(x cos θ−y sin θ)dωdθ. (2.24)

Figure 2.4 schematically illustrates the steps of the FBP algorithm. The measured
projection data undergoes Fourier transformation along the radial direction, followed by
filtering the projection data using the Ram-Lak filter. The filtered Fourier transform is
then inverse Fourier transformed, resulting in a filtered sinogram, which is then back-
projected onto the reconstruction grid. The back-projection is repeated for all projection
angles and summed up, resulting in an image of the attenuation coefficient distribution.
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Figure 2.4: The working principle of FBP. a shows a Shepp-Logan phantom, which is a 2D
distribution of attenuation coefficients. In this simplified example, a parallel beam geometry is
assumed. By measuring the intensity of the X-ray beam after passing through the sample, plus
the information on the flat field intensity in every pixel of the 1D detector, the line integral b can
be calculated. It is plotted for a projection angle θ = 0 degree. In c the 1D Fourier transform
F1D {p0(r)} = P0(ω) is visualized. The Fourier slice theorem states that P0(ω) is equal to the 2D
Fourier transform of the phantom evaluated at the line θ = 0, which is shown in d. The peak at
frequency zero in c is shown in a zoomed plot in e and is filtered out by the Ram-Lak filter, leading
to f. The 1D inverse Fourier transform of f is shown in g. This filtered sinogram is back-projected
onto the reconstruction grid for 4 and 301 projection angles in h and i, respectively. The back
projection is repeated for all projection angles and summed up.
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The Ram-Lak filter is zero for low frequencies and increases linearly to one for high
frequencies. When having projection data without noise contribution, the FBP algo-
rithm using the Ram-Lak filter would perfectly reconstruct the attenuation coefficient
distribution. However, measured projection data is superimposed by noise generated
by detector artifacts and photon shot noise arising from the quantized nature of light.
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Figure 2.5: Various filter for the FBP algorithm.

The major part of this noise is high-
frequency noise. The Ram-Lak filter am-
plifies the noise, resulting in a noisy re-
construction. Modulated filters can be ap-
plied to the projection data to reduce the
noise. The choice of the filter depends on
the noise requirements set for the final re-
construction. Generally speaking, smooth
filters dampen the noise at high frequen-
cies and lead to a smeared-out reconstruc-
tion. Sharp filters, which amplify the high-
frequency noise, can preserve the spatial
resolution of the reconstruction. The choice
of the filter is a trade-off between spatial
resolution and image noise. A comparison
of different filters is shown in Figure 2.5.

The Cosine, Hamming, Hann, or Shepp-Logan filter, as can be seen, in Figure 2.5, have
a roll-off towards higher frequencies, enabling a reduction of noise at the cost of spatial
resolution. The filter function can be expressed as:

f(r) = |r| · b(r), (2.25)

where the factor b(r) differs according to the following filter functions:

b(r) =


1 Ram-Lak filter,
sinc(ω) Shepp-Logan filter,
cosπω Cosine filter,
α+ (1− α) cos 2πω Hann (α = 0.5) and Hamming (α = 0.54) filter.

(2.26)

The SNR of a Region Of Interest (ROI) can be calculated as follows:

SNR =
µ

σ
(2.27)

where µ is the mean value of the ROI and σ is the standard deviation of the ROI. The
standard deviation of the ROI is mainly influenced by the noise in the projection data
and the filter function. To decrease the noise in the projection data, the number of
photons detected per projection time interval has to be increased. This can be achieved
by increasing the X-ray tube current or the exposure time, which increases the dose to
the patient and may increase the gantry rotation time when the tube’s power is limited.
In the low dose regime, the detector’s readout noise contribution is dominant Section 2.5.
At high tube power, the photon shot noise contribution is dominant. The photon shot
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noise-induced standard deviation is given by the square root of the number of photons
detected, meaning that the SNR increases with the square root of the number of photons
detected.
To increase spatial resolution in the reconstruction, the detector pixel size has to be
decreased. This leads to a decrease in the number of photons detected per pixel and,
therefore, a decrease in the SNR. The spatial resolution of the reconstruction is also
influenced by the reconstruction filter and the X-ray tube’s focal spot size. Further, the
Nyquist sampling theorem must be fulfilled to reconstruct the attenuation coefficient
distribution without sampling artifacts. The Nyquist sampling theorem states that the
sampling frequency has to be at least twice the highest frequency present in the signal.
In the case of CT imaging, the highest frequency present in the signal is the spatial
frequency of the attenuation coefficient distribution, given by the spatial resolution of the
reconstruction, which is again the detector pixel size divided by the system’s magnification.
The following equation gives the minimum number of projections required to fulfill the
Nyquist sampling theorem:

Nproj ≥
π

2
·Npix (2.28)

where Nproj is the number of projections and Npix is the number of detector pixels.
The number of projections is also limited by the gantry rotation time in interplay with
the required temporal resolution. Modern PCCT systems are reported to achieve an
in-plane spatial resolution of 125 µm [Raj+21]. Conventional reconstruction algorithms
are reaching their limits, as the dose to the patient can not be arbitrarily high. Itera-
tive reconstruction algorithms are a promising approach to overcome the limitations of
conventional reconstruction algorithms. The iterative reconstruction algorithm is based
on the maximum likelihood estimation. Maximum likelihood estimation is a statistical
method to estimate the parameters of a model. The model can be adapted to task-specific
requirements, including prior knowledge of the object.

2.4 Photon statistics

The quantum theory describes photons as the smallest unit of light. In contrast to the
classical description of light, quantum theory describes light as a stream of photons. The
number of photons in a light beam arriving at a detector is not constant but varies from
one measurement to the next. This is called photon statistics or shot noise. The Poisson
distribution can describe the photon statistics of a light beam. The Poisson distribution
is a discrete probability distribution that expresses the probability of a given number
of events occurring in a fixed time interval. Only a positive integer number of events
can occur during the time interval. Some examples of Poisson distributed events are
the number of events detected by a Geiger counter, the number of raindrops falling in
a certain area and time interval, or the number of photons arriving at a detector. The
Poisson distribution is defined as follows:

P (n) =
nne−n

n!
, (2.29)
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where n is the number of events, and n is the average number of events in the given time
interval. The average number of events is directly proportional to the intensity of the
light beam. The fluctuations in the number of photons arriving result from the quantized
nature of light. Having a low-intensity light or X-ray beam in low-dose measurements
results in low SNR originating from the standard deviation of the Poisson distribution
being equal to the square root of the number of events. When discussing photon statistics
using a photon counting detector, two physical phenomena must be distinguished. The
first is the intrinsic photon statistics of the incoming beam; the second is the statistical
nature of the photodetection process [Fox06]. Here, we will first discuss the intrinsic
photon statistics of an X-ray beam in our example. The following example illustrates
the discrete nature of light. If we have an X-ray source with a photon flux of Φ = 105

photons per time interval ∆s, the average number of photons arriving at the detector is
105. Imagining an ideal detector with a 1 Megapixel sensor Npix, we can expect that each
pixel will receive an average number of photons of n = 0.1 per time interval. In reality,
pixels can only receive a positive integer number of photons. Most of the pixels will have a
photon count of 0, some 1, and occasionally pixels will receive 2 or more. It is impossible
to predict which pixels will receive photons and in what quantity. The average number of
photons per pixel is 0.1. These fluctuations in short time intervals are called shot noise
and can be described by Photon statistics. In this simplified example, we assumed that
the X-ray source emits coherent and monochromatic photons with a constant rate per
time interval. In a classical picture, the electric field wave can be described by

E(x, t) = E0 sin(kx− ωt+ ϕ), (2.30)

where E0 is the amplitude of the wave, k is the wave number, x is the position, ω is
the angular frequency, ϕ is the phase, and t is the time. The intensity of the wave is
proportional to the square of the amplitude if the phase is time-independent. Looking at
N detector pixels after a time interval ∆t, n < N pixels will receive one photon, and if
the average number of photons per pixel is small enough, (N − n) pixels will receive zero
photons. The probability P (n) for detecting a single event in n detector pixels is given by
the binomial distribution:

P (n) =

(
N

n

)
pn(1− p)N−n, (2.31)

where p = n/N is the probability of a single event in a single pixel. Substituting this into
Equation 2.31 gives

P (n) =
N !

n!(N − n)!

(
n

N

)n(
1− n

N

)N−n

(2.32)

This can be rearranged into

P (n) =
1

n!

(
N !

(N − n)!Nn

)
nn

(
1− n

N

)N−n

(2.33)

When looking at a large number of pixels, we can take the limit N →∞ using the Stirling
approximation

lim
N→∞

N !

(N − n)!Nn
= 1 (2.34)
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For N → ∞, the series expansion of the exponential function e−n can be used to
approximate(
1− n

N

)N−n

= 1− (N −n)
n

N
+

(N − n)(N − n− 1)

2!

n2

N2
+ · · · = 1−n+

n2

2!
+ · · · = e−n

(2.35)
via the binomial theorem. Plugin in these limits into Equation 2.32 gives

lim
N→∞

P (n) =
1

n!
nne−n (2.36)

In conclusion, the probability of detecting n photons in N pixels is given by the Poisson
distribution

P (n) =
nne−n

n!
for n = 0, 1, 2, . . . (2.37)

Poisson distributions are characterized by a single parameter n, which is the average
number of events occurring in a given time interval. The standard deviation of the Poisson
distribution is given by the square root of the average number of events σ =

√
n. The

SNR is defined as the ratio of the average number of events to the standard deviation
SNR = n/σ =

√
n. This means that the SNR increases with the square root of the average

number of events. In our example, a SNR of 10 would require an average number of events
of 100. With increasing photon flux or dose, the SNR increases, and the fluctuations in
the number of photons per pixel become relatively smaller.
The ideal detector of our previous example has a certain detection efficiency η, which is
determined by a quantum efficiency ϵ, which represents the probability of a photon being
absorbed in the detector. The interaction probability is equivalent to the probability of a
photon not being transmitted. The quantum efficiency is therefore given as

ϵ = 1− e−µd (2.38)

where d is the thickness of the detector material, and µ is the linear attenuation coefficient.
The probability distribution of the registered photons is again Poissonian with

P (n)d =
(n · ϵ)ne−n·ϵ

n!
, (2.39)

as the transmission probability follows a Bernoulli distribution, which acts on a Poisson
process. That the transmission process follows a Bernoulli distribution can be shown as
equivalent to the argumentation of the binomial distribution of photons. The proof of
this can be found in Fessler [Fes00]. A visual demonstration of this is shown in Figure 2.6.
It is assumed that the measurement over an integration time T ≫ ∆t will increase the
average number of photons per pixel to T ·Φ

Npix
= n = 100. Quantum efficiencies from 4.5 to

82% are considered. The binomial process acts on the Poisson process, with repetitions
going from 1 to 1000.
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Figure 2.6: Caption can be found on the next page.
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Figure 2.6: Probability mass functions: A binomial distribution on a Poisson distributed process for
1, 2, 4, and 1000 repetitions. Binomial distributions are plotted dotted, and Poisson distributions
are plotted solid. The binomial probabilities range from 4.5 to 82 %. It can be observed that the
binomial distribution converges to the Poisson distribution with an increasing number of repetitions.
The Poisson distribution is therefore a good approximation for the binomial distribution for many
photons being measured in a certain integration time. If the overall expected number of photons is
low due to low quantum efficiency, the binomial distribution shows only small deviations from the
Poisson distribution, even for view repetitions.

For a high number of X-ray quanta, the sterling equation can be used to approximate
the Poisson distribution by a Gaussian [Buz08]:

P (n) =
1√
2πn

exp

(
−(n− n)2

2n

)
(2.40)

where n is the expectation value of the Poisson distribution, which equals the variance
n = σ2. Equation 2.40 is a consequence of the central limit theorem.
Using integrating detectors like described in Section 2.5 leads to a shift in the noise
distribution, which can not be considered Poissonian or Gaussian after the scintillator
conversion and several correction steps like beam-hardening and dark current correction.
To be able to apply a maximum likelihood estimator, the line integrals values can be
scaled or shifted (noise equivalent counts scaling/shifting) [NMD01] so that the first and
second moments of the noise distribution are equal to the Poisson distribution.

2.5 Integrating detectors in medical CT
Energy integrating detectors are most widely used in medical CT systems. They consist
of a photodiode coupled to a scintillator. Incoming X-rays are absorbed in the scintillator
material, which emits visible light. A photodiode converts the visible light into an electric
current, which is converted into a voltage signal. The voltage signal is then amplified,
digitized, and the digitized signal is stored in a memory buffer, which is read out by a
Analog to Digital Converter (ADC) and stored in a computer memory. The ADC converts
the analog voltage signal into a digital signal.
The visible light emitted by the scintillator is proportional to the number and energy of
the incoming X-rays. Higher energy X-rays generate more visible light than lower energy
X-rays, meaning that the visible light emitted is a measure of the energy deposition of the
incoming X-rays. As the system is limited in its temporal sampling rate, several X-ray
photons can be absorbed in the scintillator material during one sampling interval, giving
rise to the term energy integrating detector. After this process, no information on the
number of photons or their energies is retrievable. The acquired signal, which is directly
proportional to the energy deposited in the scintillator, is used to calculate the line integral
of the attenuation coefficient. As the information about the energies of the X-ray photons
is not available, the line integral is calculated using the energy-independent Beer-Lambert
law, making the projection data prone to spectral artifacts like beam hardening [BC76],
which, if uncorrected, leads to cupping artifacts in the reconstructed image. Another
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problem of energy integrating detectors is the acquisition of a dark current signal, due to
the readout electronics and the scintillator material itself. The dark current signal is a
signal generated by the detector without any incoming X-rays. The mean value of the
dark current can be calibrated and subtracted from the measured signal [Wis+02].

2.6 Energy-resolving medical CT
The basis of generating X-ray measurements with energy-dependent information in medical
CT is either the usage of energy-resolving detectors or the change of the X-ray spectrum
itself. Energy-resolving clinical CT systems are mainly using four different approaches,
to get spectral information on the attenuation coefficient: dual layer detectors, photon
counting detectors, dual source systems, and rapid kVp switching. The first two approaches
are based on the usage of energy-resolving detectors, while the latter two approaches are
based on the change of the X-ray spectrum. All four approaches are schematically shown
in Figure 2.7. Measurements at two different energies can be performed using DLCT,
dual source systems, and rapid kVp switching. PCCT systems are theoretically capable of
measuring the energy in more than two increments, but modern clinical PCCT systems
are limited to two energy bins because of several factors, including data transfer rates and
lacking applications.
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a) b)

c)
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Figure 2.7: Technical realization of Dual Energy CT (DECT) and PCCT. The rapid kVp switching
approach shown in a is switching the tube voltage between two different values from projection to
projection. The dual-source approach shown in b is using two X-ray tubes with different acceleration
voltages, tube currents, and beam filters. The X-ray sources are placed at an angle of 90 ◦ to
each other within the gantry. Two conventional integrating detectors are placed on the opposite
side of the X-ray sources. The DLCT approach drawn in c uses a dual scintillator layer detection
design to assign incoming X-rays to low and high energies. The PCCT approach depicted in d is
operated with a single X-ray source and a photon-counting detector. The photon-counting detector
is capable of assigning incoming X-rays to different energy bins. Ideally, the energy response
function of the detector is rectangular. In practice, this is not the case. Details are discussed
in Section 2.8.
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The following sections will discuss the technical realization of the detector-based ap-
proaches, as the results of this thesis are mainly based on DLCT and PCCT measurements.
Theoretically, it is possible to apply the results of this thesis, generated from a clinical
DLCT, to clinical PCCT systems.

2.6.1 Dual layer detectors
As previously mentioned, clinical DLCT is based on a system with one X-ray source
operated at a constant acceleration voltage of 120 kVp in a standard setting. The energy
differentiation can be achieved by an energy-responsive detector with a double-layer
structure of scintillator materials [Alt+11]. A one-millimeter thick Tin Selenide (ZnSe)
layer is used as a low energy filter, and a two-millimeter thick Gadolinium Oxysulfide (GOS)
layer located behind the ZnSe layer absorbs all photons after the ZnSe layer [She+13].
The side-looking scintillator-coupled photodiodes measure an integrated signal of the lower
energy photons in the ZnSe layer and the higher energy photons in the GOS layer. A
schematic of the detector is shown in Figure 2.8.
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Figure 2.8: A schematic overview of a DLCT detector. Low energetic incoming X-rays are absorbed
in the first ZnSe scintillator layer (yellow boxes) and a side-looking, edge-on, silicon photodiode
coupled to the layer (purple slits) converts the visible light from the scintillator plate to an electrical
signal. The photodiodes are thin enough to maintain the same detector pitch and geometrical
efficiency as a conventional CT detector [She+13]. The scintillator borders have a visible light
reflector to channel the light output to the photodiode. X-ray photons can pass the reflector and
reach the second GOS scintillator plate. The high Z material absorbs the remaining X-rays and
converts them to visible light. A tungsten shield (black boxes) protects the photodiodes from
radiation. Figure is inspired by [She+13].
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The energy response function of the detector is shown in Figure 2.17 a. Dedicated
algorithms can be applied to generate energy-dependent sinograms (see Section 2.8). The
energy response function of the detector and the tube spectrum must be known to perform
the projection-based material decomposition. The energy response function of the detector
can be measured using a monochromatic X-ray source like a synchrotron.

2.7 Image artifacts
The image quality of a reconstructed image is determined by the SNR, the spatial resolution,
and the presence of image artifacts. Image artifacts are deviations of the reconstructed
image from the original object. Image artifacts can be caused by the measurement process,
the reconstruction algorithm, or the object itself.

2.7.1 Spectral artifacts
With the scope of this thesis in mind, spectral artifacts are of special interest. Spectral
artifacts are caused by the energy dependence of the attenuation coefficient. The energy
dependence of the attenuation coefficient is caused by the energy dependence of the
photoelectric effect and the Compton effect Section 2.2. When passing through matter, X-
rays are attenuated, which can be described using Equation 2.2. As the photoelectric effect
is the dominant interaction mechanism at low energies, the attenuation coefficient increases
with decreasing energy. Conventionally generated X-rays have a continuous spectrum
with a characteristic line spectrum superimposed (Section 2.1). Low energetic photons
are predominantly attenuated within the first few centimeters of matter, depending on
the material. After the first few centimeters, the X-ray spectrum is hardened, meaning
that a major part of the low energetic photons are absorbed, and the spectrum with its
mean energy is shifted to higher energies. This is called beam hardening and is visualized
in Figure 2.9.
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Figure 2.9: The change of the X-ray spectrum with beam-hardening. The spectrum of a conven-
tional X-ray tube and its mean energy is shown in blue. After passing through matter, the spectrum
is hardened, meaning that the mean energy of the spectrum is shifted to higher energies (red).
The bigger part of the low energetic photons is absorbed, while the high energetic photons are
less attenuated.

The attenuation of a hardened X-ray spectrum is lower than the attenuation of the
original spectrum, as the higher energies get less absorbed in the very same material. This
leads to a nonlinear energy dependence of the energy-averaged attenuation coefficient.
Cupping artifacts can be observed in the reconstructed image. Using projection-based
material decomposition Subsection 2.2.4 can avoid spectral artifacts like cupping. This is
visualized in Figure 2.10.
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Figure 2.10: Cupping artifact in conventional and spectral reconstruction. A line plot through the
center of a water phantom in a cylindrical container is shown. A constant attenuation coefficient is
assumed (blue line). The cupping artifact is visible in the conventional reconstruction (green line),
giving a high attenuation at the edges of the phantom and a decreased attenuation at the center.
The artifact looks like the curved surface formed in a cylinder (or cup) by a liquid (meniscus) due
to adhesion. The spectral reconstruction (orange line) is unaffected by the cupping artifact, as the
energy dependence of the attenuation coefficient is considered in the projection-based material
decomposition. A virtual monoenergetic reconstruction at 50 keV is shown.
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Strong beam hardening artifacts can be observed, especially between two strongly
absorbing objects along the beam direction, like the shoulder joints. The absorption
coefficient between these structures can be drastically reduced. Further, beam hardening
artifacts arising from prostheses can be a major problem in clinical CT imaging. Due to a
strong absorption within the metal alloys used for prostheses, the X-ray spectrum is hard-
ened, leading to major beam hardening artifacts. Spectral reconstruction algorithms can
result in a significant reduction of streak artifacts produced by beam-hardening [Wel+17].

2.7.2 Other artifacts

Image artifacts can be classified into two categories: deterministic and stochastic artifacts.
Examples of deterministic artifacts are beam-hardening Subsection 2.7.1, ring, and motion
artifacts. Stochastic artifacts are noise (Section 2.4) and aliasing artifacts (Section 2.3).
Ring artifacts are caused by a non-uniform detector response. For example, when a
detector pixel is corrupted, showing a lower or no response, a ring with a lower intensity is
visible in the reconstructed image at the radial position of the detector pixel. Ring artifacts
can most effectively be reduced by properly calibrating the detector or post-processing in
projection space by interpolating the corrupted detector pixel with neighboring pixels.
Motion artifacts arise from patient movement between the acquisition of projections
during a gantry rotation. In the case of cardiac imaging, this motion can not be avoided.
To reduce motion artifacts, the gantry rotation time can be reduced to acquire the
projections within the diastolic or even systolic phase of the heart [Dew+20]. This
technique requires Electrocardiogram (ECG)-gated scans. The post-processing correction
of motion artifacts includes image registration and motion correction, which can be
challenging due to unknown motion patterns.
Stochastic artifacts mainly arise from the usage of low dose CT (noise) or undersampling
(aliasing) to reduce the radiation dose to the patient. Mainly, sophisticated reconstruction
algorithms are applied to reduce the effects of stochastic artifacts. Model-based iterative
reconstruction algorithms have great potential in reducing the radiation dose in modern CT
scans when compared with the traditional FBP algorithms [Liu14]. Modern reconstruction
algorithms correcting for sparse sampled CT projections mainly depend on AI-based
methods for the correction of undersampling artifacts [Rie+23; Dor+23; SPX22].

2.8 Simple simulation of projection based material
decomposition

The X-ray spectrum of a conventional X-ray tube is a continuous spectrum with a
characteristic line spectrum superimposed. It is characterized by the anode material, the
tube voltage and current, and the filter. The heating voltage is additionally quantifying the
intensity of the emitted spectrum. To change the mean energy of the spectrum, the tube
voltage can be modified, leading to a shift of the maximum X-ray energy. Additionally, a
filter material can be introduced into the beam to reduce the low energy intensities. This
is a result of the energy dependence of the attenuation coefficient. An example material to
filter out low-energy photons is tin. Tin has an atomic number of 50 and, therefore, a high
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attenuation at low energies. This is due to the photoelectric effect, which is the dominant
interaction mechanism at low energies. The energy-dependent attenuation coefficient of tin
is shown in Figure 2.11. The energy dependence of the attenuation coefficient can be used
to generate two X-ray spectra with almost no overlap in energies. This setting with two

20 40 60 80 100
Energy in keV

101

102

103

At
te

nu
at

io
n 

co
ef

fic
ie

nt
 in

 1
/c

m

a)

20 40 60 80 100
Energy in keV

0

1

2

3

4

5

In
te

ns
ity

1e8 b)

Figure 2.11: The effect of tin filtration. In panel a, the attenuation coefficient of tin as a function
of energy is plotted on a logarithmic scale. The attenuation coefficient is given in cm−1. The
attenuation coefficient at the low energies of the X-ray spectrum is two orders of magnitude higher
than at the high energies. A drastic increase in absorption can be observed at the K-edge of tin
at 29.2 keV. Apart from the K-edge, the absorption is exponentially decreasing with increasing
energy. In panel b, the intensity in numbers of photons of two X-ray spectra are plotted. The blue
spectrum with an acceleration voltage of 100 keV is filtered with a 0.4 mm thick tin filter and has
five times increased heating voltage of the cathode to account for the lower photon output of the
tin filter. The orange spectrum with an acceleration voltage of 50 keV is not filtered. The mean
energies of high and low energy spectra are 67 keV and 30 keV, respectively. The spectral overlap
is only around 5.1% of the total number of photons.

spectra with almost no overlap in energies can be used to perform energy-dependent X-ray
measurements. It can be applied in sequential scanning or on a dual-source setup. Another
possibility to generate spectrally separated measurements is the usage of a dual-layer
detector. The first scintillator layer acts as a filter for low-energy photons, while the
second layer ideally absorbs all photons after the filter layer. Both scintillator layers are
coupled to a photodiode. A detailed description can be found in Subsection 2.6.1. Using
that setup, the energy of the incoming photons can be separated. Ideally, the detector
response function can then be expressed using the energy-dependent Beer-Lambert law,

D(E)r = e−µ(E)·dFL , (2.41)
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where D(E)r is the detector response function for the rear layer detecting all remaining
photons after the filter layer with thickness dFL and absorption coefficient µ(E). The
detector response function for the front layer is then given by

D(E)f = 1−D(E)r = 1− e−µ(E)·dFL (2.42)

being the scintillator attenuation in the front layer. An example detector response function
is shown in Figure 2.17 a. The front layer is assumed to be 0.8 mm thick ZnSe, and the
rear layer is assumed to be 2.0 mm thick Gd2O2S GOS [She+13]. ZnSe, with its low
atomic number, is a good candidate for a low-energy filter, while GOS has a higher atomic
number absorbing also high energy X-rays. With the ideal detector response function,
the spectral separation of a 120 kVp tungsten can be as good as approximately 40%
spectral overlap. Thin reflector layers, typically consisting of a mixture of high-reflectance
materials like titanium dioxide (TiO2), and separate adjacent pixels in the detector ar-
ray. Optical crosstalk between pixels is reduced by the reflector layer. Using a reflector
layer, cross-talk correction makes only about 11% Modulation Transfer Function (MTF)
increase [CSB04; BG94]. Cross-talk in the photodiodes from traveling electron-hole pairs
is in the order of 4% [JJH09]. Further, the edge-on photodiode design between the
detector columns of the DLCT prevents cross-talk in detection-arc dimension [She+13].
Using reflector layers, cross-talk correction, and state-of-the-art photodiodes, the spectral
response of the detector is assumed to be close to the ideal behavior shown in Figure 2.17 a.

The ideal detector response function of a Photon Counting Detector (PCD) is described
by a step function, forming rectangular bins between thresholds. The theoretical spectral
overlap is 0%, as the detector response function is zero for all energies outside the bin and
one for all energies inside the bin.
“Physical effects such as electronic noise, incomplete charge collection, energy loss due to
K-escape, or other sources contribute to a degradation of the energy resolution of the
detector. As a consequence, two adjacent energy bins are not sharply separated by the
energy threshold at their common boundary. [. . . ] Effects contributing to the degradation
of the energy resolution lead to an overlap of the bin-sensitivity functions” [Sch+08].
This is visualized in Figure 2.12. A simple simulation was consulted to investigate the
effect of the energy response function on image quality in material decomposed images. A
digital Shepp-logan phantom was generated with different densities of water, bone, and
iodine. The inside region of the phantom was set to water with 1.0 g/ml mass density. The
outside region (skull) is composed of Hydroxyapatite with a density of 1.0 g/ml. A small
mixed region with bone and water and an iodine water mix was added to the phantom.
Additionally, there is an air region inside the phantom. The phantom is 256 × 256 pixels
in size. The mass density maps of the phantom are shown in panels a to c in Figure 2.13.
A virtual monoenergetic image at 70 keV is shown in panel d in Figure 2.13 in Hounsfield
Units (HU).
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Figure 2.12: The energy response function of a PCD. The energy response function is plotted up
to 120 keV. The solid lines are the theoretical energy response functions for bins 1 to 4 described
by a step function. The dashed lines are the energy response functions simulated with a 500 µm
thick GaAs sensor with 75 µm pixel pitch with an equidistant threshold spacing from 20 to 80 keV
and a threshold width of 20 keV plus a 40 keV broad high energy bin from 80 to 120 keV.
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Figure 2.13: The digital Shepp-logan phantom used for the simulation. The phantom is composed
of water, bone, iodine, and air. The inside region is water with a 1.0 g/ml mass density. The outside
region (skull) is composed of Hydroxyapatite with a density of 1.0 g/ml. A small mixed region with
bone and water and an iodine water mix was added to the phantom. Additionally, there is an air
region inside the phantom. The phantom is 256 × 256 pixels in size. The mass density maps
of the phantom are shown in panels a to c in g/ml. A virtual monoenergetic image at 70 keV is
shown in panel d in HU. The image was generated using the Beer-Lambert law with the mass
density maps and the attenuation coefficients of water, bone, and iodine.
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The mass density images were forward projected onto a 256-pixel wide detector array
with a pixel pitch of 1.0 mm in parallel beam geometry, generating 1000 projections
for all three material areal densities. In the next steps, measurements were simulated
for a 120 kVp tungsten spectrum for the DLCT and PCCT setup. Noise was added to
virtual intensity measurements. Several noise components have to be considered. For
the case of normal clinical exposures, the X-ray CT measurements are often modeled
as the sum of a Poisson distribution representing photon-counting statistics [EF99] and
an independent Gaussian distribution representing additive electronic noise [Sny+95].
Gaussian noise is modeled as a zero-mean Gaussian random variable with a standard
deviation σGauss = 5 · 10−5 · I0, being 5 permille of the flat field intensity. The Poisson
noise is modeled as a Poisson random variable with a mean µPoisson = Ix, being the
intensity after attenuation, at every pixel. The additive noise of electric components is
modeled as a zero-mean Gaussian random variable because a dark current calibration
can be performed prior to the measurement. The dark current calibration is performed
by measuring the detector response function without any X-ray exposure, and the mean
value is subtracted from the measurement. PCCT measurements are also simulated with
additive electronic noise to compare the two methods only depending on the energy
response function. Electronic noise can be efficiently reduced or excluded in PCCT
measurements by setting the lowest threshold to a value above the electronic noise. This
is impossible in DLCT measurements, as a photon integrating approach is used with
the double-layer scintillator. Further, the difference in DLCT and PCCT simulation is
the energy weighting of the measurements in the DLCT case. The energy weighting is
performed by weighting the X-ray counts in the scintillator layers with their corresponding
energy. “Once an X-ray quantum is absorbed in the detector, the conversion process
is characterized by a mean energy-dependent gain, g(E) [· · · ], which records a signal
strength proportional to the energy imparted to the detector, g(E) = GE, i.e., G is
the conversion factor from X-ray energy to signal” [Whi+06]. The conversion factor G
is assumed to be 1.0 divided by the mean spectrum energy for the DLCT simulation.
No energy weighting is performed for the PCCT simulation g(E) = 1. The simulated
noisy layer and bin measurements were then used to perform a material decomposition in
projection space using the Beer-Lambert law and a maximum likelihood estimator [AM76].
The material decomposition was performed for the DLCT and PCCT setup. As a flatfield
image, the mean intensity value over the whole detector array was used in every pixel.
Even though the measured intensities are not purely Poisson distributed but a mixture of
Poisson and Gaussian noise, the maximum likelihood estimator is used in this case, as it
is used in literature for spectral measurements [EF02]. There have been attempts to use
a penalized weighted least square estimator for Poisson-Gaussian mixed noise [Din+18].
This approach exceeds the complexity of this simple simulation. After generating the
material decomposed areal density images for water and bone, a simple filtered back
projection was performed to reconstruct the images. A Ram-Lak filter was used for the
reconstruction. The bone density images obtained from DLCT and PCCT with 2 and 4
bins are shown in Figure 2.14.
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Figure 2.14: The bone density images obtained from DLCT and PCCT with 2 and 4 bins. The
bone density images are shown in g/ml.
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Quantitative values for the bone and water density images are compared in homogeneous
regions for DLCT and PCCT with 2 and 4 bins. The results for bone and water densities
are shown in Table 2.1 and Table 2.2. The ground truth values are compared to density
values obtained from a projection-based two-material decomposition plus filtered back
projection. Homogeneous ROI were selected on iodine water mix, water only, bone water
mix and bone only regions. The deviations in all modalities to the ground truth values
are also shown in the tables.
The mean deviations of bone densities obtained from DLCT and PCCT with 2 and 4 bins

IW [mg/ml] IW [%] W W BW BW B B

Gr. T. 306 0.0 0 0.0 200 0.0 1000 0.0

DLCT 358 5.2 9 0.9 244 4.4 961 -3.9

PCCT 2 311 0.5 33 3.3 226 2.6 974 -2.6

PCCT 4 348 4.2 4 0.4 191 -0.9 937 -6.3

Table 2.1: Bone densities obtained from DLCT and PCCT with 2 and 4 bins. The bone density
values are shown in mg/ml. The ground truth values are compared to density values obtained
from a projection-based two-material decomposition. The deviations from the ground truth value
are given in percentage. Homogeneous regions were selected in iodine water (IW) mix, water (W)
only, bone water (BW) mix and bone (B) only ROI.

IW [mg/ml] IW [%] W W BW BW B B

Gr. T. 742 0.0 1000 0.0 800 0.0 0 0.0

DLCT 660 -8.2 989 -1.1 725 -7.5 -24 -2.4

PCCT 2 744 0.2 941 -5.9 757 -4.3 -49 -4.9

PCCT 4 672 -7.0 991 -0.9 816 1.6 15 1.5

Table 2.2: Water densities obtained from DLCT and PCCT with 2 and 4 bins equivalent like
in Table 2.1

are 3.6%, 2.2% and 3.0% respectively. The mean deviations of water densities are 4.8%,
3.8% and 2.8% respectively. These values are obtained with identical noise approximations
in the DLCT and PCCT simulations. In a more realistic scenario, the Gaussian noise
component in the PCCT simulation could be smaller or even negligible, as by setting the
lowest energy threshold effectively, the electronic noise can be avoided [Len+19].
The noise properties in the mentioned homogeneous ROI are investigated using scatterplots
of the bone and water densities. The scatterplots are shown in Figure 2.15. The anticorre-
lated noise in material decomposed images is introduced by the material decomposition
algorithm and is not existent in the reconstructed layer and bin measurements [AM76;
BZS15]. The deviations of the bone and water densities in the homogeneous ROI from the
ground truth values are shown in Figure 2.16 to highlight the performance of the material
decomposition algorithm on different detector-based energy separation approaches. The
Pearson product-moment correlation coefficient r is -0.992, -0.991, -0.999, and -0.972 in
iodine water mix, water only, bone water mix , and bone only ROI respectively. It is equal
for all modalities DLCT and PCCT with 2 and 4 bins. The r values are close to -1, which
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Figure 2.15: Scatterplots of the bone and water densities obtained from DLCT and PCCT with 2
and 4 bins in a, b and c. The ground truth values are shown in panel d. Panel e and f show the
reconstructed Virtual monoenergetic image (MonoE) images from DLCT and PCCT with 2 bins.
An anticorrelated noise behavior is visible in all material decomposed images. It is not existent in
the reconstructed layer and bin measurements.

38 Chapter 2 Theoretical Background



0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
0.1

0.0

0.1

DLCT

Iodine Mix
Water Pure
Bone Mix
Bone Pure

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
0.1

0.0

0.1

PC

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
Water Difference in g/ml

0.1

0.0

0.1

Bo
ne

 D
iff

er
en

ce
 in

 g
/m

l

PC 4

Figure 2.16: Scatterplots of the difference in bone and water density images obtained from DLCT
and PCCT with 2 and 4 bins to noise-free images. The x and y axes are scaled equally to highlight
the differences in accuracy and precision of the material decomposition algorithm. The biggest
deviations can be found in the DLCT approach. The deviations in the PCCT with 2 and 4 bins are
smaller compared to the DLCT approach. The differences between 2 and 4 bins are only marginal.
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indicates a strong negative correlation between the bone and water densities. The p-value
associated with the chosen alternative hypothesis is smaller than 0.0001 in all cases.
The theoretical background of anticorrelated noise in material decomposed images is
discussed in [RZP07; Jam00]. It can be shown that the covariance matrix of the material
decomposed images is given by

VA = J −1

(
σ2
1 0
0 σ2

2

)
(J −1)T = J −1P(J −1)T , (2.43)

where Ji,j = ∂Ci/∂Aj is the Jacobian matrix of the projection-based spectral forward
model in Equation 2.13 and σ2

1 and σ2
2 are the variances of the layer or bin measurements.

The covariances (off diagonals of P) of layer and bin measurements are zero, as they are
independent. As all entries of J are nonzero, the off diagonals of VA are nonzero, showing
a correlation in the material decomposed projections. Some calculation [RZP07; KKK88]
lead to

cov(A1, A2) < 0, (2.44)

indicating the anticorrelated noise in the material decomposed projections.

2.9 The Cramér-Rao lower bound for the estimator variance
The number of photon counts in an PCD bin is a random variable following a Poisson
distribution. The amount of energy deposited in a scintillator layer of a DLCT is also a
random variable following a Gaussian distribution [GB94; Swa73]. The counts or energy
deposited in a bin or layer are statistically independent of each other [SB89]. This chapter
will focus on the DLCT case. The PCD case can be treated analogously. To determine
A1 and A2 from a DLCT measurement, the probability

P (M,A1, A2) =

2∏
j=1

1

(2πσ2
j )

1/2
e
−

(mj−µj)
2

2σ2
j dmj (2.45)

has to be maximized. M = (m1,m2) is the measured signal in the two scintillator layers,
µj is the mean energy deposition in the j-th layer, and σ2

j is the variance of the energy

deposition in the j-th layer. Quantities µj and σ2
j are functions of A1 and A2, the X-

ray spectrum, and the detector response function, given in Equation 2.49. Equivalent
to the probability maximization, the negative log-likelihood function of the probability
density function P (X,A1, A2) can be minimized. It is a sum of the negative log-likelihood
functions within the two layers [RH09]:

L =

2∑
j=1

[
1

2
lnσ2

j +
(mj − µj)

2

2σ2
j

]
+ ln(2π) (2.46)

A measure of the amount of information contained in this experiment is given by the
Fisher information matrix [Kay]. It is the expectation value of the negative Hessian of
the log-likelihood function with respect to A1 and A2:

Fi,j(A1, A2) = E

[
− ∂2L
∂Ai∂Aj

]
. (2.47)
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The Fisher information matrix can be calculated using the log-likelihood function from
the spectral forward model Equation 2.13 [AM76; RH09]. The Fisher information matrix
is given by [Kay; Cow98]

Fα,β =

2∑
j=1

1

σ2
j

(
∂µj

∂Aα

)(
∂µj

∂Aβ

)
+

1

2

2∑
j=1

1

σ4
j

(
∂σ2

j

∂Aα

)(
∂σ2

j

∂Aβ

)
. (2.48)

It is worth mentioning that the terms with a second derivative disappear in the calculation
of the matrix elements as a result of taking the expectation value. The inverse of the
Fisher information matrix is called the Cramér-Rao information matrix. It is a lower
bound for the variance of any unbiased estimator [Kay] and gives the lower limit for the
variance that is propagated from the measurements into the estimates related to the Fisher
information matrix. It can be used to determine the minimum variance of a maximum
likelihood estimator for the spectral basis coefficients A1 and A2.
According to Equation 2.13 and the assumptions of Section 2.8, the mean energy deposition
µ in the scintillator layers in dependence of the ZnSe front layer thickness dZnSe is given
by

µFront(dZnSe) = C

∫ ∞

0
EΦ(E)

(
1− e−dZnSeµZnSe(E)

)
e−

∑2
α=1 fα(E)AαdE, (2.49)

and

µRear(dZnSe) = C

∫ ∞

0
EΦ(E)e−dZnSeµZnSe(E)e−

∑2
α=1 fα(E)AαdE, (2.50)

where C is a constant representing the solid angle of the detector and the product of the
anode current and the exposure time, E is the energy of the incoming photon, Φ(E) is
the X-ray spectrums’ intensity, and Aα is the spectral basis coefficient line integral. The
Cramer-Rao Lower Bound (CRLB) for the variance of an unbiased estimator is given by

σ2
Ai
≥ F−1

i,i (2.51)

where σ2
Ai

is the variance of the estimated spectral basis coefficient’s line integral for Ai

and
(
F−1

)
i,i

is the diagonal element of the inverse of the Fisher information matrix [RH09].
For α = β this gives us

Fα,α =
2∑

j=1

1

σ2
j

(
∂µj

∂Aα

)2

+
1

2

2∑
j=1

1

σ4
j

(
∂σ2

j

∂Aα

)2

. (2.52)

The variance of the mean energy deposit in the j-th layer is given by [GB94; Swa73]

σ2
Front(dZnSe) = C

∫ ∞

0
E2Φ(E)

(
1− e−dZnSeµZnSe(E)

)
e−

∑2
α=1 fα(E)AαdE, (2.53)

and

σ2
Rear(dZnSe) = C

∫ ∞

0
E2Φ(E)e−dZnSeµZnSe(E)e−

∑2
α=1 fα(E)AαdE. (2.54)
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The derivatives of the mean energy deposit and the variance of the mean energy deposit
in relation to the spectral basis coefficients are given by

∂µFront(dZnSe)

∂Aα
= C

∫ ∞

0
E(−fα(E))Φ(E)

(
1− e−dZnSeµZnSe(E)

)
e−

∑2
α=1 fα(E)AαdE

∂µRear(dZnSe)

∂Aα
= C

∫ ∞

0
E(−fα(E))Φ(E)e−dZnSeµZnSe(E)e−

∑2
α=1 fα(E)AαdE

∂σ2
Front(dZnSe)

∂Aα
= C

∫ ∞

0
E2(−fα(E))Φ(E)

(
1− e−dZnSeµZnSe(E)

)
e−

∑2
α=1 fα(E)AαdE

∂σ2
Rear(dZnSe)

∂Aα
= C

∫ ∞

0
E2(−fα(E))Φ(E)e−dZnSeµZnSe(E)e−

∑2
α=1 fα(E)AαdE.

The effect of the front layer thickness can be visualized using an example with a 120 kVp
tungsten spectrum filtered with a 3.5 mm thick Aluminum filter and a maximum photon
flux of 2 · 1011 photons. The detector response function is assumed to be ideal for a ZnSe
detector like given in Equation 2.42. The calcium-integrated density along the X-ray
path is assumed to be 0.775 g/cm2, and the water-integrated density is assumed to be 10
g/cm2. The solid angle current time product is assumed C = ΩIAT = 10−6 ·0.2 mAs. The
optimal front layer thickness dZnSe ≈ 0.8 mm is calculated by the CRLB for the variance
of the spectral basis coefficients (see Figure 2.17).
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Figure 2.17: An example for the CRLB in DLCT with calcium-integrated density along the X-ray
path being 0.775 g/cm2 and the water-integrated density being 10 g/cm2. Panel a shows the
energy response function of an ideal Dual Layer (DL) detector for varying front layer thicknesses
around 0.8 mm ZnSe. The rear layer is assumed to be 2.0 mm thick Gd2O2S (GOS) [She+13].
The solid red and blue lines are the detector response functions for the front and rear layers,
respectively. The dashed black lines are the detector response functions using different front layer
thicknesses of 0.5, 0.7, 0.8, 0.9, and 1.1 mm. Panel b is the corresponding photon flux from a 120
kVp tungsten spectrum filtered with a 3.5 mm thick Aluminum filter. It also visualizes how many
photons are detected in the front and rear layers. Panel c shows the Standard Deviation (STD) of
energy deposited in the front and rear layer for varying front layer thicknesses ranging from 0.1
to 2.0 mm ZnSe. In panel d, the SNR of the spectral basis coefficients ACa and AH2O using the
estimation from the CRLB is plotted in dependence of the front layer thickness. The optimal front
layer thickness (Opt. thick.) is defined as the front layer thickness, where the SNR is maximal.
The optimal front layer thickness is 0.81 and 0.80 mm ZnSe for Calcium and water, respectively.
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”The similar behavior of the SNR in the two basis images as a function of dZnSe can
be explained by the fact that the strongest dependence of the noise [. . .] results from the
determinant of the Fischer information matrix, which affects noise in both basis images in
the same way” [RH09].
To estimate the optimal front layer thickness in a clinical DLCT, the CRLB for varying
integrated material densities has to be considered. Not only the acquisition angle is crucial,
but also patient geometries and the X-ray spectrum. As the front layer thickness is a
fixed quantity in a DLCT setup, the optimal front layer thickness should be chosen for
the most common patient geometries.
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Cardiac perfusion 3
This chapter focuses on spectral dynamic myocardial perfusion imaging. First, the
underlying physiological background and existing imaging methods are explained. The
gamma variate fitting routine is introduced and compared to a tracer kinetic model. A
dynamic heart phantom is presented, which was used to validate the spectral dynamic
myocardial perfusion protocol of the DLCT system. The results presented in Section 3.3
about the dynamic heart phantom are published in “Absolute iodine concentration
for dynamic perfusion imaging of the myocardium: improved detection of poststenotic
ischaemic in a 3D-printed dynamic heart phantom“ [Ham+22]. Furthermore, the gamma
variate fitting routine is used in Section 3.4 to quantify iodine density maps in a porcine
model, which is based on results published in “Dynamic Quantitative Iodine Myocardial
Perfusion Imaging with Dual-Layer CT using a Porcine Model“ [Sch+19].
Some paragraphs and figures can appear similar or identical to the publications of the
author. Compared to the original publication, the text has been slightly modified to
achieve a better integration into this doctoral thesis.
The last section describes the browser-based IntelliSpace Discovery perfusion plugin for a
simple integration of a perfusion analysis into the clinical workflow.

3.1 Spectral dynamic myocardial CT perfusion
3.1.1 Myocardial ischemia and cardiac imaging
Heart failure is a global health burden and is one of the leading causes of death worldwide.
In 2015, approximately 15.9 million myocardial infarctions occurred worldwide [Moz+15].
Ischemic heart disease is the most common cause of death (7.249 million deaths worldwide
in 2008), accounting for 12.7% of the total global mortality [FAF13]. Myocardial ischemia
is also responsible for angina, unstable angina, cardiac arrhythmias, heart failure and is
caused by conditions such as Coronary Artery Disease (CAD) or hypertrophic cardiomy-
opathy [Dew+20]. Along with major advances in cardiovascular science and medicine,
a steady decline in deaths from cardiovascular disease has been observed in relation to
scientific advances [NB12; LT05]. Cardiac imaging plays a central role in preventing,
diagnosing, and treating myocardial ischemia. The aim is to obtain both anatomical
and functional information about myocardial blood flow non-invasively. Anatomical
visualization of CAD can be provided by CCTA, which has a high diagnostic accuracy for
CAD detection in patients with low or moderate pretest probability. However, in patients
with positive findings and higher pretest probability, it lacks specificity [Hub+13]. As a
result, the number of invasive coronary angiography and revascularization procedures is
considered to be higher than necessary [Bit+16; Joe+17]. In 2019, the European Society
of Cardiology renewed its key recommendations for basic testing, diagnostics, and risk
assessment. CCTA is recommended as the initial test for diagnosing CAD in symptomatic
patients in whom obstructive CAD cannot be excluded by clinical assessment alone.
Functional imaging for myocardial ischemia is recommended when CCTA has shown
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CAD of uncertain functional significance or is of no diagnostic value [Knu+20]. There
are two X-ray-based methods for functional testing: invasive coronary angiography, op-
tionally in combination with fractional flow reserve measurement and cardiac dynamic
perfusion with CT. In stable CAD, focusing on medical therapy and lifestyle changes is
key, and the ISCHEMIA trial [Mar+20] supports this by showing that invasive coronary
angiography may not be helpful. On the other hand, invasive angiography remains an
important option for treating unstable CAD by allowing doctors to perform immediate
revascularization. A variety of non-invasive cardiac imaging modalities differ in the degree
to which they provide anatomical, functional and information beneficial for therapy in
assessing myocardial perfusion and coronary microcirculation. Common to all imaging
modalities is the need for a tracer or contrast agent. In the case of myocardial ischemia,
less or delayed contrast is measured. The conventional method for diagnosing functionally
relevant myocardial ischemia is Single-Photon Emission Computed Tomography (SPECT).
It has been used for decades and is widely available in clinical practice [Dew+20]. However,
rest/stress SPECT imaging suffers from low temporal and spatial resolution [Dew+20;
Ago+16]. Together with Positron Emission Tomography (PET), these techniques are the
reference standard for quantitative myocardial perfusion imaging. Although SPECT and
especially PET suffer from low spatial resolution, they provide high functional information
on quantitative myocardial perfusion. Ultrasound is used for bedside diagnosis of cardiac
ischemia, whereas Cardiac Magnetic Resonance (CMR) is reserved for more complex
patients [Dew+20]. Two CT perfusion approaches are defined in the literature. Static
Computed Tomography Perfusion (CTP), which allows the calculation of several qualita-
tive, semi-quantitative parameters by using only a single shot during peak myocardial
contrast enhancement. Whereas dynamic CTP acquires a “CT-movie” at several time
points. For a comprehensive, more detailed overview of myocardial perfusion imaging
methods, refer to the consensus statement on “clinical quantitative cardiac imaging for the
assessment of myocardial ischemia” [Dew+20]. While perfusion CMR is a well-established
technique for the detection of myocardial ischemia without radiation exposure for patients,
CTP offers several advantages compared to CMR. First, a CMR examination of the
myocardium takes 45 to 60 minutes, whereas CT of the heart, including calcium scoring,
CCTA, and dynamic CTP analysis can be performed within 10 minutes. Especially in
an emergency setting, this is of special importance. Short scan time in CT also helps
to avoid movement artifacts. In static CTP, optimal contrast between healthy, under-
perfused, and infarcted myocardial tissue is achieved and then visualizes hypoattenuation
of the myocardium. To ensure correct timing, a test bolus has to be tracked and the
enrichment within the aorta determined [Vli+12]. The major advantage of static CTP
is that myocardial blood flow can be rapidly assessed and the underlying radiation dose
is comparatively low. Using rest/stress protocols, especially in combination with CCTA,
a good assessment of suspected CAD has been reported [Yan+15; Ko+12]. However,
static CTP only provides a semi-qualitative analysis while also being highly susceptible to
temporal perfusion artifacts and thereby heavily reliant on the correct timing.

46 Chapter 3 Cardiac perfusion



3.1.2 Dynamic myocardial CT perfusion

The main advantage of CT is the high spatial resolution, which offers the possibility of
anatomical diagnosis like coronary stenosis. In combination with a dynamic CTP acquisi-
tion, it can offer a combined assessment of stenosis and functional parameters [Nou+22;
Var+15]. Considering the relatively small thickness of the myocardium, high resolution has
a high potential to improve the detection of even small regions of subendocardial ischemia.
Multiple studies showed evidence that myocardial perfusion imaging can significantly
increase the accuracy of assessing flow limiting CAD or areas of prior infarction [Bla+09;
Hul+12; Geo+09]. In dynamic CTP, a set of subsequent CT scans within a 20 to 40
seconds timeframe quantifies the myocardial perfusion using iodine CA. Imaging the com-
plete first pass of contrast agent through the heart is necessary [Car+16]. The temporal
sampling frequency is dependent on the CT scanner‘s rotation time. Furthermore, a fast
rotation time is crucial to acquire images without motion artifacts. Current CT systems
can scan patients without motion artifacts when the heart rate does not exceed 90 Beats
Per Minute (BMP) [Nou+22]. Myocardial ischemia is diagnosed if one measures less or
delayed contrast agent over time in the Time Attenuation Curve (TAC).
Non-spectral CT scanners allow for quantitative analysis of hemodynamics by utiliz-
ing Tracer Kinetic Modeling (TKM) (see Subsection 3.2.2). The underlying HU-based
assessment is susceptible to beam-hardening effects induced by the iodine contrast
agent [Buc+16]. Further physiological models must be considered that relate HU to
the actual blood or iodine flow [Bin+14]. Myocardial CT perfusion suffers from relatively
high patient dose, low SNR, high CA volume and is thus not used frequently [Dew+20].
Combining dynamic myocardial CTP with spectral CT techniques would allow addressing
some of those current limitations. Successful beam hardening correction has already been
addressed in Stenner et al. [Ste+10] and Levi et al. [Lev+19]. Dual source DECT pro-
vides high temporal resolution but increases cross scatter and reduces the SNR [Pat+20].
However, there is still potential to increase the SNR, reduce dose, or improve quantitative
iodine determination. Even more, PCCT with the potential for high spatial, temporal,
and spectral resolution could allow for both quantitative iodine concentration values for
myocardial perfusion and high spatial resolution for visualization of coronary arteries.
Huber et al. [Hub+13] showed that evaluating dynamic CTP stress perfusion images
of the myocardium provides high diagnostic accuracy compared with invasive coronary
angiography and fractional flow reserve measurement. DECT showed a higher repro-
ducibility of dynamic myocardial perfusion measurements in comparison to a HU-based
evaluation [So+12]. Further, Sánchez-Gracián et al. [Sán+16] demonstrated that iodine
quantification in myocardial perfusion stress DECT benefits the differentiation of healthy
and ischemic or necrotic myocardium. Fahmi et al. [Fah+16] reported on quantitative
myocardial perfusion images and thereby demonstrated a superior assessment of myocar-
dial infarcts compared to a conventional measurement. Sellerer et al. [Sel+18] showed an
improved Root Mean Square Deviation (RMSD) of observed iodine concentrations (with
respect to true values) for different measurement configurations using a modern clinical
DLCT system.
Spectral or dual-energy CT with iodine density maps offers higher CNR and signal enhance-
ment regarding contrast agent sensitivity for cardiac dynamic perfusion imaging [Sch+19],
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thereby opening up new perspectives for a reduction of radiation dose and volume of
injected contrast agent. Especially in regions with low contrast accumulation like the
myocardium, improved quantification of the iodine density down to 0.5 mg/ml plays a
crucial role [Ehn+18; Sel+18].
The detector coverage of most DECT systems in spectral mode is not sufficient to cover
the whole myocardium during perfusion measurements within one shot, making it inap-
plicable for patient perfusion measurements at the time of today. Nevertheless, systems
are available with a high detector coverage of up to 16 cm that can run in sequential
dual-energy mode, acquiring spectral information in two consecutive heartbeats. The
image-based material decomposition in sequential mode is prone to movement artifacts,
which leads to biases in the iodine density images. Also, because of the electrocardiographic
triggering in dual-energy mode, there would be a halving of the number of available time
points for the dynamic CTP. For more information on myocardial CTP, we refer to
“Society of cardiovascular computed tomography expert consensus document” by Patel et
al. [Pat+20].

3.2 Models for perfusion quantification
There exist various tracer kinetic models for dynamic myocardial CTP and also CMR
perfusion [Pel+16]. For example, different compartments like a 2-compartment model
can be applied to model fluid exchange between vessels and Extravascular Extracellular
Space (EES). However, models are prone to systematic errors and must be validated,
e.g. the Arterial Input Function (AIF) can deviate strongly due to collateral myocardial
blood flow [Pel+16]. In contrast to that, the Gamma Variate Fit (GVF) model exists. It
simply describes the function to fit the TAC. In the content of this thesis, it was applied
to absolute iodine densities and HU. In the following chapters, perfusion data of the
cardiac phantom introduced in Section 3.3, were used.

3.2.1 Gamma variate fitting using absolute iodine densities
The idea of gamma variate fitting to a dynamic perfusion curve was first proposed in
1959 [Eva59; Tho+64] as a graphical representation that bears a remarkable resemblance to
indicator-dilution curves without recirculation. It can be derived from a simple convective
dispersion model of blood flow [HL84] and is mostly used in dynamic Magnetic Resonance
Imaging (MRI) [Ben+97]. The basic form of the function takes four parameters A, t0, α
and β and has the following form:

y(t) =

{
A · (t− t0)

α · e
−(t−t0)

β , if t > t0.
0, if t ≤ t0.

}
(3.1)

Before curve fitting, the measured signal-time curve must be converted to a CA con-
centration curve, which can be more challenging in MRI perfusion imaging. Spectral
CT allows the direct measurement of CA concentration curves in mg/ml iodine density,
leading to quantitative parameters derived from a GVF. CA Maximum Perfusion (MP) is
thereby defined as the maximal uptake of CA in tissue and can be measured in mg/ml/s.
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Additionally, there are several other parameters used for quantitative perfusion imaging,
namely the Time To Peak (TTP), Peak Enhancement (PE), and the total iodinated
Blood Volume (BV). TTP indicates the point in time when maximal peak enhancement
is reached in seconds, PE the maximal increase in iodine density in mg/ml, and iodinated
BV is related to uptake/storing/flush out behavior within the respective structures as the
time integral over the GVF. Additional information like AIF for a baseline time course of
the CA can be implemented.
Although the GVF is the appropriate choice to model TAC curves very correctly, the fit
parameters can have interdependent influences. For example, altering the parameters α
and β not only affects the rise and fall times of the function but also changes the location
and magnitude of the function maximum [Mad92]. This mathematical undesired property
can lead to an unstable fitting process. To visually compare the influence of fit parameters
on the function, see Figure 3.1. The covariance of the fitting parameters can be estimated,
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Figure 3.1: The influence of fit parameters on the gamma variate function. The parameters A,
t0, α and β are altered by a percentage variation of 80, 150, 5 and 10% from the middle line,
respectively. The blue diamonds are measurement results from the phantom model introduced
in Section 3.3. Except from t0, all function parameters alter the maximum value of the fit. All x
labels show the time in seconds.
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leading to the matrix ←→pcov for A, t0, α and β.

←→pcov =


0. 0. 0. 0.
0. 0.68 −0.9 0.11
0. −0.9 1.22 −0.15
0. 0.11 −0.15 0.02

 . (3.2)

The diagonals provide the variance of the parameter estimate. To compute one standard
deviation error on the parameters

−→perr =
√
diag(←→pcov) (3.3)

can be used. Noise contributions to the TAC alter the fit parameters, but especially
the errors on the parameters −→perr. This can be observed in Figure 3.2. The maximum
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Figure 3.2: The evolution of fit parameters with 50 times Gaussian noise of 0.1 mg/ml added to
a TAC measured from a phantom model (see Section 3.3). All 50 samples with Gaussian noise
using a Standard Deviation (SD) of 0.1 mg/ml are plotted on the x-axis. The y-axis displays the
value of the fit parameters and corresponding error estimations in Arbitrary Units (AU).

deviation from the mean value within all fit parameters calculates to 414, 65, 36, and 19%
for A, t0, α and β. These deviations appear extremely high, especially under the premise
of only minor noise in TAC. What is actually of relevance is the deviation of physical
parameters introduced from these largly varying fit parameters. Despite the highly varying
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fit parameters and errors in those, the trend of the fitted curve looks very similar in all
samples. The resulting deviation of physical parameters estimated from the fit stays below
10% for all parameters with A, t0, α and β being 9.9, 2.3, 1.7 and 2.7% (see Figure 3.5).
The impact of image noise in TAC on the estimation of dynamic or functional parameters
appears to be in an acceptable range. As outlined in Equation 3.2, the covariance between
the fit parameters is not zero. Especially, t0 and α show a highly anticorrelated behavior.
This can be further visualized by plotting t0 and α in a scatter plot with 50 noise simulated
TAC, all with a SD of 0.1 mg/ml in Figure 3.3. The consequence of this mathematical
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Figure 3.3: The fit parameters t0 and α showing anticorrelated behaviour, for TAC with gaussian
noise of SD 0.1 mg/ml.

property of the GVF can be an unstable fitting result, leading to strongly varying fit
parameters. This can be visualized using the loss function of the fit (Figure 3.4).
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Figure 3.4: A plot of the loss function in dependence of varying parameters t0 and α using four
curves with varying Gaussian noise contribution. In subfigure a, the original loss function without
any Gaussian noise added is plotted. In b, Gaussian noise with a high SD of 3.0 mg/ml is added.
A flattened plateau with a minimum loss can be observed. Minimum noise with SD of 0.1 mg/ml is
added in c and d. It can be observed that the minima shift drastically, although only small noise
contributions were introduced.
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The minimum loss values in Figure 3.4 a, b, c and d account for 3.8, 87, 5.3 and 5.3
mg/ml. As already discussed, these major variations in fit parameters have a minor
influence on determining the physical parameters derived from the fitting curve. This can
be visualized in the evolution of physical parameters under Gaussian noise in Figure 3.5.
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Figure 3.5: The evolution of physical parameters MP, PE, TTP and the total iodinated BV in a to
d with Gaussian noise of SD 0.1 mg/ml applied 50 times to the original TAC.

A simplified fitting routine for the GVF model was derived by Madsen et al. [Mad92]
and validated with Monte Carlo simulated perfusion curves from 20 glioma patients [CN04].
The simplified fitting routine was tested on phantom data from Section 3.3 and compared
to the original fitting routine. Without the estimation of physical parameters, the fitting
routine for two fit parameters was found to be approximately three times faster than the
original fitting routine. The number of function calls for numerical Jacobian approximation
was reduced from 50 to 6 times. The deviations of the physical parameters MP, PE, TTP
and the total iodinated BV calculated from the fit results were found to be 10, 0, 1 and
17%, respectively. The Root Mean Square Error (RMSE) of the fit from the original TAC
was found to be 0.77 mg/ml being 12% of the PE using the simplified fit routine. An
increased fit accuracy was achieved using the full GVF model with a RMSE of 0.14 mg/ml
or 2.2% of the PE. It can be concluded that the use of the simplified GVF fitting routine
is an appropriate choice, especially if the perfusion data has a high resolution with a big
number of TAC needed to be fit or a fast generation of perfusion maps is crucial for the
clinical application.
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3.2.2 Tracer kinetic modeling
The principle of TKM is the fitting of TAC measured in tissue, which is assumed to be
proportional to the injected dose. Each individual voxel comprises the flooding, deflooding,
and potentially the recirculation of CA schematically shown in Figure 3.6. Additionally,

Iodine density in mg/ml

Time in seconds

CA Injection

Figure 3.6: Schematic of a dynamic perfusion measurement in CT imaging. After the injection
of CA the temporal progression of CA flooding, deflooding, and recirculation is sampled. For
this, an ECG triggered axial scan of the ROI is performed. The gray circles at the bottom of the
schematic and the blue crosses on the TAC visualize the scanning timepoints of the dynamic
perfusion protocol.

the TAC of the AIF is sampled as a measure of the injected CA dose and, therefore, the
inflow into the so-called compartment. The time-dependent measured CA concentration
in tissue ct(t) is then modeled via the equation

ct(t) = FP ·R(t) ∗ ca(t) (3.4)

where FP, R(t) and ca(t) are the plasma flow constant, tissue characteristic residue
function, and the measured supplied concentration (AIF), respectively. A schematic of a
two-compartment model with the exchange of CA between EES and intravascular space
can be seen in Figure 3.7. Detailed information about TKM can be found in “Tracer-
kinetic modeling of dynamic contrast-enhanced MRI and CT: A primer” [IS13]. The most
simple and very generic model to represent the tissue characteristic residue function R(t)
is an exponential function decaying with time

R(t) = exp(−λ · t), (3.5)

derived from the differential equation for blood flow

v
dct(t)

dt
= Fca(t)− Fct(t), (3.6)
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Figure 3.7: The sketch shows the perfusion flow within the intravascular space and the permeability-
surface exchange to EES. Black dots show the distribution of contrast agent molecules. Important
perfusion parameters can be tuned using this model. The proportion of plasma volume and EES,
as well as the permeability, plays an important role.

with F denoting the flow that transports the contrast agent into and out of the compartment
with volume v. An example of a AIF and the impact of the fit parameter λ and resulting
Mean Transit Time (MTT), being the inverse of λ [IS13] can be seen in Figure 3.8. The AIF
values are taken from the dynamic heart phantom described in Section 3.3. No exchange
between EES and tissue is modeled. The uptake of CA is simply directly proportional
to the contrast concentration at inflow, and the deflooding is modeled by the contrast
concentration within the tissue using the same flow transport constant. This simplified
model of the blood flow is suitable in situations where exchange to EES is precluded or
negligible within the time interval of flooding and deflooding of the tissue. A third option
would be a fast exchange, where the total volume v would be the union of EES and tissue
volume. Three physical parameters can be derived for the one-compartment model: the
flow F , volume v, and the corresponding MTT. The simple model assumptions lead to
only two free fitting parameters, making the model-fitting process very stable and fast. The
utilization of more complex models with up to four parameters can lead to more accurate
fits of TAC with the downside of potential overfitting and determination of parameters,
which can not be reliably measured within the precision of the experiment [IS13]. The
variation of fit parameters under the addition of noise for a simple one-compartment
model can be seen in Figure 3.9. The loss function of the fit is visualized, giving an idea
about the fit stability around the minimal point.
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Figure 3.8: The AIF is shown as a red line with red diamonds. Different λ values are plotted using
a constant FP value. A peak shift in the y and x direction can be observed. Also, the deflooding is
delayed with decreasing λ values, leading to an increase in MTT values. λ values of 0.25, 0.5,
1.0, and 2.0 respectively MTT of 4.0, 2.0, 1.0, and 0.5 seconds are plotted.
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Figure 3.9: A plot of the loss function in dependence of varying parameters F and λ using four
curves with varying Gaussian noise contribution. The loss values are clipped at 50 or 80 mg/ml
to visualize the minimum. In subfigure a, the original loss function without any Gaussian noise
added is plotted. In b, Gaussian noise with a high SD of 2.0 mg/ml is added. Minimum noise with
SD of 0.1 mg/ml is added in c and d. With the addition of Gaussian noise, the minima do shift
only by a small fraction. Further, the shape of the loss function is very similar from a to d, only
with a slightly shifted minimum value.
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The equivalent plot for the GVF model is shown in Figure 3.4. Like in Figure 3.2,
Gaussian noise with a SD of 0.1 mg/ml was applied 50 times and the maximum deviation
from the mean value calculates to 6.04, 6.98 % for F and λ. In comparison to the
high percentage deviations in fit parameters previously observed in the GVF model, the
parameter deviations in one compartment model are negligibly small. The correlation
between both fit parameters is positive, with a Pearson correlation coefficient of 0.921. As
a visual comparison between the TKM and GVF model, the fit of the TAC of a single
voxel is plotted in Figure 3.10. Both models perform very well, with a RMSD of 0.17 and
0.37 mg/ml for GVF and TKM, respectively. This accounts for 2.6 and 5.7 % of the peak
enhancement value of 6.4 mg/ml. The GVF model is slightly better in fitting the peak
enhancement and the tail of the TAC. The accuracy of the perfusion maps, especially the
TTP, and MTT will be evaluated in Section 3.3.
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Figure 3.10: Perfomance TKM and GVF model for the fitting of a TAC in a single voxel. The
blue diamonds are the measurement results from the phantom model in Section 3.3. The GVF is
plotted in green and the TKM result in red. The RMSD are very small in comparison to the peak
enhancement value of approximately 6.4 mg/ml being 0.17 and 0.37 mg/ml for GVF and TKM.
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3.3 Dynamic perfusion in a 3D-printed heart phantom
Large parts of this section were published in Hammel et al. ”Absolute iodine concentration
for dynamic perfusion imaging of the myocardium: improved detection of poststenotic
ischaemic in a 3D-printed dynamic heart phantom” [Ham+22].
In this proof of principle study, we use spectral data acquired by a dual-energy CT system
for cardiac dynamic perfusion, examining a dynamic 3D-printed heart phantom with
simulated stenosis to utilize the increased CNR of dual-energy CT for the assessment of
functional parameters.

Background: To investigate the detection capabilities of myocardial perfusion defects of
dual-energy computed tomography technology using time-resolved iodine-based maps for
functional assessment of coronary stenosis in a dynamic heart phantom.
Methods: An anatomical heart model was designed using a 3D printing technique. The
lumen of the right coronary artery was reduced to 25% of the original areal cross-section.
Scans were acquired with a 64-slice dual-layer CT equipment using a perfusion protocol
with 36 time points. For distinguishing hemodynamically affected from unaffected my-
ocardial regions, conventional and spectral MTT parameter maps were compared. A dose
reduction technique was simulated by using a subset of time points of the TAC.
Results: The tracer kinetic modeling showed decreased errors on fit parameters from
conventional to spectral TAC (42% reduction for A and 40% for λ). Three character-
istic regions (highly, moderately, and not affected by the simulated stenosis) can be
distinguished in all spectral perfusion maps. The best distinction was observed on MTT
maps. An Area Under the Curve (AUC) value of 1.00 for the voxel-wise differentiation of
hemodynamically affected tissue was achieved, versus a 0.89 AUC for conventional MTT
maps. By temporal under-sampling, a dose reduction of approximately 78% from 19 to
4.3 mSv was achieved with a 0.96 AUC for spectral data.
Conclusion: Dual-energy CT can provide time-resolved iodine density data, which enables
the calculation of absolute quantitative perfusion maps with decreased fitting errors,
improving the accuracy for poststenotic myocardial ischemic detection in a 3D-printed
heart phantom.

3.3.1 Methods
Phantom design

The heart model was used to simulate the flow circulation in a human heart. The study
topic could, in principle, be investigated in a small sponge-filled cavity with two inflows
and an outflow. In this simpler form, the model would be better controllable. Nevertheless,
a heart model was used to get closer to a clinically relevant situation, where further
parameters, like the AIF or cavity volume, correspond more precisely to real dynamic
perfusion measurements in cardiac imaging. To model the circulation dynamics within
the ventricles and the heart muscle, significant simplifications were made regarding the
human circulatory system. Since in our designed study, only hemodynamic processes
of the heart were tested, all processes before the blood inflow through the superior and
inferior vena cava and after the blood outflow from the aortic arch were neglected. The
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blood inflow into the cardiac system was simulated by an inflow of water with variable flow
velocity. The sink was modeled by two tubes exiting the left ventricle and the myocardium.
The pulmonary circulation was simulated by two tubes with appropriate flow resistance.
Furthermore, a sponge-like 3D-printed structure was located in the left ventricle’s heart
muscle to mimic the contrast medium perfusion in the myocardium. A schematic view of
the flow through the 3D-printed heart phantom is visualized in Figure 3.11.

Figure 3.11: a Inflow, outflow (bucket) and connecting arrows indicate the location of the connecting
tubes. Right Atrium (RA), Right Ventricle (RV), Left Atrium (LA) and Left Ventricle (LV). b A picture
of the heart model within the gantry of the spectral CT system. During the performance of the
dynamic scan, the container is filled with water.

Perfusion of water and contrast agent mixture is only possible in the material-free
part of this structure (active myocardial area), which is in the following also called
myocardium-like tissue. A photographic view and a volume-rendered picture of the phan-
tom anatomy and the “myocardium-like” tissue are shown in Figure 3.12. In this 3D model,
no exchange between compartments is considered, and only a reduction of flow velocity
through myocardium-like tissue is simulated, which can be motivated by a negligible
permeability-surface exchange in comparison to the blood flow within the vessels [Eck+18].
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30 mm

Figure 3.12: 3D-printed model is shown as photography (left) and 3D rendering (right). The
phantom inflow is situated at the top left, simulating the blood influx from the end-piece of the
superior vena cava into the right atrium. Water streams through the opened tricuspid valve into
the right ventricle, from where the pulmonary circle is fed. The pulmonary resistance is simulated
using a tube connection from the pulmonary arteries to the pulmonary veins. Passing the left
atrium, left ventricle, and aortic valve, the contrast bolus splits into three outflows. The beginning
of the aorta represents the blood flow of the body circuit. Two smaller outflows at the beginning of
the aorta act as the right coronary artery and the left anterior descending artery. The reduced flow
of the myocardium is simulated by a sponge-like 3D printed structure (black box). An additional
connection from the myocardium acts as a sink. Figure reproduced from [Ham+22].
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For the construction of the phantom geometry, a patient CCTA scan from a 64-slice
single-source dual-layer CT scanner (IQon, Philips Healthcare, Best, The Netherlands)
was used 1. The specifications of this device can be found in Section 5. The CCTA
protocol was acquired in helical acquisition mode centered around the left ventricle. An
acceleration voltage of 120 kVp and a current time product of 40 mAs was applied. A soft
convolution kernel (type B) with a pixel spacing of 0.8 mm and a slice thickness of 0.9 mm
was used for reconstruction. From this scan, a true-to-scale model of the heart chambers
and blood vessels was obtained using segmentation software. The segmentation has been
simplified by excluding small blood vessels and complicated structures in order to enable
a robust 3D model. The extensive simplifications made to the phantom make it very
generic to any patient’s anatomy. Right and left ventricle wall thickness was approximately
equivalent, considering that wall thickness and structure do not affect noise values, as the
absorption of the 3D-printed materials plays a minor role in total absorption (compared to
the absorption from the water bath). A laser sintering polyamide powder (PA2200, EOS
GmbH, Munich, Germany) was used for fabrication in a commercial 3D printer (Formiga
P110, EOS GmbH, Munich, Germany). The additive technology allows all components to
be printed without support structures. PA2200 has absorption properties similar to those
of human tissues and is water-resistant [Mue+17]. In this study, it acts as a container
(ventricles-like) and flow-limiting structure (myocardium-like). The “.stl” files can be
made available by requesting them from the author of this thesis. Considering the strongly
simplified blood supply into the myocardium-like tissue, a region supplied by left anterior
descending and right coronary arteries was simulated. These vessels are modeled using two
connection tubes from the aorta directly supplying the myocardial tissue. The lumen of
the right coronary artery was then reduced to 25% of the original areal cross-section. This
value was determined empirically by checking the effect of a blockage on contrast agent
distribution into the myocardium. The comparison of blocked (right coronary artery) and
opened (left anterior descending artery) supply tubes was made within one perfusion scan,
and the perfusion analysis was then performed on the axial view, which intercepts the
plane of the two myocardial inflow tubes. The simplified geometry of the phantom with
only two supplying tubes is inherently more efficient in the middle region of the simulated
myocardium, which is closer to the coronaries than the external regions. No pulsatile flow
was utilized.

Experimental setup and protocol settings

A standard myocardial perfusion imaging protocol with a fixed tube voltage of 120 kVp
and an exposure of 100 mAs per time point was used on a 64-slice single source dual-
layer CT scanner with a detector coverage of 4 cm and a rotation time of 0.27 seconds
(IQon, Philips Healthcare, Best, The Netherlands). To get an accurate sampling of the
contrast agent flooding, 36 time points over 26.9 seconds were imaged, resulting in a
total dose-length product of 1.296 mGy×cm and a CT Dose Index volume (CTDIvol) of

1A scan of a patient was used. The extensive simplifications made to the phantom make it very generic
to any patient’s anatomy and make it impossible to conclude the patient’s identity. The CCTA was
only important for the true-to-scale model.
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326 mGy (36 time points × 9 mGy per scan). With a thorax conversion factor of 0.015
mSv/(mGy×cm), this accumulates to an effective dose of approximately 19 mSv. An
axial perfusion protocol with electrocardiographic triggering at 40% of the heart rhythm
was used. To simulate realistic acquisition time points, the electrocardiographic device
was connected to a colleague standing in the control room, who had a heart rate of
approximately 70 BMP. As only a part of the myocardial tissue was simulated in this
simplified model, “full coverage” of the region of interest was achievable without shuttle
mode. The heart phantom inside a water bath, mimicking adequate human absorption,
was placed in the dual-layer CT unit and connected to the water tap via a plastic hose.
A dual syringe injection system (Stellant, MEDRAD, Inc., Indianola, PA, USA) was
connected to the superior vena cava by a cannula. The perfusion measurement was started
a few seconds after the contrast medium injection (1.0 ml/s CA for 10 seconds with an
iodine concentration of 400 mg/ml followed by Natrium Chloride (NaCl) solution). Flow
parameters were adapted to produce resolvable TAC with a full-width half maximum of
approximately 10 seconds and maximum values of around 8 mg/ml or 250 HU in the AIF.
Spectral raw data were reconstructed using a standard soft tissue filter kernel (type B)
with an axial slice thickness of 1.0 mm, a 1.0-mm slice interval, and a pixel spacing of
0.49 pixel/mm (generated with IntelliSpace Portal 11.0, Philips Healthcare, Best, The
Netherlands). A soft reconstruction kernel (type B) was used for both the conventional
HU and the spectral iodine density images. The experiment was performed four times to
work out the correct flux of contrast agent and water corresponding to time-attenuation
curves expected in patients. Unfortunately, due to variable frame conditions like the water
supply to the phantom, no inter-experimental comparison was investigated within the
scope of this study.

Postprocessing software

A trace-kinetic modeling software tool [Eck+18] was adapted for postprocessing voxel-wise
TAC using a 1-compartment model for the description of dynamic contrast-enhanced
images [IS13]. There are two main reasons for using tuneable postprocessing. The clinical
perfusion software available at the site cannot handle spectral datasets. Also, the simplified
heart model poses challenges to the clinical software, which is optimized for real heart
perfusion measurements. The Python software could be adapted to these circumstances.
The extracted model parameters were used to calculate quantitatively evaluable results
like blood flow, blood volume, and MTT maps. The AIF was measured within the “right
ventricle.” Bolus-based perfusion methods typically obtain the AIF from an easily visible
anatomical region, such as the left ventricle. In this case, the myocardium-like tissue,
supplied from the right coronary artery and left anterior descending artery, was simulated.
The myocardium-like tissue insert was situated in the left ventricle wall. No myocardial
tissue was simulated within the right ventricle, making it a stable region for determining
the AIF. TACs were modeled using the formula:

TAC = A · convolution(AIF, e−λ·T ) (3.7)

where T corresponds to all measured time points. The bound-constrained minimization
method L-BFGS-B [Zhu+97; Byr+95; Vir+20] algorithm from the Python library SciPy
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was used for the fitting of the TAC. A minimum example of the implemented code is
provided in the supplementary materials Section 5. To calculate the errors associated
with the fitting parameters, the formula:

∆xi =
√
ftol · (H−1)ii (3.8)

was used, where ∆xi determines the error of the fit parameter i (A and λ from the
one compartment model), ftol is the upper bound where the minimization routine stops
iterating, and H−1 is the inverse Hessian matrix.

Classification accuracy analysis

AUC at the Receiver Operating Characteristic (ROC) analysis was computed for binary
classification of voxel values into ischemic and nonischemic. This was done for two regions
within the myocardium-like tissue to quantify the ability to differentiate different degrees
of hypoperfusion. AUC values were calculated using the Python open-source software
library scikit-learn 1.0 [Ped+11]. The ROC curves were generated by a simple threshold
classifier (if the MTT was over the threshold, then the voxel was hypoperfused). No
probabilities were assigned to individual voxels. A bootstrapping analysis was applied to
the receiver operating characteristic curves to investigate the confidence intervals for the
different AUC values (bounds percentile of 5% to 95% and number of bootstraps 1,000).

Dose reduction

Phantom measurements were performed using a high dose equal to 9 mGy CTDIvol for
every time point. To reduce the dose, several scenarios are conceivable. By reducing the
tube current, the exposure per rotation can be decreased. This will lead to a decrease in
the SNR in the reconstructed images. Iterative reconstruction techniques may be able to
compensate for that. Within the scope of this investigation, the 1-compartment contrast
kinetic modeling was tested on reduced sampling points using spectral dynamic perfusion
data. Only 8 of 36 time points were utilized to calculate perfusion parameters. The
sampling rate was artificially decreased from approximately 0.8 to 3.0 seconds for all
TAC, including the AIF. By following this very simple approach, a dose reduction of
approximately 78% from 19 mSv to 4.3 mSv can be achieved.

3.3.2 Results

Fit accuracy of postprocessing

The SNR in a homogenous region inside the “right ventricle” at a maximally enhanced
time point increased from 7.40 to 112.02 from conventional HU to iodine density maps.
Using a distinct point within the active area of the stenotic region, a decreased error on fit
parameters from conventional to spectral TAC (42% reduction for A and 40% for λ) can
be shown. The fit behavior for one specific voxel within an ischemic region is visualized
in Figure 3.13.
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Figure 3.13: Tracer kinetic fit behavior of spectral (top) and conventional (bottom) perfusion data in
highly affected myocardial tissue. The SNR of TAC is calculated by dividing the maximum value of
the tracer kinetic fit function by the standard deviation of the error of the fit. Decreased fit parameter
errors at this voxel can be calculated for the spectral perfusion measurement compared to the
conventional TAC fit (42% reduction for A and 40% for λ). Figure reproduced from [Ham+22].
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Iodine-based perfusion maps

The absolute, quantitative iodine TAC used to calculate blood flow, volume fraction,
and mean transit time parameter maps are depicted in Figure 3.14. Three characteristic
regions in all maps can be defined as corresponding to regions of interest which are high,
moderately, and unaffected by the simulated stenosis. The best distinction of those regions
can be seen on MTT maps. The upper part of the displayed window was strongly affected
by the introduced stenosis. MTT over 2.2 seconds were observed in the spectral data. An
unaffected region was located in the apical part of the myocardium. Here, the supplying
artery (tube) was not blocked during the experimental setup. MTT below 2.0 seconds
were measured in this area for spectral data. The very ending of the apical region of the
phantom myocardium-like tissue could be classified as moderately affected. The mean
value and standard deviation for the highly affected region in MTT maps calculated from
conventional and spectral data were 3.08± 0.44 and 2.73± 0.13 seconds, respectively.
Additionally, perfusion maps were calculated using the GVF model. Peak enhancement,
perfusion, blood volume, and TTP can be derived from the GVF model. The results are
shown in Figure 3.15. The GVF model qualitatively shows a very similar behavior as the
1-compartment model.
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Figure 3.14: Absolute and quantitative iodine-based analysis of myocardial dynamics derived from
1-compartment fitting of iodine density-to-time attenuation curves in the active myocardium-like
tissue area. The phantom’s spongy myocardium-like tissue in axial view is imaged. a Iodine
density image at 12 seconds of the perfusion protocol in grayscale to distinguish it from perfusion
maps. b Image with blood flow normalized to the tissue volume (ml/min/100 ml). c Image showing
the volume fraction representing the compartment volume relative to the total volume of the region
of interest (e.g., ml/100 ml). d Mean transit time map. Image parts, which appear bright red in d are
classified as hemodynamically affected myocardium-like tissue (blue arrow). Figure reproduced
from [Ham+22].
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An averaged line profile of the MTT map plotted through the myocardium-like tissue
from top to bottom is presented in Figure 3.17. The line profile was calculated from the
MTT map in Figure 3.14 d using the average over all MTT values along the x-axis, where
MTT values were not zero. The line profile goes along the y-axis of Figure 3.14 d, plotting
the averaged values. All voxel values in the active myocardium-like area along one row were
averaged to get a reduced noise line profile. High variations in the conventional MTT line
plot could be observed. The differentiation between the varying affected myocardium-like
tissues was strongly affected by a high noise contribution in the conventional measurement.
Iodine-based MTT maps showed a comparably small noise contribution (as previously
reported, approximately 40% error reduction in fit parameters) with a step-like function
through the differently affected tissue and continuous gradient between the plateaus,
allowing to introduce thresholds of 2.5 and 2.0 seconds for the differentiation between
highly and moderately affected tissue (orange dashed line) and unaffected and moderately
affected regions (green dashed line) in spectral data, respectively. The thresholds were
determined empirically from spectral MTT maps, particularly for this phantom design,
and cannot be adapted to human myocardial perfusion. The absolute values of spectral
MTT decreased as well in the unaffected as in the ischemic area compared to conventionally
calculated MTT maps, resulting from variable AIF. This is a general problem of tracer
kinetic modeling using the arterial input function as a fit reference. The AIF must be
selected manually by drawing a ROI within the supplying vessel. In our experiment, this
ROI was the same for iodine data as well as conventional data. The selection still leads
to minor variations in the TAC. This can be visualized (Figure 3.16) by plotting the
normalized AIF of iodine and HU data. Also, in Figure 3.16 the normalized TAC of an
ischemic voxel and their corresponding fits are plotted. The fit behavior looks very similar,
but the fit parameters and therefore the derived physical parameters like MTT deviate
because the initial AIF differ. In the current example, a MTT value of 2.89 and 3.17
seconds was calculated for the iodine and conventional fit respectively.
The comparison of the line profiles of the GVF model and one-compartment model

are shown in Figure 3.18. A very similar trend can be observed in both models on a
qualitative level. Two y-axis scales are used to display the different values of the GVF
model and one-compartment model.
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Figure 3.15: Absolute and quantitative iodine-based analysis of myocardial dynamics derived
from GVF model on iodine density TAC in the active myocardium-like tissue area. The phantom’s
spongy myocardium-like tissue in axial view is imaged. a The peak enhancement indicates the
maximal increase in iodine density derived from the curve fit. b The perfusion relates to the highest
temporally gradient in influx of iodine. It is calculated using the derivative of the curve fit shown in
Figure 3.10. c The iodine volume depicted here is related to uptake/storing/flush out behaviour
within the respective structures. It is calculated using the integral of the GVF curve shown in
Figure 3.10. d The time to peak indicates the point in time when maximal peak enhancement is
reached. Image parts, which appear bright red in d are classified as hemodynamically affected
myocardium-like tissue (blue arrow).
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Figure 3.16: Normalized AIF from iodine and HU data and corresponding TAC fits of ischemic
voxels are shown. Please consider, that all curves are normalized to have a maximum value of
1.00.
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Figure 3.17: MTT line profile from top to bottom of the myocardium in axial view (in reference
to Figure 3.14). Voxel values from iodine and conventional measurements are averaged along
one row (left to right) in axial view to reduce variance. The x-axis displays the distance starting at
zero for the top row of the myocardium-like tissue. Highly affected, unaffected, and moderately
affected myocardium-like tissue from left to right. Thresholds are plotted at 2.5 and 2.0 seconds
for the differentiation between highly and moderately affected tissue (orange-dashed line) and
unaffected and moderately affected regions (green dashed line), respectively. Figure reproduced
from [Ham+22].

3.3 Dynamic perfusion in a 3D-printed heart phantom 71



Figure 3.18: TTP line profile of GVF (in reference to Figure 3.15) in comparison to MTT from the
one-compartment alike in Figure 3.17. For a detailed description of the line profile, see Figure 3.17.
Two y-axes are used to display the MTT and TTP, respectively. Thresholds are plotted at 2.5 and
2.0 seconds (MTT) or rather 13.2 and 12.7 seconds (TTP) for the differentiation between highly
and moderately affected tissue (orange-dashed line) and unaffected and moderately affected
regions (green dashed line), respectively
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Classification accuracy analysis

ROC curves are displayed in Figure 3.19. The ground truth values for ischemic versus
nonischemic voxels are selected based on the distance of the voxels to the supplying
stenotic and non-stenotic coronary artery, respectively. Voxels above the middle line
(y-axis) of Figure 3.14 are labeled as affected tissue. For the AUC analysis, the highly
and moderately affected region were combined and compared with the unaffected region.
The AUC analysis was only performed on one z-slice, which intercepts both supplying
tubes. The ROC curves illustrate the classification accuracy based on the MTT maps
from conventionally acquired perfusion maps versus MTT maps from iodine perfusion
measurements. The perfect AUC value of 1.00 demonstrates the continuously decreasing
MTT value from ischemic to nonischemic regions in spectral perfusion measurements. Due
to lower fit accuracies and higher fluctuations (refer to the “Fit accuracy of postprocessing”
section) in conventional measurements, the voxel-wise classification accuracy was reduced
to an AUC value of 0.89. A bootstrapping analysis led to the following results for AUC
values and 95% confidence intervals:

• classification with conventional MTT maps: 0.893 [0.868 to 0.917];

• classification with spectral MTT maps: 1.000 [1.000 to 1.000];

• classification with spectral reduced dose MTT maps: 0.961 [0.946 to 0.975].
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Figure 3.19: ROC analysis for conventionally (a) and spectrally (b) derived MTT values. The
ground truth classification of voxels to ischemic and nonischemic regions is based on the distance
of the voxels from the blocked and non-stenotic supplying arteries, respectively. The AUC value of
1.00 from the spectrally derived MTT ischemia classification was achieved due to the continuous
MTT decrease from ischemic to nonischemic regions. The blue dashed line signifies random
distribution. Figure reproduced from [Ham+22].
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Dose reduction

Classification accuracy for the differentiation of ischemic from nonischemic regions was
tested on MTT maps calculated from normal dose and reduced dose spectral TAC. The
AUC value decreases to 0.96 (Figure 3.20 d), because of the reduced fit accuracy from the
contrast kinetic 1-compartment model on 8 time points (63% smaller error in parameter
A from normal sampling; λ with no difference in fit error). Relative deviation in averaged
blood flow values calculated from reduced sampling TAC was 9.3%. When comparing
MTT maps visually (Figure 3.20 a, b) increased inhomogeneities within the different
regions could be observed. Not every voxel could be classified correctly based on threshold
values; however, the visual impression still allowed to determine the site of the ischemic
region (Figure 3.20 b, top part).
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Figure 3.20: a Comparison of normal dose iodine derived MTT map with b simulated reduced dose
dynamic perfusion acquisition. c differential image of normal and reduced dose measurements. d
Receiver operating characteristic analysis for classification characterization of stenotic regions
using the reduced dose data. Deviations within the MTT map of the ischemic and nonischemic
regions increase when applying the contrast agent kinetic model to the reduced number of time
points. Nevertheless, a differentiation is achievable using the reduced dose with an AUC of 0.96.
Figure reproduced from [Ham+22].
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3.3.3 Discussion

Validation measurements for dynamic processes using CT require the use of special
phantom models. To demonstrate the detectability of stenoses with dual-energy CT
scanners, the determination of hemodynamic parameters by dual-energy CT dynamic
myocardial perfusion imaging was performed. An anatomical heart model was designed
and produced using 3D-printing techniques. The dynamic heart phantom could be flooded
with water and contrast medium. The flow through the heart chambers and into the
myocardium was imitated. An increased SNR from conventional to spectral perfusion data
(from 7.40 to 112.02) lead to a fitting process with smaller errors on fitting parameters
and derived perfusion parameters using a 1-compartment model. Because the material
decomposition is based on the photoelectric effect and Compton effect-based images,
the anticorrelated noise can be modeled and removed from the image [Mec+17; PG17].
The material decomposition provides a low-noise image with a relatively high signal.
As discussed in Section 3.4, iodine density maps show the highest signal enhancement
and CNR within several spectral parameter maps. Also, this inherently reflects the
contrast agent flooding and washout behavior and generates a comprehensive baseline at
0 mg/ml. Our spectral perfusion data showed a step-like function through the differently
affected tissue, while the noise contribution in conventionally derived data forbids this
voxel-wise analysis, indicated by high fluctuations in the line profile. For conventional
perfusion data, Gaussian smoothing in plane or an increased slice thickness [Nou+22]
for averaging in z direction must be applied. The smoothing operation will decrease the
spatial resolution in all contrast kinetic fit-derived maps. MTT and TTP maps derived
from a one-compartment model and GVF model show very similar trends on a different
scale. The GVF model has four fit parameters, requires more computational time, and the
fit parameters are more prone to noise than the one-compartment model. Contrariwise,
the one-compartment model has only two fit parameters but relies on the determination
of the AIF which can lead to variations in physical parameters. The GVF model does not
take into account a AIF as a fit reference. Further, the variation of fit parameters with
noise does not affect the physical parameters remarkably. Considering iodine densities
for the measurement of TAC, the GVF can fit the progression of the contrast agent
more accurately, as it does not rely on the AIF as a fit reference. By using the iodine
density as input to the GVF model, the derived physical parameters are quantitative
values with the units mg/ml, mg/ml/s, (mg/ml)×s and seconds for peak enhancement,
perfusion, blood volume and mean transit time, respectively. Quantitative values make
sense for the comparison of different patients and scanner types. Nevertheless, they will be
affected by the amount of CA injected and the flow rate. To maintain the comparability
of the perfusion parameters, the same amount of CA per kg and flow rate must be used.
Using the parameter maps derived from GVF within the patient to discriminate between
ischemic and nonischemic regions can also make sense without a standardized protocol.
Non-qualitative values derived from HU measurements using the GVF model can also
lead to worse discrimination between ischemic and nonischemic regions.
The reason for the reduced flow at the very end of the apical region of the phantom’s
myocardium is due to the hemodynamic design of the myocardium-like tissue, having only
two supplying tubes. The moderately affected outer region was therefore not considered
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in the data analysis. A dose reduction of approximately 78% from 19 mSv to 4.3 mSv
was achieved by reduced sampling of time points. Visual differentiation between ischemic
and nonischemic regions was still possible. By reducing the current time product and
using iterative reconstruction techniques to keep the SNR at a constant level, we expect
to be able to reduce the radiation dose to less than 2.0 mSv, being well below all reported
dose values for dynamic CT myocardial perfusion studies as reported by Varga-Szemes
et al. [Var+15] from 9.4 to 18.8 mSv. In this study, we used a dual-layer CT system. A
drawback of this technology is the detector coverage of only 4 cm, which decreases the field
of view in the z-direction, limiting the assessment of the full myocardium within one shot.
However, one can expect that spectral CT technologies improve rapidly towards larger
detector coverage to image the whole myocardium without additional table movement.
Other spectral acquisition technology like fast emerging photon-counting CT is also
conceivable. This technology can acquire images at very high spatial resolution without
electronic noise and with improved tissue contrast [Flo+20]. Simultaneous material
decomposition of two or three contrast agents may develop the possibility of simultaneous
acquisition within the time period of flooding, saturation, and late enhancement. This
approach could be used to decrease the dose or increase the sampling rate without
having to increase the number of CT acquisitions. There are some other publications
regarding the use of phantom models in cardiac imaging. Boltz et al. [Bol+10] constructed
an anthropomorphic beating heart phantom to analyze cardiac CCTA protocols. The
phantom was anatomically and functionally designed to be very close to a real-world
situation. For example, the beating and corresponding electrocardiographic signals can be
modeled to investigate motion artifacts and perform stent imaging. Also, the chambers
can be flooded with a mixture of water and contrast agent. Nevertheless, this phantom
design was selected to investigate anatomically relevant information. Dynamic perfusion
within the myocardium (e.g., TAC) cannot be simulated using this approach. On the
other hand, Chiribiri et al. [Chi+13] built a perfusion phantom that simulates myocardial
first-pass magnetic resonance perfusion. This approach could easily be adapted to CT
perfusion by using iodinated contrast agents instead of gadolinium-based contrast agents.
The phantom establishes a very controlled and reproducible environment for modeling
dynamic perfusion. In comparison to our approach, it is not able to reproduce the correct
anatomically relevant structures of a human heart. Beam hardening artifacts from highly
absorbing contrasted heart chambers would not be represented by using the approach
by Chiribiri et al. [Mec+17]. Also, the phantom design chosen in this approach is static
and cannot simulate movement artifacts from the heart. Heart movement is a source
of potential bias in real patient measurements. It can be superimposed by breathing.
The static 3D-printed structure neglects these issues. An elastic image registration-based
method to improve the characterization of CT-based estimates of myocardial perfusion can
be applied to reduce these artifacts [Iso+11]. The phantom design with two connection
tubes directly supplying the myocardium-like tissue allows better flow control in our model
since the 3D-printed parts are static and no luminal control/stenosis would be possible.
The lumen of the right coronary artery was then reduced to 25% of the original areal cross-
section via clamping. This resulted in a degree of uncertainty being a limitation, which
should be addressed in future work. Integrating pulsatile flow and pressure-dependent
elastic vessels in our experiments can increase the accuracy and the performance of the
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quantitative perfusion analysis towards more realistic data. For our proof-of-principle
experiments to assess if stenosis and the consequent reduced myocardial perfusion can be
analyzed, we think that this single degree of perfusion is sufficient. The assessment of in
vivo patient data is crucial for further investigations towards spectral dynamic myocardial
perfusion imaging. A recent study [Nou+22] investigated dynamic myocardial perfusion
CT in nine centers around the world, finding an incremental diagnostic value compared
to CCTA as a standalone modality. Especially, a higher specificity (72% for CCTA, 89%
for CCTA plus perfusion imaging) offers the opportunity to reduce unnecessary cardiac
interventions after anatomical assessment alone. Spectral acquisition may be the key
technology to overcome the limitation of low CNR in CT [Ste+10]. Fahmi et al. [Fah+16]
showed increased inhomogeneities (dark band on the myocardium) in conventional 120-kVp
pig images resulting from beam hardening artifacts from highly absorbing ventricles. These
artifacts could be avoided by using 70-keV virtual monoenergetic images, leading to a
more reliable assessment of nonischemic defects. A full CT analysis of the heart including
calcium scoring using CCTA and dynamic myocardial perfusion could be performed within
10 minutes. This workflow may provide a comprehensive, one-stop, noninvasive and
superior method for the evaluation of CAD and myocardial perfusion.
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3.4 Dynamic perfusion using a porcine model

Most of the following section has already been published in Scherer and Hammel et
al. ”Dynamic Quantitative Iodine Myocardial Perfusion Imaging with Dual-Layer CT
using a Porcine Model” [Sch+19] and adapted for the scope of this thesis. It focuses on
the dynamic perfusion analysis of a porcine model using the GVF model and the maximal
slope method. The results are compared to a semi-static two-shot approach.

3.4.1 Abstract

When using CCTA, the functional hemodynamics within the myocardium remain uncertain.
In this study, myocardial CT perfusion imaging using an iodine contrast agent strongly
improved the assessment of myocardial disorders. However, a retrieval of such dynamics
using Hounsfield units from conventional CT poses concerns with respect to beam-
hardening effects and low CNR. DECT offers approaches to overcome aforementioned
limitations. Quantitative peak enhancement, perfusion, time to peak, and iodine volume
measurements inside the myocardium were determined, resulting in 0.92 mg/ml, 0.085
mg/ml/s, 17.12 seconds, and 29.89 mg/(ml × s), respectively. We report on the first
extensive quantitative and iodine-based analysis of myocardial dynamics in a healthy
porcine model using a DLCT. We further elucidate the potential of reducing the radiation
dose from 135 to 18 mGy and the contrast agent volume from 60 to 30 ml by presenting a
two-shot acquisition approach and measuring iodine concentrations in the myocardium
in-vivo down to 1 mg/ml, respectively. We believe that dynamic quantitative iodine
perfusion imaging may be a highly sensitive tool for the precise functional assessment and
monitoring of early myocardial ischemia.

3.4.2 Introduction

In this study, we report on the very first extensive quantitative and iodine-based analysis
of myocardial dynamics in a healthy porcine model in rest, using a DLCT. We include
the presentation of iodine perfusion, time to peak, peak enhancement, and volume maps.
In the first step, we show, in congruence with previous studies, that low-energy virtual
MonoE-keV images and iodine density maps are superior in comparison to conventional
images in the depiction of temporal opacification of the myocardium concerning relative
signal enhancement and CNR. Afterward, the temporal uptake of iodine is modeled using
a GVF and corresponding dynamics deduced from the model in a pixel-wise manner.
Further, we elucidate the possibility and performance of quantitatively assessing the
myocardial peak enhancement map using a semi-static two-shot approach. Based on
the accuracy and consistency of determining low iodine densities with modern spectral
systems, we suggest that dynamic quantitative iodine perfusion imaging may be a highly
sensitive tool for the precise functional assessment and monitoring of early myocardial
ischemia if a valid database for stress and/or rest can be established.
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3.4.3 Material and methods

Ethics statement

Animal care and all experimental procedures were performed in strict accordance with the
German and National Institutes of Health animal legislation guidelines and were approved
by the Bavarian Animal Care and Use Committee (AZ 55.2.− 1− 54− 2532− 62− 13).

Acquisition of CT myocardial perfusion

CT images of the healthy pig (31.75 cm mean diameter, 76 kg) were acquired with a
64-slice single source DLCT IQon scanner with a detector coverage of 4 cm and a rotation
time of 0.27 seconds (Philips Healthcare, The Netherlands). The specifications of this
device can be found in Section 5. The spatial resolution is 2.47 pixels per mm, resulting
in a pixel size of (0.40× 0.40)mm2. The ECG-triggered temporal resolution aggregates
to 1.08 scans per second, or a full acquisition of the specified range every 0.92 seconds.
The firmware version of the scanner was 4.1.0.0. The perfusion scan was conducted
in stationary mode with 120 kVp and a mean tube current of 100 mAs. Scans were
reconstructed with a soft kernel (Philips type B) and a slice thickness of 3 mm. Within
26 seconds, 36 scans were recorded so that the full first pass of the contrast bolus was
imaged. Hereby, the scans were ECG-triggered and adjusted to the cardiac cycle with
an increment of zero. Each scan was conducted with a CTDIvol of 9 mGy, resulting in a
CTDIvol of 135 mGy and 18 mGy for the extensive analysis of myocardial dynamics (15
scan points) and the two-shot approach, respectively. The perfusion scan was conducted
using 40 ml of contrast agent (Ultravist 300, Bayer, Bayer AG, Leverkusen, Germany,
iodine content 300 mg/ml) at a flow rate of 4 ml/s. The contrast agent was injected
into the ear vein via an 18-gauge catheter using a dual syringe injection system (Stellant,
MEDRAD, Inc., Indianola, PA, USA).

Contrast-to-Noise and relative signal enhancement

Conventional, MonoE and iodine density reconstructions alongside their standard de-
viations (within respective ROI of 50 mm2) were directly obtained from the Philips
IntelliSpace Portal. The Relative Increase in Signal (RIS) (Figure 3.21 c) and temporal
CNR (Figure 3.21 b) during contrast uptake were calculated as

RIS =
St=23.3s − St=0.0s

St=0.0s
(3.9)

and

CNR =
St=23.3s − St=0.0s√
σt=23.3s + σt=0.0s

(3.10)

respectively. Here, St=23.3s and St=0.0s correspond to the different signals within each of
the image channels at maximal/saturated and minimal iodine concentration within the
myocardium, respectively.
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Retrieval of myocardial dynamics

A certain slice within the thorax was determined for further processing and 15 data points
in time, with minor structural movement were selected from the iodine density images. In
order to model the first pass of contrast bolus through the heart, arteries and myocardium,
GVF were used, as proposed in the literature for both MRI and CT [Mad92; MdBK08]:

I(t) = A(t− t0)
α exp

−(t−t0)
β (3.11)

whereas I(t) is the time dependent iodine density and A, t0, α, β are fit parameters.
Thereby, the data was fitted in a two-step sequence: in a first fit, all 15 data points
were used, and a preliminary peak time was determined. In a second fit, data exceeding
the initial peak by more than 12 seconds, i.e. accounting to the second pass of contrast
agent was correspondingly neglected. Afterward, quantitative iodine perfusion, peak
enhancement, time to peak, and iodine volume (in imitation of the conventional blood
volume) were calculated based on the maximal slope method [MG03]:

Perfusion =
d

dt
[I(t)]max (3.12)

Peak Enhancement = Imax − Imin (3.13)

Time to Peak = t(Imax)− t(Imin) (3.14)

Volume =

∫ 50s

0
I(t) dt (3.15)

Finally, the aforementioned maps were filtered with a median filter with a 3× 3 kernel to
reduce noise arising from the pixel-wise assessment. Note that data were not normalized
or scaled with respect to arterial input functions, hemocrit-scale, Cerebral Blood Volume
(CBV) factor, or other physiological models for multiple reasons: firstly, within this animal
study, corresponding values and models are not available. Secondly, we wanted to provide
absolute and quantitative, i.e. unscaled values to the readers, which are independent of
assumptions made in underlying physiological models. Correspondingly, the iodine volume
map presented here does not represent iodine volumes in the sense of milliliters, but rather
gives a quantitative measure of the area under the curve of the temporal iodine density in
the unit of (mg/ml)×s. The latter is thereby related to the tissue’s overall blood intake
capacity, its storing as well as the flush-out behavior.
A detailed description of the Graphical Processing Unit (GPU)-implemented GVF routine
can be found in Section 3.5. With the IntelliSpace Discovery (ISD) platform, it is possible
to fit and view the perfusion maps in a browser-based environment. Furthermore, the
perfusion data from the Picture Archiving and Communication System (PACS) system
can be transferred to the ISD platform easily, and the integrated workstation can be used
to perform the perfusion analysis.

3.4.4 Results
A healthy pig (31.75 cm in mean diameter, 78 kg) was scanned using a DLCT system
(IQon, Philips Healthcare, Best, The Netherlands) with a detector coverage of 4 cm and a
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peak voltage of 120 kVp. An overall volume of iodine contrast agent of 40 ml (Ultravist 300,
Bayer, Bayer AG, Leverkusen, Germany) was injected into the ear vein, which corresponds
to a concentration of 154 mg/kg body weight. Within this animal study, scans were
immediately acquired after injection to track the bolus and enable hemodynamic analysis
throughout the whole thorax. ECG-triggered dynamic axial scans were adjusted to the
cardiac cycle with an increment of zero, with the scanning area covering the mid-part of
the left ventricular myocardium. A total of 36 consecutive scans were acquired. Finally,
no automatic motion-correction algorithm for the heart was used as the entire heart
volume was imaged only fragmentary. Therefore, data points with extensive motion in the
heart or other thorax structures were manually abandoned, resulting in a non-equidistant
sampling of the curve with 15 scan points. Figure 3.21-a shows the corresponding HU for
conventional and mono-energetic reconstruction as well as the iodine density of the porcine
myocardium at the initial stage and high contrast agent enrichment, i.e. 23.3 seconds
after the contrast agent injection. In congruence with previous dual-energy studies on
other indications, the temporal relative signal increase during iodine uptake with respect
to image noise is highest in the case of the low mono-energetic channels as well as the
iodine density map itself [Lou+18; Kau+16]. This is also well reflected in the temporal
CNR (Figure 3.21 b) and relative signal enhancement (Figure 3.21 c), where the virtual
MonoE-40 keV and iodine density images outperform the conventional HU image by far.
Since the temporal opacification of the myocardium is quantitatively and most sensitively
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Figure 3.21: a Conventional and mono-energetic Hounsfield units and iodine density of the
early (blue points) and late myocardium (orange). The early stage is measured at second zero
without iodine enhancement. The late myocardial stage is depicted at second 23.3 with maximal
contrast agent enrichment. Error bars correspond to the standard deviation within a ROI of 50
mm2 of the respective image channels. b Temporal CNR and c relative signal enhancement
of the myocardium during contrast uptake derived from a, demonstrating a superior depiction
of the myocardial opacification within the iodine density imaging channel. Figure reproduced
from [Sch+19].

depicted (as an iodine density offset arising from soft tissue is nearly absent) within
the iodine density map, this channel was used for further iodine-dynamics analysis.
Figure 3.22-a displays a transversal porcine thorax slice for different scan times after
the initial injection of contrast agent. Notice a subsequent bolus pass/enrichment of
iodine within the right and left heart ventricle as well as myocardium for the exemplary
scan times of 7.5, 10.9, and 23.3 seconds, respectively. In the first step, imaging data of
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15 scan points was temporally modeled in a pixel-wise manner using gamma variate fit
functions, as proposed in literature [Mad92; Kra+96]. Using a two-step fitting routine,
only the first pass of the contrast agent was considered so that artifacts arising from
recirculation were excluded. Figure 3.22-b displays data points and the corresponding
fit for an exemplary pixel in various ROI showing a high degree of correlation of model
and measurements (as quantified by the coefficient of determination R2 being close to
1), even in case of a non-equidistant temporal sampling. The corresponding transversal
thorax slices obtained from the model (Figure 3.22 c) are of smoother appearance than
the original data, contingent on the fact that outliers and noise are damped via the fitting
routine. This, however, is an essential premise for the meaningful retrieval of perfusion
and peak enhancement map. Please note distinctive discrepancies between the model and
measured data for late scan times arising from a correction of recirculation, as indicated
by low iodine density areas, among others, in the right ventricle.
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Figure 3.22: a Measured transversal quantitative iodine density slices of the porcine thorax
showing a subsequent opacification within the RV and LV as well as the Myocaridum (Myo). b
Iodine density values vs. scan time as obtained from the dynamic dual-energy perfusion CT for
an exemplary pixel for various ROI as indicated by yellow boxes in a, which were selected by an
experienced radiologist. A high accordance of data and fit was obtained using a gamma variate
fit model. Note that only the first pass of contrast agent was considered, and blood recirculation
was correspondingly neglected for the fit. c Transversal quantitative iodine density slices of the
porcine thorax obtained from the model agree with the measured data, as shown in a. Note
that distinctive discrepancies in late scan times arise from the neglect of recirculation. Figure
reproduced from [Sch+19].
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In the next step, the fitted data was used to derive the absolute, quantitative iodine peak
enhancement, perfusion, time to peak, and volume maps as depicted in Figure 3.23, using
the maximal slope method [MG03]. A peak enhancement value (Figure 3.23 a), which is
given as the maximal absolute increase in iodine density within the measured time frame,
of 0.92 mg/ml (11.86 % of the value found in the descending aorta) was determined within
the myocardium. The corresponding perfusion value (Figure 3.23 b), i.e. the maximal
slope of the temporal iodine density curve, was determined to be 0.085 mg/ml/s. This
value amounts to only 6.7 % of the value found within the descending aorta, contingent
on a limited influx of contrast agent through the coronary arteries in combination with
a slow uptake/diffusion within the dense muscular tissue. Interestingly, similar values
were found in the ventral region of the lungs. As expected for a healthy animal, the time
to peak map (Figure 3.23 c) indicates simultaneous and consistent perfusion throughout
the entire myocardium, approximately 4 to 5 seconds after the bolus passes through the
descending aorta. Only a small ventral region with a delayed maximal opacification was
found. However, as depicted in the very right line plot in Figure 3.22-b, the iodine density
itself only yields minimal changes within the timeframe of 16 to 24 seconds. Finally, the
overall volume of iodine perfusing the porcine thorax was calculated by integrating the
temporal iodine density curves. As the myocardial enrichment remains high for late scan
times and a flush out of iodine from the muscle is relatively slow in comparison to vascular
and ventricular heart structures, the fitted curves were integrated within a timeframe of
50 seconds (so that the iodine density drops below a threshold value of 0.25 mg). Here,
a value of 29.89 (mg/ml)×s was calculated within the myocardium, which accounts for
29.43 % of the volume dwelling in the aorta. An overview of all perfusion parameters for
various exemplary locations in the thorax is given in Table 3.1.
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Figure 3.23: Absolute and quantitative iodine-based analysis of myocardial dynamics: a peak
enhancement, b perfusion, c time to peak and d volume maps of the porcine thorax, derived
from the gamma variate fit model using the slope method. The peak enhancement indicates the
maximal increase in iodine density, the perfusion relates to the highest temporal gradient in the
influx of iodine, and the time to peak indicates the point in time when maximal peak enhancement
is reached. The iodine volume is related to uptake/storing/flush out behavior within the respective
structures. Note that areas where the gamma variate fit failed (for instance in the cava inferior)
or areas, where the iodine density remained below 0.55 mg/ml during the scan, are color-coded
black. Figure reproduced from [Sch+19].
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Table 3.1: Quantitative iodine-based peak enhancement, perfusion, time to peak and iodine
volume of the myocardium compared to the heart, lungs, and arteries.

Peak
Enhancement
[mg/ml]

Iodine
Perfusion
[mg/ml/s]

Time
to
Peak [s]

Iodine
Volume
[(mg/ml)*s]

Myocardium 0.92 0.085 17.12 29.89

Left Ventricle 7.52 1.269 12.39 96.77

Right Ventricle 3.77 1.561 6.72 62.73

Descending aorta 7.76 1.232 12.26 98.19

Ventral Lung 1.01 0.19 8.66 17.26

Pulmonary artery 6.92 1.25 9.83 95.93

The simultaneous analysis of all perfusion parameters allows for a specific diagnosis
of myocardial disorders: a reduced peak enhancement with a normal time-to-peak value
indicates scarred/fibrotic myocardium, limiting the absolute capacity of the myocardium,
while in the presence of a delayed peak value, an ischemic disorder is considered [FJR15].
Further, the perfusion pattern, which is related to the temporal change of blood flow
in both volume and velocity, is thereby a good indicator of a blocked or limited supply
of blood through the coronary arteries. Therefore, quantitative CT perfusion of the
myocardium assessed by absolute iodine concentration measurements over time has the
potential to significantly increase the performance of CT for the detection of myocardial
ischemia in patients with ischemic heart disease. The blood volume (or, in this case, the
iodine volume map) gives additional information on the overall blood intake capacity, its
storing as well as the flush-out behavior.
A major drawback of a precise flow dynamics analysis is the necessity of a sufficient
temporal sampling of the iodine density curve. This implies acquisitions before and during
iodine contrast enrichment until myocardial saturation is reached, which poses concerns
with respect to radiation dose. For an initial assessment of the myocardial blood flow (for
instance in case of a screening modality or when myocardial ischemia is uncertain), we
propose to derive the quantitative, iodine peak enhancement map from a semi-static two-
shot approach in stress and/or rest without the need of modeling/fitting the data. For this,
two scans are obtained in the myocardial saturation phase (in this case at 23.3 and 24.9
seconds). To obtain a homogeneous pattern within the myocardium, the corresponding
two iodine densities are averaged and smoothed by a minor Gaussian blur (to mimic the
fitting routine). Finally, to directly calculate the peak enhancement, an offset value from
literature or a control measurement is subtracted. Note that in a conventional HU-based
assessment an arterial curve must be obtained in order to normalize data, which however
is obsolete in the case of quantitative, absolute iodine density values. Figure 3.24 a,b
compare the ground truth peak enhancement map of the fully sampled scan with the one
obtained by the two-shot acquisition method, respectively. The peak enhancement values
within the ventricles and arteries are underestimated by far. However, in the case of the
saturated myocardium, the two-shot approach yields very similar values to the model.
The relative error within the peak enhancement (Figure 3.24 c) accounts for values in
the range of 5 to 15% and is considerably homogeneous within the overall myocardium.
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Note that the remaining dynamics parameters as derived by the maximum slope method
remain not assessed, as here the precise onset as well as saturation of iodine throughout
the myocardium must be tracked in time.

a) b) c)

0 2 4 6 8
Peak Enh. in mg/ml

0 2 4 6 8
Peak Enh. reduced Dose

0 25 50 75 100
Error reduced dose in %

Figure 3.24: a Quantitative iodine-based peak enhancement of the porcine thorax as derived from
the dynamics analysis based on 15 scans. b Quantitative iodine-based density peak enhancement
of the porcine thorax as derived from a semi-static two-shot approach during myocardial contrast
saturation. Notice that arterial and ventricular structures are strongly underestimated in comparison
to a. c Relative error in the determination of the peak enhancement of b in comparison to the
ground truth a. Within the myocardium, the deviation is quite homogeneously patterned and
accounts for values in the range of 5 to 15%. Figure reproduced from [Sch+19].
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3.4.5 Discussion

Within this study, we showed that by using a state-of-the-art dual-energy perfusion CT
imaging technique, it is possible to deduce absolute iodine-based flow dynamics of the
heart, arteries, and myocardium in a pig model. This allows for an assessment of the
functional properties of the latter quantitatively. Thereby, major advantages arise in
comparison to conventional HU-based diagnosis: firstly, the increase in image contrast
during perfusion is most pronounced in the iodine density map, helping with a better
visual assessment of the myocardium and potential ischemic or infarcted regions. This
allows for a more rigid fit of the imaging data, as well as the potential to reduce the
amount of contrast agent and radiation dose. Secondly, the image values examined by the
radiologist are not affected by beam hardening artifacts and hence are independent of
factors such as patient size and variations between different CT platforms, facilitating a
value-based assessment. Finally, the obtained image data is quantitative, which renders
an acquisition and consequent normalization with an arterial curve unnecessary, provided
that the concentration of contrast agent with respect to patient characteristics is reliably
controlled. Given the establishment of an extensive clinical database comparing iodine-
based dynamical indicators for various myocardial dysfunctions, in both stress and rest,
we believe that DECT may allow for a fast, rigid, highly sensitive, and specific assessment
of heart diseases.
However, an essential requirement for the establishment of such a database and using
data without normalization is that the quantitative iodine densities present in the human
myocardium can be measured precisely and in a reproducible manner. In the presented
animal study, a volume of 40 ml of Ultravist 300 (Ultravist 300, Bayer, Bayer AG,
Leverkusen, Germany) was injected and an offset-adjusted iodine density of 0.92 mg/ml
found within the myocardium. Note that the corresponding iodine in-vivo concentration
of 154 mg/kg body weight, is well below volumes typically applied in clinical routine.
In a study comparing various dual-energy scanners Sellerer et al. demonstrated, by
using an abdominal phantom and mimicking various patient sizes, that even low iodine
concentrations below 1 mg/ml (dependent on underlying dual-energy technique and patient
size) can be reliably measured with a relative error around 10% only [Sel+18]. Older
studies reported similar values, i.e. a constant absolute error of 0.1 mg/ml in case of iodine
concentrations below 1 mg/ml [Li+13]. Given a relative increase of iodine density within
the healthy myocardium of 575% (0.16 mg/ml to 1.08 mg/ml) during contrast uptake
within our study, the accuracy of modern systems can be considered sufficiently high.
We further demonstrated that a semi-static two-shot approach yields a deviation of 5 to
15% in the iodine peak enhancement value in comparison to one derived from the full
scan. Ensuing from previous studies showing that ischemic and infarcted regions of the
myocardium exhibit a 23% and 47% decreased mean iodine density, we believe that the
quantitative semi-static approach may not be highly specific, however may be a good
first indicator for myocardial malfunction (e.g. in case of a reduced peak enhancement or
delayed time to peak value) in an initial assessment [Sán+16]. Further, previous studies
on quantitative iodine perfusion implied the usage of 60 ml of Ultravist 370 (approximate
iodine concentration of 317 mg/kg-bodyweight) resulting in an iodine density of 2.56
mg/ml within the healthy myocardium [Sán+16]. As we found a value of approximately 1
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mg/ml in the myocardium (iodine concentration of 154 mg/kg-bodyweight) which can be
reliably measured with modern DECT systems and allows for meaningful modeling of the
data, we believe that a reduction of applied iodine volume/concentration by a factor of 2
is possible.
Finally, in this animal study, 15 scan points were used for the analysis, in order to model
early enrichment of arteries and ventricles, accounting for a CTDIvol of 15 × 9 mGy
equalling 135 mGy. In a clinical setting when only the myocardium is of interest, early
scan times after the injection can be neglected and an equidistant sampling of myocardial
perfusion slope and saturation with 8 to 12 points is generally sufficient. Correspondingly
a CTDIvol of 72 to 108 mGy can be expected, being well below a critically considered
value of 250 mGy.
The purpose of this experiment is considered a proof of principle investigation. As the
DECT technique offers several advantages regarding quantitative image results using
iodine contrast agent, the main point of our manuscript focuses on an initial investigation
of quantitative perfusion measurements. The added value of this study is to show the
advantage of quantitative iodine density maps in comparison to conventional CT images.
In terms of the improved CNR and the relative signal enhancement using contrast agent
density maps in DECT perfusion imaging, our results are relevant to several clinical
perfusion use cases with animals or even humans. Indeed, the improvement of clinical
diagnosis should be considered in further statistically meaningful studies with the benefit
of various patient groups and myocardial disorders in rest and stress conditions. This will
permit the establishment of a valid database of quantitative iodine-based hemodynamic
parameters. Hereby it will be of essential importance to clarify which of the quantitative
hemodynamic indicators are of major diagnostic importance. Further, within this study
a dual-layer IQon Scanner (Philips Healthcare, The Netherlands) was used, providing a
detector coverage of 4 cm only. A spatially limited examination of the heart (especially
the myocardium) however bears the risk of overlooking locally confined flow defects.

3.5 IntelliSpace Discovery perfusion plugin

The browser-based ISD platform enables the generation of plugins and provides a simple
data transfer from the PACS and an integrated dicom viewer to display the plugin results.
The ISD platform is a research platform and not a clinical product. Several plugins were
integrated into the ISD platform in recent years. A detailed description of the plugin
development and usage can be found in the TUM Wiki: “IS Discovery: Using Spectral
Plugins”:
https://wiki.tum.de/display/CTRM/IS+Discovery%3A+Using+Spectral+Plugins

Different models for perfusion quantification are defined in Section 3.2. Having a different
amount of free parameters, the models vary strongly in the execution time for the model
fit. The GVF model with 4 free parameters is very slow, and one voxel can be fitted in
approximately 1.3 seconds. In comparison, the MP model with 2 free parameters like the
one-compartment model used performs the fit in approximately 0.01 seconds. To fit a
dynamic dataset of 512 × 512 × 100 voxels, a sequential voxel-wise fitting approach is
impractical and would take several hours even for the simple 2-parameter models. The
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matrix size of 512 × 512 will presumably give way to bigger sizes like 1024 through
increased resolution in modern PCCT systems. Therefore, a parallel fitting approach
needs to be implemented using GPU powered parallel fitting of TAC. The Multi-Thread-
Optimization library was used to implement a parallel fitting approach. By running the
fitting on a workstation connected to the internal clinical network, the ISD platform can
be used to fit the dynamic perfusion datasets. The most recent version of the fitting
package can be found here:
https://gitlab.lrz.de/e17/ctperfusion/-/tree/VSR?ref_type=heads

The perfusion map computation routine can be described by the fitting of a 4D input
dataset. The GVF model is used in this example and must be performed per each voxel.
There are two ways to formulate the GVF function, a regular and simplified model [Mad92;
CN04]. The regular form involves fitting 4 parameters, while the simplified form uses
parameter estimations and reformulation to decrease the number of free parameters to
one. It is possible to fit both function forms. The simplified form is less computationally
expensive. However, first results show a decrease in fit accuracy compared to the regular
GVF function (see Subsection 3.2.1). This can be partially explained by instabilities in the
parameter estimation routines due to the noise. The perfusion map computation process
can be divided into three phases: pre-processing, fitting, and the actual perfusion map
calculations. The pre-processing step consists of two parts. The first part aims to identify
valid voxels, as voxels outside the investigated area of interest do not need to be processed.
The second part estimates initial fit parameters for each voxel out of observed data points.
Some of those parameters may stay fixed during the fitting process, depending on how
many parameters are fitted for. Note, that the regular GVF fitting does not use these
estimates and has default fixed initialization values. The next step is the actual fitting
routine. Here a Multi Thread Optimization (MOT) library is used named OpenCL, which
is specifically designed for solving many small-scale problems. MOT suits the task of GVF
very well. As an optimization algorithm, the Levenberg Marquardt (LM) optimizer is used
with numerical derivatives and boundary constraints. LM does not support constraints,
but constraints can be imposed as high penalties in the objective function. LM tries to
minimize the least square error in order to get the best GVF parameters. GPU memory
is the biggest constraint on how many fits can be processed in parallel. To avoid out-
of-memory errors, a batching mechanism is implemented. One of the crucial points in
the fitting process is the linear search for the t0 parameter. It is necessary because the
GVF is of non-converging nature when t0 is off (± 3 to 4 time units) from the solution.
This can happen due to the discontinuities and undefined values. The linear search for t0
tackles this problem by initializing the t0 parameters to several specific time points. After
each initialization, fitting is performed in quick mode, where the optimizer is limited to 5
iterations only. All parameters are stored in an array during the linear search. Parameters
are updated when a specific t0 initialization yields a better fit performance (smaller least
square error). At the end of the t0 search, a full fit is performed, where the optimizer
has a higher optimization step count limit. One big disadvantage of the t0 linear search
is the increased execution time. The perfusion map computation is the last step of the
pipeline. It starts by taking the fit parameters and resampling the GVF function from
t0. Resampled data points are transferred to the GPU kernels to calculate the perfusion
maps. Each GPU kernel operates on one voxel and outputs several perfusion map values
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and statistics. The final results are reshaped into the original volume dimensions. This
step also supports batching to avoid out-of-memory errors. Future projects should focus
on the integration of the current routine to Docker. The involved MOT library has a
complex structure. This complexity forces us to divide the routine into three steps, as
it is not fully customizable. That comes with the big disadvantage of moving Central
Processing Unit (CPU) data to GPU multiple times. The linear search algorithm for t0
involves fitting multiple times under different initializations. The CPU GPU data transfer
burden is more crucial in this case. MOT uses numerical derivatives by default. Numerical
derivative calculation involves executing the objective function 2 times and approximating
the derivative. Analytical derivatives can speed up this process. Unfortunately, the initial
attempts to integrate GVF function derivatives into the MOT pipeline were not successful
to this point.
When using the ISD platform for dynamic perfusion analysis, it is self-evident that an
automated image registration step is needed. The first results using the Fast Elastic Image
Registration (FEIR) algorithm [Kab+09; Kab+10] on porcine data showed promising
results. The FEIR algorithm can be used to register the conventional HU-based dynamic
perfusion datasets. The deformable vector fields can then be applied to spectral datasets
like the iodine density maps.

92 Chapter 3 Cardiac perfusion



Osteoporosis Imaging 4
This chapter focuses on the opportunistic diagnosis of osteoporosis using spectral detector
technology. The results of SDEXA are published in “Comparison of volumetric and areal
bone mineral density in CT and scout scans using spectral detector technology“ [Ham+23]
(see page vii). Compared to the original publication, the text has been slightly modified
to achieve a better integration into this doctoral thesis.

4.1 Diagnostics for osteoporosis: the treatment gap

With an aging population worldwide, osteoporosis and resulting fragility fractures become
a socio-economic burden, resulting in an increasing need for early diagnosis and treat-
ment [Cly+20]. Twenty-two million women and 5.5 million men were estimated to have
osteoporosis [Her+13] in the European Union, but only a minority of patients receive
treatment [GL15; McC+21]. This phenomenon is called the treatment gap for osteoporosis.
In the United States, after an osteoporotic fracture, only 9% of the patients underwent
consecutive osteoporosis testing [Cly+20]. The WHO reference standard for diagnosing
osteoporosis is the DEXA technique applied to the femur neck or lumbar spine [AZ18].
The aBMD is determined by spectrally separated measurements using a K-edge filter and
varying acceleration voltages. The marginal diagnostic rate may be a result of reduced sites
with DEXA availability and therefore limited screening possibilities [Mil16]. To overcome
this treatment gap along with the huge socioeconomic burden of fractures in older people,
universal access to such facilities should be supported [Com20]. Other available X-ray
based techniques are the 3D Quantitative Computed Tomography (QCT) Volumetric
Trabecular Bone Mineral Density (vBMD) assessment on conventional CT scanners using
a reference phantom. Promising results for the diagnosis with significantly increased osteo-
porosis detection rates from 17.1 % to 46.4 % for DEXA and QCT, respectively [Li+13]
were shown. With the introduction of spectral CT systems, a retrospective, opportunistic,
phantom-less quantification of vBMD was made possible by using virtual monoenergetic
images for the material decomposition into bone and soft tissue maps [Ros+19; Mei+17;
Lau+20; Lau+19; Koc+21]. The niche technology High Resolution peripheral Quan-
titative Computed Tomography (HR-pQCT) allows the assessment of complementary
quality parameters for bone morphology or simulating loading conditions via finite element
analysis [Whi+20]. Further methods for the assessment of bone health not relying on
X-rays are quantitative ultrasound [GC02] and magnetic resonance imaging [Pha+06] e.g.,
for quantification of trabecular structures.
In Section 4.2 and Section 4.3 spectral CT scout scans (also called overview or topogram)
from a detector-based dual-energy system are used to determine aBMD maps. A projection-
based material decomposition is applied to opportunistically determine aBMD values in
patients undergoing a CT examination, which is also known as SDEXA [Lau+19; Lau+20].
In principle, DEXA and SDEXA could use almost the same processing. DEXA needs
spectral information, which is generated by filtration, while scout scans from a dual-energy
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CT system can use a spectral detector to fulfill this task. Both methods then need the
calculation of the aBMD and segmentation.

4.2 DEXA and SDEXA using the European spine phantom
4.2.1 Background
The European Spine Phantom (ESP) is a reference phantom for DEXA and QCT mea-
surements [Kal+95; Kal92; Gen+94]. It is used for quality assurance and stability checks
of these systems. The semi-anthropomorphic phantom is equipped with three different
vertebral inserts L1 to L3, resembling aBMD values from 0.5 to 1.5 g/cm2 in steps of 0.5
g/cm2. These aBMD values represent the range of osteoporotic to normal bone. The
inserts are made of a mixture of calcium Hydroxyapatite (HA) and water-equivalent
resin, resembling the attenuation coefficient of soft tissue. The trabecular bone structures
contain a HA density of 50, 100, and 200 mg/cm3 for L1 to L3, respectively. The cortical
structures are made of HA with a density of 800 mg/cm3. The standard dimension is 260
× 180 × 110 mm in width, depth, and height, respectively. Additional adipose tissue rings
can be placed around the phantom to simulate different body sizes. The manufacturing
process has an accuracy of 3% within the specified values. A photograph of the ESP
is shown in Figure 4.1. The phantom is available from the manufacturer QRM GmbH,
Moehrendorf, Germany.

4.2.2 Methods
The ESP was scanned on a dual-layer spectral CT system (IQon, Philips Healthcare, Best,
The Netherlands) with a tube voltage of 120 kVp and different Dose Length Product (DLP)
values ranging from 0.9 to 17.2 mGy×cm in 11 steps (0.9, 1.7, 2.6, 4.3, 6.0, 7.3, 8.6, 10.7,
12.9, 15, 17.2 mGy×cm). The specifications of this device can be found in Section 5. Two
scan settings with and without adipose tissue extension rings were used. The ESP was
placed in the center of the field of view, and the raw data of the scout view was used to
determine the aBMD values from L1 to L3 and the corresponding standard deviations. A
scan without the phantom was performed to determine the background signal to correct
the absorption from the scanner table. 2D masks of the vertebral bodies were generated
using the high-dose measurements and applied to the low-dose measurements. Anterior-
Posterior (AP) and lateral scans were performed in all dose settings. aBMD values were
determined with and without background correction. To extract the aBMD values from
the detector raw data, a tool from the manufacturer (Philips Healthcare, Best, The
Netherlands) was used to generate photo and Compton images. Using the photo and
Compton images, monoenergetic line integrals PL and PH at 50 and 200 keV are calculated
for water:

PL = µρ,water,photo(50) · ρwater · Pphoto + µρ,water,compton(50) · ρwater · Pcompton (4.1)

PH = µρ,water,photo(200) · ρwater · Pphoto + µρ,water,compton(200) · ρwater · Pcompton (4.2)

µρ,water,photo(50, 200) and µρ,water,compton(50, 200) are the photoelectric and Compton
attenuation coefficients of water at 50 and 200 keV, respectively. Pphoto and Pcompton
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Figure 4.1: A photograph of the ESP.
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are the photoelectric and Compton data extracted from the detector. Monoenergetic
line integrals PL,ST and PH,ST are also calculated for soft tissue. The aBMD values are
calculated from the line integrals using the following formula:

aBMD =
−RST · PH + PL

µρ,bone(50)− µρ,bone(200) ·RST
, (4.3)

where µρ,bone(50) and µρ,bone(200) are the mass attenuation coefficients of bone at 50 and
200 keV, respectively. RST is the soft tissue correction factor. It is applied to correct the
different compositions of the phantom’s adipose tissue rings [CNA05]. The so-called soft
tissue correction factor can be calculated from the high and low energy measurements
directly by using the following formula:

RST =
PL,ST

PH,ST
(4.4)

PL,ST and PH,ST are mean values measured in a ROI within pure soft tissue. In patients,
the soft tissue correction factor accounts for the different composition of the adipose
tissue. Another possibility to account for this is to use literature values for the soft tissue
correction factor. The aBMD values were compared to the reference values provided by
the manufacturer and DEXA measurements. The DEXA measurements were performed
on a GE Lunar Prodigy (General Electric, Fairfield, USA) with a DLP of approximately
1.7 mGy×cm and an acceleration voltage of 76 kVp. The aBMD values were determined
using the manufacturer’s software. Lateral and AP values were measured using the same
scan settings for no adipose tissue ring and the small ring.

4.2.3 Results
Figure 4.2 shows a variety of aBMD measurements of the ESP using the IQon spectral
CT system without background correction. All measurements performed with a DLP
of 6.0 mGy×cm or higher show at least decent image quality. The image quality in AP
measurements with ring and lateral measurements with and without ring at a dose of 0.9
mGy×cm are not sufficient to determine the aBMD values. To achieve reasonable image
quality, 6.0 or even 8.6 mGy×cm need to be applied in lateral view images with adipose
tissue extension rings. With a dose of 6.0 mGy×cm, the image quality is still noisy, but
sufficient to determine the mean aBMD values in the vertebral bodies. In lower dose
measurements, the material decomposition algorithm fails in a large part of the pixels,
leading to biased aBMD values. In Figure 4.3 DEXA images of the ESP are shown. No
proper image data is available from the GE Lunar Prodigy, therefore the images from the
aBMD report are used.
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Figure 4.2: AP and lateral aBMD measurements of the ESP using the IQon spectral CT system.
Dose values of 0.9, 2.6, 6.0, and 8.6 mGy×cm are shown from left to right. The first two rows
show the aBMD values without and with adipose tissue ring in AP projection. The third and fourth
rows show the corresponding images in lateral projection. All images are windowed to the same
scale, ranging from 0.0 to 2.0 g/cm2. Especially in the lateral projection, the aBMD values are very
noisy or even not interpretable using the low dose measurements. The applied masks to calculate
the aBMD values are plotted as golden lines in the high dose AP and lateral projections.
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a)
b)

c) d)

Figure 4.3: AP and lateral aBMD measurements of the ESP using the GE Lunar Prodigy. a and b
show images taken in AP projection, c and d show images taken in lateral projection. a and c are
taken without adipose tissue ring, b and d are taken with adipose tissue ring. The applied masks
to calculate the aBMD values are plotted as golden lines. The green lines are the separating
lines between the different vertebral bodies. It is only possible to extract the aBMD report and no
measurement data from the GE Lunar Prodigy. The images included in the report are used for
this figure, and no colorbars can be displayed. Further, it should be mentioned, that the images
visualize intensity values and not aBMD maps.
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It is evident, that the automatically generated masks differ from manually generated
masks in Figure 4.2. The masks generated by the manufacturer in AP projection are too
small and do not cover the whole vertebral body. In lateral projection, the masks are too
large and include parts of the cortical bone structure. The values for AP measurements
with extension ring are plotted in Figure 4.4. The aBMD values measured from scout
projection images of the IQon and GE Lunar Prodigy are plotted against the reference
values provided by the manufacturer.
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Figure 4.4: aBMD values for vertebral bodies L1 to L3 measured in AP projection with extension
ring using the IQon scout images, the GE Lunar Prodigy and the reference values provided by the
manufacturer. All dose levels measured using the SDEXA method are plotted in red, with the more
translucent dots representing the lower dose measurements on a scale. In the osteoporitic aBMD
vertebral body L1, the SDEXA and DEXA method overestimate the aBMD at matched dose by
11.6 % and 19.4 %, respectively. L2 and L3 are overestimated by 2.3, 6.2, and 0.8, 3.3 % for the
SDEXA and DEXA methods, respectively.

4.2 DEXA and SDEXA using the European spine phantom 99



Laterally measured aBMD values without extension ring are plotted in Figure 4.5. As
the quality of the lowest dose measurements is not sufficient, the aBMD values are not
plotted. The plots of the setting with extension ring in lateral projection and without
ring in AP projection are not plotted, but all values can be examined in table Table 4.1.
The corresponding deviations in percentage are presented in Table 4.2. DEXA values and
deviations are given in Table 4.3. Background correction is not listed, as the deviations
are negligible. In AP scans, the maximum deviation at the lowest dose of 0.9 mGy×cm is
without an extension ring at L1 3.8 %. The mean deviation at the lowest dose level in all
settings is 1.9 %. In lateral scans, no background correction is applied, as the table is
present in the field of view.
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Figure 4.5: Equivalent to Figure 4.4 but for lateral measurements without extension ring. In the
osteoporitic aBMD vertebral body L1, the SDEXA and DEXA method deviate from the specified
aBMD by 29.2 % and -10.0 %, respectively. L2 and L3 are deviating by 3.6, -15.6 and
-3.6, -16.6 % for the SDEXA and DEXA method, respectively.
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S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

CTDIvol [mGy] 0.02 0.04 0.06 0.11 0.15 0.18 0.21 0.26 0.31 0.37 0.42

DLP [mGy*cm] 0.90 1.7 2.6 4.3 6.0 7.3 8.6 10.7 12.9 15.0 17.2

L1 AP nR 0.56 0.59 0.55 0.56 0.57 0.55 0.56 0.55 0.56 0.56 0.57

L1 SD AP nR 0.30 0.25 0.20 0.19 0.19 0.18 0.18 0.17 0.18 0.17 0.17

L2 AP nR 0.97 0.97 0.98 0.97 0.98 0.97 0.98 0.96 0.96 0.97 0.97

L2 SD AP nR 0.41 0.36 0.34 0.32 0.30 0.30 0.30 0.30 0.30 0.30 0.30

L3 AP nR 1.46 1.48 1.50 1.50 1.50 1.50 1.51 1.49 1.50 1.49 1.51

L3 SD AP nR 0.57 0.54 0.53 0.51 0.51 0.50 0.50 0.49 0.50 0.50 0.49

L1 AP sR 0.54 0.57 0.56 0.56 0.55 0.58 0.54 0.56 0.55 0.55 0.56

L1 SD AP sR 0.53 0.34 0.28 0.23 0.21 0.20 0.20 0.20 0.18 0.18 0.18

L2 AP sR 0.90 1.03 1.03 1.01 1.01 1.03 1.00 1.02 1.01 1.01 1.02

L2 SD AP sR 0.68 0.44 0.40 0.35 0.33 0.33 0.33 0.33 0.31 0.31 0.31

L3 AP sR 1.15 1.48 1.50 1.52 1.53 1.54 1.50 1.51 1.50 1.51 1.51

L3 SD AP sR 1.03 0.62 0.57 0.56 0.53 0.54 0.53 0.52 0.53 0.52 0.52

L1 LAT nR 0.02 0.40 0.43 0.47 0.47 0.45 0.47 0.46 0.46 0.47 0.46

L1 SD LAT nR 1.48 0.44 0.36 0.30 0.28 0.27 0.27 0.24 0.24 0.24 0.23

L2 LAT nR 0.26 0.67 0.73 0.74 0.76 0.74 0.74 0.73 0.75 0.74 0.74

L2 SD LAT nR 1.55 0.52 0.52 0.44 0.40 0.40 0.40 0.37 0.38 0.35 0.38

L3 LAT nR 0.31 1.02 1.08 1.13 1.14 1.12 1.16 1.12 1.13 1.13 1.13

L3 SD LAT nR 2.30 0.74 0.59 0.54 0.52 0.51 0.53 0.49 0.47 0.48 0.48

L1 LAT sR 0.25 -0.04 0.37 0.43 0.46 0.48 0.43 0.48 0.46 0.47 0.48

L1 SD LAT sR 8.39 2.72 0.76 0.46 0.38 0.36 0.32 0.32 0.32 0.29 0.26

L2 LAT sR -0.37 0.01 0.52 0.72 0.70 0.72 0.71 0.75 0.74 0.75 0.72

L2 SD LAT sR 9.22 3.41 1.09 0.56 0.49 0.46 0.46 0.44 0.42 0.40 0.38

L3 LAT sR 1.48 -0.60 0.90 1.07 1.14 1.11 1.14 1.14 1.12 1.14 1.14

L3 SD LAT sR 8.93 4.88 1.37 0.68 0.62 0.53 0.56 0.55 0.52 0.51 0.51

Table 4.1: aBMD values at different dose levels (Scan 1 to Scan 11)in different settings in g/cm2.
The mean and SD are calculated in AP and lateral (LAT) views with small ring (sR) and no ring
(nR). The aBMD values provided by the manufacturer are 0.5, 1.0, and 1.5 g/cm2 in AP view
and 0.36, 0.71, and 1.17 g/cm2 in lateral view. The SD values are calculated as the standard
deviation of the pixels included in the mask. Negative values, especially in the lateral view, are
due to the fact, that low dose measurements do not provide enough statistics to perform a material
decomposition accurately. This is also visible in Figure 4.2. Figure 4.4 and Figure 4.5 plot the
aBMD values L1 to L3 of AP sR and LAT nR, respectively.
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S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

CTDIvol [mGy] 0.02 0.04 0.06 0.10 0.15 0.18 0.21 0.26 0.31 0.37 0.42

DLP [mGy*cm] 0.90 1.70 2.60 4.30 6.00 7.30 8.60 10.70 12.90 15.00 17.20

L1 AP nR 12 18 10 12 14 11 12 11 11 12 14

L2 AP nR -3 -3 -2 -3 -2 -3 -2 -4 -4 -3 -3

L3 AP nR -3 -1 0 0 0 0 1 -1 0 0 0

L1 AP sR 7 14 13 12 9 15 9 11 10 10 12

L2 AP sR -10 3 3 1 1 3 0 2 1 1 2

L3 AP sR -23 -2 0 1 2 3 0 0 0 1 1

L1 LAT nR -94 11 21 31 31 26 30 28 28 30 29

L2 LAT nR -64 -6 3 4 7 4 4 3 5 4 4

L3 LAT nR -74 -13 -8 -3 -3 -5 -1 -4 -4 -4 -4

L1 LAT sR -31 -112 4 18 27 34 20 34 28 31 32

L2 LAT sR -152 -99 -27 1 -1 2 1 6 4 6 2

L3 LAT sR 27 -151 -23 -8 -2 -5 -3 -3 -4 -3 -2

Table 4.2: The SDEXA deviations from specified aBMD in %.

aBMD Deviation

L1 AP nR 0.61 23

L2 AP nR 1.07 7

L3 AP nR 1.57 5

L1 AP sR 0.60 19

L2 AP sR 1.06 6

L3 AP sR 1.55 3

L1 LAT nR 0.32 -10

L2 LAT nR 0.60 -15

L3 LAT nR 0.98 -17

L1 LAT sR 0.40 10

L2 LAT sR 0.68 -5

L3 LAT sR 0.90 -23

Table 4.3: The aBMD values from DEXA in g/cm2 and the deviation from the specified aBMD
in %.
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4.2.4 Discussion
The results show that the SDEXA approach can quantify the aBMD in the ESP phantom
more accurately than the applied DEXA measurements. A disadvantage of the DEXA
measurements is the automated segmentation of the ESP phantom, which cannot segment
the phantom correctly. This is especially visible in the lateral view, where the segmenta-
tion of the phantom exceeds the vertebral geometry. Using the SDEXA approach, the
segmentation is performed manually on the high-dose image, allowing for more accurate
segmentation of the phantom. When looking at the comparable dose levels of 1.7 mGy×cm
corresponding to 40 µGy in SDEXA and 37 µGy in DEXA, the SDEXA approach is more
accurate than the DEXA measurements in all settings except for L1 to L3 determination
in lateral view with a small ring. Here, the low dose level of 1.7 mGy×cm is insufficient
to provide a sufficient amount of photons being detected in the dual layer detector, which
is used in the SDEXA approach. At higher dose levels, the SDEXA approach can provide
more accurate results and is superior to the DEXA measurements for osteopenic and
normal bone densities. For the osteoporotic vertebral body L1, a constant overestimation
of approximately 30% is visible for the SDEXA approach with the small and no ring
setting. In the analysis applied for SDEXA the cortical bone structures are included in
the segmentation. In projection space, the cortical structures give rise to high aBMD
values. This is especially important for the L1 vertebral body measurement, as the cortical
bone structures with 800 mg/ml HA density deviates most from the trabecular area
with 50 mg/ml. In conclusion, a dose adaptation for SDEXA should be applied when
measuring patients in different settings. In AP view, the applied DLP of 1.7 mGy×cm
can be sufficient to correctly determine the aBMD. Only when dealing with very adipose
patients, a higher dose level might be necessary. In lateral view, a higher dose level of 4.3
mGy×cm should be applied, especially when dealing with adipose patients. For highly
adipose patients, even higher dose levels might be necessary. To avoid too high dose
levels, AP measurements should be considered for highly obese patients. Also, the follow-
ing CT examination should be considered when determining the dose level for SDEXA
measurements. Preferably, the SDEXA dose should not exceed 10% of the following CT
examination.

4.3 Comparison of volumetric and areal bone mineral density
Most parts of this section are published in [Ham+23] (see page vii).
Background: To determine whether denoised aBMD measurements from scout scans
in spectral detector CT correlate with volumetric trabecular BMD for opportunistic
osteoporosis screening.
Methods: A 64-slice single-source dual-layer spectral CT scanner was used to acquire
scout scan data of 228 lumbar vertebral bodies within 57 patients. Scout scans in AP
view were performed with a dose of 0.06 mSv and spectrally decomposed into aBMD
values. A spectral dictionary denoising algorithm was applied to increase the SNR. vBMD
was determined via material decomposition. A 3D convolutional network for image
segmentation and labeling was applied for automated vBMD quantification. Projected
maps were used to compare the classification accuracy of AP and lateral scout scans.
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Results: The denoising algorithm led to the minimization of anticorrelated noise in spectral
maps and an SNR increase from 5.23 to 13.4 (p-value < 0.002). Correlation analysis
between vBMD and measured AP aBMD, projected AP, and lateral aBMD showed a
Pearson correlation coefficient of 0.68, 0.81, and 0.90, respectively. The sensitivity and
specificity for the osteoporosis classification task were higher in lateral projection images
than in AP crystallizing in an increased AUC value of 0.99 versus 0.90.
Conclusion: Denoised material-specific aBMD maps show a positive correlation to vBMD
enabling spectral scout scans as an opportunistic predictor for osteoporotic patients. This
could be applied routinely as a screening tool in patients undergoing a CT examination.

4.3.1 Objectives

Our study explores an approach to automated BMD testing for radiology departments.
First, we show how to calculate aBMD data and present a denoising algorithm improving
the SNR of aBMD results. Denoising is applied, as scout acquisitions are conducted
with a very low dose, and additionally, material decomposition introduces anti-correlated
noise onto the aBMD material maps. As a standard of reference, spectrally determined
vBMD values from the subsequent CT measurements are used, allowing the generation of
projected aBMD masks from CT data to obtain a matched comparison between vBMD
and aBMD. In clinical routine, a direct comparison of vBMD/QCT and SDEXA is hardly
possible on a detailed level since CT systems and DEXA systems require different patient
positioning. With our approach using the same CT system, where we compare SDEXA
with vBMD, we know the beam geometry and position. This allows us to match vBMD
with SDEXA in a more precise way. In comparison to Laugerette et al. [Lau+19; Lau+20],
where phantom measurements and fracture differentiation on scout measurements were
analyzed, we investigated the correlation between measured aBMD and vBMD. Further,
we generate projected aBMD images in AP and lateral views from the spectral CT data
and compare the osteoporosis classification accuracy for both views. The aim of this study
was to reveal that SDEXA measurements are suited as osteoporosis markers, likewise
volumetric BMD, and to assess the correlation between these BMD measurement methods.

4.3.2 Methods

Study design and patient selection

In this retrospective study, 57 patients aged 17 to 80 with an average of 43 years and a
gender distribution of 23 female and 34 male subjects were included. From the initial
population, two subjects were excluded because of the overlay of intravenous or oral contrast
agents on scout images in the lumbar spine region. This causes severe overestimation
of aBMD values. Further, 10 patients with low-quality AP scout scans were excluded
from the analysis, as no dose adaptation was used for larger patients. All examinations
were performed between March and September 2021, as the automated segmentation
tool anduin [Löf+20b] was maintained and offline after that period. Further statistical
verification with an increased patient population is in the pipeline.
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Protocol settings

A standard CT abdomen protocol with a fixed tube voltage of 120 kVp and an exposure
of from 20 to 122 mAs per rotation (1.80 to 10.5 mGy CTDIvol) was used on a 64-slice
single source dual-layer CT scanner with a detector coverage of 4 cm and a rotation time
of 0.33 seconds (IQon, Philips Healthcare, Best, The Netherlands). The specifications
of this device can be found in Section 5. Scout scans were acquired with a peak tube
voltage of 120 kVp and a tube current of 30 mA. The CTDIvol and dose length product
(estimated dose converted from 2D to 3D) are approximately 0.06 mGy and 3.5 mGy×cm
(< 0.06 mSv, k=0.015 for abdomen and pelvis) in scout measurements and on average
7.2 mGy and 400 mGy×cm (≈ 6.0 mSv, k=0.015 for abdomen and pelvis) in abdomen
CT protocols. Spectral raw data were reconstructed using a standard soft tissue filter
kernel (type B) with an axial slice thickness of 0.9 mm. The isotropic pixel spacing in the
x-y-plane ranged from 0.56 to 0.97 mm physical distance between the center of each pixel
(generated with IntelliSpace Portal 11.0, Philips Healthcare, Best, The Netherlands).

Denoising in material selective images

Anticorrelation noise appears on material decomposed images with structural correla-
tion [KKK88; Mec+17]. An algorithm by Mechlem et al. was adapted to reduce noise
amplification in spectral material maps [Mec+17]. The anticorrelated noise contribution
can be minimized by a weighted addition of spectral maps generating a reference image at
a certain energy where anticorrelated noise maximally cancels out. We refer to this as the
minimum noise image. Dictionary denoising separates image features from noise by using
a sparse representation by natural image patches. These so-called dictionary atoms are
linearly combined to fit the original noisy image. Dictionary denoising on the minimum
noise image was applied to identify structures and edges. Denoised basis material images
were calculated by applying a local linear transformation to the processed minimum noise
image.
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Figure 4.6: Overview of spectral maps. The photoelectric a and Compton b water Equivalent Path
Length (EPL) images are combined to generate an aBMD map c in every patient. The aBMD
maps can be generated from raw photoelectric and Compton images or by using the denoised
EPL data. Subfigure d shows the difference image of the aBMD map generated from raw and
denoised spectral maps. An increased difference can be observed in bone regions like the hip or
femur. Figure adapted from [Ham+23].
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Bone mineral density calculation

Figure 4.7 gives a schematic overview of how measured and projected results were calculated.
To generate aBMD (Figure 4.7 f and Figure 4.6 c) maps from spectral scout scans, a raw
data extraction tool from the CT machine manufacturer was provided. Using the raw data
files from the scanner, water EPL, photoelectric and Compton images (Figure 4.6 a and b)
and resultant virtual monoenergetic projection values can be determined (refer to electronic
supplementary material in [Lau+19]). No soft tissue correction factor was applied, as
it resulted in an aBMD offset for patients with oral and intravenous contrast agents in
the ROI selected for soft tissue correction. 2D masks corresponding to aBMD images for
the quantification of vertebra-specific aBMD values are generated automatically. For this,
the freely available bonescreen anduin research tool [Löf+20b] was used to generate a
labeled CT segmentation (Figure 4.7 c yellow mask) of all vertebral bodies within the
scout-associated CT measurement. The labeled vertebral bodies can be distinguished in
trabecular and cortical voxels. The trabecular mask is used as an input to the forward
projection algorithm, which creates projected scout scans from CT images (Figure 4.7
e) [All+19]. The forward projection algorithm is implemented using the appropriate
CT geometry parameters and a banana-shaped detector focused on the focal spot of the
X-ray tube. A fan angle of 52.5 degrees covers 512 detector columns. In z-direction, a
scanning approach is simulated, where the patient is moved through a collimated beam
with a coverage of four detector pixels in z-direction. By adjusting the projection angle
to 0 or 90 degrees, AP and lateral scout images can be projected. Volumetric BMD
(Figure 4.7 c) images as well as 3D spine masks (Figure 4.7 c yellow mask) can serve as
input for the projection algorithm. By projecting the vBMD maps, artificially generated
aBMD maps in lateral and AP views were generated for every patient. Correlation and
classification analysis was performed on those projected aBMD maps, as well as measured
aBMD maps from spectral scout images. To obtain a trabecular-based 2D mask for
aBMD quantification on scout measurements (Figure 4.7 f yellow mask), projected aBMD
maps (Figure 4.7 e) together with an image registration step were used. The open-source
software SimpleITK [Yan+18; Low+13] served as an affine and translatory registration
library. An aBMD value for lumbar vertebral bodies L1 to L4 was obtained in all patients.
The volume of interest to calculate a spectral vBMD was automatically segmented using
the trabecular CT masks obtained from the bonescreen anduin research tool (Figure 4.7
c yellow mask). vBMD maps were generated by a material decomposition from virtual
monoenergetic images (Figure 4.7 a and b) into hydroxyapatite and water maps (Figure 4.7
c and d) via the solution of the following linear equation system:
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)
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 · ( ρwater
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)
, (4.5)

where µ50/200 are the attenuation coefficients at monoenergetic images 50 and 200 keV,
(µ/ρ)water/bone(50/200) are the mass attenuation coefficients of water and bone at 50
and 200 keV, and ρwater/bone are the hydroxyapatite and water maps. Three different
approaches for measuring the patient-specific aBMD value were compared to the spectrally
assessed trabecular vBMD (Figure 4.9):

4.3 Comparison of volumetric and areal bone mineral density 107



a)
10 cm

b)

c) d)

e)
10 cm

f)
10 cm

500

0

500

1000

1500

M
on

oE
 5

0 
in

 H
U

500

0

500

1000

1500

M
on

oE
 2

00
 in

 H
U

0

100

200

300

400

500

600
vB

M
D 

in
 m

g/
cm

3

500

600

700

800

900

1000

1100

1200

W
at

er
 d

en
s. 

in
 m

g/
cm

3

0.0

0.5

1.0

1.5

2.0

2.5

aB
M

D 
pr

oj
 in

 g
/c

m
2

0.0

0.5

1.0

1.5

2.0

2.5

aB
M

D 
m

ea
s i

n 
g/

cm
2

Figure 4.7: Schematic of BMD quantification in 3D and 2D data. Subfigures a and b visualize
the monoenergetic images at 50 and 200 keV at the same windowing in a certain slice. By
solving the linear equation system given in Equation 4.5 in every voxel, vBMD c and water maps
d are calculated. The yellow mask in subfigure c visualizes the trabecular bone mask generated
with the anduin tool. Subfigure e shows the AP projected aBMD map and projected borders of
the trabecular mask. Subfigure f is the aBMD map calculated directly from the spectral scout
measurement, overlaid with the borders of the projected and registered trabecular mask. Figure
adapted from [Ham+23].
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• SDEXA using denoised spectral scout measurements along with material decompo-
sition into bone (aBMD) and water images (Figure 4.9 a),

• AP projected aBMD from vBMD maps equivalent to measured aBMD (Figure 4.9
b),

• Lateral aBMD projections preventing the overlay of trabecular structures with the
spinal process (Figure 4.9 c and e).

Statistical analysis

The open-source scientific computing library for Python, SciPy [Vir+20] was used to
calculate a linear least-squares regression to correlate the 3D with 2D BMD measurements.
The slope, intercept, Pearson correlation coefficient, and p-value for a hypothesis test
whose null hypothesis is that the slope is zero were obtained. Further, the standard
error of the estimated slope was assessed, and a 95% confidence interval on slope and
intercept was calculated by using a two-sided inverse student’s t-distribution. In addition,
a two-sided T-test for the null hypothesis that two independent samples have identical
mean values was used. To compare the classification accuracy of aBMD measurements, a
ROC for a binary classification task was consulted [Ped+11]. The AUC was calculated by
a general function for integration using the trapezoidal rule.

4.3.3 Results
Denoising in material selective images

The SNR in a homogenous soft tissue ROI without bone contribution could be significantly
increased for photoelectric images (p-value < 0.002) from a mean value of 5.23 to 13.4. No
significant increase could be observed in the equivalent ROI in Compton images (p-value
> 0.05). The noise reduction algorithm shows qualitatively superior performance in
regions with bone contribution (Figure 4.6 d), which is more problematic to quantify, as
homogenous bone regions are hard to obtain in scout images. In an ROI of a patient’s
femur (Figure 4.6 red squares), an SNR increase from 6.16 to 28.7 was determined in
photoelectric EPL images and 3.93 to 18.7 in aBMD images. A line plot through the
red square region was assessed in Figure 4.8-a. The two peaks, especially visible in the
photoelectric EPL line, illustrate the cortical bone, whilst the dip in between corresponds
to the cancellous bone. The dashed, and solid lines show the line profile along the denoised
and raw datasets in photoelectric and Compton EPL images. The solid blue line visualizes
the profile along the weighted addition or minimum noise image, which is similar to
the conventional result from an integrating detector. It is important that the weighted
addition of raw spectral images and denoised datasets are alike. This is shown by the
equal course of the solid and dotted blue lines. Figure 4.8-b shows a histogram obtained
for pixel values from the red square ROI in Figure 4.6. illustrating the noise suppression
of the denoising algorithm. The translucent histograms correspond to raw data, whilst
the dense histograms show denoised data. The EPL changes for Compton and combined
datasets are small, indicated by the result of no significant increase in the SNR. The
standard deviation in photoelectric images differs strongly. Figure 4.8-c indicates the
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anticorrelation characteristic of spectral results. The Pearson correlation coefficient in the
bone and soft tissue ROI equals -0.80 and -0.93. No significant anticorrelation (p > 0.05)
was obtained in denoised spectral maps. Figure 4.8-d equivalent to Figure 4.8-a plots the
profile in the aBMD map for raw and denoised data. As the contribution of photoelectric
EPL maps is much larger for aBMD calculation than the Compton contribution, the noise
suppression due to the spectral denoising algorithm derivatives from the photoelectric
EPL behavior in Figure 4.8-a. The denoising step alters the mean per patient measured
aBMD densities to a small extent only, with a maximum per patient deviation of 1.7 %.
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Figure 4.8: Behavior of anticorrelated noise and spectral denoising. Subfigure a visualizes the
line profile through the femur bone in a representative patient. The raw data is plotted using a
solid linestyle, while denoised line profiles are plotted with dashed lines or dotted in the case
of weighted addition (Ph + Co). Subfigure b shows a histogram of photoelectric, Compton, and
weighted combination for raw (translucent) and denoised (opaque) bone data in a ROI (see red
square Figure 4.6). Subfigure c reveals a scatterplot of raw and denoised datapoints in a soft
tissue and bone ROI. The anticorrelation of spectral maps and the reduction of this behavior by
denoising can be demonstrated. Subfigure d displays the line profile equivalent like in a for aBMD
maps generated from spectral data. Figure adapted from [Ham+23].
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Correlation analysis

The spectral trabecular vBMD served as a ground truth classification of the osteoporotic
status in every patient, with a BMD < 80 mg/ml being classified as osteoporotic, leading
to 6 female and 1 male out of 57 patients being classified as osteoporotic. This threshold
was adapted from the American College of Radiology guidelines [oRad18; Sof12]. The
correlation coefficient between trabecular vBMD and measured AP aBMD, projected AP
aBMD and projected lateral aBMD was found to be 0.68, 0.81, and 0.90, respectively.
The calculated slopes and their 95% confidence interval were 113.6 ± 39.5, 150.4 ± 29.7
and 203.0 ± 27.2 in 1/cm. The classification accuracy for projected data was compared
on AP and lateral aBMD values (Figure 4.9 d) using the AUC value. The classification
on lateral projected aBMD with the reference of spectral trabecular vBMD led to an
AUC of 0.99 with a true positive rate of 94% and a false positive rate of 0% using the
threshold 0.55 g/cm2. The classification accuracy using projected AP values decreased to
an AUC of 0.90 with a true positive rate of 94% and a corresponding false positive rate of
43% using a threshold of 0.93 g/cm2. The ROC was not calculated for scout-derived AP
aBMD values, as 4 of 7 osteoporotic individuals had to be excluded because of noisy scout
images. Using the threshold BMD < 120 mg/ml as classifying osteopenic and osteoporotic
patients vs. normal the statistic in scout measurements was sufficient with 19 normal and
23 osteoporotic/osteopenic patients. An AUC of 86% with a true positive rate of 95% and
a corresponding false positive rate of 43% using a threshold of 1.22 g/cm2 were measured.
The denoising of measured data had no influence on the ROC.
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Figure 4.9: Correlation and classification analysis of measured and projected aBMD values with
trabecular vBMD. a The correlation between patient-specific measured AP aBMD and vBMD
values with a correlation coefficient r of 0.68. b The correlation between AP/lateral projected
aBMD values and the vBMD. At ROC analysis, the thresholds 120 and 80 mg/ml were used for
measured and projected data, respectively. c and d The classification analysis on measured and
projected aBMD values for correctly classifying osteoporotic patients based on the ground truth
of trabecular vBMD values. Subfigure e displays an example of a lateral projected aBMD map.
Note that one can separate between the trabecular and spinal process structures. Furthermore,
an overlay of the rips is visible in lumbar vertebrae L1 and L2. Figure adapted from [Ham+23].
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4.3.4 Discussion

DEXA is a 2D spectral technique for the assessment of aBMD and is the World Health
Organization (WHO) reference standard for diagnosing osteoporosis. Several studies
indicate that the volumetric assessment of BMD performs substantially better as a
predictor for prevalent and consecutive vertebral fractures compared to DEXA [Löf+20a;
Löf+19; Löf+21], where lateral aBMD measurements outperform AP acquisition [Yu+95].
Nevertheless, the radiation dose of a high-quality quantitative CT protocol at the spine
is much higher, e.g. about 1.0, and 1.6 mSv for men and women assessed using Monte
Carlo calculations, respectively [Eng17]. To avoid unnecessary exposure to patients from
CT scans, spectral scout images could be used as a preliminary indicator for osteoporosis.
Scout measurements are taken in every patient to select the Field Of View (FOV) for the
CT protocol and to apply automated dose modulation. By extending the scout protocol
to the lumbar spine region in every patient, aBMD values could be acquired as additional
pre-CT information, also in CT protocols where the lumbar spine is not in the FOV. In
case of low aBMD values, the CT protocol could be extended to examine the lumbar
spine region to perform a follow-up diagnosis of the osteoporosis status. Further studies
should focus on how well the SDEXA technique can detect consecutive fractures. For this
approach, reasonable image quality must be achieved in scout measurements. Material
decomposition algorithms on spectral image data lead to low SNR in material selective
images [AS79]. In our work, to decrease image noise originating from anticorrelated
noise, photoelectric and Compton EPL images are used as the input to a dictionary-
based denoising algorithm. The denoising step showed only minor differences in per
patient calculated aBMD and no differences in the ROC analysis on scout data. This is
due to measuring a mean value within the vertebral body, averaging the anticorrelated
noise introduced by material decomposition. We expect a beneficial effect for denoising,
especially for an automated segmentation algorithm. Noise-suppressed images and raw
images lead to the same values in the minimum noise image on a pixel level. This indicates
that the noise reduction algorithm does not change quantitative absorption values, as it
only removes the anticorrelated noise from spectral maps.
The correlation analysis shows a high degree of correlation (r =0.68) between spectrally
measured aBMD with trabecular vBMD. Similar studies comparing DEXA with QCT
observed r-values of 0.61 and between 0.54 and 0.65 [Yu+95; Miy+12], suggesting a similar
performance of our method to DEXA. With an AUC value of 86% for distinguishing
normal from osteopenic plus osteoporotic patients, SDEXA measurements show high
classification accuracy with a sensitivity of 95%, however with a mediocre specificity of
57%. Especially in the low BMD range, a point cloud with moderate correlation exists.
This can be a result of overestimation of low BMD in AP views, as the spinal processes
overlap and additional osteophyte formation, vertebral fracture and degenerative changes
of the spine can falsify the aBMD value [Kin+98; CKL16; Gup+20]. A comparison of
the classification accuracy for osteoporosis showed improved sensitivity and specificity in
lateral scout projections. Especially in the low BMD range, the degree of correlation is
improved noticeably for 2D and 3D BMD values. Volumetric BMD values were derived
by a material decomposition into hydroxyapatite-specific BMD and water, and not the
reference standard QCT. In recent studies, it was shown that spectrally derived BMD
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values are on par with conventional QCT measurements [Ros+19], or can be even closer
to true BMD concentrations [Koc+21].
A notable limitation in our patient population is the low number of osteoporotic patients.
Only three osteoporotic patients could be analyzed with measured scout data. The applied
scout dose should be adapted to the patient’s body mass index to impede degraded scout
quality. Further, not all CT protocols feature a scout image, including the lumbar spine.
An extended field of view on these scout scans leads to increased dose values. However,
the additionally applied dose as given in the Subsubsection 4.3.2 with < 0.06 mSv is
very low in comparison to CT applied dose of approximately 6.0 mSv. Especially, a
comparison to the current reference standard DEXA is lacking. The reason for this is the
retrospective nature of this study. Only a rare minority of patients undergoing abdominal
CT examinations received a DEXA scan within a reasonable time interval. A reason for
this is the absence of a DEXA device in our radiology department.
In this study, we have found a positive correlation between spectral trabecular vBMD and
scout scan aBMD (r=0.68) as well as projected AP (r=0.81) and lateral aBMD (r=0.90).
A noise reduction technique and an automated mask generation algorithm were utilized
to generate joint BMD values. Using the extended scout scan protocol for opportunistic
osteoporosis detection, with an additional dose of only a fraction of the CT dose, could be
a first indicator for a low BMD value and may be earmarked for further investigations.

4.4 Automated segmentation of scout scans
In the previous sections, the SDEXA approach was introduced. The SDEXA approach
requires a fully automated segmentation of the overview scan to determine the aBMD
in every patient opportunistically. The following section describes the development of a
CNN based segmentation algorithm for the automated segmentation of scout scans.

4.4.1 Segmentation algorithm
A CNN based segmentation algorithm was developed to automatically segment overview
scans from the SDEXA approach. The CNN segmentation was neither used in Section 4.2
nor in Section 4.3. Manually generated segmentations were used for the ESP phantom,
and 3D masks were forward projected in Section 4.3 for the perfect registration of 3D and
2D masks in volumetric and areal BMD determination. The automated segmentation of
SDEXA scans is a crucial step in the fully automated aBMD report generation in the
SDEXA pipeline. The CNN based segmentation algorithm was developed in Python using
the PyTorch lightning framework https://github.com/Lightning-AI/lightning. To
access the code, you can log in to the GitLab repository https://gitlab.lrz.de/e17/

scout-spine-segmentation. You can read the README.md file in the repository for a
detailed description. The input data for training, validation, and testing must be a 512
× 512 pixel Portable Network Graphics (PNG) image. The manually segmented masks
are combined with denoised SDEXA photoelectric images to crop and pad the images
to the correct size. The masks are saved as 512 × 512 pixel PNG images. If a semantic
segmentation for vertebral bodies is desired, the masks must be normalized to the number
of labels (e.g., 4 labels + background = 5) visualized in Figure 4.10. The CNN architecture
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Figure 4.10: Denoised SDEXA scan and corresponding semantic segmentation of the vertebral
bodies. The segmentation mask is normalized to 5 unique values. The background is represented
by the value 0. The vertebral bodies are represented by the values 1 to 4. Both images must be
512 × 512 pixel PNG images. The segmentation mask is used, to crop and pad the SDEXA scan
to the correct size. The segmentation mask is used as the ground truth for the CNN training. The
CNN output is a 512 × 512 pixel PNG image with 5 unique values.

is based on a modified U-Net architecture [RFB15] with batch normalization after each
layer. The U-Net is an open-source convolutional network architecture for fast and precise
image segmentation. Semantic segmentation requires a pixel-wise classification of the
input image. The loss function is based on the cross entropy loss in combination with
a dice loss. An argmax function is used to get the final segmentation mask. The Adam
optimizer is used. The PyTorch backend is used for training. A Nvidia GTX TITAN X
(NVIDIA Corporate, Santa Clara, CA, USA) graphic card with 12 GB of memory using
CUDA 11.2 was accessed. Tensorboard is used to visualize the training process [Aba+15].
To perform a segmentation, the trained model can be loaded using a checkpoint file.
In a second step, the results from Subsubsection 4.3.3 were compared to the results of the
CNN based segmentation. The masks for the aBMD quantification in Subsubsection 4.3.3
were generated using a 3D segmentation of the trabecular spine in the CT scan. Those
3D masks were forward projected to the detector plane and registered with the SDEXA
scan. On the other hand, the CNN based segmentation masks trained on 289 images
were used for the aBMD quantification. First, the dice score, which is a measure of the
similarity of two segmentation masks, was calculated. Further, the aBMD values were
generated from the forward projected masks and CNN masks and compared to volumetric
aBMD values like in Figure 4.9. Also, the ROC curves were generated for the CNN based
segmentation and the forward projected 3D masks. Not all datasets from Figure 4.9 could
be used, as the 3D masks were not 100% accurate for the labeling of the vertebral bodies.
Mislabeled vertebral bodies would lead to meaningless dice scores. From the 44 datasets
used in Subsubsection 4.3.3, five had to be excluded due to inaccurate 3D masks.

116 Chapter 4 Osteoporosis Imaging



4.4.2 Preliminary results
The generation of ground truth data on SDEXA measurements is still ongoing at the
time of writing this thesis. Therefore, a short glimpse of the results generated with 289
images is presented here. After a training of 45 epochs, a training, validation, and test
loss of 0.015, 0.073, and 0.060 was achieved. The training and validation loss is shown
in Figure 4.11-e. The training loss is shown in blue and the validation loss is in orange.
The test loss is indicated by a red diamond. An example of the segmentation results is
also shown in Figure 4.11-c. In the second step, the results from Subsubsection 4.3.3

a) b)

c) d)

e)
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Figure 4.11: Two example images of a denoised SDEXA scan in panel a and corresponding
semantic segmentation of the vertebral bodies in panel b (ground truth mask). The segmentation
mask is normalized to 5 unique values. The background is represented by the value 0. The
vertebral bodies are represented by the values 1 to 4. The predicted mask in c and a difference
image in d are shown. Training, validation, and test loss are plotted in e. The training loss is
depicted in blue, and the validation loss is in orange. The test loss is indicated by a red diamond.
A rapid decrease in the training and validation loss is visible within the first 10 epochs. After 20
epochs, the training and validation loss is stabilizing on a plateau.

were consulted to analyze the CNN based segmentation performance. Except for one
outlier with a dice score of 34%, all other datasets had a dice score of 71% or higher.
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The mean dice score was 82% with a standard deviation of 8.6%. An example of a
segmentation mask generated by the CNN and the forward projected 3D mask is shown
in Figure 4.12. The outlier is shown in panel d, while the other datasets are randomly
selected. Analogous to Figure 4.9 the aBMD values were compared to the volumetric
BMD values in Figure 4.13. The correlation coefficient is decreased from 0.68 to 0.54 when
using the CNN based segmentation masks. When excluding the outlier, the correlation
coefficient is 0.57. The aBMD values are also shifted to lower values. The mean difference
between the aBMD values is 0.095 g/cm2. The fitted slope has a value of 92.6 ± 48.5
1/cm in a 95% confidence interval. The ROC curves are also shown in Figure 4.13. The
AUC is decreased from 0.86 to 0.84 when using the CNN based segmentation masks.
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Figure 4.12: Four examples of segmentation masks generated by the CNN and the forward
projected 3D mask. The CNN based segmentation masks are shown in blue, and the forward
projected 3D masks are in green. The outlier is shown in d, while the other datasets are randomly
selected.
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Figure 4.13: Correlation and classification analysis of measured and projected aBMD values with
trabecular vBMD. aBMD values from forward projected masks and CNN based segmentation
masks are compared. a The correlation between patient-specific measured AP aBMD and vBMD
values with a correlation coefficient r of 0.68. Subfigure b shows the correlation of a using CNN
masks instead of forward projected masks. The correlation coefficient is decreased to 0.54. c, d
ROC curves for the classification of osteoporotic patients based on the ground truth of trabecular
vBMD values using forward projected masks and CNN based segmentation masks. The AUC is
decreased from 0.86 to 0.84 when using the CNN based segmentation masks. e, f Example image
of a denoised SDEXA scan with corresponding segmentation mask generated by the forward
projection and the CNN. The CNN based segmentation mask is shown in blue, and the forward
projected 3D mask is in green.
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The CNN based segmentation masks contain a bigger ROI than the forward projected
masks. This is due to the fact that the CNN based segmentation masks are trained on
manually labeled data. The manual labeling of the vertebral bodies is not as accurate
as the forward projection of the trabecular 3D masks. The CNN based segmentation
masks contain the cortical bone of the vertebral bodies, which is not included in the
forward projected masks. Further differences are visible in Figure 4.12. The CNN based
segmentation masks can show incomplete segmentations of vertebral bodies and labeling
of vertebral bodies, which are not L1 to L4.

4.4.3 Discussion

The results of the CNN based segmentation are promising. The segmentation masks
generated by the CNN are comparable to the forward projected masks. The CNN based
segmentation masks are not as accurate as the forward projected masks. Especially
when looking at the outside regions of the vertebral bodies, the CNN based segmentation
masks include a bigger ROI than the forward projected masks. This is because the
CNN based segmentation masks are trained on manually labeled data. In the manual
labeling of the vertebral bodies, it can be difficult to distinguish between the trabecular
region and the cortical bone, particularly as these structures overlap each other in the
projected scout plane. Distinguishing between the trabecular region and cortical bone
is only possible in the 3D volume. The forward projected masks are generated from the
3D masks. Therefore, the forward-projected masks contain only the trabecular region
of the vertebral bodies. The forward projected masks contain cortical bone, as the line
integral through the trabecular region also contains the cortical bone. Depending on
the patient-specific anatomy of the vertebral bodies, there will be more or less cortical
bone in the forward projected masks. The CNN based segmentation masks can also
contain small regions outside the vertebral bodies, particularly in pixels with partial
volume effects. When comparing the aBMD values from the two segmentation approaches
against the vBMD values, the correlation decrease is partially resulting from the outlier
produced by a off segmentation mask of the CNN, but also from the bigger ROI of the
CNN based segmentation masks. This aligns with the approach of comparing the aBMD
values from the forward projected masks with the vBMD values. The correlation is
expected to be maximal when the ROI of the aBMD values and the vBMD values are
perfectly aligned. This is achieved by the forward projection and registration of the 3D
masks done in Section 4.3. For a fully opportunistic approach, quantifying the aBMD in
every scout scan, the CNN based segmentation masks have to be used, as a CT image
of the corresponding ROI including L1 to L4, is not always available. With the CNN
based segmentation, it is possible to generate a DEXA like aBMD map for every patient
undergoing a spectral scout scan, including the vertebral bodies L1 to L4. It is expected
that the accuracy of the CNN based segmentation masks can still be increased by training
the CNN on more data. The CNN based segmentation masks are trained on 289 scout
scans at the time of writing. Especially when dealing with patients with complicated
anatomy, oral contrast agent, or metal implants, more training data is needed. Currently,
approximately 500 scout scan datasets exist for labeling.
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4.5 PCCT measurements of vertebral bodies
35 lumbar vertebral bodies harvested from 12 human cadavers originally obtained for
studies [Gas+23a; Gas+23b] were measured in a preclinical PCCT setup for assessing
qualitative HA and microstructure parameter analysis. The final results will compare
the gained parameter with a clinical darkfield scanner setup [Fin+19; Wil+21]. To the
point of writing this thesis, the evaluation is still ongoing, and the results are not yet
available. The following section will give an overview of the measurement PCCT setup
and the assessment of the HA and microstructure parameters.

4.5.1 Laboratory PCCT setup
The measurements were performed at the PCCT setup Biwakschachtel of the Technical
University of Munich (TUM) in Garching, Germany. The used detector system (Flite X1,
Direct Conversion AB, Danderyd, Sweden) is a PCD hybrid pixel detector with a 750
µm Cadmium Telluride (CdTe) sensor. The detector active area is 1536 × 128 pixels (≈
155 × 13 mm2) with a native pixel size of 100 µm, arranged in a horizontal pattern of
12 chip modules with a chip gap of one pixel. The system has two energy thresholds per
pixel and has an integrated charge-sharing correction [Sel+19]. The statically mounted
X-ray tube (XWT-160-CT, X-RAY WorX GmbH, Garbsen, Germany) is a micro-focus
tube with a tungsten reflection target and a 2 mm thick beryllium window. It can be
operated at tube voltages of up to 160 kVp and has a maximum target power output of
300 W. Furthermore, the tube has a minimal focal spot size of 2.0 on 3.0 µm (hor. on
vert.), which broadens with increasing target power to its maximum of approximately 150
on 320 µm at a power of 120 W. The beam has an opening angle of about 30 degrees and
can be varied in its shape by an attached collimator [Sel+19]. The necessary calibration
of system parameters needed for the material decomposition is described in [Ehn+17;
Mec+18]. A material decomposition into water and HA was performed to measure the
bone density in the vertebral samples.
The vertebral bodies were placed in a glass container to avoid movement during the
measurement. The container was placed on a rotation stage and mounted on a linear
stage. An overview of the measurement setup is shown in Figure 4.14.
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Figure 4.14: PCCT with vertebral bodies and calibration phantom. In a, the whole measurement
setup is shown. From left to right, it contains the X-ray microfocus tube, linear stages to move
the calibration phantom and sample on the rotation stage, and the PCD detector. b and c show a
close-up of the calibration phantoms and the sample in front of the detector.
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The source-to-object distance was set to 1500 mm, and the object-to-detector distance to
200 mm. The magnification factor is calculated to be 1.13, and the resulting effective pixel
size is 88 µm. An isotropic resolution was used (slice thickness 88 µm). 1600 projection
angles on a 360-degree rotation were applied with an integration time of 0.2 seconds per
projection. For spectral measurements, several frames were taken per step, leading to a
total scan time of approx. 2.5 hours for one detector coverage of approximately 1 cm.
Conventional measurements (with reduced dose, only one frame per step) of the sample
were taken in z-scanning mode to cover all three vertebral bodies of the sample, having a
z-coverage of 12 cm. The peak acceleration voltage was set to 110 keV and an in-house
developed reconstruction software (pyCT) based on Python was used for reconstruction.
A cone beam reconstruction geometry was assumed, and a Hamming filter was applied
during the FBP algorithm.

4.5.2 Microstructure parameter analysis
To investigate the microstructure parameters of the vertebral bodies, a segmentation of the
trabecular bone was performed by a radiologist in training using the open-source software
itk-SNAP [Yus+06]. The segmentation was performed on the conventional CT images.
The resulting binary mask was then applied to the spectral images. The trabecular bone
contours were segmented using the scikit-image library, namely the find contour function
of measure (version 0.17.2) [LC87]. The level along which to find contours was set to
0.31 1/cm for the conventional reconstruction and 350 mg/ml HA density for the spectral
reconstruction. All other options were set to default. The marching cubes algorithm
can create a set of contours around trabecular bone structures. The resulting contours
were then used to calculate the microstructure parameters. To reduce computational
time, the algorithm was applied on 2D axial slices in multiprocessing mode. The resulting
parameters were then averaged over the whole sample. An example of the resulting
contours is shown in Figure 4.15.
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Figure 4.15: The visualization of vertebral contours. Three different samples with the corre-
sponding segmentation of the vertebral bodies 1, 2, and 3 are shown in blue, green, and orange,
respectively. The contours of the trabecular bone structures are shown using multiple color codes.
The zoom factors are different for each sample, so the displayed image sizes are not comparable.
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The following parameters were calculated from the segmented contours within the
trabecular bone [Bou+10]:

• Bone volume fraction (BV/TV): The ratio of the bone volume to the total volume
of the sample.

• Bone surface fraction (BS/TV): The ratio of the bone surface to the total volume of
the sample.

• Specific bone surface fraction (BS/BV): The ratio of the bone surface to the bone
volume of the sample.

• Trabecular number per pixel (Tb.N): The number of trabecular structures per pixel.

• Mean trabecular thickness (Tb.Th): The average thickness of the trabecular struc-
tures.

• Mean trabecular volume (Tb.V): The average volume of the trabecular structures.

• Degree of anisotropy (DA): A measure of the orientation of the trabecular bone
structures.

The Degree of Anisotropy (DA) is calculated using Mean Interception Lenght (MIL)
vectors [HM84; Odg97]. Every fifth axial slice was analyzed using nine directions (uneven
to not include 0 and 180 degrees). Per direction, 10 parallel lines were drawn. The lines
were spaced by 20 pixels. The middle line was set to cross the center of gravity of the
segmentation mask. All lines were then extended to the edge of the segmentation mask.
The center of gravity was calculated using ndimage.center of mass from the scipy library
(version 1.5.2) [Vir+20]. The algorithm then searches for points along the lines where the
background changes to the foreground, i.e. where the line enters an object. These points
are called phase changes. The phase changes are then used to calculate the MIL vector.
The length of the MIL vector is the total length of the line segments divided by the total
number of phase changes. Its direction is defined by the angle between the line and the
x-axis. The nine MIL vectors are used to fit an ellipsoid within the 2D axial slice. The
ellipsoid radii a and b are used to calculate the DA using the following formula:

DA = 1− 1

a2
/
1

b2
= 1− b2

a2
(4.6)

where a is the major and b the minor axis of the ellipsoid (a > b). The DA of every
fifth slice was calculated and then averaged over the whole vertebral body. DA values
were calculated for the conventional and spectral reconstruction for all vertebral bodies
of the samples. As the DA is measured in axial slices, it indicates the anisotropy of the
trabecular bone structures in the axial plane, giving information about the orientations
perpendicular to the z-axis. An example of the MIL vectors and the fitted ellipsoid is
shown in Figure 4.16.
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Figure 4.16: The visualization of the MIL vectors and the fitted ellipsoid. In a, the straight lines to
calculate the MIL vectors of sample 245 in slice index 900 are shown in red, and the phase change
points are highlighted in green. The corresponding MIL vectors are plotted in b. The ellipsoid in
red fits the MIL vectors. The DA is calculated using the ellipsoid radii a = 19.6 and b = 21.5 pixels.
The DA value is 0.17. The voxel size is 88 µm.
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4.5.3 Comparison to clinical darkfield scanner
The final results of the PCCT measurements will be compared to the results of a clinical
darkfield scanner setup [Fin+19; Wil+21]. It is expected to find a correlation between
microstructure parameters and the dark field signal of the vertebral bodies. Especially, the
DA is expected to correlate with the dark field signal. The dark field signal is a measure
of the small-angle scattering of the sample. The small-angle scattering is caused by the
trabecular bone structures. The DA is a measure of the orientation of the trabecular
bone structures. Therefore, when measured from different orientations, the darkfield
signal could show an anisotropy of the directions oriented perpendicular to the spine
(z-axis). The DA values measured from the PCCT in conventional mode should be used
for the analysis of microstructure parameters and DA analysis, as the resolution of the
conventional images is approximately four times higher than the resolution of the spectral
images. The spectral resolution is degraded by the binning in detector pixels, which is
necessary to avoid high noise contribution in spectral maps. Spectral maps like the HA
density can be used to calculate the bone density of the sample. The high resolution
necessary for the microstructure parameter analysis is not needed for the bone density
calculation, as mean values within the trabecular bone are calculated.
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Conclusion and Outlook 5
This thesis has presented new applications for cardiac perfusion and osteoporosis imaging
using spectral detectors in clinical CT. Most results presented are acquired using a DLCT
system operating in daily clinical routine. Spectral data can be accessed in every scan
and was used to show possible improvements in diagnostic accuracy in patient cohorts,
animal models, phantoms, and post-mortem human specimens.

In the first part of this thesis, Chapter 2, an introduction to the theoretical background of
X-ray CT imaging from the generation of X-rays, the interaction with matter, the spectral
detection, and finally the reconstruction of an image are present. A focus lies on spectral
detection using a DLCT system, which is important for most results generated during this
PhD project. Also, PCCT is introduced and compared to DLCT using the simulation
of spectral acquisition with a digital Shepp-Logan phantom. The avoidance of spectral
artifacts and the introduction of anti-correlated noise in material decomposition maps are
discussed. It should be considered, that the simulation is based on a simplified model of
the spectral detection mechanism and cannot represent the real behavior of the detector,
but it is a good approximation for the comparison of the two spectral detection methods
concerning the material decomposition and noise behavior of material maps.
Most of the presented clinical results are based on DLCT data. Some results based on
PCCT data are presented in Section 4.5 investigating post-mortem human vertebral bodies
in a preclinical laboratory setup. Chapter 3 focuses on the application of spectral data
in dynamic myocardial perfusion imaging. This technology enables ‘moving’ images of
the perfusion of the myocardium by acquiring a series of scans during the passage of a
contrast agent bolus in ECG triggered mode. By using a DLCT system, conventional
CT images, as well as spectral images like iodine density maps, can be reconstructed.
The opportunity to access spectral maps like the iodine density distribution was used to
assess perfusion-specific functional parameters within the phantom’s myocardium. The
GVF model and the TKM were compared on data from a dynamic perfusion phantom. In
the approach of a GVF model, blood inflow independent, absolute perfusion parameters
are calculated for every voxel, while the TKM model takes the arterial blood inflow and
resulting tracer distribution into account. Within the simulated myocardium of the phan-
tom, a perfusion defect was introduced. The perfusion-derived parameters MTT and TTP
from the TKM and the GVF model, respectively, showed the best results in the detection
of the perfusion defect. Both perfusion maps showed very similar behavior in locating
the perfusion defect. Using a classification analysis based on a voxelwise comparison
of the perfusion maps, the iodine density was found to be superior to the conventional
dataset in the detection of underperfused myocardium. By using a simple dose reduction
technique with a reduced number of time points, we showed the possibility of achieving a
similar diagnostic accuracy in the detection of perfusion defects when accessing spectral
information. This is a very promising result because the dose burden of dynamic perfusion
imaging is a major concern in clinical routine. Similar findings concerning dose reduction
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and also SNR increase were made in the clinical study of a porcine model. A GVF
analysis was performed on iodine density maps, and quantitative perfusion maps were
generated. In contrast to the phantom study, recirculation of CA within the left and right
ventricle was observed and has to be considered in the fitting process of the GVF model.
Within the myocardial tissue, no recirculation was observed within the protocol duration.
Disregarding the recirculation, the GVF model can precisely reproduce the TAC curve of
the porcine model. A dose reduction using only two time points can remodel the PE of
the full fit with only small deviations of 5 to 15%. The results of the porcine model study
show the potential of the spectral information in dynamic myocardial perfusion imaging.
Further studies should investigate the application in a clinical setting with a patient cohort.

In the second part of this thesis, the application of the so-called overview scans for
the opportunistic determination of the aBMD in all patients is presented. The opportunis-
tic determination of the aBMD is of special importance in the diagnosis of osteoporosis due
to the treatment gap. The ESP is used for a quantitative comparison between the reference
standard DEXA and the CT based aBMD tool SDEXA. SDEXA was able to determine
the quantitative values of the ESP more precisely than DEXA with a dose-matched
protocol in most phantom settings. To validate the SDEXA approach in a clinical setting,
a patient cohort of 57 patients was examined, and the aBMD was compared to volumetric
BMD measurements. A denoising and segmentation step was applied to automatically
determine the aBMD. The preliminary results of the automated segmentation of the lower
vertebral bodies showed a good agreement with the ground truth generated by forward
projection from the CT data. Results with a reduced dice score were mainly caused
by incorrect assignment of vertebral body labels. The high correlation coefficient and
classification accuracy indicate that the SDEXA approach is feasible for the opportunistic
determination of the aBMD in a clinical setting. This chapter also includes the first results
of microstructure parameter analysis in post-mortem human vertebral bodies using a
preclinical, laboratory PCCT setup. The preliminary results indicate that microstructure
analysis in trabecular bone is feasible using PCCT data. The high resolution, which can
be achieved using the PCD detector in a laboratory setup, is not directly transferable to
a clinical setting, but recent developments in PCD technology show, that high-resolution
scans in a clinical setting are already possible.

The presented results in this thesis show the potential of spectral data in clinical CT
imaging. Especially based on the rapid development of PCD technology for clinical
applications by several vendors, the possible use cases of spectral and high-resolution data
in clinical routine will increase in the future. High-resolution iodine density data of the
whole myocardium acquired with high temporal resolution enabled by the dual-source
CT technology could be used for the quantification of perfusion defects with a small
areal spread, leading to an early detection of myocardial ischemia in patients. This
non-invasive technique could act as a gatekeeper for further invasive examinations like
coronary angiography. The necessary technological developments can be expected within
the next 10 years. Just recently, due to major improvements in cardiac CT imaging,
CCTA was recommended as basic testing for the diagnosis of CAD in European guidelines.
Similar developments can be expected for dynamic myocardial perfusion. Multiple CA
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injection protocols with different K-edges might be a very efficient dose-saving technique
for dynamic perfusion as well as multiphasic CA protocols, not only in cardiac imaging. By
differentiating several CA, the time-dependent distribution of these CA can be determined
by using different injection time points and only one CT examination. An example of this
protocol would be the acquisition of native, arterial, and portal-venous CA distribution in
cardiac imaging in only one examination. With the CA determining the portal-venous
phase distribution being injected several seconds before the arterial CA. The K-edge
differences of these CA may then be used in PCD technology to differentiate and quantify
the distributions individually. A native image can be generated by virtual subtraction of
both CA attenuation contributions. The spectral capabilities of the PCD technology and
high-resolution CT acquisitions are highly likely to change the diagnostics in cardiac imag-
ing. Stenosis in small vessels may become visible. By combining a high-resolution static
cardiac CT with image-based modeling for coronary blood flow and dynamic perfusion
protocols, a wide range of information focusing on the functional effect of one or multiple
stenoses can be considered and used to adapt an optimized form of therapy. Also, the
diagnosis of osteoporosis could drastically benefit from recent and future developments in
spectral CT imaging. A one-stop-shop approach for the assessment of quantitative BMD
and qualitative microstructure parameters is thinkable with the use of high resolution
spectral CT. To remain with the example of a one-stop-shop for osteoporosis imaging using
PCD technology, a protocol design may look like described in the following. A low-dose,
spectral overview scan of the patient can be used to determine the 2D aBMD. With the
utilization of automated image segmentation algorithms, the automated generation of
a DEXA-like report is given to the radiologist. This approach is presented for the AP
examination of aBMD in the lumbar spine within this thesis but may be extended to
the hip and femur. Also, an automated evaluation of lateral aBMD values using a dual
scout acquisition protocol could be beneficial, as the overlay with cortical structures in the
lumbar spine can be avoided. If the patient can be diagnosed as osteopenic or osteoporose
according to 2D aBMD data, a further CT protocol should be adjusted to the particular
region with a reduced aBMD. Especially for osteopenic patients, this may be helpful, as
the analysis of bone quality parameters may prevent a false positive diagnosis. Patients
in the transition region having a slightly reduced aBMD but bone quality parameters in
an adequate range may still be effectively treated by an increase of sporty activity and
the adaption of a healthy lifestyle. Still challenging remains the quantitative classification
of bone quality parameters and the inter-device comparability.
The first steps toward this promising potential of spectral imaging in clinical CT were
conducted in this thesis. Based on the presented results, the next steps toward clinical
application would be studies on patient cohorts.
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Supplementary Material

Scanner information IQon Spectral CT
A 64-slice single-source dual-layer CT scanner (IQon, Philips Healthcare, Best, The
Netherlands) was used in most parts of this thesis. The following section contains
important scanner information about this device. The information presented in Table 5.1
is extracted from the Philips product specifications sheet, the technical reference guide
and dicom tags.

Figure 5.1: Picture of the IQon in the radiology department of the Klinikum rechts der Isar.



Features Specifications

Generator power 120 kW

kVp setting 80, 100, 120, 140 kVp

mA range (step size) 10 to 1000 (1 mA)

Coverage 40 mm

Material Solid-state yttrium-based scintillator; GOS

Dynamic range 1000000:1

Maximum rotation speed 0.27 seconds

MonoEnergetic range 40 keV to 200 keV

FOV with spectral results 50 cm

Focus-isocenter distance 570 mm

Focus-detector distance 1040 mm

Maximum scannable range 2100 mm

Pitch 0.07 to 1.5

Z-position accuracy ± 0.25 mm

Focal spot sizes, quoted to IEC Small: 0.6 × 0.7; Large: 1.1 × 1.2

Smart focal spot x- and z-deflection

Slip ring Optical; 5.3 Gbps transfer rate

Data sampling rate Up to 4800 views/revolution/element

Collimations 64 × 0.625 down to 2 × 0.625

Spatial resolution High mode 16 lp/cm; Standard mode 13 lp/cm

Absorption range -1024 to +3071 HU

Spectral reconstruction speed 3 to 5 minutes for the majority of cases

Spectral image matrix 512 × 512

Table 5.1: Specification table of the IQon extracted from the Philips product specifications sheet,
the technical reference guide and dicom tags.
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Minimum example of one compartment model fit

import numpy as np

from scipy.optimize import minimize

import matplotlib.pyplot as plt

# sample AIF (arterial input function) using iodine density [mg/ml] map

aif = np.array([0. , 0.01, 0.01, 0. , 0.01, 0.22, 1.29, 2.32, 3.74, 5.02, 6.22,

7.18, 8.03, 8.82, 9.04, 9.1 , 8.88, 8.11, 7.08, 6.02, 4.98, 4.03,

3.27, 2.66, 2.07, 1.72, 1.47, 1.29, 1.18, 1.07, 0.98, 0.92, 0.88,

0.79, 0.65, 0.54])

# sample voxel inside simulated myocardium [mg/ml]

myo_iod = np.array([0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.75, 1.18,

1.46, 2.87, 2.87, 2.54, 4.14, 5.36, 4.19, 4. , 4.71, 4.09, 4.28,

3.11, 3.34, 2.82, 2.49, 1.55, 1.04, 1.13, 1.18, 0.42, 0.42, 0.75,

0.56, 0.56, 0.])

# time points of dynamic perfusion measurment [s]

times = np.array([ 0. , 0.9, 1.7, 2.5, 3.3, 4. , 4.8, 5.5, 6.3, 7. , 7.8,

8.5, 9.3, 10.1, 10.9, 11.6, 12.4, 13.2, 13.9, 14.7, 15.5, 16.2,

17. , 17.7, 18.5, 19.3, 20.1, 20.9, 21.6, 22.4, 23.2, 23.9, 24.7,

25.4, 26.1, 26.9])

curve = myo_iod

# convolution of aif using an exponential function with fit parameter lambda (lam)

def convolution(times, lam, aif):

expon = np.exp(-lam * times)

y = np.convolve(aif, expon, mode=’full’)

# scaling down by a factor dt

y = y * (times[1] - times[0])

# first half of convolution

half = int(len(y) / 2 + 1)

y = y[0:half]

return y

# Scaling factor + convolution

def modelfunction(parameters, times, aif):

modelcurve = parameters[0] * convolution(times, parameters[1], aif)

return modelcurve

# wrapper to minimize modelfunction

def min_wrapper(parameters, *args): # args = (curve, times, aif)
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diff = args[0] - modelfunction(parameters, args[1], args[2])

return np.sum(diff ** 2)

def fit(curve, times, aif):

startparameters = np.zeros(2)

bounds = [(0, None), (0, None)]

method = ’L-BFGS-B’

fit_results = minimize(min_wrapper, startparameters, args=(curve, times, aif), method=method, bounds=bounds)

fitparameters = fit_results.x

fit = modelfunction(fitparameters, times, aif)

return fitparameters, fit

fitparameters, fit = fit(curve, times, aif)

# get physical parameters

def phys_par(fitparameters):

# fit parameters to the ’physiological’ model

F = fitparameters[0] * 6000. # Blood flow

v = fitparameters[0] / fitparameters[1] * 100 # blood volume

mtt = 1 / fitparameters[1] # mean transit times

return F, v, mtt

# convert the fit parameters back to physiological parameters

F, v, mtt = phys_par(fitparameters)

print("Physics␣parameters:")

print("Flow:␣", F, "Volume:␣", v, "Mean␣transit␣time:␣", mtt)

plt.figure()

plt.plot(times, aif, label=’AIF’)

plt.plot(times, curve, label=’Curve’)

plt.plot(times, fit, label="Curve␣fit")

plt.ylabel(’Iodine␣density␣[mg/ml]’)

plt.xlabel(’Time␣[s]’)

plt.legend()

plt.show(block=False)
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MTF Modulation Transfer Function
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FBP Filtered Back Projection
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NIST National Institute of Standards and Technology
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CT Computertomografie

ISD IntelliSpace Discovery
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MOT Multi Thread Optimization

LM Levenberg Marquardt

CPU Central Processing Unit

RMSE Root Mean Square Error

CNN Convolutional Neural Network

PNG Portable Network Graphics
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FEIR Fast Elastic Image Registration

ROI Region Of Interest

TUM Technical University of Munich

BMD Bone Mineral Density

aBMD areal Bone Mineral Density

AP Anterior-Posterior

LAT lateral

SNR Signal-to-Noise Ratio

vBMD Volumetric Trabecular Bone Mineral Density

AUC Area Under the Curve

DEXA Dual Energy X-ray Absorptiometry

SDEXA Scout-based Dual-Energy X-ray Absorptiometry

SDEXA Übersichtsscan-basierten Dual-Energy-Röntgen-Absorptiometrie

QCT Quantitative Computed Tomography

HR-pQCT High Resolution peripheral Quantitative Computed Tomography

EPL Equivalent Path Length

WHO World Health Organization

FOV Field Of View

ESP European Spine Phantom

HA Hydroxyapatite

CdTe Cadmium Telluride

DA Degree of Anisotropy
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MIL Mean Interception Lenght

TKM Tracer Kinetic Modeling

SPECT Single-Photon Emission Computed Tomography

PET Positron Emission Tomography

CTP Computed Tomography Perfusion

PCCT Photon Counting CT

PCD Photon Counting Detector

EES Extravascular Extracellular Space

GVF Gamma Variate Fit

PE Peak Enhancement

MP Maximum Perfusion

AU Arbitrary Units

SD Standard Deviation

3D Three-dimensional

2D Two-dimensional

1D One-dimensional

MTT Mean Transit Time

TAC Time Attenuation Curve

CAD Coronary Artery Disease

CCTA Coronary Computed Tomography Angiography

CNR Contrast-to-Noise Ratio

AIF Arterial Input Function
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CTDIvol CT Dose Index volume

DLP Dose Length Product

BMP Beats Per Minute

CA Contrast Agent

NaCl Natrium Chloride

HU Hounsfield Units

ROC Receiver Operating Characteristic

CMR Cardiac Magnetic Resonance

MRI Magnetic Resonance Imaging

DECT Dual Energy CT

DLCT Dual Layer CT

DL Dual Layer

MonoE Virtual monoenergetic image

RMSD Root Mean Square Deviation

RIS Relative Increase in Signal

ECG Electrocardiogram

RV Right Ventricle

RA Right Atrium

LV Left Ventricle

LA Left Atrium

Myo Myocaridum

CBV Cerebral Blood Volume
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