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Abstract

The exponential growth in data volume, higher-resolution imaging, and the expansion

of wireless communication have underscored the importance of sparse models, which

enable efficient data representation and recovery by leveraging inherent sparsity.

This thesis introduces a novel algorithm for fast sparse transforms applicable to

arbitrary transformation matrices and demonstrates an adaptation of compressed

sensing algorithms for sparse recovery from heavy-tailed measurements. The key

innovation is the use of a median-of-means estimator, which provides robustness

against outliers and ensures strong concentration results.

Fast sparse transforms are essential as data dimensions and resolutions increase,

enabling efficient representation of large datasets. Traditional algorithms often require

specific matrix structures. In contrast, this work presents a randomized algorithm

based on spherical designs that significantly reduces computational demands – even

for unstructured matrices.

Wireless communication and sensor networks demand robust signal recovery

from limited measurements. Traditional compressed sensing algorithms rely on the

Restricted Isometry Property (RIP), which may not hold for heavy-tailed data. This

thesis successfully adapts such an algorithm using the median-of-means estimator

and discusses potential expansions for other recovery algorithms.
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Zusammenfassung

Das exponentielle Wachstum des Datenvolumens, höher auflösende Bildgebung und

die kontinuierliche Verbreitung drahtloser Kommunikation haben die Bedeutung

von dünnbesetzten Modellen unterstrichen, die durch Ausnutzen dieser inhärenten

Eigenschaft eine effiziente Datenrepräsentation und -wiederherstellung ermöglichen.

Diese Dissertation stellt einen neuartigen Algorithmus zur schnellen Transformation

in dünnbesetzte Darstellungen für beliebige Transformationsmatrizen vor und demon-

striert eine Adaption von Compressed-Sensing-Algorithmen für die Rekonstruktion

dünnbesetzter Vektoren aus endlastig verteilten Messungen. Die Schlüsselinnovation

ist die Verwendung eines Median-von-Mittelwerten-Schätzers, der Robustheit ge-

genüber Ausreißern bietet und starke Konzentrationsresultate gewährleistet.

Algorithmen zur schnellen Transformation in dünnbesetze Darstellungen sind

entscheidend, da Datenmengen und -auflösungen zunehmen und sie eine effiziente

Darstellung großer Datensätze ermöglichen. Traditionelle Algorithmen erfordern

oft spezifische Matrixstrukturen. Im Gegensatz dazu wird in dieser Arbeit ein ran-

domisierter Algorithmus vorgestellt, der auf sphärischen Designs basiert und die

Rechenanforderungen selbst für unstrukturierte Matrizen erheblich reduziert.

Drahtlose Kommunikation und Sensornetzwerke erfordern eine robuste Signal-

wiederherstellung aus begrenzten Messungen. Traditionelle Compressed-Sensing-

Algorithmen basieren auf der Restricted Isometry Property (RIP), die bei endlastig

verteilten Daten möglicherweise nicht erfüllt ist. Diese Dissertation demonstriert

die erfolgreiche Anpassung eines solchen Algorithmus mithilfe des Median-von-

Mittelwerten-Schätzers und diskutiert mögliche Erweiterungen für andere Rekon-

struktionsalgorithmen.

5





Acknowledgements

First and foremost, I need to express my deep gratitude and respect for my supervisor,

Felix Krahmer. The results presented in this thesis would not have been possible

without your guidance and our continuous discussions. Your infectious excitement

and steady search for the next challenge helped to form both my professional but

also personal development during this time. I already miss all our deep conversations

and really hope we will stay in touch!

Further, I want to thank my mentor Henning Christ. Throughout my entire PhD

journey, you have been a constant source of support and guidance. Knowing now

your calendar, I simply do not understand how you found the time for our regular

meetings. Your different perspective, both as a physicist and also as a manager at

my employer of choice, was invaluable and helped dispel any concerns and find new

motivation whenever it was needed.

I am also very grateful to my collaborators for their scientific expertise, valuable

advice and numerous insightful discussions and ideas. In particular, to David Gross

who seems to simply never stop thinking about a problem until it is solved and to

Richard Kueng on his mission to spread appreciation for median-of-means – as one

can see from the title of this thesis, I am fully converted!

My gratitude extends to the members of the committee: My thanks to Karin

Schnass and Richard Kueng for agreeing to devote their time to be members of

the committee and reviewing this thesis and to Christina Kuttler for chairing the

committee. Additionally, I would like to thank all my colleagues at our research unit.

I am very grateful for all the good times and social gatherings we spent together

during our PhD time.

Finally, I would like to express my appreciation and gratitude to my parents,

Ute and Robert, my sister, Nina, and grandparents, Hilde and Gert, for their

unconditional love and support not only throughout the challenging times of my PhD

7



but throughout my entire life. I thank you for believing in me and never doubting

my career choice, even though it might not have seemed understandable to you.

Most importantly, of course, I need to thank my wife, Markéta. Your unparalleled
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1 Introduction

In today’s rapidly evolving world, mathematics is the foundation of various tech-

nological and scientific advancements. Its influence extends across a multitude of

disciplines, including physics, engineering, economics, and computer science, under-

scoring its essential role in solving complex problems and driving innovation. From

the algorithms that power search engines and social media platforms to the intricate

models that predict weather patterns and financial markets, the understanding of

very fundamental mathematical concepts, today, can be leveraged to significant

impact.

One of the most profound contributions of mathematics is its ability to abstract

and generalize real-world phenomena into comprehensible models. This allows

building on well-understood theoretical results to obtain solutions that are not only

theoretically sound but also practically implementable. For instance, mathematical

optimization techniques have revolutionized industries by enhancing operational

efficiency, while statistical methods have become indispensable for the formulation

of informed decisions based on data analysis [5]. Also, very recent events as the

worldwide COVID-19 pandemic could be impacted by well-established mathematical

concepts, such as pandemic modeling or efficient group testing procedures [1, 79].

The exponential growth in data volume, higher-resolution imaging, and the expan-

sion of wireless communication have underscored the importance of sparse models.

These advancements necessitate efficient methods for data processing and signal

recovery, as traditional approaches struggle with the increasing scale and complexity

of contemporary data-driven applications. Sparse models, leveraging inherent data

sparsity, offer promising solutions by enabling efficient data representation and recov-

ery. Sparse representation techniques have become a cornerstone in many areas of

data science and engineering, offering a compact and efficient means of representing

large datasets. This is particularly vital in applications like medical imaging, video
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Figure 1: “Volume of data/information created, captured, copied, and consumed
worldwide from 2010 to 2020, with forecasts from 2021 to 2025” [75].

processing, and sensor networks, where data volumes are vast, and computational

resources are often limited [8, 55, 57]. By focusing on the significant components of

data and ignoring redundant information, sparse models facilitate faster processing

and more efficient storage, making them indispensable in modern computational

frameworks.

A key innovation of this thesis is the use of a median-of-means estimator, which

provides robustness against outliers and ensures strong concentration results. The

median-of-means approach is a powerful statistical tool that offers a robust alterna-

tive to the sample mean, particularly in the presence of heavy-tailed distributions.

This robustness is crucial for applications where data is noisy or contains outliers.

Considering that median-of-means has been known at least since the 1980s [3, 45,

68], it appears underused for the applications outlined above.

This thesis introduces a novel algorithm for fast sparse transforms applicable to

arbitrary transformation matrices, addressing the limitations of existing methods

that often require specific matrix structures. Traditional algorithms like the Discrete

Fourier Transform (DFT) and Chebyshev Transform are efficient but restricted to

specific types of structured matrices [35, 70]. In contrast, the proposed randomized
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algorithm, based on spherical designs and median-of-means, significantly reduces

computational demands even for unstructured matrices. This advancement allows

for more flexible and efficient data processing, accommodating the diverse and often

unstructured nature of real-world data.

Wireless communication and sensor networks require robust signal recovery from

limited measurements. In compressed sensing, the goal is to recover sparse sig-

nals from a small number of linear measurements. Traditional compressed sensing

algorithms rely on the Restricted Isometry Property (RIP), which ensures that

the measurement matrix preserves the geometry of sparse signals [30]. However,

RIP may not hold for heavy-tailed data. This thesis demonstrates the successful

adaptation of compressed sensing algorithms using the median-of-means estimator,

offering robust recovery with high probability even for heavy-tailed matrices and

requiring only a bounded fourth moment. This adaptation extends the applicability

of compressed sensing techniques to a broader range of practical scenarios where

traditional assumptions do not hold.

Overall, this thesis advances methodologies for fast sparsifying transforms and

signal recovery for heavy-tailed measurements, addressing the critical needs of modern

applications. The proposed approaches are poised to have a significant impact on

various fields, ensuring efficient data processing and robust recovery in increasingly

complex and large-scale settings.
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1.1 Problem Setting

The core of this thesis is two publications addressing an extension of recovery

algorithms for compressed sensing [33] and a randomized algorithm for fast sparsifying

transforms [34]. Both problem settings address the issue of obtaining a sparse vector

(i.e., a vector containing only a small number of non-zero entries) based on a given

matrix and vector – once through solving an underdetermined linear system, once

through efficient randomized matrix-vector multiplication.

Compressed Sensing

The basic underlying problem of compressed sensing can be formulated in the

following way: An unknown vector x ∈ Cn has to be recovered from them-dimensional

measurement vector y := Ax. In most applications, the dimension of the measurement

vector is significantly smaller than the dimension of x, i.e., m < n. In general, such

an under-determined system has an infinite number of solutions which makes the

recovery of the original x impossible. This changes if x is sparse.

A

x

=

y

Figure 2: Example of a typical compressed sensing sparse recovery problem.
The filled grey tiles symbolize zero entries.

Applications have one thing in common: measuring and directly storing the large

vector x is either not possible (e.g., medical imaging) or not desired (e.g., storing

photos). For completeness, there are various other – more complex – problem settings

that belong to the broad field of compressed sensing (e.g., [30, 32]). This thesis
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focuses on the most fundamental case outlined above.

Sparsifying Transforms

The problem setting of developing an algorithm for a fast sparsifying transform

seems very similar to compressed sensing. Given a matrix A ∈ Rm×n and a stream

of vectors x1, x2, · · · ∈ Rn for which yi = Axi is s-sparse for every i, an efficient

algorithm for computing those sparse vectors has to be constructed.

In contrast to compressed sensing, it is not necessary to solve an (underdetermined)

linear equation, but instead perform simple matrix-vector multiplication. As this

requires significant computational effort for very large matrices, various publications

are establishing fast algorithms that take advantage of a specific required structure

of the underlying matrix A (e.g., Fourier or Chebyshev transforms [35, 70]).

When considering important constructions of such matrices, e.g., sparse dictionary

learning, it becomes clear that such a specific structure of A cannot be assumed

in general [2]. Our publication [33] addresses this problem of introducing a fast

sparsifying transform that does not require any specific structure and demonstrates

superior efficiency compared to the standard matrix-vector multiplication.
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1.2 Outline

Probability Theory

In this section, basic concepts of probability theory are recalled and the most

important concentration inequalities are introduced. Additionally, the concept of

median-of-means, which is the main underlying tool of this thesis, is explained in

detail.

Compressed Sensing

Compressed sensing is the main motivation behind publication [34] and related ideas

which are discussed in section 6. Therefore, an overview of the problem setting with

a focus on already-established recovery methods is provided.

Fast Linear Transforms Using Spherical Designs

This section introduces the initial underlying idea of a two-stage algorithm based

on spherical designs which was later revised leading to [33]. The main contribution

is the proof of a randomized construction of approximate spherical designs with

arbitrary order and dimension.

Sketching with Kerdock’s Crayons: Fast Sparsifying Transforms for Arbitrary

Linear Maps

This section is based on publication [33] with appropriate adaptations. The main

goal of this work was to establish a fast sparsifying transform that not only shows

convincing theoretical results but also exhibits faster computational runtime for real-

world scenarios. This was achieved by applying the strong concentration properties

of the median-of-means estimator and efficiently utilizing the sparsity.
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Greedy-Type Sparse Recovery from Heavy-Tailed Measurements

This section is based on publication [34] with appropriate adaptations. Commonly

used recovery algorithms in compressed sensing are typically based on iteratively

computing a sample mean to obtain an approximation of the sparse original vector.

Consequently, for weakly concentrating measurement matrices (e.g., sampled from

a heavy-tailed distribution), it is difficult to establish strong recovery guarantees.

Leveraging insights gained into the median-of-means estimator, we constructed an

iterative algorithm allowing the recovery from heavy-tailed matrices. In addition

to the results of the publication, an adapted version of the Compressive Sampling

Matching Pursuit (CoSaMP) algorithm based on median-of-means is discussed.
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2 Probability Theory

In the following, some selected concepts of probability theory will be introduced.

Sections 2.1-2.3 are based on [82] which is a good source for a more extensive

overview. If not cited otherwise, the presented results have been adapted from there.

In section 2.4, the concept of median-of-means is explained via a generalized form of

the formulation and proofs in [33] and [34].

2.1 Probability Measure & Events

Prior to delving into specific results, appropriate wording has to be established. The

set containing all possible outcomes of a random experiment is called sample space

and is denoted by Ω. Subsets A,B ⊆ Ω are called events.

Definition 2.1 (Probability measure). A probability measure P is a real function

assigning probabilities in [0, 1] to any event A ⊆ Ω and further fulfills P (Ω) = 1 and

P

(
m⋃
i=1

Ai

)
=

m∑
i=1

P(Ai) ∀A1, . . . , Am ⊆ Ω with Ai ∩ Aj = ∅ ∀i ̸= j.

This directly implies how to obtain the probability of the union of non-disjoint

sets. The union of A and B can simply be split into three disjoint sets

A ∪B = [A \ (A ∩B)] ∪ [B \ (A ∩B)] ∪ [A ∩B] .

As P(A) = P(A \ (A ∩B)) + P(A ∩B), this results in the general formula

P(A ∪B) = P(A) + P(B)− P(A ∩B).

A direct consequence of this result is the union bound which is a fundamental tool

used throughout this thesis:
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Corollary 2.2 (Union bound for events). For A1, . . . , Am ⊆ Ω,

P

(
m⋃
i=1

Ai

)
≤

m∑
i=1

P(Ai)

The last important concept which has to be introduced is the independence of

events:

Definition 2.3. Two events A and B are called independent if

P(A ∩B) = P(A)P(B).

Intuitively, two events are independent if the occurrence of one event does not

impact the probability of the occurrence of the other event.
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2.2 Random Variables

For most applications, it is beneficial to consider random variables, which are map-

pings between sample space and R or C. To keep this introduction focused on the

relevant basics, technicalities like measurability will be assumed and not explained

in this context. Further, all random variables are considered to be real for simplicity.

An extension of the relevant concepts to the complex space will be shown in section 6.

Each random variable X has a probability distribution defined by a non-negative

density function fX(x), fulfilling P(X = x) = fX(x) for discrete random variables

and P(a ≤ X ≤ b) =
∫ b

a
fX(x)dx if X is continuous.

Expectation

As with the density, the expectation of a random variable is defined separately for

discrete and continuous random variables:

Definition 2.4 (Expectation). Let X be a random variable with density fX(x).

Then, the expectation of the discrete/continuous random variable is defined as

E[X] =


∑

x xfX(x) (discrete)∫∞
−∞ xfX(x)dx (continuous).

Similarly, the expectation of g(X) can be computed as

E[g(X)] =


∑

x g(x)fX(x) (discrete)∫∞
−∞ g(x)fX(x)dx (continuous).

Based on this definition, known properties of the integral (and countable sum) can

be applied directly to the expectation:
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Property 2.5 (Linearity). Let a1, . . . , am be constants and X1, . . . , Xm random

variables. Then,

E

[
m∑
i=1

aiXi

]
=

m∑
i=1

aiE[Xi].

Property 2.6 (Jensen’s inequality). Let g be a convex function. Then,

E[g(X)] ≥ g(E[X]).

If two random variables X and Y are independent, their joint density function

fulfills fX,Y (x, y) = fX(x)fY (y) which implies:

Property 2.7. Let X1, . . . , Xm be independent. Then,

E[Πm
i=1Xi] = Πm

i=1E[Xi].

Variance

Definition 2.8 (Variance). The variance of a random variable X with finite expec-

tation is defined as

V(X) = E[(X − E[X])2] = E[X2]− E[X]2.

V(X) ≥ 0 holds for any random variable, as (X−E[X])2 is obviously non-negative.

Property 2.9. Let a1, . . . , am be constants and X1, . . . , Xm independent random

variables. Then,

V

[
m∑
i=1

aiXi

]
=

m∑
i=1

a2iV[Xi].
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Heavy-Tailed Distributions

For further information about the distributions mentioned in this thesis, [82] remains

a good reference. Nevertheless, due to its importance for the presented work and its

less-known definition, the concept of heavy-tailed distributions is briefly introduced.

Definition 2.10 (Heavy-tailed distribution [54]). A distribution is called heavy-tailed

if E[etX ] =∞ for any t > 0.

Common examples of this type of distribution are the Student’s t or log-normal

distribution. As the name ‘heavy-tailed’ suggests, it exhibits very slowly decaying

tails of the density function and is, therefore, prone to outliers when sampling from

this distribution. A density plot demonstrating this behavior can be seen in Figure 3.

Figure 3: Comparison of the density function of a standard normal and Student’s t
(df = 1) random variable.
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2.3 Concentration Bounds

In this subsection, various concentration bounds are discussed which are the foun-

dation of nearly every result of this thesis. The quantity of interest is P(X ≥ γ)

which has to be bounded from above. Depending on the level of knowledge about

the distribution of X, different strategies for bounding the tails of this distribution

are available. Typically, stricter requirements on the distribution allow for the

construction of a tighter bound. As there are exceptions to this rule and as the

availability of information about the underlying distribution can be limited, a broad

range of bounds finds application in this thesis.

Lemma 2.11 (Markov’s inequality). Let X be a non-negative random variable.

Then,

P(X ≥ γ) ≤ E[X]

γ
∀γ > 0.

Markov’s inequality is the basis for a variety of tail bounds, as any (even non-

negative) random variable X can be substituted by Y = ϕ(X) for any non-negative,

strictly increasing function ϕ resulting in

P(X ≥ γ) = P(ϕ(X) ≥ ϕ(γ)) ≤ E[ϕ(X)]

ϕ(γ)
∀γ s.t. ϕ(γ) > 0.

Some notable examples are Chebyshev’s inequality

P(|X − E[X]| ≥ γ) = P(|X − E[X]|2 ≥ γ2) ≤ V(X)

γ2
,

and the Chernoff bound

P(X ≥ γ) = P(etX ≥ etγ) ≤ E[etX ]
etγ

t > 0.
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A major advantage of the aforementioned results above is that they are universally

applicable – requiring only the expectation or variance of the underlying distribution.

The Chernoff bound already allows for possibly tighter results by constructing a

bound based on the moment generating function E[etX ] of the distribution of X.

Focusing now on the sum of Bernoulli random variables and using their specific

structure, an even tighter bound can be established:

Lemma 2.12 (Multiplicative Chernoff bound [64]). Let X1, . . . , Xm be independent

Bernoulli random variables with P(Xi = 1) =: pi := 1 − P(Xi = 0). Then, for all

λ > 0

P

(
m∑
i=1

Xi ≥ (1 + λ)
m∑
i=1

pi

)
≤

(
eλ

(1 + λ)1+λ

)∑m
i=1 pi

.

Proof. The moment generating function of
∑m

i=1Xi can be calculated directly. The

bound is then a simple property of the exponential function:

E[et
∑m

i=1 Xi ] =
m∏
i=1

(1− pi + pie
t)

≤
m∏
i=1

(
e−pi+pie

t
)
=

m∏
i=1

(
e(e

t−1)
)pi

=
(
e(e

t−1)
)∑m

i=1 pi
.

Applying now the Chernoff bound and the inequality above, the proof is nearly

completed:

P

(
m∑
i=1

Xi ≥ (1 + λ)
m∑
i=1

pi

)
≤ E[et

∑m
i=1 Xi ]

et(1+λ)
∑m

i=1 pi
≤

(
e(e

t−1)

et(1+λ)

)∑m
i=1 pi

.

By choosing t = log(1 + λ), the result follows.

Hereafter, typically the formulation for independent identically distributed (i.i.d.)

Bernoulli random variables will be used:

27



Corollary 2.13. Let X1, . . . , Xm be i.i.d. Bernoulli random variables with P(Xi =

1) =: p := 1− P(Xi = 0). Then, for all λ > 0

P

(
m∑
i=1

Xi ≥ (1 + λ)mp

)
≤

(
eλ

(1 + λ)1+λ

)mp

.
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2.4 Median-of-Means

As presented in the following sections, various problem settings can be reduced to

efficiently estimating the mean of a random variable. A common approach involves

taking multiple independent copies of this random variable and computing their

sample mean. In comparison, the median-of-mean estimator is introduced, which

appears to have been discovered independently in the following three works [3, 45,

68]. However, for consistency, a generalized form of the formulation and proofs in

[33] and [34] is shown.

Definition 2.14 (Sample Mean). Let X1, . . . , Xm be independent identically dis-

tributed copies of a random variable X with finite mean and variance. The sample

mean is defined as

X̄ =
1

m

m∑
i=1

Xi.

Remark 2.15. The expectation and variance of X̄ can be computed as follows:

� E[X̄] = E[X]

� V(X̄) = 1

m
2V(
∑m

i=1Xi) =
1

m
2

∑m
i=1V(Xi) =

1
m
V(X)

Summarized, X̄ preserves the mean of X while reducing the variance. This scaling

in 1
m

can be beneficial when using tail bounds like Chebyshev’s inequality (which, as

mentioned before, follows directly from Markov’s inequality):

Lemma 2.16 (Chebyshev’s inequality). Let X1, . . . , Xm be independent identically

distributed copies of a random variable X with finite mean and variance and X̄ their

sample mean. Then, for all γ > 0

P(|X̄ − E[X]| ≥ γ) ≤ V(X̄)

γ2
=

V(X)

mγ2
.
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Depending on the distribution of X, this bound might not be sufficient for the

corresponding problem setting, e.g., if a bound of the type

P(|X̄ − E[X]| ≥ γ) ≤ η

n

is desired. To achieve this with Chebyshev’s inequality,

m ∈ O( n
γ2

)

would be required, assuming V(X) does not scale with n.

For well-concentrating distributions (e.g., the normal distribution), stronger con-

centration bounds than Chebyshev’s inequality can be considered. For heavy-tailed

distributions or in case of limited knowledge about the distribution, the sample mean

might simply not concentrate well enough around its mean. For such situations,

substituting the sample mean with the more robust median-of-means approach might

be advisable.

Definition 2.17 (Median). Let x1, . . . , xm ∈ R be a sorted set of real numbers (i.e.,

x1 ≤ · · · ≤ xm), then the median is defined as

median(x1, . . . , xm) =


xm+1

2
if m is odd

1
2
(xm

2
+ xm

2
+1) if m is even.

The general idea is quite intuitive. In contrast to the sample mean, the median

is very robust against outliers. Nevertheless, the median does not need to converge

towards the mean of the distribution for m → ∞ (e.g., the Bernoulli distribution

has a mean of p, yet an odd number of samples will always be 0 or 1).

Combining the advantages of sample mean and median, one splits the m samples

into K subsamples of size J (i.e., m = KJ). First, the sample mean over the J
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samples is calculated for each of the K subsets.


X1

...

XJ


︸ ︷︷ ︸
⇒X̄1


XJ+1

...

X2J


︸ ︷︷ ︸

⇒X̄2

· · ·


Xm−J+1

...

Xm


︸ ︷︷ ︸

⇒X̄K

The median-of-means estimator is then defined as the median of those K means:

µ̂ := median
(
X̄1, . . . , X̄K

)
.

Using a generalized version of the result and proof in [34], it can be shown that

the median-of-means estimator exhibits a significantly stronger scaling compared to

Lemma 2.16.

Lemma 2.18. Let X1, . . . , Xm be independent identically distributed copies of a

random variable X with finite mean and variance. Then, the median-of-means

estimator µ̂, defined as

µ̂ = median{X̄1, . . . , X̄K} with X̄k =
1

J

J∑
i=1

Xi+(k−1)J for k ∈ [K],

fulfills

P(|µ̂− E[X]| ≥ γ) ≤ e−K/2

if J ≥ 2e
2V(X)

γ
2 .
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Corollary 2.19. Given the assumptions of Lemma 2.18,

P(|µ̂− E[X]| ≥ γ) ≤ η

n

holds for m ∈ O( log(n)
γ
2 ).

Proof. Choosing K = 2 log(n
η
) results in a bound e−K/2 = elog(

η
n
) = η

n
.

As J ∈ O( 1

γ
2 ) by assumption and K ∈ O(log(n)), m = JK grants the required

scaling of the number of measurements.

Proof of Lemma 2.18. As the median-of-means combines sample mean and median,

the proof is based on combining two separate bounds on both estimators:

� Chebyshev’s inequality for a tail bound of the sample mean

� The multiplicative Chernoff bound for a tail bound of the median

By the properties of the variance,

V[X̄] =
1

J2

J∑
j=1

V[Xj] =
V(X)

J
.

Applying Chebyshev’s inequality yields

pJ := P(|X̄ − E[X]| ≥ γ) ≤ V[X̄]

γ2
≤ V(X)

Jγ2
.

Based on this bound of the sample means, the median can now be bounded and

both results combined. For every k ∈ [K], define the Bernoulli random variable

Ik := 1{|X̄k − E[X]| ≥ γ}

with parameter pJ . By the definition of the median, |µ̂− E[X]| ≥ γ can only occur
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if |X̄k − E[X]| ≥ γ for at least half of the X̄k. Therefore,

P (|µ̂− E[X]| ≥ γ) ≤ P

(
K∑
k=1

Ik ≥
K

2

)
.

Applying the multiplicative Chernoff bound yields λ > 0

P

(
K∑
k=1

Ik ≥ (1 + λ)KpJ

)
≤

(
eλ

(1 + λ)1+λ

)KpJ

= e−KpJ

(
e

1 + λ

)(1+λ)KpJ

.

By assumption, J ≥ 2e
2V(X)

γ
2 and therefore pJ ≤ 1

2e
2 . Choosing (1 + λ)Kp = K/2

concludes the proof:

P(|µ̂i − xi| ≥ γ) ≤ e−KpJ (2epJ)
K/2 ≤ (2epJ)

K/2

≤
(
2eV(X)

Jγ2

)K/2

≤ e−K/2.

The strong concentration of the median-of-means estimator for the example above

(O( log(n)
γ
2 ) compared to O( n

γ
2 ) for the sample mean) is the foundation of publications

[33] and [34].
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3 Compressed Sensing

Compressed sensing is a signal recovery technique with various applications, including

image processing, medical imaging, and telecommunication. It tackles the problem of

recovering a large amount of data from a comparably small amount of measurements.

This requirement naturally arises whenever a precise measurement is impossible or if

a small, compressed file should be stored to optimize storage space. This section will

give a rough overview of the problem and existing recovery methods. For a more

extensive overview, [30] can be recommended which serves as the groundwork of this

section. If not cited otherwise, the presented results have been adapted from there.

3.1 ℓ0-minimization & Restricted Isometry Property

Arguably, the most simple form of such a problem is recovering an unknown vector

x ∈ Cn from a measurement vector y := Ax ∈ Cm with a known measurement matrix

A ∈ Cm×n. In general, for m < n, this problem is underdetermined. In such a case,

there is not exactly one unique solution x# fulfilling the equation and, consequently,

the recovery of the original unknown vector is impossible (visualized in Figure 4).

A

x

y

=

Figure 4: Example of an underdetermined recovery problem.
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This potentially changes if x is a sparse vector:

Definition 3.1 (Sparsity). A vector x ∈ Cn is called s-sparse if at most s entries are

not zero. The support (i.e., the index set of all non-zero entries) is usually denoted

by S and fulfilles |S| =: ∥x∥0 ≤ s.

If the vector x is s-sparse with a known support set S and s ≤ m, y = ASxS can

be efficiently solved with basic techniques (visualized in Figure 5).

A

x

=

AS xS

=

y

Figure 5: Example of a typical compressed sensing sparse recovery problem.
The filled grey tiles symbolize zero entries. AS (resp. xS) is the matrix A
(resp. x) restricted to the columns (resp. entries) of the support set S of x.

In the field of compressed sensing, typically, only the sparsity level s but not the

corresponding index set S are known. However, solving y = ASxS for all possible sets

|S| ≤ s is computationally expensive. In addition, there may be multiple solutions

for different (or even the same) support sets with |S| ≤ s.

While the problem of identifying all s-sparse vectors x fulfilling Ax = y is also of

interest, in this thesis, there is a unique s-sparse vector x that needs to be recovered.

This task can be broken down into two fundamental questions:

� Which measurement matrices A allow for unique sparse recovery?

� How can an efficient recovery algorithm be constructed?
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ℓ0-minimization

As mentioned, there are potentially infinitely many vectors x fulfilling Ax = y.

Intuitively, unique sparse recovery requires the ground truth x# to be the only

feasible solution which is s-sparse (i.e., all other feasible solutions have more than s

non-zero entries).

In other words, the optimization problem

min ∥x∥0 (P0)

s.t. Ax = y

is required to have the unique solution x#, where ∥x∥0 denotes the number of non-zero

entries of x.

Requiring a specific property of A which guarantees a unique solution of P0 is,

unfortunately, not a promising approach. Instead, it can be shown that, despite its

notation, ∥x∥0 is not only no norm but, more importantly, non-convex. Further, it

can be shown that solving P0 is NP-hard (i.e., there potentially is no polynomial-time

algorithm solving this problem). Therefore, the construction of an efficient algorithm

for solving P0 does not seem feasible and, therefore, is not the basis of well-known

compressed sensing algorithms.

Before diving into such established recovery methods, the main condition for

answering the first question, ‘Which measurement matrices A allow for unique sparse

recovery’, has to be stated.
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Restricted Isometry Property

The arguably most important property in this field is the so-called Restricted Isometry

Property (RIP):

Definition 3.2 (Restricted Isometry Property). The RIP-constant δs of a matrix

A ∈ Cm×n is the smallest δs ≥ 0 fulfilling

(1− δs)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δs)∥x∥22

for all s-sparse vectors x ∈ Cn.

As demonstrated in the following subsection, a sufficiently small RIP constant δks

allows establishing recovery guarantees for various methods.

Considering, that measurement matrices are typically assumed to be randomly

chosen, there are various publications with results for different distributions (referring

again to [30] and references therein for an overview). For orientation, a simplified

version of the result for Gaussian matrices is stated.

Theorem 3.3. Let A ∈ Rm×n be a Gaussian matrix with m < n. Then, A fulfills

the RIP with δs ≤ δ with probability at least 1− ϵ if

m ≥ Cδ−2

(
s log

(en
s

)
+ log

(
2

ϵ

))
.

Similar, slightly weaker, results could be established for the more general group

of subgaussian distributions. For heavy-tailed distributions, on the other hand, the

proof of the RIP is difficult and does not exhibit a comparable scaling [52]. This is

the motivation for the work presented in section 6.
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3.2 Recovery Methods

Most recovery methods can be assigned to one of the following three categories:

� Basis Pursuit

� Greedy Algorithms

� Thresholding

As mentioned before, the results are based on [30] where detailed proofs and

further references can be accessed.

Basis Pursuit

Candès, Romberg, and Tao [15] and Donoho [26] published two papers revolutionizing

the field of compressed sensing by shifting the focus from P0 to the optimization

problem

min ∥x∥p (Pp)

s.t. Ax = y.

The underlying intuition is that ∥x∥pp → ∥x∥0 for p → 0. Therefore, ∥x∥0 can

be approximated by ∥x∥pp. Yet, for p < 1, the optimization problem Pp is again

non-convex. For p > 1, the problem is convex, but the sparsest feasible vector

possibly is not a minimizer anymore. For example,

(
1 2

)x1
x2

 = 2

can be solved by all vectors xα := (α, 1− α
2
)T with α ∈ C. The vector x# = (0, 1)T

is unique minimizer for both P0 and P1. However, for p > 1, there are α > 0 with

∥xα∥p < ∥x0∥p. Consequently, there is a 2-sparse vector that is a minimizer of Pp
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and not the 1-sparse vector x0.

Based on this observation, the Basis Pursuit has been established which corresponds

to solving the ℓ1-minimization problem P1 to recover x. Similarly, to the idea outlined

for P0, the following recovery guarantee in terms of RIP can be shown:

Theorem 3.4. If a matrix A ∈ Cm×n fulfills the RIP with δ2s <
1
3
, then any s-sparse

vector x ∈ Cn is the unique solution of

min ∥x∥1 (P1)

s.t. Ax = y.

In other words, by solving the convex ℓ1-minimization problem, the s-sparse

vector x can be recovered as its unique solution. Due to the convexity, a variety of

optimization algorithms is available to efficiently solve P1 and recover x.

Greedy Algorithms

A typically more efficient group of recovery algorithms is the so-called greedy algo-

rithms. They are motivated by the idea that A∗A is sufficiently close to the identity

In such that the largest entries of A∗Ax are a good indicator for non-zero entries of

x. Typically, greedy algorithms start with an empty support set S(0) which is filled

iteratively. After updating the support set, a new approximation is obtained via least

squares minimization over the fixed support set. This is based on the observation

stated at the beginning of this section: ASxS = y is not underdetermined and can

be solved via basic techniques – provided the support set S is known. Since S(k)

may not be the correct support, ASxS = y might potentially lack a solution and is,

therefore, substituted by min ∥ASxS − y∥2.

For OMP, first analyzed for sparse recovery in [77], a guaranteed recovery after a
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fixed number of iterations can be shown as long as a strong RIP is fulfilled.

Theorem 3.5. If a matrix A ∈ Cm×n fulfills the RIP with δ13s <
1
6
, then any s-sparse

vector x ∈ Cn can be recovered by OMP within 12s iterations.

Algorithm 1 Orthogonal Matching Pursuit (OMP)

1: Data: Matrix A ∈ Cm×n, measurement y ∈ Cm

2: Result: s-sparse approximation of vector x ∈ Cn

3: S(0) = ∅
4: x(0) = 0
5: for k in 1, . . . , n̄ do
6: S(k) = S(k−1) ∪ argmaxi∈[n]|A

∗(y − Ax(k−1))|
7: x(k) = argminx∈Cn{(∥Ax− y∥)2, supp(x) ⊆ S(k)}
8: end for

In every iteration, OMP only adds a single new index to the support set Sk which

will never be removed again. That implies, that once an incorrect index gets added

to the support set, a recovery of x is not possible within s iterations – explaining the

large number of required iterations in the theorem.

CoSaMP, introduced in [67], is another greedy algorithm that circumvents this issue

by constructing the new S(k) by combining the support of the last approximation x(k)

with the 2s largest entries of A∗(y − Ax(k−1)) (defined as L2s(A
∗(y − Ax(k−1)))). In

addition, a hard thresholding operator of order s (denoted by Hs) is applied at the

end of each iteration, which sets all but the s largest entries of the approximation

to 0 – guaranteeing the desired sparsity level and |S(k)| ≤ 3s. Therefore, incorrect

indices do not necessarily remain in the support set.
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Algorithm 2 Compressive Sampling Matching Pursuit (CoSaMP)

1: Data: Matrix A ∈ Cm×n, measurement y ∈ Cm, sparsity level s
2: Result: s-sparse approximation of vector x ∈ Cn

3: S(0) = ∅
4: x(0) = 0
5: for k in 1, . . . , n̄ do
6: S(k) = supp(x(k−1)) ∪ L2s(A

∗(y − Ax(k−1)))

7: x̃(k) = argminx∈Cn{(∥Ax− y∥)2, supp(x) ⊆ S(k)}
8: x(k) = Hs(x̃

(k))
9: end for

Combined, a less strong RIP is required while still exhibiting a convincing rate of

convergence:

Theorem 3.6. If a matrix A ∈ Cm×n fulfills the RIP with δ4s <

√√
11
3
−1

2
and x ∈ Cn

is a s-sparse vector. Then the approximation x(k) obtained after k iterations of the

CoSaMP algorithm satisfies

∥x(k) − x∥2 ≤ ρk∥x(0) − x∥2

with ρ =

√
2δ

2
4s(1+3δ

2
4s)

1−δ
2
4s

.

Thresholding Algorithms

Thresholding algorithms are iterative procedures combined with a hard thresholding

operator that enforces the desired sparsity level.

The arguably most straightforward approach is the Iterative Hard Thresholding,

initially used for compressed sensing in [9]:
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Algorithm 3 Iterative Hard Thresholding (IHT)

1: Data: Matrix A ∈ Cm×n, measurement y ∈ Cm, sparsity level s
2: Result: s-sparse approximation of vector x ∈ Cn

3: x(0) = 0
4: for k in 1, . . . , n̄ do
5: x(k) = Hs(x

(k−1) + A∗(y − Ax(k−1)))
6: end for

A second, computationally more expensive, method is the Hard Thresholding

Pursuit, analyzed for compressed sensing in [31]. The HTP uses the logic of the

IHT to obtain a first s-sparse approximation x̃(k) and then uses its support set

S := supp(x̃(k)) for the least squares approach already discussed for the Greedy

algorithms.

Algorithm 4 Hard Thresholding Pursuit (HTP)

1: Data: Matrix A ∈ Cm×n, measurement y ∈ Cm, sparsity level s
2: Result: s-sparse approximation of vector x ∈ Cn

3: x(0) = 0
4: for k in 1, . . . , n̄ do
5: x̃(k) = Hs(x

(k−1) + A∗(y − Ax(k−1)))

6: x(k) = argminx∈Cn{(∥Ax− y∥)2, supp(x) ⊆ supp(x̃(k))}
7: end for

Convergence of the IHT can already be shown for δ3s <
1
2
. For this work, only a

more restrictive version with a stronger convergence result is stated.

Theorem 3.7. If a matrix A ∈ Cm×n fulfills the RIP with δ3s <
1√
3
, then every

s-sparse vector x ∈ Cn is approximated with the following error rates

∥x(k) − x∥2 ≤ ρk∥x(0) − x∥2
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with

ρ =


√
3δ3s for IHT(Alg.3)√
2δ23s/(1− δ22s) for HTP(Alg.4).

Intuitively, HTP shows a stronger convergence. This can also be seen in the results

as

3δ23s > 2δ23s/(1− δ22s) ⇔ 1− δ22s >
2

3
⇔ δ2s <

1√
3
.

The last inequality follows from the assumption δ3s <
1√
3
as every 2s-sparse vector is

also 3s-sparse (as it means ‘at most 3s’ non-zero entries). Therefore, δ2s < δ3s <
1√
3
.
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4 Fast Linear Transforms Using Spherical Designs

A fundamental problem of numerical linear algebra is the efficient computation

of matrix-vector products. Given a matrix A ∈ Rm×n and a vector x ∈ Rn, the

matrix-vector product can be seen as m inner products of the type

(Ax)i = aTi x ∀k ∈ [m],

where aTi denotes the ith row of A. As the inner product of two n-dimensional

vectors can be obtained in O(n) operations, the computation of Ax requires O(mn)

operations.

This can be sped up significantly if A has a specific beneficial structure as already

indicated in section 1.1. An overview of such methods is given in the next section as

part of publication [33] and, therefore, omitted here.

In this section, the initial idea for the aforementioned publication is outlined and

a (to our knowledge) novel theory for a randomized construction of approximate

spherical designs is established.

The underlying idea of a two-stage algorithm for fast matrix-vector multiplication

based on spherical designs originated from early discussions of Felix Krahmer and

Dustin Mixon in 2014 which has never been published. The construction of approxi-

mate spherical designs was my contribution and initiated further discussions with

Felix Krahmer. There, we realized the importance of a sparsity assumption which

initiated our work on [33].

4.1 Two-Stage Matrix-Vector Multiplication

For an arbitrary matrix and vector, there is little hope of obtaining their matrix-

vector product using less than O(mn) computations for realistic dimensions when

calculating this product at once.
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This changes if the matrix is known in advance and there is the possibility of

performing a preprocessing:

Remark 4.1. Assume there is a matrix P ∈ RN×n with N < min(m,n) such that

AP TPx ≈ Ax.

Then, after a preprocessing step of calculating AP T in O(mnN) computations,

AP TPx can be obtained for any vector x ∈ Rn in only O(N(m + n)) operations

(O(Nn) for computing Px and O(Nm) multiplying the precomputed AP T and the

vector Px).

There are two important aspects to point out:

� As N < min(m,n), if A has full rank, there cannot be a single matrix P which

fulfills AP TPx ≈ Ax for every x ∈ Rn. In fact, as the dimension of Px is

smaller than the dimension of Ax, there would be vectors x ∈ ker(P ) \ ker(A),

i.e., Ax ̸= 0 but AP TPx = 0.

� N should be as small as possible to increase the efficiency gain of the per-vector

computation and, therefore, justify the additional effort of the preprocessing.

To avoid the first issue, a more extensive preprocessing is required where Aw has

to be precomputed for a large number of vectors w ∈ U ⊂ Sn−1. To address the

second issue, P is constructed by randomly sampling N vectors from U with N

sufficiently small.

The natural choice for a suitable set U ⊂ Sn−1 is a spherical design:

Definition 4.2 ([24, 78]). Let t ∈ N. A non-empty, finite subset U ⊂ Sn−1 is called

spherical t-design if the equality

∫
S
n−1

f(x)dσ(x) =
1

|U |
∑
x∈U

f(x)
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holds for all homogenous polynomials f of degree at most t. σ(x) denotes the

normalized spherical measure.

In other words, spherical designs allow the computation of the integral over the

sphere for any such function by simply computing the arithmetic mean of this

function evaluated for all elements of the spherical design.

For constructing designs, it is helpful to consider the following equivalent formula-

tion:

Lemma 4.3 ([78]). Let t = 2p for a p ∈ N, then for all n ≥ 2, a U ⊆ Sn−1 is a

spherical t-design if

1

|U |
∑
x∈U

⟨w, x⟩2p =
∫
S
n−1
⟨w, x⟩2pdσ(x) ∀w ∈ Sn−1.

Corollary 4.4 ([78]). The integral in Lemma 4.3 can be computed directly as

∫
S
n−1
⟨w, x⟩2pdσ(x) =

∫
S
n−1

x2p1 dσ(x) =
1 · 3 · 5 · · · (2p− 1)

n · (n+ 2) · · · (n+ 2p− 2)

=
1√
π

Γ(p+ 1
2
)Γ(n

2
)

Γ(p+ n
2
)

=: γp,n

which holds for all w ∈ Sn−1.

In summary, the idea is to perform a preprocessing based on a full spherical

design, but to then only sample from the full design to obtain an efficient per-vector

computation. By its definition, a spherical design seems suitable for preserving

information of any vector and, therefore, a uniform sample from such a design should

be sufficient for preserving information for a single fixed vector x with high probability.

Based on those results, one could now construct the algorithm and derive recovery

guarantees. Unfortunately, first proof strategies pointed to the following issue:
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� The higher the order t of the used spherical design, the lower the required

sample size N and, therefore, computations.

� Already the theoretical lower bounds for the existence of spherical designs are

scaling superlinearly in the dimension n (e.g., [24, 85]) and explicit constructions

for higher-order designs in high dimensions seem either unknown or are showing

an exponential scaling in n [6, 10]. This would defeat the purpose of the

algorithm as speed benefits can only be expected for large dimensions and a

preprocessing might not be feasible anymore if the design is too large.
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4.2 Approximate Spherical Designs

The only need for the explicit construction of an exact spherical t-design was to ensure

that a uniform sample of this set would preserve enough information when multiplied

with a fixed arbitrary vector. Since there is only an interest in the properties of the

uniform sample and not the full set, a natural consequence is relaxing this restriction

and using an approximate spherical design as full set U ⊂ Sn−1 instead:

Definition 4.5. [4] Let t = 2p for a p ∈ N. A non-empty, finite subset U ⊂ Sn−1 is

called δ-approximate spherical t-design if

(1− δ)γp,n ≤
1

|U |
∑
x∈U

⟨w, x⟩2p ≤ (1 + δ)γp,n

is fulfilled for all w ∈ Sn−1.

Motivated by the orthogonal invariance of the multivariate normal distribution,

we define the following approach for constructing approximate spherical designs:

Let Gi ∼ N (0, In) be i.i.d. Gaussian vectors and Xi =
G

(i)

∥G(i)∥2
. It is known that Xi

is uniformly distributed on Sn−1 and, naturally, independent of its initial length

∥G(i)∥2 (e.g., [53]).

The idea is to sample a set of such vectors Xi in order to obtain a δ-approximate

spherical t-design Un
δ := {X1, . . . , XL}. Computing the expectation yields

E

[
1

L

L∑
i=1

⟨w,Xi⟩2p
]
= E[⟨w,X1⟩2p] = E

[〈
w,

G1

∥G1∥2

〉2p
]
E[∥G1∥2p2 ]

E[∥G1∥2p2 ]

=
E
[
⟨w,G1⟩2p

]
E[∥G1∥2p2 ]

(∗)
=

2
p

√
π
Γ(p+ 1

2
)

2p
Γ(p+n

2
)

Γ(n
2
)

= γp,n.

As ⟨w,G1⟩ ∼ N (0, 1) for every w ∈ Sn−1 and ∥G1∥2 ∼ χN , (∗) follows by directly

computing the 2p-th moment of both distributions.
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The theory of different types of convergence of a sequence of random variables

would exceed the scope of this section and is not part of the construction or proof.

Nevertheless, the Uniform Law of Large Numbers serves as motivation why the

described construction can be successful:

Lemma 4.6 (Uniform Law of Large Numbers [69]). Let Xi be i.i.d., W compact

and f(w,Xi) continuous and bounded by a function g(Xi) with E[g(Xi)] <∞. Then,

sup
w∈W

∣∣∣∣∣ 1L
L∑
i=1

f(w,Xi)− E[f(w,X)]

∣∣∣∣∣ P−→ 0,

where Zi
P−→ 0 denotes the convergence in probability, i.e., P(|Zi| ≥ ϵ)

i→∞−→ 0.

As Sn−1 is compact and the function f(w, x) = ⟨w, x⟩2p is continuous and bounded

by 1 for all w, x ∈ Sn−1, Lemma 4.6 implies

VL := sup
w∈Sn−1

∣∣∣∣∣ 1L
L∑
i=1

⟨w,Xi⟩2p − γp,n

∣∣∣∣∣ P−→ 0.

Intuitively, sampling a sufficient amount of vectors Xi leads to a δ-approximate

spherical t-design with high probability.

For a given δ > 0, the goal is to compute L̃δ such that VL ≤ δγp,n for all L ≥ L̃δ.

The proof idea is as follows: As VL appears difficult to bound directly, instead, a

bound for E[VL] is proven first. The bound for VL will then follow via a concentration

result for empirical processes.
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Bound for E[VL]

Lemma 4.7 ([80]). Let F be a set of bounded functions. Then,

E

[
sup
f∈F

∣∣∣∣∣ 1L
L∑
i=1

f(Xi)− E[f(X1)]

∣∣∣∣∣
]
≤ 2E

[
sup
f∈F

∣∣∣∣∣ 1L
L∑
i=1

ϵif(Xi)

∣∣∣∣∣
]
. (4.1)

Here, ϵi are i.i.d. Rademacher random variables, i.e., P(ϵi = −1) = P(ϵi = +1) = 1
2
.

Proof The proof of this result follows by a symmetrization argument. Let Y1, . . . , Yn

be an i.i.d. copy of X1, . . . , Xn. Then, we can bound

E

[
sup
f∈F

∣∣∣∣∣ 1L
L∑
i=1

f(Xi)− E[f(X1)]

∣∣∣∣∣
]
= EX

[
sup
f∈F

∣∣∣∣∣ 1L
L∑
i=1

(
f(Xi)− EYi

[f(Yi)]
)∣∣∣∣∣
]

= EX

[
sup
f∈F

∣∣∣∣∣EY

[
1

L

L∑
i=1

(f(Xi)− f(Yi))

]∣∣∣∣∣
]

≤ EX,Y

[
sup
f∈F

∣∣∣∣∣ 1L
L∑
i=1

(f(Xi)− f(Yi))

∣∣∣∣∣
]

= EX,Y,ϵ

[
sup
f∈F

∣∣∣∣∣ 1L
L∑
i=1

ϵi (f(Xi)− f(Yi))

∣∣∣∣∣
]

≤ 2EX,ϵ

[
sup
f∈F

∣∣∣∣∣ 1L
L∑
i=1

ϵif(Xi)

∣∣∣∣∣
]
.

The last equality follows by the symmetrization argument. As ϵ is independent of X

and Y , (f(Xi)− f(Yi))
d
= ϵi(f(Xi)− f(Yi)).

The quantity E
[
supf∈F

1
L

∣∣∣∑L
i=1 ϵif(Xi)

∣∣∣] is called the Rademacher complexity of

F . There are various approaches for bounding it.

Theorem 4.8 (Ledoux-Talagrand contraction [53]). Let g : R+ → R+ be convex

and increasing. Let ϕi : R→ R satisfy ϕi(0) = 0 and be Lipschitz continuous with

51



constant λ. For any bounded T ⊆ Rn,

Eg

(
1

2
sup
t∈T

∣∣∣∣∣
L∑
i=1

ϵiϕi(ti)

∣∣∣∣∣
)
≤ Eg

(
L sup

t∈T

∣∣∣∣∣
L∑
i=1

ϵiti

∣∣∣∣∣
)
.

By choosing g(x) = x and T = {(f(X1), . . . , f(Xn)) : f ∈ F} with F such that T

remains bounded, one obtains the following corollary:

Corollary 4.9. Let ϕi : R→ R satisfy ϕi(0) = 0 and be Lipschitz continuous with

constant λ. If T = {(f(X1), . . . , f(Xn)) : f ∈ F} ⊆ Rn is bounded almost surely,

then,

E sup
f∈F

∣∣∣∣∣
L∑
i=1

ϵiϕi(f(Xi))

∣∣∣∣∣ ≤ 2λE sup
f∈F

∣∣∣∣∣
L∑
i=1

ϵif(Xi)

∣∣∣∣∣ .
It should be noted that it is sufficient if ϕ is λ-Lipschitz on the range of f .

Set f(x) = ⟨w, x⟩ and F := {f(x) = ⟨w, x⟩ : w ∈ Sn−1} and ϕ(x) = x2p. As

f : Sn−1 → [−1, 1] and |ϕ(x) − ϕ(y)| = |x2p − y2p| = |x − y||
∑2p−1

k=0 xky2p−1−k| ≤

2p|x− y| for all x, y ∈ [−1, 1], ϕ is Lipschitz continuous with constant L = 2p.

Combining the results from above with this choice of F and ϕ, the following Lemma

can be shown.

Lemma 4.10. Let X1, . . . , XL be i.i.d. random vectors uniformly distributed on

Sn−1. Then,

E

[
sup

w∈Sn−1

∣∣∣∣∣ 1L
L∑
i=1

⟨w,Xi⟩2p − γp,n

∣∣∣∣∣
]
≤ 8p√

L
.
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Proof. Applying first, Lemma 4.7 and, then, Corollary 4.9 allows using the basic

property sup
w∈Sn−1⟨w, x⟩ = ∥x∥2 to obtain

E

[
sup

w∈Sn−1

∣∣∣∣∣ 1L
L∑
i=1

⟨w,Xi⟩2p − γp,n

∣∣∣∣∣
]
≤ 2E

[
sup

w∈Sn−1

∣∣∣∣∣ 1L
L∑
i=1

ϵi⟨w,Xi⟩2p
∣∣∣∣∣
]

≤ 8pE

[
sup

w∈Sn−1

∣∣∣∣∣ 1L
L∑
i=1

ϵi⟨w,Xi⟩

∣∣∣∣∣
]
=

8p

L
E

[∥∥∥∥∥
L∑
i=1

ϵiXi

∥∥∥∥∥
2

]
.

Using Jensen’s inequality and the independence of the Rademacher random variables,

the proof can be concluded:

8p

L
E

[∥∥∥∥∥
L∑
i=1

ϵiXi

∥∥∥∥∥
2

]
≤ 8p

L

√√√√√E

∥∥∥∥∥
L∑
i=1

ϵiXi

∥∥∥∥∥
2

2


=

8p

L

√√√√E

[〈
L∑
i=1

ϵiXi,
L∑

j=1

ϵjXj

〉]

=
8p

L

√√√√√√E

 L∑
i̸=j

ϵiϵj︸︷︷︸
ϵi⊥⊥ϵj

⟨Xi, Xj⟩+
L∑
i=1

ϵ2i ∥Xi∥22︸ ︷︷ ︸
=1


=

8p√
L
.
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Bound for VL

It remains to connect the results proven for E[VL] to VL – which is the quantity that

needs to be bounded. To achieve a sufficiently strong bound, a Bernstein inequality

for suprema of empirical processes is used:

Lemma 4.11. [30] Let F be a countable set of functions f : Rn → R and X1, . . . , XL

independent random vectors in Rn fulfilling

f(Xi) ≤ K almost surely, E[f(Xi)] = 0, and E[f(Xi)
2] ≤ σ2

i

for all i ∈ [L] and f ∈ F , and some constants K, σ1, . . . , σL > 0. Then, for all t > 0,

P(VL ≥ E[VL] + t) ≤ exp

(
− t2/2

σ2 + 2KE[VL] + tK/3

)

with VL = supf∈F

∣∣∣∑L
i=1 f(Xi)

∣∣∣ and σ2 =
∑L

i=1 σ
2
i .

F needs to be slightly adjusted compared to before to fulfill the restrictions of

Lemma 4.2 (E[f(Xi)] = 0, the countability of F , and scaling with 1
L
). As Sn−1

is uncountable, w cannot be varied over the full sphere. Instead, F := {f(x) =

1
L

(
⟨w, x⟩2p − γp,n

)
: w ∈ Sn−1 ∩Qn} is chosen. As Sn−1 ∩Qn is a dense countable

subset of Sn−1,

sup
f∈F

∣∣∣∣∣
L∑
i=1

f(Xi)

∣∣∣∣∣ = sup
w∈Sn−1

∣∣∣∣∣ 1L
L∑
i=1

⟨w,Xi⟩2p − γp,n

∣∣∣∣∣
remains satisfied (e.g., [11]).

Reaching the end of the line of thought and having all necessary lemmata and

corollaries available, it remains to correctly determine or bound the required quantities

from Lemma 4.11, and combine all results to a theorem:
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� t > 0: P(VL ≥ δγp,n) ≤ P(VL ≥ E[VL] + t) is required and by Lemma 4.10,

E[VL] ≤ 8p√
L
.

⇒ t := δγp,n −
8p√
L

⇒ L >

(
8p

δγp,n

)2

� K: As γp,n ∈ (0, 1] by definition and w,Xi are unit norm vectors, f(Xi) =

1
L

(
⟨w,Xi⟩2p − γp,n

)
≤ 1

L

⇒ K :=
1

L

� σ2: E[f(Xi)
2] = 1

L
2E[
(
⟨w,Xi⟩2p − γp,n

)2
] = 1

L
2

(
γ2p,n − γ2p,n

)
=: σ2

i

⇒ σ2 =
L∑
i=1

σ2
i =

1

L

(
γ2p,n − γ2p,n

)

Combining all this, the following theorem is proven.

Theorem 4.12. A set of L i.i.d. random vectors X1, . . . , XL uniformly distributed

on Sn−1 is a δ-approximate spherical t-design for any even t = 2p, i.e.,

sup
w∈Sn−1

∣∣∣∣∣ 1L
L∑
i=1

⟨w,Xi⟩2p − γp,n

∣∣∣∣∣ ≤ δγp,n,

with probability at least 1− exp

(
−L

(
δγp,n−

8p√
L

)2
/2

γ2p,n−γ
2
p,n+

1
3

(
δγp,n+

40p√
L

)
)

if

L >

(
8p

δγp,n

)2

.

Summarized, an approximate spherical t-design for any dimension n, order t, and

deviation δ > 0 can be constructed by sampling a sufficiently large number of vectors

uniformly from the sphere at random. It remains to discuss the scaling of L, the size
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of the approximate design. By definition, γ−2
p,n ∈ Θp(n

2p). While this scaling in the

dimension seems promising when compared to the required scaling for known exact

spherical designs, combined with the scaling of δ−2 – which naturally is desired to

be small – concerns for the feasibility of the preprocessing in real-world applications

were raised. Based on these insights, the focus shifted from the construction of

high-order spherical designs to a successful revision of the initial algorithm which

resulted in publication [33] presented in the next section.
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5 Sketching with Kerdock’s Crayons: Fast Sparsifying

Transforms for Arbitrary Linear Maps

This section corresponds to the publication [33] with slight adaptations.

In 2014, Felix Krahmer and Dustin Mixon discussed a potential, efficient algorithm

for estimating matrix-vector products based on partially derandomized Johnson-

Lindenstrauss projections using spherical designs. Felix Krahmer and I then refined

those early ideas realizing that the introduction of sparsity might lead to efficiency

gains which potentially not only yield a competitive computational complexity

but even real-world runtime advantages over the standard approach for realistic

dimensions.

The construction of approximate spherical designs presented in the previous section

allowed for a realistic usage of this algorithm. However, only after discussions with

David Gross, who suggested the usage of Kerdock sets, and the introduction of

median-of-means by Richard Kueng, did the computational complexity of both

steps reach the desired level. Refining the discussed concepts into theorems with

corresponding proofs was to a large extent my contribution, as well as the required

numerical simulations demonstrating the real-world applicability and advantages of

the method presented below.

5.1 Introduction

Computing matrix–vector products is a fundamental part of numerical linear algebra.

The naive algorithm takes O(mn) operations to multiply an m × n matrix by a

vector. Many structured matrices admit a more efficient implementation of this

computation, the most well-known example being the fast Fourier transform, which

takes only O(n log n) operations. In some applications, the desired Fourier transform

of the given signal is nearly s-sparse, and as we discuss below, a number of works
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have proposed methods for such cases that are sublinear in the dimension n.

For the one-dimensional discrete Fourier transform, a randomized algorithm with

a runtime scaling quadratically in s up to logarithmic factors in the dimension n

has been provided in [35], while a deterministic approach with similar complexity

was found in [42, 43]. In later works, this could be reduced to linear scaling in

s for both random [36, 38, 39, 42, 43] and deterministic [20, 50] algorithms. For

the d-dimensional Fourier transform applied to signals in n = Nd dimensions, the

exponential scaling in d presents an instance of the curse of dimensionality. Despite

this, for random signals, one may obtain runtimes that are linear in sd up to

logarithmic factors in N [16, 17]. For deterministic signals, various deterministic [43,

63] and random [18, 19, 41, 46, 47] sampling strategies have been proposed with a

computational complexity which scales polynomially in d, s and N up to logarithmic

factors.

Naturally, research on fast transforms is not restricted to Fourier structure. For

example, [70] proposes a multidimensional Chebyshev transform with reduced runtime.

In [19], a more general approach has been established that yields fast sparse transforms

for arbitrary bounded orthonormal product basis with a runtime scaling polynomially

in s up to logarithmic factors. These results have been generalized in [18] to

signals with only an approximately s-sparse representation while maintaining a

computational complexity that is sublinear in the dimension n. While covering a

significantly larger class of transforms than just the Fourier transform, all these

approaches remain restricted to a specific structure or class of structures of the

transformation matrix.

At the same time, data-driven sparsifying transforms, which have been demon-

strated to outperform predefined structured representation systems in a variety of

contexts [12, 28, 59, 66, 71, 76], typically do not have structural properties that

allow for the application of any of the above fast transform methods. This issue was
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addressed in [72, 73] by imposing structure amenable to fast transforms on the learned

representation system A so as to facilitate the computation of Ax. At the same time,

this imposed structure significantly limits the space of admissible transforms, and

the question remains whether a fast transform can also be constructed for learned

representation systems beyond these restrictions.

In this work, we consider cases where the desired product Ax is approximately

sparse for a matrix A that does not follow any preset structural constraints, e.g.,

because it is learned from data. In particular, we assume A is arbitrary. Note that

to compute the mapping (A, x) 7→ Ax for an arbitrary matrix A and vector x, one

must first read the input (A, x) ∈ Rm×n × Rn. Since this already requires Θ(mn)

operations, naive matrix–vector multiplication is optimally efficient when computing

an individual matrix–vector product.

To obtain a speedup, we instead apply the same transform x 7→ Ax to a stream of

vectors x ∈ Rn, which models the setting of many applications. An important example

of such an application is dictionary learning [2] where a data driven approach is

employed to compute a representation system that gives rise to sparse representation

for a given type of signals. The idea is that such a system learned with the help

of a training set is better adapted to the kind of data at hand than any universal

representation system. At the same time, while the outcome of such a procedure

will typically not have structural properties amenable to fast multiplication, it is of

great relevance for the use of learned dictionaries to be able to apply them efficiently

once the training phase is completed.

Our approach will require some upfront preprocessing given A – for dictionary

learning, this can be seen as the final part of the training procedure – in exchange

for a much faster per-vector computation afterwards. While little work has been

done in this vein, there has been quite a bit of work on related problems, which we

discuss below.
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The first result following this strategy [83] concerns a matrix–vector multiplication

algorithm over finite semirings (for general matrices and vectors, hence not assuming

any kind of sparsity), which performs O(n2+ϵ) operations of preprocessing on an n×n

matrix before multiplying with an arbitrary vector in O(n2/(ϵ log n)2) operations.

The first and (to our knowledge) only algorithm that achieves a comparable result

for real m× n matrices is the mailman algorithm introduced in [56]. Provided the

matrix contains only a constant number of distinct values, the algorithm takes O(mn)

operations of preprocessing and then takes O(mn/ log(m+n)) operations to multiply

the preprocessed matrix with an arbitrary vector.

Important steps in the direction of the problem considered in this work were

taken in [40] and [44]. These works apply a dimension reduction designed in the

context of group testing [22] to compute Ax in the case that it is exactly s-sparse

[40] or has entries of exponentially decaying size [44]. After O(s2O(log
2
logm)mn)

operations of preprocessing, Ax or an approximation, respectively, can be computed

in O(s2O(log
2
logm)n) operations. Due to the combinatorial nature of the procedure,

however, this line of research is restricted to scenarios very close to exact sparsity.

The reason for this restriction is that the ideas are based on compressed sensing

results and the error of the approximation is bounded by the ℓ2-norm of the difference

between the Ax and Hs(Ax) (i.e., the ℓ2-norm of the smallest n− s entries of Ax).

If Ax contains s-large and n− s identical/similar small entries, this bound would

scale with n− s and would, therefore, not be sufficient. Also, we are not aware of

numerical implementations feasible for larger problem sizes, which may be due to

the fact that there are large constants hidden in the big O notation.

As an alternative, one might batch the stream of vectors into matrices and then

perform matrix multiplication. (Granted, such a batched computation is unacceptable

for many applications or only very small batch sizes are feasible, e.g., in dictionary

learning for image and video processing [60].) Research on matrix multiplication
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was initiated by the seminal work of Strassen [74], which multiplies two arbitrary

n× n matrices in only O(n2.808) operations (i.e., much faster than the naive O(n3)

algorithm). Later algorithms [21, 23, 51, 84] improved this computational complexity

to its currently best known scaling of O(n2.373). After dividing by the batch size,

this gives a per-vector cost of O(n1.373) operations. However, we note that such

algorithms are infeasible in practice.

A more feasible approach to matrix multiplication was proposed by Drineas,

Kanan, and Mahoney [27]. They compute a random approximation of the desired

product by multiplying two smaller matrices: one consisting of k randomly selected

columns of the first matrix A, and the other consisting of corresponding rows from

the second matrix B. With high probability, the Frobenius norm of the estimate

error is O(∥A∥F∥B∥F/
√
k). Unfortunately, if B represents a batch of column vectors,

then this guarantee offers little control of the error in each vector. On the other

hand, if B represents a single column vector b, then ∥Ab∥2 is typically much smaller

than ∥A∥F∥b∥2, so the resulting relative error is quite large even for relatively large

values of k.

5.1.1 Our Approach

Given A ∈ Rm×n, let Σ(A, s, δ) denote the set of all unit vectors x ∈ Rn for which

inf
{
∥Ax− v∥∞ : v ∈ Rm, | supp(v)| ≤ s

}
≤ δ,

i.e., Ax is δ-close to being s-sparse. Given ϵ > 0, let hϵ : R→ R denote the ϵ-hard

thresholding function defined by hϵ(t) := t · 1{|t| ≥ ϵ}. By abuse of notation, we

apply hϵ to the entries of a vector v by writing hϵ(v). We seek to solve the following:

Problem 5.1. Given an arbitrary A ∈ Rm×n, s ∈ N, and ϵ > δ ≥ 0, preprocess A

so that one may quickly compute hϵ(Ax) for any x ∈ Σ(A, s, δ).
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Our approach uses a specially designed random vector z ∈ Rn such that E[zz⊤] = I:

Ax = A(E[zz⊤])x = E[Azz⊤x]. (5.1)

Denote the random vector y := Azz⊤x ∈ Rm. The fact that E[y] = Ax suggests

a Monte Carlo approach to estimate Ax. That is, we will approximate the true

average Ax with an estimator determined by N independent samples. To obtain a

fast algorithm in this vein, we will select a distribution for z and an estimator µ̂ for

E[y] that together satisfy three properties:

(i) the distribution of z is discrete with small support,

(ii) µ̂ can be computed in linear time from independent realizations {yj}j∈[N ] of y,

and

(iii) for each x ∈ Σ(A, s, δ), ∥µ̂−Ax∥∞ < ϵ−δ
2

with high probability, even for small

N .

Indeed, if (i)–(iii) hold, then one may compute hϵ(Ax) using the following (fast)

algorithm:

Let {sℓ : ℓ ∈ [L]} ⊆ Rn denote the support of the distribution of z. Given

A ∈ Rm×n, we run the preprocessing step of computing {Asℓ}ℓ∈[L] in O(Lmn)

operations. Granted, this is more expensive than computing Ax, but we only need

to compute {Asℓ}ℓ∈[L] once, while we expect to compute Ax for a stream of x’s.

Next, given x ∈ Σ(A, s, δ), we draw independent realizations {zj}j∈[N ] of z. Since we

already computed {Asℓ}ℓ∈[L], we may then compute the corresponding realizations

{yj}j∈[N ] of y in O(N(m + n)) operations. Next, by (ii), we may compute µ̂ from

{yj}j∈[N ] in O(mN) operations. Finally, let S ⊆ [m] denote the indices of the s

entries of µ̂ of largest magnitude. Then by (iii), it holds with high probability that

|µ̂i| > ϵ+δ
2

for every i ∈ supp(hϵ(Ax)) while |µ̂i| < ϵ+δ
2

for every i ∈ [m] such that

|(Ax)i| ≤ δ. Since x ∈ Σ(A, s, δ) by assumption, it follows that S ⊇ supp(hϵ(Ax)),
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and so ASx determines hϵ(Ax), which we compute in O(sn) additional operations.

(Of course, ASx might determine other entries in the support of Ax, and we would

not discard this information in practice.)

To obtain (i)–(iii), we take z to be uniformly distributed over an appropriately

scaled n-dimensional projection of a projective 2-design, and for µ̂, we partition [N ]

into batches and compute the entrywise median-of-means of {yj}j∈[N ] over these

batches. The projective 2-design allows us to control the variance of each entry of

the random vector y; see Lemma 5.4. Next, the median-of-means estimator improves

over the sample mean by being less sensitive to outliers in the small random sample

{yj}j∈[N ].

Thanks to this behavior, we can get away with drawing only

N = O((ϵ− δ)−2∥A∥22→∞ log(m/η))

samples, where the induced norm ∥A∥2→∞ equals the largest ℓ2-norm of the rows of A,

and η denotes the failure probability of the randomized algorithm; see Theorem 5.5.

As a bonus, the Kerdock set–based projective 2-design we use enjoys a fast matrix–

vector multiplication algorithm, yielding a preprocessing step of only O(mn2 log n+

n2 log2 n) operations despite having L = Θ(n2); see Lemma 5.8. See Algorithm 5 for

a summary of our approach.

To quickly evaluate the utility of this algorithm, consider the following model: A

is an arbitrary n × n orthogonal matrix, and x is a random vector such that the

entries of Ax are drawn independently from the following mixture:

e⊤i Ax ∼

 N (0, 1) with probability p

0 with probability 1− p.

Then the expected size of the support of Ax is pn. In this model, our algorithm
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Algorithm 5 Fast sparsifying transform for an arbitrary linear map

1: Data: Parameters ϵ > δ ≥ 0, s, J,K ∈ N, matrix A ∈ Rm×n, stream of
x ∈ Σ(A, s, δ)

2: Result: Entrywise ϵ-hard threshold of matrix–vector products hϵ(Ax)

3: Preprocessing step
4:

5: Let d denote the smallest power of 2 that is at least n, and put L := d(d/2 + 1)
6:

7: Let {uℓ}ℓ∈[L] denote a projective 2-design for Rd arising from a Kerdock set
8:

9: Put sℓ :=
√
dΠuℓ, where Π ∈ Rn×d denotes projection onto the first n coordinates

10:

11: Use Lemma 5.8 to compute {Asℓ}ℓ∈[L]
12: Streaming step
13:

14: Draw N := JK indices {ℓj}j∈[N ] uniformly from [L]
15:

16: Compute yj := (Asℓj)(s
⊤
ℓj
x) for each j ∈ [N ]

17:

18: Compute the entrywise median-of-means µ̂ of {yj}j∈[N ] over K batches of size J
19:

20: Let S ⊆ [m] denote the indices of the s entries of µ̂ with largest magnitude
21:

22: Compute ASx and output the indices and values of entries with magnitude at
least ϵ

provides a speedup over naive matrix–vector multiplication in the regime

1 ≺ pn ≺ n

log n
.

To see this, first put s := 10pn. Then the multiplicative Chernoff bound implies that

Ax is s-sparse with high probability, and so we take δ = 0. Before selecting ϵ > 0, we

normalize our vector so that x̂ := x/∥x∥2 ∈ Σ(A, s, δ) with high probability. Next,

standard tail bounds imply that ∥x∥22 ∈ Θ(pn) with high probability. This suggests

the scaling ϵ := α/
√
pn with α ∈ (0, 1). Considering that a fraction Θ(α) of the

support of Ax has magnitude Θ(α), the hard threshold hϵ(Ax̂) serves as a decent
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estimate for the product Ax̂:

∥hϵ(Ax̂)− Ax̂∥22 = Θ(α3).

Furthermore, we obtain this quality of estimate with relatively little computation:

Since m = n, we have O(n3 log n) operations of preprocessing, and then for each x,

we compute hϵ(Ax̂) in O(α−2sn log n) operations since ∥A∥2→∞ = 1. By comparison,

if an oracle were to reveal the support of hϵ(Ax̂), then the naive matrix–vector

multiplication with the appropriate submatrix of A would cost O(sn) operations.

5.1.2 Outline

In the next section, we review the necessary theory of projective designs, and we

show how they can be used in conjunction with a median-of-means estimator to

obtain a high-quality random estimate of a sparse matrix–vector product. Next,

section 5.3 provides the details of a specific choice of projective design, namely, one

that arises from a Kerdock set described by Calderbank, Cameron, Kantor, and

Seidel [13]. This particular choice of projective design allows us to leverage the fast

Walsh–Hadamard transform to substantially speed up the preprocessing step of our

algorithm. We conclude in section 5.4 with some numerical results that demonstrate

the plausibility of a real-world implementation of our algorithm.
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5.2 Projective Designs and the Median-of-Means

Let σ denote the uniform probability measure on the unit sphere Sd−1 in Rd, let

Homj(Rd) denote the set of homogeneous polynomials of total degree j in d real

variables, and put

cd,k :=
1 · 3 · 5 · · · (2k − 1)

d(d+ 2) · · · (d+ 2(k − 1))
.

A projective t-design for Rd is defined to be any {uℓ}ℓ∈[L] in Sd−1 that satisfies

the following equivalent properties:

Proposition 5.2. Given {uℓ}ℓ∈[L] in Sd−1 and t ∈ N, the following are equivalent:

(a) 1
L

∑
ℓ∈[L] p(uℓ) =

∫
S
d−1 p(u)dσ(u) for every p ∈ Hom2k(Rd) and every k ∈

{0, . . . , t}.

(b) 1
L

∑
ℓ∈[L]⟨x, uℓ⟩

2k = cd,k∥x∥2k for every x ∈ Rd and every k ∈ {1, . . . , t}.

(c) 1

L
2

∑
ℓ,ℓ

′∈[L]⟨uℓ, uℓ′⟩
2k = cd,k for every k ∈ {1, . . . , t}.

The proof of Proposition 5.2 is contained in section 6.4 of [81] and references

therein, given the observation that {uℓ}ℓ∈[L] satisfies Proposition 5.2(a) precisely

when {uℓ}ℓ∈[L] ∪ {−uℓ}ℓ∈[L] forms a so-called spherical 2t-design. We will see that

the cubature rule in Proposition 5.2(a) is what makes projective t-designs useful,

while Proposition 5.2(c) makes them easy to identify. We note that an analog of

Proposition 5.2(c) is used to define projective t-designs in a variety of settings, such

as complex projective space and the Cayley plane [65].

Our application of projective 2-designs encourages us to take the size L to be

as small as possible. To this end, there is a general lower bound [7] of L ≥
(
d+1
2

)
,

but to date, equality is only known to be achieved for d ∈ {2, 3, 7, 23}; see [37]

and references therein. Despite this scarcity, there are infinite families of projective

2-designs that take L to be slightly larger, specifically, L = d(d/2 + 1) whenever d

is a power of 4; see [13, 14]. For these constructions, {uℓ}ℓ∈[L] takes the form of a
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union of orthonormal bases. Orthonormal bases {xi}i∈[d] and {yi}i∈[d] are said to be

unbiased if |⟨xi, yj⟩|2 = 1/d for every i, j ∈ [d].

Proposition 5.3. Suppose {ub,i}i∈[d] in Rd is orthonormal for every b ∈ [d/2+1], and

suppose further that {ub,i}i∈[d] and {ub′,i}i∈[d] are unbiased for every b, b′ ∈ [d/2 + 1]

with b ̸= b′. Then {ub,i}b∈[d/2+1],i∈[d] forms a projective 2-design for Rd.

The proof of Proposition 5.3 follows from Proposition 5.2(c) and the definition of

unbiased. In section 5.3, we will provide an explicit construction of this form. In

the meantime, we show how projective 2-designs are useful in our application. The

following result defines the random vector z in terms of a projective 2-design, and

then uses this structure to control the variance of each coordinate of the random

vector y := Azz⊤x.

Lemma 5.4. Given A ∈ Rm×n, fix a projective 2-design {uℓ}ℓ∈[L] for Rd with d ≥ n,

let Π: Rd → Rn denote the projection onto the first n coordinates, and let z denote a

random vector with uniform distribution over {
√
dΠuℓ : ℓ ∈ [L]}. Given a unit vector

x ∈ Rn, define the random vector y := Azz⊤x ∈ Rm. Then for each i ∈ [m], it holds

that

E[e⊤i y] = e⊤i Ax, V(e⊤i y) ≤ 2∥A∥22→∞.

Proof. Let Π∗ denote the adjoint of Π, namely, the map that embeds Rn into the first

n coordinates of Rd. Fix i ∈ [m], let a⊤i denote the ith row of A, and put ãi := Π∗ai

and x̃ := Π∗x. Then

e⊤i y = e⊤i Azz
⊤x = a⊤i (

√
dΠuℓ(z))(

√
dΠuℓ(z))

⊤x = dã⊤i uℓ(z)u
⊤
ℓ(z)x̃.

To compute E[e⊤i y] and E[(e⊤i y)2], we will consider a random vector u that is uniformly

distributed on the unit sphere Sd−1, as well as some rotation Q ∈ O(d) such that

Qx̃ = e1, Qãi = α1e1 + α2e2, α1, α2 ∈ R.
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Since v 7→ dã⊤i vv
⊤x̃ resides in Hom2(Rd), we may apply Proposition 5.2(a) to get

E[e⊤i y] =
1

L

∑
ℓ∈[L]

dã⊤i uℓu
⊤
ℓ x̃ = E[dã⊤i uu⊤x̃] = E[dã⊤i Q⊤Quu⊤Q⊤Qx̃].

A change of variables Qu 7→ u then gives

E[e⊤i y] = E[d(Qãi)⊤uu⊤(Qx̃)] = E[d(α1e1 + α2e2)
⊤uu⊤e1] = dα1E[u21].

Considering 1 = E[∥u∥2] = dE[u21] by symmetry and linearity of expectation, it

follows that

E[e⊤i y] = α1 = (α1e1 + α2e2)
⊤e1 = ã⊤i x̃ = a⊤i x = e⊤i Ax.

Indeed, this behavior was the original motivation (5.1) for our approach. We will

apply the same technique to compute E[(e⊤i y)2]. Since v 7→ (dã⊤i vv
⊤x̃)2 resides in

Hom4(Rd), we may apply Proposition 5.2(a) to get

E[(e⊤i y)2] =
1

L

∑
ℓ∈[L]

(dã⊤i uℓu
⊤
ℓ x̃)

2 = E[(dã⊤i uu⊤x̃)2] = E[(dã⊤i Q⊤Quu⊤Q⊤Qx̃)2].

A change of variables Qu 7→ u then gives

E[(e⊤i y)2] = E[(d(α1e1 + α2e2)
⊤uu⊤e1)

2] = d2(α2
1E[u41] + α2

2E[u21u22]).

Next, the theorem in [29] implies E[u41] = 3
d(d+2)

and E[u21u22] = 1
d(d+2)

, thereby

implying

E[(e⊤i y)2] = α2
1 ·

3d

d+ 2
+ α2

2 ·
d

d+ 2
.

68



Finally, we recall E[e⊤i y] = α1 to compute the desired variance:

V(e⊤i y) = E[(e⊤i y)2]− (E[e⊤i y])2 = 2α2
1 ·
d− 1

d+ 2
+ α2

2 ·
d

d+ 2
≤ 2α2

1 + α2
2 ≤ 2∥ai∥2.

The result then follows from the fact that ∥A∥22→∞ = maxi∈[m] ∥ai∥2.

Now that we have control of the variance, we can obtain strong deviation bounds

on our median-of-means estimator µ̂ of E[y] = Ax.

Theorem 5.5. Given A ∈ Rm×n, fix a projective 2-design {uℓ}ℓ∈[L] for Rd with

d ≥ n, let Π: Rd → Rn denote the projection onto the first n coordinates, and let z

denote a random vector with uniform distribution over {
√
dΠuℓ : ℓ ∈ [L]}. Given a

unit vector x ∈ Rn, define the random vector y := Azz⊤x ∈ Rm, select

J ≥ 4e2∥A∥22→∞

γ2
, K ≥ 2 log

(m
η

)
,

draw independent copies {yjk}j∈[J ],k∈[K] of y, and compute the entrywise median-of-

means:

µ̂ := median{yk}k∈[K], yk :=
1

J

∑
j∈[J ]

yjk.

Then ∥µ̂− Ax∥∞ < γ with probability at least 1− η.

Proof. Fix i ∈ [m]. For notational convenience, we denote the random variable

Y := e⊤i y. Given independent copies {Yj}j∈[J ] of Y , let Y denote their sample

average. Then Chebyshev’s inequality and Lemma 5.4 together imply the deviation

inequality

p := P{|Y − (Ax)i| ≥ γ} = P{|Y − E[Y ]| ≥ γ} ≤ V(Y )

γ2
≤ 2∥A∥22→∞∥x∥2

Jγ2
. (5.2)

Now take independent copies {Y k}k∈[K] of Y and put µ̂i := median{Y k}k∈[K]. Notice

that µ̂i ≥ (Ax)i + γ only if half of the Y k’s satisfy Y k ≥ (Ax)i + γ. Similarly,
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µ̂i ≤ (Ax)i − γ only if half of the Y k’s satisfy Y k ≤ (Ax)i − γ. Thus, defining

Ik := 1{|Y k − (Ax)i| ≥ γ}, we have

P{|µ̂i − (Ax)i| ≥ γ} ≤ P
{ ∑

k∈[K]

Ik ≥
K

2

}
.

Since {Ik}k∈[K] are independent Bernoulli random variables with success probability

p, we may continue with the help of the multiplicative Chernoff bound:

P
{ ∑

k∈[K]

Ik ≥ (1 + λ)Kp

}
≤
( eλ

(1 + λ)1+λ

)Kp

= e−Kp
( e

1 + λ

)(1+λ)Kp

, λ > 0.

By our choice of J , equation (5.2) implies that p ≤ 1/(2e2) < 1/2. As such, there

exists λ > 0 such that (1 + λ)Kp = K/2. Combining the above bounds then gives

P{|µ̂i−(Ax)i| ≥ γ} ≤ e−Kp(2ep)K/2 ≤ (2ep)K/2 ≤
(4e∥A∥22→∞∥x∥2

Jγ2

)K/2

≤ e−K/2 ≤ η

m
,

where the last steps follow from our choices for J and K. Finally, since our choice

for i ∈ [m] was arbitrary, the result follows from a union bound.
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5.3 Fast Preprocessing with Kerdock Sets

Select k ∈ 2N, and consider the real vector space R[Fk
2] of functions f : Fk

2 →

R. Calderbank, Cameron, Kantor, and Seidel [13] describe a projective 2-design

in this space that takes the form of mutually unbiased orthonormal bases (à la

Proposition 5.3). We explicitly construct this projective 2-design with some help

from the underlying finite field, and then we leverage its structure to speed up the

preprocessing step of our algorithm.

We sayM ∈ Fk×k
2 is skew-symmetric ifMii = 0 andMij =Mji for every i, j ∈ [k].

Given a skew-symmetric M , consider the corresponding upper-triangular matrix

M̃ ∈ Fk×k
2 defined by M̃ij :=Mij ·1{i < j} and the quadratic form QM : Fk

2×Fk
2 → F2

defined by QM (x) := x⊤M̃x. Given a skew-symmetric M ∈ Fk×k
2 and w ∈ Fk

2, define

uM,w ∈ R[Fk
2] by

uM,w(x) := 2−k/2(−1)QM (x)+w
⊤
x. (5.3)

The following result uses the vectors in (5.3) to form unbiased orthonormal bases for

R[Fk
2]; this result is contained in [13, 48, 49], but the proof is distributed over dozens

of dense pages from multiple papers, so we provide a direct and illustrative proof at

the end of this section.

Proposition 5.6. Consider any skew-symmetric M,M ′ ∈ Fk×k
2 .

(a) {uM,w}w∈Fk
2
and {uM ′

,w}w∈Fk
2
are orthonormal bases.

(b) IfM+M ′ has full rank over F2, then {uM,w}w∈Fk
2
and {uM ′

,w}w∈Fk
2
are unbiased.

A Kerdock set is a collection K ⊆ Fk×k
2 of 2k−1 skew-symmetric matrices such

thatM+M ′ has full rank for everyM,M ′ ∈ K withM ̸=M ′. (Note that one cannot

hope for a larger set with this property since the first row of each matrix in K must

be distinct, and the first entry of these rows must equal zero.) By Proposition 5.6

and equation (5.3), a Kerdock set K determines 2k−1 + 1 mutually unbiased bases
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in R[Fk
2], namely, {uM,w}w∈Fk

2
for each M ∈ K and the identity basis {ew}w∈Fk

2
. By

Proposition 5.3, these bases combine to form a projective 2-design. Below, we give the

“standard” Kerdock set described in Example 9.2 in [13]. (Note that [13] contains a

typo and omits the proof of this result; specifically, when they write αx, it should be

ax; we will use s instead of a so as to clearly distinguish from α, and for completeness,

we supply a proof at the end of this section.) In what follows, tr : F
2
k−1 → F2 denotes

the field trace, while for any finite set B, we let FB×B
2 denote the set of |B| × |B|

matrices with entries in F2 whose rows and columns are indexed by B.

Proposition 5.7. Consider the k-dimensional vector space V := F
2
k−1 × F2 over

the scalar field F2, and for each s ∈ F
2
k−1, define the linear map Ls : V → V by

Ls(x, α) := (s2x+ s tr(sx) + αs, tr(sx)).

Next, select a basis B for V , and consider the bilinear form

(x, α) · (y, β) := tr(xy) + αβ.

Then {Ms ∈ FB×B
2 : s ∈ F

2
k−1} defined by (Ms)b,b′ := b · Ls(b

′) is a Kerdock set.

Importantly, Kerdock sets provide speedups for the preprocessing step of our

algorithm:

Lemma 5.8. Given A ∈ Rm×n, select the smallest k ∈ 2N satisfying d := 2k ≥

n. Let K ⊆ Fk×k
2 denote the Kerdock set described in Proposition 5.7, consider

uM,w ∈ R[Fk
2] defined by (5.3), let {ew}w∈Fk

2
denote the identity basis in R[Fk

2], and

let Π: R[Fk
2]→ Rn denote any coordinate projection. Then

{A
√
dΠuM,w}M∈K,w∈Fk

2
∪ {A

√
dΠew}w∈Fk

2

can be computed in O(mn2 log n+ n log2 n) operations.
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Proof. We identify each member of R[Fk
2] as a vector in Rd with entries indexed

by Fk
2. By this identification, the vectors {uM,w}w∈Fk

2
appear as the columns of the

matrix product DMH
⊗k, where ·⊗k denotes the Kronecker power and DM , H ∈ Rd×d

are defined by

DM := diag{(−1)QM (x)}
x∈Fk

2
, Hab := 2−1/2(−1)ab, a, b ∈ F2.

Let a⊤i denote the ith row of A. Then the following algorithm runs in the claimed

number of operations: For each M ∈ K, (i) compute {(−1)QM (x)}
x∈Fk

2
in O(n log2 n)

operations, (ii) for each i ∈ [m], use the fast Walsh–Hadamard transform to compute

((Π∗ai)
⊤DM)H⊗k in O(n log n) operations, and (iii) compute the columns of

√
d
∑
i∈[m]

ei(a
⊤
i ΠDMH

⊗k) = A
√
dΠDMH

⊗k

in O(mn) operations; finally, compute {A
√
dΠew}w∈Fk

2
in O(mn) operations.

Proof of Proposition 5.6. Define the Heisenberg group H2k+1(F2) to be the set Fk
2 ×

Fk
2 × F2 with multiplication

(p, q, ϵ) · (p′, q′, ϵ′) := (p+ p′, q + q′, ϵ+ ϵ′ + q⊤p′).

Fix any skew-symmetric M ∈ Fk×k
2 . For each w ∈ Fk

2, we define ψM,w : Fk
2 →

H2k+1(F2) by

ψM,w(p) := (p,Mp,QM(p) + w⊤p).

One may apply the polarization identity

QM(x+ y) = QM(x) + x⊤M̃y+ y⊤M̃x+QM(y) = QM(x) + x⊤My+QM(y). (5.4)

to verify that ψM,w is a group homomorphism.

73



Next, define the Schrödinger representation ρ : H2k+1(F2)→ GL(R[Fk
2]) by

ρ(p, q, ϵ) := (−1)ϵXpZq,

where Xp and Zq denote translation and modulation operators, respectively:

(Xpf)(x) := f(x+ p), (Zqf)(x) := (−1)q
⊤
xf(x). (5.5)

Indeed, ρ is a representation of H2k+1(F2) as a consequence of the easily verified

relation

ZqXp = (−1)q
⊤
pXpZq. (5.6)

It follows that ρ ◦ ψM,w is a representation of the additive group Fk
2. Explicitly, we

have

(ρ ◦ ψM,w)(p) = (−1)QM (p)+w
⊤
pXpZMp. (5.7)

Next, we put

PM,w := 2−k
∑
p∈Fk

2

(ρ ◦ ψM,w)(p). (5.8)

Then P 2
M,w = PM,w and P ∗

M,w = PM,w, and so PM,w is an orthogonal projection.

Decomposing into irreducible representations reveals that imPM,w equals the inter-

section of the eigenspaces of {(ρ ◦ ψM,w)(p)}p∈Fk
2
with eigenvalue 1.

We claim that PM,w = uM,wu
∗
M,w. To see this, one may first apply the definitions

(5.7), (5.5), and (5.3) along with (5.4) and its consequence

x⊤Mx = QM(x+ x) +QM(x) +QM(x) = 0 (5.9)

to verify the eigenvector equation

[(ρ ◦ ψM,w)(p)]uM,w = uM,w
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for each p ∈ Fk
2. Next, one may apply the easily verified fact that

tr(XpZq) =

 2k if p = q = 0

0 otherwise
(5.10)

to the definitions (5.8) and (5.7) to compute trPM,w = 1. This proves our intermediate

claim.

We are now ready to compute |⟨uM,w, uM ′
,w

′⟩|2 in various cases. First, we cycle

the trace:

|⟨uM,w, uM ′
,w

′⟩|2 = tr(u∗M,wuM ′
,w

′u∗
M

′
,w

′uM,w)

= tr(uM,wu
∗
M,wuM ′

,w
′u∗

M
′
,w

′) = tr(PM,wPM
′
,w

′).

Next, we apply the definitions (5.8) and (5.7) along with identities (5.6), (5.10), and

(5.9) to obtain

|⟨uM,w, uM ′
,w

′⟩|2 = tr(PM,wPM
′
,w

′) = 2−k
∑

p∈ker(M+M
′
)

(−1)QM (p)+Q
M

′ (p)+(w+w
′
)
⊤
p.

From here, we proceed in cases: If M =M ′, then ker(M +M ′) = Fk
2 and QM(p) =

QM
′(p), and so |⟨uM,w, uM,w

′⟩|2 = δw,w
′ . This gives (a). For (b), if M +M ′ has full

rank, then ker(M +M ′) = {0}, and so |⟨uM,w, uM,w
′⟩|2 = 2−k, as claimed.

Proof of Proposition 5.7. In what follows, we demonstrate three things:

(i) For every s, x ∈ F
2
k−1 and α ∈ F2, it holds that (x, α) · Ls(x, α) = 0.

(ii) For every s, x, y ∈ F
2
k−1 and α, β ∈ F2, it holds that (x, α) · Ls(y, β) =

Ls(x, α) · (y, β).

(iii) For every r, s ∈ F
2
k−1 with r ̸= s, Lr(x, α) = Ls(x, α) implies (x, α) = (0, 0).

Thanks to the non-degeneracy of the bilinear form, (i)–(iii) together imply the result.
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First, (i) is easily verified by applying three properties of the trace: tr is F2-

linear, tr(z2) = tr(z), and tr(z)2 = tr(z) since tr(z) ∈ F2. Also, (ii) quickly follows

from the linearity of the trace. For (iii), take r, s ∈ F
2
k−1 with r ≠ s and suppose

Lr(x, α) = Ls(x, α). The second argument of this identity is tr(rx) = tr(sx).

Rearrange the first argument to get

0 = (r2 + s2)x+ r tr(rx) + s tr(sx) + α(r + s) = (r + s)
(
(r + s)x+ tr(rx) + α

)
,

where the last step applies the fact that tr(rx) = tr(sx). Since r + s ≠ 0 by

assumption, it follows that

(r + s)x+ tr(rx) = α ∈ F2. (5.11)

Since α2 = α, the left-hand side of (5.11) satisfies the same quadratic, which in turn

implies x ∈ {0, (r + s)−1}. Since x also satisfies tr((r + s)x) = 0, it follows that

x = 0. Plugging into (5.11) then gives α = 0, as desired.
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5.4 Numerical Results

In this section, we report the real-world performance of our fast sparsifying transform.

In our experiments, we take A ∈ Rn×n to be a random orthogonal matrix, and then

we select a unit vector x such that Ax has exactly s nonzero entries of the same size

in random positions. (This is straightforward to implement since A−1 = A⊤.) Due

to limitations in computing power and storage capacity, we restrict our experiments

to dimension n = 4096, and we select sparsity level s = 20.

What follows are some details about our implementation. Since n is a power of 2,

we have d = n, and so our projective 2-design has size L = n(n/2+1) = 8392704. For

such a large value of L, it turns out that the runtime of selecting N random members

of the precomputed sketch {Asℓ}ℓ∈[L] is sensitive to the design of the underlying data

structure. In order to provide a useful runtime comparison, we therefore assume

that this random selection is performed by an oracle before we start the runtime

clock in our algorithm. To compute medians, we apply the quickselect algorithm [58].

Finally, to boost performance, we take S ⊆ [n] to index the 10s largest-magnitude

entries of µ̂ instead of the top s entries.

The results of our experiments are summarized in Figure 6. Figure 6(top-left)

illustrates that the median-of-means estimator µ̂ performs better in practice than

predicted by Theorem 5.5. In particular, we can take J and K to be smaller than

suggested by the bounds in our guarantee, which is good for runtime considerations.

(In fact, taking η = 1 in Theorem 5.5 delivers a lower bound on K that is greater than

16, meaning our theoretical guarantees are off the scale in this plot.) Figure 6(top-

right) illustrates the performance of our entire algorithm for different choices of J and

K. Notably, we perfectly computed Ax in all of our 1000 random trials when K = 2

and J = 375. Figure 6(bottom) illustrates the runtime of our algorithm relative

to naive matrix–vector multiplication. For this plot, we divide the runtime of our

algorithm by the runtime of the naive algorithm. Throughout, gray denotes choices
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∥µ̂− Ax∥∞ ∥ĥ− Ax∥2

ratio of runtimes

Figure 6: Performance of fast sparsifying transform for a random orthogonal matrix
A ∈ Rn×n with n = 4096 and vectors x ∈ Σ(A, s, δ) with s = 20 and
δ = 0. (top-left) We compute the median-of-means estimator µ̂ ∈ Rn and
plot the worst-case behavior over 1000 trials. (top-right) We compute
ĥ ∈ Rn by multiplying x by the rows of A corresponding to the 10s largest-
magnitude entries of µ̂, and we plot the worst-case behavior over 1000
trials. (bottom) We plot the quotient of our algorithm’s runtime with
the runtime of naive matrix–vector multiplication. (Here, we ignore the
runtime of randomly sampling N vectors from the precomputed sketch
{Asℓ}ℓ∈[L] since optimizing data structures is beyond the scope of this
work.) Throughout, gray denotes choices of parameters for which our
algorithm is no faster than the naive algorithm.
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of (K,L) for which our algorithm provides no speedup over the naive algorithm. In

particular, when K = 2 and J = 375, our method is about twice as fast as the naive

approach. Interestingly, the median-of-means estimator reduces to the empirical

mean when K = 2; this might suggest an opportunity to improve our theory, and

perhaps even speed up our algorithm.
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6 Greedy-Type Sparse Recovery from Heavy-Tailed

Measurements

Subsections 6.1-6.5 correspond to the publication [34] with slight adaptations. Sub-

section 6.6 demonstrates an adaptation of the CoSaMP-algorithm using the idea

of an iterative median-of-mean algorithm outlined in this publication. Further, a

numerical analysis of this algorithm is shown and a proof sketch is discussed.

After extensive discussions about the advantages (but also limitations) of median-of-

means in the context of sparsifying transforms during the project presented in the

last section, Felix Krahmer and I explored further applications where substituting a

sample mean by a median-of-means could be beneficial. As the sample mean is at

the core of basically every established recovery algorithm in compressed sensing, this

was the main target of my last research project before finalizing this dissertation.

Refining early discussions with Richard Kueng, we published the most fundamental

approach outlining the main idea of using median-of-means for compressed sensing

and continued exploring more complex recovery algorithms and recovery guarantees

afterwards. Further numerical results and proof ideas are discussed in subsection 6.6.

After completing my research at Felix Krahmer’s research group, Anna Veselovska

and Felix Krahmer have taken over the continuation of this project.

6.1 Introduction

Motivated by various applications in signal processing and the publications of Candès,

Romberg, Tao, and Donoho [15, 26], a variety of research in the field of compressed

sensing, targeting the recovery of a sparse signal from a small number of measurements,

has been established.
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In the following, it is assumed that the measurements are of the form

yj = a(j)∗x ←→ y = Ax,

where x ∈ Cn denotes the s-sparse signal, y ∈ Cm the measurement vector with

m≪ n, and A ∈ Cm×n a random measurement matrix with E[A∗Ax] = x.

Besides algorithms for solving the initially proposed Basis Pursuit (min ∥x̂∥1 s.t.

Ax̂ = y), more efficient greedy algorithms as the Orthogonal Matching Pursuit

(OMP)[77], Compressive Sampling Matching Pursuit (CoSaMP) [67] or Iterative

Hard Thresholding [9] have been established. However, those methods are based on

a strong concentration of A∗Ax around x, namely, the Restricted Isometry Property

(RIP).

Requiring a strong concentration of A∗Ax is equivalent to requiring a strong

concentration of the sample mean of m i.i.d. random variables X(j) := ma(j)a(j)∗x

around their mean E[X(j)] = x:

A∗Ax =
m∑
j=1

a(j)a(j)∗x =:
1

m

m∑
j=1

X(j) =: X̄

For Gaussian measurement matrices (and other well-concentrated distributions),

comparably sharp tail bounds for |X̄i − xi| exist. However, this is a major challenge

for heavy-tailed distributions or in scenarios with only limited knowledge about the

underlying distribution.

In [25], the authors pointed out the difficulties of an RIP-based analysis for matrices

with weak concentration and instead established a new, ℓ1-specific technique to obtain

recovery guarantees for the Basis Pursuit covering heavy-tailed matrices. However,

their theory is not applicable to greedy algorithms. To the best of our knowledge,

there are no successful recovery guarantees for greedy algorithms for heavy-tailed

matrices.
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In section 6.2, the median-of-means is introduced as a viable alternative to the

mean, and a subroutine based on this estimator is presented. In section 6.3, this

subroutine is then expanded to an iterative algorithm – the main contribution of

this work. The performance of this algorithm is then presented in section 6.4 and

possible improvements are discussed.
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6.2 Median-of-Means

By definition, heavy-tailed distributions have a significantly higher probability for

outliers, which negatively affects the sample mean and, as a consequence, prevents

successful recovery guarantees for greedy algorithms. For that reason, we suggest

replacing the inadequately concentrating sample mean by a more robust median-of-

means estimator µ̂.

For computing µ̂, the m measurements have to be split into K subsets of size J .

In the next step, the sample mean X̄(k) of every subset has to be computed.


X(1,1)

...

X(J,1)


︸ ︷︷ ︸

⇒X̄
(1)


X(1,2)

...

X(J,2)


︸ ︷︷ ︸

⇒X̄
(2)

· · ·


X(1,K)

...

X(J,K)


︸ ︷︷ ︸

⇒X̄
(K)

By taking the entrywise median (in the complex case separately for the real and

imaginary part) over all sample means X̄(1), . . . , X̄(K), the median-of-means estimator

µ̂ is obtained. As the median is very robust against outliers, µ̂ even exhibits an

exponential concentration in K:

Lemma 6.1. Assume a random variable Xi has mean E[Xi] = xi and variance

V[Xi] ≤ σ2∥x∥22 <∞. Then, the median-of-means estimator µ̂i, defined as

µ̂i = median{X̄(1)
i , . . . , X̄

(K)
i } with X̄

(k)
i =

1

J

J∑
j=1

X
(j,k)
i ,

fulfills

P(|µ̂i − xi| ≥ γ) ≤ 2e−K/2

if J ≥ 2e
2
σ
2∥x∥22
γ
2 .
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Proof. The proof follows the proof idea of [33, Theorem 5] with appropriate adapta-

tions.

– Case I: x, y, A are real:

By assumption,

V[X̄i] =
1

J2

J∑
j=1

V[X(j)
i ] ≤ σ2∥x∥22

J
.

By applying Chebyshev’s inequality, the following tail bound is obtained

pJ := P(|X̄i − xi| ≥ γ) ≤ V[X̄i]

γ2
≤ σ2∥x∥22

Jγ2
.

For every k ∈ [K], one can define the Bernoulli random variable I(k) := 1{|X̄(k)
i −x| ≥

γ} with parameter pJ . By the definition of the median, |µ̂i − xi| ≥ γ can only be

fulfilled if either at least half of the X̄
(k)
i are larger than xi + γ or at least half of

them are smaller than xi − γ. Therefore,

P (|µ̂i − xi| ≥ γ) ≤ P(
K∑
k=1

I(k) ≥ K

2
).

Applying the multiplicative Chernoff bound, yields

P

(
K∑
k=1

I(k) ≥ (1 + λ)Kp

)
≤

(
eλ

(1 + λ)1+λ

)Kp

= e−Kp

(
e

1 + λ

)(1+λ)Kp

, λ > 0.

By assumption, J ≥ 2e
2
σ
2∥x∥22
γ
2 and therefore pJ ≤ 1

2e
2 . Choosing (1 + λ)Kp = K/2
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concludes the proof for the real case:

P(|µ̂i − xi| ≥ γ) ≤ e−KpJ (2epJ)
K/2 ≤ (2epJ)

K/2

≤
(
2eσ2∥x∥22
Jγ2

)K/2

≤ e−K/2.

– Case II: x, y, A are complex:

Denote by ℜ(xi) the real part and by ℑ(xi) the imaginary part of xi. By our

definition, the median over a complex set has to be taken separately for the real

part and imaginary part of its elements. Therefore, µ̂i =: ℜ(µ̂i) + iℑ(µ̂i), where

ℜ(µ̂i) = median{ℜ(X̄(1)
i ), . . . ,ℜ(X̄(K)

i )} (resp. for ℑ(µ̂i)).

By triangle inequality and union bound,

P(|µ̂i − xi| ≥ γ)

≤ P(|ℜ(µ̂i)−ℜ(xi)|+ |ℑ(µ̂i)−ℑ(xi)| ≥ γ)

≤ P(|ℜ(µ̂i)−ℜ(xi)| ≥ γ) + P(|ℑ(µ̂i)−ℑ(xi)| ≥ γ)

≤ 2e−K/2.

As P(|ℜ(X̄i − xi)| ≥ γ) ≤ P(|X̄i − xi| ≥ γ) (resp. for ℑ), the bound for the real case

above holds for both summands in the second line separately, which concludes the

proof.

Corollary 6.2. Assume X1, . . . , Xn are random variables with mean E[Xi] = xi and

variance V[Xi] ≤ σ2 <∞ for all i ∈ [n]. Then,

P(∥µ̂− x∥∞ ≥ γ) ≤ η
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for

J ≥ 2e2σ2∥x∥22
γ2

K ≥ 2 log

(
2n

η

)
.

Proof. The theorem follows directly from Lemma 6.1 by choosing K such 2e−K/2 ≤ η
n

and applying a union bound over all i ∈ [n].

Algorithm 6 Approximation from random measurements via median-of-means

Require: Measurement matrix A ∈ Cm×n and vector of measurements y ∈ Cm with
m = JK;

Ensure: Approximation µ̂ of the s-sparse signal x ∈ Cn fulfilling ∥µ̂− x∥∞ < γ with high
probability.

1: function MoM(y;A;J ;K)

2: Split A in matrices A(k) ∈ CJ×n and y in corresponding vectors y(k) ∈ CJ ∀k ∈ [K].
3: for k = 1 to K do
4: Compute X̄(k) = m

J A
(k)∗y(k)

5: end for
6: return median{X̄(1), . . . , X̄(K)}
7: end function

Theorem 6.3. Let x ∈ Cn be a signal, A ∈ Cm×n a random measurement matrix

with centered i.i.d. entries with moments

E[|a(j)i |
2] =

1

m
and E[|a(j)i |

4] ≤ σ2

m2 <∞,

and y := (Ax) ∈ Cm the corresponding measurement vector.

Then, the output µ̂ of Algorithm 6 with J and K as in Corollary 6.2 and m ≥ JK

fulfills

∥µ̂− x∥∞ < γ

with probability 1− η.
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Proof. This follows directly from Corollary 6.2 as

E[X(j)
i ] = mE[e∗i a(j)a(j)∗x]

= mE[|a(j)i |
2]xi︸ ︷︷ ︸

=xi

+mE[a(j)i ]︸ ︷︷ ︸
=0

E[
∑

l ̸=i ā
(j)
l xl] = xi

and

V[X(j)
i ] = E[|X(j)

i |
2]− |E[X(j)

i ]|2

= m2E[|a(j)i |
4]|xi|2︸ ︷︷ ︸

≤σ
2|xi|

2

+mE[|a(j)i |
2]︸ ︷︷ ︸

=1

mE[|
∑

l ̸=i ā
(j)
l xl|2]︸ ︷︷ ︸

=m
∑

l̸=i E[|ā
(j)
l |2]|xl|

2

−|xi|2

≤ (σ2 − 1)|xi|2 +
∑

l ̸=i |xl|
2 ≤ σ2∥x∥22.

The last inequality holds as E[|a(j)i |
4] ≥ E[|a(j)i |

2]2 (Jensen’s inequality)⇒ σ2 ≥ 1.

Remark 6.4. Even if the original measurement matrix does not fulfill E[|a(j)i |
2] = 1

m
,

matrix and measurements can be scaled to fulfill the corresponding requirement of

Theorem 6.3 as long as the fourth moment is bounded and the second moment is

known.
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6.3 Iterative Median-of-Means Algorithm

As proven in Theorem 6.3, the approximation µ̂(x) obtained by Algorithm 6 fulfills

∥µ̂(x)− x∥∞ < γ with high probability. While the ℓ∞-bound can be used to identify

large entries of x, the naive ℓ2-bound exhibits an undesirable scaling in n:

∥µ̂(x)− x∥2 =

√√√√ n∑
i=1

|µ̂i(x)− xi|2

≤
√
n∥µ̂(x)− x∥∞ ≤

√
nγ

The scaling in n can be reduced to a scaling in s by applying an entrywise

hard-thresholding operator

hγ(µ̂)i := hγ(µ̂i) :=


µ̂i for |µ̂i| ≥ γ

0 for |µ̂i| < γ.

Figure 7: Visualization of the possible deviation of |µ̂| from |x| for a precision of γ.
The black dots symbolize the entries of x, while the entries of µ̂i(x) lie
within the open intervals.

In Figure 7, the possible intervals of the deviations of µ̂(x) from x are visualized.
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As ∥µ̂(x)− x∥∞ < γ, xi = 0 implies hγ(µ̂i(x)) = 0, and, further,

supp(hγ(µ̂(x))) ⊆ supp(x). (6.1)

No effect can be seen for |xi| > 2γ which implies |µ̂i(x)| > γ, and therefore,

hγ(µ̂i(x)) = µ̂i(x).

While the last two properties are beneficial, applying the thresholding operator can

increase the ℓ∞-error for |xi| ∈ [γ, 2γ) with |µ̂i(x)| < γ, and therefore, hγ(µ̂i(x)) = 0

which doubles the ℓ∞ bound |hγ(µ̂i(x))− xi| < 2γ.

Combined, this leads to the ℓ2-bound

∥hγ(µ̂(x))− x∥2 =
√ ∑

i∈supp(hγ(µ̂(x)))

|hγ(µ̂i(x))− xi|2

≤
√
s∥hγ(µ̂(x))− x∥∞ ≤

√
s2γ. (6.2)

Due to the strong scaling of m ∈ O( 1

γ
2 ) in γ, a small ℓ2-norm can only be achieved

by a large increase of the number of measurements.

Instead, an iterative procedure will be defined which allows for an increasing

precision while keeping J constant. For simplicity, assume that x has unit norm (i.e.,

∥x∥2 = 1). Setting x(1) = hγ(µ̂(x)), in the second iteration not x but x− x(1) has to

be recovered. By Eq. 6.1, the sparsity is still bounded by s, while, by Eq. 6.2, the

ℓ2-norm is bounded by
√
s2γ.

So, in order to obtain an approximation µ̂(x− x(1)) with a precision of αγ (for an

α ∈ (0, 1)) while keeping J constant, the following inequality has to be fulfilled:

J ≥

=1︷︸︸︷
∥x∥22
γ2

!

≥

s(2γ)
2≥︷ ︸︸ ︷

∥x− x(1)∥22
(αγ)2

⇒ γ ≤ α
1

2
√
s
.

Therefore, set γ := α 1
2
√
s
(the choice of α will be discussed in Remark 6.6).

90



A last issue has to be addressed: Theorem 6.3 assumes a fixed x which is inde-

pendent of A. µ̂(x), and consequently, x− x(1) does not fulfill the independence on

A. Therefore, A and y have to be partitioned into L blocks, where L denotes the

number of iterations. Due to this, the current approximation and the next block

will always be independent. Defining x(l) = x(l−1) + h
α
l−1

γ
(µ̂(x− x(l−1))) recursively,

leads to the iterative Algorithm 7 and the main result, Theorem 6.5.

Algorithm 7 Approximation from random measurements via iterative median-of-
means
Require: Measurement matrix A ∈ Cm×n and vector of measurements y ∈ Cm with

m = JKL; α ∈ (0, 1).
Ensure: Approximation x̂ of the s-sparse signal x ∈ Cn fulfilling ∥x− x̂∥2 ≤ αL∥x∥2.

1: function Iterative-MoM(y;A;N ;K;L;α)

2: Split A in matrices A(k,l) ∈ CJ×n and y in corresponding vectors y(k,l) ∈ CJ

∀k ∈ [K], l ∈ [L].

3: Set x(0) = 0
4: for l = 1 to L do
5: for k = 1 to K do
6: Compute X̄(k) = m

J A
(k,l)∗(y(k,l) −A(k,l)x(l−1))

7: end for
8: µ̂ = median{X̄(1), . . . , X̄(K)}
9: x(l) = x(l−1) + h

α
l ∥x∥2
2
√
s

(µ̂)

10: end for
11: return x(L)

12: end function

Theorem 6.5. Let x ∈ Cn be an s-sparse signal with unit norm, A ∈ Cm×n a

random measurement matrix with centered i.i.d. entries with moments

E[|a(j)i |
2] =

1

m
and E[|a(j)i |

4] ≤ σ2

m2 <∞,

and y := (Ax) ∈ Cm the corresponding measurement vector.

Then, the output x̂ of Algorithm 7 fulfills

∥x̂− x∥2 < ϵ
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with probability 1− η if m ≥ JKL and

J ≥ s
8e2σ2

α2 K ≥ 2 log(n
2L

η
) L ≥ log(ϵ)

log(α)
α ∈ (0, 1).

Proof. By induction,

supp(x− x(l)) ⊆ · · · ⊆ supp(x− x(1)) ⊆ supp(x)

∥x− x(l)∥2 ≤
√
s2(αl−1γ) = αl.

The choice of L guarantees αL ≤ ϵ, while the slight adaptation of K is the result of

a union bound over all L iterations. The proof follows now directly from Theorem

6.3 as x− x(l−1) is independent of A(l) and y(l) for all l ∈ [L], due to the partitioning

of A and y.

Remark 6.6. As mentioned before, a decrease of γ strongly increases J , and conse-

quently, the number of measurements. As γ := α 1
2
√
s
, α cannot be chosen too small.

On the other hand, an α close to 1 increases L, the number of iterations. Minimizing

over the product JL, α = 1√
e
is obtained.
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6.4 Numerical Analysis

In the following, the numerical performance of Algorithm 7 will be analyzed.

The entries of A are chosen to be i.i.d. Student’s t distributed with 5 degrees of

freedom, and are then scaled to fulfill the requirements of Theorem 7, which leads to

σ2 = 9.

For a dimension of n = 2000 and sparsity s = 10, the required number of

measurements in Theorem 7 appeared to be too large. Instead, we chose J = 160

and K = 7. The parameter α is set to 1√
e
as suggested by Remark 6.6. The sparse

vector x is chosen to have unit norm with s linearly increasing entries (from approx.

0.05 to 0.5) on random positions.

Then, Algorithm 7 has been performed 10 times for different matrices A and the

worst result for every step has been plotted in Figure 8. Despite the significantly

lower values for J and K, the ℓ2-error ∥x(l) − x∥2 of the iterates of our algorithm

(blue) stayed consistently below the theoretical bound αl (red).

Figure 8: Comparison between ∥x(l)−x∥2 and its theoretical bound αl for x(l) obtained
by Algorithm 7.
(max. ℓ2-error of every iteration for 10 different matrices A)
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In Figure 9, the performance of two modifications of Algorithm 7 can be seen.

For a good comparison, each of the three methods is applied to the same A and y.

As explained in the last section, A and y have to be partitioned to guarantee the

necessary independence between underlying signal and measurement matrix. If only

one of those samples is used for every iteration, the algorithm appears way more

unstable and often fails (orange), which indicates that the required independence

is not only a proof artifact. Nevertheless, without partitioning, a larger number of

measurements could be used for every iteration - a trade-off which remains subject

of further research.

Figure 9: Comparison between the ℓ2-error of the iterates of Algorithm 7 and two
modifications of the algorithm. For the orange results, A(l) is fixed for
all iterations. For the green line, in every iteration, the median over 20
median-of-means estimates for different permutations of the measurements
is taken.
(max. ℓ2-error of every iteration for 10 different matrices A)

The second modification targets an underlying weakness of the median-of-means

estimator. Different to mean or median, the median-of-means of a data set potentially

changes when changing the order of the samples. If all outliers end up in only few
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of the K subsets, the median-of-means will most likely not be affected by them. If

they are distributed over all K subsets and affect all means, the median-of-means

should be affected as well. To compensate for this, the median-of-means is not only

computed for one single ordering of the measurements. Instead, the median-of-means

has to be computed again for multiple different permutations of the measurements.

The ’improved’ estimate is then obtained by taking the median over those median-

of-means. While even further improvements can be expected for a larger number of

permutations, we restricted ourselves to only 20 random permutations for performance

reasons.

As indicated by the graph, this leads to a significant increase in performance in

the first iteration. The performance of further steps might be restricted by the slow

decrease of the threshold (i.e., x might already be recovered with high precision, but

smaller values of the support of x are still set to 0 by the high threshold). During our

work on this modification, there appeared two preprints of Stanislav Minsker [61, 62]

showing a significantly improved constant in the tail bound compared to the standard

median-of-means. While this does not affect the scaling of the required number of

measurements with the dimension n or sparsity s, those results can significantly

improve the applicability and runtime of our algorithm for real world scenarios.

Using this modification to expand our theory to uniform guarantees is the topic of

ongoing research.
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6.5 Conclusion

The greedy algorithm presented in this work reliably approximates an s-sparse

vector from random measurements while requiring a comparably small number of

measurements. The big advantage of the presented method – besides the efficient

implementation – is the lack of strong concentration requirements on the measurement

matrix. As long as the fourth moment can be bounded, our algorithm will provably

work for any centered measurement matrix A.

Furthermore, an additional performance increase of a modified median-of-means

estimator has been demonstrated empirically in the last section.

As listed in the introduction, there is a variety of greedy algorithms for recovering

sparse signals which are based on the concentration of A∗Ax. We are convinced that

the algorithm presented here is only one example where replacing the sample mean

by the median-of-means is beneficial and suggests further research for different, more

involved recovery algorithms.
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6.6 Iterative Median-of-Means for CoSaMP

The possible advantage of estimating the expectation of a weakly concentrating

random variable via median-of-means instead of sample mean has been explained

extensively in section 2.4. The main contribution of [34] was applying this theory for

sparse approximation with a heavy-tailed measurement matrix A.

The construction of Algorithm 7 was centered around the idea of defining a random

variable based on measurements and measurement matrix which has the desired

mean, x, and, then, estimating it via median-of-means. The final iterative algorithm

reminds of a projected gradient descent with the added twist of using median-of-

means.

Yet, there remains one considerable weakness. By applying a proof technique similar

to the one presented in section 5, the probability of a large deviation of any entry of

x has been bounded. This has been achieved by establishing a tail bound for the

deviation of a single component and – as the entries of µ(x) are not independent of

each other – applying a union bound to obtain a tail bound for the largest deviation

of any entry.

While this allows for a tail bound of ∥µ̂ − x∥∞ – depending on the algorithm –

such a strong result might not be required. As outlined above, there already exists a

successful method for the ℓ1-minimization for heavy-tailed measurements [25] which

also does not require such strong results. Unfortunately, there seems to be no hope

of expanding their theory to greedy algorithms.

Nevertheless, when recalling the definition of the well-established CoSaMP algo-

rithm, it is clear that it does not require every single entry to be either large (if

in the support of x) or close to zero (if not in the support). Instead, it considers

the 2s-largest entries of A∗(y − Ax(i−1)) and adds them to the potential support set.

Therefore, there is no need to control every single entry of the current approximation

µ̂ via an ℓ∞-bound, but it would be sufficient to bound the probability of the following
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two events

� E1: More than s of the n − s entries of µ̂ which do not correspond to the

support of x are larger than γ∥y∥2.

� E2: Entries of µ̂ whose corresponding entries in x are responsible for a significant

fraction of ∥x∥2 are smaller than γ∥y∥2.

Compared to the ℓ∞-bound, there is hope that those bounds can be established with

a significantly lower number of measurements.

After adapting the algorithm using the median-of-means, a numerical analysis of

the recovery success of this new method is discussed. Concluding this subsection, a

proof idea for bounding the probability of the first event is presented.

Algorithm

Following the theme of this thesis, CoSaMP is centered around a sample mean which

is used for selecting a potential support set for the approximation of x. Our adapted

version replaces this sample mean by a median-of-means estimator. This change is

marked in blue.

Algorithm 2 Compressive Sampling Matching Pursuit (CoSaMP)

1: Data: Matrix A ∈ Cm×n, measurement y ∈ Cm, sparsity level s
2: Result: s-sparse approximation of vector x ∈ Cn

3: S(0) = ∅
4: x(0) = 0
5: for l in 1, . . . , L do
6: S(l) = supp(x(i−1)) ∪ L2s(A

∗(y − Ax(i−1)))

7: x̃(l) = argminx∈Rn{(∥Ax− y∥)2, supp(x) ⊆ S(l)}
8: x(l) = Hs(x̃

(l))
9: end for
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Algorithm 8 Compressive Sampling Matching Pursuit with MoM (CoSaMP-MoM)

1: Data: Matrix A ∈ Cm×n, measurement y ∈ Cm, sparsity level s
2: Result: s-sparse approximation of vector x ∈ Cn

3: S(0) = ∅
4: x(0) = 0
5: for l in 1, . . . , L do
6: Split A in matrices A(k) ∈ CJ×n and y in corresponding vectors y(k) ∈ CJ

∀k ∈ [K].
7: for k = 1 to K do
8: Compute X̄(k) = m

J
A(k)∗y(k)

9: end for
10: S(l) = supp(x(i−1)) ∪ L2s(median{X̄(1), . . . , X̄(K)})
11: x̃(l) = argminx∈Rn{(∥Ax− y∥)2, supp(x) ⊆ S(l)}
12: x(l) = Hs(x̃

(l))
13: end for

Numerical Analysis

As in the numerical analysis before, n = 2000 and s = 10 are chosen and A is sampled

from a Student’s t distribution (df = 5). As it can be seen in Figure 9, fixing the

matrix A for all iterations, the algorithm already failed the recovery for J = 160 and

K = 7, demonstrating that requiring new measurements for each iteration was not

a proof artifact. For CoSaMP, this does not seem to be an issue as can be seen in

Figure 10.

To heuristically identify the sufficient number of measurements for a successful

recovery, Figure 11 shows the combinations of J and K for which a sparse x has

been recovered successfully 10 times within at most 10 iterations – while keeping A

fixed for all iterations.

Considering that all 10 recoveries were successful using only 90 measurements

(J = 20, K = 3), the recovery success of CoSaMP-MoM looks very promising. In the

following, the proof idea is outlined and missing parts and issues are addressed.
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Figure 10: Comparison between the ℓ2-error of the iterates of Algorithm 7 with a
fixed A(l) for all iterations and the modified CoSaMP-MoM.
(max. ℓ2-error of every iteration for 10 different matrices A)

Figure 11: ℓ2-error after 10 iterations of Algorithm 8 for various combinations of J
and K.
(max. ℓ2-error for 10 different matrices A)
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Proof Idea

The proof idea follows again the technique outlined in section 2.4 with an additional

twist to avoid a union bound. By conditioning on the measurements y, an indepen-

dence between the entries of the approximation corresponding to entries that are not

in the support of x can be obtained. Denote S := supp(x), fix i ∈ [n] \ S, and recall

e∗iA
(1)∗A(1)x =

J∑
j=1

e∗i a
(j)a(j)∗x =

J∑
j=1

a
(j)
i a(j)∗x =

J∑
j=1

a
(j)
i a

(j)∗
S xS.

As all a
(j)
i are i.i.d., a

(j)
i and a

(j)∗
S xS are independent for i ∈ [n] \ S. Recalling the

split of A and y into K blocks for the median-of-means, we obtain y
(1)
j = a

(j)∗
S xS

and y(1) = (y
(1)
1 , . . . , y

(1)
J )T = A(1)x. By conditioning on y(1), all

∑J
j=1 a

(j)
i y(1)

∣∣∣y(1) are
independent for all i ∈ [n] \ S and, therefore, allow for expanding a tail bound for

one entry to all i ∈ [n] \ S without relying on the union bound.

Using Chebyshev’s inequality and the properties of a
(j)
i , the following conditional

probability can be bounded

P
(
|m
J
e∗iA

(1)∗y(1)| ≥ γ
∣∣∣y(1))

≤
E
[
(m
J
e∗iA

(1)∗y(1))2
∣∣∣y(1)]

γ2

=
m2

J2γ2
E

[
(

J∑
j=1

a
(j)
i y

(1)
j )2

∣∣∣∣∣y(1)
]

=
m2

J2γ2
(

J∑
j=1

E
[
(a

(j)
i )2

]
︸ ︷︷ ︸

= 1
m

(y
(1)
j )2

︸ ︷︷ ︸
= 1

m
∥y(1)∥22

+2
∑

1≤k<l≤J

E
[
a
(k)
i a

(l)
i

]
︸ ︷︷ ︸

=0

y
(1)
k y

(1)
l )

≤ m∥y(1)∥22
J2γ2

=
K∥y(1)∥22
Jγ2

=: p1.

As previously explained, the idea behind median-of-means is based on splitting the

measurements into K independent blocks. A fixed entry i of the median-of-means
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µ̂(x) only deviates ‘too much’ if such a deviation occurs for more than half of the

blocks. Therefore, defining

Ik := 1

{∣∣∣m
J
e∗iA

(k)∗y(k)
∣∣∣ ≥ γ

∣∣∣∣y(k)},
the probability of the deviation of the median-of-means estimator can be bounded

again via the multiplicative Chernoff bound. It should be noted that, in contrast to

before, the probability of Ik being equal to 1 is bounded by different pk, which requires

slight adjustments and the more general version of the multiplicative Chernoff bound:

P

(
K∑
k=1

Ik ≥ (1 + λ)
K∑
k=1

pk

∣∣∣∣∣y
)
≤

(
eλ

(1 + λ)1+λ

)∑K
k=1 pk

= e−
∑K

k=1 pk

(
e

1 + λ

)(1+λ)
∑K

k=1 pk

, λ > 0.

Assume J ≥ 2e
2∥y∥22
γ
2 and therefore 1

K

∑K
k=1 pk ≤

1

2e
2 . Choosing (1+λ)

∑K
k=1 pk = K/2,

one obtains the bound for a single entry,

P(|µ̂i| ≥ γ
∣∣y) ≤ e−

∑K
k=1 pk

(
2e

1

K

K∑
k=1

pk

)K/2

≤

(
2e

1

K

K∑
k=1

pk

)K/2

=

(
2e

1

K

K∑
k=1

K∥y(k)∥22
Jγ2

)K/2

=

(
2e∥y∥22
Jγ2

)K/2

≤ e−K/2.

The key difference to the proofs in [33] and [34] is that they always required a

union bound as the to-be-bounded entries were not independent. Conditioning on

y, the entries of µ̂
S
C are indeed independent allowing for a stronger bound of the

probability of the corresponding event. There are
(
n−s
s+1

)
combinations of picking s+1

entries from the n − s entries not corresponding to the support of x. For each of

those variants, the probability of each entry to exceed γ is bounded by e−K/2 as
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shown above. Combined, the probability of the event can now be bounded by

P(E1

∣∣y) ≤ (n− s
s+ 1

)
(e−K/2)s+1 ≤

(
(n− s)e
s+ 1

)s+1

(e−K/2)s+1 ≤ ηs+1
(ne
s

)−(s+1)

.

The last inequality can be obtained by picking K = 2 log
(

ne
s

(n−s)e
(s+1)η

)
∈ O

(
log( n

s
√
η
)
)
.

As the dimension of y is equal to m, keeping such an indirect dependency in m = JK

should be avoided. Nevertheless, recalling that y = Ax = ASxS and E[|a(j)i |
2] = 1

m
,

a scaling of ∥y∥2 depending on s but not on m or n can be expected and, therefore,

is not of concern. Hence, summarizing those results and choosing γ = γ̃∥y∥2, the

following lemma has been proven:

Lemma 6.7. Let x ∈ Cn be a signal, A ∈ Cm×n a random measurement matrix

with centered i.i.d. entries and E[|a(j)i |
2] = 1

m
, and y = Ax ∈ Cm the corresponding

measurement vector. Define

B = {i ∈ [n] \ S : |µ̂i| ≥ γ∥y∥2}.

Then, the output µ̂ of Algorithm 8 with J ≥ 2e
2

γ
2 , K = 2 log

(
ne
s

(n−s)e
(s+1)η

)
, and m ≥ JK

satisfies

P(|B| > s
∣∣y) ≤ ηs+1

(ne
s

)−(s+1)

.

Lemma 6.7 exhibits an attractive scaling of the number of measurements with

m ∈ O
(
γ−2 log( n

s
√
η
)
)
. For RIP-based proofs, a bound scaling with

(
ne
s

)−s
usually

allows a union bound over all s-sparse vectors. If this is possible also in this setting,

the result of Lemma 6.7 could be expanded to hold not only for a fixed vector x but

all s-sparse vectors, still with high probability. Continuing this line of thought to

the full proof of the CoSaMP-MoM algorithm, the successful recovery, even for a low
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number of measurements and a fixed matrix A for all iterations (as seen in Figure

11), could be explained. It remains to finalize the union bound argument over all

s-sparse vectors and resolve the conditioning on y. Further, the probability of event

E2 needs to be bounded.

The ideas presented in this subsection are based on discussions during my time in Felix

Krahmer’s research group. Unfortunately, the proof could not be completed before

my departure and finalizing this thesis, but Anna Veselovska and Felix Krahmer

have taken over the continuation of this project.
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7 Conclusion and Outlook

This thesis has addressed significant challenges in the fields of sparse data representa-

tion and signal recovery, presenting novel solutions that enhance both computational

efficiency and robustness. The research has focused on two primary contributions:

Fast Sparsifying Transforms

A randomized algorithm was developed to compute Ax for any x ∈ Rn such that

Ax is s-sparse, even for unstructured matrices A. Leveraging spherical designs

derived from Kerdock sets and the robustness of the median-of-means estimator,

this approach efficiently computes the representation of A during preprocessing.

Subsequently, the fast transform computes the entrywise ϵ-hard threshold of Ax

with high probability, significantly reducing computational complexity compared to

traditional methods. Performance guarantees and numerical results underscore the

practical feasibility of this algorithm.

Sparse Recovery from Heavy-Tailed Measurements

Traditional compressed sensing algorithms often struggle with heavy-tailed measure-

ment matrices due to their weak concentration properties. To address this challenge,

an adapted greedy algorithm based on the median-of-means estimator was introduced.

This method ensures robust recovery of any s-sparse unit vector x ∈ Cn with high

probability, achieving small ℓ2-error while imposing minimal assumptions on the

measurement matrix A. The successful adaptation of the CoSaMP algorithm and

its numerical validation provide practical insights and lay a foundation for further

advancements.

In summary, this thesis represents significant advancements in fast sparse trans-

forms and robust compressed sensing. These methodologies not only enhance compu-
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tational efficiency but also guarantee reliable signal recovery in challenging environ-

ments. Future research directions will focus on refining the theoretical underpinnings

and extending numerical evaluations to solidify these contributions’ impact. Con-

tinued development promises to expand the capabilities and applications of sparse

models in solving complex real-world problems.
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