
Towards an Architecture-Centric
Methodology for Migrating

to Microservices

Jonas Fritzsch1(B), Justus Bogner3, Markus Haug1, Stefan Wagner1,
and Alfred Zimmermann2

1 University of Stuttgart, Stuttgart, Germany
{jonas.fritzsch,markus.haug,

stefan.wagner}@iste.uni-stuttgart.de
2 University of Applied Sciences Reutlingen, Reutlingen, Germany

alfred.zimmermann@reutlingen-university.de
3 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

j.bogner@vu.nl

Abstract. The euphoria around microservices has decreased over the
years, but the trend of modernizing legacy systems to this novel archi-
tectural style is unbroken to date. A variety of approaches have been
proposed in academia and industry, aiming to structure and automate
the often long-lasting and cost-intensive migration journey. However, our
research shows that there is still a need for more systematic guidance.
While grey literature is dominant for knowledge exchange among practi-
tioners, academia has contributed a significant body of knowledge as well,
catching up on its initial neglect. A vast number of studies on the topic
yielded novel techniques, often backed by industry evaluations. However,
practitioners hardly leverage these resources. In this paper, we report on
our efforts to design an architecture-centric methodology for migrating to
microservices. As its main contribution, a framework provides guidance
for architects during the three phases of a migration. We refer to meth-
ods, techniques, and approaches based on a variety of scientific studies
that have not been made available in a similarly comprehensible man-
ner before. Through an accompanying tool to be developed, architects
will be in a position to systematically plan their migration, make better
informed decisions, and use the most appropriate techniques and tools
to transition their systems to microservices.

Keywords: microservices · refactoring · software architecture

1 The Challenge of Moving to Microservices

In times of cloud-based software solutions, the microservices architectural style
has become the de facto standard for large-scale and cloud-native commercial
applications [15]. Technological advancements like containerization and automa-
tion have paved the way for efficiently operating almost any number of inde-
pendent functional units. However, existing legacy systems are often designed
c© The Author(s) 2024
P. Kruchten and P. Gregory (Eds.): XP 2022/2023 Workshops, LNBIP 489, pp. 39–47, 2024.
https://doi.org/10.1007/978-3-031-48550-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48550-3_5&domain=pdf
https://doi.org/10.1007/978-3-031-48550-3_5


40 J. Fritzsch et al.

as monoliths and can therefore barely benefit from advantages such as improved
scalability, maintainability, and agility through independent deployment units
[11]. Hence, many companies try to migrate their systems towards microser-
vices. While a rewrite of the entire application is expensive and often infeasible,
architects are looking for less resource-intensive approaches to modernize a sys-
tem. Architectural refactorings that are (partly) automated may reduce effort
and risk of a migration tremendously. Unfortunately, there is no general app-
roach that fits for arbitrary systems [10]. A thorough analysis is required to
choose the appropriate strategy and refactoring technique.

Early adopters of microservices had to deal with manifold challenges, such
as a lack of technical guidance and best practices, immature tooling, or orga-
nizational aspects. While pioneers like Amazon, Netflix, Spotify, and even the
German retailer Otto published on their journeys of microservices adoption, such
exemplary cases do not necessarily qualify as a blueprint. The average enterprise
system has often more sophisticated tasks to fulfill than the well-studied retail
domain, and moreover, IT budgets are often tight. As well, strict compliance
and high-quality requirements do not leave much room for experimentation and
failed investments. Hence, architects often struggle to find suitable guidance on
planning and conducting such an architecture change systematically. A migration
and in particular the decomposition of industry-scale legacy systems is a seen
as major challenge in this regard [9]. While practitioners often achieve a reason-
able solution with extensive manual efforts, the targeted and quality-controlled
planning of a migration as well as a semi-automated decomposition continue to
be problematic. In the following two subsections, we briefly summarize our view
on the typical progress of a system migration to microservices and describe the
gap between academia and industry.

1.1 Three Phases of a Migration

Based on our groundwork and existing research [5,14,16], we identify three main
phases of a migration: system comprehension, planning, and implementation. The
initiation of a migration is commonly started with comprehending the existing
system: After the definition of strategic goals, quality requirements are deter-
mined by all stakeholders of the system. They serve as a measure for assessing
the legacy system and potential alternatives. Hence, the outcome of this first
phase should be a grounded decision for or against a modernization, based on
specific quality attributes and metrics. While monolith and microservices are not
the only possible architectural styles, we exclusively focus on the contraposition
of these two patterns.

Given that the comprehension phase resulted in favor of a migration, the
planning phase aims at defining an adequate strategy. One of the two major tasks
in this phase is the definition of a development process based on different types
of software modernization [3]. Distinguishing greenfield and brownfield develop-



Microservices Migrations 41

ments1, we further split up the second in a re-build or re-factor development
type. Further distinctions can be made that affect the time frame and consump-
tion of resources. While a big bang2 migration aims to minimize the duration, a
continuous evolution strategy tries to minimize the needed resources. The second
decision in the planning phase concerns the choice of a service identification app-
roach. It yields a suitable service cut (decomposition of the existing system) and
thereby determines the granularity of resulting services. Our previous research
has shown that deciding on the decomposition is often a manual task [9] guided
by methods like Domain-Driven Design (DDD). However, a variety of existing
artifacts from the legacy system can be beneficial for automating this task to
some extent, e.g., code bases, databases, version control system data, runtime
logs and traces, and various other design documents or models.

After completion of the initial two phases, the actual implementation starts.
The elaborated strategy implies boundaries for duration, required resources, as
well as needed organizational changes. The latter are in particular relevant as a
consequence of altering a system’s architecture [7]. Microservices candidates and
target architecture are defined, based on the approach and techniques chosen in
the planning phase. The now following implementation of services commonly
iterates through several cycles. In each cycle, one or more microservices are
implemented, accompanied by a quality assessment of the emerging target sys-
tem. That way, inadequacies of the architecture definition or even an unsuitable
decomposition can be corrected early with reasonable effort. The organizational
changes, infrastructure build-up, and establishment of DevOps processes go hand
in hand with the migration progress.

1.2 The Academia-Industry Gap

A rapidly growing number of scientific publications deal with the topic of
microservices migrations, as the meta studies by Schroer et al. [13] and Ponce et
al. [12] show. Existing research covers a variety of topics, starting from decision-
making over process strategies [3] to quality assurance [6] and organizational
aspects [9]. The challenging question of service identification techniques in gen-
eral [1] and for microservices specifically is targeted by several dozen studies
[10,12]. However, our empirical research has shown that this extensive body
of scientific literature is mostly unknown to practitioners and therefore rarely
leveraged [9]. We found that even specialized consultancy companies do rarely
consider such knowledge. There may be several aspects to this barrier, e.g., reser-
vations regarding scientific databases, access limitations, or concerns regarding
the practical applicability and relevance of scientific research. Hence, a key moti-
vation of our work is in filtering, pre-processing, and presenting the relevant
works to practitioners based on their specific systems and migration scenarios.

1 Greenfield development refers to creating a system for a new environment from a
clean slate, no legacy code is required. Brownfield developments require the presence
of an existing system that gets improved: data, processes and settings are retained.

2 Migration within a limited time window and instant switch from old to new system.



42 J. Fritzsch et al.

2 Research Design

Figure 1 illustrates the overall research method. Our research objective is framed
by the following two questions:

RQ1: How can a process framework represent a holistic view on microservice
migration activities with a focus on architectural refactoring techniques?

RQ2: How can tool support based on such a framework provide guidance for
architects in a specific migration scenario?

As a foundation, we analyzed existing literature on the microservice migration
process. In an interview study among 16 practitioners from 10 companies, we
analyzed 14 systems from various domains regarding intentions, practices, and
challenges [9]. In addition, we contributed an early meta study classifying archi-
tectural refactoring approaches for migrations to microservices [10]. Our result-
ing methodology serves as a basis for longitudinal case studies that are currently
conducted in cooperation with industry (including DATEV eG and Siemens
AG). In an iterative process, the framework and accompanying tool support will
be evaluated and refined. As a final step, we plan a large-scale survey among
practitioners to assess the accompanying tools’ applicability in certain contexts,
its usefulness, and usability.

Fig. 1. Research Method

3 Related Work

According to the outlined research method, we split up the discussion of related
studies into three clusters: 1) migration process, 2) architectural refactoring, and
3) associated aspects like quality assurance and re-organization.



Microservices Migrations 43

1) Migration Process. In their survey among 18 practitioners, Di Francesco
et al. collected the various activities carried out in a migration to microser-
vices [8]. The work provides an empirically collected, bottom-up classification of
common activities. Taibi et al. followed a similar survey-based approach when
querying 21 practitioners [14]. They reconstructed a migration process frame-
work that reflects the interviewees’ procedures and best practices. In addition
to Di Francesco et al., they also distinguish between re-development and contin-
uous evolution strategies, applying the popular Strangler pattern. Wolfart et al.
approach the migration topic more holistically in their migration roadmap [16].
They analyzed six primary studies to come up with a unified process. To this
end, they conducted a more comprehensive systematic mapping of 62 primary
studies dealing with the modernization of legacy systems to microservices. Their
resulting framework depicts eight activities grouped into four phases, namely Ini-
tiation, Planning, Execution, and Monitoring. In the same way, we can regard
the roadmap by Bozan et al. [5] on incrementally transitioning to a microser-
vices architectures, which was distilled from interviews with 31 software experts.
In contrast to the above-mentioned studies, the authors here also reflect on the
organizational and business-related impacts.

2) Architectural Refactoring. The secondary studies by Abdellatif et al.
[1], Bajaj et al. [3], Schroer et al. [13], Ponce et al. [12], and Fritzsch et al.
[10] provide a holistic overview of this major technical challenge in a migration.
Our earlier study [10] attempted a classification of approaches based on their
underlying techniques. Abdellatif et al. [1] developed a more elaborate taxonomy
that provides a solid foundation for use in our framework. The majority of studies
can be ascribed to at least one of the three basic categories of techniques: model-
driven, static analysis, and dynamic analysis [12]. In addition, organizational
structures or metadata like version control history [10] can also provide valuable
input for the architectural refactoring.

3) Associated Aspects. As initially set strategic goals and subsequently iden-
tified quality attributes largely steer the architecture transformation, quality
assurance needs a strong focus, as outlined by Shahin et al. [13]. This aspect
is reflected in some of the above suggested frameworks during the initial phase
(requirements and strategic goals) or in the form of verification and validation
activities. As a basis for assessing the relevance of different quality attributes
for microservices in general [4] and in the context of a migration [9], we build
upon our earlier empirical research. It also revealed that organizational changes
and social aspects such as a mindset change can have considerable impact on
the migration process.

Significant advances have been made in detailing the process of a migration,
as well as in elaborating techniques for decomposing monolithic systems. How-
ever, there is no holistic methodology available that combines both aspects. In
addition, our research revealed the lack of a vehicle for knowledge transfer into
practice. We aim to address this issue by suggesting a methodology that presents
a holistic view on microservice migration activities, with a focus on architectural
refactoring. It is enriched with a systematic quality assessment and aims for a



44 J. Fritzsch et al.

high degree of automation. Furthermore, we seek to develop a supplemental tool
that guides architects, thereby allowing them to efficiently leverage the compre-
hensive body of scientific knowledge.

4 Proposed Migration Framework

To address RQ1, we propose an architecture-centric framework for migrating
to microservices as depicted in Fig. 2. It incorporates ideas and groundwork of
existing research, especially the works by Wolfart et al. [16]. Aspects of the
works by Taibi et al. [14] and Bozan et al. [5] have influenced the design as well.
According to the discussion in Sect. 1.1, we split a migration into three phases
that are detailed below. Each activities’ result artifacts are shown in a flowchart
on the right side in Fig. 2. The reflected process may be applied separately for
single subsystems as required.

Fig. 2. Proposed Framework for Microservices Migrations



Microservices Migrations 45

Phase 1: System Comprehension starts with a set of activities aiming to
comprehend the existing system and assess alternatives as described by Wolfart
et al. [16]. We depicted the common activities and involved personas. The activ-
ities in this phase are commonly performed as part of an architecture review
using methods like ATAM, SAAM, or a more lightweight method, e.g., the one
suggested by Auer et al. [2]. The resulting quality assessment links the decision
for or against a migration to microservices to distinct scenarios and associated
quality requirements which the architectural styles in question are favorable for.

Phase 2: Strategy Definition entails the two activities described in Sect. 1.1
to define the migration strategy. Depending on the system’s technological state,
organizational aspects or other boundary conditions, different strategies may be
chosen. The selection of a suitable approach and technique for service identifi-
cation depends on several factors like targeted quality attributes, the available
input artifacts, automation potential and maturity of available tool support. To
this end, academia offers a variety of approaches that partly offer freely available
tools that can be leveraged by practitioners.

Phase 3: Architecture Definition starts with the identification of services
and a preliminary definition of the target architecture. The incremental imple-
mentation of the identified services is preceded by a prioritization step. The
framework puts a major focus on quality assurance aspects to ensure that ini-
tially defined measures are applied and satisfied. Hence, the implementation
activities are accompanied by a scenario-based analysis and followed by a veri-
fication & validation step. Deviations from the targets will consequently lead to
altering the defined target architecture or even considering an alternative service
identification approach by stepping back into phase 2.

5 Current Status of Tool Support

To address RQ2, we are in the process to develop a web-based tool that guides
architects through a migration scenario. In the comprehension phase, the tool
collects system specifications and guides through an architecture assessment.
Based on an extensible repository of approaches for service identification and
architectural refactoring, the tool will further assist in finding the appropri-
ate technique for a specific system. As such, the repository provides selected
approaches proposed by academia. In the implementation phase, the guidance
will be realized in form of suggesting patterns and best practices associated with
the targeted quality aspects for the migration. Methodology and tool support
are currently being refined and evaluated within longitudinal industry case stud-
ies. For the framework’s structure and automation capabilities, we conducted
interviews among 9 software professionals. We also see potential for hosting the
developed tool publicly and expanding it by functionality to incorporate user
feedback or a rating system. In that regard, the framework and tool support
could facilitate knowledge transfer not just from academia to industry but also
vice versa, thereby contributing to close the gap highlighted in Sect. 1.2.



46 J. Fritzsch et al.

References

1. Abdellatif, M., et al.: A taxonomy of service identification approaches for legacy
software systems modernization. J. Syst. Softw. 173 (2021)

2. Auer, F., Lenarduzzi, V., Felderer, M., Taibi, D.: From monolithic systems to
microservices: an assessment framework. Inf. Softw. Technol. 137 (2021)

3. Bajaj, D., Bharti, U., Goel, A., Gupta, S.C.: A prescriptive model for migration
to microservices based on SDLC artifacts. J. Web Eng. (2021)

4. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Microservices in indus-
try: insights into technologies, characteristics, and software quality. In: 2019 IEEE
International Conference on Software Architecture Companion (ICSA-C), pp. 187–
195. IEEE (2019)

5. Bozan, K., Lyytinen, K., Rose, G.M.: How to transition incrementally to microser-
vice architecture. Commun. ACM 64(1), 79–85 (2021)

6. Cojocaru, M.D., Oprescu, A., Uta, A.: Attributes assessing the quality of microser-
vices automatically decomposed from monolithic applications. In: 18th Interna-
tional Symposium on Parallel and Distributed Computing. ISPDC 2019, no. 1, pp.
84–93 (2019)

7. Conway, M.: Conway’s law (2018). https://melconway.com/Home/Conways Law.
html. Accessed 11 July 2022

8. Di Francesco, P., Lago, P., Malavolta, I.: Migrating towards microservice archi-
tectures: an industrial survey. In: Proceedings - 2018 IEEE 15th International
Conference on Software Architecture. ICSA 2018, pp. 29–38 (2018)

9. Fritzsch, J., Bogner, J., Wagner, S., Zimmermann, A.: Microservices migration in
industry: intentions, strategies, and challenges. In: IEEE International Conference
on Software Maintenance and Evolution (ICSME), pp. 481–490. IEEE (2019)

10. Fritzsch, J., Bogner, J., Zimmermann, A., Wagner, S.: From monolith to microser-
vices: a classification of refactoring approaches. In: Bruel, J.-M., Mazzara, M.,
Meyer, B. (eds.) DEVOPS 2018. LNCS, vol. 11350, pp. 128–141. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-06019-0 10

11. Jamshidi, P., Pahl, C., Mendonca, N.C., Lewis, J., Tilkov, S.: Microservices: the
journey so far and challenges ahead. IEEE Softw. 35(3), 24–35 (2018)

12. Ponce, F., Márquez, G., Astudillo, H.: Migrating from monolithic architecture to
microservices: a rapid review. In: Proceedings of 38th International Conference of
the Chilean Computer Science Society (SCCC 2019), Chile (2019)

13. Schröer, C., Kruse, F., Marx Gómez, J.: A qualitative literature review on microser-
vices identification approaches. In: Communications in Computer and Information
Science, vol. 1310, pp. 151–168 (2020)

14. Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, motivations, and issues for migrating
to microservices architectures: an empirical investigation. IEEE Cloud Comput.
4(5), 22–32 (2017)

15. Vale, G., Correia, F.F., Guerra, E.M., de Oliveira Rosa, T., Fritzsch, J., Bogner,
J.: Designing microservice systems using patterns: an empirical study on quality
trade-offs. In: 2022 IEEE 19th International Conference on Software Architecture
(ICSA), pp. 69–79. IEEE (2022)

16. Wolfart, D., et al.: Modernizing legacy systems with microservices: a roadmap.
In: Evaluation and Assessment in Software Engineering, pp. 149–159. ACM, New
York, NY, USA (2021)

https://melconway.com/Home/Conways_Law.html
https://melconway.com/Home/Conways_Law.html
https://doi.org/10.1007/978-3-030-06019-0_10


Microservices Migrations 47

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Towards an Architecture-Centric Methodology for Migrating to Microservices
	1 The Challenge of Moving to Microservices
	1.1 Three Phases of a Migration
	1.2 The Academia-Industry Gap

	2 Research Design
	3 Related Work
	4 Proposed Migration Framework
	5 Current Status of Tool Support
	References


