

Data-Driven Solver and Preconditioner Selection for Sparse Linear Matrices

International Conference On Preconditioning Techniques For Scientific and Industrial Applications

Hayden Liu Weng Felix Dietrich Hans Joachim Bungartz

Technical University of Munich School of Computation, Information and Technology Chair of Scientific Computing

Atlanta, June 10, 2024

Outline

Motivation

The Sparse Linear Solver Problem

The Method

Numerical Experiments

Scientific Computing application development

Three main roles can be identified:

- field/application expert
- algorithms expert
- optimization expert

One person alone cannot (generally) be expected to fulfill all of the above roles

 \Rightarrow The decisions should be decoupled as much as possible using abstractions, code generation, and numerical libraries

Scientific Computing application development

Three main roles can be identified:

- field/application expert
- algorithms expert
- optimization expert

One person alone cannot (generally) be expected to fulfill all of the above roles

- \Rightarrow The decisions should be decoupled as much as possible using abstractions, code generation, and numerical libraries
- \Rightarrow Traditionally, Computing Centers mainly offer support regarding this last aspect

Scientific Computing application development

Three main roles can be identified:

- field/application expert
- algorithms expert
- optimization expert

One person alone cannot (generally) be expected to fulfill all of the above roles

- \Rightarrow The decisions should be decoupled as much as possible using abstractions, code generation, and numerical libraries
- \Rightarrow Traditionally, Computing Centers mainly offer support regarding this last aspect
- \Rightarrow Development should be more approachable *specially* to newcomers, with special focus on algorithmic aspects!

Self-Adapting Numerical Software (SANS)¹

Beyond the initial mathematical model, successful management of complex computational environments involves:

- Algorithmic decisions
- Management of the parallel environment
- Processor-specific tuning of kernels

Meaning that the following elements are necessary: Numerical Components + Analysis Modules + Intelligent switch

Examples: ATLAS, PHiPAC, FFTW, ...

¹J. Dongarra, G. Bosilca, Z. Chen, et al., "Self-adapting numerical software (sans) effort," <u>IBM Journal of Research and Development</u>, vol. 50,

no. 2.3, pp. 223–238, 2006.

H. Liu Weng | Data-Driven Solver and Preconditioner Selection for Sparse Linear Matrices | Precond 24 – Jun. 10, 2024

Outline

Motivation

The Sparse Linear Solver Problem

The Method

Numerical Experiments

Sparse Linear Algebra: The Solver/Preconditioner Selection Problem

We want to solve:

 $A\mathbf{x} = b$

or, rather:

$$QAP^{-1}(P\mathbf{x}) = Qb$$

We have different choices to make

- · direct and iterative solvers
- preconditioning (incl. permutation, scaling, ...)
- other internal settings (GMRES(r), ILU(k), ASM(k),
 ...)
- data structures

To make our lives easier, we use, e.g., PETSc

Quick example:

Properties:

- Num Rows: 4960
- Nonzeros: 19848
- Pattern Symmetry: 100%
- Numeric Symmetry: 30.5%
- Positive Definite: No

Figure: Sparsity pattern H. Liu Weng | Data-Driven Solver and Preconditioner Selection for Sparse Linear Matrices | Precond 24 – Jun. 10, 2024

Quick example: add32

Properties:

- Num Rows: 4960
- Nonzeros: 19848
- Pattern Symmetry: 100%
- Numeric Symmetry: 30.5%
- Positive Definite: No
- Kind: Circuit Simulation Problem
- Cond Num: 136.68

Figure: Sparsity pattern for add32 H. Liu Weng | Data-Driven Solver and Preconditioner Selection for Sparse Linear Matrices | Precond 24 – Jun. 10, 2024

Quick example:

Properties:

- Num Rows: 3937
- Nonzeros: 25407
- Pattern Symmetry: 85%
- Numeric Symmetry: 0.1%
- Positive Definite: No

Figure: Sparsity pattern H. Liu Weng | Data-Driven Solver and Preconditioner Selection for Sparse Linear Matrices | Precond 24 – Jun. 10, 2024

Quick example: Ins_3937

Properties:

- Num Rows: 3937
- Nonzeros: 25407
- Pattern Symmetry: 85%
- Numeric Symmetry: 0.1%
- Positive Definite: No
- Kind: Computational Fluid Dynamics Problem
- Cond Num: 1.9987×10^{16}

Figure: Sparsity pattern for lns_3937

H. Liu Weng | Data-Driven Solver and Preconditioner Selection for Sparse Linear Matrices | Precond 24 – Jun. 10, 2024

Sparse iterative linear solvers

Direct methods have high memory requirements, but iterative methods tend to have trouble with (very) ill-conditioned problems

General guidelines exist

... but no method is the absolute best ... and solvers might be unstable, stagnate, or diverge

Figure: Flowchart of iterative methods. From Barrett et al. [2] H. Liu Weng | Data-Driven Solver and Preconditioner Selection for Sparse Linear Matrices | Precond 24 – Jun. 10, 2024

Related research

Black-box classifiers & beyond:

- Heuristics Self-Adapting Large-scale Solver Architecture (SALSA) [3]
- Top N Recommender Systems George et al. [4]
- Embeddings Yeom et al. [5]
- Black-box ML Lighthouse [6]
- Neural Networks Funk [7]
- Graph Neural Networks Tang et al. [8]

Related research

Black-box classifiers & beyond:

- Heuristics Self-Adapting Large-scale Solver Architecture (SALSA) [3]
- Top N Recommender Systems George et al. [4]
- Embeddings Yeom et al. [5]
- Black-box ML Lighthouse [6]
- Neural Networks Funk [7]
- Graph Neural Networks Tang et al. [8]

Main takeaways:

- the input features are a predefined set of matrix properties
- Relative performance is more important than raw classification
- Misclassification or ROC curves don't necessarily convey the impact of a wrong choice
- Embedding can alleviate the impact of unbalanced and limited data
- Preconditioned accuracy might (strongly) differ from actual solver accuracy

Outline

Motivation

The Sparse Linear Solver Problem

The Method

Numerical Experiments

Overview

Figure: Overview of the solver selection pipeline

H. Liu Weng | Data-Driven Solver and Preconditioner Selection for Sparse Linear Matrices | Precond 24 – Jun. 10, 2024

Feature selection: Reduce required computations

Define a **regression** problem with solver **runtime** as target

- Solve the regression problem with **Gradient Boosting**
- Recover the relative feature importance from the model
- define a cut-off tolerance for features to be included in the final analysis

Figure: Selection via regression analysis

Embedding: Cluster matrices together

We use *word2vec*'s **skip-gram** model with **negative sampling** based on (*matrix*, *solver*) \rightarrow {*good*, *bad*} labeled pairs.

- Consider both matrices and solvers as part of the corpus
- Set 'good' solvers in a matrix's context
- Use 'bad' solvers as negative samples
- Hidden layer values will correspond to the embeddings
 - N_I: Number of Matrices + Solvers
 - *N_V* : Number of Embedding Dimensions

$$A \rightarrow (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_k)$$

Projection: Add the new data

Test matrices will be out-of-sample, so they don't have an encoding

 \Rightarrow Use the training sample features to find a sparse linear combination

 \Rightarrow We do this via LASSO regression restricting to positive coefficients

 \Rightarrow Use this coefficient vector in the embedding space

- \mathbf{f}' : test sample features
- **F**: training sample set features
- δ : target sparsity

$$\min_{\alpha} \|\mathbf{f}' - \mathbf{F}\alpha\|_2^2$$
s. t. $\|\alpha\|_1 \le \delta,$
 $\alpha_i \ge 0$

 $\mathbf{F} \alpha
ightarrow \mathbf{E} lpha$

$$\mathbf{f}' = \left(f_1', f_2', \cdots, f_n'\right) \to \left(\varepsilon_1', \varepsilon_2', \cdots, \varepsilon_k'\right)$$

Solver and Preconditioner Selection

Now that the test sample has an embedding, it suffices to use existing information to predict suitable solvers

We can use e.g., **k-Nearest Neighbors** to determine the preferred solver for the test matrix

Figure: Prediction based on k-Nearest Neighbors

Outline

Motivation

The Sparse Linear Solver Problem

The Method

Numerical Experiments

System Setup & Datasets

Performance/runtime measurement data

- SuperMUC-NG Phase 1
 - Intel Skylake Xeon Platinum 8174 processors
 - 48 cores and 96 GB memory per node
- Theta KNL: GNN-dataset provided by H. Zhang [8]
 - Intel Xeon Phi 7230 processors
 - 64 cores and 96 GB memory per node
- Blue Gene/Q: Lighthouse-dataset from Sood et al. [6]
 - Intel Westmere Xeon X5650 processors
 - 12 cores and 72 GB memory per node

Prediction experiments Workstation with:

- Intel i7-10700 CPU
- NVIDIA Quadro 5000 GPU

Convergence on selected matrices

Different matrices are resolved effectively by different solvers

Figure: runtimes on 1 node of SuperMUC for different solvers

H. Liu Weng | Data-Driven Solver and Preconditioner Selection for Sparse Linear Matrices | Precond 24 – Jun. 10, 2024

Convergence on selected matrices

Different matrices are resolved effectively by different solvers

Even in cases where many/all solvers converge, runtime can vary (very) wildly

Figure: runtimes on 1 node of SuperMUC for different solvers

Experiments: Feature selection

Top features ($R^2 = 0.72$):

Observations:

- tends to overemphasize size-dependent features since problem size ∝ runtime
- features have very distinct ranges (from binary features to some potentially reaching MaxValue)

Figure: feature importance

Experiments: Embedding

the SuiteSparse matrix performance data from both Lighthouse [6] (left) and Tang et al [8](right) is embedded into a **20-dimensional** space. Points are colored by best solver

Figure: PCA of embedding for performance data for GNN-dataset

Figure: PCA of embedding for performance data for Lighthouse-dataset

H. Liu Weng | Data-Driven Solver and Preconditioner Selection for Sparse Linear Matrices | Precond 24 – Jun. 10, 2024

Experiments: Projection and Prediction

Applying the projection requires a regularization parameter which can be predetermined or tuned

Observations:

- the optimal regularization parameter varies strongly
- normalization of the properties makes a significant difference between the combination found
- problems of interest will in practice be much larger than the training datasets

Figure: predicted vs. best runtime

Experiments: Comparison vs. Simple Classifiers

Figure: Score Comparison across different ML methods

H. Liu Weng | Data-Driven Solver and Preconditioner Selection for Sparse Linear Matrices | Precond 24 – Jun. 10, 2024

Conclusions & Next steps

- NDCG accuracy is ca. 15% better, LRAP is similar
- Variance is however lower than in classical ML methods
- Still many tuning possible to enhance the framework: (hyper)parameters, scaling, metrics, models, ...
- While building the Embedding is costly, once trained prediction is relatively inexpensive

Further directions to explore: Now also consider how this all changes with different hardware...

... and add GPUs into the mix...

... and mixed precision...

... and batched solves...

... and so much more ...

References I

- [1] J. Dongarra, G. Bosilca, Z. Chen, et al., "Self-adapting numerical software (sans) effort," IBM Journal of Research and Development, vol. 50, no. 2.3, pp. 223–238, 2006.
- [2] R. Barrett, M. Berry, T. F. Chan, et al., <u>Templates for the solution of linear systems: building blocks for iterative methods</u>. SIAM, 1994.
- [3] Salsa Project., Salsa: Self-adapting large-scale solver architecture, [Online]. Available: http://icl.cs.utk.edu/salsa/.
- [4] T. George, A. Gupta, and V. Sarin, "A recommendation system for preconditioned iterative solvers," in 2008 Eighth IEEE International Conference on Data Mining, IEEE, 2008, pp. 803–808.
- [5] J.-S. Yeom, J. J. Thiagarajan, A. Bhatele, G. Bronevetsky, and T. Kolev, "Data-driven performance modeling of linear solvers for sparse matrices," in 2016 7th International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer System IEEE, 2016, pp. 32–42.
- [6] K. Sood, B. Norris, and E. Jessup, "Lighthouse: A taxonomy-based solver selection tool," in Proceedings of the 2nd International Workshop on Software Engineering for Parallel Systems, 2015, pp. 66–70.

References II

- [7] Y. Funk, M. Götz, and H. Anzt, "Prediction of optimal solvers for sparse linear systems using deep learning," in Proceedings of the 2022 SIAM Conference on Parallel Processing for Scientific Computing, Society for Industrial and Applied Mathematics, 2022, pp. 14–24.
- [8] Z. Tang, H. Zhang, and J. Chen, "Graph neural networks for selection of preconditioners and krylov solvers," in NeurIPS 2022 Workshop: New Frontiers in Graph Learning, 2022.
- [9] K. Sood, "Iterative solver selection techniques for sparse linear systems," Ph.D. dissertation, University of Oregon, 2019.

LRAP and NDCG scores

For $y_{\text{true}} \in \{0, 1\}^{n_{\text{labels}} \times n_{\text{samples}}}$ and \hat{y} prediction probabilities,

LRAP:NDCG:
$$LRAP(y_{true}, \hat{y}) = \frac{1}{n_{samples}} \sum_{i=0}^{n_{samples}} \left(\frac{1}{||y_i||_0} \sum_{j:y_{ij}=1} \frac{|\mathscr{L}_{ij}|}{rank_{ij}} \right)$$
where $NDCG = \frac{DCG(y_{true}, \hat{y})}{DCG(y_{true}, y_{true})}$ $\mathscr{L}_{ij} := \{k: y_{ik} = 1, \hat{y}_{ik} > \hat{y}_{ij}\}$ $mere$ $DCG(y_{true}, \hat{y}) = \sum_{i} \frac{y_{\hat{\sigma}(i)}}{\log(1+i)}$ $rank_{ij} := |\{k: \hat{y}_{ik} > \hat{y}_{ij}|\}$ $mere$ $mere$

and $y_{\hat{\sigma}(i)}$ is some ranking function for y_{true} and \hat{y} .

Both metrics focus on the ranking of "good" classes

LRAP penalizes more heavily for low rankings of good classes

Property list & highlighted features

avgnnzprow	right-bandwidth
avgdistfromdiag	symmetry
n-dummy-rows	blocksize
max-nnzeros-per-row	diag-definite
lambda-max-by-magnitude-im	lambda-max-by-magnitude-re
ellipse-cy	nnzup
ruhe75-bound	avg-diag-dist
nnz	left-bandwidth
lambda-min-by-magnitude-im	lambda-min-by-magnitude-re
norm1	sigma-min
upband	n-struct-unsymm
colours	diagonal-average
diagonal-dominance	dummy-rows
ritz-values-r	symmetry-snorm
symmetry-fanorm	symmetry-fsnorm
lambda-max-by-real-part-im	lambda-max-by-real-part-re
lambda-max-by-im-part-re	lambda-max-by-im-part-im
col-variability	trace-abs
ritz-values-c	nnzeros
diag-zerostart	loband
positive-fraction	trace
min-nnzeros-per-row	diagonal-sign
row-variability	nrows
colour-offsets	n-colours
relsymm	diagonal-variance
departure	nnzlow
n-nonzero-diags	sigma-max
dummy-rows-kind	kappa
n-ritz-values	colour-set-sizes
sigma-diag-dist	symmetry-anorm
ellipse-ax	ellipse-ay
ellipse-cx	lee95-bound
normInf	normF
nnzdia	trace-asculated

Figure: Full feature set. Taken from [9]

H. Liu Weng | Data-Driven Solver and Preconditioner Selection for Sparse Linear Matrices Precond 24 – Jun. 19, 2024

Property list without kappa & highlighted features

NumRows	DummyRows
NumCols	DummyRowsKind
RowVariance	NumericValueSymmetry1
ColVariance	NNZPatternSymmetry1
DiagVariance	NumericValueSymmetry2
Nonzeros	NNZPatternSymmetry2
FrobeniusNorm	RowDiagDominance
SymmetricFrobeniusNorm	ColDiagDominancy
AntiSymmetricFrobeniusNorm	DiagAverage
OneNorm	DiagSign
InfinityNorm	DiagNNZ
SymmetricInfinityNorm	LowerBW
AntiSymmetricInfinityNorm	UpperBW
MaxNNZperRow	RowLogValSpread
Trace	ColLogValSpread
AbsTrace	Symmetric
MinNNZperRow	GerschgorinMax
AvgNNZperRow	GerschgorinMin

Table: Alternative feature set without kappa

H. Liu Weng | Data-Driven Solver and Preconditioner Selection for Sparse Linear Matrices | Precond 24 – Jun. 10, 2024

Scaling on selected matrices

Figure: runtimes on varying numbers of nodes of SuperMUC for different solvers

Scaling on selected matrices

 10^{2} 10^{1} 10^{1} 10^{1} 10^{2} $10^{$

Figure: runtimes vs. node count for nlpkkt80

nodes

Figure: runtimes on varying numbers of nodes of SuperMUC for different solvers