Technische Universitat Munchen

TUM School of Computation, Information and Technology

Holistic Approaches to Performance
Optimization in Decentralized Systems:

A Study of Hyperledger Fabric
Jeeta Ann Chacko

Vollstandiger Abdruck der von der TUM School of Computation, Information and Technology

der Technische Universitat Miinchen zur Erlangung des akademischen Grades einer
Doktorin der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Michael Gerndt

Priifende der Dissertation:

1. Prof. Dr. Hans-Arno Jacobsen
2. Prof. Dr. Florian Matthes
3. Prof. Dr. Bettina Kemme

Die Dissertation wurde am 24.06.2024 bei der Technische Universitat Miinchen eingereicht und
durch die TUM School of Computation, Information and Technology am 29.10.2024

angenommen.






Abstract

Despite offering valuable features such as decentralized trust, immutability, and traceabil-
ity, the adoption of decentralized solutions remains limited compared to conventional
transaction processing systems, primarily due to significant performance disparities. This
dissertation explores holistic approaches to optimize the performance of decentralized

systems, utilizing Hyperledger Fabric, a prominent blockchain system, as a case study:.

In the initial phase of our research, we investigate transaction failures in Hyperledger
Fabric. We formally define various failure types and conduct extensive experiments to
study the impact of diverse system configurations on transaction outcomes. Based on
our analysis, we provide actionable guidelines to enhance the system’s performance and

reliability.

Building on this foundation, our second study introduces a novel, multi-level optimization
strategy encompassing system, data, and user dimensions. By analyzing the blockchain
ledger, nine cogent optimization recommendations are derived and encapsulated within
our automated tool, BlockOptR. The implementation of these recommendations signifi-
cantly improves transaction success rates and reduces latency, underscoring the efficacy

of our comprehensive optimization approach.

In the third segment of our research, we investigate the concept of self-driving blockchains.
A framework is proposed to enable Hyperledger Fabric to autonomously predict and adapt
to workload variations, thereby optimizing its performance in real time. Experiments
conducted across different blockchain layers validate the potential of this autonomous

approach, demonstrating substantial enhancements in throughput and latency.

Additionally, this research includes the development of a visualization tool for trans-
actions within a Fabric network, aiding users in understanding the characteristics of
their workloads. We also conducted a comprehensive study on benchmarking different
blockchains to provide a broader perspective on various decentralized systems beyond
Fabric. Collectively, this dissertation offers a robust foundation for advancing the

performance of decentralized systems.

iii






Zusammenfassung

Obwohl sie wertvolle Funktionen wie dezentrales Vertrauen, Unveranderlichkeit und
Riickverfolgbarkeit bieten, ist die Akzeptanz dezentraler Losungen im Vergleich zu her-
koémmlichen Transaktionsverarbeitungssystemen nach wie vor begrenzt, was vor allem
auf erhebliche Leistungsunterschiede zuriickzufiihren ist. In dieser Dissertation werden
ganzheitliche Ansétze zur Optimierung der Leistung dezentraler Systeme untersucht,
wobei Hyperledger Fabric, ein bekanntes Blockchain-System, als Fallstudie verwendet

wird.

In der ersten Phase unserer Forschung untersuchen wir Transaktionsausfille in Hyper-
ledger Fabric. Wir definieren formell verschiedene Fehlertypen und fithren umfangreiche
Experimente durch, um die Auswirkungen verschiedener Systemkonfigurationen auf die
Transaktionsergebnisse zu untersuchen. Auf der Grundlage unserer Analyse liefern wir
umsetzbare Richtlinien zur Verbesserung der Leistung und Zuverlassigkeit des Systems.
Aufbauend auf dieser Grundlage fithrt unsere zweite Studie eine neuartige, mehrstufige
Optimierungsstrategie ein, die System-, Daten- und Nutzerdimensionen umfasst. Durch
die Analyse des Blockchain-Ledgers werden neun schliissige Optimierungsempfehlungen
abgeleitet und in unserem automatisierten Tool BlockOptR gekapselt. Die Umsetzung
dieser Empfehlungen verbessert die Erfolgsquote von Transaktionen erheblich und ver-
ringert die Latenzzeit, was die Wirksamkeit unseres umfassenden Optimierungsansatzes

unterstreicht.

Im dritten Teil unserer Forschung untersuchen wir das Konzept der selbststeuernden
Blockchains. Es wird ein Rahmenwerk vorgeschlagen, das Hyperledger Fabric in die
Lage versetzt, selbststandig Arbeitslastschwankungen vorherzusagen und sich an diese
anzupassen, um so die Leistung in Echtzeit zu optimieren. Experimente, die iber verschie-
dene Blockchain-Schichten hinweg durchgefiithrt wurden, bestatigen das Potenzial dieses
autonomen Ansatzes und zeigen erhebliche Verbesserungen bei Durchsatz und Latenzzeit.
Dariiber hinaus umfasst diese Forschung die Entwicklung eines Visualisierungstools
fir Transaktionen innerhalb eines Fabric-Netzwerks, das den Benutzern hilft, die Eigen-
schaften ihrer Arbeitslasten zu verstehen. Wir haben auch eine umfassende Studie zum
Benchmarking verschiedener Blockchains durchgefiihrt, um eine breitere Perspektive auf
verschiedene dezentralisierte Systeme jenseits von Fabric zu bieten. Diese Dissertation

bietet eine solide Grundlage fiir die Weiterentwicklung der Leistung dezentraler Systeme.






Acknowledgments

I want to express my sincere gratitude to the supportive community of family, friends,
colleagues, collaborators, students, and acquaintances who have collectively contributed,

in both small and large ways, to making this doctoral journey a meaningful experience.

My heartfelt appreciation goes to Prof. Hans-Arno Jacobsen for believing in my potential
and accepting my application for this doctoral program. His constant guidance and
motivation over the years have been invaluable. I also thank Prof. Ruben Mayer for the
numerous discussions that significantly helped me formulate well-defined research goals,

and for his valuable and actionable feedback on all my work.

I extend my thanks to Prof. Dr. Florian Matthes and Prof. Dr. Bettina Kemme for agreeing
to be the examiners for my thesis. Special thanks to Prof. Michael Gerndt for chairing
the thesis committee and for his guidance during my Masters, which sparked my interest
in pursuing a doctorate. Additionally, I am grateful to Prof. Alan Fekete for the valuable

collaboration and to Prof. Viktor Leis for his support towards the end of my doctorate.

I am deeply grateful to all my colleagues who created a friendly and supportive atmo-
sphere. Special thanks to Christoph, Alex, and Herbert for maintaining our infrastructure,
without which none of my experiments would have been possible. Thanks to René, Jana,
Nikolai, Jawad, and Irene for all their help and fun discussions over the years. I am
extremely thankful to Pezhman for opening the doorway to this doctoral position and
for all our personal and academic discussions. I also extend my thanks to all the students
I had the opportunity to teach and supervise, whose contributions, directly or indirectly,

enriched my research.

My infinite gratitude goes to my boyfriend, Jophin, whose persistent encouragement and
optimism gave me the strength to overcome all the barriers in both my academic and
personal life. Thank you for being with me every step of the way. My heartfelt thanks to
my sister (Chechi) for providing me with a wonderfully exciting childhood and for being
a constant source of interesting discussions in my adulthood. I am deeply thankful to
my parents (Mummy and Daddy) for all their sacrifices and for always believing in me.

Everything I am and where I stand today, I owe it all to them.

vil






Contents

Abstract

Zusammenfassung

Acknowledgments

1 Introduction

1.1
1.2

1.3

1.4
1.5

Motivation . . . . . ... L
Problem Statement . . . .. ... ... .. ... .. L
1.2.1  Identifying Performance Limitations . . . .. ... ... ... ..
1.2.2  Deriving Performance Optimization Strategies . . .. ... ...
1.2.3  Autonomous Dynamic Performance Optimization. . . . . . . ..
Approach . . . . . . . L
1.3.1 Performance Analysis . . ... ... ... ... ..........
1.3.2  Performance Optimization Recommendation System . . . . . ..
1.3.3  Self-driving Blockchain System . . . . .. ... ... ... ...,
Contributions . . . . .. ... L

Organization . . . . . . . . . ... e

2 Background

3 Methodology

3.1

Fabric Network Setup and Analysis . . . ... ... ... ... ......
3.1.1  Smart Contracts and Workloads . . . . . . ... ... ... ....
3.1.2  Performance Analysis . . ... ... ... ... ..........
3.1.3  Workload Visualizer . . . ... ... ... .............

ix

iii

<
O © 9 O Ul U R R N e =

—_
[\ )

13



CONTENTS

3.2 Holistic Performance Optimization Strategies. . . . . . . ... ... ... 22
3.2.1  User Level Optimizations . . . .. ... ... ... ........ 22
3.2.2  Data Level Optimizations . . . ... ... ... ... ....... 23
3.23  System Level Optimizations . . . . . .. .. ... ... ...... 24
3.3 Holistic Performance Optimization Systems . . . . ... ... ... ... 25
3.3.1  Performance Optimization Recommendation System . . . . . .. 26
3.3.2  Self-Driving Blockchain System . . . . . . ... ... ... .... 27
3.4 Blockchain Benchmarking Systems . . . . . ... ... ... ....... 28
4 Summary of Publications 29
41 Why Do My Blockchain Transactions Fail? A Study of Hyperledger Fabric 30

4.2 How To Optimize My Blockchain? A Multi-Level Recommendation
Approach . . . . . .. 31
4.3  Should my Blockchain Learn to Drive? A Study of Hyperledger Fabric. . 32
44 A Comprehensive Study on Benchmarking Permissioned Blockchains . . 33

4.5 Fabric-Visualizer: A Transaction Dependency Visualizer for Hyperledger
Fabric . . . . . . . . 34
5 Discussion 35
6 Conclusions 39
Bibliography 41
Appendices 47
A Why Do My Blockchain Transactions Fail? A Study of Hyperledger Fabric 47

B  How To Optimize My Blockchain? A Multi-Level Recommendation
Approach . . . . . . . 69
C  Should my Blockchain Learn to Drive? A Case of Hyperledger Fabric . . 103
D A Comprehensive Study on Benchmarking Permissioned Blockchains . . 121

E  Fabric-Visualizer: A Transaction Dependency Visualizer for Hyperledger

Fabric . . . . . . 145




Introduction

The advent of Bitcoin in 2009 marked the dawn of a new era in peer-to-peer systems,
rekindling interest in the concepts of decentralized consensus, cryptographic proofs,
and immutable ledgers [1]. The domain of blockchains underwent further revolution
with the launch of Ethereum in 2015, which introduced the idea of smart contracts that
could support complex transactions [2]. However, private enterprises were initially
apprehensive about adopting this new technology due to the inherent open-access
nature of blockchains. Moreover, blockchains and conventional transaction processing
systems exhibit significant performance differences. Bitcoin can only handle around
seven transactions per second (TPS), whereas Visa can handle transactions in the order
of 24,000 TPS [3, 4].

A novel class of decentralized systems, commonly known as permissioned blockchains,
has emerged as a potential solution to address the performance limitations and privacy
concerns associated with traditional blockchain systems [5]. These systems enable
access only to authorized users and are designed to provide superior performance.
Permissioned blockchains, such as Hyperledger Fabric (also known as Fabric), Quorum,
Corda, and Multichain, operate in a partially decentralized environment and offer faster
transaction processing compared to Bitcoin or Ethereum [6, 7, 8, 9]. They provide
immutable traceability with greater scalability and security, albeit at the cost of complete

decentralization. Despite these advancements, permissioned blockchains are still unable



1.1. MOTIVATION

19282
299.85 20000

300

200
10000

5697
100

o [ 0 —

Hyperledger Fabric Ethereum Hyperledger Fabric TiDB Etcd

Figure 1.1.1: Throughput in TPS for  Figure 1.1.2: Throughput in TPS for Fabric vs. distributed
Fabric vs. Ethereum. Data from [10] database systems. Data from [11]

to match the performance of conventional transaction processing systems.

This work aims to address the limitations of permissioned blockchains and to derive
performance optimization strategies that can enhance the throughput and latency of
these systems. Our research employs experimental analysis to identify and formalize
performance bottlenecks. Moreover, this work introduces a multi-level recommendation

system and a self-driving system, both of which significantly improve the performance.

1.1 Motivation

The practical applications of blockchain technology in various domains, such as sup-
ply chain management, decentralized finance, and asset management, have been well-
established [12, 13]. The Ethereum network boasts over 4,000 decentralized applications,
and more than 200 systems have been developed using Hyperledger technologies [14,
15]. However, the adoption and acceptance of blockchain solutions pale in comparison
to conventional transaction processing systems. This reluctance to embrace blockchain
technology can be attributed to several factors, including high cost, complex design, low
throughput, high latency, and limited scalability [16, 17, 18].

Permissioned blockchains, when compared to traditional public blockchains, offer supe-
rior performance. For instance, Fabric, one of the most popular blockchain platforms,
provides substantially higher performance than Ethereum under similar network condi-

tions (Figure 1.1.1). Nevertheless, when compared to distributed database systems such as




1. INTRODUCTION

TiDB and Etcd, Fabric’s performance remains significantly restricted (Figure 1.1.2). The
salient and desirable characteristics of blockchains, like their immutability, traceability

and decentralized trust, are enabled at the cost of this tradeoff with performance.

Blockchains are intricate systems that operate on a diverse set of concepts, such as smart
contracts, cryptographic hash, immutable timestamped ledgers, decentralized consensus
protocols, and access control rules [19, 20, 21, 22, 23]. Due to the presence of these various
elements, identifying and comprehending the root causes of performance bottlenecks
in such systems can be a challenging task. For instance, Fabric exhibits various types of
transaction failures, and each of these failures is caused by bottlenecks at different levels
of the blockchain stack [24]. These bottlenecks can be attributed to factors such as slow
processing of transactions, network congestion, hardware limitations, and inadequate
resource allocation. Therefore, identifying and understanding the specific limitations of

blockchains and their causes is a significant research problem.

There are various ways to enhance the performance of decentralized systems. One such
approach is the use of transaction conflict management strategies such as transaction
reordering [25, 26]. This can be incorporated either at the data level in the smart contract
or at the application level in the business process model in order to increase the success
rate of transactions. Another approach is a system level strategy that involves dynamic
client and peer resource management [27]. This can improve performance by allocating
resources based on the incoming workload. Hence, identifying such effective optimization
strategies at various levels of the blockchain stack is another challenging yet necessary
task.

Optimization strategies for blockchain networks are highly dependent on the specific
characteristics of the workloads they manage. Consequently, thoroughly understanding
these workload characteristics is essential for identifying the most suitable optimization
strategies [28]. Further, since workloads adapt over time, these strategies necessitate
dynamic implementation and continuous human intervention, which results in increased
costs [29, 30, 31]. Hence, there is a critical need for autonomous optimization strategies
within blockchain environments. By continuously monitoring workload changes and
dynamically applying optimization techniques, the performance of blockchain networks

can be significantly enhanced.




1.2. PROBLEM STATEMENT

Moreover, consistent and unbiased benchmarking is paramount for accurately assessing
and comparing the efficacy of different blockchain systems and their corresponding opti-
mization strategies. Without standardized and impartial evaluation metrics, it becomes
challenging to gauge the true performance improvements offered by various optimization

techniques.

1.2 Problem Statement

In order to improve the efficiency of decentralized systems, we identified three important
research problems that need to be addressed. The first is studying performance limitations,
which involves understanding the factors that are currently limiting the performance
of blockchains. The second problem is deriving holistic optimization strategies that
encompass the entire blockchain stack, from the underlying infrastructure to the applica-
tion layer. Finally, there is a need to develop autonomous blockchain systems that can
automatically adjust their performance in response to changing usage patterns without
requiring manual intervention. By addressing these research problems, we can create
more efficient and effective decentralized systems that can support a wide range of

applications and use cases.

1.2.1 Identifying Performance Limitations

The use of experimental evaluation and benchmarking is crucial for understanding the
performance capabilities of a system. However, when benchmarking, one must consider
various aspects, such as parameter tuning, workload generation, and performance metrics.
Given the complexity of the blockchain stack, it is essential to study the impact of
parameter tuning on the system, data, and application levels of the blockchain. For
instance, the block size, which refers to the number of transactions in a block, is a
prominent system-level parameter, while the language of the smart contract is a critical
data-level parameter, and both significantly influence performance [32]. Moreover, it
is essential to use a comprehensive set of workloads for benchmarking to identify all

limitations. For example, in Fabric, transaction failures due to dependency conflicts occur




1. INTRODUCTION

frequently, requiring a skewed workload to evaluate them effectively [25].

Additionally, the performance of blockchains can be measured using various metrics
such as throughput, success rate, time to finality, scalability, and fault tolerance, each
of which could have a different definition based on the blockchain implementation. For
instance, successful transaction throughput is often defined as the number of transactions
committed on the blockchain ledger per second. However for Fabric, committed transac-
tion throughput and successful transaction throughput are two distinct metrics because
even failed transactions are committed on the ledger [24]. In summary, benchmarking a
blockchain system is a challenging task that requires a thorough understanding of its

underlying implementation.

1.2.2 Deriving Performance Optimization Strategies

Current optimization attempts have primarily been confined to system and data level
enhancements without a comprehensive strategy that addresses the multifaceted nature
of blockchain ecosystems [33, 34]. This narrow focus overlooks critical areas such as
governance structures and business process model efficiency that could significantly

improve the overall functionality and adoption of blockchain systems.

To optimize blockchain operations, we need to adopt a broader perspective that aims
to identify and implement improvements across multiple dimensions of the blockchain
ecosystem. This approach should consider the entire blockchain stack to uncover optimiza-
tion opportunities that traditional methods may miss. In other words, a holistic strategy

is required for developing more robust, efficient, and scalable blockchain solutions.

1.2.3 Autonomous Dynamic Performance Optimization

Performance optimization strategies are important for blockchain systems, but their
effectiveness is highly dependent on the workload, which often varies over time [35].
Additionally, blockchain systems must accommodate a constantly growing distributed

ledger, leading to significant performance variations over time, even under a uniform




1.3. APPROACH

Holistic Approaches to Performance Optimization in Decentralized Systems: A Study of Hyperledger Fabric
Research Outline

| peremnce o ® ! oot acormende? - settrg ocran s

Contributions: Contributions: Contributions:

*  Formal definition of transaction failures * Automated derivation of optimization « Adaptable features identification
Impact of parameter tuning recommendations «  Autonomous implementation of

*  Optimization strategies identification *  Workload specific recommendations optimization strategies

Limitations: Limitations: Limitations:

¢ Generalized strategies o ¢ Supports static workloads [ - * Locally autonomous systems

*  Manual derivation of strategies ¢ Manual implementation of recommendations ¢ Narrow experimental focus

Auxillary Research

A workload visualizer for Hyperledger Fabric
* A comprehensive study on benchmarking blockchains

Figure 1.3.1: Outline of our research work

workload [36]. These fluctuations in performance necessitate the dynamic application
of appropriate optimization strategies. However, manual dynamic tuning is a time-
consuming and expensive process; hence, autonomous blockchain systems that can apply
performance optimization strategies dynamically without human intervention are the
need of the hour.

The existing literature on blockchain technology has begun to explore the potential for
auto-tuning and self-adaptive systems, which can automatically adjust their parameters
in response to changing conditions. However, this exploration has predominantly
concentrated on singular facets of blockchain technology, such as tuning the configuration
parameters, without taking a holistic view. Developing a fully comprehensive self-driving

blockchain system presents a formidable challenge.

1.3 Approach

The diversity and complexity of blockchain technologies, with each blockchain having its
own unique implementation and characteristics, pose a significant challenge to devising
a one-size-fits-all solution to the various research problems in the field. This variability

spans consensus mechanisms and transaction processing to smart contract functionality




1. INTRODUCTION

and governance models, making it difficult to develop universally applicable solutions.
Fabric is renowned as one of the most popular permissioned blockchain networks, both
in industrial applications and academic research, due to its distinctive features, such
as its modular architecture, support for smart contracts in general-purpose languages,
and its ability to ensure high levels of privacy and scalability [6, 37]. This makes it
an ideal candidate for in-depth study and problem-solving within its framework. By
concentrating on solving specific problems within Fabric’s framework, we aim to create
solutions that not only address these issues effectively within Fabric but also offer insights

and methodologies that could be adapted to other decentralized systems.

An overview of our research is depicted in Figure 1.3.1 and shows a comprehensive
strategy for performance enhancement, structured in three pivotal phases. The Figure
demonstrates how each phase incrementally builds upon its predecessor, addressing and
surpassing its constraints. Initially, our efforts were directed at benchmarking Fabric
to pinpoint the primary causes of performance bottlenecks. The insights gleaned from
our experiments enabled us to formulate broad yet incisive optimization strategies that
enhance performance across various layers of the Fabric blockchain framework. Subse-
quently, the second phase of our research concentrated on automating the generation
of optimization recommendations that are specifically tailored to the current workload.
Manual implementation of these recommended strategies resulted in notable performance
boosts. The third phase of our research focused on automating the implementation of op-
timization recommendations and adapting them dynamically based on workload changes.
We investigated the feasibility of a self-driving blockchain system dedicated to continuous
performance improvement. In addition to our main research, we also developed a Fabric
workload visualizer to enhance our understanding of workload characteristics that impact
performance. Furthermore, we conducted a study on benchmarking various blockchain
systems to identify the primary challenges in this domain and to extend our research to

other decentralized systems beyond Fabric.

1.3.1 Performance Analysis

Various types of transaction failures can occur in Fabric, but the ones related to concur-

rency are the most common. These failures can significantly impact Fabric’s performance,




1.3. APPROACH

as our studies show that almost 40% of submitted transactions can fail because of
concurrency-related issues. Our work formally defines these types of transaction failures
related to concurrency, laying a solid foundation for our study and future investigations in
this area. We conducted over 900 experiments to analyze concurrency-related transaction
failures in Fabric. By examining the factors that affect transaction failures in Fabric
and the impact of three recent optimization techniques - Fabric++, Streamchain, and
FabricSharp - we have found interesting insights pertaining to different levels of the
blockchain stack. For instance, we discovered that adjusting the block size based on
the rate of transaction arrivals can significantly reduce transaction failures by up to
60%. This highlights the importance of tuning configuration parameters to improve the

performance of Fabric.

To support thorough evaluations and controlled experiments, we developed four smart
contracts representing realistic scenarios along with a synthetic smart contract. Ad-
ditionally, we have developed a workload generator that can be used for all of these
smart contracts. This wide range of workloads has allowed us to conduct an extensive
evaluation of Fabric. Based on our findings, we have identified some best practices that
developers should follow while working with Fabric, and have also highlighted promising

areas for future research.

We also developed a web application designed to analyze the workloads of a Hyperledger
Fabric network and provide users with detailed insights into transaction metadata,
dependencies and serializability. We demonstrated the tool’s effectiveness using multiple

realistic workloads, highlighting its utility in identifying optimization opportunities.

Further, we conducted a comprehensive study on benchmarking different blockchain
systems. We analyzed five popular permissioned blockchain platforms to identify key
problem statements and defined a general methodology to address these issues. We
evaluated five existing blockchain benchmarking systems through detailed case studies,

identifying their limitations and proposing enhancements based on our findings.




1. INTRODUCTION

1.3.2 Performance Optimization Recommendation System

We designed a multi-level optimization recommendation approach that analyzes the
blockchain ledger and identifies various optimization opportunities for the entire blockchain
stack. This approach equips users with a detailed understanding of their systems, enabling
them to make informed decisions on optimization strategies. Our approach also automates
the extraction, preprocessing, and generation of event logs for Fabric blockchain data.
This facilitates further research in log-based analysis techniques such as process mining
in blockchains by providing a ready-to-use, preprocessed log based on the ledger contents.
Through practical implementation and evaluation, we demonstrate that our optimization
recommendations can significantly enhance transaction success rates by 20% and reduce

latency by 40%, underscoring the effectiveness of our approach.

We conducted an extensive evaluation of our approach, which encompasses a variety of
workloads, including synthetic workloads, use-case-based workloads and a real-world
event log. This extensive testing ensures the applicability of our approach to a wide
range of real-world blockchain applications, addressing the challenge of limited publicly
available data for research in permissioned blockchains. Moreover, we demonstrate how
our approach enhances existing blockchain optimization strategies by adding higher-level

optimizations, thus confirming the significant benefits of our holistic approach.

1.3.3 Self-driving Blockchain System

Our research delves into the dynamic aspects of the Fabric blockchain ecosystem, with
a focus on evolving network and workload patterns. We investigate the feasibility and
potential benefits of self-driving blockchains. We compare our findings with established
database research and highlight the unique attributes of blockchain technology. Our
objective is to encourage the blockchain research community to contribute significantly

to developing self-driving blockchains.

Our research has identified specific parameters and components within the entire system
stack of Hyperledger Fabric that are well-suited for autonomous adaptation. These

particular features, which we refer to as adaptable features, present significant potential




1.4. CONTRIBUTIONS

for self-driving opportunities within existing blockchain systems. However, we recognize
that there are considerable challenges in making these features fully autonomous and
have provided potential solutions to overcome these obstacles. Our aim is to facilitate the
exploration of self-driving capabilities within existing blockchain systems rather than

the creation of new blockchains for each unique use case.

Finally, we demonstrate our findings by setting up three autonomous systems, each
targeting a different level within the blockchain architecture. Our experiments indicate
up to 42% improvement in terms of throughput and latency. This is a significant first step

towards implementing a fully autonomous system in the future.

1.4 Contributions

Our research involves a thorough analysis of blockchain technology from different
perspectives to identify areas that are causing performance issues. We then develop
strategies that target these areas and optimize the entire blockchain stack. This includes
improving the data definition, transaction processing, and even the business process
model. By taking a holistic approach, we can pinpoint and address the main causes
of inefficiencies, aiming to enhance the performance of blockchain systems. The main

contributions of our work are:

i. We formally define different types of transaction failures related to concurrency
that can occur in Fabric, which is helpful for our study and future research.
We examine the parameters affecting these failures in Fabric and three other
optimized extensions of Fabric. Our findings reveal surprising insights and trade-
offs, such as the significant impact of block size on transaction failures. Based
on our experiments, we identify best practices for developers and future research
directions [24].

ii. We define a multi-level optimization recommendation approach that examines the
Fabric blockchain ledger and recommends optimization strategies for the entire
blockchain stack. Our work provides a formal definition for our optimization

strategies that can be reused for other blockchain logs with similar attributes. The

10



1. INTRODUCTION

1il.

iv.

VI.

Parts

effectiveness of our method is demonstrated by the results, which show a 20%
increase in successful transactions and a 40% reduction in latency. The approach
we present supplements existing blockchain optimization strategies by adding
higher-level optimization techniques [27].

Our work analyzes the dynamic aspects of the blockchain environment to de-
termine the need for self-driving blockchains. We identify adaptable features in
the Hyperledger Fabric system stack that are suitable for autonomous adaptation
and demonstrated significant improvement in performance through three locally
autonomous systems. This is a significant first step towards implementing a fully
autonomous system in the future, and the first comprehensive discussion and
evaluation of self-driving blockchains to our knowledge at the time of writing [38].
To understand the workload characteristics, we developed a web application
that visualizes transaction dependency graphs and other key transaction-related
information for Hyperledger Fabric networks. Our tool helps identify performance
optimization opportunities relevant to the current workload [28].

We analyse five popular permissioned blockchains to identify key benchmarking
challenges and propose a general methodology to address these issues. Addition-
ally, we evaluate existing blockchain benchmarking systems, highlighting their
limitations and suggesting improvements [39].

To facilitate realistic evaluations and controlled experiments, we created a collection
of synthetic workloads generated using a broad range of control variables, four
popular use-case-based workloads, and a workload based on a real-world process
event log. All the smart contracts and workload generation scripts have been
made available as open-source [24]. This helps address the challenge of inadequate

publicly available data, which hinders research in permissioned blockchains.

of the content and contributions of this work have been published in:

Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. “Why Do My Blockchain
Transactions Fail? A Study of Hyperledger Fabric.” In: Proceedings of the 2021
International Conference on Management of Data. SIGMOD °21. Virtual Event, China:
Association for Computing Machinery, 2021, pp. 221-234. 1SBN: 9781450383431.
DOI: 10.1145/3448016.3452823. URL: https://doi.org/10.1145/3448016.3452823
(CORE PUBLICATION 1)

11


https://doi.org/10.1145/3448016.3452823
https://doi.org/10.1145/3448016.3452823

1.5. ORGANIZATION

« Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. “How To Optimize My
Blockchain? A Multi-Level Recommendation Approach.” In: Proc. ACM Manag.
Data 1.1 (May 2023). por1: 10.1145/3588704. URL: https://doi.org/10.1145/3588704
(New publication format for SIGMOD ‘23) (CORE PUBLICATION 2)

+ Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. Should my Blockchain
Learn to Drive? A Study of Hyperledger Fabric. 2024. arXiv: 2406.06318

« Jeeta Ann Chacko, Ruben Mayer, Alan Fekete, Vincent Gramoli, and Hans-Arno
Jacobsen. “A Comprehensive Study on Benchmarking Permissioned Blockchains.”
In: Performance Evaluation and Benchmarking. Ed. by Raghunath Nambiar and
Meikel Poess. Cham: Springer Nature Switzerland, 2024 (Accepted for publication)

« Jeeta Ann Chacko, Nino Richter, Ruben Mayer, and Hans-Arno Jacobsen. “Fabric-
Visualizer: A Transaction Dependency Visualizer for Hyperledger Fabric.” In:
Proceedings of the 24th International Middleware Conference: Demos, Posters and
Doctoral Symposium. New York, NY, USA: Association for Computing Machinery,
2023, pp. 31-32. ISBN: 9798400704291. URL: https://doi.org/10.1145/3626564.
3629098

1.5 Organization

The rest of the document is organized as follows. In Chapter 2, we explain the Hyperledger
Fabric architecture including the transaction flow to provide a background for our
work. In Chapter 3, we present our methodology for benchmarking and optimization
of the Hyperledger Fabric blockchain. This includes explaining our experimental setup,
defining the workloads used in our experiments, and summarizing the system design. In
Chapter 4, we provide a summary of the key achievements of each publication and the
author’s contributions. Chapter 5 compares our findings with the existing literature and
discusses the results. Chapter 6 presents the conclusion and an outlook for future work.
Additionally, Appendices A, B, C, D, and E contain our published papers.

12


https://doi.org/10.1145/3588704
https://doi.org/10.1145/3588704
https://arxiv.org/abs/2406.06318
https://doi.org/10.1145/3626564.3629098
https://doi.org/10.1145/3626564.3629098

Background

Our work focuses on enhancing the overall performance of decentralized systems through
comprehensive optimization strategies. We utilize the Hyperledger Fabric blockchain
platform to showcase our techniques. To better understand our work, we explain the

architecture and transaction flow within Fabric in this section.

Fabric [6] is an open-source permissioned decentralized system designed mainly for
use in enterprise scenarios. It supports smart contracts (referred to as chaincodes) in
various general-purpose languages. It also offers a choice of two databases, LevelDB
and CouchDB, to maintain the world state in a key-value format. The complete history
of all transactions (both successful and failed) in the network is stored on a distributed
immutable ledger. The main components of a Fabric network are clients, peers, endorsers,
and the ordering service. Peers are responsible for validating transactions, updating
the world state and appending transactions to the ledger. Endorsers are specific peers
assigned to execute transactions speculatively and endorse them. A copy of the smart
contract is stored on every endorser. An endorsement policy governs the number of
endorsements required for a transaction to be deemed valid. Peers are grouped into
organizations that generally correspond to the real organizations in an enterprise. The
ordering service is a set of nodes that reach consensus on a global order of transactions
and package them into blocks. The transaction flow in Fabric is shown in Figure 2.0.1

and is explained below in detail.

13



Execution Phase Ordering Phase Validation Phase

I
I
I
Peer 1 (Endorser) I
I
I

I
|
I
I Peer 1 (Endorser)
] o 0 Block of transactions @
B : | IEIEIED
oo s | oEa e
-
Ledger Data.gase Client o | © Ledger Database
ients L
Peer 2 (Endorser) (3] I Ordering Service | Peer 2 (Endorser)
]
7—-" () Cha%code : Cc*or:i,edn;us | > (6] TXN
oo 8 |9 | ‘o |
Ledger Database || O Ledger Database
Peer 3 : l Peer 3
(3| — | | > Q| ™| m TxN©
Ledger Dat;;ase I I a8 0-
I I © Ledger Database

Figure 2.0.1: Transaction Flow in Hyperledger Fabric

Execution Phase

1. The client can initiate a transaction by sending a transaction proposal to all
endorsers specified by the endorsement policy. For instance, if the endorsement
policy is (Peer1 AND Peer2), the clients send proposals to both Peerl and Peer2.
The transaction may comprise of several operations that involve reading from or
writing to the world state.

2. The endorsers execute the transaction speculatively and generate a read/write set
based on the current world state. The world state remains unchanged during this
process. The read/write set is signed by the endorsers and sent back to the clients.

3. Clients collect sufficient responses from endorsers based on the endorsement policy.

The responses are packaged as a transaction and sent to the ordering service.
Ordering Phase

4. The ordering service nodes reach consensus on a global order of transactions and
create a block. The frequency of block creation can be based on a time duration,
number of transactions or size of transactions.

5. After the transactions are grouped together in a block, they are distributed to every

peer in the network.

14



2. BACKGROUND

Validation Phase

6. Peers perform two validation processes on every transaction in a block. Validation
System Chaincode (VSCC) validation involves validating the endorser signatures
and ensuring sufficient endorsements based on the endorsement policy. Multi-
Version Concurrency Control (MVCC) validation involves comparing the read/write
set with the current world state. MVCC validation is required because the read/write
sets were created based on the world state during the execution phase, and other
transactions might have updated the world state in the meantime.

7. When both the VSCC and MVCC validations are successful, the world state is
promptly updated. However, if either of these validations fails, the clients are
immediately notified, and the world state remains unchanged.

8. Once validation is complete, the block is updated with the status of each transaction
(whether it was successful or failed) and appended to the ledger. As a result,
the ledger holds a complete record of all transactions that have completed the

transaction flow.

Fabric provides multiple customizable options, such as allowing for diverse ledger data
storage formats and different databases for world state storage. Users have the choice
between crash fault tolerant or byzantine fault tolerant consensus models, allowing them
a tradeoff between performance and security. It supports various membership service
providers and enables smart contract development in multiple programming languages,
including Go, Node.js, and Java. Additionally, various configurable settings are available
in Fabric to maintain transaction privacy, such as the creation of channels. Channels
enable a subset of network participants to maintain a private transaction ledger, which
is desirable for scenarios where participants are competitors and wish to keep certain
transactions confidential. Fabric further enhances privacy with the feature of private data
collections, allowing a specific group within a channel to handle private data without
needing a separate channel. This feature can be used to store private information related
to an individual organization, such as the details of employees or assets. Overall, Fabric
is a highly flexible framework with a range of features that make it suitable for enterprise

use cases.

15






Methodology

In our work, we first conduct a thorough examination of Fabric’s performance to identify
any potential bottlenecks. We then analyze the data in the distributed ledger to derive
optimization strategies at different levels of the blockchain stack. In addition, we develop a
comprehensive optimization recommendation system as well as a self-driving blockchain

framework that applies these strategies to enhance overall performance.

For our initial analysis of Fabric and to evaluate the two systems that we developed, we
deployed a distributed Fabric network on our servers and designed a suitable benchmark-
ing setup. This section outlines our general methodology, which includes the Fabric
system setup, the smart contracts and workloads used in our experiments, the multi-level
optimization strategies that we identified and the design of our two holistic performance

optimization systems.

Although they are three independent systems, we illustrate the design of the Fabric
network, the workflow of our recommendation system, and the components for the
self-driving framework together in a single figure for ease of understanding (Figure 3.1.1).
Independent illustrations of the system design can be found in our papers in appendices A,
B, and C. Further, in this section, we briefly explain our auxiliary research, which includes
the development of a Fabric workload visualizer and a study on blockchain benchmarking

systems. Detailed information can be found in appendices D and E.

17



3.1. FABRIC NETWORK SETUP AND ANALYSIS

o HYPERLEDGER FABRIC NETWORK
ORGANIZATION 1 ORGANIZATION N © WORKFLOW OF OPTIMIZATION
RECOMMENDATION APPROACH
peer ... peeRn | | | [peer1 ... peea | I l
1 t T 1 Optimization Process Model
© componenTsFoR | | || ORDERER 1 |...| ORDERERN | | ORDERER1 |...| ORDERERN | Recommendation Generation
SELF-DRIVE
I I t )
PREDICTION Metrics Event Log
SYSTEM CLIENT NETWORK Derivation Generation
I CLIENT MANAGER
MONITORING Blockchain Data
SYSTEM ‘ CLIENT 1 ‘ ‘ CLIENT 2 ‘ oo ‘ CLIENTN ‘ Preprocessing

Figure 3.1.1: System Design of the Fabric Network along with the workflow of the holistic performance
optimization approach and components for a self-driving blockchain system

3.1 Fabric Network Setup and Analysis

As depicted in Figure 3.1.1, the Fabric network consists of multiple peers and orderers
grouped into different organizations, which simulate the physical organizations of an
enterprise. Clients controlled by a client manager are registered to this Fabric network,
which generates configurable workloads for multiple smart contracts. The default Fabric
network configuration included four peers (two per organization) and three orderers
along with ten clients and a client manager deployed using Hyperledger Caliper which
is a benchmarking framework [40]. This default configuration was tuned based on
the requirements for each experiment. We used Fabric versions 1.4 and 2.2 for our

experiments.

The Fabric network was deployed over a Kubernetes cluster. The various nodes in the
cluster consist of command line interface nodes (CLI), controller nodes, worker nodes, a
load balancer, and a network file system node. The CLI nodes facilitate client processes,
while the controller nodes manage scheduling within the Kubernetes environment.
Worker nodes hosted the Fabric network components, including peers and orderers.
The use of Kubernetes as the orchestration platform enabled a flexible and scalable
deployment model. The setups varied in scale from small clusters with three worker
nodes to larger configurations with 32 worker nodes, accommodating different numbers of
peers, orderers, and client processes. This variation allowed for the exploration of network

behaviour under varying degrees of workload and stress. Hardware configurations varied,

18



3. METHODOLOGY

with nodes equipped with up to 16 vCPUs and 41 GB RAM.

3.1.1 Smart Contracts and Workloads

Efficiently benchmarking the performance of Fabric and testing the systems we’ve devel-
oped requires a diverse range of workloads. In blockchains, smart contract executions are
equivalent to transactions in a database, making it imperative to create appropriate smart
contracts for generating the necessary workloads. In this section, the smart contracts

and corresponding workloads that we developed for our experiments are explained.

Synthetic Workloads

We developed a workload generator to run controlled experiments and microbenchmarks.
It generates synthetic smart contracts based on user-specified control variables, such
as the number of functions and operations. The generator can also produce synthetic
workloads based on inputs like transaction numbers and key distributions. We create
diverse workloads to simulate realistic scenarios, including read-heavy, insert-heavy,

update-heavy, delete-heavy, and range-heavy workloads.

Use-case based Workloads

Blockchains are being used in various real-world scenarios, including digital asset and
supply chain management [12, 13]. To create a more realistic environment for our
experiments, we implemented four smart contracts and corresponding workloads based
on popular use cases of blockchains. The design and functionality of these use cases draw

inspiration from similar implementations in the existing literature [41, 42, 43, 44].

1. Electronic Health Record Management
This use case manages medical health records efficiently, catering to the needs of patients,
medical institutions, and research organizations. Patients can control access to their

personal information and health records. The smart contract manages access credentials

19



3.1. FABRIC NETWORK SETUP AND ANALYSIS

and logical connections between patients and medical actors. The workload generated
for testing this smart contract is predominantly update-heavy, comprising 70% of the
transactions in a set of 10,000.

2. Digital Voting

This use case simulates a secure, transparent digital election with 1,000 eligible voters and
12 parties. The voting occurs in a designated election phase, ending with a closeElection
transaction and ensures that no vote duplication occurs. The system includes functions
for querying party information (gryParties), casting votes (vote), and viewing results
(seeResults), ensuring transparency. The corresponding workload reflects election traffic
with 1,000 gryParties transactions at 100 TPS and 5,000 Vote transactions at 300 TPS,
ending with result viewing and election closure.

3. Supply Chain Management

This use case simulates logistics operations of a network, tracking and managing logistic
units across five logistic service providers. The system utilizes global trade item numbers
and serial shipping container codes to monitor individual trade items and groups of
items throughout the supply chain. A workload of 10,000 transactions is generated to
simulate realistic supply chain activities, including the sending of advanced shipping
notices, shipping, querying, and unloading transactions, as well as random transactions
for querying product information and updating audit entries. This use case replicates the
intricacies of a logistics network, from tracking and management to detailed audit and
information retrieval processes.

4. Digital Rights Management

This use case employs blockchain technology to provide a secure platform for managing
and protecting the works of artists in the music industry. The smart contract leverages
the dot blockchain media format to store metadata for 200 artworks and assign industry-
standard IDs to 200 right holders. The comprehensive functionality of this smart contract
includes adding new music pieces, querying rights associated with each piece, viewing
detailed metadata, calculating the current revenue for rights holders, and a Play function
triggered with each music play. A Play heavy workload is created to simulate realistic

usage scenarios with 70% of transactions dedicated to the Play function.

20



3. METHODOLOGY

3.1.2 Performance Analysis

Using the smart contracts and workloads explained in the previous section, we conducted
over 900 experiments on our Fabric network setup. We observe that in Fabric, a significant
proportion of transaction failures, nearly 40%, are attributed to concurrency issues, which
markedly influence the system’s efficiency. Our work provides a comprehensive catego-
rization and definition of these concurrency-related transaction failures, establishing a
foundational basis for this study and future research endeavours. Our analysis extended
to the effects of various factors across different layers of the blockchain stack, such as the
endorsement policy, database type, network delays and workload type, on transaction
failures. One key finding was the potential reduction in transaction failures, up to 60%,
by adapting the block size in alignment with transaction arrival rates. We also conducted
experiments on optimized extensions of Fabric namely Fabric++ [25], Streamchain [34],

and FabricSharp [26] and derived insightful observations.

3.1.3 Workload Visualizer

As a result of our performance analysis, we determined that workload characteristics sig-
nificantly impact performance and that optimal configuration settings are also workload-
dependent. Consequently, we developed a web application named Fabric-Visualizer
to facilitate the visualization of workloads within Hyperledger Fabric networks. Our
methodology involved connecting to a live Fabric network to extract transaction data
and generate dependency graphs. These graphs offer detailed insights into validation
status, dependent transactions, accessed keys, endorsers, and clients. Furthermore, our
tool checks for serializability and identifies transactions that require abortion to achieve
serializability. We validated the utility of Fabric-Visualizer by employing multiple realistic
workloads, demonstrating its effectiveness in identifying performance optimization

opportunities.

21



3.2. HOLISTIC PERFORMANCE OPTIMIZATION STRATEGIES

User level
Business Process Model Client Application
7 ¢ Activity reordering = * Transaction rate control
EAEI Process model pruning
Data level
Smart Contract Database

N Delta writes
* Smart contract partitioning
* Data model alteration

@ * Database tuning

System level

System Configuration Network Components
*  Block size adaptation  Endorser restructuring
¢ Consensus model tuning ﬁ’ « Client resource boost

Figure 3.2.1: Performance optimizations applicable to different elements of the Fabric blockchain stack

3.2 Holistic Performance Optimization Strategies

On the basis of our extensive experiments explained in the previous section, further
analysis of the data in the distributed ledger and literature review, we identified vari-
ous optimization possibilities at different levels of the Fabric blockchain stack. These

optimization strategies are visualized in Figure 3.2.1 and explained in this section.

3.2.1 User Level Optimizations

At the user level, we investigated the workload of the active application. The perfor-
mance of the system is significantly impacted by the frequency and sequence in which
transactions are initiated and authenticated on the blockchain. A detailed analysis of the
transaction rate, type, and interdependencies can help identify optimization opportunities

for the user.

Using the data in the distributed ledger, we can identify reorderable pairs of transactions

22



3. METHODOLOGY

that cause transaction dependency failures and the business process activities associated
with such pairs. An appropriate process model redesign by reordering the identified

activities can mitigate transaction dependency conflicts.

Further, when activities stray from their expected patterns, it’s advisable to consider
pruning the process model. This involves analyzing the transaction types associated
with each activity to spot any irregularities. By examining the discrepancies between
the event log’s traces and the process model, alongside the anomalies identified, one can

pinpoint opportunities for refining the model.

We can also analyze the distribution of transaction rates over time from the distributed
ledger, identifying moments of peak activity and concurrently assessing failure rates
within those periods. If the failure rate is significantly elevated, implementing rate control
measures can help improve performance. Further, adjusting the rate at which transactions

are admitted into the system can maintain fairness among participants.

3.2.2 Data Level Optimizations

At the data level, we examine aspects such as transaction failures, correlation based on
proximity, and hotkeys. Such analysis enables users to modify the smart contract and,

consequently, the foundational data model, leading to enhanced performance.

One approach, specifically for transactions limited to incrementing or decrementing oper-
ations, is to transform them into delta-write transactions. These allow for modifications
across multiple distinct delta keys, which can then be combined to obtain the current
value when needed. This eliminates the need to read the key prior to each modification.
As a result, update transactions morph into write-only operations targeting unique keys,
significantly lowering the likelihood of failures due to transaction dependencies. Delta
writes are particularly advisable in scenarios where a transaction fails while attempting

to increment or decrement a single key.

To mitigate transaction dependencies, one approach is to divide a single smart contract

into multiple ones, each interacting with its own distinct world state to minimize conflicts.

23



3.2. HOLISTIC PERFORMANCE OPTIMIZATION STRATEGIES

This division does not alter the original smart contract’s functionality, as functions from
one smart contract can still call upon those in another when interaction is necessary.
Analyzing and modifying the smart contract accordingly to facilitate this split — termed
smart contract partitioning — is advised when a single key becomes a bottleneck due to

concurrent access by multiple functions.

Further, when activities are self-dependent, modifying the data model can help in
minimizing transaction conflicts. For instance, in the context of digital voting, if an
ElectionID key becomes overused due to frequent access by the Vote() function, an effective
optimization strategy could be to shift the primary key to something like VoterID. This
change allows for votes to be recorded on a per-voter basis, rather than compiling all votes
under a single key. Additionally, the discovery of a singular hot key warrants a thorough
examination of the data model to uncover why this particular key is disproportionately

accessed.

Further, in Fabric, the different databases have diverse performance and functionality
suitable for various workloads. Therefore, choosing between LevelDB and CouchDB
based on the workload profile can improve the performance. Also, dynamically tuning

the various database parameters can ensure higher efficiency.

3.2.3 System Level Optimizations

At the system level, our emphasis lies on various configuration parameters that can par-
ticularly influence its performance. Additionally, identifying client and peer bottlenecks
assist in making informed resource allocation choices. These optimization strategies
should be based on analysis of the blockchain ledger produced by the active application,
enabling users to determine the most suitable configuration settings tailored to their

specific scenario and workload, thereby enhancing performance.

Max Message Count determines the maximum number of transactions a block can contain.
Batch Timeout is the maximum duration to wait before creating a block with the currently
available transactions. Preferred Max Bytes specifies the maximum block size in terms of

bytes. Tuning these three parameters can optimize transaction processing efficiency and

24



3. METHODOLOGY

impact network throughput and latency. In the context of the consensus mechanism (such
as Raft), the Snapshot Interval Size parameter defines the frequency of state snapshotting,
which can affect recovery times and disk space utilization. Further, Fabric provides a
flexible consensus framework that can be configured to suit the trust model and behavior
of the network participants. The network performance can be improved by switching

between different consensus mechanisms, such as CFT and BFT.

Additionally, adjusting the number and distribution of network components, such as
endorsers and clients, in response to changing workloads can help to maintain optimal
performance. In Fabric, each transaction initiated by clients triggers the execution of
a specific smart contract function by endorsers, as determined by the endorsement
policy. This process, which is both time-intensive and resource-demanding, can lead
to inefliciencies if certain endorsers are overloaded with transactions while others are
underutilized, indicating a potential bottleneck or imbalance in load distribution. This
imbalance often arises from endorsement policies that require mandatory endorsements
from certain endorsers, leading to a scenario where specific endorsers, like Org1 in the

policy And(Org1,0R(Org2,0rg3)), become overwhelmed and turn into bottlenecks.

Similarly, clients undertake various labour-intensive operations, encompassing transac-
tion proposal initiation, validation of endorser responses, a compilation of these responses
into a transaction, submission of the transaction to the ordering service, and gathering
of commit responses from peers. Client bottlenecks can be detected by identifying the

clients responsible for a significant volume of transactions.

Recognizing such over-utilized clients and endorsers aids in making informed decisions
about resource distribution, for instance, augmenting the quantity and capacity of these
components. Additionally, such identification may highlight inefficiencies or issues

within the foundational business processes.

3.3 Holistic Performance Optimization Systems

In our work, we devised two systems that cater to the holistic approach of enhancing the

performance of Fabric. Firstly, we developed a performance optimization recommender

25



3.3. HOLISTIC PERFORMANCE OPTIMIZATION SYSTEMS

system that identifies inefficiencies and bottlenecks in the blockchain’s operation, gen-
erating insights into potential optimizations at various levels (system, data, and user).
The approach is structured around data preprocessing, event log extraction, process
analysis, and the formulation of optimization strategies. Secondly, we develop a self-
driving blockchain system that utilizes machine learning algorithms to dynamically
adjust blockchain parameters in real-time, in an attempt to ensure optimal performance
under varying conditions. This involves monitoring system metrics, analyzing perfor-
mance data, and applying reinforcement learning to identify and implement the best
configurations autonomously. Both systems are designed with a keen focus on providing
a comprehensive solution to the challenges faced by Fabric. In this section, we will delve

into the details of both these systems.

3.3.1 Performance Optimization Recommendation System

We propose a transaction-centric approach to derive optimization recommendations for
blockchains by utilizing the data in the distributed ledger. We preprocess the raw data to
create a blockchain log and apply process mining strategies to derive the process model.
Further, we derive the values for various metrics from the blockchain log, which are used
to detect multi-level optimization recommendations. We then use the recommendations
and the derived process model to identify applicable optimizations. To automate this
approach, we have developed a tool called BlockOptR. The workflow of our system is
illustrated in Figure 3.1.1.

BlockOptR is registered as a client on the Fabric network to extract data from the
blockchain ledger. This log is then saved as JSON files and cleaned by removing configu-
ration and setup-related transactions. This process produces a CSV format file that is
used as an event log by generating appropriate Case IDs. Process mining techniques are
applied to the event log to derive process models and aid in recommending user-level
optimizations. Further, nine attributes are extracted from the blockchain log, which
helps derive multiple metrics required to recommend optimizations. Using a multi-level
approach, the defined attributes and metrics are utilized to recommend nine performance
optimization strategies, namely activity reordering, process model pruning, transaction

rate control, delta writes, smart contract partitioning, data model alteration, block size

26



3. METHODOLOGY

adaptation, endorser restructuring and client resource boost.

3.3.2 Self-Driving Blockchain System

Our work explores the development of self-driving blockchains, focusing on enhancing
Fabric’s adaptability and efficiency. We delve into the concept of autonomously adjusting
blockchain parameters and configurations in response to changing network conditions,
workloads, and performance metrics. Through a comprehensive analysis of various layers
of the blockchain stack—ranging from system and data layers to the application layer—our
work proposes a novel framework that leverages reinforcement learning to dynamically
tune parameters. Based on the optimization strategies that we derived (Section 3.2),
further experimentation and literature review, we identified various adaptable features

across the blockchain stack that are integral to realizing a self-driving blockchain system.

These adaptable features represent areas for dynamic adjustment to improve blockchain
system performance, responsiveness to changing workloads, and overall system efficiency.
We highlight the importance of a self-driving approach to manage these adaptations
autonomously, leveraging machine learning to predict and implement optimal config-
urations in real time. Further, we developed three self-driving systems, each targeting
different layers of the Fabric blockchain. At the user level, we apply dynamic transaction
rate control with a focus on client fairness. At the data level, we dynamically adapt
the smart contract to include or exclude delta writes based on workload changes. At
the system level, we dynamically adapt four configuration parameters to ensure better

performance. The workflow of our system is illustrated in Figure 3.1.1.

Our autonomous blockchain system has two main components: a prediction system and
a monitoring system, both integrated with a Fabric network. The prediction system uses
reinforcement learning (RL) to predict suitable optimizations and manipulate Fabric’s
adaptable features. Reinforcement learning is especially useful in situations where
initial training data isn’t available. Given the privacy concerns of enterprises reluctant
to disclose their operational data and ledger details, permissioned blockchains lack
extensive public training datasets. This scenario makes reinforcement learning an apt

method for our application. The monitoring system collects performance data from the

27



3.4. BLOCKCHAIN BENCHMARKING SYSTEMS

network. The state, action space, and reward function parameters of the RL agent are
adjusted to implement self-driving capabilities at each level of the blockchain stack. Initial
results indicate promising performance improvements, which can be further enhanced

by refining the training model.

3.4 Blockchain Benchmarking Systems

We extensively study multiple blockchain systems and blockchain benchmarking systems
to broaden the scope of our research beyond Hyperledger Fabric. We address the signifi-
cant challenges in benchmarking different blockchains which arise from their diverse
implementations. To identify critical benchmarking challenges, we performed an in-depth
analysis of five prominent permissioned blockchain platforms: Fabric, Corda, Multichain,
Quorum, and Diem. Our examination encompassed system configuration, parameter
tuning, workloads, and performance metrics, allowing us to formulate specific problem
statements for each aspect. Subsequently, we proposed a comprehensive methodology
to address these challenges, highlighting the essential contributions required from both
blockchain and benchmarking system developers. Additionally, we conducted a case study
on five existing blockchain benchmarking systems - Blockbench, Caliper, Diablo, Gromit,
and BCTMark - evaluating their limitations and proposing enhancements. Our research
aims to refine the benchmarking process and enable more accurate and meaningful

performance evaluations across various blockchain platforms.

28



Summary of Publications

This chapter summarizes all published papers for this publication-based dissertation
individually. This dissertation is based on four peer-reviewed publications (two full
papers, one workshop paper and one demo paper) and one arXiv publication. We
highlight each publication’s key idea, outline the achievements, and summarize the

author’s contributions.

Section 4.1 outlines our first publication that focuses on identifying critical factors
affecting transaction failures in the Hyperledger Fabric platform through extensive
benchmarking experiments. We analyzed network configuration, transaction size, and
endorsement policies, and compared existing optimization strategies. Section 4.2 summa-
rizes our second publication that proposes an approach to optimize blockchain systems
using a comprehensive framework backed by practical evaluations. The work emphasizes
the importance of adopting a holistic approach to blockchain optimization. Section 4.3
abstracts our discussion on self-driving blockchains, focusing on Hyperledger Fabric.
The study identifies crucial dynamically adaptable features and demonstrates the im-
provements in throughput and latency by implementing autonomous systems targeting
different layers of the blockchain stack. Section 4.4 abstracts our extensive study on
blockchain benchmarking systems, and Section 4.5 summarizes our work on the Fabric

workload visualizer tool.

29



4.1. WHY DO MY BLOCKCHAIN TRANSACTIONS FAIL? A STUDY OF HYPERLEDGER
FABRIC

4.1 Why Do My Blockchain Transactions Fail? A Study
of Hyperledger Fabric

Reference: Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. “Why Do My
Blockchain Transactions Fail? A Study of Hyperledger Fabric.” In: Proceedings of the
2021 International Conference on Management of Data. SIGMOD °21. Virtual Event, China:
Association for Computing Machinery, 2021, pp. 221-234. 1SBN: 9781450383431. po1:
10.1145/3448016.3452823. URL: https://doi.org/10.1145/3448016.3452823 (CORE
PUBLICATION 1)

Full-text version enclosed: Appendix A
Summary:

Our work thoroughly examines the Hyperledger Fabric platform and formally defines
the different types of transaction failures that can occur in Fabric. We conducted over

900 experiments to identify key factors that lead to transaction failures.

Our work identifies several critical parameters affecting transaction failures through
empirical research, including network configuration, transaction size, and endorsement
policies. We also compared existing optimization strategies—Fabric++, Streamchain,
and FabricSharp—highlighting their strengths and weaknesses in reducing transaction
failures. We meticulously analyzed our experimental results to derive valuable insights

into the complex dynamics of blockchain transaction processing.

Our work contributes significantly to the blockchain community by providing a deeper
understanding of the causes of transaction failures in Hyperledger Fabric and suggesting
practical solutions for improvement. We not only shed light on the technical challenges
but also open avenues for future research and development in blockchain technology
optimization. The recommendations made are poised to assist developers and researchers

in enhancing the robustness and efficiency of blockchain systems.

Author’s contributions: Conceived and developed the approach. Conducted analysis

and experimental evaluation. Wrote the paper.

30


https://doi.org/10.1145/3448016.3452823
https://doi.org/10.1145/3448016.3452823

4. SUMMARY OF PUBLICATIONS

4.2 How To Optimize My Blockchain? A Multi-Level

Recommendation Approach

Reference: Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. “How To
Optimize My Blockchain? A Multi-Level Recommendation Approach.” In: Proc. ACM
Manag. Data 1.1 (May 2023). po1: 10.1145/3588704. URL: https://doi.org/10.1145/3588704
(New publication format for SIGMOD ‘23) (CORE PUBLICATION 2)

Full-text version enclosed: Appendix B
Summary:

We explore an innovative approach to optimizing blockchain systems to address the
critical challenges that impede their efficiency and scalability. We introduce a compre-
hensive optimization framework that targets multiple aspects of blockchain technology,
including the application, data model and system components. We systematically parse
the blockchain ledger to identify performance bottlenecks and suggest targeted optimiza-
tions. This framework is not only theoretical but also backed by practical evaluations,

demonstrating its potential to enhance blockchain performance significantly.

Central to our work is the development and application of an optimization tool that
automates the process of analyzing the blockchain ledger in Fabric and generating
recommendations for performance improvements. Through detailed log analysis and
performance metrics evaluation, this tool identifies inefficiencies and provides actionable
insights for optimizing blockchain configurations. The experimental results presented in
our work showcase the tool’s effectiveness in various scenarios, highlighting its capacity
to improve success rate by up to 20% and reduce latency by up to 40% against varying
workloads. Our work underscores the significance of adopting a holistic approach to

blockchain optimization.

Author’s contributions: Conceived, developed, and implemented the approach. Con-

ducted analysis and experimental evaluation. Wrote the paper.

31


https://doi.org/10.1145/3588704
https://doi.org/10.1145/3588704

4.3. SHOULD MY BLOCKCHAIN LEARN TO DRIVE? A STUDY OF HYPERLEDGER FABRIC

4.3 Should my Blockchain Learn to Drive? A Study of
Hyperledger Fabric

Reference: Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. Should my
Blockchain Learn to Drive? A Study of Hyperledger Fabric. 2024. arXiv: 2406.06318

Full-text version enclosed: Appendix C
Summary:

Our work presents a comprehensive study on the implementation and evaluation of
self-driving blockchains, focusing on Hyperledger Fabric. We explore the concept of
autonomous blockchains that can predict workload changes and reconfigure themselves
for optimal performance without human intervention. Our study demonstrates significant
improvements in throughput and latency by implementing three locally autonomous sys-
tems targeting different layers of the blockchain stack, suggesting a promising direction

towards fully autonomous blockchain systems.

Our research highlights the need for self-driving blockchains to adapt to evolving
workloads and network conditions and ensure fairness across clients. It identifies specific
parameters and components within Fabric that are suitable for autonomous adaptation
and evaluates the feasibility of such adaptations through experiments. These adaptations
include dynamic parameter tuning, smart contract adaptation, and client admission rate

tuning, leading to improved system performance and fairness.

Self-driving blockchains represent a significant advancement in blockchain technol-
ogy, offering potential solutions to the challenges of managing complex and dynamic
blockchain systems. The experiments conducted provide evidence of the benefits of
autonomous adaptations on performance. Our research opens up new possibilities for

the development of fully autonomous blockchain systems.

Author’s contributions: Conceived, developed, and implemented the approach. Con-

ducted analysis and experimental evaluation. Wrote the paper.

32


https://arxiv.org/abs/2406.06318

4. SUMMARY OF PUBLICATIONS

4.4 A Comprehensive Study on Benchmarking Permis-

sioned Blockchains

Reference: Jeeta Ann Chacko, Ruben Mayer, Alan Fekete, Vincent Gramoli, and Hans-
Arno Jacobsen. “A Comprehensive Study on Benchmarking Permissioned Blockchains.”
In: Performance Evaluation and Benchmarking. Ed. by Raghunath Nambiar and Meikel
Poess. Cham: Springer Nature Switzerland, 2024 (Accepted for publication)

Full-text version enclosed: Appendix D
Summary:

Our work addresses the significant challenges in benchmarking various permissioned
blockchain systems due to their diverse implementations and rapid market growth. We
emphasize the importance of establishing a standardized methodology for evaluating
these blockchains, which are increasingly used in enterprise applications such as banking,
supply chain transparency, and digital asset management. Our study reviews five
popular permissioned blockchains—Hyperledger Fabric, Corda, Multichain, Quorum, and
Diem—highlighting their unique characteristics and the necessity for a comprehensive

benchmarking approach to assist developers and users in making informed decisions.

We identify key problems across four benchmarking factors: system configuration, pa-
rameter tuning, workloads, and performance metrics. We propose a detailed methodology
to address these issues, involving contributions from both blockchain and benchmarking
system developers. Our study includes a case analysis of five existing blockchain
benchmarking systems, pointing out their limitations and suggesting improvements.
Our findings stress the need for detailed documentation, workload-specific benchmarks,
and fine-grained performance metrics to ensure fair and effective benchmarking. There
is a dire need for active engagement from the blockchain community to enhance the
benchmarking process, thereby facilitating the optimal selection and configuration of

blockchain systems.

Author’s contributions: Conceived the idea and conducted the study. Wrote the paper.

33



4.5. FABRIC-VISUALIZER: A TRANSACTION DEPENDENCY VISUALIZER FOR
HYPERLEDGER FABRIC

4.5 Fabric-Visualizer: A Transaction Dependency Vi-

sualizer for Hyperledger Fabric

Reference: Jeeta Ann Chacko, Nino Richter, Ruben Mayer, and Hans-Arno Jacobsen.
“Fabric-Visualizer: A Transaction Dependency Visualizer for Hyperledger Fabric.” In:
Proceedings of the 24th International Middleware Conference: Demos, Posters and Doctoral
Symposium. New York, NY, USA: Association for Computing Machinery, 2023, pp. 31-32.
ISBN: 9798400704291. URL: https://doi.org/10.1145/3626564.3629098

Full-text version enclosed: Appendix E
Summary:

We developed a web application designed to analyze transaction dependencies within
Hyperledger Fabric workloads. The Fabric-Visualizer tool extracts data from a live Fabric
network, generates transaction dependency graphs, and provides detailed information
on each transaction, such as validation status, dependent transactions, smart contract
functions, accessed keys, endorsers, and clients. This comprehensive visualization aids
users in identifying the causes of transaction failures and optimizing smart contracts. The
tool also checks for the serializability of transactions and identifies which transactions
need to be aborted to achieve it, thereby helping users select appropriate optimization

strategies.

The system is demonstrated with multiple realistic workloads and showcases its ability
to provide valuable insights into transaction conflicts. The generated conflict graphs and
detailed transaction information help users understand the impact of different workloads
on transaction failures and serializability. Additionally, by analyzing transaction details,
users can detect smart contract functions and keys causing conflicts, enabling them to
implement optimization strategies like smart contract partitioning and activity pruning,.
Our tool assists users to better understand their blockchain workloads and make informed

decisions on optimization strategies.

Author’s contributions: Conceived the idea and conducted experimental evaluation.

Wrote the paper.

34


https://doi.org/10.1145/3626564.3629098

Discussion

This chapter discusses our work in the larger context of performance optimization
strategies in transaction processing systems. We present related work from the literature
and highlight the specific aspects unique to our work. We conclude that a comprehensive
approach to performance optimization that analyzes the entire system stack is highly
beneficial for decentralized systems. We also discuss the technology independence of our
general methodology by highlighting examples from other blockchain systems that are

comparable to Fabric.

Our research advances the understanding of transaction failures in Fabric by defining
failure types and examining the effects of key parameters on performance. Unlike
previous studies that mainly focus on throughput and latency [32, 45], our analysis
includes a broader comparison across several systems (Fabric 1.4, Fabric++, Streamchain,
FabricSharp) under various workloads, with a special emphasis on transaction failures.
We reveal insights not covered in existing literature [32], such as the impact of CouchDB
on latency and the cost of range queries. We also explore how different Fabric versions
and configurations influence transaction failures, offering new findings like the inverse
relationship between block size and transaction failures at fixed rates across different

versions of Fabric, which are not discussed in the related work.

Additionally, our work compares with database benchmarking research [46, 47] that

35



focuses on identifying performance bottlenecks. However, the distinctive features of
Fabric and blockchains in general, such as smart contracts, endorsement policies and
consensus protocols, yield unique insights into managing transaction failures that are
not discussed in database-related literature. Our comprehensive experimental analysis

fills gaps left by previous studies and provides valuable insights for Fabric users.

Our research introduces a novel approach to enhancing blockchain performance through
arecommender system that analyzes the data in a Fabric blockchain ledger and offers nine
different strategies for optimizing the entire blockchain stack. The existing literature fo-
cuses on individual aspects of performance optimizations, such as transaction reordering,
block size adjustments, CRDTs, and component parallelization, while we discuss a more
comprehensive approach [26, 33, 34, 48]. Although we draw inspiration from database
optimization and recommendation research [49, 50, 51], our focus is on blockchain-
specific enhancements, considering unique factors like block size, endorsement policies,

and smart contracts.

Additionally, we explore the use of process mining techniques on the data in the blockchain
ledger to derive process-level insights that can improve the blockchain system’s perfor-
mance. This marks a departure from existing studies [52, 53, 54, 55, 56], which primarily
focus on process mining techniques only to derive and understand the business process
model. Our work leverages a business process perspective by extracting process data from
the blockchain ledger, analyzing blockchain-specific attributes and deriving performance

optimization strategies.

Our research on autonomous blockchains highlights the importance of self-managing
systems and outlines the essential features needing continuous adjustment. Previous
studies in database management have explored self-driving, auto-tuning, and adaptive
systems across various aspects like resource allocation and query optimization [57, 58,
59, 60]. However, our focus shifts to distributed ledger technologies, which stand apart
in architecture and functionality. This distinction also extends to exploring self-driving
capabilities at the application level, particularly emphasizing fairness in decentralized

systems like blockchains.

Recent studies have introduced self-adaptive and auto-tuning blockchains, such as
Sabine [61], Ursa [62], Adachain [63], and Athena [64], each offering adaptability for

36



5. DISCUSSION

a single aspect within the blockchain architecture [61, 62, 63, 64, 65, 66]. Our work, in
contrast, seeks to identify and examine a comprehensive set of adaptable features across
the entire blockchain stack. Further, unlike the related work that requires a restart of the
blockchain system in order to apply dynamic adaptations [64], we focus on parameters

that can be tuned on a live network.

We have demonstrated our comprehensive benchmarking and optimization techniques
using the Fabric blockchain. Achieving technology independence can be difficult due to
the significant variations in the implementation of different blockchain systems. However,
we have identified specific examples that can serve as a roadmap for future researchers

to apply our techniques to other blockchain systems.

At the system level, the literature discusses the impact of parameter tuning in various
blockchain systems [67, 68]. For instance, in Quorum, the frequency of block time has
a direct proportional impact on the transaction latencies. Transactions are verified by
specific nodes called notaries in Corda, and configuring an ideal number of notaries based
on the incoming workload can enhance the performance. The performance impact of
these parameters is similar to the Fabric parameters that we discuss in our work, such
as block size and endorsement policy. Further, all blockchain systems have dynamically
tunable parameters (Corda and Multichain have more than 9 and 15 dynamic parameters,

respectively), highlighting the need for self-drive in other blockchains.

Additionally, related work discusses several optimization strategies to reduce the gas fee
and detect vulnerabilities for Solidity smart contracts, which align with our data-level
recommendations. Various tools, such as Lorikeet and Caterpillar, make it possible to
automate the creation and execution of Solidity smart contracts directly from process
models. This provides a foundation for implementing process model-based optimizations
similar to the ones proposed in our work on other blockchains. Further, client fairness
is a universal concept that can be applied to all blockchain systems. Hence, strategies
for application-level optimization, such as transaction admission rate control and client

resource management, are not dependent on the blockchain platform.

37






Conclusions

Our work offers a thorough investigation into the optimization and management of
decentralized systems with a focus on Hyperledger Fabric. Collectively, our three projects
cover a broad spectrum of challenges and solutions concerning transaction failures, system
performance, and the implementation of autonomous operations within blockchain

systems.

Our experimental analysis of Fabric identifies the root causes of transaction failures,
attributing them to its optimistic concurrency control mechanism. Through the develop-
ment of diverse workloads, our study provides an exhaustive analysis of how various
configurations impact transaction success rates. We also evaluate several optimization
strategies proposed in the literature and offer actionable recommendations for practition-

ers to enhance system performance.

We further extend the discourse by proposing a multi-level optimization framework that
encompasses system, data, and user-level adjustments. This approach is validated by
applying the framework’s recommendations, demonstrating substantial improvements
in transaction throughput and latency. This research underscores the importance of a
comprehensive optimization strategy that addresses multiple facets of blockchain systems

to achieve significant performance gains.

39



Eventually, our focus shifts towards the concept of self-driving blockchains, which
autonomously adapt to changing workloads and network conditions to optimize per-
formance metrics such as throughput, fairness, and latency. Our study showcases the
feasibility and benefits of self-adaptive mechanisms in blockchain systems through
literature review and experimentation, pointing towards a future where blockchain
infrastructure can dynamically adjust to achieve optimal operation without manual

intervention.

Combining all the insights from our work, a detailed picture emerges on the necessity
and methodology for enhancing the efficiency and robustness of blockchain systems. We
highlight the complex interplay between system configurations, workload characteris-
tics, and optimization strategies, advocating for a balanced approach that considers all
aspects of blockchain operation. The research collectively advances the field by not only
diagnosing existing limitations but also providing validated solutions that pave the way

for more adaptive, efficient, and user-friendly blockchain ecosystems.

There are various future research directions that can extend and enrich our current
work in several ways. As the concept of self-driving blockchains advances, ensuring the
security and integrity of these autonomous systems becomes paramount. Future work
could focus on developing robust security frameworks that can dynamically adapt to
new threats, ensuring the safety and reliability of decentralized systems. Additionally,
there are growing concerns over the environmental impact of blockchain technologies, so
future research could aim to dynamically optimize the energy consumption and carbon

footprint of blockchain operations.

40



Bibliography

(1]

Orlenys Pintado, Luciano Garcia-Bafiuelos, Marlon Dumas, Ingo Weber, and Alexander Ponomarev.
“Caterpillar: A business process execution engine on the Ethereum blockchain.” In: Software: Practice
and Experience (May 2019). po1: 10.1002/spe.2702.

Vitalik Buterin et al. “A next-generation smart contract and decentralized application platform.” In:
white paper 3.37 (2014), pp. 2-1.

Ashar Ahmad, Muhammad Saad, Joongheon Kim, DaeHun Nyang, and David Mohaisen. “Perfor-
mance Evaluation of Consensus Protocols in Blockchain-based Audit Systems.” In: 2021 International
Conference on Information Networking (ICOIN). 2021, pp. 654-656. Do1: 10.1109/ICOIN50884.2021.
9333867.

Xiaoqiang Ding, Liushun Zhao, Lailong Luo, et al. “Gauze: enabling communication-friendly block

synchronization with cuckoo filter.” In: Frontiers of Computer Science 17.3 (2023), p. 173403.

Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. “Permissioned Blockchains:
Properties, Techniques and Applications.” In: New York, NY, USA: Association for Computing
Machinery, 2021. 1SBN: 9781450383431. URL: https://doi.org/10.1145/3448016.3457539.

Elli Androulaki, Artem Barger, Vita Bortnikov, et al. “Hyperledger Fabric: A Distributed Operating
System for Permissioned Blockchains.” In: Proceedings of the Thirteenth EuroSys Conference. EuroSys
’18. Porto, Portugal: ACM, 2018, 30:1-30:15. 1sBN: 978-1-4503-5584-1. pDOI: 10.1145/3190508.3190538.
URL: http://doi.acm.org/10.1145/3190508.3190538.

Richard Gendal Brown, James Carlyle, Ian Grigg, and Mike Hearn. “Corda: an introduction.” In: R3
CEV, August 1 (2016), p. 15.

Gideon Greenspan et al. “Multichain private blockchain-white paper.” In: URL: http://www. multichain.
com/download/MultiChain-White-Paper. pdf (2015), pp. 57-60.

JP Morgan. “Quorum whitepaper.” In: New York: JP Morgan Chase (2016).

Suporn Pongnumkul, Chaiyaphum Siripanpornchana, and Suttipong Thajchayapong. “Performance
Analysis of Private Blockchain Platforms in Varying Workloads.” In: 2017 26th International Confer-
ence on Computer Communication and Networks (ICCCN). 2017, pp. 1-6. po1: 10.1109/ICCCN.2017.
8038517.

41


https://doi.org/10.1002/spe.2702
https://doi.org/10.1109/ICOIN50884.2021.9333867
https://doi.org/10.1109/ICOIN50884.2021.9333867
https://doi.org/10.1145/3448016.3457539
https://doi.org/10.1145/3190508.3190538
http://doi.acm.org/10.1145/3190508.3190538
https://doi.org/10.1109/ICCCN.2017.8038517
https://doi.org/10.1109/ICCCN.2017.8038517

BIBLIOGRAPHY

[11]

[12]

(18]

[21]

[22]

Pingcheng Ruan, Tien Tuan Anh Dinh, Dumitrel Loghin, et al. “Blockchains vs. Distributed Databases:
Dichotomy and Fusion.” In: Proceedings of the 2021 International Conference on Management of Data.
New York, NY, USA: Association for Computing Machinery, 2021. 1sBN: 9781450383431. URL:
https://doi.org/10.1145/3448016.3452789.

Ahmed Afif Monrat, Olov Schelén, and Karl Andersson. “A Survey of Blockchain From the Perspec-
tives of Applications, Challenges, and Opportunities.” In: IEEE Access 7 (2019), pp. 117134-117151.
DOI: 10.1109/ACCESS.2019.2936094.

Ye Guo and Chen Liang. “Blockchain application and outlook in the banking industry.” In: Financial
innovation 2 (2016), pp. 1-12.

https://dappradar.com/rankings/protocol/ethereum. [Online; accessed 12-March-2024]. 2024.
https://www.hyperledger.org/learn/use-case-tracker. [Online; accessed 12-March-2024]. 2024.

Sara Bergman, Mikael Asplund, and Simin Nadjm-Tehrani. “Permissioned blockchains and dis-
tributed databases: A performance study.” In: Concurrency and Computation: Practice and Experience
32.12 (2020). e5227 cpe.5227, e5227. DOT: https://doi.org/10.1002/cpe.5227. eprint: https:
//onlinelibrary. wiley.com/doi/pdf/10.1002/cpe.5227. URL: https://onlinelibrary.wiley.com/
doi/abs/10.1002/cpe.5227.

Mohammad Jabed Morshed Chowdhury, Alan Colman, Muhammad Ashad Kabir, Jun Han, and
Paul Sarda. “Blockchain Versus Database: A Critical Analysis.” In: 2018 17th IEEE International
Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International
Conference On Big Data Science And Engineering (TrustCom/BigDataSE). 2018, pp. 1348-1353. DOI:
10.1109/TrustCom/BigDataSE.2018.00186.

Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, et al. “Untangling Blockchain: A Data Processing
View of Blockchain Systems.” In: IEEE Transactions on Knowledge and Data Engineering 30.7 (2018),
pp- 1366-1385. po1: 10.1109/TKDE.2017.2781227.

Olivier Rikken, Marijn Janssen, and Zenlin Kwee. “Governance challenges of blockchain and
decentralized autonomous organizations.” In: Information Polity 24 (Nov. 2019), pp. 1-21. DOT:
10.3233/IP-190154.

Mayank Raikwar, Danilo Gligoroski, and Goran Velinov. “Trends in Development of Databases
and Blockchain.” In: 2020 Seventh International Conference on Software Defined Systems (SDS). 2020,
pp. 177-182. po1: 10.1109/SDS49854.2020.9143893.

Du Mingxiao, Ma Xiaofeng, Zhang Zhe, Wang Xiangwei, and Chen Qijun. “A review on consensus
algorithm of blockchain.” In: 2017 IEEE International Conference on Systems, Man, and Cybernetics
(SMC). 2017, pp. 2567-2572. po1: 10.1109/SMC.2017.8123011.

Aravind Ramachandran and Dr. Murat Kantarcioglu. “Using Blockchain and smart contracts for

secure data provenance management.” In: arXiv (2017).

42


https://doi.org/10.1145/3448016.3452789
https://doi.org/10.1109/ACCESS.2019.2936094
https://dappradar.com/rankings/protocol/ethereum
https://www.hyperledger.org/learn/use-case-tracker
https://doi.org/https://doi.org/10.1002/cpe.5227
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5227
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5227
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5227
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5227
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00186
https://doi.org/10.1109/TKDE.2017.2781227
https://doi.org/10.3233/IP-190154
https://doi.org/10.1109/SDS49854.2020.9143893
https://doi.org/10.1109/SMC.2017.8123011

BIBLIOGRAPHY

[24]

[26]

(28]

[33]

Bhabendu Kumar Mohanta, Soumyashree S Panda, and Debasish Jena. “An Overview of Smart Con-
tract and Use Cases in Blockchain Technology.” In: 2018 9th International Conference on Computing,
Communication and Networking Technologies (ICCCNT). 2018, pp. 1-4. po1: 10.1109/ICCCNT.2018.
8494045.

Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. “Why Do My Blockchain Transactions
Fail? A Study of Hyperledger Fabric.” In: Proceedings of the 2021 International Conference on
Management of Data. SIGMOD °21. Virtual Event, China: Association for Computing Machinery,
2021, pp. 221-234. 1sBN: 9781450383431. po1: 10.1145/3448016.3452823. URL: https://doi.org/10.
1145/3448016.3452823.

Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich. “Blurring the Lines
Between Blockchains and Database Systems: The Case of Hyperledger Fabric.” In: Proceedings of the
2019 International Conference on Management of Data. SIGMOD ’19. Amsterdam, Netherlands: ACM,
2019. 1sBN: 978-1-4503-5643-5. DO1: 10.1145/3299869.3319883. URL: http://doi.acm.org/10.1145/
3299869.3319883.

Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta, et al. “A Transactional Perspective on Execute-
Order-Validate Blockchains.” In: Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. SIGMOD °20. Portland, OR, USA: Association for Computing Machinery, 2020,
pp- 543-557. 1sBN: 9781450367356. Do1: 10.1145/3318464.3389693. URL: https://doi.org/10.1145/
3318464.3389693.

Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. “How To Optimize My Blockchain? A
Multi-Level Recommendation Approach.” In: Proc. ACM Manag. Data 1.1 (May 2023). po1: 10.1145/
3588704. URL: https://doi.org/10.1145/3588704.

Jeeta Ann Chacko, Nino Richter, Ruben Mayer, and Hans-Arno Jacobsen. “Fabric-Visualizer: A
Transaction Dependency Visualizer for Hyperledger Fabric.” In: Proceedings of the 24th International
Middleware Conference: Demos, Posters and Doctoral Symposium. New York, NY, USA: Association
for Computing Machinery, 2023, pp. 31-32. 1sBN: 9798400704291. URL: https://doi.org/10.1145/
3626564.3629098.

Akash Takyar. 2023. urL: https://www.leewayhertz.com/cost-of-blockchain-implementation.
Sudeep Srivastava. 2023. URL: https://appinventiv.com/guide/blockchain-app-development-cost/.
Anurag Jain. 2023. URL: https://oyelabs.com/blockchain-app-development-cost/.

Parth Thakkar, Senthil Nathan, and Balaji Viswanathan. “Performance Benchmarking and Opti-
mizing Hyperledger Fabric Blockchain Platform.” In: 2018 IEEE 26th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS). 2018,
pp. 264-276. po1: 10.1109/MASCOTS.2018.00034.

Christian Gorenflo, Stephen Lee, Lukasz Golab, and Srinivasan Keshav. “FastFabric: Scaling Hyper-
ledger Fabric to 20,000 Transactions per Second.” In: 2019 IEEE International Conference on Blockchain
and Cryptocurrency (ICBC). 2019, pp. 455-463. po1: 10.1109/BLOC.2019.8751452.

43


https://doi.org/10.1109/ICCCNT.2018.8494045
https://doi.org/10.1109/ICCCNT.2018.8494045
https://doi.org/10.1145/3448016.3452823
https://doi.org/10.1145/3448016.3452823
https://doi.org/10.1145/3448016.3452823
https://doi.org/10.1145/3299869.3319883
http://doi.acm.org/10.1145/3299869.3319883
http://doi.acm.org/10.1145/3299869.3319883
https://doi.org/10.1145/3318464.3389693
https://doi.org/10.1145/3318464.3389693
https://doi.org/10.1145/3318464.3389693
https://doi.org/10.1145/3588704
https://doi.org/10.1145/3588704
https://doi.org/10.1145/3588704
https://doi.org/10.1145/3626564.3629098
https://doi.org/10.1145/3626564.3629098
https://www.leewayhertz.com/cost-of-blockchain-implementation
https://appinventiv.com/guide/blockchain-app-development-cost/
https://oyelabs.com/blockchain-app-development-cost/
https://doi.org/10.1109/MASCOTS.2018.00034
https://doi.org/10.1109/BLOC.2019.8751452

BIBLIOGRAPHY

[42]

[46]

Zsolt Istvan, Alessandro Sorniotti, and Marko Vukolié¢. “Streamchain: Do blockchains need blocks?”
In: Proceedings of the 2nd Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers.
2018, pp. 1-6.

Shashank Motepalli and Hans-Arno Jacobsen. Analyzing Geospatial Distribution in Blockchains. 2023.
arXiv: 2305.17771 [cs.DC].

Performance considerations. 2023. URL: https://hyperledger - fabric.readthedocs.io/en/latest/
performance html.

Michel Rauchs, Apolline Blandin, Keith Bear, and Stephen B McKeon. “2nd global enterprise
blockchain benchmarking study.” In: Available at SSRN 3461765 (2019).

Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. Should my Blockchain Learn to Drive? A
Study of Hyperledger Fabric. 2024. arXiv: 2406.06318.

Jeeta Ann Chacko, Ruben Mayer, Alan Fekete, Vincent Gramoli, and Hans-Arno Jacobsen. “A
Comprehensive Study on Benchmarking Permissioned Blockchains.” In: Performance Evaluation and
Benchmarking. Ed. by Raghunath Nambiar and Meikel Poess. Cham: Springer Nature Switzerland,
2024.

https://hyperledger.github.io/caliper/. [Online; accessed 20-June-2024]. 2020.

Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman. “Medrec: Using blockchain for
medical data access and permission management.” In: 2016 2nd International Conference on Open
and Big Data (OBD). IEEE. 2016, pp. 25-30.

Tomas Mikula and Rune Hylsberg Jacobsen. “Identity and access management with blockchain in
electronic healthcare records.” In: 2018 21st Euromicro Conference on Digital System Design (DSD).
IEEE. 2018, pp. 699-706.

Emre Yavuz, Ali Kaan Kog, Umut Can Cabuk, and Gokhan Dalkilig. “Towards secure e-voting using
ethereum blockchain.” In: 2018 6th International Symposium on Digital Forensic and Security (ISDFS).
IEEE. 2018, pp. 1-7.

Guido Perboli, Stefano Musso, and Mariangela Rosano. “Blockchain in logistics and supply chain: A

lean approach for designing real-world use cases.” In: IEEE Access 6 (2018), pp. 62018—62028.

Arati Baliga, Nitesh Solanki, Shubham Verekar, et al. “Performance Characterization of Hyperledger
Fabric.” In: 2018 Crypto Valley Conference on Blockchain Technology (CVCBT). 2018, pp. 65-74. DOI:
10.1109/CVCBT.2018.00013.

Michael Stonebraker and Ugur Cetintemel. “"One Size Fits All": An Idea Whose Time Has Come
and Gone.” In: Proceedings of the 21st International Conference on Data Engineering. ICDE *05. USA:
IEEE Computer Society, 2005, pp. 2-11. 1sBN: 0769522858. po1: 10.1109/ICDE.2005.1. URL:
https://doi.org/10.1109/ICDE.2005.1.

Robin Rehrmann, Carsten Binnig, Alexander Bohm, et al. “OLTPshare: The Case for Sharing in OLTP
Workloads.” In: Proc. VLDB Endow. 11.12 (2018). 1ssN: 2150-8097. DO1: 10.14778/3229863.3229866.
URL: https://doi.org/10.14778/3229863.3229866.

44


https://arxiv.org/abs/2305.17771
https://hyperledger-fabric.readthedocs.io/en/latest/performance.html
https://hyperledger-fabric.readthedocs.io/en/latest/performance.html
https://arxiv.org/abs/2406.06318
https://hyperledger.github.io/caliper/
https://doi.org/10.1109/CVCBT.2018.00013
https://doi.org/10.1109/ICDE.2005.1
https://doi.org/10.1109/ICDE.2005.1
https://doi.org/10.14778/3229863.3229866
https://doi.org/10.14778/3229863.3229866

BIBLIOGRAPHY

[51]

[53]

[54]

[55]

[56]

(58]

Pezhman Nasirifard, Ruben Mayer, and Hans-Arno Jacobsen. “FabricCRDT: A Conflict-Free Repli-
cated Datatypes Approach to Permissioned Blockchains.” In: Proceedings of the 20th International
Middleware Conference. Middleware ’19. Davis, CA, USA: Association for Computing Machinery,
2019, pp. 110—122. 1sBN: 9781450370097. DO1: 10.1145/3361525.3361540. URL: https://doi.org/10.
1145/3361525.3361540.

Parinaz Ameri. “On a self-tuning index recommendation approach for databases.” In: 2016 IEEE
32nd International Conference on Data Engineering Workshops (ICDEW). 2016, pp. 201-205. poT:
10.1109/ICDEW.2016.7495648.

Gloria Chatzopoulou, Magdalini Eirinaki, and Neoklis Polyzotis. “Query Recommendations for In-
teractive Database Exploration.” In: Scientific and Statistical Database Management. Ed. by Marianne
Winslett. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 3—18. 1SBN: 978-3-642-02279-1.

Sadhana J. Kamatkar, Ajit Kamble, Amelec Viloria, Lissette Hernandez-Fernandez, and Ernesto
Garcia Cali. “Database Performance Tuning and Query Optimization.” In: Data Mining and Big
Data. Ed. by Ying Tan, Yuhui Shi, and Qirong Tang. Cham: Springer International Publishing, 2018,
pp- 3-11. 1sBN: 978-3-319-93803-5.

Christopher Klinkmiiller, Alexander Ponomarev, An Binh Tran, Ingo Weber, and Wil van der Aalst.
“Mining blockchain processes: Extracting process mining data from blockchain applications.” In:

International Conference on Business Process Management. Springer. 2019, pp. 71-86.

Roman Miihlberger, Stefan Bachhofner, Claudio Di Ciccio, Luciano Garcia-Bafiuelos, and Orlenys
Lopez-Pintado. “Extracting event logs for process mining from data stored on the blockchain.” In:

International Conference on Business Process Management. Springer. 2019, pp. 690-703.

Stefan Ténnissen and Frank Teuteberg. “Using Blockchain Technology for Cross-Organizational
Process Mining—Concept and Case Study.” In: International Conference on Business Information

Systems. Springer. 2019, pp. 121-131.

Frank Duchmann and Agnes Koschmider. “Validation of smart contracts using process mining.” In:
ZEUS. CEUR workshop proceedings. Vol. 2339. 2019, pp. 13-16.

Richard Hobeck, Christopher Klinkmiiller, Hmn Dilum Bandara, Ingo Weber, and Wil Van der Aalst.
Process Mining on Blockchain Data: a Case Study of Augur. Tech. rep. EasyChair, 2021.

Surajit Chaudhuri and Vivek Narasayya. “Self-Tuning Database Systems: A Decade of Progress.” In:
Proceedings of the 33rd International Conference on Very Large Data Bases. VLDB *07. Vienna, Austria:
VLDB Endowment, 2007, pp. 3-14. 1SBN: 9781595936493.

Ji Zhang, Yu Liu, Ke Zhou, et al. “An End-to-End Automatic Cloud Database Tuning System Using
Deep Reinforcement Learning.” In: Proceedings of the 2019 International Conference on Management
of Data. SIGMOD °19. Amsterdam, Netherlands: Association for Computing Machinery, 2019,
pp- 415-432. 1SBN: 9781450356435. pDO1: 10.1145/3299869.3300085. URL: https://doi.org/10.1145/
3299869.3300085.

Sushil Kumar. “Oracle database 10g: The self-managing database.” In: White Paper (2003).

45


https://doi.org/10.1145/3361525.3361540
https://doi.org/10.1145/3361525.3361540
https://doi.org/10.1145/3361525.3361540
https://doi.org/10.1109/ICDEW.2016.7495648
https://doi.org/10.1145/3299869.3300085
https://doi.org/10.1145/3299869.3300085
https://doi.org/10.1145/3299869.3300085

BIBLIOGRAPHY

[61]

[63]

[64]

[67]

Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. “ElasTraS: An Elastic, Scalable, and Self-
Managing Transactional Database for the Cloud.” In: 38.1 (2013). 1sSN: 0362-5915. pO1: 10.1145/
2445583.2445588. URL: https://doi.org/10.1145/2445583.2445588.

Guilain Leduc, Sylvain Kubler, and Jean-Philippe Georges. “Sabine: Self-Adaptive Blockchaln
coNsEnsus.” In: 2022 9th International Conference on Future Internet of Things and Cloud (FiCloud).
2022, pp. 234-240. po1: 10.1109/FiCloud57274.2022.00039.

Na Ruan, Dongli Zhou, and Weijia Jia. “Ursa: Robust Performance for Nakamoto Consensus with
Self-Adaptive Throughput.” In: ACM Trans. Internet Technol. 20.4 (2020). 1ssN: 1533-5399. DOI:
10.1145/3412341. URL: https://doi.org/10.1145/3412341.

Chenyuan Wu, Bhavana Mehta, Mohammad Javad Amiri, Ryan Marcus, and Boon Thau Loo.
“AdaChain: A Learned Adaptive Blockchain.” In: Proc. VLDB Endow. 16.8 (2023), pp. 2033-2046. ISSN:
2150-8097. po1: 10.14778/3594512.3594531. URL: https://doi.org/l().14778/3594512.3594531.

Mingxuan Li, Yazhe Wang, Shuai Ma, et al. “Auto-Tuning with Reinforcement Learning for Permis-
sioned Blockchain Systems.” In: Proc. VLDB Endow. 16.5 (2023), pp. 1000-1012. 1ssN: 2150-8097.
DOT: 10.14778/3579075.3579076. URL: https://doi.org/10.14778/3579075.3579076.

Mohammadreza Rasolroveicy. “A Self-Adaptive Blockchain Framework to Balance Performance,
Security, and Energy Consumption in IoT applications.” In: 2020 IEEE International Conference on
Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). 2020, pp. 243-245. DOI:
10.1109/ACSOS-C51401.2020.00068.

Jie Xu, Qingyuan Xie, Sen Peng, Cong Wang, and Xiaohua Jia. “AdaptChain: Adaptive Scaling
Blockchain With Transaction Deduplication.” In: IEEE Transactions on Parallel and Distributed
Systems 34.6 (2023), pp. 1909-1922. por1: 10.1109/TPDS.2023.3267071.

Frank Christian Geyer, Hans-Arno Jacobsen, Ruben Mayer, and Peter Mandl. “An End-to-End
Performance Comparison of Seven Permissioned Blockchain Systems.” In: Proceedings of the 24th
International Middleware Conference. Middleware "23. New York, NY, USA: Association for Computing
Machinery, 2023, pp. 71-84. po1: 10.1145/3590140.3629106. URL: https://doi.org/10.1145/3590140.
3629106.

Caixiang Fan, Sara Ghaemi, Hamzeh Khazaei, and Petr Musilek. “Performance Evaluation of
Blockchain Systems: A Systematic Survey.” In: IEEE Access 8 (2020), pp. 126927-126950. DO1I:
10.1109/ACCESS.2020.3006078.

46


https://doi.org/10.1145/2445583.2445588
https://doi.org/10.1145/2445583.2445588
https://doi.org/10.1145/2445583.2445588
https://doi.org/10.1109/FiCloud57274.2022.00039
https://doi.org/10.1145/3412341
https://doi.org/10.1145/3412341
https://doi.org/10.14778/3594512.3594531
https://doi.org/10.14778/3594512.3594531
https://doi.org/10.14778/3579075.3579076
https://doi.org/10.14778/3579075.3579076
https://doi.org/10.1109/ACSOS-C51401.2020.00068
https://doi.org/10.1109/TPDS.2023.3267071
https://doi.org/10.1145/3590140.3629106
https://doi.org/10.1145/3590140.3629106
https://doi.org/10.1145/3590140.3629106
https://doi.org/10.1109/ACCESS.2020.3006078

Appendix A

Why Do My Blockchain Transactions Fail? A Study of
Hyperledger Fabric

47



Research Data Management Track Paper SIGMOD ’21, June 20-25, 2021, Virtual Event, China

x
A Why Do My Blockchain Transactions Fail?

A Study of Hyperledger Fabric

Jeeta Ann Chacko
chacko@in.tum.de
Technical University of Munich

Hans-Arno Jacobsen
jacobsen@eecg.toronto.edu
University of Toronto

Ruben Mayer
mayerr@in.tum.de
Technical University of Munich

Abstract

Permissioned blockchain systems promise to provide both decen-
tralized trust and privacy. Hyperledger Fabric is currently one of the
most wide-spread permissioned blockchain systems and is heavily
promoted both in industry and academia. Due to its optimistic con-
currency model, the transaction failure rates in Fabric can become
a bottleneck. While there is active research to reduce failures, there
is a lack of understanding on their root cause and, consequently, a
lack of guidelines on how to configure Fabric optimally for different
scenarios. To close this gap, in this paper, we first introduce a formal
definition of the different types of transaction failures in Fabric.
Then, we develop a comprehensive testbed and benchmarking sys-
tem, HYPERLEDGERLAB, along with four different chaincodes that
represent realistic use cases and a chaincode/workload generator.
Using HYPERLEDGERLAB, we conduct exhaustive experiments to
analyze the impact of different parameters of Fabric such as block
size, endorsement policies, and others, on transaction failures. We
further analyze three recently proposed optimizations from the
literature, Fabric++, Streamchain and FabricSharp, and evaluate
under which conditions they reduce the failure rates. Finally, based
on our results, we provide recommendations for Fabric practition-
ers on how to configure the system and also propose new research
directions.

CCS Concepts

« Information systems — Data management systems.

Keywords

Blockchains, transaction failures, concurrency

ACM Reference Format:

Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. 2021. Why
Do My Blockchain Transactions Fail? A Study of Hyperledger Fabric. In
Proceedings of the 2021 International Conference on Management of Data
(SIGMOD °21), June 18-27, 2021, Virtual Event , China. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3448016.3452823

1 Introduction

With the advent of Bitcoin [30], a renewed interest in decen-
tralized trust and immutable records emerged. But enterprises are
wary to adopt a framework which allows open participation and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD 21, June 18-27, 2021, Virtual Event , China

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8343-1/21/06...$15.00
https://doi.org/10.1145/3448016.3452823

offers limited throughput. This gave birth to the concept of per-
missioned blockchains which provide higher transaction rates and
decentralized trust [5, 18, 39]. As there exists a trade-off between
decentralization, consistency and scalability in blockchains [54],
such permissioned blockchains need to restrict access to a set of
authorized participants. Permissioned blockchains are gaining in-
creasing popularity since enterprises can now identify use cases
which can be implemented more efficiently on blockchains. Follow-
ing this trend, many permissioned blockchains such as Corda [5],
Multichain [18] and Quorum [39] appeared. Currently, Hyperledger
Fabric (a.k.a. Fabric) [1] is a widely used permissioned blockchain
framework. For instance, a recent survey by Rauchs et al. shows that
48% of all live permissioned blockchain projects in the Cambridge
Centre for Alternative Finance dataset build on Fabric [41, 49].

Despite its wide adoption, Fabric still has its limitations. It fol-
lows an optimistic concurrency control model which causes trans-
action failures when conflicting transactions are concurrently ex-
ecuted [19]. In our experiments, we observed that more than 40%
of the transactions failed due to concurrency-related conflicts in
a realistic scenario (Electronic Health Record, cf. Table 2). There
is active research to improve the throughput and reduce transac-
tion failures in Fabric [15-17, 24, 43, 44, 47]. However, there is no
formal definition for transaction failures, and no comprehensive
study on their cause and the parameters that influence them. As a
result, research on Fabric transaction failures falls short in explor-
ing the full range of the problem and trade-offs that are involved.
For example, Fabric++ by Sharma et al. [44] reorders transactions
to reduce a specific type of failures (Multi-Version Concurrency
Control (MVCC) read conflicts), but neglects the effect on other
failure types. Furthermore, different papers evaluate their approach
to reduce concurrency-related transaction failures using distinct
smart contracts and workloads, which hinders a direct and fair com-
parison [15-17, 24, 43, 44, 47]. For example, Sharma et al. [44] use
a smart contract based on an asset transfer scenario while Istvan et
al. [24] use Fabcoin [1], a digital currency inspired by Bitcoin [30].

In this paper, we close this gap by performing an extensive study
on transaction failures in Fabric using a comprehensive benchmark-
ing system. We provide the following contributions:

(1) We formally define the different types of concurrency-related
transaction failures in order to build a solid foundation for
our study and for further research.

(2) We extensively study the various parameters influencing dif-
ferent transaction failures in Fabric as well as for three recent
optimization techniques, Fabric++ [44], Streamchain [24]
and FabricSharp [43]. Our study reveals surprising insights
and trade-offs regarding the configuration of Fabric. For in-
stance, the block size has a significant impact on the number



Research Data Management Track Paper

Execution Phase

Peer 1
(Endorser)
Transaction with

() endorser signature and
ite set

Ordering Phase Validation Phase

® Send transaction for

Peer 1 (Endorser)
endorsement

@VSCC & MVCC validation
(@) World state updated
Block appended to ledger

Peer 2 (Endorser)
VSCC & MVCC validation

(@) World state updated
(®Block appended to ledger

Transaction!
with :
lendorser

®
Ordering Block of
Service
(1 or more
nodes)

Client

Transaction with
(2) endorser signature
and read/write set

Transactions
packed in
blocks

Peer 2
(Endorser)

Peer 3
® vscc & mvcc validation
(2 World state updated
(8)Block appended to ledger

ion for

® Send

endorsement

Figure 1: Transaction Flow in Hyperledger Fabric

of transaction failures at various transaction arrival rates—
with the right block size, transaction failures could be re-
duced by up to 60%.

(3) For realistic evaluations and controlled experiments, we de-
velop a new testbed integrated with an extension of the
Caliper benchmarking system, HYPERLEDGERLAB [23], which
includes four new smart contracts that represent realistic
use cases as well as a chaincode and workload generator.
We released HYPERLEDGERLAB as well as all the chaincodes
and the generator as an open source project, so that other
researchers can benefit from it and compare their work in a
fair way.

(4) We identify best practices and principles for Fabric develop-
ers and also derive promising research directions that the
scientific community can pursue in the future.

The rest of this paper is organized as follows. In Section 2, we
provide the technical background on Fabric. We introduce and for-
malize the different transaction failures in Section 3. In Section 4,
we explain our new benchmarking system HYPERLEDGERLAB, be-
fore we describe and discuss our experimental results in Section 5.
Finally, in Section 6, we summarize the insights and lessons learned,
discuss related work in Section 7 and conclude the paper in Sec-
tion 8.

2 Hyperledger Fabric

Fabric is a popular open source permissioned blockchain system
established under the Linux foundation [1]. It is the first blockchain
system that supports the creation of smart contracts in general
purpose languages. Fabric allows clients to submit transactions to a
blockchain system which offers decentralized control of a shared,
distributed state, i.e., there is not a single trusted entity that decides
about the current state of the system. All possible functions that can
be invoked by a transaction are defined in a smart contract, which is
called chaincode in Fabric jargon. The distributed state, called world
state, is maintained as a versioned key-value store—Fabric currently
supports LevelDB [11] and CouchDB [2]. Each key has a version
number which is updated with every write. The distributed ledger
maintains the complete history of all the transactions (successful
and failed) in the network which are grouped into blocks. Both
the world state and the distributed ledger are replicated on a set
of distributed nodes that are registered on the Fabric network—
called peers. Peers receive blocks of transactions from an ordering
service that guarantees the ordered delivery; more precisely, all
peers receive all transactions in the same order. They validate every
transaction independently and update their copy of the world state
and the ledger accordingly. For fault tolerance, the ordering service
can be replicated and uses a consensus protocol (e.g., Paxos [25]

222

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

or Raft [32]) to reach an agreement about the order of all transac-
tions. The ordering service handles multiple channels, i.e., private
communication routes between different Fabric components. En-
dorsers are a subset of the peers that have the additional role of
endorsing transactions submitted by the clients, i.e., they simulate
the execution of the transaction to generate read sets and write sets
based on the current world state. An endorsement policy defines
the number of endorsements that are required for a transaction to
be accepted as valid. Finally, peers are grouped into organizations
which typically correspond to real organizations or branches of an
enterprise; these organizations can play an important role in the
endorsement policy.

The transaction flow in Fabric follows three phases: execution,
ordering and validation. This is referred to as the Execute-Order-
Validate (E-O-V) model and is visualized in Figure 1. Each phase
and the different steps shown in Figure 1 are described below.

Execution Phase

Step 1: The client sends a transaction to all the endorsers. The
transaction can include multiple reads and writes to one or more
keys in the world state.

Step 2: The endorsers simulate the execution of the transaction
on the world state and generate a read/write set that corresponds
to the current world state of every key in the transaction. Then,
the endorsers send a response back to the client that contains their
own signature and the read/write set. This distributed execution
of transactions on the endorsers helps to maintain trust without a
centralized authority.

Step 3: The client collects the endorsing peers responses and
sends them to the ordering service nodes. Optionally, the client
may check the validity of the endorsing peers signatures and the
consistency between the read/write set received from different
peers. These are mandatorily checked later in the validation phase.
Doing this check, the client can help detect transaction failures
early in the transaction flow to reduce overhead.

Ordering Phase

Step 4: The ordering service orders the transactions received
from the client using a consensus protocol [25, 32]. A transaction
block is created based on three conditions: if a fixed duration of
time has elapsed (block timeout), if a fixed number of transactions
have been received (block size) or if the total size of transactions
has reached a fixed limit (block max bytes).

Step 5: The block of transactions is then sent to all the peers.

Validation Phase

Step 6: Every peer, upon receiving a block of transactions from
the ordering service, validates each transaction in the block inde-
pendently. A peer checks if a sufficient number of valid endorsing
peer signatures, based on the endorsement policy, have been col-
lected (Validation System Chaincode (VSCC) validation). Then, the
peer verifies if the version of every key in the read set of each
transaction is equal to the version of the same key in the current
world state (MVCC validation).

Step 7: If VSCC and MVCC validation checks pass, the write
sets of the transactions are applied to the world state. If any of
the validation checks fail, the client is notified that the transaction
aborted, and the world state does not change.



Research Data Management Track Paper

VR. versions of keys in a read set

BW: values of keys in a write set

KX: keys in the world state

VX versions of keys in the world state
BX: values of keys in the world state

P: endorsing peers

T: transactions

B: blocks of transactions
KR: keys in a read set
KW keys in a write set

Table 1: Notations for sets

Step 8: The validated block containing both aborted and com-
mitted transactions is appended to the ledger. The commit or abort
status of every transaction is logged.

3 Types of Transaction Failures

The endorsement phase and the other two phases (ordering and
validation) happen in parallel. Hence, Fabric may execute transac-
tions in the endorsement phase before previous transactions are
ordered and committed. Thus, transactions are not always executed
on the latest state of the world state in the endorsement phase. We
have identified three types of transaction failures which are caused
by this problem. Before formalizing them, we define basic concepts.

3.1 Basic Concepts

The following definitions use the notations shown in Table 1.

Definition 1: Read Set. The read set RS7,p, of a transaction
T; € T generated by an endorsing peer P, € P is represented by a
set of m € Ny ordered pairs of keys ‘Klf € KR and corresponding
versions (Vlf e VR

RStp, = {(KR VR, .. (KR, VE)}

Definition 2: Write Set. The write set WSr,p, of a transaction
T; € T generated by an endorsing peer P, € P is represented by a
set of n € Ny ordered pairs of keys “K]:'V € K" and corresponding

values %ZV e BW:
WSrp, = {(K.BW),.... (%), B))}

Definition 3: World State. The world state WX is represented
by an ordered set of 0 € Ny keys 7(]? € KX, corresponding versions
(Vlg( € VX and values %i( e BX:

WX = (KX, VX B%), .. (KX, VS, 85)}

Definition 4: Transaction Dependency. A transaction T; is

dependent on transaction Tj if the read set RSt,p, of T; contains a
key which is also present in the write set WSr,p, of T:

RSt.p, N WSTjPa #0andi+j

3.2 Transaction Failures

3.2.1 Endorsement policy failures: All transactions need to be en-
dorsed by the endorsing peers in the execution phase (cf. Section 2).
The endorsement of transactions can fail for multiple reasons, such
as invalid endorser signatures or other technical reasons. Most of
the possible causes for endorsement policy failures are due to mis-
configurations and unrelated to concurrency. In this study, we only
consider endorsement policy failures caused by a read/write set
mismatch, as described in the following.

The key-value store, which maintains the world state, is updated
by each peer independently in the validation phase. Therefore, tran-
sient world state inconsistencies between the peers are possible. At
the same time, the endorsing peers use the world state to generate
read/write sets in the execution phase. Thus, the world state incon-
sistencies lead to a read/write set mismatch in the endorsement
response causing an endorsement policy failure of the transaction.

223

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

World State
Version

Execution Phase
Generated Read/Write Set Key
R(A, Version 1), W(A) A 1
R(A, Version 2), W(A) A 2

Peers = =
Transaction from Client

Ty [R(A), W(A)]
Ty [R(A), W(A)]

Figure 2: Example of an endorsement policy failure

Peer 1

Peer 2

An example is illustrated in Figure 2. Here, the world states of
Peer 1 and Peer 2 are inconsistent, i.e., the version of Key A is
different on both peers. At this point in time a new transaction T
which reads Key A is being executed on both Peer 1 and Peer 2. This
execution would give rise to different results on both peers since
the version of Key A is different. This results in an endorsement
policy failure.

Formally, an endorsement policy failure occurs when there exist
two different endorsing peers Pg, P, € P that both endorse the same
transaction T; € T, such that there is the same read key 7(]15 e KR
in the corresponding read sets RSt;p, and RSt,p,, but the versions
(Vlf of that key in RS7,p, and RSt,p, are different:

3Ti€T A PoPyeP AKReKR A VEe VR
Aa# bsuchthat K of RSt,p, == K of RS.p, A (1)
VE&of RS1,p, # VI of RST,p,

3.22 MVCC read conflicts: MVCC read conflicts are a well known
problem in systems that have a multi-version view of each key [29].
Every successful write on a key will increment the version and
update the value. Every successful read will get the current version
of the key in the world state along with its value. While a transaction
moves from the execution phase to the validation phase, other
transactions can get validated and committed, thereby updating the
world state. Therefore, when a transaction reaches the validation
stage, the world state may have changed and be different from the
endorsement.

Transactions that access the same key and thereby create a de-
pendency are subject to MVCC read conflicts. We further distinguish
between inter-block MVCC read conflicts and intra-block MVCC read
conflicts. Transaction failures caused due to a dependency among
transactions in the same block are defined as intra-block MVCC
read conflicts. If the cause is a dependency among transactions in
different blocks, we call this inter-block MVCC read conflicts.

Though the basic cause for both conflicts is the transaction depen-
dency, other parameters such as block size influence these failures
differently. For example, if two dependent transactions are submit-
ted far apart in time and if they are included in different blocks, the
first block may get committed before the second transaction is en-
dorsed. Thus, both transactions could potentially succeed. However,
if in the same scenario, the block size was very large, they could get
endorsed and then ordered into the same block. This would cause
one of the transactions to fail validation. A further difference is
that intra-block MVCC read conflicts can potentially be resolved by
transaction reordering [44] while inter-block MVCC read conflicts
cannot be resolved in such a way.

Phase World State

Transactions Read Set Version
Matches World State.
Yes

No

Transaction from
Ordering Service

1 T, [R(A, Version 1)]
2 T, [R(B, Version 1)]

Figure 3: Example of an MVCC read conflict

Transaction Status Key Version

Success A 1
Fail B 2




Research Data Management Track Paper

An example of MVCC read conflicts is illustrated in Figure 3.
Here, Transaction 1 (T}) reads Key A whose version in the world
state is the same as the version in the read set of the transaction.
Hence, the read set contains the latest value of Key A. Whereas for
Transaction 2 (T2) that reads Key B, there are different versions in
the world state and the read set. This implies that T3 is accessing
an older version of the key and therefore fails.

Formally, an MVCC read conflict occurs for a transaction when
there exists a key ‘K}f € KR in the read set that matches a key

‘7(? € KX in the world state, but the version ’Vlf € VR of that key

in the read set does not match the corresponding version (VkX e VX
in the world state:

37({567(12 /\‘K,fe?(x /\(V,fe(VR A (VkXe’VX

R __ qrX R X

suchthat Ko == Ko AN V'V

An MVCC read conflict is an intra-block conflict when Equation 2

holds and additionally, the cause of the MVCC read conflict is due

to the dependency between two transactions T; and Tj in the same

block b; € B, i.e., the read set of T; contains a key (K]I: that is also

present in the write set of T}, but T; occurs before T; in the block:

@

IK e kKR AKY e K" AT TjeT
AT, Tjeby ANbjeBAj<i
such that‘K}j of T; ,:'V of T
Similarly, an MVCC read conflict is an inter-block conflict when
Equation 2 holds and additionally, the MVCC read conflict is due to
two transactions T; and T in two different blocks b; and by, where

the transaction T; that writes the key occurs in an earlier block
than the transaction T; that reads the key:

(3)

IKRe KR AKY e KV AT TieT A Tieh
ATj € by A b,bpy € BA m<1
suchthat‘K,f of T; == ‘KIXV of T;

)

3.2.3 Phantom read conflicts: Fabric supports range queries which
read a set of keys from the key-value store. Given a start and end
key, range queries read all the keys from the world state within
this interval. In the validation phase, the entire range of keys is
checked to ensure that no keys were inserted, deleted or updated
within that range. If at least one key in the range has been inserted,
deleted or updated, the transaction is aborted, and such failures are
identified as phantom read conflicts.

Formally, a phantom read conflict occurs when Equation 2 holds
or under one of the following conditions. First, when a key KX € KX
in the read set is not present in the world state. Second, when there
exists a key 'Ki( € KX in the world state that is within the key
interval [i, j] of the range query, but is not present in the read set:

IKT ¢ KX v KE ¢ KR wherei < k < j (5)

Phantom read conflicts are essentially MVCC read conflicts since
the cause for both is the dependency between transactions. How-
ever, Fabric identifies them separately since they are specific to
range queries. The separate analysis of phantom read conflicts is
justified, as we expect transactions with range queries to have more
transaction dependencies than other transactions. For example, a

224

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

range query that reads all the keys in the world state is dependent
on every other write transaction.

4 Experimental Methodology
4.1 HyperLedgerLab

We developed HYPERLEDGERLAB [23] as an automated solution
for setting up the experimental environment. It initially uses Open-
Stack [6] APIs to commission the required infrastructure. Then, a
Kubernetes [37] cluster is launched on this infrastructure. Next, the
Fabric network is deployed on the cluster and the benchmark is
started. The Fabric network can be deleted and recreated with dif-
ferent configurations to run the benchmark multiple times. The two
benchmarks currently available for permissioned blockchains are
Blockbench [12] and Hyperledger Caliper [20]. During the incep-
tion of this paper, Blockbench only supported Fabric version 0.6'.
Therefore, we chose to integrate Caliper with HYPERLEDGERLAB.
It has a Fabric adapter that uses the nodeJS-SDK to communicate
with the Fabric network via gRPC. Caliper monitors the perfor-
mance of the blockchain and gathers metrics. We extended Caliper
to collect all the different types of transaction failures necessary for
our evaluation. We then developed four use-case based chaincodes
and workloads which are explained in Section 4.3 and a chaincode
and workload generator which is explained in Section 4.4.

4.2 Cluster Setup

We used a Kubernetes cluster consisting of one command line
interface (CLI) node, three controller nodes, one load balancer, one
network file system (NFS) node and multiple worker nodes. Every
node runs on a Ubuntu Xenial (16.04) virtual machine. The CLI
node and worker nodes have 16 vCPUs and 41 GB RAM each, the
controller nodes have four vCPUs and 20 GB RAM each, and the
load balancer and NFS node have two vCPUs and 10 GB RAM each.
The workers host the pods for the different Fabric components
such as peers and orderers. The controller nodes of the Kubernetes
cluster are responsible for scheduling. The peers and orderers are
deployed on the worker nodes in a round-robin fashion by the
Kubernetes scheduler.

We use two different cluster setups for our experiments. The first
setup (CI) uses 3 worker nodes on which 4 peers and 3 orderers are
launched and 5 client processes which are launched on the CLI node.
The second setup (C2) uses 32 worker nodes on which 32 peers and
3 orderers are launched. Also, in this setup 25 client processes are
launched on the CLI node. Fabric 1.4 supports both the Solo and
Kafka ordering service. We use Kafka for our experiments since
Solo is not used in production.

4.3 Use-Case Based Chaincodes & Workloads
We developed four different chaincodes based on popular use
cases from various disciplines to diversify our evaluation and make
it realistic. The functions of each chaincode are shown in Table 2
along with the number and type of read and write operations per-
formed by each function. All the read and write functions access
keys randomly. The keys accessed by the range reads are described
with each chaincode. For each chaincode, we initially populate
the world state as described below. We intentionally used small
numbers of keys in order to induce a high number of conflicts.

!Fabric 0.6 follows an Order-Execute model which is incompatible with the Execute-
Order-Validate model of Fabric 1.4. As of April 2020 Blockbench supports Fabric 1.4.



Research Data Management Track Paper

Table 2: Chaincode functions and operations

EHR

Functions Operations Functions Operations

initLedger 2xW addEhr 2xR, 2xW

grantProfileAccess 1xR, 1xW readProfile 1xR

revokeProfileAccess  1xR, 1xW viewPartialProfile 1xR

revokeEhrAccess 2xR, 2xW viewEHR 1xR

grantEhrAccess 2xR, 2xW queryEHR 1xR

DV SCM DRM
Functions Operations|| Functions Operations| Functions Operations
initLedger 3xW initLedger 2xW initLedger 2xW
vote 1xR, 2xRR, ||pushASN 1xW create 1xR, 2xW
2xW Ship 2xR, 2xW | play 2xR, 1xW

closeElctn 1xR, 1xW || Unload 2xR, 2xW || queryRghts ~ 2xR
qryParties 1xR, 1xRR || queryASN 1xRR viewMetaData 1xR
seeResults 1xR, 1xRR || queryStock 1xRR* calcRevenue  1xRR*

*“Fabric does not detect phantom reads for certain type of range reads (RR)

Electronic Health Records (EHR): This chaincode manages medical
health records provided by medical institutions or other service
providers. Every patient owns two entities, its profile (personal
information) and its electronic health records. We generate 100
profiles and 100 electronic health records to populate the world state.
Access to either or both can be granted or revoked at any time. If
access is granted, medical actors (doctors or researchers) may query
or update the records. This chaincode only deals with the access
credentials and logical connections. The actual data can be stored off
chain. Similar designs are available in the literature [3, 27, 28, 51].

Digital Voting (DV): A predefined set of 1000 voters and 12 com-
peting parties participate in this digital voting scenario. Votes may
be cast only during the election phase which ends with a close
transaction. A voter is blocked from casting multiple votes. Query-
ing the list of parties and counting out the votes are also included.
The gryParties and seeResults functions query all 12 parties
and the vote function queries all 1000 voters. This design is based
on the work of Yavuz et al. [52].

Supply Chain Management (SCM): This chaincode implements
the standard operations of a general logistics network. Logistic
service providers (LSP) and logistic units can be managed. For
our workload, we generate five LSPs where four LSPs have 400
logistic units each and the fifth LSP has 800 logistic units. Global
trade item numbers and serial shipping container codes are used to
track the logistic units which can be single trade items or a group
of items. An advanced shipping notice (ASN) can also be defined
prior to a shipping. Upon successful shipping, the logistic unit is
removed from the originating LSP and added to the destination LSP.
Information regarding the units located at any LSP or information
about a specific logistic unit can be retrieved. Also, any logistic
unit can be unloaded to extract the embedded trade items. The
queryASN function queries all the logistic units of a random LSP.
This chaincode is based on the concepts of Perboli et al. [34].

Digital Rights Management (DRM): This chaincode allows artists
to share and manage their work on a blockchain. The metadata of
200 artworks is stored in the dot blockchain media format [13] and
200 right holders can be identified with the industry standard IDs [8].
Metadata and royalty management is handled on the blockchain.
The current revenue of the right holders can also be calculated.
There are similar blockchain applications in the market that handle
music management and distribution [48, 50].

4.4 Synthetic Chaincodes & Workloads
In order to run controlled experiments and microbenchmarks,
we developed a chaincode and workload generator. The chaincode

225

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

generator takes as input the total number of chaincode functions
and for each function the number of read, insert, update, delete and
range read actions. Users can also input the kind of database they
wish to deploy; in case it is CouchDB, the user can also select to
include rich queries in the chaincode functions. The final output is
a syntactically correct chaincode with the user-specified chaincode
functions. The workload generator takes as input the number of
transactions, the transaction distribution (percentage of read, insert,
delete, update and range read) and the key distribution (Zipfian
skew). The output is a set of transactions based on the transaction
and key distribution. In this paper, since we need to evaluate trans-
action failures caused by every transaction type, we generated a
chaincode named genChain which comprises equally distributed
read, insert, update, delete and range read functions. We initialized
the world state with a large number of keys (100,000 keys) to run
experiments with reduced transaction conflicts and generated read-
heavy (RH), insert-heavy (IH), update-heavy (UH), delete-heavy
(DH) and range-heavy (RaH) workloads. Each "x"-heavy (where
x=read, insert, update, delete and range) workload contains 80%
of "x" transactions and a uniform distribution of the four other
types of transactions. The range queries access a range of 2, 4 or 8
keys uniformly at random. We also generated a uniform workload
of read and update transactions with 3 different key distributions
(Zipfian skew: 0, 1, 2).
Table 3: Default values of control variables

Variable Value Variable Value
Fabric Version | Fabric 1.4 Database Type CouchDB
Chaincode EHR Block Size 100

Policy Py Tx arrival rate 100 tps

No. of orgs 2(C1); 8(C2) No. of peers / org | 2(C1); 4 (C2)
Zipfian Skew 1 Workload Uniform

4.5 Control Variables & Metrics

We run our experiments using four different builds of Fabric. Fab-
ric 1.4 [21] was the latest publicly available release version of Fabric
during the inception of this paper. Fabric++ [44], Streamchain [24]
and FabricSharp [43] are extensions of Fabric that realize different
optimization techniques. The combined number of transactions
sent per second from all clients is defined as the transaction arrival
rate of the system. Block size is the number of transactions to be
included in one block by the ordering service. We run experiments
on the different chaincodes (EHR, DV, SCM, DRM and genChain)
as explained in Section 4.3 and 4.4. The database type can be set as
CouchDB, which supports rich queries on values modeled as JSON
data, or LevelDB, which is the default database for Fabric.

The number of organizations, number of peers per organization
and the endorsement policy are other control variables. The different
endorsement policies we used are shown in Table 5. We also vary the
workload to be read heavy, read-write heavy or uniform by changing
the number of times each chaincode function is invoked. The keys
accessed in our experiments follow a Zipfian distribution [36] with
varying Zipfian skew values. A Zipfian skew of 0 implies that the
keys are accessed uniformly. A positive Zipfian skew implies that
the keys are accessed more from the higher range of the set of keys.
We also do a network emulation with Pumba [38], which is a chaos
testing and network emulation tool for Docker containers, and



Research Data Management Track Paper

induce a network delay to evaluate different network conditions.
Table 3 shows the control variables and their default values.

The performance metrics are collected by parsing the blockchain
after each experiment. Therefore, the metrics collection process has
no impact on the performance during the experiment. All failures
are represented as percentages. All failures including endorsement
policy failures are detected only in the validation phase of Fabric.
The clients do not resend any failed transactions and both failed
and successful transactions are committed to the blockchain. The
three extensions to Fabric have some exceptions to this default flow,
which are mentioned in the corresponding sections. Average total
transaction latency is the average of the time taken for each com-
plete transaction flow (all three phases of the E-O-V model) of both
failed and successful transactions. Committed transaction through-
put is the number of transactions committed to the blockchain
divided by the total time taken.

5 Experimental Results

We conducted a total of 970 experiments. Each experiment was
repeated at least 3 times and the average result is presented here.
Transactions were sent from all clients for a duration of three
minutes for every experiment. With both the cluster configurations,
our testbed yields a throughput of 200 tps (transactions per second).
The default values of the control variables are defined in Table 3 and
changes to any of these values are explicitly mentioned with the
results. All the below referenced results, not included in this paper,
as well as larger graph renderings, are available in an extended
technical report [7].

Y EHR g DV ©
5200 %150 5200 DRM

< BC1 BC2 310 <

510 5 I I II 100

5 , @ mé m# S - @ = B = =
B ) 2 g % 7z 0 =5 5 )
% S % R 2 8 g

transaction arrival rate in tps transactlon arrlval rate in tps transactlon arrival rate in tps

Figure 4: Best block size at different transaction arrival rates

EHR DRM

© . N DV x

< :zsstttt);flellll::'zss 21 I I I <

s a 7 A4 s so g

3 7 B o % Z ZE Z Z

E% wa me BB E . WY WA BG ", wm W DB

z § 8 = o o S & S Q 8
c

transaction arrival rate in tps  transaction arrival rate in tps  transaction arrival rate in tps

Figure 5: Minimum and maximum transaction failures

Average transaction latency Committed transaction throughput

a
o
g 2 c 100
£ 1 5 50
9 | 2
€0 5 o @9 o o @ 9 o o o o o
- — wn wn o =] — ["2) o wn o
© - — N 9 « N
block size = block size

Figure 6: Latency and throughput at different block size

5.1 Results for Fabric 1.4

5.1.1 Block size and transaction arrival rate:

(a) Transaction Failures: We define the best block size as the
block size at which there is the least percentage of failed trans-
actions and the worst block size as the block size at which the
percentage of failed transactions is maximum. Figure 4 shows the
best block size at different transaction arrival rates for different
chaincodes and cluster setups. Figure 5 shows the maximum and

minimum percentage of failed transactions corresponding to the
best block size and worst block size on the C2 cluster. Figure 6 shows

226

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

the effect of block size on latency and throughput at an arrival rate
of 100 tps for the EHR on the C2 cluster.

Observations: For all the chaincodes, we see an approximately
linear relation between increasing transaction arrival rate and the
best block size. There is up to 60% decrease in failed transactions
between the worst block size and the best block size. For example,
the DRM chaincode at 50 tps yielded 21.14% failures with the worst
block size while we observed only 8.07% failures with the best block
size (not shown in the figure).

At low transaction arrival rates, a low block size is preferable, so
that the ordering service does not have to wait for a long time until
enough transactions have arrived for a block to be created. However,
as the transaction arrival rate increases, this delay becomes less
significant. Hence, at higher transaction arrival rates, larger blocks
can be built. Building larger blocks has the advantage that there is
less overhead involved in the ordering service and in the validating
peers. This reduces the chance of temporary overload and queuing,
leading to lower transaction latency and, hence, to less MVCC read
conflicts. We can also observe that due to more resources the C2
cluster setup supports higher block sizes at high transaction rates
than the C1 cluster setup. To further understand the effect of block
size, we also analyzed the latency and throughput. The best block
size for EHR at 100 tps is 50, the latency for EHR is lowest at a block
size of 50 and the throughput is not significantly affected by block
size (Figure 6). Similarly, the best block size at 150 tps is 100 and the
highest throughput and least latency are also for block size 100 (not
shown in the figure). So, the block size where other performance
metrics such as latency and throughput have better values is also
where the failures are least. We made similar observations with the
other chaincodes at different transaction arrival rates.

The number of MVCC read conflicts also depends on the num-
ber of keys to validate which varies depending on the chaincode
functions. Hence, the best setting of the block size with increasing
transaction arrival rate is different for different chaincodes. Three of
the five chaincode functions in DV have range queries which cause
a higher failure rate when compared to the other chaincodes. We
can still observe the influence of block size on transaction failures,
but the effect is less significant than for the other chaincodes.

Implications: The percentage of failed transactions that occur
when the transaction arrival rate changes depends on the block size
in most cases. This dependency changes with different chaincodes
and cluster setups. Determining this dependency for each chaincode
on a specific Fabric network and adapting the block size when the
arrival rate changes is an efficient and simple approach to reduce
transaction failures. Further, the measured latency and throughput
comprise of both successful and failed transactions. So having low
latency or high throughput is irrelevant if the transaction failure
rate is very high. Therefore, transaction failures should be analyzed
along with latency and throughput to ensure good performance.

EHR EHR
R,  Binter-block % 80 Binter-block
£20 B Intra- bIock < ‘618 llntra block
820 L _E g 20 iE ﬂ
30 S o o o g =2 0 o 3 8
£ 2 R & =

H
block size
Figure 7: Effect of block size

transaction arrlval rate in tps
Figure 8: Effect of load



Research Data Management Track Paper

(b) MVCC read conflicts: We evaluate the number of inter-
block MVCC read conflicts and intra-block MVCC read conflicts
with changing block size and transaction arrival rate in Figures 7
and 8, respectively, for the EHR chaincode on the C2 cluster.

Observations: The number of intra-block MVCC read conflicts
increases when the block size increases because when more trans-
actions are included in a block, there is a higher chance of depen-
dencies between transactions which lead to conflicts. Conversely,
with increasing block size the inter-block MVCC read conflicts de-
crease because the conflicts are more likely to have already occurred
within the block than across blocks. Also, both failures increase
with increasing transaction arrival rate. Further, the best block size
for EHR at 100 tps is 50, and the sum of both inter and intra-block
MVCC read conflicts are low at this block size (Figure 7). But if we
consider them individually, inter-block conflicts are least at block
size 200 while intra-block conflicts is least at block size 10.

Implications: Changing the block size with respect to any one
type of failure is not useful since different types of failures have a
different relation to block size. A trade-off between the least inter-
block and intra-block MVCC read conflicts is necessary to ensure
that the total transaction failures are least.

Endorsement policy failures Phantom read conflicts

EN BSCM
R4 c18
BEHR - 7 ; ;
ool l0ne: 00000
5o 5] S, @ H H B B
5° 228388 2% s g¢8¢gs¢s
© _\—l - N Y= i — (o]
he block size block size
Figure 9: Endorsement Figure 10: Phantom read
policy failures conflicts

(c) Endorsement policy failures and phantom reads: Fig-
ure 9 and Figure 10 show the effect of block size on endorsement
policy failures for the EHR chaincode and phantom reads for the
SCM chaincode, respectively, on the C2 cluster.

Observations: Since endorsement policy failures are caused by
inconsistent world states, block size does not have a significant
impact. A single range query transaction can have a dependency
with multiple other transactions within and across blocks that write
to at least one key contained in the range.

Implications: Though adapting the block size can help in re-
ducing transaction failures, some types of failures like endorsement
failures and phantom reads are not affected.

Average transaction latency Endorsement policy failures @inter-block  @Intra-block

312 ® =
208 £3 .560
£0. p ” s

3 3 m ]
2 o & 0

CouchDB  LevelDB CouchDB  LevelDB CouchDB  LevelDB
Figure 11: Effect of database type on latency and failures

Table 4: Effect of database type

Avg tx latency (s) Tx failures (%) Func call latency (ms)
Workload| CDB (LDB | Workload|CDB|LDB JFunction|CDB| LDB
RH 18.04 | 3.22 RH 5.65 | 1.38 Get 8.3 0.6
IH 18.34 | 7.93 IH 2.17 | 1.36 Put 0.8 0.5
UH 20.82 | 9.86 UH 31.31|23.03] Range 88 1.4
RaH 101.63| 4.14 RaH 34.18] 5.19 | Delete 1.2 0.6
DH 18.48 | 1.22 DH 1.11]0.18

5.1.2  Database type: The effect of using CouchDB (CDB) or Lev-

elDB (LDB) with uniform workload and the EHR chaincode is
shown in Figure 11 and the results with different workloads with

227

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

the genChain chaincode are shown in Table 4. It also shows the
latency of the different chaincode function calls on both databases.

Observations: LevelDB performs better across different chain-
codes and workloads. To better understand the overhead of CouchDB,
we further analyze the latency of each different function call in
the chaincode (Table 4). Latency is lower when using LevelDB be-
cause it is embedded with the peer process whereas CouchDB is
an external database invoked via REST APIs [9]. The percentages
of endorsement policy failures and MVCC read conflicts are also
lower with LevelDB. A lower latency implies that transactions are
committed faster. This leads to fewer conflicts between transactions,
i.e., MVCC read conflicts are reduced. Further, the world state can
be updated faster which leads to a slight reduction of endorsement
policy failures. Also, the latency and correspondingly the number
of failures for a range-heavy workload is significantly higher for
CouchDB (Table 4). This is because the entire range of keys are read
from the database during the endorsement phase and validation
phase to ensure that no key has changed between the phases (phan-
tom read detection). For an external database such as CouchDB,
this induces a significant overhead.

Implications: CouchDB supports rich queries such as sort and
filter which are useful for many use cases, while LevelDB only
supports simple get and set queries. Though CouchDB has richer
functionality, our results show that it affects the performance of
Fabric. So, if a chaincode can be designed without rich queries, it is
always better to use LevelDB to reduce transaction failures. Also,
rich queries supported by CouchDB can provide similar functional-
ity as a range query, but Fabric does not re-execute a rich query in
the final validation phase and therefore, provides no guarantees on
the validity of the query result (no phantom read detection) [45].
So the user needs to make a trade-off between performance and
query result validity.

Average transaction latency Endorsement policy failures

4
: IR
2 am B
2 4 6 4 6 8 10
number of organizations number of organizations
Figure 12: Effect of the number of organizations

2
On-lﬂl
8 10

latency in sec
failures in %

5.1.3  Number of organizations: Figure 12 shows the effect of the
number of organizations on latency and transaction failures. Experi-
ments were conducted with different numbers of organizations (2, 4,
6, 8 and 10) on the C2 cluster. There are four peers per organization
and therefore increasing the number of organizations increases the
number of peers involved in the system.

Observations: The transaction latency and the endorsement
policy failures increase with the number of organizations. When
there are more peers, the number of replicas of the world state
increases, which in turn increases the possibility of inconsistent
world states between the peers which causes the observed increase
in the number of endorsement policy failures.

Implications: The number of organizations and peers that form
a Fabric network should be restricted as much as possible to reduce
endorsement policy failures. For example, geographically close or
functionally similar branches of a company could be considered
as a single organization. The trade-off between performance and
inclusion of more participants should be considered when building
a Fabric network.



Research Data Management Track Paper

Table 5: Endorsement Policies
Py: "N-of": [ "signed-by": 0, ..., "signed-by": N-1]
P;y: "2-of": [ "signed-by": 0, "1-of": [ "signed-by": 1, ..., "signed-by": N-1]]
Py: "2-of": [ "1-of": [ "signed-by": 0 , ..., "signed-by": N/2 ],

"1-of": [ "signed-by": N/2+1 , ..., "signed-by": N-1]]

Ps3: "(N/2+1)-of": [ "signed-by": 0, ..., "signed-by": N-1]
N: number of organizations, "n-of": n signatures required
An "n-of" clause nested inside another "n-of" is called a sub-policy.

o Average transaction latency Endorsement policy failures

816 X 18

f= -—

£038 I I 0.9 I

g0 n fl g, - | N
8 PO P1L P2 P3 2 PO PL P2 P3
© endorsement policy & endorsement policy

Figure 13: Effect of endorsement policies

5.1.4  Endorsement Policy: Figure 13 shows the impact of different
endorsement policies (cf. Table 5).

Observations: The number of endorsement policy failures is
maximal when the most endorsement signatures are required. En-
dorsement policy Py requires N signatures and P3 requires a quorum
(N/2 + 1) of signatures. When more endorsements are required,
the world state needs to be consistent on a greater number of peers.
Therefore, there is a higher chance for endorsement policy failures.

Even when an equal number of signatures is required, an in-
crease in the number of sub-policies induces an increasing number
of failures. For instance, P; and P2 both require two signatures. Py
requires one signature from organization Org, and one signature
from any of the other organizations, whereas P, requires one signa-
ture from the first half of the organizations and one signature from
the second half of the organizations. Therefore, P; includes one
sub-policy while P; includes two sub-policies. Consequently, the
number of endorsement policy failures in P; is higher. The endorse-
ment policy is parsed during the VSCC validation and compared
with the endorsement signatures of a transaction. Each sub-policy
is a separate search space, so that the time taken for validation
increases with an increasing number of sub-policies, which in turn
also increases the chance of endorsement policy failures. At the
same time, the average transaction latency increases.

Implications: Similar to restricting the number of organizations
and peers participating in the network, enterprises should also
restrict the number of participants in the endorsement policy. For
example, if one organization has a higher decision-making power
or is more trustworthy than another, then one can reconsider if
really both organizations are required to endorse the transactions.
Also, one can consider simplifying endorsement policies, such that
the number of sub-policies is reduced. For example, the policy:

"4-of": ["2-of": [Orgp, Orgi], "2-of": [Orgs, Orgs]]
can also be written as:
"4-of": [Orgyp, Org1, Orga, Orgs]
In either formulation, all four organizations have to endorse the
transactions.

Transaction failures Transaction failures

® N

£20 £ 100

g10 I g 50 i I
20 RH IH UM R-H DH 2 o ™

& @ Ko 0 2

1
zipfian skew
Figure 15: Effect of key skew

workload
Figure 14: Effect of workload

228

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

5.1.5 Workload: Figure 14 shows the effect of different workloads
on failures with genChain chaincode on the C2 cluster.
Observations: Insert-heavy and delete-heavy workloads insert
and delete unique keys, thus avoiding transaction conflicts. Hence,
these workloads have the least failures. Read-heavy and range-
heavy workloads induce lower failures compared to update-heavy
workloads because only write transactions cause dependencies with
reads that lead to conflicts. This result is independent of block size.
Implications: If the use case permits, one should aim to batch
read-only transactions together to ensure they all succeed. Our
results also back the recommendation by Fabric [22] to not submit
read-only transactions for ordering and validation since the neces-
sary result is already delivered after the execution phase itself. It
is only necessary to submit read-only transactions if one needs a
record on the blockchain for auditing purposes.
5.1.6  Zipfian skew: Figure 15 shows the effect of the Zipfian skew
for key access with genChain chaincode and a uniform workload.
Observations: When the key access is more skewed, the per-
centage of failures increases. The number of conflicts will increase
if more transactions access the same (set of) keyf(s).
Implications: Chaincodes and the database structure can be de-
signed such that key access is less skewed. For example, in the EHR
chaincode, the addEHR function uses a PatientID as the key to add
any new medical record for a patient. One could replace patientID
by two new keys PatientID_XrayID and PatientID_MRIID such
that a transaction updating a patient’s Xray and another transaction
updating the same patient’s MRI will not conflict with each other.
Overall, modelling the data representation is an important aspect
that should be carried out carefully.

Average transaction latency Endorsement policy failures

@ 2 mFabric 1.4 2.,

£3 B Fabric 1.4 with n/w delay E 0.8 é

> B Q0

e 0 EI o B2 = § 0'8 = M ﬁa
9] =) o o = =) o o
E — n o & — ey 8

-
transaction arrival rate in tps  transaction arrival rate in tps

MVCC read conflicts

b
=
1

o
o

30
20

.

0 g v
o o
- wn

—
transaction arrival rate in tps

Figure 16: Fabric 1.4 with and without network delay

failures in %

5.1.7 Network delay: Figure 16 shows the effect of an induced
additional network delay of 100+10 ms for one organization to
emulate the scenario of a geographically distributed organization.

Observations: The additional network delay causes an increase
in the transaction latency and consequently increases the number
of failures. The endorsement policy failures are affected because
the network delay increases the chance of inconsistent world states
between peers. MVCC read conflicts are affected because the time
between endorsement and validation of a transaction is increased.

Implications: Endorsement policy failures are highly affected
by network delays. This implies that if several geographically far
apart organizations are part of the endorsement policy, the number
of endorsement policy failures will increase. Hence, network delays
must be considered in the design of the Fabric network and of the
endorsement policies. Finally, MVCC read conflicts that are caused
by large network delays are inherent to the optimistic concurrency
control in Fabric and cannot be avoided.



Research Data Management Track Paper

5.2 Results for Fabric++

Sharma et al. [44] designed an optimized extension of Fabric
which can effectively resolve intra-block MVCC read conflicts. In
the ordering phase of Fabric++, a conflict graph is generated for
the transactions in a block and all cycles in the graph are identified.
Cycles are removed from the graph by aborting transactions in the
ordering phase itself. The resulting acyclic graph of transactions is
serialized and sent to the validation phase.

(a) Transaction failures (b) Endorsement policy

o . X
i o Fabric 1.4 < failures
"~ 40B Fabric ++ I P
£ mg fa B 5 A o «m
= 10 50 100 ® 10 50 100
e block size block size
Figure 17: Effect of block size
5.2.1 Block Size: Figure 17 (a) compares the percentage of transac-

tion failures for Fabric 1.4 and Fabric++ at different block sizes.
Observations: At a fixed transaction arrival rate with Fabric++,
the transaction failures decrease with increase in block size whereas
the trend is reverse for Fabric 1.4. A larger block size gives more
reordering possibilities for Fabric++ which leads to fewer failures.
Implications: To efficiently utilize the transaction reordering
implemented by Fabric++, use a larger block size.
5.2.2  Endorsement policy failures: Figure 17 (b) compares the per-
centage of endorsement policy failures in Fabric 1.4 and Fabric++.
Observations: The endorsement policy failures are higher for
Fabric++ because there are less transaction failures due to MVCC
read conflicts. Hence, the rate of updates of the world state is higher,
because only successful transactions are committed to the world
state. As the rate of updates is higher, there is also a higher chance
of inconsistencies between the world state replicas on the different
peers, which leads to more endorsement policy failures.
Implications: Reordering cannot resolve endorsement policy
failures. This problem has to be investigated and treated separately,
e.g., by reconsidering the endorsement policy or the design of the
Fabric network.

g Average transaction latency < Transaction failures

@ @ Fabric 1.4 <

£ 40 @Fabric + . =100 .

g 20 @ 50 I

5 —— m - S 0 1 . mon MW
© EHR DV SCM DRM & EHR DV SCM DRM

chaincode chaincode
Figure 18: Effect of different chaincodes on Fabric++

Transaction failures Transaction failures

X 30 M[@Fabricl4 X 100
£ 0 MBFabric++ i £
0 EA v
o o] o 50
5 10 ? 5 I_
E 0 R —— Mo A T 0
RH IH UH RaH DH 01 2
workload zipfian skew

Figure 19: Effect of different workloads on Fabric++

5.2.3 Chaincodes and Workloads: Figures 18 and 19 compare the
latency and percentage of transaction failures in Fabric 1.4 and
Fabric++ with different chaincodes, workloads and key distribution.

Observations: The total failures do not significantly decrease
with Fabric++ when evaluated with the DV and SCM chaincodes.
These two chaincodes include range queries that cause phantom

229

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

read conflicts. Each range query involves a large range of keys
(800 to 1000 keys), so that transactions will have dependencies on
multiple other transactions. The latency is significantly higher for
Fabric++ with these chaincodes. Fabric++ creates conflict graphs
and then makes them acyclic to resolve transaction conflicts. To this
end, they approximate a solution to the Minimum Feedback Vertex
Set (MFVS) problem (which is an NP-hard problem). Because of the
high number of dependencies induced by range queries, generating
the conflict graph and reordering the range queries become very
time consuming in Fabric++. With the genChain chaincode, Fabric++
reduces transaction failures for most of the workloads. Since the
range queries in the range-heavy workload have a smaller range
(2, 4 and 8), we observe a reduction in failures even in the presence
of range queries. Further, Fabric++ does not have a positive effect
on read-heavy and delete-heavy workloads because although the
reordering possibilities are few for these workloads, the reordering
process is still being executed and this increases the latency.

Implications: Fabric++ [44] did not evaluate the system in the
presence of large range queries. Therefore, our results provide
new insights on the impact of range queries on Fabric++. If the
use case permits, one should consider designing chaincodes with
smaller range queries when using Fabric++. Fabric++ could be
optimized in the future to handle range queries more efficiently,
e.g., by using a different algorithm to tackle the reordering problem.
Also, the reordering potential of a workload needs to be analyzed
to efficiently use Fabric++.

5.3 Results for Streamchain

Streamchain [24] is an extension of Fabric that focuses on re-
ducing the latency by sending transactions one-by-one instead of
creating a block. In the validation phase, parallel validation of sig-
natures and pipelining are implemented. The current prototype
requires that the ledger and the world state are stored on a RAM
disk both in the ordering service and the peers.

Average transaction latency MVCC read conflicts

o @ Fabric 1.4 ©

$0.8 @ Streamchain p

'50.4 ; £ 20 I
v

> o 10 ! ' .

[ o o o = o o o

& = r S B = A 8

-
transaction arrival rate in tps
Figure 20: Comparison of Streamchain and Fabric 1.4

—
transaction arrival rate in tps

Committed transaction throughput Committed transaction throughput

@a C1 cluster a8 C2 cluster

©300 O Fabric 1.4 el

= 200 EStreamchain 5 100

5 100 B

210 [l wm 2 5 )

2 150 200 3 0

I . . . £ X 100 .

£ transaction arrival rate in tps = transaction arrival rate in tps

Figure 21: Latency and committed transaction throughput

5.3.1 Latency and transaction failures: Figure 20 compares the per-
formance of Streamchain and Fabric 1.4 at transaction rates of 10, 50
and 100 tps. Figure 21 shows the committed transaction throughput
for both at higher arrival rates of 150 and 200 tps on the C1 cluster
and 100 tps on the C2 cluster. Fabric 1.4 is set with a block size of
10 (we observed similar results with block sizes 50 and 100).
Observations: The latency and transaction failures are lower
for Streamchain up to a transaction arrival rate of 100 tps on the



Research Data Management Track Paper

C1 cluster and up to 50 tps on the C2 cluster. Since the transactions
are streamed one-by-one and stored on a RAM disk, the world
state is updated quickly, thus reducing the MVCC read conflicts.
Since the latency is lower, endorsement policy failures also reduce
slightly (not shown in the figure). Beyond a transaction arrival rate
of 150 tps on the C1 cluster, Streamchain does not provide enough
throughput to handle the load. Further, on the larger C2 cluster the
overhead is prominent even at an arrival rate of 100 tps. Stream-
ing the transactions one-by-one will increase the communication
overhead between the orderer and the multiple peers. At higher
transaction rates and with larger number of peers (C2 cluster), this
results in queuing of transactions.

Implications: Streaming the transactions one-by-one helps to
update the world state faster at low transaction arrival rates. But
Streamchain needs to be further optimized to handle high transac-
tion arrival rates and scaling.

Transaction failures
W Fabric 1.4

Transaction failures

X X

c 60 EStreamchain ¢ 100

o 30 n 50 I
S0 ~ — . . 5 o m— fe B
= RH IH UH RaH DH g o 1 2

workload zipfian skew
Figure 22: Effect of different workloads on Streamchain

5.3.2  Workloads: Figure 22 compares the performance of Stream-
chain and Fabric 1.4 with different workloads and key distribution
at 50 tps on the C2 cluster.

Observations: Streamchain reduces the transaction failures re-
gardless of the type of workload or key distribution. This is because
the optimization used by Streamchain (streaming transactions one-
by-one) is independent of the type of transaction.

Implications: Failures are always reduced regardless of the type
of the workload or key distribution.

Average transaction latency
Fabric 1.4

MVCC read conflicts

o

& B Streamchain x 15

£ 09 mstreamchain w/o ramdisk € 10

g 06 g a

203 H _ 35 =

= 0 e ) rrn e 0 @ 7 |
1 1 50

50 10 (
transaction arrival rate in tps  transaction arrival rate in tps

Figure 23: Streamchain with and without a RAM disk

5.3.3  Effect of RAM disk storage: Figure 23 compares the perfor-
mance of Streamchain with and without a RAM disk.
Observations: Streamchain with RAM disk performs better
than without RAM disk. This is an expected result, as the RAM disk
allows for faster reads and writes. At lower transaction rates, the
latency and MVCC read conflicts of Streamchain are improved com-
pared to Fabric, even if there is no RAM disk used. However, at a
transaction rate greater than 50 tps, the throughput of Streamchain
without RAM disk was too low to sustain the workload, bringing
the system into an unstable condition (not shown in the figure).
Streamchain cannot handle the streaming of transactions one-by-
one without a fast storage at higher transaction rates.
Implications: The performance improvements of Streamchain
are to a large extent caused by the use of a RAM disk storage. The
authors of Streamchain have proposed the concept of a virtual
block boundary which could be used to commit transactions as

230

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

blocks while still streaming transactions one-by-one in the ordering
service. This concept, if implemented, could potentially remove the
need for a RAM disk storage.

5.4 Results for FabricSharp

Ruan et al. [43] designed an optimized extension of Fabric which
can effectively resolve MVCC read conflicts. Similar to Fabric++ [44],
FabricSharp also generates conflict graphs and serializes them.
Transactions which cannot be serialized will be aborted before
the ordering phase. But unlike Fabric++, FabricSharp generates the
conflict graph across blocks and therefore handles both inter-block
and intra-block MVCC read conflicts.

(a) Transaction failures
B Fabric 1.4
E FabricShar
40 ’
m —
10 50 100

transaction arrival rate in tps

(b) Endorsement policy failures

; E
ey
o -4 A Z 0 e 17
10 50 100 10 50 100
transaction arrival rate in tps E transaction arrival rate in tps

Figure 24: Comparison of FabricSharp and Fabric 1.4

(c) Committed transaction
throughput

=
o
S

(=}
[
o

failures in %
failures in %
oughput in tps

5.4.1 Transaction failures: Figure 24 (a) & (b) compares the perfor-
mance of FabricSharp and Fabric 1.4 at different arrival rates.

Observations: The transaction failures are significantly lower
for FabricSharp. Since all transactions are serialized there are no
MVCC read conflicts. FabricSharp does not support range read
queries and therefore there are no phantom reads. So only endorse-
ment policy failures are observed for FabricSharp. In FabricSharp,
the execution and validation phase are parallelized by using block
snapshots at the start of the execution phase. This can introduce
stale snapshots that result in more endorsement policy failures.

Implications: FabricSharp is highly effective in resolving MVCC
read conflicts but does not resolve endorsement policy failures.
5.4.2 Throughput: Figure 24 (c) compares the throughput of Fab-
ricSharp and Fabric 1.4 at 10, 50 and 100 tps.

Observations: The committed transaction throughput is lower
for FabricSharp. This is an expected result since FabricSharp aborts
non-serializable transactions before the ordering phase and only
commits successful transactions (and endorsement failures).

Implications: On the one hand, FabricSharp updates the
blockchain with only the successful transactions, thus reducing the
overhead in the validation phase, but on the other hand, there is
no record of failed transactions on the blockchain which could be
useful for debugging and auditing purposes.

Transaction failures Transaction failures

o X
= 60@Fabric 1.4 BFabricSharp *
£ 40 23.03 P E 100 - 6754 9832
« i - 566 O .
g 28 lisl~_25 1'3_6?1 f&l&_ é‘ 58 m 324 Iﬁﬁ I4_63
;r___u RH IH UH DH @ 0 1 2
workload zipfian skew

Figure 25: Effect of workload and skew on FabricSharp

5.4.3 Workloads: Figure 25 compares FabricSharp and Fabric 1.4
with different workloads and skew on the C2 cluster with the gen-
Chain chaincode. We do not use the range-heavy workload because
range queries are not supported by FabricSharp.

Observations: FabricSharp significantly reduces failures with
update-heavy workloads. But FabricSharp does not have a positive
effect on insert-heavy and delete-heavy workloads since insert and
delete transactions access unique keys which have no dependencies
with other transactions. Thus, reordering in FabricSharp can only



Research Data Management Track Paper

resolve a limited number of conflicts for these workloads, while the
overhead of reordering actually increases the number of failures.

Implications: The reordering potential of a workload needs
to be analyzed before adopting FabricSharp. This observation is
similar for Fabric++ (Section 5.2.3).

Average transaction latency
3@Fabric14  @Streamchain
2 EFabric++ @ FabricSharp

LT

10 50 100
transaction arrival rate in tps

Endorsement policy failures MVCC read conflicts
0

6
1 £ 40 l
0.5 d mﬁ 320 HL
0 © _;E il 0 ||L.= = % Em
10 5| 00

50 100
transaction arrival rate in tps

Figure 26: Comparison of Fabric systems on C1 cluster

in sec

latency
failures in %
failures in %

0 1
transaction arrival rate in tps

5.5 Comparison of Fabric-like systems

Figure 26 compares the latency and transaction failures of all the
Fabric-like systems with the EHR chaincode.

Observations: We can observe that Fabric++ and FabricSharp
have a similar transaction latency as Fabric 1.4, while Streamchain
has a significantly lower latency. We also observe that all three
optimizations of Fabric show a significant reduction in the number
of failures, but none of them resolve endorsement policy failures.

Implications: FabricSharp has the best optimization technique
to reduce transaction failures when compared to Fabric++ and
Streamchain, although it reduces the committed transaction through-
put (cf. Section 5.4.2). The effect of range queries on FabricSharp
and Streamchain remains to be studied. Streamchain reduces the
latency far better than Fabric++ and FabricSharp, although this is
partly due to the use of a RAM disk storage as explained in Sec-
tion 5.3.3. While all three optimizations, Fabric++, Streamchain and
FabricSharp, work well in this setting (low transaction arrival rates,
no range queries), our previous experiments have revealed some of
their limitations.

6 Lessons Learned

In this section, we summarize the insights we gained from our
experiments, explain with examples how these can be leveraged by
a Fabric user and discuss future research directions.

6.1 Insights & Recommendations

Types of failures: The three types of failures described in Sec-
tion 3 are influenced differently by different parameters. Block
size has inverse effects on inter-block and intra-block MVCC read
conflicts, while it has almost no effect on phantom reads and en-
dorsement policy failures. The number of organizations and en-
dorsement policies have a significant impact on endorsement policy
failures while they have insignificant influence on other failures.
No parameter tuning in Fabric 1.4 could reduce phantom reads, but
reordering the transactions using Fabric++ reduced them. However,
Fabric++ could not handle large range reads. FabricSharp early
aborts all MVCC read conflicts, but does not resolve endorsement
policy failures. Both Fabric++ and FabricSharp increase the num-
ber of failures with workloads where reordering possibilities are
few, while Streamchain reduces failures regardless of the type of
workload. However, Streamchain has a high overhead and lower
throughput. Based on our observations, we advice users to analyze
their use case, workload and also possibly simulate their network
and detect the frequency of different types of failures, before tuning

the parameters and using the different Fabric optimizations.
Example: If the probability of MVCC read conflicts is high, use

231

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Fabric++ or FabricSharp. But if there are very few conflicts these
systems will have a negative impact. If phantom reads are high and
the range queries have a small range, Fabric++ should be adopted,
while for large range queries this will not have an effect. Stream-
chain should be chosen only if the network expects very low traffic.
Block size: The block size has a significant effect on the number
of transaction failures. The best setting depends on the transaction
arrival rate and the chaincode. It is a good practice to adapt the
block size to the arrival rate.
Example: For the SCM chaincode, we could assume that the holiday
seasons would experience high transaction arrival rates if the sales
increase. Hence, during those times, change the block size to a
higher value. Similarly, during off season, decrease the block size.
Number of organizations & endorsement policies: Transac-
tion failures increase when the number of organizations and the
required number of endorsement signatures increase. Also, sub-
policies lead to more failures. So, it is a good practice to lower the
number of organizations and create simpler endorsement policies.
Example: For the SCM chaincode, there will be multiple LSPs, but
all of them need not be separate organizations of the Fabric net-
work. LSPs starting from the same source or travelling to the same
destination could be grouped together. Also, the LSP organizations
need not be a part of the endorsement policy since they are only
providing a service. Only the owners and stakeholders need to be
part of the endorsement policy.
Chaincode design & database type: LevelDB shows better per-
formance than CouchDB. Users should try to design chaincodes
that do not require rich queries, so that LevelDB can be used. Also,
since phantom reads are not effectively resolved with any of the
Fabric systems, range queries should also be avoided when possible.
Example: In the DRM chaincode, a range query is used to query the
play count of all the music owned by a specific artist and calculate
the total revenue. Instead, every time a song is played, a unique key
for each artist to calculate the total revenue could be incremented.
This way, a range query could be completely avoided.
Client design: Read-heavy workloads show lower failures. So, de-
pending on the use case, read-only transactions can be batched at
the client side and submitted together. Also, clients can be designed
to identify read-only transactions and avoid submitting them to the
ordering service since the result of the query is already obtained.
Fabric also provides event services [33] that can be used to update
an off-chain database which could be used for read purposes.
Example: In the SCM chaincode, one needs to read the blockchain
multiple times for auditing purposes. It might also be essential to
submit these read transactions to the blockchain to keep track of
the auditing process. In this scenario, it would be ideal to batch
these reads together and submit them when it is not a peak time
for other logistic-relating transactions.
Our 4 main recommendations for Fabric users are:
(1) Monitor the trend of transaction arrival rates and adapt the
block size at appropriate times.
(2) Design a Fabric network with fewer organizations, fewer
endorsement signatures and fewer endorsement sub-polices.
(3) While designing the chaincode, avoid rich queries and range
queries unless they are absolutely necessary.
(4) Avoid the submission of read-only transactions to the order-
ing service or batch them together for submission.



Research Data Management Track Paper

6.2 Future research directions

Adaptive block size: A constant block size is not ideal when
the transaction arrival rate changes. The ideal block size for various
chaincodes is also different. This establishes the need for a dynami-
cally changing block size. Since the transaction arrival rate cannot
be determined beforehand and the dependency between arrival rate
and block size changes for different chaincodes, it would be useful
to monitor the system and adapt the block size dynamically. There
are already adaptive blockchain systems that focus on storage or
security [10, 40], but not transaction failures.
Database optimization: There is a clear decrease in performance
with CouchDB; however, many chaincodes require the use of rich
queries. A productive research focus would be to optimize CouchDB
or integrate other databases to reduce commit latency in the peers.
Reduce endorsement policy failures: Inconsistency of world
states is a well-known problem and there is already research in this
direction [26, 53]. It would be an interesting approach to integrate
such research with the Fabric framework and observe the effects
on endorsement policy failures.
Chaincode optimizations: There is very little research on de-
signing Fabric chaincodes. A challenging research direction would
be to analyze different Fabric chaincodes and derive optimization
techniques that can reduce transaction failures.

7 Related Work

Dinh et al. [12] and Pongnumkul et al. [35] present a comparative
study of different blockchain frameworks including Fabric but both
are based on Fabric version 0.6 which followed an Order-Execute
(O-E) design model based on PBFT consensus. The current version
of Fabric follows the E-O-V model (cf. Section 2) and only supports
a crash-fault tolerant consensus model. The O-E model and the
E-O-V model have significant differences and therefore, the results
of these papers are not valid for the current version of Fabric.

Many related papers evaluate the performance of Fabric [1, 4, 47].
We go far beyond these existing evaluations and directly compare a
large number of systems (Fabric 1.4, Fabric++, Streamchain, Fabric-
Sharp) using a large range of different workloads. Further, our focus
is on transaction failures, while existing evaluations are mostly con-
cerned with throughput and latency. While throughput and latency
are important performance metrics, they are irrelevant if most trans-
actions fail. Similar to our findings, Thakkar et al. [47] also point
out the overhead of CouchDB in terms of latency and through-
put. In our work, we further explain this overhead by analyzing
the latency of each function call in the chaincode. This way, we
found that range queries are particularly expensive with CouchDB;
a result that has not been reported in [47].

Goel et al. [15] propose a prioritization-based transaction valida-
tion model, but they evaluate neither the type nor the number of
conflicts. Istvan et al. [24] introduce the concept of a virtual block
boundary that can reduce the staleness of data used to execute new
transactions. However, they do not analyze transaction failures.
The main goal of Sharma et al. [44] with Fabric++ is to reduce the
number of transaction conflicts by using optimization strategies of
database-like transaction reordering and early aborts. They evalu-
ate two types of MVCC conflicts, but do not discuss endorsement
failures and phantom reads. Further, we identified that the effect
of blocksize on transaction failures at a fixed transaction rate is

232

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

inverse for Fabric 1.4 and Fabric++, which is a new insight. Sharma
et al. [44] only employ a fixed transaction rate and two chaincodes;
We employ multiple chaincodes and various transaction rates, so
that our analysis is much more comprehensive. Ruan et al. [43] de-
signed an extension of Fabric which also generates conflict graphs
and serializes them. However, their evaluation does not show the
effect of blocksize on failures, but only on throughput and latency.

Gorenflo et al. [16] aim to reduce transaction failures by re-
executing the conflicting transactions, but they currently have no
implementation or evaluation. Gorenflo et al. [17] improve the
throughput of Fabric by using multiple optimization strategies.
The evaluation is done with a workload of write-only transactions
which will never have MVCC read conflicts. Nasirifard et al. [31] use
the concept of conflict-free replicated datatypes (CRDT) to resolve
conflicts. However, their approach is only applicable for use cases
that can be modelled with CRDTs.

Some of our observations are comparable to research in the data-
base domain. While evaluating SharedDB [14], a query processing
system that batches queries and shares computations, the authors
observe an increase in latency with increasing batch size. Simi-
larly, in OLTPShare [42], a batching scheme for OLTP workloads,
smaller batch sizes reduce the potential of sharing while larger
batch sizes introduce high latency. Stonebraker et al. [46] observe
that developing an application-specific DBMS improves the perfor-
mance compared to reusing existing DBMS solutions. These three
observations are comparable to some of our findings such as that
block size in Fabric has a significant influence on failures and that
LevelDB, which is embedded in Fabric, performs better than an ex-
ternal database. Though we can draw such parallels with research in
the database field, Fabric follows an optimistic concurrency control
model that is significantly different from these DBMSs. Addition-
ally, Fabric has other control parameters such as organizations and
endorsement policies which are related to blockchains. Thus, the
results and inferences in our paper are novel. Also, our work goes
beyond existing database research by analyzing the effect of an
extensive set of control variables on transaction failures in different
extensions of Fabric and focuses on the distributed processing of
transactions.

8 Conclusions

In this paper, we formally defined the different transaction fail-
ures that occur in Fabric. We designed our own benchmarking
system HYPERLEDGERLAB and conducted extensive experiments to
analyze the effects of different parameters on failures. We observed
a clear dependency between block size and failures, and the optimal
block size induced up to 60% reduction in failures. We also deployed
three optimizations of Fabric, Streamchain [24], Fabric++ [44] and
FabricSharp [43], on HYPERLEDGERLAB and analyzed their perfor-
mance. We then derived a set of practical recommendations for
Fabric users based on our results and discussed possible future re-
search directions. In the future, we will integrate more chaincodes
into HYPERLEDGERLAB and also deploy other Fabric optimizations
to exhaustively study and compare them.

Acknowledgments
This work is funded in part by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) - 392214008.



Research Data Management Track Paper SIGMOD ’21, June 20-25, 2021, Virtual Event, China

References

[1] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti- [27
nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh
Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula [28
Stathakopoulou, Marko Vukoli¢, Sharon Weed Cocco, and Jason Yellick. 2018. Hy-
perledger Fabric: A Distributed Operating System for Permissioned Blockchains.

In Proceedings of the Thirteenth EuroSys Conference (EuroSys '18). ACM, New York, (29
NY, USA, Article 30, 15 pages. https://doi.org/10.1145/3190508.3190538
[2] Apache CouchDB 2020. https://couchdb.apache.org/. (2020). [Online; accessed

Applications. IEEE, 126-133.

Tomas Mikula and Rune Hylsberg Jacobsen. 2018. Identity and access manage-
ment with blockchain in electronic healthcare records. In 2018 21st Euromicro
Conference on Digital System Design (DSD). IEEE, 699-706.

Daniel-Jesus Munoz, Denisa-Andreea Constantinescu, Rafael Asenjo, and Lidia
Fuentes. 2019. ClinicAppChain: A Low-Cost Blockchain Hyperledger Solution for
Healthcare. In International Congress on Blockchain and Applications. Springer.
Shojiro Muro, Tiko Kameda, and Toshimi Minoura. 1984. Multi-version concur-
rency control scheme for a database system. J. Comput. System Sci. 29, 2 (1984),
207 - 224. https://doi.org/10.1016/0022-0000(84)90031-X

24-February-2021]. [30] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System. Cryp-
[3] Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman. 2016. Medrec: tography Mai{ir}g list at https://metzdowd.com (03 2009). )
Using blockchain for medical data access and permission management. In 2016 [31] Pezhman Nasirifard, Ruben Mayer, and Hans-Arno Jacobsen. 2019. FabricCRDT:

A Conflict-Free Replicated Datatypes Approach to Permissioned Blockchains.

2nd International Conference on Open and Big Data (OBD). IEEE, 25-30.
In Proceedings of the 20th International Middleware Conference (Middleware '19).

[4] A.Baliga, N. Solanki, S. Verekar, A. Pednekar, P. Kamat, and S. Chatterjee. 2018.

Performance Characterization of Hyperledger Fabric. In 2018 Crypto Valley Con-
ference on Blockchain Technology (CVCBT). 65-74. https://doi.org/10.1109/CVCBT.
2018.00013

Richard Gendal Brown, James Carlyle, Ian Grigg, and Mike Hearn. 2016. Corda:
an introduction. R3 CEV, August 1 (2016), 15.

Build the future of Open Infrastructure 2020. https://www.openstack.org/. (2020).
[Online; accessed 24-February-2021].

Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. 2021. Why Do My
Blockchain Transactions Fail? A Study of Hyperledger Fabric (Extended version).
(2021). arXiv:2103.04681

CISAC 2021. https://www.cisac.org/services/information-services/ipi. (2021).
[Online; accessed 24-February-2021].

CouchDB as the State Database 2020. https://hyperledger-fabric.readthedocs.
io/en/release-2.2/couchdb_as_state_database. html. (2020). [Online; accessed
01-October-2020].

Syed Muhammad Danish, Kaiwen Zhang, and Hans-Arno Jacobsen. 2020.
BlockAM: An Adaptive Middleware for Intelligent Data Storage Selection for
Internet of Things. In 2020 IEEE International Conference on Decentralized Appli-
cations and Infrastructures (DAPPS). 61-71. https://doi.org/10.1109/DAPPS49028.
2020.00007

Dean, J. and Ghemawat. 2020. https://github.com/google/leveldb. (2020). [Online;
accessed 24-February-2021].

Association for Computing Machinery, New York, NY, USA, 110—122. https:
//doi.org/10.1145/3361525.3361540

Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference (USENIX ATC’14). USENIX Association, Berkeley,
CA, USA, 305-320. http://dl.acm.org/citation.cfm?id=2643634.2643666

Peer channel-based event services 2020. https://hyperledger-fabric.readthedocs.
io/en/release-1.4/peer_event_services.html. (2020). [Online; accessed 24-
February-2021].

Guido Perboli, Stefano Musso, and Mariangela Rosano. 2018. Blockchain in
logistics and supply chain: A lean approach for designing real-world use cases.
IEEE Access 6 (2018), 62018-62028.

Suporn Pongnumkul, Chaiyaphum Siripanpornchana, and Suttipong Tha-
jchayapong. 2017. Performance analysis of private blockchain platforms in
varying workloads. In 2017 26th International Conference on Computer Communi-
cation and Networks (ICCCN). IEEE, 1-6.

David M. W. Powers. 1998. Applications and Explanations of Zipf’s Law. In
Proceedings of the Joint Conferences on New Methods in Language Processing and
Computational Natural Language Learning (NeMLaP3/CoNLL *98). Association
for Computational Linguistics, USA.

Production-Grade Container Orchestration 2020. https://kubernetes.io/. (2020).
[Online; accessed 24-February-2021].

[12] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and Kian-Lee [38] Pumba: Cha(?s testing tool for Docker 2020. https://github.com/alexei-led/pumba.
Tan. 2017. BLOCKBENCH: A Framework for Analyzing Private Blockchains. In (2020). [Online; accessed 24-February-2021]. ]
Proceedings of the 2017 ACM International Conference on Management of Data [39] Quorum wthepaper 2016. https://www.blocksg.com/smgle—post/2017/12/27/
(SIGMOD ’17). ACM, New York, NY, USA, 1085-1100. https://doi.org/10.1145/ Quorum-Whitepaper. (2016). [Online; accessed 24-February-2021].
3035918.3064033 [40] Shishir Rai, Kendric Hood, Mikhail Nesterenko, and Gokarna Sharma. 2019.
[13] Dot blockchain media 2020. https://dotblockchainmusic.com/. (2020). [Online; Blockguard: Adaptive Blockchain Security. CoRR abs/1907.13232 (2019).
accessed 24-February-2021]. [41] Michel Rauchs, Apolline Blandin, Keith Bear, and Stephen B McKeon. 2019. 2nd
[14] Georgios Giannikis, Gustavo Alonso, and Donald Kossmann. 2012. SharedDB: Global Enterprise Blockchain Benchmarking Study. Available at SSRN 3461765
Killing One Thousand Queries with One Stone. Proc. VLDB Endow. 5, 6 (Feb. (2019).
2012). https://doi.org/10.14778/2168651.2168654 [42] Robin Rehrmann, Carsten Binnig, Alexander Bshm, Kihong Kim, Wolfgang

Lehner, and Amr Rizk. 2018. OLTPshare: The Case for Sharing in OLTP Workloads.
Proc. VLDB Endow. 11, 12 (Aug. 2018). https://doi.org/10.14778/3229863.3229866
Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta, Meihui Zhang, Gang Chen,
and Beng Chin Ooi. 2020. A Transactional Perspective on Execute-Order-Validate
Blockchains. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (SIGMOD °20). Association for Computing Machinery, New
York, NY, USA, 543-557. https://doi.org/10.1145/3318464.3389693

Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich.
2019. Blurring the Lines Between Blockchains and Database Systems: The Case
of Hyperledger Fabric. In Proceedings of the 2019 International Conference on
Management of Data (SIGMOD °19). ACM, New York, NY, USA, 105-122. https:
//doi.org/10.1145/3299869.3319883

[15] Seep Goel, Abhishek Singh, Rachit Garg, Mudit Verma, and Praveen Jayachandran.

2018. Resource Fairness and Prioritization of Transactions in Permissioned
Blockchain Systems (Industry Track). In Proceedings of the 19th International (43
Middleware Conference Industry (Middleware '18). ACM, New York, NY, USA,

46-53. https://doi.org/10.1145/3284028.3284035

Christian Gorenflo, Lukasz Golab, and Srinivasan Keshav. 2019. XOX Fabric: A

hybrid approach to transaction execution. arXiv preprint arXiv:1906.11229 (2019).

Christian Gorenflo, Stephen Lee, Lukasz Golab, and Srinivasan Keshav. 2019. [44
FastFabric: Scaling Hyperledger Fabric to 20,000 Transactions per Second. In 2019

IEEE International Conference on Blockchain and Cryptocurrency (ICBC). 455-463.
https://doi.org/10.1109/BLOC.2019.8751452

[18] Gideon Greenspan. 2015. Multichain private blockchain-white paper. URI:

[16

(17

http://www. multichain. com/download/MultiChain-White-Paper. pdf (2015). [45] shim . GOD(’C' 2020. https://godoc.org/github.com/hypgrledger/fabricfchaincodef
[19] Theo Hérder. 1984. Observations on optimistic concurrency control schemes. go/shim#ChaincodeStub.GetQueryResult. (2020). [Online; accessed 24-February-

Information Systems 9, 2 (1984), 111 - 120. https://doi.org/10.1016/0306-4379(84) 2021].

90020-6 [46] Michael Stonebraker and Ugur Cetintemel. 2005. "One Size Fits All": An Idea
[20] Hyperledger Caliper 2020. https://hyperledger.github.io/caliper/. (2020). [Online; Whose Time Has Come and Gone. In Proceedings of the 21st International Con-

ference on Data Engineering (ICDE ’05). IEEE Computer Society, USA, 2-11.
https://doi.org/10.1109/ICDE.2005.1

[47] P. Thakkar, S. Nathan, and B. Viswanathan. 2018. Performance Benchmark-
ing and Optimizing Hyperledger Fabric Blockchain Platform. In 2018 IEEE 26th
International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS). 264-276. https://doi.org/10.1109/
MASCOTS.2018.00034

accessed 24-February-2021].

Hyperledger Fabric 2020. https://github.com/hyperledger/fabric#releases. (2020).

[Online; accessed 24-February-2021].

Hyperledger Fabric Glossary 2020. https://hyperledger-fabric.readthedocs.io/en/

release-2.0/glossary.html. (2020). [Online; accessed 24-February-2021].

[23] HyperLedgerLab 2021. https://github.com/MSRG/HyperLedgerLab. (2021). [On-
line; accessed 24-February-2021].

©
=

&
0,

[24] Zsolt Istvan, Alessandro Sorniotti, and Marko Vukoli¢. 2018. Streamchain: Do [48] Ujo libergting WUS101 Connecting aftiStS and fans directly using Ethereum 2020.
blockchains need blocks?. In Proceedings of the 2nd Workshop on Scalable and https://ujomusic.com/. (2020). [Online; accessed 24-February-2021].
Resilient Infrastructures for Distributed Ledgers. 1-6. [49] University of Cambridge Judge Business School: Cambridge Centre for Al-

ternative Finance. 2020. https://www.jbs.cam.ac.uk/faculty-research/centres/
alternative-finance/. (2020). [Online; accessed 24-February-2021].

Verifi media: harmonizing media + ownership 2020. https://verifi.media/. (2020).
[Online; accessed 24-February-2021].

[25] Leslie Lamport. 2001. Paxos made simple. ACM Sigact News 32, 4 (2001), 18-25.
[26] Yusen Li and Wentong Cai. 2011. Determining optimal update period for mini-

mizing inconsistency in multi-server distributed virtual environments. In 2011 (50
IEEE/ACM 15th International Symposium on Distributed Simulation and Real Time

233



Research Data Management Track Paper SIGMOD ’21, June 20-25, 2021, Virtual Event, China

[51] Guang Yang and Chunlei Li. 2018. A design of blockchain-based architecture for
the security of electronic health record (EHR) systems. In 2018 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom). IEEE.

[52] Emre Yavuz, Ali Kaan Kog, Umut Can Cabuk, and Goékhan Dalkili¢. 2018. Towards [54
secure e-voting using ethereum blockchain. In 2018 6th International Symposium
on Digital Forensic and Security (ISDFS). IEEE, 1-7.

[53] Yang Yu, Zhu Li, Larry Shi, Yi-Chiun Chen, and Hua Xu. 2007. Network-aware
state update for large scale mobile games. In 2007 16th International Conference
on Computer Communications and Networks. IEEE, 563-568.

Kaiwen Zhang and Hans-Arno Jacobsen. 2018. Towards Dependable, Scalable, and
Pervasive Distributed Ledgers with Blockchains. In 2018 IEEE 38th International
Conference on Distributed Computing Systems (ICDCS). 1337-1346. https://doi.
org/10.1109/ICDCS.2018.00134

234



ACM Publishing License and Audio/Video Release

Title of the Work: Why Do My Blockchain Transactions Fail? A Study of Hyperledger
Fabric
Submission ID:rdm136

Author/Presenter(s): Jeeta Ann Chacko,Ruben Mayer,Hans-Arno Jacobsen

Type of material:full paper

Publication and/or Conference Name: SIGMOD '21: 2021 International
Conference on Management of Data Proceedings

1. Glossary
2. Grant of Rights

(a) Owner hereby grants to ACM an exclusive, worldwide, royalty-free, perpetual,
irrevocable, transferable and sublicenseable license to publish, reproduce and
distribute all or any part of the Work in any and all forms of media, now or hereafter
known, including in the above publication and in the ACM Digital Library, and to
authorize third parties to do the same.

(b) In connection with software and "Artistic Images and "Auxiliary Materials, Owner
grants ACM non-exclusive permission to publish, reproduce and distribute in any and
all forms of media, now or hereafter known, including in the above publication and in
the ACM Digital Library.

(c) In connection with any "Minor Revision", that is, a derivative work containing less
than twenty-five percent (25%) of new substantive material, Owner hereby grants to
ACM all rightsin the Minor Revision that Owner grants to ACM with respect to the
Work, and all terms of this Agreement shall apply to the Minor Revision.

(d) If your paper is withdrawn before it is published in the ACM Digital Library, the
rights revert back to the author(s).

A. Grant of Rights. | grant the rights and agree to the terms described above.

| | B. Declaration for Government Work. | am an employee of the national government

of my country and my Government claims rights to this work, or it is not
copyrightable (Government work is classified as Public Domain in U.S. only)

Are you a contractor of your National Government? ) Yes® No

3. Reserved Rights and Permitted Uses.

(a) All rights and permissions the author has not granted to ACM in Paragraph 2 are
reserved to the Owner, including without limitation the ownership of the copyright
of the Work and all other proprietary rights such as patent or trademark rights.

(b) Furthermore, notwithstanding the exclusive rights the Owner has granted to ACM



in Paragraph 2(a), Owner shall have the right to do the following:

(1) Reuse any portion of the Work, without fee, in any future works written or
edited by the Author, including books, lectures and presentations in any and all
media.

(i) Create a "Major Revision" which is wholly owned by the author

(iii) Post the Accepted Version of the Work on (1) the Author's home page, (2)
the Owner's institutional repository, (3) any repository legally mandated by an
agency funding the research on which the Work is based, and (4) any
non-commercial repository or aggregation that does not duplicate ACM tables
of contents, i.e., whose patterns of links do not substantially duplicate an
ACM-copyrighted volume or issue. Non-commercial repositories are here
understood as repositories owned by non-profit organizations that do not
charge a fee for accessing deposited articles and that do not sell advertising or
otherwise profit from serving articles.

(iv) Post an "Author-lzer" link enabling free downloads of the Version of Record
in the ACM Digital Library on (1) the Author's home page or (2) the Owner's
institutional repository;

(v) Prior to commencement of the ACM peer review process, post the version of
the Work as submitted to ACM ("Submitted Version" or any earlier versions) to
non-peer reviewed servers;

(vi) Make free distributions of the final published Version of Record internally to
the Owner's employees, if applicable;

(vii) Make free distributions of the published Version of Record for Classroom
and Personal Use;

(viii) Bundle the Work in any of Owner's software distributions; and

(ix) Use any Auxiliary Material independent from the Work.

When preparing your paper for submission using the ACM TeX templates, the rights
and permissions information and the bibliographic strip must appear on the lower left
hand portion of the first page.

The new ACM Consolidated TeX template Version 1.3 and above automatically creates
and positions these text blocks for you based on the code snippet which is
system-generated based on your rights management choice and this particular
conference.

NOTE: For authors using the ACM Microsoft Word Master Article Template and
Publication Workflow, The ACM Publishing System (TAPS) will add the rights
statement to your papers for you. Please check with your conference contact for
information regarding submitting your source file(s) for processing.

Please put the following LaTeX commands in the preamble of your document -



i.e., before \begin{document}:

\copyrightyear{ 2021}

\acmY ear{ 2021}

\setcopyright{ acmlicensed}\acmConference[SIGMOD '21]{ Proceedings of the
2021 International Conference on Management of Data}{June 18--27,

2021} {Virtual Event , China}

\acmBooktitle{ Proceedings of the 2021 International Conference on
Management of Data (SIGMOD '21), June 18--27, 2021, Virtual Event , China}
\acmPrice{ 15.00}

\acmDOI1{10.1145/3448016.3452823}
\acmISBN{978-1-4503-8343-1/21/06}

NOTE: For authors using the ACM Microsoft Word Master Article Template and
Publication Workflow, The ACM Publishing System (TAPS) will add the rights
statement to your papers for you. Please check with your conference contact for
information regarding submitting your source file(s) for processing.

If you are using the ACM Interim Microsoft Word template, or still using or
older versions of the ACM SIGCHI template, you must copy and paste the
following text block into your document as per the instructions provided with
the templates you are using:

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.

SIGMOD '21, June 18-27, 2021, Virtual Event , China

© 2021 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM ISBN 978-1-4503-8343-1/21/06...$15.00
https://doi.org/10.1145/3448016.3452823

NOTE: Make sure to include your article's DOI as part of the bibstrip data; DOIs will be
registered and become active shortly after publication in the ACM Digital Library.
Once you have your camera ready copy ready, please send your source files and PDF
to your event contact for processing.

4. ACM Citation and Digital Object Identifier.

(a) In connection with any use by the Owner of the Definitive Version, Owner shall



include the ACM citation and ACM Digital Object Identifier (DOI).

(b) In connection with any use by the Owner of the Submitted Version (if accepted) or
the Accepted Version or a Minor Revision, Owner shall use best efforts to display the
ACM citation, along with a statement substantially similar to the following:

"© [Owner] [Year]. Thisis the author's version of the work. It is posted here for
your personal use. Not for redistribution. The definitive version was published
in { Source Publication}, https://doi.org/10.1145/{ number}."

5. Audio/Video Recording

| hereby grant permission for ACM to include my name, likeness, presentation and
comments in any and all forms, for the Conference and/or Publication.

| further grant permission for ACM to record and/or transcribe and reproduce my
presentation as part of the ACM Digital Library, and to distribute the same for sale in
complete or partial form as part of an ACM product on CD-ROM, DVD, webcast, USB
device, streaming video or any other media format now or hereafter known.

| understand that my presentation will not be sold separately as a stand-alone
product without my direct consent. Accordingly, | give ACM the right to use my
image, voice, pronouncements, likeness, and my name, and any biographical material
submitted by me, in connection with the Conference and/or Publication, whether
used in excerpts or in full, for distribution described above and for any associated
advertising or exhibition.

Do you agree to the above Audio/Video Release? ® Yes ' No

6. Auxiliary Material
Do you have any Auxiliary Materials? .’ Yes® No

7. Third Party Materials

In the event that any materials used in my presentation or Auxiliary Materials contain
the work of third-party individuals or organizations (including copyrighted music or
movie excerpts or anything not owned by me), | understand that it is my
responsibility to secure any necessary permissions and/or licenses for print and/or
digital publication, and cite or attach them below.

'i;@;i' We/l have not used third-party material.
./ We/l have used third-party materials and have necessary permissions.

8. Artistic Images

If your paper includes images that were created for any purpose other than this paper
and to which you or your employer claim copyright, you must complete Part IV and be
sure to include a notice of copyright with each such image in the paper.

® We/l do not have any artistic images.

() We/l have any artistic images.




9. Representations, Warranties and Covenants

The undersigned hereby represents, warrants and covenants as follows:

(a) Owner is the sole owner or authorized agent of Owner(s) of the Work;

(b) The undersigned is authorized to enter into this Agreement and grant the
rights included in this license to ACM;

(c) The Work is original and does not infringe the rights of any third party; all
permissions for use of third-party materials consistent in scope and duration with
the rights granted to ACM have been obtained, copies of such permissions have
been provided to ACM, and the Work as submitted to ACM clearly and accurately
indicates the credit to the proprietors of any such third-party materials (including
any applicable copyright notice), or will be revised to indicate such credit;

(d) The Work has not been published except for informal postings on non-peer
reviewed servers, and Owner covenants to use best efforts to place ACM DOI
pointers on any such prior postings;

(e) The Auxiliary Materials, if any, contain no malicious code, virus, trojan horse or
other software routines or hardware components designed to permit unauthorized
access or to disable, erase or otherwise harm any computer systems or software;
and

(f) The Artistic Images, if any, are clearly and accurately noted as such (including
any applicable copyright notice) in the Submitted Version.

| agree to the Representations, Warranties and Covenants.

10. Enforcement.

At ACM's expense, ACM shall have the right (but not the obligation) to defend and
enforce the rights granted to ACM hereunder, including in connection with any
instances of plagiarism brought to the attention of ACM. Owner shall notify ACM in
writing as promptly as practicable upon becoming aware that any third party is
infringing upon the rights granted to ACM, and shall reasonably cooperate with ACM
inits defense or enforcement.

11. Governing L aw

This Agreement shall be governed by, and construed in accordance with, the laws of
the state of New York applicable to contracts entered into and to be fully performed
therein.

Funding Agents



1. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) award
number(s):392214008

DATE: 03/01/2021 sent to chacko@in.tum.de at 05:03:48






Appendix B

How To Optimize My Blockchain? A Multi-Level Rec-

ommendation Approach

69



How To Optimize My Blockchain? A Multi-Level
Recommendation Approach

JEETA ANN CHACKO, Technical University of Munich, Germany
RUBEN MAYER®, University of Bayreuth, Germany
HANS-ARNO JACOBSEN, University of Toronto, Canada

Aside from the conception of new blockchain architectures, existing blockchain optimizations in the literature
primarily focus on system or data-oriented optimizations within prevailing blockchains. However, since
blockchains handle multiple aspects ranging from organizational governance to smart contract design, a
holistic approach that encompasses all the different layers of a given blockchain system is required to
ensure that all optimization opportunities are taken into consideration. In this vein, we define a multi-level
optimization recommendation approach that identifies optimization opportunities within a blockchain at
the system, data, and user level. Multiple metrics and attributes are derived from a blockchain log and nine
optimization recommendations are formalized. We implement an automated optimization recommendation
tool, BlockOptR, based on these concepts. The system is extensively evaluated with a wide range of workloads
covering multiple real-world scenarios. After implementing the recommended optimizations, we observe an
average of 20% improvement in the success rate of transactions and an average of 40% improvement in latency.

CCS Concepts: « Information systems — Data management systems.
Additional Key Words and Phrases: Blockchains, process mining, performance optimization

ACM Reference Format:

Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. 2023. How To Optimize My Blockchain? A
Multi-Level Recommendation Approach. Proc. ACM Manag. Data 1, 1, Article 24 (May 2023), 27 pages. https:
//doi.org/10.1145/3588704

1 INTRODUCTION

When blockchains were first introduced, they supported only simple cryptocurrency exchange
transactions [50]. However, over time blockchains evolved to support complex transactions using
smart contracts, thus entering the arena of decentralized transactional management systems such
as distributed databases [64]. Since blockchains target consensus in a trustless environment, they
cannot easily match the performance of databases [9, 16, 22, 26, 53, 59, 80]. However, with the
advent of permissioned blockchains that offer access control and transaction execution policies,
blockchains strive to improve their performance while still providing at least partially decentralized
trust [3, 5, 28, 48].

Apart from the proliferation of new blockchain system designs, there is highly vibrant and diverse
ongoing research in the domain of system optimizations that focus on performance enhancements

*Work done while at Technical University of Munich

Authors’ addresses: Jeeta Ann Chacko, chacko@in.tum.de, Technical University of Munich, Germany; Ruben Mayer, ruben.
mayer@uni-bayreuth.de, University of Bayreuth, Germany; Hans-Arno Jacobsen, jacobsen@eecg.toronto.edu, University of
Toronto, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org,.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2836-6573/2023/5-ART24 $15.00

https://doi.org/10.1145/3588704

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.




24:2 Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen

4 N
e Activity reordering
User level e Process model pruning
¢ Transaction rate control
%
o
4 N
¢ Delta writes
Data level e Smart contract partitioning
e Data model alteration
J
o
4 N
¢ Block size adaptation
System level e Endorser restructuring
e Client resource boost
\_ %

Fig. 1. Multi-level blockchain optimization

within prevailing permissioned blockchains [13, 27, 36, 37, 41, 54, 65-68]. The vast range of the
literature targets control parameter tuning [13, 41, 68], transaction execution remodeling [27,
37, 66], and smart contract optimization [54]. However, we notice that a collective approach
that encompasses all these optimization possibilities for a particular blockchain under the same
umbrella is missing. Further, the literature falls short for an end-to-end optimization approach
that includes not only system-level tuning and data remodeling but also process model redesign.
Since permissioned blockchains are mainly employed by enterprises, a model-driven approach
is often followed where the setup of the blockchain network, its transaction regulations, the
underlying smart contract, and the data model are primarily based on a business process model
created specifically for a particular application [21, 40, 56, 63, 69]. Such process models may be
designed by business domain experts who are unaware of performance implications. For example,
in Hyperledger Fabric (a.k.a. Fabric) [5], many transaction failures arise due to the order in which
the transactions are executed [13, 65, 67]. Such failures could be reduced if the client processes
that issue the transactions followed a different business logic in the first place. The prominence of
data management while executing business processes has often been highlighted by the database
community [11, 20, 34]. We make a similar argument for the importance of the process view in
blockchains since the aspects covered by blockchains are manifold and not limited to data alone.

Therefore, given the numerous optimizations possible within a given blockchain system, their
varying influence on a case-by-case basis [6, 13, 23, 51, 68, 81], and the resulting implementation
efforts, there is a pressing need for a recommendation system that guides the user in selecting
effective optimization strategies suitable for the blockchain under consideration depending on
the specific use-case. Again, we can draw parallels from the exhaustive literature on parameter
tuning and indexing recommendations for databases [1, 2, 42, 73]. However, since blockchains
juggle multiple factors such as organizational governance [62], database definitions [59], consensus
algorithms [46], provenance tracking [60], and smart contract design [47], a holistic perspective to
optimization recommendations is desirable, which is currently lacking.

To address this gap, we propose a multi-level optimization recommendation approach for
blockchains that provides to the users a comprehensive understanding of the different optimization
possibilities for their blockchain system, thus enabling them to make a well-informed decision. In-
spired by the abstraction levels in databases [45], we define three levels of abstraction for blockchain
optimizations: system, data, and user-level (cf. Figure 1). The system-level recommendations include

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



How To Optimize My Blockchain? A Multi-Level Recommendation Approach 24:3

identifying ideal system configurations such as the block size or endorsement policy. The data-level
recommendations deal with understanding the data model and optimizing smart contracts. The
user-level recommendations focus on business process models and workloads induced by client
processes. For example, we identified two activities in a digital rights management scenario (cf.
Section 5.2) that frequently cause transaction conflicts and recommend a process model redesign to
reduce such failures. Our approach can also verify compliance with the new process model. We
design and implement a recommendation tool named BlockOptR that analyzes the blockchain
logs from Fabric, one of the most widely used blockchains by enterprises [61], to demonstrate the
performance improvements yielded by our approach.

Our contributions can be summarized as follows:
(1) We define a multi-level optimization recommendation approach that extensively analyzes
the blockchain log and recommends optimization possibilities from different perspectives. Our
method helps users gain a comprehensive understanding of their current system and make educated
decisions regarding optimization strategies.
(2) We provide a formal definition for our recommendation strategies based on common attributes,
such that any blockchain log with similar attributes can reuse our approach. We also discuss how
our approach translates to different blockchain platforms, thereby providing the reader with a
technology-independent outlook.
(3) We automate the extraction, preprocessing, and event log generation techniques for Fabric
blockchain data. Thus, our tool BlockOptR will help to ease further research in the area of log-based
analysis such as process mining in blockchains, since a preprocessed blockchain log can be directly
obtained.
(4) We demonstrate the effectiveness of the optimization recommendations by implementing and
evaluating them. Our experiments indicate an average of 20% improvement in the percentage of
successful transactions and an average of 40% improvement in latency after applying the recom-
mendations by BlockOptR.
(5) We extensively evaluate BlockOptR with three different types of workloads: A set of 24 synthetic
workloads generated with a wide range of control variables, four widespread use case-based
workloads from the literature, and a real-world event log of a loan application process. Thus, we
cover a wide range of scenarios in our experimentation that are representative for real blockchain
applications. This aids in overcoming the lack of publicly available data that restricts current research
on process mining in permissioned blockchains. The BlockOptR tool, all the smart contracts, the
workload generation scripts, and all the event logs are released as open-source to encourage further
research in this area [10].
(6) We further establish the positive effect of our holistic recommendation approach on top of
existing blockchain optimizations. Thus, we highlight that BlockOptR complements existing system-
level blockchain optimization strategies such as FabricSharp [65] and Fabric++ [67] by adding
higher-level optimizations.

2 BACKGROUND
2.1 Hyperledger Fabric

Fabric is an open-source permissioned blockchain system popularly used by enterprises [5]. The
main components of Fabric are a smart contract (called chaincode), a distributed immutable ledger,
a distributed world state database, a set of distributed peers, and an ordering service. The smart
contract defines all the supported transactions on the blockchain. The transaction flow in Fabric
follows an execute-order-validate (EOV) model [70]. The EOV model of Fabric is comparable to

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



24:4 Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen

optimistic concurrency control in databases [31] and is therefore prone to multi-version concurrency
control (MVCC) conflicts, which result in transaction failures.

(1) In the execution phase, transaction proposals are created by clients and sent to the endorsers.
Endorsers are a set of specific peers that have the authority to execute the smart contract to endorse
a transaction. An endorsement policy is configured to define the number of required endorsers for
a transaction to be deemed valid. Endorsers generate read-write sets after smart contract execution.
The transaction proposal and the read-write sets are signed by the endorsers and sent back to the
clients.

(2) In the ordering phase, the clients forward these transactions to the ordering service. The
ordering service orders the transactions into blocks using Raft [55], a crash fault-tolerant consensus
algorithm, and sends them to all the peers in the network. Configurable parameters limit the
number of transactions included in a block (block size) in terms of the number of transactions
(block count), a timeout (block timeout), or the size of transactions in bytes (block bytes). Blocks
are created whenever the buffered set of incoming transactions satisfies any of the three conditions.
(3) In the validation phase, every peer validates every transaction. Every peer in the Fabric network
has a copy of the distributed ledger and the world state. Peers validate both the endorser signatures
based on the endorsement policy and the read-write set with the current world state. If the validation
is successful, the world state is updated. Else, a failure is detected. If the endorsement validation fails,
it is called an endorsement policy failure; if the read-write set validation fails, it is called an MVCC
read conflict. MVCC read conflicts for range reads are called phantom read conflicts. Regardless of
the success or failure of the validation, all transactions are appended to the distributed ledger. Also,
in the literature, MVCC read conflicts are often classified into inter-block and intra-block failures
depending on whether the conflicting transactions reside in the same block or different blocks in
the blockchain [13, 67].

2.2 Event Logs and Process Mining

An event log is a record of process executions over time. Process mining [75] is the technique of
deriving a process model that exhibits the most frequent behaviors in an event log. It is mainly used
for process discovery which helps to understand the underlying process model, conformance checking
where deviations between a predicted process model and the actual behavior of the process can be
identified and model enhancement where bottlenecks are identified and removed. The minimum
data required in an event log for process mining are:

(1) CaselD: To distinguish different executions of the same process. Example: ProductID in a
supply chain management related event log. A complete execution of a process is called a
trace.

(2) Activity name: To identify the different steps in a process. Example: Ship or Unload activity
in a supply chain management related event log.

(3) Timestamp: To determine the order of the different activities.

The event log can also have other attributes such as process owner, resources, and cost. Various
algorithms are used to derive the process model such as alpha miner [76], heuristics miner [79] and
fuzzy miner [30]. The core concept of all these algorithms is to analyze the different traces of the
set of activities in the log and simplify the traces through abstraction or aggregation to produce a
complete process model. Various open-source and commercial process mining tools are available
(ProM [78], Disco [29], Celonis [12]).

3 A PROCESS PERSPECTIVE TO BLOCKCHAINS

Our work posits blockchain optimization as a holistic methodology rather than a pure system-level
approach by introducing a process perspective. In this section, we emphasize the necessity and

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



How To Optimize My Blockchain? A Multi-Level Recommendation Approach 24:5

effectiveness of understanding the dependency between business processes and the performance
of the blockchain through examples. Further, these examples motivate the need for an optimization
recommender since many process-level optimizations can only be employed with approval from
the decision-making bodies of an organization and, in most cases, cannot be automatically applied.

43 traces > 42 traces
158% ofthe log  fAllly PUSRASN JQueryASN JELCE 1.55% of the log / PUSHASN ) QueryProducts ) QueryASN

QueryASN

- T

PushASN

\Q' Unload
— p

Fig. 2. Derived process model for SCM scenario

Process model pruning is an example of a process-level optimization that positively affects the
system’s performance. Figure 2 shows the process model derived from the blockchain log of a
supply chain management (SCM) scenario. The highlighted paths and the traces embedded in the
figure identify two unnecessary branches in the process model. Unless the advanced shipping
notice is pushed (PushASN), one should never execute the Ship activity. Similarly, the Unload
activity should never be executed unless a product has been shipped. Such illogical activity paths
can arise due to manual errors or transaction failures, and the smart contract is designed to handle
such issues, as we explain in the following example.

If the Unload transaction executes without a corresponding Ship, the transaction will only read the
state but not modify it. However, it is up to the smart contract designer to either fail the transaction
upon execution or commit the read-only transaction to the blockchain. Both these designs have their
trade-offs. Committing the transaction adds an immutable record on the blockchain, which helps to
track, for example, individuals or organizations who deviated from the expected process model. In a
supply chain management scenario specifically, this is critical since the entire pipeline is distributed,
and the primary purpose of the blockchain here is to provide data provenance among untrusted
participants. However, on the other hand, failing a transaction immediately upon execution ensures
that such unnecessary transactions do not go through all the time-consuming phases (ordering
and validation), which can improve the system performance. We observe a 27% improvement in
throughput and 19% increase in success rate of transactions when unnecessary activity paths are
pruned in the smart contract (Section 6.2, Figure 13). The pruning can also be implemented at the
process execution level by enforcing incentive or penalty measures for organizations or individuals
that adhere to or deviate from the expected process model. This approach ensures that system
performance is not prioritized over data provenance and hence, combines the advantages of both
smart contract designs we discussed above.

Another cause of failures are transactional dependencies, and research in serialization algorithms
has effectively reduced such failures through transaction reordering [65, 67]. However, reordering
algorithms are expensive, as they basically need to solve the NP-hard problem of generating conflict-
free dependency graphs [67]. An increase in endorsement policy failures due to inconsistent world

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



24:6

Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen

Without activity reordering

Activity order Activity Read data, Value | Write data, Value | Validity
1 PushASN { ProductID, 1} {ProductID, 2 } Success
. {ProductID, 1} .
2 UpdateAuditinfo { AuditiD, 001 } { AuditID, 002 } Abort
With activity reordering
Activity order Activity Read data, Value | Write data, Value | Validity
. {ProductID, 1} .
1 UpdateAuditinfo { AuditiD, 001 } { AuditID, 002 } Success
2 PushASN {ProductlID, 1} {ProductlD, 2 } Success

Fig. 3. Transaction dependency conflict example

states and the inability to handle large range queries are known problems of transaction reorder-
ing [13]. A different approach to the problem of dependency conflicts is to identify reorderable and
unreorderable [65] activities instead of transactions. While the literature analyzes the keys accessed
by transactions to understand serializability, the data model needs to be analyzed for process-level
serialization. If two concurrent activities read the same data element but write to different elements
in the data model then such activities are reorderable.

QueryASN

PushASN

Unload

%

Fig. 4. Derived process model after activity reordering

O

For example, in the same supply chain management scenario, the UpdateAuditinfo activity
reads a productlD and writes an auditlD, whereas the PushASN, Ship, and Unload activities read
and write to the productID. Therefore, the pairs {UpdateAuditinfo, PushASN}, {UpdateAuditinfo,
Ship} and {UpdateAuditinfo, Unload} are reorderable activities while {PushASN, Ship, Unload} are
unreorderable. Figure 3 shows an example of a reorderable pair of activities where UpdateAuditinfo
can succeed if it is executed either after the commit or before the execution of PushASN. Based
on the business logic, it may be possible to impose procedures to restrict or reschedule certain
activities to execute only at specific periods. For example, the corresponding process model in
Figure 2 shows that UpdateAuditinfo occurs frequently between PushASN and Ship activities and
therefore, UpdateAuditinfo may be executed before the transactions of the other two activities
commit. However, UpdateAuditInfo is not a time-critical activity and can be rescheduled to take
place only at specific times when traffic is low on the supply chain. We observe a 24% increase in
throughput and 15% increase in success rate of transactions after a corresponding redesign where
UpdateAuditinfo and QueryProducts activities are executed after PushASN, Ship, Unload. The
new process model derived from the blockchain log confirms the adherence to the new design
(Figure 4). Thus, by identifying conflicting activities, the process model can be redesigned to reduce
transaction conflicts before they take place.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



How To Optimize My Blockchain? A Multi-Level Recommendation Approach 24:7

BlockOptR

Blockchain Data
Preprocessing

N Fabric Network

Metrics Derivation Event L.Og Process M.OdE|
Generation Generation
Optimization |  Optimization
Recommendation Implementation

Fig. 5. BlockOptR workflow

4 BLOCKCHAIN OPTIMIZATION RECOMMENDER

We introduce an approach to recommend optimizations from three different abstraction levels:
system, data, and user-level. The primary requirement to design and implement such a multi-level
recommendation system is reliable data on all three levels. Knowledge about the system configura-
tions (e.g., block size) and performance (e.g., throughput, transaction failures) is vital for generating
system-level recommendations. Information about the current data model and access patterns,
such as key distribution and dependencies, is essential for data-level recommendations. Lastly,
knowledge concerning the use-case, business processes, and transaction workload is necessary
for user-level recommendations. It is important to note that such information is not restricted to a
specific level but is helpful across all levels. For example, the system-level performance can indicate
the need for optimizations at all three levels.

The very definition of a blockchain implies the availability of a distributed ledger with immutable
data regarding every transaction executed overtime. If we consider smart contracts, then every
execution of the smart contract results in a transaction that is logged in the ledger. We consider
this data (hereafter referred to as the blockchain log) as the primary source to derive optimization
recommendations since, to our knowledge, such a distributed ledger consisting of all transactions is
available for most blockchains. Therefore, our transaction-centric approach to deriving blockchain
optimization recommendations is applicable to different blockchains.

We preprocess the raw data from the blockchain to create a blockchain log. Then, we obtain the
values for key metrics which are used to detect multi-level optimization recommendations. Process
mining strategies are then applied to the blockchain log to derive the process model. We identify
the applicable optimizations using the recommendations and the derived process model. Figure 5
illustrates the workflow of our approach. We automated the main elements of this workflow as a
tool, BlockOptR [10], implemented in Python and Node.js.

4.1 Blockchain Data Preprocessing

BlockOptR registers as a client on the Fabric network, reads the entire blockchain and saves it as
JSON files. Next, the log is cleaned by removing the configuration and setup-related transactions
that are not relevant and converted to CSV format. All information regarding each transaction
executed in the Fabric network is logged on the blockchain. We extract seven attributes and derive
two attributes from this extensive logged data. These attributes enable the derivation of multiple
metrics required to recommend optimizations. The output of the data preprocessing step is a
blockchain log with the following nine attributes.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



24:8 Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen

(1) Client timestamp: The time at which the client generated the transaction.

(2) Activity name: The name of the smart contract function whose execution created the
transaction. A(x) defines the activity name of a transaction x.

(3) Function arguments: The value of the parameters of the smart contract function.

(4) Endorsers: The set of all endorsers of the transaction.

(5) Invokers: The set of all clients and their respective organization who invoked the transac-
tions.

(6) Read-write set: The set of keys accessed (read or written) by the transaction. The separate
read set and write set of a transaction are also kept. RWS(x), RS(x) and WS(x) correspondingly
define the read-write set, read set and write set of a transaction x.

(7) Transaction status: The status of the transaction that can have the values success, MVCC
read conflict (MRC), phantom read conflict and endorsement policy failure. ST(x)
defines the status of a transaction x.

(8) Transaction type: The type of transaction which is derived from the read-write set. This can
have the values read, write, update, range read and delete. Transaction type is derived
from the read-write set. TT(x) defines the type of a transaction x.

(9) Commit order: The order of the transactions in the blockchain log is the order in which
transactions were committed to the blockchain.

4.2 Event Log Generation

The blockchain log extracted from the Fabric network can be used as an event log to apply process
mining techniques that assist in recommending user-level optimizations. However, unlike the
event logs created by process-aware information systems [74], a CaseID is not directly available in
the event log extracted from a blockchain. Also, in most of the use-cases we observed, no single
attribute is common to all activities that can be directly used as the CaseID. Therefore, we need to
derive a common element for each use-case based on domain knowledge [4, 8, 17, 19, 44]. Since we
are interested in a transactional perspective of the process model, we find a common element for all
activities by analyzing the function arguments and read-write sets available in the log. For example,
in the SCM scenario the productKey is a common element for all activities and is a suitable choice
since the use-case is specifically related to tracking multiple products. This process of extracting
the common element is automated for all the use-cases in this paper and can be easily extended for
other use-cases. Once a common element is identified, we define a trace as a unique set of activities
with the same value for the common element. We then assign a new CaseID to every trace.

Further, only the time at which the clients sent the transaction (client timestamp) is available in
our log. However, there is no guarantee that the same order in which clients send their transactions
will be maintained when the transactions are committed to the blockchain. Therefore, to derive
the process model accurately, we use the commit order in place of the timestamp. Thus, with the
generated CaseID and extracted/derived attributes, we have a complete event log. Now, any process
mining technique can be applied to the event log to derive a process model. For example, we used
the Alpha algorithm to derive the process models shown in Figure 2 and 4 [76].

4.3 Metrics

We define a set of metrics by scrutinizing multiple blockchain logs and analyzing metrics from the
literature.

(1) Rate metrics: BlockOptR calculates the average transaction rate as well as the transaction
rate distribution over time intervals from the event log. Transaction rate (7r) is the average rate
at which transactions are sent from the clients and is derived from the total transactions in the
log and the client timestamps. Transaction rate distribution (7rd;) is the transaction rate at a

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



How To Optimize My Blockchain? A Multi-Level Recommendation Approach 24:9

specific interval i derived from the log. A user-configurable interval size (ins) in seconds is used to
calculate this metric. Usage: Transaction rate is a useful metric to understand the performance. The
rate distribution provides insights regarding periods of high or low traffic.

(2) Failure metrics: Similar to Tr, the total failure rate (TFr) as well as the rates of each type
of failure (MVCC read conflicts, phantom read conflicts, endorsement policy failures) are derived
from the log. The failure rate distribution (Frd;) is calculated similar to Trd. Usage: Failure metrics
help to detect times of high transaction failures. Optimizations such as transaction rate control can
be applied based on the failure metrics.

(3) Block size: The user-configured block count (B,,,;) and block timeout (B;imeo,:) are extracted
from the log. The average number of transactions in a block (Bjizeavg) is also derived from the log.
Bgizeavg is equivalent to the average block size and can also be defined as min{Bcoynt, Tr * Biimeout }-
Usage: Bsizeavy along with the rate metrics helps a user understand the effectiveness of their block
size configurations. For example, if Tr is 500, Beoyns is 100, Brimeour is 1 and Bgjzeqyg is 100, then 100
transactions are packed into a block when 500 transactions are actually available every second.
This means more blocks than necessary are being created which is inefficient, as block creation is
expensive. Similarly, if Tr is 100, Beount is 500, Bimeour is 2, and Bgizeqvg is 200, then blocks are created
only every 2 seconds and transactions are queued up for a waiting period before being put into
blocks. Both scenarios lead to performance degradation. So, based on the value of Biizeqvg, the user
can update Beoyns and Byimeonr to efficiently handle the transaction rate.

(4) Endorser significance (EDsig) defines the number of transactions endorsed by each endorsing
peer. Usage: This metric helps in identifying endorser bottlenecks. Suppose a limited number of
endorsers always carry out the endorsements. In that case, the user can consider distributing the
transactions more evenly among the endorsers or expanding the set of endorsers.

(5) Invoker significance (IVsig) defines the number of transactions invoked by each client. Usage:
This metric helps to identify clients and the corresponding organizations that invoke a majority of
the transactions. Client resource allocation decisions of such organizations can be made based on
this metric.

(6) Key frequency (Kfreq) is defined as the number of failed transactions that access a specific
key. Key significance (Ksig) is defined as the number of activities that access a specific key. HK
defines the set of hotkeys that have high key frequency based on user-configurable thresholds.
Usage: Identifying the hotkeys assists the users to identify optimization possibilities in their smart
contracts, and key significance helps to detect the exact activities (that correspond to smart contract
functions) that access the hotkeys. For example, if several functions access the same key, then the
different functions could be separated into multiple smart contracts. Every smart contract executes
on a different world state, thereby reducing failures (see example in Section 5).

(7) Data-value correlation (corDV) defines that two transactions are correlated if both access a
same set of keys and one of them fails. Usage: Data-value correlation helps to identify transaction
dependencies. Such dependent transactions are the root cause of MVCC read conflicts [13]. Various
optimization strategies, such as process model redesign and transaction rate control, can be applied
to these correlated transactions to mitigate failures.

(8) Proximity correlation (corP) defines the distance between two transactions that have a high
data value correlation. For example, if corP(x, y) == I then transaction y happened immediately
after x with no transactions in between. Further, we also derive the activity-based proximity
correlation (corPA) which defines the distance between transactions of the same activity. Usage:
Analyzing if the proximity correlation is “less than the block size” or “greater than the block
size” can reveal useful insights regarding inter- and intra-block failures. If intra-block failures
are very high, smaller block sizes can potentially reduce failures [13]. This metric also helps to

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



24:10 Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen

Table 1. Formalization of optimization recommendations

Recommendations Necessary conditions

Activity reordering if corDV(x,y) ==1 A WS(x) N WS(y) ==
Process model pruning if A(x) =A(y) ANTT(x) # TT(y)
Transaction rate control if (Trd; = Rt;) A (Frd; > Trd; + Rty)

if corPA(x,y) == 1A ST(x) == MRC A
[WS(x)] == [ WS(y)] == 1A WS(x) + 1 == WS(y)

Delta writes

Smart contract partitioning if Ksig(HK;) > 1
Data model alteration if (Ksig(HK;) ==1) V (|HK| ==1)
Block size adaptation if (Tr 2 Biizeavg * Bt) V (Tr < Bgizeavg * Bt)
Endorser restructuring if EDsig(e) > |TX| = Et
Client resource boost if IVsig(c) > |TX| = It

where x,y € TX,e € E,c € I, HK; € HK
TX, E, I, HK are set of all transactions, endorsers, invokers and hotkeys
Rty, Rt,, Bt, Et, It are user configurable thresholds

choose between inter- or intra-block transaction reordering strategies offered by different Fabric
optimizations [65, 67].

4.4 Optimization Recommendations

We use a multi-level approach to utilize the defined attributes and metrics for recommending
blockchain-specific optimization strategies. The optimization recommendation techniques explained
in this section include configurable thresholds. We define appropriate default values for these
thresholds based on our analysis of multiple logs, but the user can adapt these default values
to fine-tune the detection strategies. The necessary condition to recommend each optimization
strategy is formalized in Table 1.

4.4.1 User Level Recommendations.

At the user level, it is essential to focus on the actual workload of the running application. The
rate and order in which the transactions are generated and committed to the blockchain has a
vital impact on performance. We analyze the rate, dependencies, and type of the transactions to
recommend optimizations at the user level.

(1) Activity reordering: Reorderable pairs of transactions can be identified by using the data
value correlation and the read-write set. BlockOptR identifies the activities corresponding to such
transaction pairs and recommends a process model redesign. The redesign should ensure that the
identified activities are restructured to reduce conflicts (cf. Section 3).

(2) Process model pruning: If activities deviate from an expected behavior, then process model
pruning is recommended. The transaction type of all transactions related to an activity is analyzed
to identify anomalies. Comparing the traces in the event log and the derived process model with
the identified anomalies helps to detect model pruning opportunities (cf. Section 3).

(3) Transaction rate control: BlockOptR evaluates the transaction rate distribution over time and
identifies times when the rate is very high. It then checks the failure rates in the same time interval.
If the failure rate is also very high, rate control is recommended. Two configurable thresholds are
used to tune the tolerance level of transaction rate and failures.

4.4.2 Data Level Recommendations.

For data-level recommendations, we focus on identifying the specific areas in the data model that
can be optimized by analyzing transaction failures, proximity correlation, read-write sets, and key

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



How To Optimize My Blockchain? A Multi-Level Recommendation Approach 24:11

significance. This aids the user in altering the smart contract and thereby the underlying data
model to improve performance.

(4) Delta writes: Update transactions that only perform increment or decrement operations can
be converted to delta-writes. Delta writes enable writing to multiple unique delta keys, which can
be aggregated whenever the current value is required. Reading the key before each write is also not
required. Thus, update transactions are converted to write-only transactions that write to unique
keys. This helps to reduce transaction dependency-related failures. Delta writes are recommended
when a single key is incremented or decremented by a failed transaction.

(5) Smart contract partitioning: A possibility to reduce transaction dependencies is to split a
smart contract into multiple ones. Each smart contract will access separate world states, thereby
avoiding conflicts. The functionality of the original smart contract will not change because it is
possible to invoke functions between the two smart contracts if interaction is required.

For example, in a music rights management scenario, if a key MusicID is found to be hot and
multiple functions such as Play () and viewMetaData() access this same key, then one can separate
the functions into two different smart contracts. In other words, the underlying database is split
into two by duplicating the primary key (MusicID) across both and having different secondary
keys in each. The play count of MusicID is recorded in one and metadata is read from the other (cf.
Section 6.2). This is analogous to designing the table layout in relational databases. The smart con-
tract needs to be analyzed and updated to implement this optimization. Smart contract partitioning
is recommended if multiple activities access a hotkey.

(6) Data model alteration: If activities have a dependency on themselves, then a data model
alteration can be beneficial to reduce transaction conflicts. For example, in a digital voting scenario,
if a key ElectionID is found to be hot and is only accessed by the function Vote(), then a possible
optimization is to use another primary key such as VoterID. Then, instead of updating all the votes
together, the votes can be updated per voter (cf. Section 6.2). Further, if only a single hotkey is
detected then it is beneficial to analyze the data model to understand the reason for the skewed
access to this specific data element (cf. Section 6.3). Data model alteration is recommended if a
hotkey is accessed only by a single activity or if a single hotkey is detected.

4.4.3 System Level Recommendations.

At the system level, we focus on two crucial system configuration settings that can significantly
affect the performance of Fabric: the endorsement policy and the block size [13, 68]. Further,
we also identify client bottlenecks to aid in resource allocation decisions. We use the endorser
significance, invoker significance, transaction rate, and actual block size metrics to derive system-
level optimization recommendations. Since these recommendations are based on the blockchain
log generated by the running application, it helps the user to identify ideal configuration settings
based on their current use-case and workload, leading to performance improvements.

(7) Block size adaptation: The average transaction rate (Tr), the average block size (Bjizeavg)
and a configurable threshold (Bt) are used to recommend block size adaptation. The literature
recommends smaller block sizes when transaction rates are lower and larger block sizes when
the rates are higher [13, 68]. If the block size is too small, too many blocks are created, and block
creation becomes a bottleneck. If the block size is too large, the block creation is delayed by waiting
for sufficient transactions. Therefore, if block size adaptation is recommended, then set Byjpeo,: and
Beount such that min{Boyns, Tr * Biimeout } is equal to Tr. We do not provide recommendations for
block bytes adaptation since it is difficult to accurately derive the size of a transaction (that can
include the transaction payload, endorser identities and other metadata) from the log.

(8) Endorser restructuring: For every Fabric transaction generated by the clients, the correspond-
ing smart contract function is executed by the endorsers defined in the endorsement policy. Smart
contract execution is a time and resource-consuming action. If the same endorsers receive a higher

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



24:12 Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen

load of transactions while others remain idle, this indicates a bottleneck or load imbalance. Such load
imbalances can occur when the endorsement policy explicitly defines an endorsement as mandatory
from a specific set of endorsers. For example, the endorsement policy And(0Org1,0R(0rg2,0rg3))
implies that an endorsement from Org1 is mandatory. As a consequence, Org1 could become an
endorsement bottleneck. We detect endorser bottlenecks by identifying endorsers that endorse
more transactions than a user-specified threshold. The default threshold values detect whether all
the endorsers participate equally in the endorsement process. The threshold values can be adapted
to increase or decrease the sensitivity to imbalances.

(9) Client resource boost: Multiple time-consuming tasks are performed by the clients in a Fabric
network, including but not limited to transaction proposal invocation, endorser response verifica-
tion, packing of endorser responses as a transaction, transaction submission to the ordering service,
and collection of peer commit responses. The invoker significance metrics identify the clients and
the corresponding organizations that invoke a majority of the transactions. This identification can
assist in resource allocation decisions, such as increasing the number and size of clients registered
to the identified organization. It could also point to problems in the underlying business process.

P ——
Automated . .
. Clients Fabric Network BlockOptR
Workflow Engines F
e C]
I I I 1 Optimization :
____________________________________________ 1 Recommendations
[ro========1 r==-- - 1 " i [Tt -
1 ¥ Activity reordering 1 1 ¥ Activity reordering | 1 Smart contract updates Configuration updates i
""""""" # 1/ Transaction rate control I I v Delta writes v Block size adaptation 1
1 V¥ Client resource boost 1 H v’ Smart contract partitioning v' Endorser restructuring =
______________ 1 v Data model alteration :
: v Process model pruning 1
—————————————————————————————— Ll

Fig. 6. Optimization implementation on a live Fabric network

4.5 Implementation of Optimizations

The recommended optimizations can be implemented in several ways. Figure 6 visualizes where
the different recommendations can be implemented on a live Fabric network. Here, we show an
automated workflow engine that triggers transactions based on a process model. These transactions
are sent via the clients to the Fabric network. The logs of the Fabric network are analyzed by
BlockOptR to generate optimization recommendations. Each of the recommended optimizations
can be implemented at different levels as shown in the figure.

Activity reordering can be implemented by modifying the underlying process model in the
workflow engine such that activities follow a conflict-free order. Alternatively, one can monitor the
transactions on the clients and reorder either per client or across all clients using a client manager.
Process model pruning can be implemented via organizational measures such as incentives or
penalties to ensure that activities adhere to their expected behavior (not shown in the figure).
However, pruning can also be implemented directly in the smart contract by early aborting anoma-
lous transactions during the endorsement phase. Transaction rate control can be implemented
in multiple ways. Each client can monitor their own transaction rate and perform load shedding
or queuing. The same can be done across clients using a central monitor. A third approach is to
monitor the transaction rate in the ordering service and apply load shedding there. Smart contract
revisions are required to implement all the data-level optimizations. In Fabric, smart contract
upgrades are possible on the fly without restarting the system [72]. Block size can be adapted either
by changing the configuration file or by using a configuration update transaction in Fabric [71].
Endorser restructuring can be implemented by altering the endorsement policy. The policy can be
changed in the Fabric configuration file or using a configuration update transaction [71]. Based on

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



How To Optimize My Blockchain? A Multi-Level Recommendation Approach 24:13

the transaction load per client identified by BlockOptR, client resources can be scaled if the current
allocation appears insufficient to handle the load and the new clients can be dynamically registered
to the Fabric network.

Our implementations. Although all optimizations can be applied in a live system on the fly,
since our evaluation runs in an experimental environment, we restart the Fabric network after
every experiment. We use the Caliper benchmarking system [35] which has a client manager that
can be configured to order the transactions across clients and control the rate of transactions
generated, thus emulating activity reordering and transaction rate control. The number of clients
can also be scaled to demonstrate a client resource boost. Process model pruning and all data-level
optimizations are implemented by analyzing and modifying the smart contract. Block size and
endorsement policies are updated in the Fabric configuration file.

5 EXPERIMENTAL METHODOLOGY

We used version 2.0 of HyperledgerLab [13], which is an automated testbed for Hyperledger Fabric
2.2 integrated with the Caliper benchmarking system. We set up a Kubernetes cluster of 1 master
and 5 worker nodes over which all the Fabric network components as well as Caliper components
are distributed as Kubernetes pods. Each node runs on a Ubuntu Focal (20.04) virtual machine with
4 vCPUs and 9.8 GB RAM. We use 10 Caliper workers for our experiments. For every experiment,
we measure the success rate which is the percentage of successful transactions out of the total
number of transactions, the average latency and the throughput of all successful transactions.

5.1 Workload Generation

The content of the distributed ledger, which is used as the input to our tool, is a direct result
of the workload executed on the blockchain. Therefore, we extensively evaluate BlockOptR by
using three different types of workload. Also, after implementing the recommendations generated
by BlockOptR, we rerun the experiments with the same workloads to analyze the effect of the
optimization.

Table 2. Control variables

Control Variable Values (Default in bold)

Workload type Uniform, Read-heavy, Insert-heavy, Update-heavy, RangeRead-heavy
Endorsement policy P1, P2, P3, P4

Endorser distribution skew | 0, 6

Key distribution skew 1,2

Number of organizations 2,4

Block count 50, 300, 1000

Send rate 50, 300, 1000

Transaction dist skew 0,70%

5.1.1 Synthetic workloads.

We use an extended version of a synthetic workload generator that can generate synthetic
workloads based on a set of control variables for a generic smart contract genChain [13]. We use a
range of values for these control variables described in Table 2 to generate multiple workloads of
10,000 transactions each. The endorsement policies used in our experiments are:

P1: And(Orgl, Or(Org2,0rg3,0rg4))

P2: And(0Or(Org1,0rg2), Or(Org3,0rg4))
P3:Majority(Orgl,...,0rgN)

P4: 0ut0f(2,0rgl1,0rg2,0rg3,0rg4)

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



24:14 Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen

Table 3. Settings to implement optimization

Optimizations Recommended Settings
Activity reordering Reorder workload generation
Transaction rate control Set send rate to 100 TPS

Process model pruning

Delta writes Update smart contract

Smart contract partitioning
Data model alteration

Block size adaptation Set block count to derived transaction rate
Endorser restructuring Set endorsement policy to P4
Client resource boost Double clients for recommended organization|

By generating synthetic workloads, we ensure that multiple realistic scenarios are covered in our
experiments. We then evaluate BlockOptR with each of these workloads to generate optimization
recommendations. Further, we implement each of the recommended optimizations to evaluate the
performance improvement.

5.1.2  Use-case based workloads.

Secondly, we use extended versions of four popular use-case based smart contracts from the
literature [13] and generate workloads. BlockOptR is then used to generate optimization recom-
mendations with these workloads. The four smart contracts we use are as follows.

Supply Chain Management (SCM): This smart contract defines the operations of a logistics network
that includes sending an advanced shipping notice, shipping a product, reading the shipping notice
and unloading the product (in this order). There is also a query operation to query the information
of the different products (queryProducts) and a updateAuditInfo function that updates an audit
entry with the product details. These can happen at any point in time. We generated a workload
of 10,000 transactions based on these assumptions by sending in order the transactions pushASN,
ship, queryASN and unload while the transactions queryProducts and updateAuditInfo are
sent randomly.

Digital Rights Management (DRM): This smart contract manages the rights of artists in the music
industry. The smart contract includes a Play function that is executed whenever a piece of music
is played by any user. The other smart contract functions include adding a new piece of music,
querying the rights, viewing the metadata and calculating the revenue of the right holders. In a
realistic scenario, the Play transaction would be executed far more frequently than all the other
transactions. Therefore, we create a Play heavy workload for this use-case. We generate 10,000
transactions randomly where 70% of the transactions are Play. The remaining 30% comprise all the
other transactions generated uniformly at random.

Electronic Health Records (EHR): In this smart contract, patients can provide or revoke access rights
to medical institutes as well as research institutes to query their medical records. We assume that
the number of patients would be more than the other participants and generate a 70% update-heavy
workload of 10,000 transactions.

Digital Voting (DV): This smart contract includes a function to vote in an election, query the
parties, query the results as well as end the election. We can assume that during an actual election
there will be periods of high traffic while the voting is taking place. Therefore, we generate a
workload which initially sends 1,000 queryParties transactions at a rate of 100 TPS, then 5,000
Vote transactions at a rate of 300 TPS and finally 1 seeResults and endElection transaction each.

5.1.3  Loan Application Process (LAP).

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



How To Optimize My Blockchain? A Multi-Level Recommendation Approach

Table 4. Experiments with the synthetic workload

24:15

Experiment Number | Control variable Value Optimizations recommended
1 Endorsement P1 Endorser restructuring
Policy Activity reordering
2 Endorsement Policy / P2/6 Endorser restructuring
Endorser dist skew Activity reordering
3 No: of orgs 4 Transaction rate control
4 Workload Read-heavy Activity reordering
5 Workload Update-heavy Transaction rate control
6 Workload Insert-heavy Activity reordering
7 Workload RangeRead-heavy Activity reordering
Transaction rate control
8 Key Activity reordering
distribution skew 2 Smart contract partitioning
Block size adaptation
9 Block count 50 Activity reordering
Transaction rate control
10 Block count 300 Activity reordering
Transaction rate control
11 Block count 1000 Activity reordering
12 Send rate 50 Activity reordering
13 Send rate 300 Activity reordering
Block size adaptation
Transaction rate control
14 Send rate 1000 Activity reordering
Transaction rate control
15 Transaction 70% Activity reordering
distribution skew Client resource boost

Thirdly, we created a smart contract and workload using a real-life event log of the loan ap-
plication process of a Dutch financial institute which is available publicly [77] together with the
corresponding process flow [57]. We extracted all the events of the first 2,000 loan applications
and created 20,000 corresponding transactions. We then created a smart contract where every
activity in the loan application process flow has a corresponding smart contract function. The
event log contains an employeeID for every employee in the bank handling loan applications
and an applicationID for every loan application processed by the bank. The smart contract we
implemented uses the employeelID as the key and the value of the key is an array of structures
where every structure includes the applicationID, loan type, loan amount and loan status.
Therefore, querying a specific employeelD will easily provide all the applications processed by
that employee. We then executed the 20,000 transactions on the smart contract at a low rate of 10
TPS to simulate a real world scenario where manually processing the loan applications takes a long
time. We also ran the same experiment at a higher rate of 300 TPS to emulate an automated loan
application and validation process. We use BlockOptR to generate optimization recommendations
which help to improve the smart contract implementation and thereby the performance.

Though the LAP event logs are from a database setting, this is a realistic use-case for blockchains
as an automated loan application system requires security and decentralized trust (e.g., micro-
loans, decentralized loan applications, and more generally DeFi [33, 58, 82, 83]). Consequently, this
experiment demonstrates the utility of BlockOptR in a realistic scenario. In the use-case based
experiments, all the transactions followed the expected order based on the assumptions we defined.
In contrast, with this real event log, we evaluate the real order in which the transactions are
executed which can deviate from the process model.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



24:16 Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen

6 EXPERIMENTAL RESULTS

We exhaustively evaluate our recommendation approach with a wide range of workloads and smart
contracts. Please note that, whenever transaction rate control is implemented there is an expected
decrease in the throughput. However, clients benefit heavily from higher success rates, and the
apparent decrease in the throughput is just closer to the sustainable throughput of the system. In
all our experiments the default value for the thresholds are Et = 0.5, Rt1 = 300, Rt2 = 0.3, Bt = 0.6
and It = 0.5. All the settings including the control variable values changed to implement each
recommended optimization is shown in Table 3.

6.1 Synthetic Workloads

Due to space restrictions, we present 15 workloads in Table 4. The full list of experiments and
results can be seen in our repository [10]. The control variable that is tuned for each experiment
is shown along with its value. All the other control variables have the default value shown in
Table 2. Experiments 1 to 15 are conducted with no optimizations applied and then BlockOptR is
used to derive optimization recommendations. The recommendations generated by BlockOptR
are also shown in Table 4. Since the synthetic smart contract has a simple logic with no branches,
increment/decrement operations or complex data model, process model pruning, delta writes
and data model alterations are not recommended here. Next, we implement the recommended
optimizations and re-execute all the experiments. The results of the experiments are grouped based
on the optimization recommendations and can be seen in Figures 7, 8, 9, 10, 11 and 12. We also
explain how the thresholds are set for our experiments and how they can be tuned by users.

1000.0 1000.0
107.1 875 1514 g94 1034 774 1411 g79 160.8 599 190.6 s
100.0 16.8 104 19.2, 12.3 100.0
) 10.0 33
10.0 I I 0.8
1.0 10
w/0 w w/0 w 0.1 ‘
Endorsement policy: P1 Endorsement policy: P2 w/o w
Endorser dist skew: 6 Transaction dist skew: 70%
Control Variables Control Variable
M Success throughput (tps) M Average latency (s) ™ Percentage of success (%) W Success throughput (tps) ® Average latency (s) ™ Percentage of success (%)
Fig. 7. Endorser restructuring Fig. 8. Client resource boost

6.1.1 Endorser restructuring. : The effect of endorser restructuring can be seen in Figure 7.
When the endorsement policy is P1, all the clients must send their transactions to Orgl due to
the specific endorsement policy and hence, an endorsement bottleneck is detected for Org1. Since
the endorsement policy requires signatures from two organizations, we change the policy to
OutOf(2,0rg1,0rg2,0rg3,0rg4) so that the clients can distribute the transactions evenly among
all endorsers. This optimization leads to a 29% increase in throughput (Figure 7). In Experiment 2,
since the endorser distribution is skewed, the clients send transactions unevenly and therefore two of
the organizations endorse far more often than the other two. We re-executed the experiment with an
even distribution of transactions to the endorsers and observe a 26% increase in throughput (Figure 7).
The main impact of this optimization is on throughput and latency as it reduces transaction queuing
on few specific peers and instead distributes them evenly.

We set the thresholds for this recommendation such that we expect an even distribution of
transactions to all endorsers, i.e., even minor bottlenecks are detected. This can be tuned to detect
only severe bottlenecks. Further, since these are synthetic experiments, changing the endorsement
policy is not critical. In real scenarios, consultation with the governing bodies of an enterprise is
required before changing the policy. Still, the recommendations by BlockOptR help to highlight
bottlenecks which in turn can convince the management to change the policy.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



How To Optimize My Blockchain? A Multi-Level Recommendation Approach 24:17

6.1.2 Client resource boost. : Figure 8 shows the effect of client resource scaling. After increasing
the number of clients, we observe a 75% decrease in latency, a 15% increase in throughput, and a 7%
increase in success rate. The thresholds are set such that this optimization is recommended when
more than 50% of transactions are invoked by the same organization. This can be fine-tuned to
detect less severe bottlenecks.

1000.0

92.8
92.6

« ~

©° ) [}

100.0 © =3 <+ ° 0
pod 2

— pa

N
—
—

]
©

10.0

o0
)

I 148
I 217.9
49
I 136
I 217.9
4.4
[ 189.1
[ 199.1
I 182.8
12.5
79.0
2273
10.0
84.5

1.0

w/0 w w/0 w w/0 w w/0 w
Block count: 50 Block count: 100 Send rate: 1000 Send rate: 500, 1000
Control Variables
M Success throughput (tps) | Average latency (s) Percentage of success (%)

Fig. 9. Block size adaptation

6.1.3 Block size adaptation. : The effect of block size adaptation can be seen in Figure 9. In our
experiments, we use the default block time out of 1s. Therefore, we make the block count equal
to the transaction rate whenever the block size adaptation is recommended. After changing the
block size, we observe up to 93% improvement in throughput and 85% improvement in success
rate (Figure 9; Block count: 50). The thresholds are set such that this optimization is recommended
whenever the average block size is 60% larger or smaller than the transaction send rate derived
from the log. The thresholds can be decreased to make the recommendation more sensitive to
transaction rate changes.
I? ! I

WO W WO W WO W WO W WO W WO W WO W WO W WO W WOo W WwWo W

91.8
99.1
919
98.7
85.4
98.9
633
99.2
59.9
74.0

!
i

——204.1
—211.6
— 95.7
— 155.7
1 133
_ 94.9
_ 96.7
I 182.8
—— 160.8
1 33
m—— 73.4

Endorsement No: of orgs: 4  Workload: Key Block count:  Block count: = Block count: Send rate: 500 Send rate: Send rate: Transaction
policy: P3 Update-heavy distribution 300 500 1000 1000 500, 1000 dist skew: 70%
skew: 2
Control Variables
m Success throughput (tps) w Average latency (s) Percentage of success (%)

Fig. 10. Transaction rate control

6.1.4 Transaction rate control. : The effect of transaction rate control is shown in Figure 10. In
these experiments, periods of high traffic (around 300 TPS) were also identified as periods of high
failure rates. We then lowered the transaction send rate to 100 TPS on the clients and re-executed
the experiments. We observe significant improvement of up to 87% in latency and 36% in success
rate (Figure 10; Send rate: 1000). We set the thresholds for this recommendation at 300 TPS which
is the default send rate of our experiments. This means that we consider the current traffic of the
system as high and want to detect periods of failure. Users can adjust this threshold based on what
is considered high (more than the sustainable traffic rate) for their Fabric network installation.

6.1.5 Activity reordering. : The effect of activity reordering can be seen in Figure 11. We observe
that BlockOptR recommends activity reordering for all experiments except Experiments 3 and 5
(Table 4). Reordering was suggested for two activities (Read and Update) which conflict with each
other. We updated the configuration of the client manager to generate read transactions before

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



24:18 Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen

- ~ < o ) o — o - o ~ © © < ~ — © o )
000 S g gegudygyEyae 2. fa Bedndo2as 2, Z 28 8m8e g0 n
Sk 25 SE s 8283885 35 Nwmgﬁgwm,wﬂg §E5 33 g9 g8t Es g ER IR
1000 9 - i ) < NNH e S0 28 B en ™ o < S
~ o ™) o S 4 o o 2 S ~ ~ S i - o
10.0 I I < o < I I S Im I: w ™ i 5 B -
i i
o I I I I il of Bal ISR WOR ek NOR ek KRN | Ik
w/o W w w/o W W WO W WwWo W WwWo W Ww/o w/o W  w/o W
Endorsement = Endorsement Workload: Workload: Workload: Key dist Block count: 50 Block count: ~ Block count: ~ Send rate: 50 Send rate: 300  Send rate:  Transaction dist
policy: P1 policy: P2 Read-heavy  Insert-heavy = RangeRead- skew: 2 300 1000 1000 skew: 70%
Endorser dist heavy
skew: 6
Control Variables
M Success throughput (tps) M Average latency (s) Percentage of success (%)

Fig. 11. Activity reordering

all other transactions. This implementation emulates a scenario where organizational measures
were applied to enforce activity reordering. We then re-executed the experiments and observe a
performance improvement in all the experiments. There is up to 65% increase in throughput and
58% increase in success rate (Figure 11; Workload: RangeReadheavy). We have set the thresholds
such that if 40% of the MVCC failures are caused by activities that can be reordered, this strategy is
recommended. This can be made more lenient by increasing the threshold such that reordering is
suggested only in very significant cases. For Experiments 3 and 5, less than 40% of MVCC conflicts
are caused by the two activities where reordering is possible. For example, the activity Update has
a dependency on itself which cannot be removed by reordering.

10000 = o < bt © ™ © - w
’ N o 3 @ «© <« X o ~ 8 © R o o @m S o v < & -~ o 8 0 o
S N - g S N - % 2. Joa N - g [N-] N o N9 — H ] - @ w O
0 © ~ © =) d 3 & o o Y a o o a @ o a o 0 0
100.0 ° = o - 5 o o < -
. E A 3 T 2 - - 3
10.0 o o 2 ad © = @
o ~ ™ b | > ™
- — -~ - b
I I | il 11l I [ I [ I ik
0.1 I
W/0 w W/0 w w W/0 w w w W/0 w W/0 w
Endorsement policy: EndorsementPolicy:P2  Key dist skew: 2 Block count: 50 Block count: 300 Block count: 1000 Send rate: 1000  Transaction dist skew:
P1 Endorser dist skew: 6 70%
Control Variables
W Success throughput (tps) m Average latency (s) Percentage of success (%)

Fig. 12. All recommended optimizations combined

6.1.6 Combined optimizations. : We also executed the experiments after applying all the
recommended optimizations together. We observe up to a 93% improvement in throughput and
85% improvement in the success rate (Figure 12: Block count: 50). In all the experiments, the
performance obtained by applying all the optimizations is comparable to the performance yielded
by the optimization with the highest improvement.

Further remarks. Though smart contract partitioning is recommended for Experiment 8, this
optimization requires understanding the functionality of the smart contract. Unfortunately, for the
synthetically generated smart contract that includes only generic read, update and insert functions,
we cannot redesign the smart contract.

W Success throughput (tps) ™ Average latency (s) ™ Success rate (%)
W Success throughput (tps) = Average latency (si Success rate ( ~
1000.00
207.48 1000.0 ~NooN . © <
79.83 98189947 9904 96.76 97.73 Ho - 829 & ,\.; B @ 2 o
100.00 100.0 oS S * 3 ~ o
28 10.0 1 ©
10.00 79 .
f i bl bl sl B:
1.00 . 2
. Without Delta-write Activity Smart
Without Transaction rate Activity Process model All optimizations o deri R
optimization control reordering pruning optimization reordering con'sr.act optimizations
partition

Fig. 13. SCM use-case Fig. 14. DRM use-case

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



How To Optimize My Blockchain? A Multi-Level Recommendation Approach 24:19

6.2 Use-case based Workloads

Supply Chain Management (SCM): With the SCM use-case, three optimizations are recommended by
BlockOptR: activity reordering, process model pruning and transaction rate control (Figure 13). After
implementing reordering for the reorderable activities (QueryProducts and UpdateAuditInfo), we
observe a 24% increase in throughput and 15% increase in success rate. Pruning was recommended
for the Ship activities that occur without or before the PushASN activity. It was also recommended to
prune Unload activities that occur without or before the Ship activity. We adapted the smart contract
to implement the pruning recommendation. This resulted in a 27% improvement in throughput and
19% increase in success rate. Transaction rate control and applying all recommendations together
also improves the performance.

Digital Rights Management (DRM): With the DRM use-case, three optimizations are recommended
by BlockOptR: activity reordering, delta-writes and smart contract partitioning. Figure 14 shows
the results of applying these optimizations. To implement the delta write recommendation, we
observed that the Play function in the smart contract has an increment operation to count the
number of times a piece of music was played. We converted this into a delta write and the delta-keys
are aggregated whenever the calcRevenue function is invoked (since it requires the play count).
With this optimization, we can observe a significant improvement of 42% in throughput and 50% in
success rate. However, the average latency increases in this case because the calcRevenue function
now takes up more time for aggregation. Since calcRevenue is not executed as frequently as Play,
the overall performance is not affected though.

Activity reordering was recommended for calcRevenue and queryRightHolders functions and
we reconfigured the clients to send these activities after all other activities. This emulates a scenario
where an organization restricts specific transactions to specific time periods. We observe more
than 50% increase in both throughput and success rate with this optimization.

Hot keys were detected and frequently used by four activities. We analysed the smart contract
and discovered that, though all four functions have a dependency on the same key, the function-
alities are different. Play and calcRevenue need only the play count, while viewMetaData and
queryRightHolders need metadata and not the play count of a piece of music. Therefore, we split
the smart contract into two, where one smart contract has the Play and calcRevenue functions
and the second smart contract has the other two functions. The create function is included in
both smart contracts, and invocation of the first smart contract invokes the same function in the
second smart contract. We observe a 35% increase in throughput and a 26% increase in success rate
with this optimization. Applying all the optimizations together improves the performance by more
than 50%.

B Success throughput (tps) ®m Average latency (s) M Success rate (%)
©

2} ©
< <)) : ~ 1
1000.00 5 o m @ oW b 0 o o ©
) ~ n ] : ea} o N [
A o) 3 © - 5 hd ; ~ ~
10000 0 G - 0
S o0 n ;‘1 ~
10.00 N ok o N
Ll i
1.00 | ‘
Without Transaction Activity Process All
optimization rate control reordering model optimizations

pruning

Fig. 15. EHR use-case

Electronic Health Records (EHR): In this use-case, three optimizations were recommended: activity
reordering, process model pruning and transaction rate control (Figure 15). Activity reordering for
the read activities resulted in a 60-65% improvement in throughput and success rate. When the

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



24:20 Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen

smart contract was updated to prune illogical paths (revoke access to records without granting
access), we observe around 43% increase in throughput and success rate. After applying transaction
rate control, a 69% increase in success rate was observed. All optimizations applied together also
improve the performance.

B Success throughput (tps) M Average latency (s) 1 Success rate (%) m Success throughput (tps) ~  Average latency (s)  ® Success rate (%)
100.0

100.0 66.0 633
1000 543 463 100.0 318

18.7 22.0 142 14.4 24.4 24.9
102 113 10.0 5 6.6 7.0
1004, 48 4737 41 15 l 12 20 14 11 16
I 23 10 [ [ - -
1.0 . [ ‘ ﬂ Without Data model Without Data model Transaction rate  All optimizations
Without Transaction rate Data model All optimizations optimization alteration optimization alteration control
optimization control alteration Send rate: 10tps Send rate: 300tps
. I . . . .
Fig. 16. Digital voting use-case Fig. 17. Loan application process use-case

Digital Voting (DV): In this use-case, two optimizations were recommended: transaction rate
control and data model alteration. The results are shown in Figure 16. High failure rates were
detected for periods when the Vote transactions were frequent. After applying transaction rate
control, a slight improvement of 11% in throughput was observed. The hotkeys were detected
and most frequently used by the Vote function resulting in a recommendation to alter the data
model. We analysed the smart contract and observed that partyID was used as the key for the
vote function which is invoked by multiple voters during the voting phase. We redesigned the
smart contract such that voterID is assigned as the primary key. Since voters are restricted to
a single vote, we observe 100% success rate with this new smart contract because there are no
more transaction dependencies. We also observe an improvement in the performance when both
optimizations are applied together.

6.3 Loan Application Process (LAP)

The optimization recommended for the LAP use-case was data model alteration (Figure 17). The
employeelID 1 had a high key frequency since this employee processed the highest number of loan
applications. We then re-implemented our smart contract and assigned applicationID as the key
and modeled the value as a structure that includes employeelD, loan amount, loan type and
loan status. This new implementation helped to remove the hot key and yielded more than 50%
improvement in throughput and success rate for both the lower and higher send rates.

M Success throughput (tps) m Average latency (s) Success rate (%)
o~ O
1000.00 b - A R 8 2 R a5 o g
S < o © © o o) IN] o0 ~ H o)
— <) — (=)} =)} s} [s)) <)} o)} 0 o [s))
100.00
[o2]) ~ < o 3
10.00 ~ < =] & -t q
~ ~ ~ — — —
1.00 | | ] —
Without Endorser Without Endorser Without Transaction rate
optimization restructuring optimization restructuring optimization control
Endorsement policy: P1 Endorsement policy: P2 Workload: Insert-heavy

Endorser dist skew: 6

Control Variables

Fig. 18. Synthetic workloads with FabricSharp

6.4 Fabric Extensions

As a holistic recommendation approach, our work lies orthogonal to existing Fabric optimizations
in the literature. In this section, we demonstrate how our approach works on top of two optimized

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



How To Optimize My Blockchain? A Multi-Level Recommendation Approach 24:21

M Success throughput (tps) M Average latency (s) Success rate (%)
~

0
~ n
n ~
—

Without  Transaction Activity All Without  Transaction Activity All Without  Transaction Activity All
optimization rate control reordering optimizations optimization rate control reordering optimizations optimization rate control reordering optimizations

1000.00

41.04
59.22
159.47
61.87
71.37
144,61
53.70
7036
194.2
77.49
85.02
45.57
57.14
213.47
78.24
85.33

100.00

~
10.00 - o & 0
o n ~ =] - o0 ~
« - = S Ll =]
- - —

I 10627
3.62
I 5756
3.13
I 69.41
I 69.02
I s3.70
I 0578
10.36
I s6.28
I 392

1.00

Workload: Update-heavy Workload: Read-heavy Workload: RangeRead-heavy

Control Variables

Fig. 19. Synthetic workloads with Fabric++

extensions of Fabric: FabricSharp [65] and Fabric++ [67]. Both implement different transaction
reordering strategies that mitigate MVCC read conflicts. The Fabric++ scheduler is integrated
in the FabricSharp implementation [25] and we use this for our experiments. We executed the
synthetic workloads on both and then used BlockOptR to generate recommendations. The literature
says FabricSharp increases endorsement policy failures and is less performant for insert-heavy
workloads while Fabric++ is least performant with an update-heavy, read-heavy and range-read-
heavy workloads [13]. Therefore, we execute these specific experiments shown in Figures 18
and 19 with the synthetic workloads. Activity reordering, transaction rate control and endorser
restructuring were recommended and by implementing these recommendations, we observe up
to a 55% increase in throughput and 46% increase in success rate (Figure 19: RangeRead-heavy
workload). Our experiments with these Fabric extensions show that even with effective system-level
optimizations, Fabric can still benefit from optimizations at all levels of abstraction.

7 LESSONS LEARNED AND LIMITATIONS

We demonstrated that BlockOptR is capable of effectively recommending suitable optimization
strategies. Further, we also explained how to implement these optimizations and quantified the
performance improvements after implementation. This section discusses the insights we gained
from our experiments.

User level optimizations. Activity reordering was one of the most frequently recommended
optimizations in our experiments. We highlight use-cases such as SCM where such reordering can
be applicable. Our model pruning recommendation emphasizes that identifying incompetencies in
the process model can lead not only to efficient process execution but also improve the performance
of the underlying system. Load shedding or queuing is often employed when systems cannot handle
the workload. Using our recommendations, specific activities and time periods can be identified
where such rate control techniques are most effective. For example, rate control is recommended for
the Vote activity in the digital voting use-case. Therefore, instead of system-wide rate control, only
the specific clients that deal with the identified activities need to employ rate control techniques.

Data level optimizations. These optimizations show how the design of the smart contract and
the data model significantly influence the performance. The smart contract is initially designed with
a specific process model in mind. However, we understand how the smart contract is being used
in practice by analyzing the blockchain logs. BlockOptR pinpoints functions and keys that cause
bottlenecks which in turn helps the smart contract developer to make appropriate modifications.

System level optimizations. Setting the endorsement policy is a management decision that
often excludes discussions with the technical team designing the blockchain. Our recommendations
highlight the need to bring together management and technical discussions to decide optimal
configuration settings. Further, we also demonstrate the need to verify whether the policy is being
used effectively. For example, even if the policy defines the equal distribution of endorsements,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



24:22 Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen

the clients may send their transactions in a skewed manner. In such instances, we recommend
enforcing a management measure, such as dividing the endorsers equally among the clients such
that clients of one organization only send transactions to specific endorsers. The compliance with
such measures can also be checked by BlockOptR. Block size optimization is frequently discussed
in the literature and associated with the transaction rate of a system [13, 36, 68]. Instead of system-
level changes such as using transaction rate monitors, we derive the transaction rate and the actual
block size from the log. This helps to understand traffic patterns over time and find reasonable
block size settings. While the literature mainly focuses on optimizing the peers and ordering service
components of Fabric [27, 65, 67], our client-related recommendations highlight the need to focus
on client-side optimizations as well.

Technology Independence. Our multi-level recommendation approach is demonstrated using
the Fabric blockchain. Technology independence is difficult to attain due to the vast implementation
variations between the numerous blockchain systems and the corresponding differences in the
contents of the distributed ledger. However, we draw attention to specific examples which can
guide future researchers to translate our approach to other blockchain systems. In Quorum, the
block time or mining frequency has a linearly proportional influence on the transaction laten-
cies [7] which is analogous to our block size adaptation recommendation strategy. Also, Corda
has the concept of notaries to attest transactions where distributing the transactions over multiple
notaries is expected to improve the throughput [18]. This is again comparable to our endorsement
restructuring recommendation. Further, there are numerous gas-fee reduction and vulnerability
detection strategies for Ethereum smart contracts in the literature [54] which translate to our
recommendations at the data level. Tools like Lorikeet and Caterpiller automate the conversion and
execution of process models as Ethereum smart contracts, which would make it easier to implement
the user-level optimizations that we recommend [43, 69].

Limitations. The optimizations recommended by BlockOptR need to be manually implemented
by the user. A self-adaptive system with a feedback loop that automatically implements the rec-
ommendations is possible. However, in an enterprise scenario, for many of the optimizations
such as endorser restructuring, activity reordering, and process model pruning, management level
approvals might be required before implementation. Additionally, for applications that do not
follow a specific process model, the event logs can be misleading. In such scenarios, user-level
optimizations such as activity reordering and process model pruning are not relevant. Therefore,
domain knowledge about the use-case is required for implementing the recommended optimizations
appropriately. Further, our implementation of some of the optimizations such as transaction rate
control are trivial in such benchmarking scenarios and do not account for real-world overheads.
However, the implementations are mainly for demonstrative purposes. Our work focuses on the
multi-level recommendation approach used by BlockOptR rather than the implementation of the
optimizations. Finally, our experiments without and with the recommended optimizations are done
on similar workloads generated with the same input parameters, i.e., we assume a continued trend
in the pattern of the workload after the optimizations are applied. However, in scenarios where the
workload fluctuates or the optimization implementation is delayed, BlockOptR may need to be
re-executed to generate new recommendations.

8 RELATED WORK

The literature proposes various Fabric optimization strategies such as transaction reordering [13,
65, 67], block size optimizations [13, 36], CRDTs [52], and parallelizing various components [27].
Our work lies orthogonal to such optimization strategies and focuses on an optimization recom-
mendation approach. We demonstrate how our recommendations can be used along with two of
the literature’s optimization strategies to improve performance further.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



How To Optimize My Blockchain? A Multi-Level Recommendation Approach 24:23

There is also extensive research in the database community on index and query optimizations
that include self-tuning systems as well as recommendation systems [2, 14, 15, 38, 73]. Though
we can draw parallels from these research, our work focuses on blockchain-specific optimization
recommendations. Different configuration settings (such as block size and endorsement policy)
and the concept of smart contracts introduce new dimensions to the recommendation approach,
which are not required for databases.

There is ongoing research on applying process mining techniques on blockchains to derive
process-level insights [24, 32, 39, 49]. Klinkmdiller et al. [39] and Miihlberger et al. [49] describe
different approaches to extract process data from the Ethereum blockchain. Hobeck et al. [32]
use process mining on an Ethereum-based betting application to identify shortcomings in the
application. Process mining on blockchains currently only focuses on permissionless blockchains
as they are publicly accessible. However, deriving and studying the process model is equally critical
for private blockchains, and therefore, our work contributes to this less explored area of research.
Further, unlike the related work, we focus on using process mining for recommending blockchain
optimization strategies. We only found a single paper that uses permissioned blockchains, where
Duchmann et al. [24] extract process data from Fabric and detect semantic errors in a smart contract.
Though our work is comparable, we extract not only the process data but also blockchain-specific
attributes from Fabric, derive multiple metrics, and recommend optimization strategies.

There is extensive research in the database community in the domain of data-aware business
processes that encourage a business process perspective to database management systems [11,
20, 34]. Calvanese et al. [11] comprehensively survey the contributions in this realm and catalog
contributions from various fields, including database theory and process management. These works
were an important motivation for us to view blockchains from a business process perspective.
However, our work brings new contributions since blockchains deal with several other elements
apart from data, such as smart contracts and endorsement policies.

9 CONCLUSIONS

This paper showcases the necessity and effectiveness of having a holistic perspective on blockchain
optimizations. We define a multi-level recommendation approach based on several metrics and
attributes derived from the blockchain log. We define a total of nine optimizations at the system,
data, and user-level of a blockchain. We implement an automated optimization recommendation
tool, BlockOptR, based on these concepts. Further, we demonstrate how such optimizations can
be implemented to improve the system performance. After implementing the recommended op-
timizations, we observe an average of 20% improvement in the success rate and an average of
40% improvement in latency. We extensively evaluate the system with a wide range of workloads
covering multiple real-world scenarios. We hope to inspire enterprises to use our contributions
to detect blockchain optimization strategies and to contribute their live blockchain (anonymized)
logs for further research in this domain. The BlockOptR tool, all the smart contracts, the workload
generation scripts, and all the event logs are available as open-source [10]. We also plan to extend
our tool to include more optimization recommendations.

In terms of future work, we are currently developing a ProM plugin which would provide a
user-friendly interface for BlockOptR. Presently, the threshold settings of BlockOptR depend on the
business network setup. For example, the rate threshold for our setup was 300 TPS as higher rates
led to instabilities, but this can vary for other deployments. Therefore, tuning these thresholds
automatically in BlockOptR could be a future extension. Another interesting extension is to define
additional attributes that applications can log, thereby providing more data for optimization
recommendations. Further, investigating the effect of workload fluctuations and delay in applying
the recommendations is another challenging future direction.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



24:24 Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen

ACKNOWLEDGMENTS

This work is funded in part by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) - 392214008, and by the Bavarian Cooperative Research Program of the Free State of
Bavaria - DIK-2002-0013//DIK0114/02.

REFERENCES

[1] Parinaz Ameri. 2016. Challenges of index recommendation for databases: With specific evaluation on a NoSQL database.
In dalam 28th GI-Workshop on Foundations of Databases (Grundlagen von Datenbaken), Norten-Hardenberg, Germany.

[2] Parinaz Ameri. 2016. On a self-tuning index recommendation approach for databases. In 2016 IEEE 32nd International
Conference on Data Engineering Workshops (ICDEW). 201-205. https://doi.org/10.1109/ICDEW.2016.7495648

[3] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2021. Permissioned Blockchains: Properties, Techniques
and Applications. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3448016.3457539

[4] Analyzing the complaints process at Granada city council 2020. https://www.tf-pm.org/resources/casestudy/analyzing-
the-complains-prociess-at-granada-city-council.pdf. [Online; accessed 12-April-2023].

[5] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis, Angelo De Caro, David
Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh
Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukoli¢,
Sharon Weed Cocco, and Jason Yellick. 2018. Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains. In Proceedings of the Thirteenth EuroSys Conference (Porto, Portugal) (EuroSys ’18). ACM, New York, NY,
USA, Article 30, 15 pages. https://doi.org/10.1145/3190508.3190538

[6] Arati Baliga, Nitesh Solanki, Shubham Verekar, Amol Pednekar, Pandurang Kamat, and Siddhartha Chatterjee. 2018.
Performance Characterization of Hyperledger Fabric. In 2018 Crypto Valley Conference on Blockchain Technology
(CVCBT). 65-74. https://doi.org/10.1109/CVCBT.2018.00013

[7] Arati Baliga, I Subhod, Pandurang Kamat, and Siddhartha Chatterjee. 2018. Performance Evaluation of the Quorum
Blockchain Platform. https://doi.org/10.48550/ARXIV.1809.03421

[8] Dina Bayomie, Iman Helal, Ahmed Awad, Ehab Ezat, and Ali Elbastawissi. 2015. Deducing Case IDs for Unlabeled
Event Logs, Vol. 256. https://doi.org/10.1007/978-3-319-42887-1_20

[9] Sara Bergman, Mikael Asplund, and Simin Nadjm-Tehrani. 2020. Permissioned blockchains and distributed databases:
A performance study. Concurrency and Computation: Practice and Experience 32, 12 (2020), €5227. https://doi.org/10.
1002/cpe.5227 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5227 e€5227 cpe.5227.

[10] BlockOptR 2022. https://github.com/jeetachacko/BlockOptR. [Online; accessed 12-April-2023].

[11] Diego Calvanese, Giuseppe De Giacomo, and Marco Montali. 2013. Foundations of Data-Aware Process Analysis: A
Database Theory Perspective. In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems (New York, New York, USA) (PODS ’13). Association for Computing Machinery, New York, NY, USA,
1-12. https://doi.org/10.1145/2463664.2467796

[12] Celonis Process Mining 2022. https://www.celonis.com/. [Online; accessed 12-April-2023].

[13] Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. 2021. Why Do My Blockchain Transactions Fail? A
Study of Hyperledger Fabric. In Proceedings of the 2021 International Conference on Management of Data (Virtual
Event, China) (SIGMOD/PODS ’21). Association for Computing Machinery, New York, NY, USA, 221-234. https:
//doi.org/10.1145/3448016.3452823

[14] Gloria Chatzopoulou, Magdalini Eirinaki, and Neoklis Polyzotis. 2009. Query Recommendations for Interactive
Database Exploration. In Scientific and Statistical Database Management, Marianne Winslett (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 3-18.

[15] Surajit Chaudhuri and Vivek Narasayya. 2007. Self-Tuning Database Systems: A Decade of Progress. In Proceedings of
the 33rd International Conference on Very Large Data Bases (Vienna, Austria) (VLDB °07). VLDB Endowment, 3-14.

[16] Mohammad Jabed Morshed Chowdhury, Alan Colman, Muhammad Ashad Kabir, Jun Han, and Paul Sarda. 2018.
Blockchain Versus Database: A Critical Analysis. In 2018 17th IEEE International Conference On Trust, Security And
Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE). 1348—1353. https://doi.org/10.1109/TrustCom/BigDataSE.2018.00186

[17] Combining Multiple Columns as Case ID 2020. https://fluxicon.com/book/read/perspectives/#combining-multiple-
columns-as-case-id. [Online; accessed 12-April-2023].

[18] Corda 2022. https://docs.r3.com/en/platform/corda/4.10/enterprise/key-concepts-notaries.html. [Online; accessed
12-April-2023].

[19] Data Requirements: Case ID 2020. https://fluxicon.com/book/read/dataext/#case-id. [Online; accessed 12-April-2023].

[20] Daniel Deutch and Tova Milo. 2011. A Quest for Beauty and Wealth (or, Business Processes for Database Researchers).
In Proceedings of the Thirtieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (Athens,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



How To Optimize My Blockchain? A Multi-Level Recommendation Approach 24:25

(23]

Greece) (PODS ’11). Association for Computing Machinery, New York, NY, USA, 1-12. https://doi.org/10.1145/1989284.
1989286

Claudio Di Ciccio, Alessio Cecconi, Marlon Dumas, Luciano Garcia-Bafiuelos, Orlenys Lopez-Pintado, Qinghua Lu, Jan
Mendling, Alexander Ponomarev, An Binh Tran, and Ingo Weber. 2019. Blockchain support for collaborative business
processes. Informatik Spektrum 42, 3 (2019), 182-190.

Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang Chen, Beng Chin Ooi, and Ji Wang. 2018. Untangling Blockchain:
A Data Processing View of Blockchain Systems. IEEE Transactions on Knowledge and Data Engineering 30, 7 (2018),
1366-1385. https://doi.org/10.1109/TKDE.2017.2781227

Julian Dreyer, Marten Fischer, and Ralf Tonjes. 2020. Performance Analysis of Hyperledger Fabric 2.0 Blockchain
Platform. In Proceedings of the Workshop on Cloud Continuum Services for Smart IoT Systems (Virtual Event, Japan) (CCIoT
’20). Association for Computing Machinery, New York, NY, USA, 32-38. https://doi.org/10.1145/3417310.3431398
Frank Duchmann and Agnes Koschmider. 2019. Validation of smart contracts using process mining. In ZEUS. CEUR
workshop proceedings, Vol. 2339. 13-16.

FabricSharp Git Repository 2022. https://github.com/ooibc88/FabricSharp. [Online; accessed 12-April-2023].
Ghareeb Falazi, Vikas Khinchi, Uwe Breitenbiicher, and Frank Leymann. 2019. Transactional properties of permissioned
blockchains. SICS Software-Intensive Cyber-Physical Systems (2019). https://doi.org/10.1007/s00450-019-00411-y
Christian Gorenflo, Stephen Lee, Lukasz Golab, and Srinivasan Keshav. 2019. FastFabric: Scaling Hyperledger Fabric
to 20,000 Transactions per Second. In 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC).
455-463. https://doi.org/10.1109/BLOC.2019.8751452

Gideon Greenspan et al. 2015.  Multichain private blockchain-white paper.  URI: http://www. multichain.
com/download/MultiChain-White-Paper. pdf (2015), 57-60.

Christian W Giinther and Anne Rozinat. 2012. Disco: Discover Your Processes. BPM (Demos) 940 (2012), 40—44.
Christian W Giinther and Wil MP Van Der Aalst. 2007. Fuzzy mining—adaptive process simplification based on
multi-perspective metrics. In International conference on business process management. Springer, 328-343.

Theo Hérder. 1984. Observations on optimistic concurrency control schemes. Information Systems 9, 2 (1984), 111 -
120. https://doi.org/10.1016/0306-4379(84)90020- 6

Richard Hobeck, Christopher Klinkmiiller, Hmn Dilum Bandara, Ingo Weber, and Wil Van der Aalst. 2021. Process
Mining on Blockchain Data: a Case Study of Augur. Technical Report. EasyChair.

Christian Hugo Hoffmann. 2021. Blockchain Use Cases Revisited: Micro-Lending Solutions for Retail Banking and
Financial Inclusion. Journal of Systems Science and Information 9, 1 (2021), 1-15. https://doi.org/doi:10.21078/JSSI-
2021-001-15

Richard Hull. 2008. Artifact-Centric Business Process Models: Brief Survey of Research Results and Challenges. In On
the Move to Meaningful Internet Systems: OTM 2008, Robert Meersman and Zahir Tari (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 1152-1163.

Hyperledger Caliper 2020. https://hyperledger.github.io/caliper/. [Online; accessed 12-April-2023].

Zsolt Istvan, Alessandro Sorniotti, and Marko Vukoli¢. 2018. Streamchain: Do blockchains need blocks?. In Proceedings
of the 2nd Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers. 1-6.

Haris Javaid, Chengchen Hu, and Gordon Brebner. 2019. Optimizing Validation Phase of Hyperledger Fabric. In 2019
IEEE 27th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). 269-275. https://doi.org/10.1109/MASCOTS.2019.00038

Sadhana J. Kamatkar, Ajit Kamble, Amelec Viloria, Lissette Hernandez-Fernandez, and Ernesto Garcia Cali. 2018.
Database Performance Tuning and Query Optimization. In Data Mining and Big Data, Ying Tan, Yuhui Shi, and Qirong
Tang (Eds.). Springer International Publishing, Cham, 3-11.

Christopher Klinkmiiller, Alexander Ponomarev, An Binh Tran, Ingo Weber, and Wil van der Aalst. 2019. Mining
blockchain processes: Extracting process mining data from blockchain applications. In International Conference on
Business Process Management. Springer, 71-86.

Olga Labazova, Erol Kazan, Tobias Dehling, Tuure Tuunanen, and Ali Sunyaev. 2021. Managing Blockchain Systems
and Applications: A Process Model for Blockchain Configurations. arXiv preprint arXiv:2105.02118 (2021).

Mengting Liu, F. Richard Yu, Yinglei Teng, Victor C. M. Leung, and Mei Song. 2019. Performance Optimization for
Blockchain-Enabled Industrial Internet of Things (IIoT) Systems: A Deep Reinforcement Learning Approach. IEEE
Transactions on Industrial Informatics 15, 6 (2019), 3559-3570. https://doi.org/10.1109/TI.2019.2897805

[42] Jiaheng Lu, Yuxing Chen, Herodotos Herodotou, and Shivnath Babu. 2019. Speedup Your Analytics: Automatic

(43]

Parameter Tuning for Databases and Big Data Systems. Proc. VLDB Endow. 12, 12 (aug 2019). https://doi.org/10.14778/
3352063.3352112

Orlenys Lépez-Pintado, Luciano Garcia-Baiiuelos, Marlon Dumas, Ingo Weber, and Alex Ponomarev. 2018. CATERPIL-
LAR: A Business Process Execution Engine on the Ethereum Blockchain. https://doi.org/10.48550/ARXIV.1808.03517

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



24:26 Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen

(44]

(45]

[46]

(47]

(48]
(49]

[55]

[56]

Heidy M. Marin-Castro and Edgar Tello-Leal. 2021. Event Log Preprocessing for Process Mining: A Review. Applied
Sciences 11, 22 (2021). https://doi.org/10.3390/app112210556

Dennis McLeod and John Miles Smith. 1980. Abstraction in Databases. In Proceedings of the 1980 Workshop on Data
Abstraction, Databases and Conceptual Modeling (Pingree Park, Colorado, USA). Association for Computing Machinery,
New York, NY, USA. https://doi.org/10.1145/800227.806871

Du Mingxiao, Ma Xiaofeng, Zhang Zhe, Wang Xiangwei, and Chen Qijun. 2017. A review on consensus algorithm
of blockchain. In 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2567-2572. https:
//doi.org/10.1109/SMC.2017.8123011

Bhabendu Kumar Mohanta, Soumyashree S Panda, and Debasish Jena. 2018. An Overview of Smart Contract and Use
Cases in Blockchain Technology. In 2018 9th International Conference on Computing, Communication and Networking
Technologies (ICCCNT). 1-4. https://doi.org/10.1109/ICCCNT.2018.8494045

JP Morgan. 2016. Quorum whitepaper. New York: JP Morgan Chase (2016).

Roman Miihlberger, Stefan Bachhofner, Claudio Di Ciccio, Luciano Garcia-Bafiuelos, and Orlenys Lopez-Pintado. 2019.
Extracting event logs for process mining from data stored on the blockchain. In International Conference on Business
Process Management. Springer, 690-703.

Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review (2008), 21260.
Q. Nasir, Ilham A. Qasse, M. Talib, and A. B. Nassif. 2018. Performance Analysis of Hyperledger Fabric Platforms.
Secur. Commun. Networks 2018 (2018), 3976093:1-3976093:14.

Pezhman Nasirifard, Ruben Mayer, and Hans-Arno Jacobsen. 2019. FabricCRDT: A Conflict-Free Replicated Datatypes
Approach to Permissioned Blockchains. In Proceedings of the 20th International Middleware Conference (Davis, CA,
USA) (Middleware '19). Association for Computing Machinery, New York, NY, USA, 110—122. https://doi.org/10.1145/
3361525.3361540

Senthil Nathan, Chander Govindarajan, Adarsh Saraf, Manish Sethi, and Praveen Jayachandran. 2019. Blockchain
Meets Database: Design and Implementation of a Blockchain Relational Database. Proc. VLDB Endow. 12, 11 (jul 2019).
https://doi.org/10.14778/3342263.3342632

Keerthi Nelaturu, Sidi Mohamed Beillahi, Fan Long, and Andreas Veneris. 2021. Smart Contracts Refinement for Gas
Optimization. In 2021 3rd Conference on Blockchain Research Applications for Innovative Networks and Services (BRAINS).
229-236. https://doi.org/10.1109/BRAINS52497.2021.9569819

Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable Consensus Algorithm. In Proceedings of
the 2014 USENIX Conference on USENIX Annual Technical Conference (Philadelphia, PA) (USENIX ATC’14). USENIX
Association, Berkeley, CA, USA, 305-320. http://dl.acm.org/citation.cfm?id=2643634.2643666

Orlenys Pintado, Luciano Garcia-Bafiuelos, Marlon Dumas, Ingo Weber, and Alexander Ponomarev. 2019. Caterpillar:
A business process execution engine on the Ethereum blockchain. Software: Practice and Experience (05 2019).
https://doi.org/10.1002/spe.2702

Process mining on the loan application process of a Dutch Financial Institute 2017. https://www.win.tue.nl/bpi/2017/
bpi2017_winner_professional.pdf. [Online; accessed 12-April-2023].

Yuncheng Qiao, Chaoqun Ma, Qiujun Lan, and Zhongding Zhou. 2019/12. Inventory Financing Model Based on
Blockchain Technology. In Proceedings of the Fourth International Conference on Economic and Business Management
(FEBM 2019). Atlantis Press, 337-342. https://doi.org/10.2991/febm-19.2019.7

Mayank Raikwar, Danilo Gligoroski, and Goran Velinov. 2020. Trends in Development of Databases and Blockchain. In
2020 Seventh International Conference on Software Defined Systems (SDS). 177-182. https://doi.org/10.1109/SDS49854.
2020.9143893

Aravind Ramachandran and Dr. Murat Kantarcioglu. 2017. Using Blockchain and smart contracts for secure data
provenance management. arXiv (2017).

Michel Rauchs, Apolline Blandin, Keith Bear, and Stephen B McKeon. 2019. 2nd global enterprise blockchain bench-
marking study. Available at SSRN 3461765 (2019).

Olivier Rikken, Marijn Janssen, and Zenlin Kwee. 2019. Governance challenges of blockchain and decentralized
autonomous organizations. Information Polity 24 (11 2019), 1-21. https://doi.org/10.3233/IP-190154

Henrique Rocha and Stéphane Ducasse. 2018. Preliminary Steps Towards Modeling Blockchain Oriented Software.
In 2018 IEEE/ACM 1st International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB).
52-57.

Pingcheng Ruan, Tien Tuan Anh Dinh, Dumitrel Loghin, Meihui Zhang, Gang Chen, Qian Lin, and Beng Chin Ooi.
2021. Blockchains vs. Distributed Databases: Dichotomy and Fusion. Association for Computing Machinery, New York,
NY, USA. https://doi.org/10.1145/3448016.3452789

Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta, Meihui Zhang, Gang Chen, and Beng Chin Ooi. 2020. A
Transactional Perspective on Execute-Order-Validate Blockchains. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (Portland, OR, USA) (SIGMOD °20). Association for Computing Machinery, New

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



How To Optimize My Blockchain? A Multi-Level Recommendation Approach 24:27

[66]

(67]

York, NY, USA, 543-557. https://doi.org/10.1145/3318464.3389693

Gary Shapiro, Christopher Natoli, and Vincent Gramoli. 2020. The Performance of Byzantine Fault Tolerant Blockchains.
In 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA). 1-8. https://doi.org/10.
1109/NCA51143.2020.9306742

Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich. 2019. Blurring the Lines Between
Blockchains and Database Systems: The Case of Hyperledger Fabric. In Proceedings of the 2019 International Conference
on Management of Data (Amsterdam, Netherlands) (SIGMOD °19). ACM, New York, NY, USA, 105-122. https:
//doi.org/10.1145/3299869.3319883

Parth Thakkar, Senthil Nathan, and Balaji Viswanathan. 2018. Performance Benchmarking and Optimizing Hyperledger
Fabric Blockchain Platform. In 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS). 264-276. https://doi.org/10.1109/MASCOTS.2018.00034

An Binh Tran, Qinghua Lu, and Ingo Weber. 2018. Lorikeet: A Model-Driven Engineering Tool for Blockchain-Based
Business Process Execution and Asset Management. In BPM (Dissertation/Demos/Industry) (CEUR Workshop Proceedings,
Vol. 2196). CEUR-WS.org.

Transaction Flow 2022. https://hyperledger-fabric.readthedocs.io/en/release-2.2/txflow.html. [Online; accessed
12-April-2023].

Updating a channel configuration 2022. https://hyperledger-fabric.readthedocs.io/en/release-2.2/config_update.html.
[Online; accessed 12-April-2023].

Upgrading a smart contract 2022. https://hyperledger-fabric.readthedocs.io/en/release-2.2/deploy_chaincode.html#
upgrading-a-smart-contract. [Online; accessed 12-April-2023].

Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy Lohman, and Alan Skelley. 2000. DB2 advisor: an optimizer
smart enough to recommend its own indexes. In Proceedings of 16th International Conference on Data Engineering.
https://doi.org/10.1109/ICDE.2000.839397

Wil van der Aalst. 2009. Process-Aware Information Systems: Lessons to Be Learned from Process Mining. T. Petri
Nets and Other Models of Concurrency 2 (01 2009), 1-26. https://doi.org/10.1007/978-3-642-00899-3_1

Wil Van Der Aalst. 2012. Process mining. Commun. ACM 55, 8 (2012), 76-83.

Wil van der Aalst, T. Weijters, and L. Maruster. 2004. Workflow mining: discovering process models from event logs.
IEEE Transactions on Knowledge and Data Engineering 16, 9 (2004), 1128—1142. https://doi.org/10.1109/TKDE.2004.47
Boudewijn F van Dongen. 2017. https://doi.org/10.4121/12705737.v2

Boudewijn F Van Dongen, Ana Karla A de Medeiros, HMW Verbeek, AJMM Weijters, and Wil MP van Der Aalst. 2005.
The ProM framework: A new era in process mining tool support. In International conference on application and theory
of petri nets. Springer, 444-454.

A J.M.M. Weijters, Wil M.P. Aalst, van der, and A K. Alves De Medeiros. 2006. Process mining with the HeuristicsMiner
algorithm. Technische Universiteit Eindhoven.

Karl Wiist and Arthur Gervais. 2018. Do you Need a Blockchain?. In 2018 Crypto Valley Conference on Blockchain
Technology (CVCBT). 45-54. https://doi.org/10.1109/CVCBT.2018.00011

Xiaoqiong Xu, Gang Sun, Long Luo, Huilong Cao, Hongfang Yu, and Athanasios V. Vasilakos. 2021. Latency performance
modeling and analysis for hyperledger fabric blockchain network. Information Processing & Management 58, 1 (2021),
102436. https://doi.org/10.1016/j.ipm.2020.102436

Qi Yang, Xiao Zeng, Yu Zhang, and Wei Hu. 2019. New Loan System Based on Smart Contract (BSCI ’19). Association
for Computing Machinery, New York, NY, USA, 121-126. https://doi.org/10.1145/3327960.3332395

Dirk A Zetzsche, Douglas W Arner, and Ross P Buckley. 2020. Decentralized Finance. Journal of Financial
Regulation 6, 2 (09 2020), 172-203. https://doi.org/10.1093/jfr/fjaa010 arXiv:https://academic.oup.com/jfr/article-
pdf/6/2/172/37064506/fjaa010.pdf

Received April 2022; revised July 2022; accepted August 2022

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 24. Publication date: May 2023.



ACM License and Audio/Video Release

Title of the Work: How To Optimize My Blockchain? A Multi-Level Recommendation Approach

Author/Presenter(s): Jeeta Ann Chacko (Technical University of Munich);Ruben Mayer
(Technical University of Munich, University of Bayreuth);Hans-Arno Jacobsen (University of
Toronto)

Type of material:full paper

Publication: Proceedings of the ACM on Management of Data
1. Glossary

2. Grant of Rights

(a) Owner hereby grants to ACM an exclusive, worldwide, royalty-free, perpetual,
irrevocable, transferable and sublicenseable license to publish, reproduce and
distribute all or any part of the Work in any and all forms of media, now or hereafter
known, including in the above publication and in the ACM Digital Library, and to
authorize third parties to do the same.

(b) In connection with software and "Artistic Images and "Auxiliary Materials, Owner
grants ACM non-exclusive permission to publish, reproduce and distribute in any and
all forms of media, now or hereafter known, including in the above publication and in
the ACM Digital Library.

(c) In connection with any "Minor Revision", that is, a derivative work containing less
than twenty-five percent (25%) of new substantive material, Owner hereby grants to
ACM all rightsin the Minor Revision that Owner grants to ACM with respect to the
Work, and all terms of this Agreement shall apply to the Minor Revision.

(d) If your paper is withdrawn before it is published in the ACM Digital Library, the
rights revert back to the author(s).

A. Grant of Rights. | grant the rights and agree to the terms described above.

|| B. Declaration for Government Work. | am an employee of the National

Government of my country and my Government claims rights to this work, or it is not
copyrightable (Government work is classified as Public Domain in U.S. only)

Are any of the co-authors, employees or contractors of a National Government?
' Yes® No
Country:

3. Reserved Rights and Permitted Uses.

(a) All rights and permissions the author has not granted to ACM in Paragraph 2 are
reserved to the Owner, including without limitation the ownership of the copyright
of the Work and all other proprietary rights such as patent or trademark rights.

(b) Furthermore, notwithstanding the exclusive rights the Owner has granted to ACM
in Paragraph 2(a), Owner shall have the right to do the following:



(1) Reuse any portion of the Work, without fee, in any future works written or
edited by the Author, including books, lectures and presentations in any and all
medi a.

(ii) Create a "Major Revision" which is wholly owned by the author

(iii) Post the Accepted Version of the Work on (1) the Authors home page,
(2) the Owner's institutional repository, or (3) any repository legally mandated
by an agency funding the research on which the Work is based.

(iv) Post an "Author-lzer" link enabling free downloads of the Version of Record
in the ACM Digital Library on (1) the Author's home page or (2) the Owner's
institutional repository;

(v) Prior to commencement of the ACM peer review process, post the version of
the Work as submitted to ACM ("Submitted Version" or any earlier versions) to
non-peer reviewed servers;

(vi) Make free distributions of the final published Version of Record internally to
the Owner's employees, if applicable;

(vii) Make free distributions of the published Version of Record for Classroom
and Personal Use; (viii) Bundle the Work in any of Owner's software
distributions; and

(xi) Use any Auxiliary Material independent from the Work.

The rights management and bibstrip text blocks below will be added to the lower |eft
hand portion of the first page of your published paper. As this text will provide rights
information for your paper, please make sure that this text is displayed and
positioned correctly when you receive your author proofs for review.

Authors should understand that consistent with ACM's policy of encouraging
dissemination of information, each work published by ACM appears with a copyright
and the following notice:

If you are using Authorized ACM TeX templates, the following code will
generate the proper statements based on your rights choices. Please
copy and paste it into your TeX file between \begin{document} and
\maketitle, either after or before CCS codes.

\setcopyright{acmlicensed}

\acmJournal{ PACMMOD}

\acmY ear{ 2023} \acmVolume{ 1} \acmNumber{ 1} \acmArticle{ 24}
\acmMonth{5} \acmPrice{15.00}\acmDOI1{10.1145/3588704}

If you are using Word, copy and paste these words in the space
provided at the bottom of your first page:



Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

2836-6573/2023/MonthOfPublication - ArticleNumber $15.00

© Copyright is held by the owner/author(s). Publication rights licensed
to ACM.

https://doi.org/10.1145/3588704

NOTE: DOIs will be registered and become active shortly after publication in the ACM
Digital Library

4. ACM Citation and Digital Object Identifier.

(@) In connection with any use by the Owner of the Definitive Version, Owner shall
include the ACM citation and ACM Digital Object Identifier (DOI).

(b) I'n connection with any use by the Owner of the Submitted Version (if accepted) or
the Accepted Version or a Minor Revision, Owner shall use best efforts to display the
ACM citation, along with a statement substantially similar to the following:

"© [Owner] [Year]. Thisis the author's version of the work. It is posted here for
your personal use. Not for redistribution. The definitive version was published
in { Source Publication}, https://doi.org/10.1145/{ number}."

5. Audio/Video Recordiong of Presentation

| hereby grant permission for ACM to include my name, likeness, presentation and
comments in any and all forms, for the Conference and/or Publication.

| further grant permission for ACM to record and/or transcribe and reproduce my
presentation as part of the ACM Digital Library, and to distribute the same for sale in
complete or partial form as part of an ACM product on CD-ROM, DVD, webcast, USB
device, streaming video or any other media format now or hereafter known.

| understand that my presentation will not be sold separately by itself as a
stand-alone product without my direct consent. Accordingly, | give ACM the right to
use my image, voice, pronouncements, likeness, and my name, and any biographical
material submitted by me, in connection with the Conference and/or Publication,
whether used in excerpts or in full, for distribution described above and for any
associated advertising or exhibition.

A. Do you agree to the above Audio/Video Release? ® Yes No



6. Auxiliary Materials, not integral to the Work

* Your Auxiliary Materials Release is conditional upon you agreeing to the terms set out below.

[Defined as additional files, including software and executables that are not
submitted for review and publication as an integral part of the Work but are supplied
by the author as useful resources for the reader.]

| hereby grant ACM permission to serve files containing my Auxiliary Material from
the ACM Digital Library. | hereby represent and warrant that any of my Auxiliary
Materials do not knowingly and surreptitiously incorporate malicious code, virus,
trojan horse or other software routines or hardware components designed to permit
unauthorized access or to disable, erase or otherwise harm any computer systems or
software.

[l agree to the above Auxiliary Materials permission statement.

[] This software is knowingly designed to illustrate technique(s) intended to defeat a
system's security. The code has been explicitly documented to state this fact.

7. Third Party Materials

In the event that any materials used in my presentation or Auxiliary Materials contain
the work of third-party individuals or organizations (including copyrighted music or
movie excerpts or anything not owned by me), | understand that it is my
responsibility to secure any necessary permissions and/or licenses for print and/or
digital publication, and cite or attach them below.

'i;@;i' We/l have not used third-party material.
' We/l have used third-party materials and have necessary permissions.

8. Artistic Images

If your paper includes images that were created for any purpose other than this paper
and to which you or your employer claim copyright, you must complete Part IV and be
sure to include a notice of copyright with each such image in the paper.

® We/l do not have any artistic images.

() We/l have have any artistic images.

9. Representations, Warranties and Covenants

The undersigned hereby represents, warrants and covenants as follows:

(a) Owner is the sole owner or authorized agent of Owner(s) of the Work;

(b) The undersigned is authorized to enter into this Agreement and grant the
rights included in this license to ACM;

(c) The Work is original and does not infringe the rights of any third party; all
permissions for use of third-party materials consistent in scope and duration with
the rights granted to ACM have been obtained, copies of such permissions have
been provided to ACM, and the Work as submitted to ACM clearly and accurately



indicates the credit to the proprietors of any such third-party materials (including
any applicable copyright notice), or will be revised to indicate such credit;

(d) The Work has not been published except for informal postings on non-peer
reviewed servers, and Owner covenants to use best efforts to place ACM DOI
pointers on any such prior postings;

(e) The Auxiliary Materials, if any, contain no malicious code, virus, trojan horse or
other software routines or hardware components designed to permit unauthorized
access or to disable, erase or otherwise harm any computer systems or software;
and

(f) The Artistic Images, if any, are clearly and accurately noted as such (including
any applicable copyright notice) in the Submitted Version.

| agree to the Representations, Warranties and Covenants.

10. Enforcement.

At ACM's expense, ACM shall have the right (but not the obligation) to defend and
enforce the rights granted to ACM hereunder, including in connection with any
instances of plagiarism brought to the attention of ACM. Owner shall notify ACM in
writing as promptly as practicable upon becoming aware that any third party is
infringing upon the rights granted to ACM, and shall reasonably cooperate with ACM
inits defense or enforcement.

11. Governing Law

This Agreement shall be governed by, and construed in accordance with, the laws of
the state of New Y ork applicable to contracts entered into and to be fully performed
therein.

Funding Agents

1. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) 392214008
2. Bavarian Cooperative Research Program of the Free State of Bavaria
DIK-2002-0013//DIK0114/02

DATE:03/24/2023 sent to chacko@in.tum.de at 09:03:04






Appendix C

Should my Blockchain Learn to Drive? A Case of Hyper-
ledger Fabric

103



Should my Blockchain Learn to Drive?
A Study of Hyperledger Fabric

Jeeta Ann Chacko Ruben Mayer Hans-Arno Jacobsen
chacko@in.tum.de ruben.mayer@uni-bayreuth.de jacobsen@eecg.toronto.edu
Technical University of Munich University of Bayreuth University of Toronto

Abstract

Similar to other transaction processing frameworks, blockchain
systems need to be dynamically reconfigured to adapt to varying
workloads and changes in network conditions. However, achieving
optimal reconfiguration is particularly challenging due to the com-
plexity of the blockchain stack, which has diverse configurable pa-
rameters. This paper explores the concept of self-driving blockchains,
which have the potential to predict workload changes and recon-
figure themselves for optimal performance without human inter-
vention. We compare and contrast our discussions with existing
research on databases and highlight aspects unique to blockchains.
We identify specific parameters and components in Hyperledger
Fabric, a popular permissioned blockchain system, that are suitable
for autonomous adaptation and offer potential solutions for the
challenges involved. Further, we implement three demonstrative
locally autonomous systems, each targeting a different layer of
the blockchain stack, and conduct experiments to understand the
feasibility of our findings. Our experiments indicate up to 11% im-
provement in success throughput and a 30% decrease in latency,
making this a significant step towards implementing a fully au-
tonomous blockchain system in the future.

1 Introduction

The increasing complexity of transaction processing systems,
such as databases, led to the development of self-adaptive [31, 33],
self-tuning [11, 75], and self-managing systems [20, 41]. The even-
tual objective of this discipline is to create a self-driving system
that can autonomously predict workload and network changes, and
reconfigure itself to optimal performance without human interven-
tion. Research is currently underway to achieve this goal [39, 40, 45—
47, 57, 58, 76]. Since blockchains have evolved to support complex
transactions using smart contracts, they are now categorized as
transaction processing systems [63]. This raises the question of
whether self-driving blockchains are feasible.

Blockchain systems, like other transaction processing systems,
require dynamic reconfiguration to cope with changes in work-
loads and network conditions [9, 43, 69]. However, optimal re-
configuration is particularly challenging due to the complexity
of the blockchain stack, which has diverse configurable parame-
ters [10, 43]. These include administrative policies, database defi-
nitions, consensus protocols, ledger settings, and smart contract
design, among others [9, 42, 62, 72]. Therefore, domain expertise is
essential for achieving optimal performance in blockchain systems.
However, this expertise comes at a high cost, with the estimated
maintenance cost of a blockchain application being up to 25% of
the total development cost [36, 67, 68]. As long as blockchains re-
main complex and expensive, enterprises will hesitate to adopt this
platform for their use cases.

APPLICATION LAYER
) ‘ Business Process ]
Model

DATA LAYER

Clients

Smart Contract

Database

ijC
I

SYSTEM LAYER
Consensus ] ’

Model

l System ’
Parameters

System
Components

Figure 1: Adaptable Features

Consequently, a self-driving blockchain that can eliminate hu-
man involvement is desirable. Some initial steps in this direction
have been taken through the development of self-adaptive and
auto-tuning blockchain systems [43, 72, 73]. However, the exist-
ing systems are either not completely autonomous and hence re-
quire human intervention or are confined to tuning a single as-
pect of the blockchain stack. Unlike the database community, the
blockchain literature has yet to explore the concept of a comprehen-
sive self-driving blockchain extensively. Self-driving systems can
either be created from scratch [58, 76] or by building upon existing
systems [46]. The development of over 1000 different blockchain
systems worldwide in a relatively short time span has made it chal-
lenging for enterprises to choose the ideal blockchain for their
applications [26]. Rather than augmenting this problem, we focus
on exploring self-driving possibilities in existing systems. Further,
stakeholders of established systems may be reluctant to switch to a
new blockchain platform and integrating autonomous capabilities
into existing systems helps to avoid this requirement. Adapting
the configuration settings of public blockchains may lead to hard
forks as not all network participants may accept the changes [62].
In contrast, permissioned blockchains, which are more commonly
used by enterprises, would welcome such changes if they can im-
prove the overall performance. Hyperledger Fabric is one of the
most popular permissioned blockchains with over 50 enterprise
partners [25, 60].

This paper delves into the opportunities for self-drive in Hy-
perledger Fabric. Our investigation involves identifying adaptable
features, i.e., the parameters and components of the blockchain
stack that can be dynamically tuned to improve performance, as
illustrated in Figure 1. We address specific challenges and offer a
blockchain perspective on the topic of self-driving systems. Fur-
thermore, we implement a prototype and conduct experiments to
evaluate the feasibility of our findings.

Our contributions can be summarized as follows:



Execution Phase Ordering Phase Validation Phase

Peer 1 (Endorser) Peer 1 (Endorser)

Q4 ‘Read/Write set
= Cha%sde 5 =
d| D: t=b Ledger_ Dzla
Ledger atabase .
Ordering Service Peer 2 (Endorser)
Peer 2 (Endorser) m N u "
o oao g
i Chail’iﬂde Ledger Dala@
| =
=
ledger  Database
ead/Write set
Peer 3 oan =
oo s e ol

=
Ledger Database

Figure 2: Transaction Flow in Hyperledger Fabric

(1) We scrutinize the various dynamic aspects of the blockchain
environment, such as network and workload evolution, to deter-
mine the necessity of self-driving blockchains. We compare and
contrast our findings with existing research on databases and high-
light aspects unique to blockchains. Our goal is to encourage the
blockchain research community to contribute more to the develop-
ment of self-driving blockchains.

(2) We conduct a thorough analysis of the entire system stack of Hy-
perledger Fabric and identify specific parameters and components,
which we call adaptable features, that are suitable for autonomous
adaptation. Our study also highlights the challenges in making
these adaptable features autonomous and provides potential so-
lutions. By doing so, we encourage the blockchain community to
explore self-driving opportunities within existing systems instead
of creating a new blockchain from scratch for each new use case.
(3) We evaluate our findings by setting up three demonstrative au-
tonomous systems, each targeting a different level in the blockchain
stack. Our results indicate up to 11% improvement in success through-
put and 30% decrease in latency. This is a significant first step to-
wards implementing a fully autonomous system in the future. To
the best of our knowledge, this is the first comprehensive discussion
and evaluation of self-driving blockchains.

(4) The implementation of our systems, experimental workloads,
and trained models are made available as open source. The research
community can use these resources as a foundation to conduct
further investigations with other adaptable features and machine
learning strategies. This will facilitate further discussions on self-
driving blockchains.

2 Hyperledger Fabric

One of the most popular open-source permissioned blockchain
systems, Fabric [2], was established under the Linux Foundation.
Fabric is unique in that it allows for smart contracts to be created
using general-purpose languages. This gives clients the ability to
submit transactions to a decentralized network, where control is
shared among multiple entities instead of a single trusted entity. All
potential functions that can be executed within a transaction are
defined in a smart contract, referred to as chaincode. The system
maintains a distributed, versioned key-value store known as the
world state.

Each key in the network has a version number that gets updated
with every write. The platform maintains a comprehensive history
of all transactions, both successful and failed, through a distributed
ledger that groups transactions into blocks. This distributed ledger,
along with the world state, gets replicated on a set of distributed
nodes called peers that are registered on the Fabric network. The

peers receive blocks of transactions from an ordering service that
guarantees ordered delivery and validate each transaction inde-
pendently before updating their copy of the world state and the
ledger.

Endorsers are a subset of peers that not only validate transac-
tions but also endorse and execute the transactions. The number of
endorsements required for a transaction to be accepted as valid is
defined by an endorsement policy. Furthermore, peers are grouped
into organizations, which typically correspond to real organizations
or branches of an enterprise. These organizations play an impor-
tant role in the endorsement policy as such policies can specify
the number of endorsements required from each organization’s
respective peers. In Fabric, the transaction flow consists of three
main phases: execution, ordering, and validation. This process is
commonly known as the Execute-Order-Validate (E-O-V) model,
and it is visualized in Figure 2.

Execution Phase. When clients need to update data stored in the
blockchain, they initiate a transaction proposal to the endorsers.
This transaction can include multiple requests for reads and writes
to one or more keys in the world state. The endorsers simulate
the transaction’s execution on the current world state, generating
a read/write list for each key involved in the transaction. They
then send a response to the client, which includes their signature
and the read/write set. During the transaction flow, the client col-
lects responses from the endorsing peers and forwards them to the
ordering service nodes.

Ordering Phase. The ordering service uses a consensus protocol,
such as Raft [55] or BFT [5], to order transactions received from the
clients. A transaction block is created based on three conditions: if a
fixed duration of time has elapsed (block timeout), if a fixed number
of transactions has been received (maximum message count), or if
the total size of transactions has reached a fixed limit (maximum
preferred bytes). The ordered block of transactions is then sent to
all peers.

Validation Phase. When the ordering service sends a block of
transactions, each peer validates every transaction in the block
independently. Each peer verifies if a sufficient number of valid
endorsing peer signatures, based on the endorsement policy, have
been collected (Validation System Chaincode (VSCC) validation).
After that, the peer checks if the version of each key in the read set
of each transaction is equal to the version of the same key in the
current world state (Multi-Version Concurrency Control (MVCC)
validation). If both VSCC and MVCC validation checks pass, the
write sets of the transactions are applied to the world state. However,
if any of the validation checks fail, the client is informed that the
transaction has been aborted, and the world state does not change.
Once the validation is complete, the validated block containing
both aborted and committed transactions is added to the ledger.
The status of every transaction, whether committed or aborted, is
logged for future reference.

3 Need for self-driving blockchains

In this section, we explore the reasons that necessitate the im-
plementation of self-driving blockchains. Our analysis draws upon
insights from the database literature while also shedding light on
the unique concepts that are specific to blockchains.



3.1 Workload Evolution

Blockchains, similar to other transaction processing systems,
have to handle frequently varying workloads. Depending on the
application, workload variation may follow typical diurnal patterns,
such as higher transactions during the day than night or spike
patterns, such as sudden influx during Christmas in a supply chain
management scenario [30, 57]. Apart from these familiar patterns,
since blockchains are geographically distributed, the dynamic addi-
tion of participants from various time zones and their corresponding
transactions can change the overall workload structure [51].

Unlike other transaction processing systems, blockchains also
need to process administrative transactions apart from application-
related transactions. For example, a configuration transaction needs
to be executed when the system is reconfigured, such as changing
the block size or integrating a new peer [2, 70]. Such transactions
also follow the complete transaction lifecycle. Users may also trigger
historical queries that read the complete or parts of the blockchain
ledger to confirm the validity of their own transactions [66]. Such
transactions are highly time-consuming.

When considering Fabric specifically, it has an optimistic con-
currency control model where transactions can fail due to data
dependency [64]. In such cases, the client may resend failed trans-
actions immediately or later, depending on the business process
logic of the enterprise. Additionally, Fabric’s FIFO ordering strategy
can result in situations where one type of transaction overwhelms
the system, blocking all other transactions [30].

In summary, blockchains handle heterogeneous workloads that
follow unpredictable arrival patterns and require the processing
of additional administrative transactions, making them a complex
system to manage. The optimal configuration of various system
parameters, network components, smart contracts, database mod-
els, consensus algorithms, and business process models greatly de-
pends on the workload [9, 10, 69]. Currently, only static auto-tuning
systems are available for users to determine the best settings for
their specific type of workload [43]. However, to use such systems,
it is crucial to obtain appropriate representative workloads. This
proves to be particularly challenging for permissioned blockchains,
which are primarily used for enterprise purposes, since private
organizations are hesitant to reveal their workloads. As a result, a
self-driving blockchain that has the ability to monitor its evolving
workload and dynamically adjusts itself to the ideal settings can be
a promising solution.

3.2 Network Evolution

Scaling in blockchains is highly heterogeneous and dynamic [12,
65]. In permissioned blockchains, the different system components
are mapped to physical entities in an enterprise. For example, the
peer nodes of a Fabric network are grouped into administrative
units called organizations that typically correspond to the physical
organizations or branches of a company [2]. As a result, real-world
administrative activities of enterprises, such as expanding their
global reach or acquiring other organizations, necessitate adapting
the blockchain network. Moreover, specific network components,
such as endorsers and orderers, which have additional privileges,
such as executing the smart contract and ordering the transactions,
may be reassigned to different geographical locations depending
on enterprise management changes in the physical world. System

parameters must be adjusted to support such network scaling. For
instance, if the number of ordering nodes is too high, communica-
tion costs increase, and performance is negatively affected. In such
cases, Fabric recommends dynamically redesigning the network
into subsets called channels and deploying separate ordering node
sets per channel [16].

Additionally, even without any changes in the network compo-
nents, the blockchain ledger grows perpetually over time. Therefore,
the network must be constantly monitored and adjusted accord-
ingly to avoid any bottlenecks. For example, Fabric recommends
increasing the resources whenever the CPU, memory, or disk space
usage reaches 70%, as high resource utilization significantly impacts
performance [16]. However, since there are multiple distributed
system components (peers, endorsers, orderers, clients, database,
ledger), monitoring and identifying the bottleneck is challenging.
Further, given the decentralized nature of blockchains, the par-
ticipants need to reach consensus before taking scaling decisions.
Consequently, a self-driving blockchain that constantly monitors
the evolving network, identifies bottlenecks, triggers the consensus
mechanism and automatically adapts the network configuration
would be highly beneficial.

3.3 Performance and Fairness

Self-driving systems are designed to achieve multiple goals, in-
cluding optimal performance in terms of throughput and latency.
This is particularly true for self-driving transaction processing
systems such as databases as well as blockchains [39, 40, 43, 45—
47,57, 58, 72, 73, 76]. The ability to sustain adequate throughput
despite workload or network changes without (or with minimal)
human intervention is the ultimate goal.

Another important objective for blockchains is fairness. Since
blockchains lack centralized entities, transactions are generally
processed in a first-in, first-out (FIFO) order, which may result
in geographically closer and resource-intensive clients being able
to commit more transactions [51]. In enterprise scenarios where
many participants have equal administrative rights, such unequal
representation of their transactions on the ledger may raise trust
issues [7, 30]. To address this problem, a self-driving blockchain that
identifies dominant clients, controls their transaction admission
rates, and ensures fairness in the network is urgently needed. Such
a system would ensure that all participants are equally represented
on the ledger, thereby promoting trust and transparency.

4 Self-Driving Opportunities & Challenges

Since we have established the need for a self-driving blockchain
in Section 3, our main objective now is to determine the feasibility
of such a system. To achieve this, we must ascertain which com-
ponents and configuration parameters require dynamic adaptation
when the workload or network evolves. Some system configuration
parameters that have an impact on the performance have been
identified in the literature [43]. However, a majority of these param-
eters cannot be tuned without restarting the blockchain network,
which is not possible in a live network. In contrast, we will ex-
amine specific features that can be adjusted without requiring a
network restart and are thereby suitable for designing a self-driving
blockchain. Additionally, we will solely concentrate on features that
can be modified at runtime without significant alterations to the



original system’s architecture. We analyze the complete blockchain
stack using experimentation and literature review to identify such
adaptable features. In this section, we explain each of these features
and discuss the challenges of dynamically adapting them. The ex-
perimental setup, workloads and metrics definition for Figures 3-5
can be found in Section 6.

Throughput
896.15 897.9
900 886.2
868.4 gg525 534
849.85
850 8383
800 I
300 1000 0.5 2 1 4 16 64
Max Message Batch Timeout Preferred Max Snapshot
Count Bytes Interval Size

Figure 3: Impact of configuration parameters on performance

4.1 System Layer

We conducted an experimental analysis of various dynamically
configurable system parameters to determine the adaptable features
of Fabric at the system layer. The main results that highlight the
impact of the parameters on overall throughput for a send rate of
1000 TPS are illustrated in Figure 3.
4.1.1  Max Message Count
The max message count refers to the maximum number of trans-
actions allowed in a block. The ideal value for max message count
varies based on the workload and the performance metric being
considered. For instance, in our experiments, higher values of max
message count significantly improve the overall throughput (cf. Fig-
ure 3). The literature recommends setting the max message count
to match the incoming transaction rate of the workload [9, 16].
However, research has also shown that if the transaction rate is
below a system’s throughput saturation point, lower values for max
message count are optimal [69]. Since all the experiments in the
literature, as well as ours, are conducted with different workloads
under different network conditions, we cannot derive a consistent
relation between max message count and performance. Therefore,
the max message count can be identified as an adaptable feature that
needs to be dynamically adjusted based on the evolving workload
and network.
4.1.2  Batch Timeout
The batch timeout is the maximum timeout after which a block
is created with the currently available transactions. We observe
that tuning this parameter has an impact on the performance. For
example, when batch timeout is set to 2 seconds, which is the default
value, it negatively impacts the overall throughput (cf. Figure 3).
The official recommendation from Fabric is to set this value to
max message count divided by the transaction rate [16]. Therefore,
since max message count is an adaptable feature and the transaction
rate is variable, batch timeout must be considered as an adaptable
feature.

4.1.3  Preferred Max Bytes
The preferred max bytes refers to the maximum size (in MB) of all
the transactions allowed in a block. Our findings indicate that the
throughput is impacted by preferred max bytes (cf. Figure 3). Fabric
recommends setting preferred max bytes to max message count
multiplied by the average transaction size [16]. Since the optimal
value of preferred max bytes depends on the incoming workload, it
can be classified as an adaptable feature.
4.1.4  Snapshot Interval Size
The snapshot interval size parameter of the consensus protocol in
Fabric (Raft) defines the number of bytes per which a snapshot of the
log is taken. This is the only dynamically tunable parameter for Raft.
While creating snapshots at regular intervals reduces disk space
usage, it can be an expensive process [24]. Therefore, dynamically
tuning this parameter based on the incoming load and disk usage
can be helpful. We observe that an increase in snapshot interval
size has a slight impact on the throughput (cf. Figure 3). Due to its
dependency on the incoming workload, snapshot interval size can
be identified as an adaptable feature

Lessons Learnt: Our experiments help to understand the impact
of individual system configuration variables on the performance of
Fabric. However, manually deriving the best combination of values
for these parameters would be costly and brittle. This highlights
the need for a self-driving blockchain. Self-driving systems gen-
erally adopt machine learning strategies, which involve exploring
multiple values until the system learns the ideal setting. However,
this process may face several obstacles, one of which is transaction
queueing caused by the block size. In our experiments, we observed
that creating multiple small blocks may overwhelm Fabric’s order-
ing service when the transaction rate is high, causing the network
to hang. Further, in our experiments, a very low snapshot interval
size for a high transaction rate also led to system hang-ups. Hence,
it is crucial to carefully choose the values of system parameters and
transaction rates during the learning phase to prevent such issues
in the Fabric network.

4.2 Data Layer

The data layer comprises the blockchain ledger, the smart con-
tracts, and the database. In Fabric, the ledger and database cannot be
dynamically reconfigured, so the focus is on optimizing the smart
contract performance. Smart contracts play a pivotal role in the
functioning of blockchains. To optimize their performance, vari-
ous strategies are employed, such as delta writes, smart contract
partitioning, and primary key redefinition [10]. However, the effec-
tiveness of these strategies depends on the workload. For instance,
delta writes can convert update transactions that increment a vari-
able into write-only transactions, reducing transaction dependency
failures in update workloads. However, this optimization strat-
egy can negatively impact the performance of compute workloads.
Therefore, adapting the smart contract according to the workload
would be useful. To examine this, we created a smart contract that
allows for a value to be incremented as an update transaction or
as a write-only transaction using two different function implemen-
tations: vanilla and delta. We evaluate the performance impact of
both implementations using an update workload and a compute
workload. More details about the smart contract and the workloads
can be found in Section 6.2.



Success Throughput
97.8 97.7
100 87.2
80
60
40
20 8.96
0 ||
Vanilla Delta Vanilla Delta

Update Workload Compute Workload

Smart contract functions with different workloads
Figure 4: Impact of smart contract on performance

Our experimental results shown in Figure 4 indicate that the use
of the delta implementation results in a significant improvement in
success throughput for update workloads. However, for compute
workloads the success throughput decreases with the use of the
delta implementation. Further, over a longer duration, we observed
that Fabric is unable to sustain the high latency resulting from
the use of the delta implementation with compute workloads (not
shown in Figure 4). In Fabric, smart contracts can be upgraded in
real-time, making them an adaptable feature that can be customized
to meet the specific requirements of different workloads.

Lessons Learnt: In enterprise scenarios, smart contracts are of-
ten defined as automated executions of contractual agreements
between entities in the real world [23, 28]. As a result, frequent
upgrades to smart contracts are generally discouraged. Our solu-
tion to this issue is to include multiple implementations of the logic
within the same smart contract and selectively invoke the desired
implementation from the client side based on the varying workload.
This approach enables greater flexibility and reduces the need for
frequent upgrades. Further, based on our experiments, we conclude
that for a self-driving blockchain system, sufficient duration must
be given for each learning step to correctly understand the effect
of the adaptable features.

Success Throughput Success Rate

m Clients - Orgl  m Clients - Org2 84.71 89.56

With Rate Control

150 126.9
495 547 58
) . . .
0

With Rate Control

100

100 50
0

Without Rate Control

Without Rate Control

Figure 5: Impact of rate control on performance

4.3 Application Layer

The clients are the main components of the application layer,
and fairness among the clients is crucial for building users’ trust in
a blockchain system. However, ensuring fairness is difficult due to
the diversity in the geographical locations of the clients relative to
endorsing peers and the resources available to the clients. There are
instances where high transaction rates from a few clients congest
the system, leaving the other clients with very low throughput [30].
Fabric’s optimistic concurrency control strategy also follows a first-
come-first-serve model, which can cause transactions from slower
clients to fail more frequently. Monitoring such bottlenecks and
dynamically adapting client transaction send rates is essential to

HYPERLEDGER FABRIC NETWORK

ORG 1 ORGN
PEER 1
| ORDERER 1 |...| ORDERERN | | ORDERER 1 |...| ORDERERN |
mecron ! 1
system | | CLIENT NETWORK

I CLIENT MANAGER
k1 4
et || CLIENT1 ‘ CLIENT 2 ‘ CLIENTN
SYSTEM

MONITORING

Figure 6: Self-driving Blockchain System

ensure fairness. Therefore, the admission rate of clients is a potential
adaptable feature.

We conducted an experiment that simulates an unfair distribu-
tion of transactions, where clients of one organization (clients-Org1)
have a higher transaction send rate than the clients of another or-
ganization (clients-Org2). Further, the transactions generated by
clients-Org1 have key conflicts with the transactions generated
by clients-Org2. More details about the workloads can be found
in Section 6.3. From our experimental results shown in Figure 5,
it is evident that rate control can ensure fairness, but it comes at
the cost of degraded overall success throughput. However, we can
see in Figure 5 that the total success rate improves. This experi-
ment clearly demonstrates the tradeoff between fairness and overall
performance.

Lessons Learnt: The main challenge in this direction is to design
an optimal fairness strategy. If the transaction rate of faster clients
is significantly restricted, it can have a severe impact on overall
performance. Moreover, such restrictions may not even lead to a
corresponding increase in the success rate of slower clients. There-
fore, it is crucial to consider both fairness and overall performance
when designing a self-driving system.

5 Self-driving Blockchain System Design

To demonstrate self-driving capabilities, we integrated a predic-
tion system and a monitoring system with the Fabric network. The
monitoring system extracts performance metrics from the client
network: overall throughput (in TPS), success throughput (in TPS),
average latency (in seconds), number of successful transactions per
client and success rate per client. The prediction system controls
various adaptable features of the Fabric network and is explained
in detail in this section. Figure 6 provides a visualization of the
architecture of our system.

Our prediction system uses a reinforcement learning-based ap-
proach to autonomously reconfigure the adaptable features. Rein-
forcement learning [38] is a machine learning strategy that involves
the agent applying an action, observing the consequence of its ac-
tion on the environment, receiving a reward based on the conse-
quences, and altering its actions over time to maximize the reward.
It is mainly used in scenarios where training data is not initially
available, and it is popularly used in self-driving systems [43, 75, 76].
Permissioned blockchains are mainly used by enterprises that are
generally hesitant to share their workloads and ledger contents due
to privacy concerns. Therefore, there is a lack of publicly available
training data, which makes reinforcement learning a suitable ap-
proach for our use case. We implement our prediction system using



a reinforcement learning library called Deep Q Network (DQN)
provided by Stablebaselines [21].

For a reinforcement learning agent (RL agent), three parameters
need to be defined. The state is the environment that needs to be
observed by the agent. The action space is a discrete or continuous
set of actions that the agent is allowed to take. The reward function
is a quantification of the reward that an agent receives based on the
effect of its action on the state. The reward function depends on the
performance expectations of the blockchain system user, which is
often defined in a service level agreement. The definition for each
of these parameters varies based on our target adaptable feature
and is explained in the upcoming sections.

During each step of the learning process, the prediction system
communicates with the Fabric network through its clients. It no-
tifies the clients of any required changes in configuration, smart
contract logic, or admission rate. To ensure that these changes are
implemented and have an impact on the network, the learning pro-
cess is paused for a while before moving on to the next step. The
monitoring system provides performance information, which the
prediction system uses to update its state and calculate its reward.

As a tangible initial step towards realizing a self-driving block
chain, we demonstrate the effect of dynamically modifying the
identified adaptable features. At the system level, we demonstrate
parameter tuning, where the max message count, batch timeout, pre-
ferred max bytes and snapshot interval size are dynamically adapted.
At the data level, we demonstrate the self-drive capability by dynam-
ically adapting the smart contract implementation. Finally, client
admission rate is tuned dynamically to understand the potential
for self-driving at the application level. For our experiments, we
designed three locally autonomous systems based on reinforce-
ment learning, which can pave the way to a completely self-driving
system in the future.

5.1 RL Agent for Parameter Tuning

This section describes our autonomous parameter tuning mech-
anism. The RL agent of the prediction system needs to dynamically
learn the optimal values of four configuration parameters — max
message count (Mc), preferred max bytes (Pg), batch timeout (BT),
and snapshot interval size (Sy), Therefore, the action space (Ag) of
the RL agent consists of the set of values that each of these pa-
rameters can adopt. We chose these values based on intuition and
previous research. The default value of max message count is 500.
Studies show that it is optimal if the max message count matches
the incoming transaction rate [9, 16], which in our experiments is
300, 500, and 1000 TPS. The default value of preferred max bytes
and snapshot interval size is 2 MB and 16 MB, and in our exper-
iments, values less than the default led to a significant decrease
in the performance (even such that the system hangs). Therefore,
we chose the default value as well as two values higher than the
default. The default value of batch timeout is 2s, and increasing this
value significantly increases the latency if none of the other param-
eters related to block size are fulfilled by the incoming transactions.
Therefore, we chose the default value as well as two values lower
than the default. The action space (As) for the RL agent is then the

cross-product of all possible values for all four parameters.
Mec = [300, 500, 1000]
Pg = [2,4,16]
Br =[0.5,1,2]
Sy = [16,32, 64]
As = [Mc X Pg X BT X S;]

The reward function (Ry) of an RL agent depends on the perfor-
mance expectations of the blockchain system user. In this experi-
mental setting, we assume that maximizing the throughput (T) of
the Fabric network is the primary goal. The average transaction
send rate (SR) of the clients vary with time. Therefore, we need to
consider the throughput relative to the send rate.

T

Rw = r
Similarly, since the impact of the agent’s action is measured by the
change in the throughput relative to the send rate, the state (St) or
environment that the RL agent needs to observe is determined by
these values.

St =T, SR]

At every learning step, the RL agent picks an action (A) from the
action space randomly or based on previous experience.

A = [me, pp, by, si]
wherem, € Mc,pb € Pp, b; € BT, si € 51

The chosen action is packaged as a configuration transaction and
sent to the Fabric network via its clients. After this transaction is
endorsed, ordered and validated by the peers in the network, the
action is applied, i.e., the configuration parameters are updated,
and the RL agent moves to the next learning step.

5.2 RL Agent for Smart Contract Adaptation

In this section, we discuss the mechanism for autonomous smart
contract adaptation. The RL agent needs to dynamically learn the
optimal smart contract implementation — vanilla and delta, which
we represent as 0 and 1 in the action space(Ag) for the RL agent.

As =10, 1]

Adapting the smart contract aims to improve the success through-
put. As a result, the reward function (Ry) of the RL agent is defined
by the success throughput (Syr) relative to the send rate (SR).

Syt

R = —-—

"= SR
Similarly, since the impact of the agent’s action is measured by the
change in the success throughput relative to the send rate, the state

(S7) is determined by these values.
St = [Sur. SR]
The RL agent picks an action (A) which is either the vanilla-update
or the delta-update implementation at every learning step.
A = [as| whereas € Ag
We created a new configuration file for the Fabric client to define
the smart contract implementation. The client’s invocation of the

smart contract is dependent on this configuration file, which is
updated by the RL agent with the chosen action.



PREDICTION SYSTEM —l

EXECUTE — ORDER — VALIDATE LIFECYCLE
\

A P ‘ [ ‘\ LH
CLIENT MANAGER J CLIENTS t : ENDORSERS ‘ ORDERERS t ‘ PEERS

? [ Y

I
MONITORING SYSTEM — 1 |

Figure 7: Life cycle of transactions generated in a Fabric network with (green) and without (red) the prediction system

5.3 RL Agent for Admission Rate Tuning

In this section, we delve into the mechanism of dynamic admis-
sion rate tuning with the aim of guaranteeing fairness across all
clients. The RL agent needs to dynamically control the send rate of
clients-org1(SpOrg;) and clients-org2 (SROrg2). The send rate cannot
be increased, since in a real-world scenario, the clients would only
send the required transactions and not create new transactions just
to match a given send rate. Therefore, the send rate can either be
throttled or kept unchanged. We define a decrease of 40% and 60%
of the send rate based on intuition and experimentation. A decrease
of less than 40% may not significantly influence the success rate
of the other clients, and a decrease of more than 60% could hurt
the overall throughput. Therefore, the send rates of clients-org1
and clients-org2 can either remain unchanged, decrease by 40% or
decrease by 60%.

SrOrg:1 = [unchanged, decreasey, decreases ]
SrOrgs = [unchanged, decreases, decreaseg]
A5 = [SROr91 X SROrgz]

The main goal of this experiment is to ensure that the number of
successful transactions generated by clients-org1 (Sy.T,Org) and
the number of successful transactions generated by clients-org2
(SucTrOrgo) are as close to equal as possible. We use the Jain’s
fairness index (J4) to quantitatively define fairness in the range
(0,1], where higher values indicate a fairer distribution [37]. This
index (Jp) is used to define the reward function.

7 = (SucTrOrg1+SucTrOrg2)2
A % (SucT,Orgi? + SucT,Orgs?)

Rw =J4

The impact of the agent’s action is also measured by the change
in the success throughput relative to the send rate and the fairness
measure. Therefore, the state (St) is determined by these values.

St = [Sur, SR, Il

The RL agent chooses an action (A) at every learning step which
either decreases or maintains the admission rate of the clients.

A = [sry, sr2] where sr; € SROrg, sr2 € SROrgz

We have developed a new configuration file for the Fabric client,
which defines the transaction rate per organization. This configura-
tion file is used to adapt the transaction rates of each organization.
This file is updated by the RL agent with the chosen action at every
learning step.

5.4 Decentralization Aspects

Our prediction system is designed as a centralized system that
is independent from the blockchain network. This allows for easier
implementation of updates, monitoring of the training process, and
adherence to regulations and standards. Further, training systems
typically result in high resource utilization over time. Since our
prediction system is independent of the Fabric network, it can be
deployed on a separate node with high resource allocation without
encroaching on the resources required by the blockchain system.
Additionally, such an independent prediction system can be readily
replaced with different learning algorithms based on user require-
ments.

However, blockchains rely heavily on decentralized trust, which
is an essential feature of their operation. Therefore, a self-driving
blockchain also needs to maintain this decentralized nature. Though
our prediction system is centralized the inherent decentralization
properties of Fabric is maintained. The changes proposed by the
prediction system are sent to a client manager, which then generates
a configuration transaction for parameter tuning or a transaction
with specific parameters to adapt the smart contract logic. The
client manager also defines the transaction admission rate of each
client. The client manager is a simulation of an automated business
process execution system often used in enterprise scenarios to
manage the execution of an application [71]. In a production-level
setup, there could even be more than one client manager, and the
prediction system would communicate the proposed changes to all
of them. However, all transactions generated by the client manager
undergo the complete execute-order-validate lifecycle defined by
the Fabric network, i.e., all network participants need to reach a
consensus when any change proposed by the prediction system is
applied. As visualized in Figure 7, the lifecycle of transactions with
and without the prediction system remains the same. Therefore, the
decentralization and security guarantees of Fabric are maintained
despite having a centralized prediction system.

6 Experimental Setup

We conducted our experiments on four clusters each with 1
master node and 3 worker nodes. All nodes are deployed with 100
GB memory and 30 GB storage. The master nodes have 32 virtual
CPUs while the worker nodes have 16 virtual CPUs each. On all
clusters, we launched a Fabric network on the workers with four
peers (two per organization) and three orderers. Additionally, we
deployed ten clients along with a client manager using Hyperledger
Caliper, a benchmarking system for Hyperledger Fabric. We ran the
prediction system and monitoring system on the master node of
all clusters. We developed different workloads and smart contracts
for evaluating the three autonomous systems as described in the
following.



Throughput

—Learned Results —Baseline

-

400

500

400

300

200

100 200 300

Step

500 600

Average Latency

—Learned Results —Baseline

Step

Figure 8: Update workload with and without autonomous parameter tuning

Max Message Count Preferred Max Bytes

1200

700

200

100 200 300 400 100 200 300 400 500

Batch Timeout Snapshot Interval Size

100 200 300 500

Step Step Step Step
Figure 9: Values of parameters set by the prediction system for the update workload
Throughput Success Throughput Average Latency
—Learned Results —Baseline —Learned Results —Baseline —Learned Results —Baseline
500
10 1.8
300
400
1.3
200
300 0.8
200 100 0.3
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
Step Step Step

Figure 10: Skewed update workload with and without autonomous parameter tuning

Max Message Count Preferred Max Bytes

2
TT T TT TTTT
0 100 200 300

400

1200 20

1
0 100 200 300 400 500

Step

N

7

S
8
®

IS

200
500

Step

Batch Timeout Snapshot Interval Size

I

500

L

200

Ll

300
Step

500

100 200 300

Step

400 100 400

Figure 11: Values of parameters set by the prediction system for the skewed update workload

6.1 Workloads for Parameter Tuning

We use the generator smart contract from the literature [9], which
can generate update transactions (single key read and write). Using
this smart contract, we generate two different workloads: update
workloads which have no transaction dependencies and skewed
update workloads which have multiple transaction dependencies.
We initialize the blockchain ledger with 10,000 keys. For the dura-
tion of our experiments, the clients’ average transaction send rate
oscillates between 300 TPS and 500 TPS at regular intervals of 100
steps to simulate an evolving workload. For all the experiments,
the baseline is evaluated by setting the default value of 500, 2 MB,
2 seconds, and 16 MB for max message count, preferred max bytes,
batch timeout, and snapshot interval size, respectively.

6.2 Workloads for Smart Contract Adaptation
We implemented a music management smart contract that in-
cludes the two main functions, PlayMusic and CalculateRevenue,
from a music rights management scenario based on the literature [9].
In our database, every entry has a structure consisting of three
components: musicID, play-count, and total-revenue. The PlayMusic
function retrieves the entry for a given musicID, increments the
value of the play-count by one, and writes it back to the database.
This implementation of the function, which we call the vanilla
implementation, results in an update transaction. The same func-
tion has an alternative implementation, the delta implementation,
which writes a new entry into the database in the format musicID-
operation-value-transactionID (for example, M01+1T01). In other



words, every increment to the play-count creates a new entry in the
database, making the transaction write-only instead of an update.

The vanilla implementation of CalculateRevenue function reads
the value of play-count for a given musicID from the database. The
delta implementation needs to aggregate the value of all keys in
the database that have the partial format musicid-operation-value-
transactionID (for example M01+1%) and add this aggregated value
to the play-count. Such aggregations are time-consuming opera-
tions that, depending on the number of keys, can lead to system
hang-ups for long-running experiments. Implementing additional
smart contract functions that prune the delta keys and regularly
invoking these functions as part of the workload can help resolve
this issue. However, to reduce the complexity of the smart con-
tract implementation and workload definition in our experimental
setup, we simulate this aggregation functionality using a delay of
500ms. This simulation sufficiently demonstrates the effect of the
delta implementation on performance while preventing disruptions
to the experiment. Since our experiments focus on evaluating the
prediction system’s ability to learn the impact of adaptable features
on performance, such a simulation is adequate. After aggregation,
the play-count is multiplied by a constant and used to update the
total-revenue.

We initialize the blockchain ledger with 10,000 keys. We generate
an update workload that only invokes the PlayMusic function and a
compute workload that only invokes the CalculateRevenue function.
This simulates a real-world scenario where music is frequently
played by all system users while the revenue is only occasionally
calculated by the artists. The workload oscillates between update
and compute to simulate an evolving workload. The average trans-
action send rate is 100 TPS. We also run two baselines. Baseline 1
uses only the delta implementation, while baseline 2 only uses the
vanilla implementation.

6.3 Workloads for Admission Rate Tuning

We use the same generator smart contract and skewed update
workload used for parameter tuning. We extended the client work-
load generation logic so that the transaction rates can be adapted
per organization. Five of the clients registered to Orgl in the Fabric
network send transactions at a rate of 250 TPS, and we call them
clients-orgl. The other five clients, which we call clients-org2, send
transactions at a rate of 100 TPS. Further, the transactions generated
by clients-org1 have key conflicts with the transactions generated
by clients-org2. This simulates a real-world scenario mentioned in
the literature where one type of transaction floods the network,
thereby causing the other transactions to fail [30].

7 Results and Observations

We conducted three sets of experiments to demonstrate our three
locally autonomous systems. The results and observations from our
experiments are described in this section.

7.1 Self-driven Parameter Tuning

This section describes our autonomous parameter tuning experi-
ments. Figure 8 shows the overall throughput (which is equal to the
success throughput since there are no failures) and average latency
of the Fabric network with (learned results) and without (baseline)
the prediction system on the update workload. The workload’s send
rate changes at every 100 steps, corresponding to the throughput

Throughput
—Learned Results —Baseline

500
400
300 N'-vJ

MW\
200

0 100 200

Step

Figure 12: Autonomous parameter tuning with dynamically
decreasing exploration rate

changes visible in the graph. For the baseline, the values of the four
configuration parameters are set to default. The results show that
the performance of the network is improved significantly when
the prediction system is employed. Specifically, the throughput
increases by an average of 7%, and latency decreases by an average
of 30%. This validates the positive impact of autonomous param-
eter tuning. From Figure 9 we observe that the most frequently
used values that the prediction system learned over time for the
update workload are (300, 16 MB, 1 s, 16 MB) for max message
count, preferred max bytes, batch timeout, and snapshot interval size,
respectively.

The experimental results with the skewed update workload are
visualized in Figure 10. For the baseline, we used the best values
(300, 16 MB, 1 s, 16 MB) for the configuration parameters from
the previous experiment. We observe that even with the earlier
learnt best values, the performance improves with the use of the
prediction system. We observe an average of 4% increase in overall
throughput, 8% increase in success throughput and 23% decrease in
latency. From Figure 11 we observe that the most frequently used
values that the prediction system learned over time for the skewed
update workload are (300, 4 MB, 0.5 s, 16 MB) for max message
count, preferred max bytes, batch timeout, and snapshot interval size,
respectively. We observe that lower values are chosen for preferred
max bytes and batch timeout with the skewed update workload.
Comparing the baseline latency in Figure 8 and 10 we observe that
transactions are processed faster with the skewed update workload.
This could be due to the different configuration settings or because
the presence of transaction failures reduce the number of writes
on the database. Since the network is able to process transactions
faster, the prediction system chooses to also create blocks faster by
reducing the preferred max bytes and batch timeout.

It is evident that the two workloads have distinct optimal settings
and despite our efforts to comprehend the rationale behind these
specific selections, manually determining the perfect combination
of values would be a daunting task, underscoring the significance
of autonomous parameter tuning.

We further conducted an experiment with a dynamically decreas-
ing exploration rate. Exploration rate defines the rate at which the
prediction system tries new actions over time to identify the ideal
setting. By decreasing this hyperparameter we observe in Figure 12
that a stable throughput that is on an average 11% higher than
the baseline can be maintained. However, exploration is generally



Success Throughput
—Learned Results ---Baselinel ---Baseline2 —Learned Results

100

100

Throughput
---Baselinel

200

Steps

Average Latency

---Baseline2

---Baselinel ---Baseline2

—Learned Results

300 400 0 100 300

Steps

Figure 13: Performance with and without autonomous smart contract adaptation

o AT
60
90
40
20
0 80
0 100 200 300 400 0 100
Steps
Learned Actions
1
0
0 100 200 300 400
Step

Figure 14: Learned smart contract tuning actions

encouraged in self-driving systems to accommodate unexpected
changes that might require further learning.

7.2 Self-driven Smart Contract Adaptation

In this section, we discuss the experiments we conducted to
enable automatic adaptation of the smart contract to explore the
feasibility of autonomous smart contract upgrades. Figure 13 shows
the overall throughput, success throughput, and average latency
of the Fabric network with (learned results) and without (baseline)
the prediction system using the music management smart contract.
Baseline 1 uses only the delta implementation, while baseline 2
only uses the vanilla implementation. We initially use the update
workload and then the workload oscillates between update and
compute workloads at every 100 steps. We observe that Baseline 1
suffers from a very low success throughput of 9 TPS on average
with the update workload but has high success throughput with
the compute workload. In contrast, Baseline 2 performs better with
the update workload and has a decrease in throughput with the
compute workload.

The prediction system learns the performance impact of the two
implementations on both workloads. Choosing the delta implemen-
tation over vanilla gives more than 10 times the success throughput
with the update workload. At the same time, this choice decreases
the success throughput only by an average of 10% with the compute
workload. Figure 14 shows the actions learned by the prediction sys-
tem where 0 represents the vanilla implementation and 1 represents
delta. We observe that the prediction system correctly identifies
that the delta smart contract implementation is a better choice for
such an oscillating workload as the gain in performance with the
update workload far exceeds the loss in performance with the com-
pute workload. It chooses the delta smart contract implementation
around 86% of the time over the vanilla implementation.

7.3 Self-driven Admission Rate Tuning

In this section, we delve into the experiments we carried out to
adjust the rate at which the clients send transactions independently,
with the aim of guaranteeing fairness across all clients. Figure 15
shows the Jain’s fairness index, success throughput and success
rate at each learning step with and without the prediction system.

In Figure 16, the values in the y-axis [0, 0.5, 1] represent the ac-
tions [decreasego, unchanged, decreases] respectively. We observe
that over time, the faster clients (clients-orgI) learn to decrease the
transaction send rate, while the slower clients (clients-org2) learn to
maintain the default transaction send rate. The prediction system
learns that decreasing the admission rate of the faster clients can
result in a fair distribution of the number of successful transactions
between clients-org1 and clients-org2 as shown by upto 16% increase
in the Jain’s fairness index in Figure 15.

We also observe that with the prediction system the slower
clients have more successful transactions per learning step than
the faster clients (not shown in the figure). However, this tradeoff
is acceptable as the overall success rate improves by 6% (Figure 15).
In other words, with the prediction system, the faster clients have
a lower transaction send rate than the baseline but have a similar
success rate to the baseline. The slower clients have a similar trans-
action send rate and success rate to the baseline, but the number
of successful transactions per learning step increases (up to 16%
increase, not shown in the figure). Further, there is an average of
30% decrease in overall success throughput (Figure 15), which is
expected because the main objective is to ensure fairness between
the clients in terms of successful transactions.

7.4 Learning Overheads

The prediction system is deployed on a separate node, and there-
fore, the overheads related to computing and storing the training
model do not affect the Fabric components such as peers and order-
ers. In the parameter tuning experiments, the only interaction with
the Fabric network is the execution of a configuration transaction.
However, the network processes over 15,000 transactions at every
step, so a single additional transaction will not have significant
overhead. The prediction system updates the client configuration
files for the smart contract and admission rate control experiments.
The overhead of this file write operation is also insignificant as it
happens in a non-blocking manner on separate process threads.
Further, the metrics measured in our experiments are inclusive of
all overheads that the prediction system might induce.



Jain's Fairness Index

—Baseline —Learned Results —Baseline

Success Throughput

—Learned Results

Success Rate

—Baseline —Learned Results

0.5 0

1 T — 100
W L ! b " N 90
80

0 100 200 300 400

0 100 200 300 400 0 100
Steps

300 400

Steps Steps

Figure 15: Performance with and without autonomous client admission rate tuning

Learned Actions
—~Clients-Org1 —Clients-Org2

0 100 200 300 400
Steps
Figure 16: Learned admission rate tuning actions

7.5 Key Takeaways

We demonstrated that self-driving capabilities can be incorpo-
rated into different levels of the blockchain stack. Our experiments
show that the prediction system is able to learn the optimal values
for a given workload, leading to improved system performance.
Additionally, reducing the exploration rate over time can help the
prediction system to converge to these ideal values and produce
stable, higher performance. However, this approach could hinder
the detection of workload changes that require further learning. It
is also important to note that fine-tuning the adaptable features
can have varying impacts on each performance metric. For this
reason, reward functions must be carefully formulated based on
user requirements and considering the potential tradeoffs involved.

8 Discussions

We have identified several features that can be dynamically
adapted and demonstrated their feasibility. Our findings represent
a significant milestone in our quest to develop a completely self-
driving blockchain. In this section, we will discuss further poten-
tial adaptable features, the transferability of our findings to other
blockchain systems, and limitations of our work.

8.1 Further Adaptable Features

The adaptable features discussed in this paper so far are versatile
and can be applied across various blockchain use cases without
significant architectural changes. Additionally, our literature review
has identified adaptable features that are more specific to particular
use cases and require more extensive architectural modifications.
We will discuss these features and their challenges in this section.
8.1.1 BFT Consensus Model
In enterprise use cases, blockchain participants are typically as-
sumed to be non-byzantine, and the network only needs to be crash
fault tolerant. However, recently, Fabric has introduced a Byzantine
fault-tolerant consensus protocol [5]. The literature includes dy-
namic leader selection [74] and validator pool size adaptation [42]

strategies for BFT protocols that could be included in a self-driving
blockchain design. Further, the BFT consensus model in Fabric has
13 configuration parameters that can be tuned dynamically [14].
One such example is the IncomingMessageBufferSize, which is the
size of the buffer that temporarily stores incoming transactions.
Low values for this variable at high transaction rates cause bot-
tlenecks [16]. Therefore, these configuration variables can also be
identified as adaptable features.

8.1.2  Network Components

The performance of a Fabric network is greatly influenced by its
network components. Research shows that the number and dis-
tribution of endorsers and orderers have a significant impact on
network performance, and this can vary depending on the incoming
workload [9, 10, 15, 16, 69]. Therefore, dynamically scaling these
components up or down based on the workload can potentially im-
prove network performance. However, since decentralized trust is a
fundamental characteristic of blockchains, the network components
are both geographically and administratively distributed among the
participating entities. Geographically closer endorsers and orderers
ensure faster transaction processing, and therefore, the decision on
which components to adapt may not be unanimous. The process of
updating these components dynamically involves transmitting a
configuration transaction that all network members must endorse
and verify according to a system configuration endorsement policy.
To prevent the exclusion of any crucial decision-makers, a rigid en-
dorsement policy must be established, and a manual override option
must be implemented to reject any dynamic adaptation changes in
the event of real-world conflicts among participants.

8.1.3 Database

Two pluggable database options are available in Fabric — LevelDB
and CouchDB. LevelDB uses an LSM tree, which is suitable for
write-heavy workloads, while B-Trees are better for read-heavy
workloads [34]. By utilizing the concepts from the literature, a self-
driving LevelDB that can switch between the two architectures
would be perfect for an evolving workload [34]. Similarly, there
are studies on automated schema design and parameter tuning
for NoSQL databases, which can be used to develop a self-driving
CouchDB [35, 48, 50]. Designing a self-driving database is a com-
plex research problem on its own. The challenge multiplies when
designing a self-driving blockchain alongside a self-driving data-
base. Nonetheless, as the database community has already made
significant progress in this field [39, 40, 45-47, 57, 58, 76], there is a
possibility of having a self-driving database that could be seamlessly
integrated with a self-driving blockchain.



8.1.4 Business Process Model

Permissioned blockchains are mainly used in enterprise settings
where the execution of applications is typically based on a business
process model. Studies indicate that the business process model is
closely linked with the performance of the underlying system, and
several optimization strategies can improve the system through-
put [10, 27]. The activities in a business process model correspond
to the transactions in a blockchain system. Therefore, the effec-
tiveness of these optimization strategies is dependent on the work-
load. Research is moving towards self-adapting business process
models [13, 56], making them suitable candidates for an adapt-
able feature. Redesigning a business process model often means
redesigning the smart contract, which requires authorization from
all decision-making entities in a blockchain network. As a result,
frequent updates may not be recommended. To address this issue
multiple designs could be included in the initial business model,
and these can be selected dynamically by the workflow engine.

8.2 Technology Independence

It is challenging to have a generic discussion for a self-driving
blockchain system due to the vast implementation differences be-
tween different blockchain systems. Therefore, we use Fabric as
an example to support our discussions in this paper. Our work
can serve as a foundation to hold similar discussions about other
blockchain platforms. For instance, Corda and Multichain, which
are two other popular permissioned blockchains, have more than 9
and 15 dynamically adaptable system parameters, respectively [18,
19, 52]. Corda utilizes notaries to endorse transactions, and distribut-
ing transactions across multiple notaries is expected to enhance
throughput, similar to Fabric’s endorsement policies [17]. Quorum’s
(another popular permissioned blockchain) mining frequency, or
block time, affects transaction latencies in a linearly proportional
manner, similar to Fabric’s block size [4]. Additionally, optimiza-
tion strategies for Solidity smart contracts, which are used by many
different blockchain systems, are extensively discussed in the liter-
ature [1, 8, 53] and can be potential candidates for dynamic adap-
tation. Finally, fairness is a universal concept that can be applied
to all blockchain systems [32, 44]. Therefore, the client transaction
rate is an adaptable feature independent of the blockchain platform.
Our paper highlights the need for a self-driving blockchain and
demonstrates its feasibility on Fabric. Although it may not be viable
to reuse the same model on other blockchains, the methodology
we have presented can be applied to other blockchain platforms.

8.3 Limitations

In our experiments, we opted for the DQN learning strategy,
which is a widely-used approach in self-driving systems [6, 54,
59, 61]. However, there are several other learning strategies that
we could have considered to improve the performance of our ap-
proach. The literature mentions alternative approaches such as
recurrent neural networks, linear regression, actor-critic model,
and deep deterministic policy gradient for designing self-driving
systems [43, 46, 57, 76]. Further, in our experiments, we use a single
performance metric to define our reward functions to reduce the
time and complexity of our learning approach. However, several
optimized approaches to defining the reward function with multi-
ple performance metrics can be found in the literature [22, 29, 49].

Nevertheless, our primary objective is to provide a blockchain per-
spective to the discussions on self-driving systems. As a result, we
aim to identify adaptable features in blockchains and demonstrate
their feasibility. Our focus is not to compare and determine the
perfect learning approach for self-driving systems since this topic
has already been extensively discussed in the literature [3, 43, 45].

9 Related Work

The database community has conducted extensive research on
self-driving, self-managing, auto-tuning and self-adaptive data-
base management systems that target several areas, such as re-
source allocation, configuration parameters, query optimization,
partitioning, storage layout, and indexes [11, 20, 31, 33, 39-41, 45—
47, 57, 58, 75, 76]. However, our conversation is centred around
distributed ledger technologies that differ in architecture and use
cases. For instance, the number and type of configuration parame-
ters available for tuning, as well as the presence of smart contracts,
set blockchains apart from databases. Additionally, our discussion
also explores self-driving possibilities at the application level in
terms of fairness, which is more significant for decentralized sys-
tems such as blockchains.

In the recent literature, there have been discussions on the sub-
ject of self-adaptive and auto-tuning blockchains. For instance,
Adachain [72] is a self-adaptive blockchain that modifies its architec-
ture according to the incoming workload to enhance performance.
Contrastingly, we focus on applying self-driving strategies to exist-
ing systems without modifying their core architecture, which helps
users of established blockchain systems to employ our method-
ology without the need to switch to a new blockchain platform.
Athena [43] is an auto-tuning system that can tune the configura-
tion parameters of a blockchain before deployment. Our focus, on
the other hand, is on parameter tuning of a live network. Sabine [42]
is a self-adaptive blockchain that adapts the number of validators
in its consensus protocol, while Ursa [62] can adjust the number of
transactions in a block based on user requirements. These works
emphasize a single adaptable aspect of blockchains, whereas our pa-
per focuses on identifying adaptable features throughout the entire
blockchain stack. Further, self-driving possibilites at the application
level have not yet been explored in the literature.

10 Conclusions

The demand for self-driving blockchain systems is growing
due to the increasing complexity and cost of maintaining existing
blockchain applications. While some initial steps have been taken
towards creating self-adaptive and auto-tuning blockchain systems,
a comprehensive self-driving blockchain has yet to be explored. This
paper focused on the opportunities for self-drive in Hyperledger
Fabric, one of the most popular permissioned blockchains used by
enterprises. Our investigation identified adaptable features at dif-
ferent levels of the blockchain stack that can be dynamically tuned
to improve performance. We also addressed specific challenges and
possible solutions. We set up three demonstrative autonomous sys-
tems and conducted extensive experiments to evaluate the feasibil-
ity of our findings. The results suggest that self-driving blockchain
systems are a promising avenue for future research.



References [24] Cloud Native Computing Foundation. 2023. https://etcd.io/docs/v3.5/tuning/

[1] Elvira Albert, Jesus Correas, Pablo Gordillo, Guillermo Roman-Diez, and Albert [25] Hyperledgér Foundation. 2023. https://www.hyperledger.org/members )
Rubio. 2020. Gasol: Gas analysis and optimization for ethereum smart contracts. [26] MlCh}alel William G. 2023. https://watcher.guru/news/how-many-blockchains-
are-there

In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 118-125.

Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-
nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh
Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula
Stathakopoulou, Marko Vukoli¢, Sharon Weed Cocco, and Jason Yellick. 2018. Hy-
perledger Fabric: A Distributed Operating System for Permissioned Blockchains.
In Proceedings of the Thirteenth EuroSys Conference (Porto, Portugal) (EuroSys
’18). ACM, New York, NY, USA, Article 30, 15 pages. https://doi.org/10.1145/
3190508.3190538

Mrinal R. Bachute and Javed M. Subhedar. 2021. Autonomous Driving Architec-
tures: Insights of Machine Learning and Deep Learning Algorithms. Machine
Learning with Applications 6 (2021), 100164. https://doi.org/10.1016/j.mlwa.2021.
100164

Arati Baliga, I Subhod, Pandurang Kamat, and Siddhartha Chatterjee. 2018. Per-
formance Evaluation of the Quorum Blockchain Platform. https://doi.org/10.
48550/ARXIV.1809.03421

Artem Barger, Yacov Manevich, Hagar Meir, and Yoav Tock. 2021. A
Byzantine Fault-Tolerant Consensus Library for Hyperledger Fabric.
arXiv:2107.06922 [cs.DC]

Ayman Basheer, Hassan Jaleel Hassan, and Gaida Muttasher. 2021. Intelligent pa-
rameter tuning using deep Q-network for RED algorithm in adaptive queue man-
agement systems. In International Conference on Micro-Electronics and Telecom-
munication Engineering. Springer, 439-446.

Nicolae Berendea, Hugues Mercier, Emanuel Onica, and Etienne Riviére. 2020.
Fair and Efficient Gossip in Hyperledger Fabric. In 2020 IEEE 40th International
Conference on Distributed Computing Systems (ICDCS). 190-200. https://doi.org/
10.1109/ICDCS47774.2020.00027

Tamara Brandstétter, Stefan Schulte, Jiirgen Cito, and Michael Borkowski. 2020.
Characterizing efficiency optimizations in solidity smart contracts. In 2020 IEEE
International Conference on Blockchain (Blockchain). IEEE, 281-290.

Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. 2021. Why Do My
Blockchain Transactions Fail? A Study of Hyperledger Fabric. In Proceedings of
the 2021 International Conference on Management of Data (Virtual Event, China)
(SIGMOD/PODS °21). Association for Computing Machinery, New York, NY, USA,
221-234. https://doi.org/10.1145/3448016.3452823

Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. 2023. How To Op-
timize My Blockchain? A Multi-Level Recommendation Approach. Proc. ACM
Manag. Data 1, 1, Article 24 (may 2023), 27 pages. https://doi.org/10.1145/3588704
Surajit Chaudhuri and Vivek Narasayya. 2007. Self-Tuning Database Systems: A
Decade of Progress. In Proceedings of the 33rd International Conference on Very
Large Data Bases (Vienna, Austria) (VLDB °07). VLDB Endowment, 3-14.
Anamika Chauhan, Om Prakash Malviya, Madhav Verma, and Tejinder Singh
Mor. 2018. Blockchain and Scalability. In 2018 IEEE International Conference on
Software Quality, Reliability and Security Companion (QRS-C). 122-128. https:
//doi.org/10.1109/QRS-C.2018.00034

Sihem Cherif, Raoudha Ben Djemaa, and Ikram Amous. 2015. SABPEL: Creating
self-adaptive business processes. In 2015 IEEE/ACIS 14th International Conference
on Computer and Information Science (ICIS). 619-626. https://doi.org/10.1109/
1CIS.2015.7166667

Configuring and operating a BFT ordering service. 2023. https://hyperledger-
fabric.readthedocs.io/en/latest/bft_configuration.html#channel-configuration
Cluster considerations. 2023.  https://hyperledger-fabric.readthedocs.io/en/
latest/deployorderer/ordererplan.html#cluster-considerations

Performance considerations. 2023. https://hyperledger-fabric.readthedocs.io/
en/latest/performance.html

Corda 2022. https://docs.r3.com/en/platform/corda/4.10/enterprise/key-concepts-
notaries.html. [Online; accessed 12-April-2023].

Corda: Network Parameters 2023. https://docs.r3.com/en/platform/corda/1.5/
cenm/config-network-parameters.html. [Online; accessed 02-December-2023].
Corda: Updating the network parameters 2023. https://docs.r3.com/en/platform/
corda/1.5/cenm/updating-network-parameters html. ~ [Online; accessed 02-
December-2023].

Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2013. ElasTraS: An Elastic,
Scalable, and Self-Managing Transactional Database for the Cloud. 38, 1, Article
5 (apr 2013), 45 pages. https://doi.org/10.1145/2445583.2445588

Stable Baselines Documentation. 2023. https://stable-baselines3.readthedocs.io/
en/master/modules/dqn.html

Jonas Eschmann. 2021. Reward Function Design in Reinforcement Learning.
Springer International Publishing, Cham, 25-33.

Agata Ferreira. 2021. Regulating smart contracts: Legal revolution or simply
evolution? Telecommunications Policy 45, 2 (2021), 102081. https://doi.org/10.
1016/j.telpol.2020.102081

(27]

[28

[29]

iy
=

[31

[32

[33

[34

(39]
[40]
[41]

[42

[43

[44]

[45

[46]

[47

Luciano Garcia-Bafiuelos, Alexander Ponomarev, Marlon Dumas, and Ingo Weber.
2017. Optimized Execution of Business Processes on Blockchain. In Business
Process Management, Josep Carmona, Gregor Engels, and Akhil Kumar (Eds.).
Springer International Publishing, Cham, 130-146.

Jack Gilcrest and Arthur Carvalho. 2018. Smart Contracts: Legal Considerations.

In 2018 IEEE International Conference on Big Data (Big Data). 3277-3281. https:
//doi.org/10.1109/BigData.2018.8622584

Adam Gleave, Michael Dennis, Shane Legg, Stuart Russell, and Jan Leike. 2020.
Quantifying differences in reward functions. arXiv preprint arXiv:2006.13900
(2020).

Seep Goel, Abhishek Singh, Rachit Garg, Mudit Verma, and Praveen Jayachandran.
2018. Resource Fairness and Prioritization of Transactions in Permissioned
Blockchain Systems (Industry Track). In Proceedings of the 19th International
Middleware Conference Industry (Rennes, France) (Middleware ’18). ACM, New
York, NY, USA, 46-53. https://doi.org/10.1145/3284028.3284035

Michael Hammer and Arvola Chan. 1976. Index Selection in a Self-Adaptive Data
Base Management System. In Proceedings of the 1976 ACM SIGMOD International
Conference on Management of Data (Washington, D.C.) (SIGMOD °76). Association
for Computing Machinery, New York, NY, USA, 1-8. https://doi.org/10.1145/
509383.509385

Yuming Huang, Jing Tang, Qianhao Cong, Andrew Lim, and Jianliang Xu. 2021.
Do the Rich Get Richer? Fairness Analysis for Blockchain Incentives. In Proceed-
ings of the 2021 International Conference on Management of Data (Virtual Event,
China) (SIGMOD °21). Association for Computing Machinery, New York, NY,
USA, 790-803. https://doi.org/10.1145/3448016.3457285

Scott E. Hudson and Roger King. 1989. Cactis: A Self-Adaptive, Concurrent
Implementation of an Object-Oriented Database Management System. 14, 3 (sep
1989), 291-321. https://doi.org/10.1145/68012.68013

Stratos Idreos, Niv Dayan, Wilson Qin, Mali Akmanalp, Sophie Hilgard, Andrew
Ross, James Lennon, Varun Jain, Harshita Gupta, David Li, et al. 2019. Design
Continuums and the Path Toward Self-Designing Key-Value Stores that Know
and Learn.. In CIDR.

Stratos Idreos and Tim Kraska. 2019. From Auto-Tuning One Size Fits All to
Self-Designed and Learned Data-Intensive Systems. In Proceedings of the 2019
International Conference on Management of Data (Amsterdam, Netherlands) (SIG-
MOD ’19). Association for Computing Machinery, New York, NY, USA, 2054-2059.
https://doi.org/10.1145/3299869.3314034

Anurag Jain. 2023. https://oyelabs.com/blockchain-app-development-cost/
Rajendra K Jain, Dah-Ming W Chiu, William R Hawe, et al. 1984. A quantitative
measure of fairness and discrimination. Eastern Research Laboratory, Digital
Equipment Corporation, Hudson, MA 21 (1984).

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. 1996. Rein-
forcement learning: A survey. Journal of artificial intelligence research 4 (1996),
237-285.

Jan Kossmann. 2018. Self-Driving: From General Purpose to Specialized DBMSs..
In PhD@ VLDB.

Jan Kossmann and Rainer Schlosser. 2020. Self-driving database systems: a
conceptual approach. Distributed and Parallel Databases 38 (2020), 795-817.
Sushil Kumar. 2003. Oracle database 10g: The self-managing database. White
Paper (2003).

Guilain Leduc, Sylvain Kubler, and Jean-Philippe Georges. 2022. Sabine: Self-
Adaptive Blockchaln coNsEnsus. In 2022 9th International Conference on Fu-
ture Internet of Things and Cloud (FiCloud). 234-240. https://doi.org/10.1109/
FiCloud57274.2022.00039

Mingxuan Li, Yazhe Wang, Shuai Ma, Chao Liu, Dongdong Huo, Yu Wang, and
Zhen Xu. 2023. Auto-Tuning with Reinforcement Learning for Permissioned
Blockchain Systems. Proc. VLDB Endow. 16, 5 (jan 2023), 1000-1012. https:
//doi.org/10.14778/3579075.3579076

Jian Liu, Wenting Li, Ghassan O Karame, and N Asokan. 2018. Toward fairness
of cryptocurrency payments. IEEE Security & Privacy 16, 3 (2018), 81-89.

Lin Ma. 2021. Self-Driving Database Management Systems: Forecasting, Modeling,
and Planning. Ph.D. Dissertation. Carnegie Mellon University.

Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo,
and Geoffrey J. Gordon. 2018. Query-Based Workload Forecasting for Self-
Driving Database Management Systems. In Proceedings of the 2018 International
Conference on Management of Data (Houston, TX, USA) (SIGMOD ’18). Association
for Computing Machinery, New York, NY, USA, 631-645. https://doi.org/10.
1145/3183713.3196908

Lin Ma, William Zhang, Jie Jiao, Wuwen Wang, Matthew Butrovich, Wan Shen
Lim, Prashanth Menon, and Andrew Pavlo. 2021. MB2: Decomposed Behavior
Modeling for Self-Driving Database Management Systems. In Proceedings of the
2021 International Conference on Management of Data (Virtual Event, China) (SIG-
MOD °21). Association for Computing Machinery, New York, NY, USA, 1248-1261.
https://doi.org/10.1145/3448016.3457276



[48] Ashraf Mahgoub, Paul Wood, Sachandhan Ganesh, Subrata Mitra, Wolfgang

Gerlach, Travis Harrison, Folker Meyer, Ananth Grama, Saurabh Bagchi, and
Somali Chaterji. 2017. Rafiki: A Middleware for Parameter Tuning of NoSQL
Datastores for Dynamic Metagenomics Workloads. In Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference (Las Vegas, Nevada) (Middleware ’17).
Association for Computing Machinery, New York, NY, USA, 28-40. https://doi.
0rg/10.1145/3135974.3135991

Laétitia Matignon, Guillaume J. Laurent, and Nadine Le Fort-Piat. 2006. Reward
Function and Initial Values: Better Choices for Accelerated Goal-Directed Re-
inforcement Learning. In Artificial Neural Networks — ICANN 2006, Stefanos D.
Kollias, Andreas Stafylopatis, Wiodzistaw Duch, and Erkki Oja (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 840-849.

Michael J. Mior. 2014. Automated Schema Design for NoSQL Databases. In Pro-
ceedings of the 2014 SIGMOD PhD Symposium (Snowbird, Utah, USA) (SIGMOD’14
PhD Symposium). Association for Computing Machinery, New York, NY, USA,
41-45. https://doi.org/10.1145/2602622.2602624

Shashank Motepalli and Hans-Arno Jacobsen. 2023. Analyzing Geospatial Distri-
bution in Blockchains. arXiv:2305.17771 [cs.DC]

MultiChain runtime parameters 2023. https://www.multichain.com/developers/
runtime-parameters/. [Online; accessed 02-December-2023].

Quang-Thang Nguyen, Bao Son Do, Thi Tam Nguyen, and Ba-Lam Do. 2022.
GasSaver: A Tool for Solidity Smart Contract Optimization. In Proceedings of the
Fourth ACM International Symposium on Blockchain and Secure Critical Infras-

[70] Updating a channel configuration 2022. https://hyperledger-fabric.readthedocs.

io/en/release-2.2/config_update.html. [Online; accessed 12-April-2023].

Meir Wahnon. 2024. https://github.com/meirwah/awesome-workflow-engines
Chenyuan Wu, Bhavana Mehta, Mohammad Javad Amiri, Ryan Marcus, and
Boon Thau Loo. 2023. AdaChain: A Learned Adaptive Blockchain. Proc. VLDB
Endow. 16, 8 (jun 2023), 2033-2046. https://doi.org/10.14778/3594512.3594531

[73] Jie Xu, Qingyuan Xie, Sen Peng, Cong Wang, and Xiaohua Jia. 2023. AdaptChain:

Adaptive Scaling Blockchain With Transaction Deduplication. IEEE Transactions
on Parallel and Distributed Systems 34, 6 (2023), 1909-1922. https://doi.org/10.
1109/TPDS.2023.3267071

Gengrui Zhang, Fei Pan, Sofia Tijanic, and Hans-Arno Jacobsen. 2023. Pres-
tigeBFT: Revolutionizing View Changes in BFT Consensus Algorithms with
Reputation Mechanisms. arXiv preprint arXiv:2307.08154 (2023).

Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. 2019. An
End-to-End Automatic Cloud Database Tuning System Using Deep Reinforce-
ment Learning. In Proceedings of the 2019 International Conference on Management
of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing Ma-
chinery, New York, NY, USA, 415-432. https://doi.org/10.1145/3299869.3300085
Xuanhe Zhou, Lianyuan Jin, Ji Sun, Xinyang Zhao, Xiang Yu, Jianhua Feng, Shifu
Li, Tianging Wang, Kun Li, and Luyang Liu. 2021. DBMind: A Self-Driving
Platform in OpenGauss. Proc. VLDB Endow. 14, 12 (jul 2021), 2743-2746. https:
//doi.org/10.14778/3476311.3476334

tructure. 125-134.

Takafumi Okuyama, Tad Gonsalves, and Jaychand Upadhay. 2018. Autonomous

driving system based on deep q learnig. In 2018 International Conference on

Intelligent Autonomous Systems (ICoIAS). IEEE, 201-205.

[55] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable Consen-
sus Algorithm. In Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference (Philadelphia, PA) (USENIX ATC’14). USENIX Association,
Berkeley, CA, USA, 305-320. http://dl.acm.org/citation.cfm?id=2643634.2643666

[56] Jamila Oukharijane, I Ben Said, Mohamed Amine Chaabane, Rafik Bouaziz, and

Eric Andonoff. 2018. A survey of self-adaptive business processes. In Int. Business

Information Management Association Conference, Seville, Spain. 1388-1403.

Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,

Prashanth Menon, Todd C Mowry, Matthew Perron, Ian Quabh, et al. 2017. Self-

Driving Database Management Systems.. In CIDR, Vol. 4. 1.

Andrew Pavlo, Matthew Butrovich, Lin Ma, Prashanth Menon, Wan Shen Lim,

Dana Van Aken, and William Zhang. 2021. Make Your Database System Dream

of Electric Sheep: Towards Self-Driving Operation. Proc. VLDB Endow. 14, 12 (jul

2021), 3211-3221. https://doi.org/10.14778/3476311.3476411

Baiyu Peng, Qi Sun, Shengbo Eben Li, Dongsuk Kum, Yuming Yin, Junqing Wei,

and Tianyu Gu. 2021. End-to-end autonomous driving through dueling double

deep Q-network. Automotive Innovation 4 (2021), 328-337.

Michel Rauchs, Apolline Blandin, Keith Bear, and Stephen B McKeon. 2019. 2nd

global enterprise blockchain benchmarking study. Available at SSRN 3461765

(2019).

Max Peter Ronecker and Yuan Zhu. 2019. Deep Q-network based decision

making for autonomous driving. In 2019 3rd international conference on robotics

and automation sciences (ICRAS). IEEE, 154-160.

Na Ruan, Dongli Zhou, and Weijia Jia. 2020. Ursa: Robust Performance for

Nakamoto Consensus with Self-Adaptive Throughput. ACM Trans. Internet

Technol. 20, 4, Article 41 (nov 2020), 26 pages. https://doi.org/10.1145/3412341

Pingcheng Ruan, Tien Tuan Anh Dinh, Dumitrel Loghin, Meihui Zhang, Gang

Chen, Qian Lin, and Beng Chin Ooi. 2021. Blockchains vs. Distributed Databases:

Dichotomy and Fusion. Association for Computing Machinery, New York, NY,

USA. https://doi.org/10.1145/3448016.3452789

Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta, Meihui Zhang, Gang Chen,

and Beng Chin Ooi. 2020. A Transactional Perspective on Execute-Order-Validate

Blockchains. In Proceedings of the 2020 ACM SIGMOD International Conference

on Management of Data (Portland, OR, USA) (SIGMOD °20). Association for

Computing Machinery, New York, NY, USA, 543-557. https://doi.org/10.1145/

3318464.3389693

Abdurrashid Ibrahim Sanka and Ray C.C. Cheung. 2021. A systematic review of

blockchain scalability: Issues, solutions, analysis and future research. Journal of

Network and Computer Applications 195 (2021), 103232. https://doi.org/10.1016/j.

jnca.2021.103232

[66] Application side Programming Model. 2023. https://hyperledger-fabric.
readthedocs.io/it/latest/Fabric-FAQ.html

[67] Sudeep Srivastava. 2023. https://appinventiv.com/guide/blockchain-app-
development-cost/

[54

(57

[58

[59

N
=

[61

[62

(63

(64

[65

[68] Akash Takyar. 2023. https://www.leewayhertz.com/cost-of-blockchain-
implementation
[69] Parth Thakkar, Senthil Nathan, and Balaji Viswanathan. 2018. Performance

Benchmarking and Optimizing Hyperledger Fabric Blockchain Platform. In 2018
IEEE 26th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS). 264-276. https://doi.org/
10.1109/MASCOTS.2018.00034



Tl Uhirs We gratefully acknowledge support from the Simons Foundation,
TUVErsIty member institutions, and all contributors. Donate

- Search. Al fields
a 1:__\1v > ¢s > arXiv:2406.06318v1 Help | Advanced Search

Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 10 Jun 2024]

Should my Blockchain Learn to Drive? A Study of Hyperledger Fabric

Jeeta Ann Chacko, Ruben Mayer, Hans-Arno Jacobsen

View License
(see next page)

Similar to other transaction processing frameworks, blockchain systems need to be dynamically reconfigured to adapt to varying workloads and changes in network conditions. However, achieving optimal reconfiguration is particularly challenging due to
the complexity of the blockchain stack, which has diverse configurable parameters. This paper explores the concept of self-driving blockchains, which have the potential to predict workload changes and reconfigure themselves for optimal performance
without human intervention. We compare and contrast our discussions with existing research on databases and highlight aspects unigue to blockchains. We identify specific parameters and components in Hyperledger Fabric, a popular permissioned
blockchain system, that are suitable for autonomous adaptation and offer potential solutions for the challenges involved. Further, we i three locally systems, each targeting a different layer of the blockchain stack, and

conduct experiments to understand the feasibility of our findings. Our experiments indicate up to 11% improvement in success throughput and a 30% decrease in latency, making this a significant step towards implementing a fully autonomous blockchain
system in the future.

Subjects: Distributed, Parallel, and Cluster Computing (cs.DC); Cryptography and Security (cs.CR)
Citeas:  arXiv:2406.06318 [cs.DC]

(or arXiv:2406.06318v1 [s.DC] for this version)

https:/ [doi.org/10.48550 /arXiv.2406.06318 @

Submission history
From: Jeeta Ann Chacko [view email]
[v1] Mon, 10 Jun 2024 14:33:59 UTC (1,845 KB)

Bibliographic Tools Code, Data, Media Demos Related Papers. About arXivLabs

Access Paper:
« View PDF
« TeX Source
* Other Formats
Current browse context:
€es.DC

<prev | next>
new | recent | 2024-06
Change to browse by:
s

s.CR

References & Citations
+ NASA ADS

+ Google Scholar

+ Semantic Scholar

Export BibTeX Citation

Bookmark

Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)

scite Smart Citations (What are Smart Citations?)

Which authors of this paper are endorsers? | Disable Mathjax (What is MathJax?)




arXiv.org - Non-exclusive license to distribute

The URI http://arxiv.org/licenses/nonexclusive-distrib/1.0/ is used to record the fact that the
submitter granted the following license to arXiv.org on submission of an article:

e [ grant arXiv.org a perpetual, non-exclusive license to distribute this article.

e [ certify that I have the right to grant this license.

¢ [ understand that submissions cannot be completely removed once accepted.

¢ [ understand that arXiv.org reserves the right to reclassify or reject any submission.

Revision history

2004-01-16 - License above introduced as part of arXiv submission process
2007-06-21 - This HTML page created

Contact






Appendix D

A Comprehensive Study on Benchmarking Permissioned
Blockchains

121



A Comprehensive Study on Benchmarking
Permissioned Blockchains

Jeeta Ann Chacko!, Ruben Mayer?, Alan Fekete®, Vincent Gramoli®, and
Hans-Arno Jacobsen*

! Technical University of Munich
chacko@in.tum.de

2 University of Bayreuth

ruben.mayer@uni-bayreuth.de
3 University of Sydney
{alan.fekete,vincent.gramoli}@sydney.edu.au
4 University of Toronto
jacobsen@eecg.toronto.edu

Abstract. Blockchain benchmarking systems are actively discussed in
the literature, focusing on increasing the number of blockchains that can
be supported. However, the constant inception of new blockchains into
the market and their vast implementation differences make it a mas-
sive engineering challenge. We provide a general discussion on the main
aspects of benchmarking blockchains, highlighting the necessary contri-
butions from the developers and users of blockchains and benchmarking
systems. We identify problem statements across four benchmarking fac-
tors by investigating five popular permissioned blockchains. Further, we
define a broad methodology to tackle these problems. We conduct a case
study of five existing blockchain benchmarking systems for our evaluation
and identify their limitations, clarifying the need for our methodology.

Keywords: permissioned blockchains - benchmarking systems

1 Introduction

Though blockchains were initially considered digital currency exchange sys-
tems, introducing smart contracts led to the classification of blockchains as
decentralized transactional management systems that could support more use
cases [64]. Later, the conception of permissioned blockchains that restricted the
network access to authorized users and improved the overall performance made
blockchains attractive for enterprise use cases. Currently, the most popular per-
missioned blockchain platforms, such as Fabric, Corda, Multichain, and Quo-
rum, have around 30 to 70 enterprise partners using their systems for various
use cases, such as banking, supply chain transparency, and digital asset manage-
ment [20,42,54,59].

However, the plethora of blockchain systems currently available in the market
creates uncertainty in the selection process. A recent survey shows that 26% of



2 Chacko et al.

users switched from their initially chosen blockchain at a later stage of develop-
ment and that performance is one of the top selection criteria for blockchains [62].
Though most blockchains report their individual performance data, the vast dif-
ferences in implementation, system configuration, and workloads make a fair
comparison challenging [33]. This highlights the demand for a comprehensive
and impartial blockchain benchmarking approach. Currently, there are multiple
benchmarking system implementations available for blockchains [11,28,33,40,57,
65]. Each of them targets one or a specific set of blockchains to benchmark. The
current focus in this research space is on increasing the number of blockchains
supported by a benchmarking system. For example, Blockbench [28], the first
benchmarking system for permissioned blockchains, supports four blockchains,
while Diablo [33] and Gromit [57], the latest benchmarking systems, support
seven blockchains. However, the rapid inception of new blockchains into the
market makes this a massive engineering challenge.

Additionally, as is the case with most transaction processing systems, ini-
tially, the lines between the design and implementation of benchmarking sys-
tems are often blurred [4]. A well-implemented benchmarking system may still
fail to consider all crucial aspects of benchmarking due to poor design [34]. For
example, many existing benchmarking systems only support simple asset trans-
fer scenarios [57,65], while in reality, blockchains are employed for numerous
other use cases. Therefore, we identify the need for a thorough discussion on the
different aspects of benchmarking blockchains, which will assist in implementing
a comprehensive and extensible benchmarking system in the future.

One needs to understand the similarities and differences between the various
blockchain platforms to identify the diverse factors of benchmarking accurately.
A significant challenge in this direction is the insufficient scientific literature.
Since many blockchains are commercialized, apart from research papers, we
must also analyze technical documentation and blog posts from the respective
blockchain developers to understand their systems thoroughly. Further, given
the vast implementation distinctions among the different blockchain systems,
discussions regarding blockchain benchmarking should not be limited to devel-
opers of benchmarking systems, but should also include developers of blockchain
systems.

Our discussions address the problems regarding crucial benchmarking ele-
ments such as system configuration, parameter tuning, workloads, and metrics.
We emphasize the importance of these issues by extensively analyzing five dif-
ferent permissioned blockchains. We then define the contributions required from
the entire blockchain community to tackle them. We also conduct a case study
of five existing benchmarking systems to identify their limitations and highlight
the need for contributions. For example, we identify various system configuration
settings that affect the performance of each of the multiple blockchains, while
current benchmarking studies only employ the default value for these settings.
In detail, we provide the following contributions:

1. We formulate problem statements across four aspects of benchmarking based
on five different permissioned blockchains (Fabric, Corda, Multichain, Quo-



A Comprehensive Study on Benchmarking Permissioned Blockchains 3

rum and Diem). This highlights the importance of these problems across
different blockchain platforms.

2. We define a general methodology to tackle the problems that spans across
developers and users of blockchains as well as benchmarking systems. This
highlights the contributions required from each of them to improve the do-
main of blockchain benchmarking.

3. We provide a case study of five different blockchain benchmarking systems
and the corresponding benchmarking studies to highlight the current limi-
tations. This can help benchmarking system developers to extend their im-
plementations to adhere to our methodology.

2 Permissioned Blockchains

In permissioned blockchains, access is restricted to a set of authorized users, mak-
ing them suitable for many enterprise use cases that cannot support anonymity.
They are peer-to-peer networks with access controls operating on a distributed
ledger. Despite being in the same classification, the multiple permissioned blockchain
systems currently available have vast differences in their implementation. This
section briefly overviews the basic concepts and transaction flow of five popular
permissioned blockchains, accentuating their similarities and differences.

2.1 Hyperledger Fabric

Hyperledger Fabric (a.k.a Fabric) is an open-sourced, permissioned blockchain
system under the Linux foundation [2]. Fabric follows an execute-order-validate
(EOV) model, one of its unique features. The main components of a Fabric
network are peers, endorsers, and the ordering service. Only the endorsers store
the smart contracts, and transactions are sent to the endorsers for execution
based on an endorsement policy. Speculative transaction execution results in a
read-write set of all the keys in the transaction which is then forwarded to the
ordering service. The ordering service is a cluster of nodes that employs the Raft
consensus protocol to decide on the order of the transactions. Upon consensus,
a block of ordered transactions is broadcasted to all peers. Every peer validates
the speculative results of every transaction in the block with the current world
state. After successful validation, the world state is updated, and the block of
transactions is committed to the ledger.

2.2 Corda

R3 Corda is an open-sourced permissioned blockchain mainly designed for finan-
cial use cases [7]. In Corda, data is only shared among the network participants
on a need-to-know basis. The nodes in a Corda network are authorized using an
identity service. Further, a network map service is employed for node lookup,
enabling point-to-point communication between nodes. An immutable object
called a state describes any data known to the nodes at a specific point in time.



4 Chacko et al.

Each node has a vault or database that stores all the state sequences it knows.
Constraints to ensure that a state is valid are defined using smart contracts. A
transaction defines the input and output for a state transformation. Further le-
gal prose can be attached to a transaction to settle future disputes, which makes
Corda appealing to financial use cases. Notaries are specific nodes assigned with
the responsibility of ensuring that output states are unique successors of in-
put states thereby preventing double spending. When a transaction proposal is
created, only the entities related to it execute the smart contract to ensure its
validity. Further, notaries check each input state object in a transaction to ensure
that they have not been consumed earlier and prevent double-spending. Trans-
actions are committed after the transaction-related entities and the notaries sign
them.

2.3 Multichain

Multichain is a fork of Bitcoin and shares many of its features [35]. However, it is
designed for a permissioned environment where nodes prove their identity using
a handshaking protocol when connecting to other nodes. Each node defines the
public address for which it has a private key, and other nodes can send challenge
messages to be signed with this key. Unlike Bitcoin, only a few nodes are granted
mining privileges, and there is a single validator per block. The validator is
scheduled in a round-robin style with tunable parameters. Other participants
then execute the individual transactions in a block in the defined global order.

2.4 Quorum

Quorum is a fork of the Go implementation of Ethereum, where the P2P layer
was redesigned to allow only authorized nodes [50]. A privacy layer is imple-
mented to support private and public transactions in a permissioned environ-
ment. Quorum uses transaction managers to handle encrypted data, including
an enclave, which is a hardware security module, to hold private keys. Private
transactions are sent to transaction managers for encryption after verifying the
sender, and only the entities related to the transaction can receive the decrypted
data. Different protocols, such as Raft, IBFT, and QBFT, are employed to attain
consensus in the Quorum network. When consensus is reached, all the nodes in
the network execute the public transactions in a block, while private transactions
are only executed by the entities related to the transaction.

2.5 Diem

Diem (earlier known as Libra) is a permissioned blockchain introduced by Face-
book (now Meta) [27]. The network consists of two types of nodes - full nodes
and validators. For every incoming transaction, validators check the signature,
balance, and whether the transaction has been replayed, before sharing them
with other validators. A BFT protocol (DiemBFT) is used to reach a consensus



A Comprehensive Study on Benchmarking Permissioned Blockchains 5

on the order of transactions. When a validator is elected as the leader, it pro-
poses a block which is forwarded to the other validators for approval. Meanwhile,
the transactions in the block are speculatively executed and also shared. Upon
consensus, all the transactions of the proposed block are committed. Full nodes
are employed to re-execute and store all transactions to provide evidence in the
event of a history rewrite attempt. It ensures that validators cannot collude on
transaction executions.

3 Benchmarking Guidelines

In this section, we focus on four important aspects to address when benchmark-
ing permissioned blockchains. We consider examples from Fabric [2], Corda [37],
Multichain [55], Quorum [60] (four of the most commonly used permissioned
blockchains [62]) and Diem [27] when defining each problem statement. We then
propose a general methodology for tackling each problem. The methodology tar-
gets blockchain developers, benchmarking system developers, as well as those
conducting benchmarking studies on blockchains. We aim to bring to light the
contributions required from each of them to the blockchain benchmarking space.

3.1 System Configuration

Problem Statement There is a vast distinction in the system components
that compose the different permissioned blockchain implementations. The choice,
count, and distribution of the different components significantly affect the per-
formance. For example, the Hyperledger Fabric network consists of validating
peers, endorsers, orderers, and clients where the count and distribution of each
of these components impact the performance [9,12,38]. Corda offers two config-
urations for its notary nodes: validating and non-validating. Deploying multiple
validating notary clusters can aid load balancing, improving performance [19].
In the Quorum network, performance is influenced by the choice between full
nodes with a privacy manager or light nodes [32] for process-intensive tasks as
well as boot nodes [14] or static nodes [15] for different peer discovery strategies.
Multichain has the concept of data streams, and nodes that subscribe to these
streams ensure faster information retrieval [52]. Also, Diem has the concept of
validator nodes and full nodes, the choice of which can introduce additional over-
head depending on the use case [26]. Therefore, identifying the influential system
components and designing the optimal setup is crucial to ensure the best per-
formance for each blockchain implementation. Further, even though the system
configuration of each blockchain needs to be individually optimized, the hard-
ware requirements or the hardware cost must be uniform across all blockchains
for a fair benchmarking approach [61].

Methodology



6 Chacko et al.

1. Blockchain system developers need to provide extensive documentation and
experimental results to quantify the influence of system components on the
performance for each blockchain. Identifying and documenting a priority-
based list of the main components that significantly impact the performance
will be highly beneficial. Multichain published a list of tips for performance
optimization on their website [53] which includes ideal server specifications,
and though they do not provide concrete suggestions, this highlights the
need for such documentation from the developers.

2. Benchmarking system users must design an optimal system setup specific
to each blockchain based on their documentation. This is a challenging yet
crucial task. Individually optimizing the system setup ensures benchmarking
the best performing setup of each blockchain. Further, all the blockchains
benchmarked together must employ uniform hardware or be limited to uni-
form hardware costs to ensure fairness [61].

3. Benchmarking system developers must support easy integration and recon-
figuration of all system components. Due to the large number and type of
components involved, system setup is often complex for blockchains [71].
Benchmarking systems need to provide automation scripts or at least de-
tailed documentation that supports the integration of influential system com-
ponents apart from the default to ease the system setup process. Further, the
optimal system setup varies with use cases, so easy reconfiguration should
also be supported.

3.2 Parameter Tuning

Problem Statement Parameter tuning is a significant factor to consider while
benchmarking blockchains, and it is heavily discussed in the literature [9,47,70].
The literature mainly discusses generic parameters, such as block size, while
system-specific parameters are largely ignored. However, both are equally im-
portant to ensure fair benchmarking. The number of transactions to include
in a block is a well-known parameter that influences the performance of most
blockchains [9,49], but Corda is an exception since the concept of blocks does not
exist [18]. Further, there are system-specific parameters such as the set of cache-
related parameters for GoQuorum [30,31] and Corda [17], the validator pool size,
endorsement policy, and CouchDB parameters for Fabric [12], or the mining di-
versity and skip proof-of-work check [51] configurations in Multichain, all of
which can be tuned for performance improvements. Also, Diem offers mempool
[25] and consensus [24] configurations that are based on its unique implementa-
tion. Therefore, individually identifying and tuning the critical parameters for
each blockchain is required to benchmark the ideal performance of every system.
However, on the other hand, some parameters may impact the system’s func-
tionality and must be set equivalently to ensure a fair comparison. For example,
Clique is byzantine fault tolerant with eventual finality, while Raft is only crash
fault tolerant with immediate finality, and either can be chosen as the consen-
sus protocol in Quorum [16]. If Fabric, which offers only the Raft consensus



A Comprehensive Study on Benchmarking Permissioned Blockchains 7

protocol, is benchmarked with Quorum, then to ensure fairness, Quorum’s con-
sensus protocol needs to be set to Raft. Parameter tuning is often discussed in
the literature on benchmarking transaction processing systems [4,34]. However,
when considering blockchains, there is a more diversified set of parameters for
tuning since the blockchain stack is comprised of numerous layers such as con-
sensus models, access control protocols, database stores, smart contracts, and
distributed ledgers.

Methodology

1. Blockchain developers should identify key parameters that influence the per-
formance of their blockchain. They should ensure that all configuration pa-
rameters and quantitative evidence of their effect on performance are well
documented. Workload-based analysis of these parameters should also be
conducted and documented. Further, given the large number of parameters
in blockchains, a prioritizing strategy would be beneficial. For example, Fab-
ric has over 50 parameters, and a recent study quantitatively ranked the top
parameters that significantly affect the performance [46].

2. Benchmarking system users must tune parameters based on the workload
and system setup. Currently, benchmarking is often accomplished with the
default parameter values or with a one-time tuning of limited parameters [28,
33,57]. However, studies show that parameter tuning significantly depends on
the workload and system setup [9,47,70]. Therefore, parameter tuning should
be done dependent on the use case that is being benchmarked. Recently,
auto-tuning of blockchains is also being discussed in the literature, which
could ease this process [46].

3.3 Workloads and Use Cases

Problem Statement The third important aspect to consider is the workload
employed for benchmarking. Using existing workloads such as YCSB and TPC
is a popular choice since these are well established in the community [28,44].
However, blockchains often target different use cases than traditional transac-
tion processing systems. Therefore, reusing existing workloads is often unrealistic
and leads to inaccurate assumptions about the performance of a system [33]. But
traditional workloads are still useful to benchmark scenarios where enterprises
port their existing applications to blockchain systems. Further, blockchain im-
plementations are varied, and each is designed with a specific use case in mind.
For example, Fabric cannot handle highly skewed workloads due to its optimistic
concurrency control model [9], and Corda supports only point-to-point requests
between entities involved in a transaction [18]. Also, Quorum and Corda are
mainly popular for financial use cases while Fabric applications range across
multiple domains such as supply chain management and healthcare [73]. Fur-
ther, the system setup, parameters, and transaction definition also vary with the
use case. Multichain recommends different performance optimization strategies
based on the expected type of workload [53], and Diem defines three different
types of transactions based on the client account type [72].



8 Chacko et al.

Methodology

1. Benchmarking system developers should focus on both traditional as well
as blockchain-specific workloads. Porting traditional workloads such as TPC
and YCSB to blockchain environments is a good practice as it corresponds to
scenarios where existing enterprise applications are migrated to blockchain
platforms. However, the focus should also be given to blockchain-specific
workloads, such as supply chain and digital asset management scenarios, to
capture realistic performance capabilities better. Apart from workload gen-
eration, converting or porting the workloads to support multiple blockchain
implementations is an important and challenging engineering task.

2. Benchmarking system developers must also generate system-specific work-
loads. Such workloads that stress test distinctive blockchains based on their
specific design are essential to highlight accurate performance expectations.
For example, private transactions in Fabric and point-to-point requests in
Corda would need specific workloads different from other generic broadcast
transactions. Also, the targeted use cases of each blockchain implementation
should be supported.

3. Benchmarking system users and blockchain developers should provide use
case-based discussion of benchmarking results. Benchmarking results will
quantitatively indicate the most or least performant blockchain. However, a
specific blockchain’s intended use case must be considered before reaching a
viable conclusion. For example, it has been quantitatively shown that Fabric
is more performant than Diem [76]. However, Diem supports a byzantine
fault-tolerant consensus protocol, while Fabric uses a crash fault-tolerant
consensus protocol, both of which are suitable for entirely different use cases.
Therefore, evaluation results need to be explored extensively in relation to
the blockchain implementation and envisioned use.

3.4 Performance Metrics

Problem Statement The metrics used for benchmarking depend on the quality
being benchmarked. Throughput and latency are the main client-visible metrics
generally used in benchmarking blockchains when the focus is on performance;
as well, some studies look at metrics reported from the blockchain platform, such
as CPU usage or storage. However, there needs to be more clarity about how to
define these metrics. Throughput is often defined as the number of transactions
committed to a blockchain per second. However, for Fabric, failed transactions
are also committed to the blockchain [2]. Latency is often described as the du-
ration between transaction submission and final commit. However, submission
time can be considered as the time the client submitted the transaction or the
time the transaction entered the consensus protocol [28,45]. Further, depend-
ing on whether the blockchain supports immediate or probabilistic finality, the
definition of commit time changes [57]. Also, latency is a distribution, and sin-
gle summary values such as mean or 95-percentile can be quoted, depending on
what matters most for the specific use case. Therefore, a uniform definition for
blockchain performance metrics is challenging. Further, system-specific metrics



A Comprehensive Study on Benchmarking Permissioned Blockchains 9

also need to be considered to provide a better understanding for the client. For
example, apart from throughput and latency, Diem developers define a met-
ric called capacity as “the ability of the blockchain to store a large number of
accounts” [1].

Methodology

1. Blockchain developers must define generic as well as system-specific per-
formance metrics. Generic metrics should either be uniformly defined for
all blockchains along with the system-specific assumptions or be uniquely
defined for each blockchain (or both). System-specific performance metrics
must be clearly defined, and the necessity for these metrics must also be
clarified.

2. Benchmarking system developers should support fine-grained result genera-
tion. Since the metric definition varies for each blockchain, publishing all vari-
ations of a metric in the results will be helpful for better understanding. In
most cases, simple mathematical calculations can provide more fine-grained
results. For example, the results from the Caliper benchmarking system dis-
play only the “success throughput” and not the “commit throughput” even
though both can be derived from the available results [9].

4 Case Study

In this section, we analyze five different benchmarking systems that support
permissioned blockchains [5,8,22,36,40] as well as the corresponding five bench-
marking studies conducted using these systems [9, 28, 33,57,65]. Our discussion
is mainly based on the benchmarking studies as this is representative of how
the benchmarking system is used in practice. Table 1 summarizes the integrated
blockchain systems, available workloads, and published performance metrics for
each benchmarking system. We intend to identify the limitations of the current
benchmarking systems through this case study which can help develop a more
comprehensive system.

Scope. We observe that none of the benchmarking systems currently support
all four of the most commonly used permissioned blockchains (Fabric, Corda,
Multichain and Quorum). One of the main reasons for benchmarking is for clients
to choose the appropriate blockchains based on their requirements. Therefore, a
benchmarking system must support at least the most popular blockchain choices.
However, the engineering challenge behind implementing such a comprehensive
benchmarking system is immense. Alternatively, providing documentation that
accurately details the exact procedure to integrate any new blockchain into an
existing benchmarking system would be beneficial. Diablo, Gromit, and BCT-
Mark provide short documentation or discussions on integrating new blockchains
into their benchmarking system [23,57,65]. Caliper provides extensive documen-
tation that details the steps required to implement a connector to integrate a
new blockchain [75]. This includes the requirements of the connector, implemen-
tation, binding, and integration, as well as instructions on how to document



10 Chacko et al.

Table 1. Blockchain Benchmarking Systems

Benchmarking Supported Supported Workloads Performance

Systems blockchains Metrics
(permissioned
underlined)

Blockbench [28] Ethereum [74], YCSB, smallbank, etherld, [success throughput,
Fabric [2], doubler, wavesPresale, average latency

Parity [58], Quorum [60]

doNothing, analytics,
I0Heavy, CPUHeavy [5]

HyperledgerLab [9],

Fabric, Ethereum,

simple asset transfer,

commit throughput,

Caliper [40] Besu [39] smallbank, fabcar, success throughput,
synthetic generator, average latency
electronic health records,
digital music management,
e-voting, supply chain
management [41,43]
Diablo [33] Algorand [29], exchange DApp, gaming throughput, average
Avalanche [63], DApp, webservice DApp, |latency, proportion of
Ethereum, Diem [3], mobility service DApp, committed
Solana [68], Quorum, video sharing DApp [22] transactions, peak
RedBelly [21,69] transaction
throughput, latency
distribution over time
Gromit [57] Ethereum, Algorand, simple asset transfer [36] [peak transaction
BitShares [66], Diem, throughput, average
Fabric, Stellar [48], latency
Avalanche

BCTMark [65] Ethereum, Clique [13], [synthetic generator, CPU usage, HDD

history-based , sorting
algorithms [8]

usage, memory
consumption, gas
cost

Fabric

the newly developed connector for future users. Despite the well-defined doc-
umentation, there has been little effort from the community to integrate more
blockchains into Caliper.

System Configuration. The existing benchmarking systems support the
evaluation of the different blockchains on scaling hardware configurations. Di-
ablo, Gromit, and HyperledgerLab emulate geo-distribution. However, system
configuration is not extensively evaluated in the corresponding benchmarking
studies. The number of hardware nodes and, correspondingly, the number of
peers in a system are scaled and evaluated but the peer configurations are kept
constant. Currently, system configuration is considered independent from the
benchmarking systems and is left to the client’s responsibility. Providing auto-
mated testbed setups for the supported blockchains can ease the benchmarking
effort with varying system configurations. The HyperledgerLab benchmarking
system includes such an automated testbed and therefore can evaluate the effect
of endorser and database configurations, but it is limited to Fabric.

Parameter Tuning. In the studies we examined, system parameters are
mostly kept with the default value used in whichever blockchain is being tested.
Blockbench tunes the difficulty variable for Ethereum to limit miners from di-
verging [28]. HyperledgerLab evaluates the effect of system parameters such as
block size and endorsement policy but is limited to Fabric [9]. Tuning the pa-
rameters of individual blockchains to ensure the fair comparison of the best
performance of all the systems under test is a massive challenge due to the large



A Comprehensive Study on Benchmarking Permissioned Blockchains 11

number of parameters involved. Currently, we identified some of the prominent
parameters for the different blockchains discussed in this paper by manually pars-
ing through the multiple documentations and configuration files [15,17,18, 26,
30,32,38,51]. Blockchain developers must provide more intuitive documentation
regarding the performance tuning of their specific blockchain implementation.
Consequently, benchmarking systems could automate parameter tuning to ease
the benchmarking process.

Workloads and Use Cases. Workloads are well investigated by the exist-
ing benchmarking systems, and the supported workloads for each are listed in
Table 1. Diablo extracts the workload trace from five real centralized applications
and designs corresponding decentralized applications (DApps) to provide a re-
alistic blockchain-specific benchmarking scenario. Blockbench provides popular
database benchmarking workloads such as YCSB and small bank, which provides
a good understanding of the contrast between blockchains and databases. Block-
bench also supports microbenchmarks such as I0-heavy and CPU-heavy, while
HyperledgerLab provides synthetic workloads such as read-heavy, update-heavy,
or skewed keys. All the existing benchmarking systems also support workloads
at different transaction rates. Overall, the workloads supported by the existing
benchmarking systems cover many practical and synthetic use cases, ensuring
a comprehensive blockchain evaluation. There are also many other blockchain
specific workloads available in the literature [9,10,56]. However, developing or ex-
tending a benchmarking system to include this extensive set of workloads would
be advantageous. The evaluation results of the existing benchmarking systems
are well explored and discussed in their corresponding papers. For example, Nas-
rulin et al. [57] highlight six different findings that summarize the performance
of the compared blockchains. However, relating the evaluation results to the
implementation specifics of the blockchains and the intended use cases would
be helpful for a client trying to choose the ideal blockchain. Gramoli et al. [33]
observe that Diem and Avalanche do not support challenging hardware configu-
rations but also point out that such configurations may not be the intended use
case for these blockchains. They also highlight that blockchains with eventual
consistency scale better, providing a client who requires immediate consistency
with realistic expectations. The intended use cases of a specific blockchain and
its implementation specifics, such as its consistency and fault tolerance models,
need to be effectively explored while discussing benchmarking results.

Performance Metrics. The existing benchmarking studies evaluate a wide
range of performance metrics. Gromit focuses on the peak transaction through-
put, the maximum throughput supported by a system before it hangs. Dia-
blo measures the average throughput and a throughput time series, including
the peak throughput. BCTMark focuses more on system metrics such as CPU
and memory usage. Blockbench measures the success throughput, while Hyper-
ledgerLab evaluates the committed throughput, including failed transactions.
The importance and reasoning of each of the metrics are well-defined in the
benchmarking studies. However, a single benchmarking system that provides a
comprehensive set of all the different metrics would be valuable.



12 Chacko et al.

5 Related Work

The literature proposes various benchmarking systems and corresponding bench-
marking studies for permissioned blockchains, which we have analyzed in our
case study. Dinh et al. developed the first benchmarking system for permis-
sioned blockchains with a precise definition for the different abstraction lay-
ers [28]. HyperledgerLab [9], which uses the Caliper benchmarking system [40],
implemented an automated blockchain (Fabric) network deployment tool to sim-
plify benchmarking experiments. Saingre et al. proposed a blockchain bench-
marking system that adheres to the six criteria for a good benchmark [65,67].
Nasrulin et al. investigated the popular consensus protocols and benchmarked
representative blockchain systems for each [57]. Gramoli et al. implemented re-
alistic distributed applications to evaluate multiple blockchain systems’ perfor-
mance uniformly [33]. The existing publications focus on developing a bench-
marking system, while our work highlights general benchmarking guidelines for
the blockchain community, which includes both blockchain and benchmarking
system developers. Benchmarks and benchmarking systems are well-established
research areas in the database community [4, 6,34, 61]. However, despite the
similarities, the implementation and application differences demand a separate
discussion for benchmarking blockchains [64].

6 Conclusion

We analyzed five permissioned blockchains to define specific problem statements
regarding four main aspects of benchmarking blockchains. We provide examples
from each of the chosen platforms to clarify the problem statements. Further,
we discuss a general methodology to tackle each problem statement, highlight-
ing the need for contributions from the developers and users of blockchains and
benchmarking systems. We then conducted a case study of five different permis-
sioned blockchain benchmarking systems and the affiliated benchmarking studies
based on our problem statements. We emphasize the current limitations of these
systems, which can help improve the state-of-the-art. Given the implementation
differences between blockchains and the numerous components, configuration pa-
rameters, and metrics specific to each blockchain, one main conclusion from our
work is the need for blockchain developers to actively engage in the benchmark-
ing space. We urge blockchain developers to quantitatively identify and define
system-specific factors such as the top parameters to tune, the ideal system setup
for a fixed hardware configuration or cost, targeted use cases, and performance
metrics that can ease the process of benchmarking blockchains.

Acknowledgement. This work is funded in part by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) - 392214008, and by the
Bavarian Cooperative Research Program of the Free State of Bavaria - DIK-
2002-0013//DIK0114/02.



A Comprehensive Study on Benchmarking Permissioned Blockchains 13

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Amsden, Z.: The libra  blockchain. url:  https://diem-developers-
components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf (2020)
Androulaki, E.; Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A.,
Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., et al.: Hyperledger fabric: a
distributed operating system for permissioned blockchains. In: Proceedings of the
thirteenth EuroSys conference. pp. 1-15 (2018)

Bano, S., Baudet, M., Ching, A., Chursin, A., Danezis, G., Garillot, F., Li, Z.,
Malkhi, D., Naor, O., Perelman, D., et al.: State machine replication in the li-
bra blockchain. Avalaible at: https://developers. libra. org/docs/state-machine-
replication-paper (Consulted on December 19, 2020) (2020)

Bermbach, D., Wittern, E., Tai, S.: Cloud service benchmarking. Springer (2017)
Blockbench. https://github.com/00ibc88/blockbench (2020), [Online; accessed 14-
August-2023]

Brent, L., Fekete, A.: A versatile framework for painless benchmarking of database
management systems. In: Chang, L., Gan, J., Cao, X. (eds.) Databases Theory and
Applications. Lecture Notes in Computer Science, vol 11393. pp. 45-56. Springer
International Publishing, Cham (2019)

Brown, R.G., Carlyle, J., Grigg, 1., Hearn, M.: Corda: an introduction. R3 CEV,
August 1(15), 14 (2016)

Btcmark. https://gitlab.inria.fr/dsaingre/bctmark (2020), [Online; accessed 14-
August-2023]

Chacko, J.A., Mayer, R., Jacobsen, H.A.: Why do my blockchain
transactions fail? a study of hyperledger fabric. In: Proceedings of
the 2021 International Conference on Management of Data. pp. 221-
234. SIGMOD/PODS 21, Association for Computing Machinery,
New York, NY, USA (2021). https://doi.org/10.1145/3448016.3452823,
https://doi.org/10.1145/3448016.3452823

Chacko, J.A., Mayer, R., Jacobsen, H.A.: How to optimize my blockchain? a
multi-level recommendation approach. Proc. ACM Manag. Data 1(1) (may 2023).
https://doi.org/10.1145/3588704, https://doi.org/10.1145 /3588704
Chainhammer. https://github.com/drandreaskrueger/chainhammer (2020), [On-
line; accessed 14-August-2023|

Chung, G., Desrosiers, L., Gupta, M., Sutton, A., Venkatadri, K., Wong, O.,
Zugic, G.: Performance tuning and scaling enterprise blockchain applications. arXiv
preprint arXiv:1912.11456 (2019)

Clique proof-of-authority consensus protocol. https://eips.ethereum.org/EIPS/eip-
225 (2020), [Online; accessed 14-August-2023]

Configure bootnodes. https://consensys.net/docs/goquorum/en/latest/configure-
and-manage/configure/bootnodes/ (2020), [Online; accessed 14-August-2023]
Configure static nodes. https://consensys.net/docs/goquorum/en/latest/configure-
and-manage/configure/static-nodes/ (2020), [Online; accessed 14-August-2023]
Consensus protocols. https://docs.goquorum.consensys.net/concepts/consensus
(2020), [Online; accessed 14-August-2023]

Corda configurations. https://docs.r3.com/en/platform/corda/4.8 /enterprise/
node/setup/corda-configuration-fields.html (2020), [Online; accessed 14-August-
2023)

Corda key concepts. https://docs.r3.com/en/platform/corda/4.10/community /key-
concepts.html (2020), [Online; accessed 14-August-2023]



14

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Chacko et al.

Corda notaries. https://docs.r3.com/en/platform/corda/4.10/community /key-
concepts-notaries.html (2020), [Online; accessed 14-August-2023]

Corda use case directory. https://r3.com/products/use-case-directory-all/ (2023),
[Online; accessed 14-August-2023]

Crain, T., Natoli, C., Gramoli, V.: Red belly: a secure, fair and scalable open
blockchain. In: 2021 IEEE Symposium on Security and Privacy (SP). pp. 466-483.
IEEE (2021)

Diablo blockchain benchmark suite. https://diablobench.github.io/ (2020), [On-
line; accessed 14-August-2023|

Diablo blockchain benchmark suite. https://diablobench.github.io/blockchain-
howto (2020), [Online; accessed 14-August-2023]

Diem consensus configurations. https://github.com/diem/diem/blob/latest/config/
src/config/consensus_config.rs (2020), [Online; accessed 14-August-2023]

Diem mempool configurations. https://github.com/diem/diem/blob/latest/config/
src/config/mempool_config.rs (2020), [Online; accessed 14-August-2023]

Diem validator nodes. https://developers.diem.com/docs/basics/basics-validator-
nodes (2020), [Online; accessed 14-August-2023]

Diem white paper. https://developers.diem.com/docs/technical-papers/the-diem-
blockchain-paper/ (2020), [Online; accessed 14-August-2023]

Dinh, T.T.A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.L.: Blockbench: A
framework for analyzing private blockchains. In: Proceedings of the 2017 ACM
international conference on management of data. pp. 1085-1100 (2017)

Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium
on Operating Systems Principles. pp. 51-68. SOSP 17, Association for Computing
Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3132747.3132757,
https://doi.org/10.1145/3132747.3132757

Go ethereum. https://geth.ethereum.org/docs/interface/command-line-options
(2020), [Online; accessed 14-August-2023]

Goquorum configuration file. https://consensys.net/docs/goquorum/en/latest/
configure-and-manage/configure /use-configuration-file/ (2020), [Online; accessed
14-August-2023|

Goquorum  qlight. https://consensys.net/docs/goquorum/en/latest/concepts/
qglight-node/ (2020), [Online; accessed 14-August-2023|

Gramoli, V., Guerraoui, R., Lebedev, A., Natoli, C., Voron, G.: Diablo: A bench-
mark suite for blockchains. In: 18th ACM European Conference on Computer
Systems (EuroSys). p. to appear (2023)

Gray, J.: Benchmark handbook: for database and transaction processing systems.
Morgan Kaufmann Publishers Inc. (1992)

Greenspan, G., et al.: Multichain private blockchain-white paper. url: http://www.
multichain. com/download/MultiChain-White-Paper. pdf pp. 57-60 (2015)
Gromit blockchain benchmarking tool. https://github.com/grimadas/gromit
(2020), [Online; accessed 14-August-2023]

Hearn, M., Brown, R.G.: Corda: A distributed ledger. Corda Technical White
Paper 2016 (2016)

How fabric networks are structured. https://hyperledger-
fabric.readthedocs.io/en/latest /network /network.html (2020), [Online; accessed
14-August-2023|

Hyperledger besu. https://www.hyperledger.org/use/besu (2020), [Online; ac-
cessed 14-August-2023]



40.
41.

42.

43.

44.

45.

46.

47.

48.

49.

50.
51.

52.

53.

54.

55.

56.

A Comprehensive Study on Benchmarking Permissioned Blockchains 15

https://hyperledger.github.io/caliper/ (2020), [Online; accessed 14-August-2023]
Hyperledger caliper benchmarks. https://github.com/hyperledger/caliper-
benchmarks (2020), [Online; accessed 14-August-2023|

Hyperledger foundation case studies. https://www.hyperledger.org/learn/case-
studies (2023), [Online; accessed 14-August-2023]

Hyperledgerlab ii. https://github.com/MSRG/HyperLedgerLab-2.0 (2020), [On-
line; accessed 14-August-2023|

Klenik, A., Kocsis, I.: Porting a benchmark with a classic workload to blockchain:
Tpc-c on hyperledger fabric. In: Proceedings of the 37th ACM/SIGAPP Sympo-
sium on Applied Computing. pp. 290-298 (2022)

Kokoris-Kogias, E., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: En-
hancing bitcoin security and performance with strong consistency via collective
signing. In: Proceedings of the 25th USENIX Conference on Security Symposium.
p. 279-296. SEC’16, USENIX Association, USA (2016)

Li, M., Wang, Y., Ma, S., Liu, C., Huo, D., Wang, Y., Xu, Z.: Auto-tuning with re-
inforcement learning for permissioned blockchain systems. Proc. VLDB Endow.
16(5), 1000-1012 (february 2023). https://doi.org/10.14778/3579075.3579076,
https://doi:10.14778/3579075.3579076

Liu, M., Yu, F.R., Teng, Y., Leung, V.C.M., Song, M.: Performance optimization
for blockchain-enabled industrial internet of things (iiot) systems: A deep rein-
forcement learning approach. IEEE Transactions on Industrial Informatics 15(6),
3559-3570 (2019). https://doi.org/10.1109/TIL.2019.2897805

Lokhava, M., Losa, G., Mazieres, D., Hoare, G., Barry, N., Gafni, E., Jove,
J., Malinowsky, R., McCaleb, J.: Fast and secure global payments with
stellar. In: Proceedings of the 27th ACM Symposium on Operating Sys-
tems Principles. pp. 80-96. SOSP ’19, Association for Computing Machin-
ery, New York, NY, USA (2019). https://doi.org/10.1145/3341301.3359636,
https://doi.org/10.1145/3341301.3359636

Mazzoni, M., Corradi, A., Di Nicola, V.. Performance evaluation of per-
missioned blockchains for financial applications: The consensys quorum
case study. Blockchain: Research and Applications 3(1), 100026 (2022).
https://doi.org/https://doi.org/10.1016/j.bcra.2021.100026

Morgan, J.: Quorum whitepaper. New York: JP Morgan Chase (2016)
Multichain configurations. https://www.multichain.com/developers/blockchain-
parameters/ (2020), [Online; accessed 14-August-2023]

Multichain data streams. https://www.multichain.com/developers/data-streams/
(2020), [Online; accessed 14-August-2023]

Multichain performance optimization. https://www.multichain.com/developers/
performance-optimization/ (2020), [Online; accessed 14-August-2023]

Multichain product partners. https://www.multichain.com/product-partners/
(2023), [Online; accessed 14-August-2023]

Multichain white paper. https://www.multichain.com/download/MultiChain-
White-Paper.pdf (2020), [Online; accessed 14-August-2023]

Nasirifard, P., Mayer, R., Jacobsen, H.A.: Fabriccrdt: A conflict-
free replicated datatypes approach to permissioned blockchains. In:
Proceedings of the 20th International Middleware Conference. p.
110-122. Middleware ’19, Association for Computing Machinery, New
York, NY, USA  (2019).  https://doi.org/10.1145/3361525.3361540,
https://doi.org/10.1145/3361525.3361540



16

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Chacko et al.

Nasrulin, B., De Vos, M., Ishmaev, G., Pouwelse, J.: Gromit: Benchmarking the
performance and scalability of blockchain systems. In: 2022 IEEE International
Conference on Decentralized Applications and Infrastructures (DAPPS). pp. 56—
63. IEEE (2022)

Parity: Blockchain infrastructure for the decentralised web. https://www.parity.io/
(2020), [Online; accessed 14-August-2023]

Quorum blockchain in action. https://consensys.net/quorum/enterprise/ (2023),
[Online; accessed 14-August-2023]

Quorum white paper. https://github.com/ConsenSys/quorum/blob/master/docs/
Quorum%20Whitepaper%20v0.2.pdf (2020), [Online; accessed 14-August-2023]
Raasveldt, M., Holanda, P., Gubner, T., Mihleisen, H.: Fair bench-
marking considered difficult: Common pitfalls in database perfor-
mance testing. In: Proceedings of the Workshop on Testing Database
Systems.  DBTest’18,  Association for Computing Machinery, New
York, NY, USA (2018). https://doi.org/10.1145/3209950.3209955,
https://doi.org/10.1145/3209950.3209955

Rauchs, M., Blandin, A., Bear, K., McKeon, S.B.: 2nd global enterprise blockchain
benchmarking study. Available at SSRN 3461765 (2019)

Rocket, T., Yin, M., Sekniqi, K., van Renesse, R., Sirer, E.G.: Scalable and prob-
abilistic leaderless bft consensus through metastability (2020)

Ruan, P.; Dinh, T.T.A., Loghin, D., Zhang, M., Chen, G., Lin, Q., Ooi, B.C.:
Blockchains vs. distributed databases: Dichotomy and fusion. In: Proceedings of
the 2021 International Conference on Management of Data. p. 1504-1517. SIG-
MOD ’21, Association for Computing Machinery, New York, NY, USA (2021).
https://doi.org/10.1145/3448016.3452789

Saingre, D., Ledoux, T., Menaud, J.M.: Bctmark: a framework for benchmark-
ing blockchain technologies. In: 2020 IEEE/ACS 17th International Conference on
Computer Systems and Applications (AICCSA). pp. 1-8. IEEE (2020)

Schuh, F., Larimer, D.: Bitshares 2.0: General overview (2017)

Smaalders, B.: Performance anti-patterns: Want your apps to run faster? here’s
what not to do. Queue 4(1) (feb 2006). https://doi.org/10.1145/1117389.1117403
Solana: A new architecture for a high performance blockchain v0.8.13.
https://solana.com/solana-whitepaper.pdf (2020), [Online; accessed 14-August-
2023|

Tennakoon, D., Gramoli, V.: Smart red belly blockchain: Enhanced transac-
tion management for decentralized applications. arXiv preprint arXiv:2207.05971
(2022)

Thakkar, P., Nathan, S., Viswanathan, B.: Performance benchmarking and
optimizing hyperledger fabric blockchain platform. In: 2018 IEEE 26th In-
ternational Symposium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems (MASCOTS). pp. 264-276 (Sep 2018).
https://doi.org/10.1109/MASCOTS.2018.00034

Tran, N.K., Babar, M.A., Walters, A.: A framework for automating deployment and
evaluation of blockchain networks. Journal of Network and Computer Applications
206, 103460 (2022). https://doi.org/https://doi.org/10.1016/j.jnca.2022.103460
Types of transactions. https://developers.diem.com/docs/transactions/txns-
types/ (2020), [Online; accessed 14-August-2023]

Valenta, M., Sandner, P.G.: Comparison of ethereum, hyperledger fabric and corda
2017

gNood), D.D.: Ethereum: A secure decentralised generalised transaction ledger
(2014)



75.

76.

A Comprehensive Study on Benchmarking Permissioned Blockchains 17

Writing connectors. https://hyperledger.github.io/caliper/v0.5.0 /writing-
connectors/ (2020), [Online; accessed 14-August-2023]

Zhang, J., Gao, J., Wu, Z., Yan, W., Wo, Q., Li, Q., Chen, Z.: Performance anal-
ysis of the libra blockchain: An experimental study. In: 2019 2nd International
Conference on Hot Information-Centric Networking (HotICN). pp. 77-83. IEEE
(2019)



Licence to Publish SPRINGER NATURE
Proceedings Papers

Licensee Springer Nature Switzerland AG (the 'Licensee’)

Title of the Proceedings TPCTC 2023 (the ‘Volume")
Volume/Edited Book or
Conference Name:

Volume Editor(s) Name(s): Raghunath Nambiar, Meikel Poess
Proposed Title of the A Comprehensive Study on Benchmarking (the *Contribution”)
Contribution: Permissioned Blockchains

Series: The Contribution may A Springer Nature Computer Science book series (CCIS,
be published in the following LNAI, LNBI, LNBIP or LNCS)
series

Author(s) Full Name(s): Jeeta Ann Chacko, Ruben Mayer, Alan Fekete, Vincent (the ‘Author”)
Gramoli, Hans-Arno Jacobsen

When Author is more than one person the expression "Author” as used in this Agreement will apply collectively unless
otherwise indicated.

Corresponding Author Name: Jeeta Ann Chacko
Instructions for Authors https://resource-cms.springernature.com/springer- (the ‘Instructions for
cms/rest/v1/content/19242230/data/ Authors’)

1 Grant of Rights

a) For good and valuable consideration, the Author hereby grants to the Licensee the
perpetual, exclusive, world-wide, assignable, sublicensable and unlimited right to: publish,
reproduce, copy, distribute, communicate, display publicly, sell, rent and/or otherwise
make available the contribution identified above, including any supplementary information
and graphic elements therein (e.g. illustrations, charts, moving images) (the
‘Contribution’) in any language, in any versions or editions in any and all forms and/or
media of expression (including without limitation in connection with any and all end-user
devices), whether now known or developed in the future. Without limitation, the above
grant includes: (i) the right to edit, alter, adapt, adjust and prepare derivative works; (ii)
all advertising and marketing rights including without limitation in relation to social media;
(iii) rights for any training, educational and/or instructional purposes; (iv) the right to add
and/or remove links or combinations with other media/works; and (v) the right to create,
use and/or license and/or sublicense content data or metadata of any kind in relation to
the Contribution (including abstracts and summaries) without restriction. The above rights
are granted in relation to the Contribution as a whole or any part and with or in relation to
any other works.

b)  Without limiting the rights granted above, Licensee is granted the rights to use the
Contribution for the purposes of analysis, testing, and development of publishing- and
research-related workflows, systems, products, projects, and services; to confidentially
share the Contribution with select third parties to do the same; and to retain and store the
Contribution and any associated correspondence/files/forms to maintain the historical
record, and to facilitate research integrity investigations. The grant of rights set forth in

Page 1 of 5



this clause (b) is irrevocable.

c) If the Licensee elects not to publish the Contribution for any reason, all publishing rights
under this Agreement as set forth in clause 1a above will revert to the Author.
Copyright

Ownership of copyright in the Contribution will be vested in the name of the Author. When
reproducing the Contribution or extracts from it, the Author will acknowledge and reference
first publication in the Volume.

Use of Contribution Versions

a)

b)

c)

For purposes of this Agreement: (i) references to the “Contribution” include all versions of
the Contribution; (ii) “Submitted Manuscript” means the version of the Contribution as first
submitted by the Author prior to peer review; (iii) “Accepted Manuscript” means the
version of the Contribution accepted for publication, but prior to copy-editing and
typesetting; and (iv) “Version of Record” means the version of the Contribution published
by the Licensee, after copy-editing and typesetting. Rights to all versions of the
Manuscript are granted on an exclusive basis, except for the Submitted Manuscript, to
which rights are granted on a non-exclusive basis.

The Author may make the Submitted Manuscript available at any time and under any
terms (including, but not limited to, under a CC BY licence), at the Author’s discretion.
Once the Contribution has been published, the Author will include an acknowledgement
and provide a link to the Version of Record on the publisher’s website: “This preprint has
not undergone peer review (when applicable) or any post-submission improvements or
corrections. The Version of Record of this contribution is published in [insert volume title],
and is available online at https://doi.org/[insert DOI]".

The Licensee grants to the Author (i) the right to make the Accepted Manuscript available
on their own personal, self-maintained website immediately on acceptance, (ii) the right
to make the Accepted Manuscript available for public release on any of the following
twelve (12) months after first publication (the "Embargo Period"): their employer’s
internal website; their institutional and/or funder repositories. Accepted Manuscripts may
be deposited in such repositories immediately upon acceptance, provided they are not
made publicly available until after the Embargo Period.

The rights granted to the Author with respect to the Accepted Manuscript are subject to
the conditions that (i) the Accepted Manuscript is not enhanced or substantially
reformatted by the Author or any third party, and (ii) the Author includes on the Accepted
Manuscript an acknowledgement in the following form, together with a link to the
published version on the publisher’s website: “This version of the contribution has been
accepted for publication, after peer review (when applicable) but is not the Version of
Record and does not reflect post-acceptance improvements, or any corrections. The
Version of Record is available online at: http://dx.doi.org/[insert DOI]. Use of this
Accepted Version is subject to the publisher’s Accepted Manuscript terms of use
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms”.
Under no circumstances may an Accepted Manuscript be shared or distributed under a
Creative Commons or other form of open access licence.

Any use of the Accepted Manuscript not expressly permitted under this subclause (c) is

Page 2 of 5



d)

subject to the Licensee’s prior consent.

The Licensee grants to Author the following non-exclusive rights to the Version of Record,
provided that, when reproducing the Version of Record or extracts from it, the Author
acknowledges and references first publication in the Volume according to current citation
standards. As a minimum, the acknowledgement must state: “First published in [Volume,
page number, year] by Springer Nature”.

to reuse graphic elements created by the Author and contained in the Contribution,
in presentations and other works created by them;

the Author and any academic institution where they work at the time may
reproduce the Contribution for the purpose of course teaching (but not for inclusion
in course pack material for onward sale by libraries and institutions);

to reuse the Version of Record or any part in a thesis written by the same Author,
and to make a copy of that thesis available in a repository of the Author(s)’
awarding academic institution, or other repository required by the awarding
academic institution. An acknowledgement should be included in the citation:
“Reproduced with permission from Springer Nature”;

to reproduce, or to allow a third party to reproduce the Contribution, in whole or in
part, in any other type of work (other than thesis) written by the Author for
distribution by a publisher after an embargo period of 12 months; and

to publish an expanded version of their Contribution provided the expanded version
(i) includes at least 30% new material (ii) includes an express statement specifying
the incremental change in the expanded version (e.g., new results, better
description of materials, etc.).

4 Warranties & Representations

Author warrants and represents that:

a)

the Author is the sole copyright owner or has been authorised by any additional
copyright owner(s) to grant the rights defined in clause 1,

the Contribution does not infringe any intellectual property rights (including without
limitation copyright, database rights or trade mark rights) or other third party rights
and no licence from or payments to a third party are required to publish the
Contribution,

the Contribution has not been previously published or licensed, nor has the Author
committed to licensing any version of the Contribution under a licence inconsistent
with the terms of this Agreement,

if the Contribution contains materials from other sources (e.g. illustrations, tables,
text quotations), Author has obtained written permissions to the extent necessary
from the copyright holder(s), to license to the Licensee the same rights as set out in
clause 1 but on a non-exclusive basis and without the right to use any graphic

Page 3 of 5



elements on a stand-alone basis and has cited any such materials correctly;

b) all of the facts contained in the Contribution are according to the current body of research
true and accurate;

¢) nothing in the Contribution is obscene, defamatory, violates any right of privacy or
publicity, infringes any other human, personal or other rights of any person or entity or is
otherwise unlawful and that informed consent to publish has been obtained for any
research participants;

d) nothing in the Contribution infringes any duty of confidentiality owed to any third party or
violates any contract, express or implied, of the Author;

e) all institutional, governmental, and/or other approvals which may be required in
connection with the research reflected in the Contribution have been obtained and
continue in effect;

f)  all statements and declarations made by the Author in connection with the Contribution
are true and correct;

g) the signatory who has signed this Agreement has full right, power and authority to enter
into this Agreement on behalf of all of the Authors; and

h) the Author complies in full with: i. all instructions and policies in the Instructions for
Authors, ii. the Licensee’s ethics rules (available at
https://www.springernature.com/gp/authors/book-authors-code-of-conduct), as may be
updated by the Licensee at any time in its sole discretion.

Cooperation

a) The Author will cooperate fully with the Licensee in relation to any legal action that might
arise from the publication of the Contribution, and the Author will give the Licensee access
at reasonable times to any relevant accounts, documents and records within the power or
control of the Author. The Author agrees that any Licensee affiliate through which the
Licensee exercises any rights or performs any obligations under this Agreement is
intended to have the benefit of and will have the right to enforce the terms of this
Agreement.

b) Author authorises the Licensee to take such steps as it considers necessary at its own
expense in the Author’s name(s) and on their behalf if the Licensee believes that a third
party is infringing or is likely to infringe copyright in the Contribution including but not
limited to initiating legal proceedings.

Author List

Changes of authorship, including, but not limited to, changes in the corresponding author or
the sequence of authors, are not permitted after acceptance of a manuscript.

Post Publication Actions

The Author agrees that the Licensee may remove or retract the Contribution or publish a
correction or other notice in relation to the Contribution if the Licensee determines that such

Page 4 of 5



actions are appropriate from an editorial, research integrity, or legal perspective.

8 Controlling Terms

The terms of this Agreement will supersede any other terms that the Author or any third party

may assert apply to any version of the Contribution.

9 Governing Law

This Agreement shall be governed by, and shall be construed in accordance with, the laws of

Switzerland. The courts of Zug, Switzerland shall have the exclusive jurisdiction.

Signed for and on behalf of the Author Print Name: Date:

JEETA ANN CHACKO 14™ AUGUST 2023
Address: Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
Email: chacko@in.tum.de

Springer Nature Switzerland AG, Gewerbestrasse 11, 6330 Cham, Switzerland
ER_Book_ProceedingsPaper_LTP_ST_v.1.0 (10_2021)

Page 5 of 5







Appendix E

Fabric-Visualizer: A Transaction Dependency Visualizer

for Hyperledger Fabric

145



Fabric-Visualizer: A Transaction Dependency Visualizer for
Hyperledger Fabric

Jeeta Ann Chacko
chacko@in.tum.de
Technical University of Munich

Ruben Mayer
ruben.mayer@uni-bayreuth.de
University of Bayreuth

Abstract

Hyperledger Fabric is a popular permissioned blockchain that fol-
lows an optimistic concurrency control model, which often leads to
transaction dependency conflicts. We developed a web application
that extracts data from a live Fabric network and generates trans-
action dependency graphs. Apart from visually understanding the
transaction dependency distribution, the user also gets additional
information regarding each transaction, such as the validation sta-
tus, dependent transactions, smart contract function, accessed keys,
endorsers and clients. Further, our tool also checks the serializabil-
ity of the generated graph and identifies the number of transactions
to abort to achieve serializability. We demonstrate how our tool can
be used with multiple realistic workloads to identify performance
optimization opportunities. We also highlight scenarios where our
tool can be used to identify smart contract improvements. Our tool
is demonstrated with multiple realistic workloads.

CCS Concepts

« Information systems — Data management systems.

Keywords

blockchains, transaction dependency, hyperledger fabric

ACM Reference Format:

Jeeta Ann Chacko, Nino Richter, Ruben Mayer, and Hans-Arno Jacobsen.
2023. Fabric-Visualizer: A Transaction Dependency Visualizer for Hyper-
ledger Fabric. In 24th International Middleware Conference Demos, Posters
and Doctoral Symposium (Middleware Demos, Posters and Doctoral Sympo-
sium’23 ), December 11-15, 2023, Bologna, Italy. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3626564.3629098

1 Introduction

Hyperledger Fabric (a.k.a. Fabric) [3] is one of the most com-
monly used permissioned blockchains [4]. Fabric uses an optimistic
concurrency control model that leads to transaction dependency
conflicts which can be quite frequent in certain scenarios [1]. Per-
formance optimization of Fabric is an active area of research with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Middleware Demos, Posters and Doctoral Symposium’23 , December 11-15, 2023, Bologna,
Italy

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0429-1/23/12...$15.00
https://doi.org/10.1145/3626564.3629098

Nino Richter
nino.richter@tum.de
Technical University of Munich

Hans-Arno Jacobsen
jacobsen@eecg.toronto.edu
University of Toronto

many of the optimization strategies focusing purely on reducing
transaction dependency failures [5, 6]. However, it has been quan-
titatively shown that these optimizations cannot be blindly applied
and require an in-depth understanding about the blockchain appli-
cation and the corresponding workload [1].

To help users assess the effectiveness of various Fabric optimiza-
tions, we developed Fabric-Visualizer, a web application that
can parse the distributed ledger of a Fabric network and provides
transaction failure analysis which help users better understand their
workload. It generates a transaction conflict graph that also shows
additional information for each transaction such as the validation
status, dependent transactions, smart contract function, accessed
keys, endorsers and clients. This helps the user to exactly identify
the factors that caused a transaction failure and aids in smart con-
tract optimization. Further, the tool also checks the serializability
of the transactions and identifies the transactions that need to be
aborted to achieve serializability. This helps the user in their choice
of optimization strategies. We demonstrate multiple scenarios us-
ing four different realistic workloads that highlight the utility of
the tool (Section 3). Fabric-Visualizer provides a user-friendly
approach to understanding your blockchain workload which can
assist in choosing the right optimization strategy or improving your
smart contract.

2 System Overview

React Frontend make graph Node.js Backend
generaion request

—_— <[> generate graph,
-— g calculate variables,

o return graph data check serializability

specify bloc display connect to ledger using retun transactions
range transaction Fabric SDK in block range
confiict graph

g Hyperledger Fabric Blockchain

Figure 1: System Overview

The system overview of Fabric-Visualizer is illustrated in
Figure 1. Users can specify the range of blocks they wish to ana-
lyze in the application frontend and send a request. The backend
of our application connects to a Fabric network and retrieves the
blockchain data. A transaction dependency graph is then generated
along with the measurement of multiple failure-related information.
The graph is then tested for serializability. If a cyclic graph is de-
tected, then the transactions that need to be aborted to serialize the
graph are also identified. All the derived information is displayed
on the frontend.



Middleware Demos, Posters and Doctoral Symposium’23, December 11-15, 2023, Bologna, Italy

3 Demonstration Scenarios

The implementation of the tool is complete and our git repos-
itory! as well as a video demonstrating the tool? is publicly ac-
cessible. Since real logs of permissioned blockchains are rarely
available publicly, we rely on realistic workloads generated for
popular blockchain use cases such as supply chain management
(SCM), electronic health record management (EHR), digital rights
management (DRM), and digital voting (DV) which were developed
in our previous work [1]. Our tool can be used to better understand
these workloads and derive useful insights.

Figure 2: Conflict graphs with the EHR (left), DRM (middle)
and DV (right) workloads.

Figure 2 shows the conflict graphs generated for the EHR and
DRM workloads. We can observe that there is a prominently large,
interconnected cluster for the EHR conflict graph, while there are
several smaller interconnected clusters for DRM. This indicates
the likelihood that fewer transactions might need to be aborted
for serializability in the EHR workload since a large proportion
of transactions are interconnected. For the DRM workload, since
every small interconnected cluster needs to be made acyclic, the
number of transaction abortions might be higher. This intuitive
observation can also be confirmed quantitatively using our tool,
which reports that there are 319 failed transactions in the EHR work-
load and serializability is possible if 151 transactions are aborted.
For the DRM workload, which has 336 failed transactions, 306
transaction abortions are required to achieve serializability. This
example demonstrates how our tool can help the user assessing the
effectiveness of popular optimization strategies such as transaction
reordering and early aborts [5, 6]. Compared to DRM, EHR has a
higher ratio between failed transactions and number of transaction
aborts to achieve serializability. Hence, it is more promising to opti-
mize the EHR scenario than the DRM scenario using the discussed
optimization strategies.

Figure 2 also shows the conflict graph generated for the DV work-
load. Like DRM, the graph shows multiple tightly interconnected
clusters. Our tool also indicates a large number of transaction fail-
ures and that the transactions are not serializable. When we further
explored the keys accessed by the transactions, we observe that all
transactions in each interconnected cluster in the graph is depen-
dent on the same key i.e., the partyID. This implies that each cluster
is composed of the transactions that voted for the same party. The
same scenario has been analyzed in our recent paper [2] where data
model alteration was detected as an effective optimization strategy.

Figure 3 shows multiple screenshots of the transaction details for
two dependent transactions from the conflict graph generated for
the SCM workload. We observe that transactions numbered 22 and

!https://github.com/ninori9/GraphGenerationFrontend
Zhttps://drive.google.com/file/d/1sa1FcNxPHV 1fEkmmpsZzPTk7i0NOd5GF

32

Jeeta Ann Chacko, Nino Richter, Ruben Mayer, and Hans-Arno Jacobsen

Transaction 84 Transaction 22

Transaction 0: Transacton :

Greator MSPID: Orannis? Creator MSPID: Org1iS?.
Transactioncass: Ucate
ke [6008] avass
Wite keys: [AKdsa]

Transaction lass: Usdate
Readkeys: (500¢]
Wit eys: [6004]

Block number: 17

Block number: 754 e
Transaction number i block: ¢ Transacton numbern block: 2

Chincods: simplosupplychain
Funcion: Updteuc

Chaincode: simplesuopychan
Function: PUshASN
Endorsing peers: (g, Oro2HSP]

Status: 1 (4VCC_READ_CONFLICT]

Status: 0 (VALID]

Figure 3: Details of two dependent transactions

84 have a dependency that results in the failure (MVCC read conflict)
of one of them (transaction 84). Our tool also shows the exact smart
contract functions and keys that caused this transaction dependency
conflict. We can then analyze these specific functions in the smart
contract to identify possible optimizations. Detecting the smart
contract functions and keys responsible for transaction conflicts
can lead to identifying effective optimization strategies such as
smart contract partitioning, data model alteration, and activity
pruning [2]. Further, our tool also shows the client that generated
a transaction and the peers that endorsed it (Creator MSPID and
Endorsing peers in Figure 3) which can aid in the identification of
optimizations such as client-based reordering, client resource boost,
endorser restructuring, and transaction prioritization [2, 7].

4 Conclusions

We developed Fabric-Visualizer, a user-friendly web application
that helps to analyze transaction dependencies in Fabric workloads.
The implementation of our tool is complete and it is publicly avail-
able. We have demonstrated multiple scenarios to highlight the
utility of the tool for a Fabric user.

Acknowledgments

This work is funded in part by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) - 392214008, and by
the Bavarian Cooperative Research Program of the Free State of
Bavaria - DIK-2002-0013//DIK0114/02.

References

[1] Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. 2021. Why Do My
Blockchain Transactions Fail? A Study of Hyperledger Fabric. In Proceedings of
the 2021 International Conference on Management of Data (Virtual Event, China)
(SIGMOD/PODS °21). Association for Computing Machinery.

[2] Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. 2023. How To Optimize
My Blockchain? A Multi-Level Recommendation Approach. Proc. ACM Manag.
Data 1, 1, Article 24 (may 2023). https://doi.org/10.1145/3588704

[3] Androulaki et al. 2018. Hyperledger Fabric: A Distributed Operating System for
Permissioned Blockchains. In Proceedings of the Thirteenth EuroSys Conference
(Porto, Portugal) (EuroSys '18). ACM, Article 30, 30:1-30:15 pages.

[4] Michel Rauchs, Apolline Blandin, Keith Bear, and Stephen B McKeon. 2019. 2nd
global enterprise blockchain benchmarking study. Available at SSRN 3461765
(2019).

[5] Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta, Meihui Zhang, Gang Chen,
and Beng Chin Ooi. 2020. A Transactional Perspective on Execute-Order-Validate
Blockchains. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (Portland, OR, USA) (SIGMOD °20). https://doi.org/10.1145/
3318464.3389693

[6] Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich.
2019. Blurring the Lines Between Blockchains and Database Systems: The Case
of Hyperledger Fabric. In Proceedings of the 2019 International Conference on
Management of Data (Amsterdam, Netherlands) (SIGMOD °19). ACM, New York,
NY, USA, 105-122. https://doi.org/10.1145/3299869.3319883

[7] Shenbin Zhang, Ence Zhou, Bingfeng Pi, Jun Sun, Kazuhiro Yamashita, and Yoshi-
hide Nomura. 2019. A Solution for the Risk of Non-deterministic Transactions
in Hyperledger Fabric. 2019 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC) (2019), 253-261.



ACM Publishing License and Audio/Video Release

Title of the Work: Fabric-Visualizer: A Transaction Dependency Visualizer for
Hyperledger Fabric
Submission ID:middleware23dpds-p82

Author/Presenter(s): Jeeta Ann Chacko:Technical University of Munich;Nino
Richter:Technical University of Munich;Ruben Mayer:University of Bayreuth;Hans-Arno
Jacobsen:University of Toronto

Type of material:short paper

Publication and/or Conference Name: Middleware Demos, Posters and Doctoral
Symposium'23:24th International Middleware Conference Demos, Posters and
Doctoral Symposium Proceedings

1. Glossary
2. Grant of Rights

(a) Owner hereby grants to ACM an exclusive, worldwide, royalty-free, perpetual,
irrevocable, transferable and sublicenseable license to publish, reproduce and
distribute all or any part of the Work in any and all forms of media, now or hereafter
known, including in the above publication and in the ACM Digital Library, and to
authorize third parties to do the same.

(b) In connection with software and "Artistic Images and "Auxiliary Materials, Owner
grants ACM non-exclusive permission to publish, reproduce and distribute in any and
all forms of media, now or hereafter known, including in the above publication and in
the ACM Digital Library.

(c) In connection with any "Minor Revision", that is, a derivative work containing less
than twenty-five percent (25%) of new substantive material, Owner hereby grants to
ACM all rightsin the Minor Revision that Owner grants to ACM with respect to the
Work, and all terms of this Agreement shall apply to the Minor Revision.

(d) If your paper is withdrawn before it is published in the ACM Digital Library, the
rights revert back to the author(s).

A. Grant of Rights. | grant the rights and agree to the terms described above.

|| B. Declaration for Government Work. | am an employee of the national government

of my country/region and my Government claims rights to this work, or it is not
copyrightable (Government work is classified as Public Domain in U.S. only)

Are you a contractor of your National Government? ) Yes® No

Are any of the co-authors, employees or contractors of a National Government?

' Yes® No B

Are all of the co-authors, employees or contractors of a National Government? ! Yes
|1§| No




3. Reserved Rights and Permitted Uses.

(a) All rights and permissions the author has not granted to ACM in Paragraph 2 are
reserved to the Owner, including without limitation the ownership of the copyright
of the Work and all other proprietary rights such as patent or trademark rights.

(b) Furthermore, notwithstanding the exclusive rights the Owner has granted to ACM
in Paragraph 2(a), Owner shall have the right to do the following:

(i) Reuse any portion of the Work, without fee, in any future works written or
edited by the Author, including books, lectures and presentations in any and all
media.

(ii) Create a "Major Revision" which is wholly owned by the author

(iii) Post the Accepted Version of the Work on (1) the Author's home page, (2)
the Owner's institutional repository, (3) any repository legally mandated by an
agency funding the research on which the Work is based, and (4) any
non-commercial repository or aggregation that does not duplicate ACM tables
of contents, i.e., whose patterns of links do not substantially duplicate an
ACM-copyrighted volume or issue. Non-commercial repositories are here
understood as repositories owned by non-profit organizations that do not
charge a fee for accessing deposited articles and that do not sell advertising or
otherwise profit from serving articles.

(iv) Post an "Author-lzer" link enabling free downloads of the Version of Record
in the ACM Digital Library on (1) the Author's home page or (2) the Owner's
institutional repository;

(v) Prior to commencement of the ACM peer review process, post the version of
the Work as submitted to ACM ("Submitted Version" or any earlier versions) to
non-peer reviewed servers;

(vi) Make free distributions of the final published Version of Record internally to
the Owner's employees, if applicable;

(vii) Make free distributions of the published Version of Record for Classroom
and Personal Use;

(viii) Bundle the Work in any of Owner's software distributions; and

(ix) Use any Auxiliary Material independent from the Work.

When preparing your paper for submission using the ACM TeX templates, the rights
and permissions information and the bibliographic strip must appear on the lower left
hand portion of the first page.

The new ACM Consolidated TeX template Version 1.3 and above automatically creates
and positions these text blocks for you based on the code snippet which is
system-generated based on your rights management choice and this particular




conference. When creating your document, please make sure that you are only using
TAPS accepted packages. (If you would like to use a package not on the list, please
send suggestions to acmtexsupport@aptaracorp.comRE: TAPS LaTeX Package
evaluation.)

NOTE: For authors using the ACM Microsoft Word Master Article Template and
Publication Workflow, The ACM Publishing System (TAPS) will add the rights
statement to your papers for you. Please check with your conference contact for
information regarding submitting your source file(s) for processing.

Please put the following LaTeX commands in the preamble of your document -
i.e., before \begin{document}:

\copyrightyear{ 2023}

\acmY ear{ 2023}

\setcopyright{ acmlicensed}\acmConference[Middleware Demos, Posters and
Doctoral Symposium'23 ]{24th International Middleware Conference Demos,
Posters and Doctoral Symposium} { December 11--15, 2023} {Bologna, Italy}
\acmBooktitle{ 24th International Middleware Conference Demos, Posters and
Doctoral Symposium (Middleware Demos, Posters and Doctoral Symposium'23
), December 11--15, 2023, Bologna, Italy}

\acmPrice{ 15.00}

\acmDOI1{10.1145/3626564.3629098}
\acmISBN{979-8-4007-0429-1/23/12}

NOTE: For authors using the ACM Microsoft Word Master Article Template and
Publication Workflow, The ACM Publishing System (TAPS) will add the rights
statement to your papers for you. Please check with your conference contact for
information regarding submitting your source file(s) for processing.

If you are using the ACM Interim Microsoft Word template, or still using or
older versions of the ACM SIGCHI template, you must copy and paste the
following text block into your document as per the instructions provided with
the templates you are using:

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.

Middleware Demos, Posters and Doctoral Symposium'23 , December 11-15,
2023, Bologna, Italy
© 2023 Copyright is held by the owner/author(s). Publication rights licensed to



ACM.
ACM ISBN 979-8-4007-0429-1/23/12...$15.00
https://doi.org/10.1145/3626564.3629098

NOTE: Make sure to include your article's DOI as part of the bibstrip data; DOIs will be
registered and become active shortly after publication in the ACM Digital Library.
Once you have your camera ready copy ready, please send your source files and PDF
to your event contact for processing.

4. ACM Citation and Digital Object Identifier.

(@) In connection with any use by the Owner of the Definitive Version, Owner shall
include the ACM citation and ACM Digital Object Identifier (DOI).

(b) I'n connection with any use by the Owner of the Submitted Version (if accepted) or
the Accepted Version or a Minor Revision, Owner shall use best efforts to display the
ACM citation, along with a statement substantially similar to the following:

"© [Owner] [Year]. Thisis the author's version of the work. It is posted here for
your personal use. Not for redistribution. The definitive version was published
in { Source Publication}, https://doi.org/10.1145/{ number}."

5. Livestreaming and Distribution

You are giving a presentation at the annual conference. This section of the rights form
gives you the opportunity to grant or deny ACM the ability to make this presentation
more widely seen, through (a) livestreaming of the presentation during the
conference and/or (b) distributing the presentation after the conference in the ACM
Digital Library, the "Conference Presentations" USB, and media outlets such as Vimeo
and YouTube. It also provides you the opportunity to grant or deny our use of the
presentation in promotional and marketing efforts after the conference.

Not all conference presentations are livestreamed; you will be notified in advance of
the possibility of your presentation being livestreamed.

The permissions granted and/or denied here apply to all presentations of this
material at the conference, including (but not limited to) the primary presentation and
any program-specific "fast forward" presentations.

ACM's policy on the use of third-party material applies to your presentation as well as
the documentation of your work; if you are using others' material in your
presentation, including audio, you must identify that material on the ACM rights form
and in the presentation where it is used, and secure permission to use the material
where necessary.

Livestreaming.
| grant permission to ACM to livestream my presentation during the conference (a
"livestream" is a synchronous distribution of the presentation to the public, separate



from the presentation distributed to conference registrants).
® Yes
L) No

Post-Conference Distribution.

| grant permission to ACM to distribute the recording of my presentation after the
conference as listed above.

® Yes

' No

6. Auxiliary Material
Do you have any Auxiliary Materials? ) Yes® No

7. Third Party Materials

In the event that any materials used in my presentation or Auxiliary Materials contain
the work of third-party individuals or organizations (including copyrighted music or
movie excerpts or anything not owned by me), | understand that it is my
responsibility to secure any necessary permissions and/or licenses for print and/or
digital publication, and cite or attach them below.

® We/l have not used third-party material.
./ We/l have used third-party materials and have necessary permissions.

8. Artistic Images

If your paper includes images that were created for any purpose other than this paper
and to which you or your employer claim copyright, you must complete Part 1V and be
sure to include a notice of copyright with each such image in the paper.

® We/l do not have any artistic images.

() We/l have any artistic images.

9. Representations, Warranties and Covenants

The undersigned hereby represents, warrants and covenants as follows:

(a) Owner is the sole owner or authorized agent of Owner(s) of the Work;

(b) The undersigned is authorized to enter into this Agreement and grant the
rights included in this license to ACM;

(c) The Work is original and does not infringe the rights of any third party; all
permissions for use of third-party materials consistent in scope and duration with
the rights granted to ACM have been obtained, copies of such permissions have
been provided to ACM, and the Work as submitted to ACM clearly and accurately
indicates the credit to the proprietors of any such third-party materials (including
any applicable copyright notice), or will be revised to indicate such credit;

(d) The Work has not been published except for informal postings on non-peer
reviewed servers, and Owner covenants to use best efforts to place ACM DOI



pointers on any such prior postings;

(e) The Auxiliary Materials, if any, contain no malicious code, virus, trojan horse or
other software routines or hardware components designed to permit unauthorized
access or to disable, erase or otherwise harm any computer systems or software;
and

(f) The Artistic Images, if any, are clearly and accurately noted as such (including
any applicable copyright notice) in the Submitted Version.

| agree to the Representations, Warranties and Covenants.

10. Enforcement.

At ACM's expense, ACM shall have the right (but not the obligation) to defend and
enforce the rights granted to ACM hereunder, including in connection with any
instances of plagiarism brought to the attention of ACM. Owner shall notify ACM in
writing as promptly as practicable upon becoming aware that any third party is
infringing upon the rights granted to ACM, and shall reasonably cooperate with ACM
inits defense or enforcement.

11. Governing Law

This Agreement shall be governed by, and construed in accordance with, the laws of
the state of New Y ork applicable to contracts entered into and to be fully performed
therein.

Funding Agents

1. Bavarian Cooperative Research Program of the Free State of Bavaria award
number(s):DIK-2002-0013//DIK0114/02

2. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) award
number(s):392214008

DATE:10/26/2023 sent to chacko@in.tum.de at 08:10:41



	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Motivation
	Problem Statement
	Identifying Performance Limitations
	Deriving Performance Optimization Strategies
	Autonomous Dynamic Performance Optimization

	Approach
	Performance Analysis
	Performance Optimization Recommendation System
	Self-driving Blockchain System

	Contributions
	Organization

	Background
	Methodology
	Fabric Network Setup and Analysis
	Smart Contracts and Workloads
	Performance Analysis
	Workload Visualizer

	Holistic Performance Optimization Strategies
	User Level Optimizations
	Data Level Optimizations
	System Level Optimizations

	Holistic Performance Optimization Systems
	Performance Optimization Recommendation System
	Self-Driving Blockchain System

	Blockchain Benchmarking Systems

	Summary of Publications
	Why Do My Blockchain Transactions Fail? A Study of Hyperledger Fabric
	How To Optimize My Blockchain? A Multi-Level Recommendation Approach
	Should my Blockchain Learn to Drive? A Study of Hyperledger Fabric
	A Comprehensive Study on Benchmarking Permissioned Blockchains
	Fabric-Visualizer: A Transaction Dependency Visualizer for Hyperledger Fabric

	Discussion
	Conclusions
	Bibliography
	Appendices
	Why Do My Blockchain Transactions Fail? A Study of Hyperledger Fabric
	How To Optimize My Blockchain? A Multi-Level Recommendation Approach
	Should my Blockchain Learn to Drive? A Case of Hyperledger Fabric
	A Comprehensive Study on Benchmarking Permissioned Blockchains
	Fabric-Visualizer: A Transaction Dependency Visualizer for Hyperledger Fabric


