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Abstract

Understanding the complex behavior of molecular systems is fundamental to fields such
as chemistry, physics, materials science, and biology. Molecular dynamics (MD) simulations
are crucial tools for studying atomic-level dynamics. This work focuses on improving the
efficiency of MD simulations involving two-body and three-body interactions. Traditional
two-body potentials often can not fully capture the complexity of molecular systems, making
the inclusion of three-body interactions necessary. However, these interactions have a
computational complexity of O(n?), compared to O(n?) for two-body interactions. High
Performance Computing (HPC) offers solutions for parallelizing these calculations to reduce
computational time. Additionally, using Multiple Time-Stepping methods like the r-RESPA
algorithm can further enhance efficiency by integrating certain interactions at different
time steps. This study investigates the feasibility of using r-RESPA to integrate three-
body interactions with a larger time step than two-body interactions, aiming to reduce
computational cost while maintaining accuracy. The results and methods are discussed,
providing insights into potential advancements in MD simulation efficiency.
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Introduction and Background




1. Introduction

Analyzing the behavior of molecular systems is crucial to numerous disciplines, including
chemistry, physics, materials science, and biology. Molecular dynamics (MD) simulations
have emerged as essential tools for studying the dynamics of molecular systems. These
simulations allow researchers to observe and analyze the motions and interactions of atoms
and molecules over time. Throughout this thesis we use the term particle to denote a
molecule or an atom.

Crucial to the accuracy of MD simulations is the comprehensive modeling of interatomic
interactions. Traditionally, two-body potentials such as the Lennard-Jones and Coulomb
potentials are used to describe the pairwise interactions between atoms. However, many
molecular systems exhibit complex behavior that cannot be adequately captured by pairwise
interactions alone. In particular, three-body interactions, where the motion of one atom is
influenced by the presence of two others, play a crucial role in determining the structural
stability, phase transitions and dynamic properties of different materials like noble gases for
example [MS99].

However, three-body interactions are very computationally expensive [May23] and are in a
complexity class of O(n?) compared to two-body interactions, which are in a complexity class
of O(n?) with n particles. Accordingly, there is interest in High Performance Computing
(HPC) in calculating these interactions as efficiently as possible. Algorithms that efficiently
parallelize the calculation of three-body interactions and distribute them across several
compute nodes, for example, offer possibilities for reducing the calculation time.

Another aspect that makes the calculation of MD simulations so expensive is that,
depending on the system to be simulated, we have to use very small time steps in the
femtosecond range for the approximation algorithms for time integration in order to minimize
numerical errors. Accordingly, it can take hours, days or weeks to calculate such simulations
over a longer time period. [LZS06]

Also here there are possibilities to reduce the calculation time. These include, for example,
time integration algorithms such as the r-RESPA (reversible Reference System Propagator
Algorithm) method [GKZ07, LM15], which integrate certain interactions between particles
with different time steps. Such algorithms are also known as Multiple Time-Stepping
methods. For example, forces that have a very high frequency can be integrated with smaller
time steps than forces that have a lower frequency.

In this work, we address the question of whether we can use such Multiple Time-Stepping
methods, specifically the r-RESPA method, to integrate two-body and three-body inter-
actions with different time steps. The underlying idea is that in some scenarios the very
computationally expensive three-body interactions rather act as a corrector for the two-body




interactions and thus in the equilibrium of the MD system the vibrations are largely deter-
mined by the two-body interactions. In this work, we investigate whether we can integrate
the very computationally expensive three-body interactions with larger time steps than the
two-body interactions.

The paper is organized as follows: In chapter 2 we give a rough overview of required
theoretical background, a literature review on numerical time integration and Multiple
Time-Stepping methods. Chapter 3 deals with the required technical background for this
report. In chapter 4, we give an outline of which methods have been used so far to reduce the
computational cost of three-body interactions. Chapter 5 briefly describes which methods we
have chosen to perform our measurements and how we have implemented them. In chapter
6 we discuss the results of our work. In the last chapter, we then give a brief outlook on
how this work can be continued.




2. Theoretical Background

2.1. Molecular Dynamic Simulations

To simulate the motion of particles over a certain time interval I = [tsiart, tend), Wwe need
to solve the equations of motion from classical mechanics. They are given, for example, by
Newton’s equation of motion

F=m-a (2.1)

where m describes the mass and a the acceleration of a particle.

However, we can not directly solve these equations analytically. In order to be able
to simulate the motion of particles with computers, the corresponding time interval I is
discretized into time steps of the size dt. In each of these time steps, the equations of
motion from classical mechanics are solved using numerical methods. Details on numerical
integration can be found in section 2.2.

To calculate the acceleration a from Formula 2.1, we have to calculate the force acting
on each individual particle at each time step. With the acceleration, we can calculate the
velocity, with which we can finally update the position of the particles. This force can be
calculated using the negative gradient of the potential:

F=-VU (2.2)

In order to approximate the force acting on the particles as accurately as possible, there
are various potential functions that are used in MD simulations to calculate different types
of interactions. These can be divided into short-range and long-range potentials, with short-
range potentials decreasing rapidly with increasing distance between the interacting particles,
while long-range potentials are designed to calculate interactions with large distances between
the particles. In this work we only use short-range potentials. Furthermore, potential
functions can be classified according to the number of particles they use to calculate the
interactions. The most common potential functions consider pairwise interactions between
two particles.

To calculate the exact force acting on a particle ¢ we have to add up the sum of all
potentials from single-body to N-body potential and calculate the negative gradient:

J 7k




2.1. Molecular Dynamic Simulations

As the number of particles involved in a potential function increases, the contribution to
the overall potential decreases, but the calculation effort increases. In practice, it would
therefore be too time-consuming to calculate all N-body potentials and is often limited to
two-body potentials.

2.1.1. Lennard Jones 12-6 Potential

The Lennard Jones 12-6 potential is a common short range potential used in MD simulations
for two-body interactions. It is defined as follows:

P2(i, j) = 4eLs [(iﬁj)u - <(Zj>6] (2.4)

Here, r;; is the distance between particles 7 and j. The parameters €;,; and oy depend
on the material to be simulated. The potential has two terms, where the first term (7“;]-12)
describes the attractive, the second term (ri;6) describes the repulsive van der Waals
interaction.

2.1.2. Axilrod-Teller-Muto Potential

The Axilrod-Teller-Muto potential is a three-body potential that is often used in combination
with the Lennard Jones 12-6 potential. It can be used, for example, to simulate of the
vapor-liquid transition of noble gases with more accuracy [MS99].

The Axilrod-Teller-Muto potential is defined as follows:

1 4 3 x cos(6;) * cos(0;) * cos(bk)

(Tij * Tk ¥ Tjk)g

¢3(i, j, k) = vara * (2.5)

Where 7;; is the distance between particle 7 and j, 0; is the angle between z} and ik. The
positive coefficient 47y depends on the particles being simulated [AT43].

2.1.3. Cutoff Distance

In contrast to a direct force calculation in which we consider all possible interactions between
all particles, a cutoff distance is often used for short-range potentials in MD simulations to
save calculation time. Since short-range potentials quickly converge to zero as the distance
between the particles increases, we can ignore the interactions from a fixed distance onwards,
as they only make a minor contribution. This brings a significant performance advantage,
but understandably also leads to a further approximation.

In contrast to two-body interactions, in which the cutoff criterion is simply the distance
between the two particles, there are different criteria for three-body interactions. A common
method for a cutoff criterion is that all three pairwise distances between the particles
involved must be within the specified cutoff distance. For more cutoff criteria for three-body
interactions and a visual representation, see [Hab24].




2. Theoretical Background

2.1.4. Newton3 Optimization

Newton’s third law states that the force Fig,_ 4 exerted by one particle A on another particle
B is also exerted in the other direction with the same magnitude. Fg, 4 = —Fa. . In the
context of MD simulations and high performance computing, we can exploit this law to save
computation time as we only need to evaluate the force between two particles once.

This law can also be applied to three-body interactions [Mar01].

2.2. Numerical Integration

In this section, we use the Hamiltonian formalism to describe MD systems. This is another
way, in addition to the equations presented in section 2.1, to represent the motion equations
from classical mechanics. The following paragraphs refer to the mathematical formulation
of [DHL199, GKZ07].

The Hamilton function for a particle with mass m moving with a potential U is given as:

2
H(t,q,p) = K(p) + U(q) = 2— + U(q) (2.6)

2m

The Hamilton function is made up of the kinetic energy, which is described by the first
summand, and the potential energy, which corresponds to the second summand.

In MD simulations with IV particles we have to numerically solve the Hamiltonian equations
of motion:

. OH

=2 .1
) OH
P = — 94, (2.8)

Here ¢; refers to the position of particle 7, p; refers to the momentum of particle i, ¢; is the
change in positions over time and therefore the velocities. p; are is the change in momentum
over time.

We can therefore rewrite the formulas 2.7 and 2.8 as:

oH

. P
o _Pp 2.
%= 5 " m (2.9)
oH oU
= 2t %Y 2.1
P 94, 94 (2.10)

As already mentioned, computers are discrete machines and we cannot directly solve
these equations analytically. There are various methods for time integration like the Euler
Method, Midpoint or Runge Kutta methods or the Stérmer Verlet Algorithm that provide
an approximation for the time integration. The Euler method, which is a first-order method,
degenerates very quickly if the time steps are too large. Other methods like the Midpoint or
Runge Kutta methods provide better results, by including several initial conditions [HLWO06].
In this paper, we focus on the Stérmer Verlet algorithm, which is discussed in more detail in
Section 2.2.1.




2.2. Numerical Integration

Ultimately, however, all time integration algorithms are always an approximation to the
reality. Especially in simulations with a large number of time steps, the resulting positions
of particles towards the end of the simulation can deviate significantly from the exact result.
However, it has been found that in MD simulations it is often more important to obtain
other properties than the exact position of the molecules at the end. For example statistical
properties like the total energy can be obtained quite accurately. [GKZ07]

Beside the stability and accuracy, also the computational effort plays an important role.
Given that force calculations occupy up to 95 percent of the time in molecular dynamics
simulations, as noted by Deuflhard et. el. [DHL199], we should employ time integration
schemes that minimize the number of these calculations. For example, we should favor the
Stormer Verlet method over the Midpoint method, since the Midpoint method needs two
force computations to get from ¢, to ¢,41). In addition, there are other ways in which
performance can be improved with the help of time integration algorithms. For example,
higher order schemes can be used, which make it possible to use larger time steps and still
maintain numerical stability. There are also time integration algorithms that integrate
different components of the MD system at different time steps, which can also optimize the
calculation time in suitable cases. These algorithms are also called Multiple Time-Stepping
Methods, which we deal with in this report.

2.2.1. Symplectic Integrators

A special quantity, that is conserved in Hamiltonian systems, is the volume in phase space
[GKZ07]. Time integration algorithms that preserve the volume in phase space are also
called symplectic time integration methods. The symplectic property, is crucial for capturing
the intrinsic conservation laws that govern many physical phenomena. By utilizing this
property, symplectic time integrators can exhibit better long-term behavior compared to
conventional integration schemes like the Euler integrator.

In this report, we focus on the Stormer-Verlet algorithm, as it is one of the most commonly
used symplectic integrators. The key advantage of this method is that it is a first-order
method and therefore requires only one force evaluation per iteration, but offers second-order
accuracy. It can be formulated as follows [HLWO06]:

At
dn+1/2 = qn + ?Hq(pna Qn+1/2)
At

T(H(](pﬂd%’b—f—l/Q) +H(1(pn+17Qn+1/2)) (211)

Pn+1 = Pn —
At
Gn+1 = qpt+1/2 + 7%q(pn+17 Int1/2)

A concrete implementation of this method can be found, for example, in [GKZ07]. In our
work, we use the Stormer-Verlet algorithm as the basis for the r-RESPA algorithm. The
lines 10 to line 11 in algorithm 1 correspond to the classic Stormer-Verlet algorithm.

2.2.2. Multiple Time-Stepping (MTS) Methods

In classical time integration schemes, such as Stormer Verlet, the time step to be selected
is based on the highest frequency in the system. These are, for example, bond, angle and




2. Theoretical Background

torsion forces. However, other forces, such as non-bonded forces, can have a much lower
frequency and the time steps could be chosen larger without significantly losing accuracy
[GKZ07]. This is where the Multiple Time-Stepping methods come into play, with which we
integrate different forces at different time scales and allows us to save calculation time.

In this section, we briefly present the theoretical background and the mathematical
formulation to the Multiple Time-Stepping methods. The following paragraphs refer to the
mathematical formulation of [DHL199].

Liouville’s Theorem is a fundamental result in Hamiltonian mechanics. This theorem
is concerned with the conservation of phase space volume under the time evolution of a
classical mechanical system. Liouville’s Theorem states that as the system evolves over
time according to Hamilton’s equations of motion, the volume of the region in phase space
occupied by a collection of such points remains constant. By formulating the time evolution
as a Liouvillian, it is quickly apparent that it is easy to generate reversible and symplectic
integrators. In particular, by splitting the Liouvillian into two components, we can apply
the symmetric Trotter factorization, which is the base to obtain the MTS algorithms.

First, we formulate the problem as Liouvillian. The following formulation only considers
a one-dimensional system for simplicity.

0 0 0
iLZ{O,H}anfqﬂtha—erﬂa—p (2.12)

Where Fj is the Force that should be integrated with smaller time steps and Fj the force
that should be integrated with larger time steps, ¢ is the velocity and p is the momentum.
With that we can formulate the operator:

G(t) = €'t (2.13)

which is the propagator of motion for time ¢. The operator

G(t) = etFot (2.14)
therefore represents the mapping from one time step to the next.

If we now divide ¢L into ¢L = ¢L; 4 L9, e.g. by splitting the two forces into L1 and Lo,
we obtain

G(t) = elibatil2)dt (2.15)

Now we can use the reversible trotter factorization to approximate the operator as follows

N st oot
eULtiL2)ot o i 5 00t eiln (2.16)




2.2. Numerical Integration

In this way, we have divided the system into two components, integrating one component
at the beginning and end and the second in the middle. If we now divide the middle
component into several time steps, we obtain

. . . . T oo,
elitatila)it o it [gita¥ )" iln (217

Accordingly, we can integrate the inner part into any number of smaller time steps 6t/r.

In this way, we can also decompose the Hamiltonian system into several parts and use the
above procedure to develop a symplectic and reversible time propagator operator.
For example, we can decompose H into

H="Ui(q) + (U2(p) + K(p)) (2.18)

and integrate U; to larger time steps and Us to smaller time steps using the above scheme.
The kinetic energy is integrated together with Uy to the smaller time steps.

2.2.3. The r-RESPA Method

The r-RESPA (reversible Reference System Propagation Algorithm) method or impulse
method is a concrete implementation of MTS. In this algorithm, different time steps are used
for the different potentials to be calculated. This method is described and used for different
purposes in [GHWS91, TBM91, TBM92, TBR91]. These purposes are also described in
more detail in section 4. The algorithm can not only be used for two different time-scales, but
can also be extended to an arbitrary number of separations. This can be easily implemented
with a nested loop, where the innermost loop integrates the force that requires the smallest
time-step and the outermost loop integrates the force that requires the longest time-step.
An exemplary pseudo algorithm that we used as a reference can be found in [Lea0l] and
[GKZO07]. The specific implementation that we use for our work can be found in Section 5.

The flaw of the r-RESPA method

Although the r-RESPA algorithm can contribute to a significant reduction in computational
effort, it must be used with caution. A wrong choice for a time step can lead to so-called
resonances. In [LM15] in particular, the problem of resonances is illustrated using an
analytically solvable example with a harmonic oscillator.

To mitigate the problem of resonances, other MTS algorithms have been developed, such as
the Mollified Multiple Time-Stepping algorithm [GASSS98]. In this algorithm, the potential
that is integrated with longer time steps is modified by filtering the original potential.
This filtering essentially smooths out the high-frequency oscillations in the potential energy
function, ensuring numerical stability while still accurately capturing the dynamics of the
system. There are various methods of filtering the potential function. One method often
mentioned in the literature is B-spline averaging [IRS99]. In this paper, however, we have
not dealt with the Mollified Multiple Time-Stepping algorithm in detail, as we first want to
examine the results with the r-RESPA algorithm.




3. Technical Background

3.1. MD Simulations on HPC Systems

HPC systems are powerful computational resources designed to perform complex calculations
at high speeds, utilizing parallel processing and large-scale memory capabilities. These
systems consist of numerous interconnected processors working simultaneously to solve
large problems. MD simulations require the computation of interactions between thousands
to millions of atoms over longer time periods. HPC systems address these challenges by
distributing the computational load across multiple processors. This parallel processing
capability drastically reduces the time required to perform simulations, enabling researchers
to run more detailed and longer simulations than would be possible on standard computers.

Message Passing Interface: The Message Passing Interface (MPI)! is a standardized
and portable message-passing system designed to function on a variety of parallel computing
architectures. It enables multiple processes running on a distributed memory system to
communicate with each other, making it fundamental for HPC applications. Since we use a
DirectSum algorithm in our work, which is implemented as a distributed memory application
for several processors, we use MPI for communication between the processors. Details on
the implementation can be found in Section 5 and in particular in the references given there.

3.2. Direct Sum Calculation

In a Direct Sum calculation, all interactions between all particles are calculated without
cutoff distance. To calculate all forces between all pairs of particles using the newton3
optimization, we need to calculate (N +22_1) pairs in a system with N particles. Similarly,
we need to calculate (N +§’ _1) triplets. Although this is very computationally intensive, it
provides very accurate results. In the context of our project, this is particularly necessary in
order to be able to investigate the effects of different step-size-factors for the three-body
interactions. Due to the high computational effort, it is advisable to use a distributed
memory implementation in order to utilize the capacities of an HPC system. The concrete

implementation of the algorithm can be found in section 5.

3.3. AutoPas

Autopas is a software library for efficient short-range particle simulations with a cutoff
distance, such as MD simulations, which acts as a black box and automatically selects the
best possible algorithm by autotuning during the simulation. The software is designed for

"https://www.mpi-forum.org/
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3.3. AutoPas

the node-level of HPC systems. As of May 2024, support for three-body interactions is being
integrated into Autopas.

Autopas uses so-called containers that hold the particles and enable efficient traversing of
particle pairs and particle triplets for calculating the particle interactions.

In the following, we briefly introduce one of the containers in AutoPas that is relevant for
this work.

Linked Cells: In the linked cells container, the simulation domain is divided into cells,
with each cell containing the particles whose area it covers. This container is particularly
advantageous for simulations with a cutoff distance, as starting from a fixed particle, only
the particles in neighboring cells that lie in a cell covered by the cutoff radius need to be
checked for their distance. In this way, a lot of calculation time can be saved for the distance
checks.

Traversals: Although there are several traversals for the linked cells container that also
support the newton3d optimization, we use a very simple traversal in our work, which we
refer to as LCCO1. As of March 2024, when we performed our measurements, only this
traversal was supported for three-body interactions for the linked cells container. Figure
3.1 shows a schematic representation of the container for 2D. It should be noted that this
traversal does not support the newton3 optimization.

Figure 3.1.: Linked Cells C01 Traversal: In this traversal, all interactions with particles in
neighboring cells that lie within the cutoff radius are calculated starting from
the base cell (blue). From a base cell, only particles in neighboring cells that
are covered by the cutoff radius need to be checked.

11
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4. Related Work

This section presents previous work using Multiple Time-Stepping (MTS) methods, their use
cases, and other approaches to reduce the computational time for three-body interactions in
molecular dynamics (MD) simulations.

In general, MTS methods are employed when processes in a system occur at different
frequencies. This subdivision can be based on various criteria.

Deuflhard et al. [DHL"99] distinguishes between two basic properties that can be used to
divide time integration: Fast and slow degrees of freedom, which are then further subdivided.
For example, different forces can be divided into fast and slow degrees of freedom, particularly
bonded and non-bonded interactions. As noted by Griebel et al. [GKZ07], inter-molecular
interactions such as bond, angle, and torsion forces have higher frequencies than non-bonded
interactions like Lennard-Jones or Coulomb forces and can thus be integrated at different
time scales.

Another way of dividing into fast and slow degrees of freedom is to classify the mass of
the particles. Light particles, which move faster, require smaller time steps for integration.
In contrast, heavier particles with lower velocities can be integrated with longer time steps
[DHL*99, TBRI1].

Apart from fast and slow degrees of freedom, Deuflhard et al. [DHL199] distinguishes
between long-range and short-range forces. Short-range forces, having a stronger influence
on particle movement and a higher frequency, can be limited to a smaller radius using
cutoff algorithms, thus reducing computational effort. Long-range forces, being more
computationally expensive but having less impact on particle movement, can be integrated
with larger time steps. Cutoff functions can be used to split the Lennard-Jones and Coulomb
forces into short and long-range parts, optimizing the integration process [GKZ07].

Nakano et al. [NVK93] utilize the MTS method to minimize communication overhead in a
distributed memory setup for MD simulations with two- and three-body interactions. They
introduce an intermediate cutoff r, between 0 and r. to distinguish between interactions.
All three-body interactions are considered within the range 0 to r,, and only Lennard-Jones
interactions are considered between the whole cutoff radius from 0 to r.. The three-body
interactions are computed at each time step, while interactions between r, and r. are only
computed every few time-steps according to the chosen step-size-factor. This approach
contrasts with our work, where two- and three-body interactions are separated and the
three-body interactions are integrated with longer time steps.

Grubmiiller et al. [GT98] compare different MTS methods to reduce calculation time for
long-range forces. They evaluate a simple cutoff algorithm against distance class algorithms,

13
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which classify particles based on distance and apply the MTS scheme accordingly. Their
results indicate that all MTS methods perform relatively poorly compared to a cutoff
algorithm in terms of energy drift.

Another approach to reduce the calculation time of three-body interactions is the Adaptive
Resolution Scheme, AdResS. AdResS allows for a seamless transition between different
force types in certain regions within a simulation, enabling for example the reduction of
computation time for expensive three-body interactions in areas where they are not necessary.
One work that uses AdResS for two-body and three-body forces is that of M. Mayr [May23].
In this work, the simulation domain was divided along the z-axis into a part in which only
three-body interactions were calculated, a transition part and an area in which only two-body
interactions were calculated. With a division of 20/10/70, where the numbers correspond to
the percentage range for the three-body area, interface layer and two-body area respectively,
a speedup of about 3 was measured. However, AdResS subdivides the simulation domain
spatially, which means that the high-resolution calculations are confined to designated areas.
This approach does not allow for three-body interactions to be computed everywhere in the
simulation domain while still reducing computation time. In contrast, MTS methods can be
applied globally across the simulation, integrating different interactions at varied time steps
regardless of their spatial location.

14
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5. Implementation

This chapter briefly describes how the r-RESPA method is implemented. To analyze the
results, one algorithm for calculating all possible particle pairs and particle triplets from
Koanantakool and Yelick [KY14] is implemented. This will be called DirectSum throughout
this report. On the other hand, a proxy application of an existing implementation of
algorithms for calculating interactions with a cutoff called AutoPas [GSBN22], is extended
by the r-RESPA method. This is referred to as Cutoff.

5.1. Algorithms

5.1.1. DirectSum Algorithm

For the DirectSum implementation, the Embedded Algorithm [KY14] was implemented as
a distributed memory implementation using MPI. In contrast to the other algorithms in
the paper by P. Koanantakool and K. Yelick, the embedded algorithm saves some buffer
shifts by integrating these interactions in other rounds. Based the literature review in
[Mar22], we concluded that this algorithm is currently a state-of-the-art algorithm for the
calculation of three-body interactions on HPC clusters. In addition, this algorithm was
chosen because, unlike many other algorithms, the calculation of two-body forces can be
seamlessly integrated into the calculation of three-body interactions, and it makes use of the
newtond optimization.

Inclusion of Two-Body Interactions: Since, for a given number of p processors, there
are significantly more buffer interactions between three buffers for the three-body interactions
than buffer interactions between two buffers for the two-body interactions, we only need to
calculate pairwise interactions in the first spq;r = (p+§_1) /p shift rounds of the algorithm.
In our implementation, we add the buffer interactions (b1, b1) and (bg, b1) to the three-body
buffer interactions in lines 11 to 13 of the pseudo algorithm for the embedded algorithm in
[KY14]. In line 18, we add the interaction (bg,b2). We do this until we have reached the
required number $,4;- of pairwise buffer actions. This scheme ensures that we calculate all
necessary, but no redundant buffer interactions. It should be noted that, analogous to the
special case when p % 3 == 0 for three-body interactions, also for the case p % 2 == 0 an
additional shift round must take place.

For further details on how one of these algorithms from P. Koanantakool and K. Yelick
is implemented for a distributed memory environment using MPI and a comparison of
algorithms for three-body interactions see [Mar22]. Although the embedded algorithm
was not implemented in the given reference, but the All Unique Triplets Algorithm, the
Embedded Algorithm can be implemented analogously and a representative pseudo algorithm
is given in [KY14].
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5.2. r-RESPA Implementation

5.1.2. Cutoff Algorithm

The proxy application MD-flexible!, which is supplied with AutoPas as an example applica-
tion, was extended in the main simulation loop by the r-RESPA algorithm as in the pseudo
algorithm 1.

MD-flexible uses the Stérmer-Verlet algorithm from [GKZ07] for the time integration.
Since this algorithm works with the forces from time step ¢~ and #* to update the velocities,
the data structure for the particles has two force buffers in which the calculated force
from time step ¢~ and ' is stored for each particle. In order to be able to integrate the
three-body forces separately, we have added another temporary buffer for the forces to the
particle data structure. This allows us to use the two-body force, which is calculated in the
pseudo algorithm in line 10 and is required in the next iteration in line 11 to calculate the
velocities, store them temporarily and use the main force buffer for the three-body force.

5.2. r-RESPA Implementation

The r-RESPA method was implemented in the same way for both applications. In contrast
to the pseudo algorithm given in the literature [GKZ07], which is implemented using a
double nested loop, we only use a simple loop in which each iteration corresponds to a time
step. In each time step, the two-body force is integrated and every step-size-factor time
steps, the three-body force is integrated. The implementations ensure that the total number
of iterations is a multiple of the step-size-factor. Algorithm 1 gives a rough overview of how
r-RESPA time integration is implemented in our case.

Algorithm 1: r-RESPA implementation for two-body and three-body interactions.
Note: Only an iteration that is divisible by the step-size-factor can be seen as a
full iteration.
Input: Initial particle positions ¥ and velocities v
Output: Particle positions and velocities updated in place.

0

1 calculate Fop(a)
2 calculate F3p(z2)
3 s < stepSizeFactor
4 for ¢ < 0 to numlterations - 1 do
5 IsRespalteration < (i % s) == 0
6 nextIterationIsRespa < ((i+1) % s) == 0
7 if IsRespalteration then
8 L vl vt %ng(azi)
9 o2t 4 Stot 4+ %ng(xi)
10 | calculate Fou(z*t)
11 | oL o+ S (Fyy(2f) + Fyp(2tF)))
12 if nextlterationlsRespa then
13 calculate Fap (')
14 L o+l i+l 4 %F3b($i+l)

"https://github. com/AutoPas/AutoPas/tree/master/examples/md-flexible

17



6. Results

In this section, we investigate the r-RESPA method for simulations with two- and three-body
interactions, where the two-body interactions are integrated at every time step and the
three-body interactions only every few time steps according to the chosen step-size-factor. We
investigate different step-size-factors in comparison to the classical Stormer-Verlet algorithm,
where both the two-body and three-body forces are integrated at each time step.

We use the Lennard-Jones 12-6 (L.J) potential as the two-body potential and the Axilrod-
Teller-Muto (ATM) potential as the three-body potential, since these are two frequently
used potentials in MD simulations.

On the one hand, we carry out measurements with our implementation for direct force
calculation which consider interactions between all pairs or triples (DirectSum). This is
especially used to investigate the effect on the resulting total energy of the MD-system.

On the other hand, we perform measurements with our cutoff implementation, called
Cutoff in the following, to analyze how different step-size-factors for the three-body force
behave when an approximation given by the cutoff is already present.

It should be noted that certain properties can be better analyzed with the DirectSum
method, others better with Cutoff implementation. For example, the influences on the
total energy of different step-size-factors can be better analyzed with DirectSum. Structural
properties such as the radial distribution function or the pressure can in our case be better
analyzed with the Cutoff implementation, since the DirectSum measurements are missing
some aspects that would be needed to measure these quantities. Details can be found in the
respective sections.

We use three different scenarios for our measurements:

e Pseudo scenario: This scenario has no relation to a real physical simulation, but
is used to investigate the effect of different vy parameters for the three-body
interactions in combination with different step-size-factors. Since in many simulations
the parameters are made dimensionless and the Lennard Jones parameters er;y and
oy are set to 1 and all other parameters, such as time step §t or the ATM parameter
varwm, are adjusted accordingly, this scenario provides a good overview of the possible
effects of the r-RESPA method with different materials.

e Argon scenario: We have used the values from [AS22] in order to carry out our
measurements with parameters for a noble gas.

e Aluminium scenario: In contrast to the noble gas, we used the values for aluminum
from [BC21] to carry out the measurements for a solid.
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The following bullet points briefly explain the metrics that are measured. We focus
primarily on the accuracy of the simulations with different step-size-factors.

e Relative Variation in True Energy (RVITE): The RVITE is calculated as

J
1 Z N -

where € is the average total energy, e(i) is the total energy of iteration i. J is the
number of time steps. K is the average kinetic energy for the simulation. According
to [IRS99], the RVITE is a good indicator for the accuracy of symplectic integrators.
The smaller this value is, the smaller the RVITE and the more accurate the time
integration is accordingly. It should be noted that we only use this metric for our
measurements with the DirectSum algorithm, as our results have shown that the cutoff
implementation, being an approximation, already has a strong influence on the total
energy in itself, which is also described in [DO20, FPR™96]. This makes the effects
of different step-size-factors of the r-RESPA algorithm difficult to measure for an
algorithm that uses a cutoff distance.

e Energy Deviation: Here we compare the values for the total energy with different
step-size-factors relative to the total energy with Stormer Verlet. To do this, we
measure the maximum absolute deviation in the total energy maxAbsDev of all step-
size-factors across all iterations relative to Stérmer Verlet. The range 2 *« max AbsDev
is then divided into numBins bins. For each step-size-factor and each iteration, which
represents a complete iteration for each step-size-factor, the deviations are distributed
to bins, which in the end gives an overview of the distribution of the deviation over
the entire simulation. This measurement was also only carried out with the DirectSum
algorithm.

e Two-Body and Three-Body Comparison: In order to better illustrate the re-
sults of the measurements with different step-size-factors for the three-body interactions
compared to a pure two-body simulation, the differences between a pure two-body sim-
ulation and the results of the three-body simulation with r-RESPA are also compared.
This comparison was also only performed with the DirectSum algorithm.

¢ Radial distribution function (RDF): The RDF can be used to examine and
compare structural properties of the MD system. Starting from a fixed particle,
surrounding particles are categorized into numBins distance classes that all together
cover a spherical area with radius R around an arbitrary but fixed particle. The
4% distance class, with j € {0, numBins — 1}, is represented by the spherical shell
between r = j6 and r + ¢ with § = W%ms' Each distance class stores the number of
particles that are contained within the spherical shell around the fixed particle. This
procedure is carried out for each relevant particle in the MD system. The number in
the distance classes is normalized at the end over the number of particles, the volume
of the simulation domain and over time. Accordingly, the RDF gives us the probability
of finding a neighboring particle starting from a fixed particle at a certain distance.
Our implementation follows the approach of guard areas, which is described in section
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6. Results

3 and 3.3 in [LS18]. The whole formula for one time step is given by

N

RDF(r)=>_

=1

(N = 1)(%%)

where N is the total number of particles in the relevant area, ;(r) is the number
of particles which are located in a distance from r to r + § from particle i. V is the
volume of interest for which we perform the measurement. dV, is the volume of the
spherical shell between the radii » and r + . It should also be noted here that we only
use this metric for the cutoff implementation. Further details on why this metric is
not used for the DirectSum algorithm can be found in the corresponding sections.

e Pressure: The pressure is also an indicator of the structural properties of an MD
system. Our results were calculated using the method described in section 3 of [KNA14].
This property is also only measured for the cutoff implementation, as the DirectSum
implementation has no simulation boundaries. Further details can be found in the
corresponding sections.

e Performance: To measure the performance we calculate the speedup based on the
total simulation time compared to a step-size-factor of 1 which corresponds to the
Stormer-Verlet algorithm.

In all our simulations, the parameters are made dimensionless as described in section 3.7.3
of [GKZ07]. The LJ parameters €77, o1 and the mass m are normalized to 1. All other
parameters, such as the ATM parameter va7)s, the time step dt or the temperature 1" are
scaled accordingly. In all our measurements, the MD systems were first equilibrated before
measuring the quantities.

In most of our experiments, we use the step-size-factors 1, 2, 3, 4, 6 and 12. A step-
size-factor of one corresponds to the classic Stormer-Verlet algorithm, in which both the
two-body and three-body forces are calculated at each time step. The reason for choosing
these step-size-factors is that for each step-size-factor every 12th iteration represents a
completed time step. This allows us to compare values of aligned iterations. For the
calculation of the RVITE values, all values from 1 to 12 were used for the step-size-factor,
because the RVITE is not calculated dependent on values from other simulations.

All our experiments were carried out on the HSUper supercomputer of the Helmut Schmidt
University in Hamburg !. This HPC system has 571 compute nodes, each with 2 Intel(R)
Xeon (R) Platinum 8360Y processors with 36 cores each. Thus 72 cores per node.

6.1. Two-Body and Three-Body Force Impact

First, we examine the differences between the two-body force and the three-body force using
two scenarios. We have simulated argon and aluminum using our cutoff implementation. The
values used are the same as those in section 6.3, with the exception that we only calculate
1000 iterations.

"https://www.hsu-hh.de/hpc/en/hsuper/
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6.2. Direct Measurements

We then calculated and compared the average magnitude of the force vectors for the
two body force and the three body force in each iteration. This comparison can be seen in
Figures 6.1 and 6.2.

As we can see, the effect of the twobody force is significantly higher compared to the
threebody force, which is a justification for us to test and evaluate the r-RESPA algorithm
for three-body interactions.
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Figure 6.1.: Argon Simulation Figure 6.2.: Aluminium Simulation

In a further experiment, we investigated the two-body and three-body forces around the
equilibrium for three particles. We used the parameters for aluminum from section 6.3. At
a distance of 2.8, we obtained a force magnitude of 0.1127 with the LJ potential and a
force magnitude of -0.0502 for a distance of 2.9. On the other hand, we obtained a force
magnitude of -0.0117 for the ATM potential at a distance of 2.8 and a force magnitude
of -0.0079 at 2.9. From this we conclude that around the equilibrium the attraction and
repulsion is largely driven by the LJ potential, which we see as a further reason to test and
evaluate the r-RESPA algorithm for three-body interactions.

6.2. Direct Measurements

In this section we investigate the effect of different step-size-factors using the DirectSum
implementation. This allows a detailed analysis of the effect of different step-size-factors on
quantities, such as the total energy.

It should also be noted that we have omitted boundary conditions in all DirectSum
experiments. Our experiments have shown that the implementation of reflective boundary
conditions leads to influences on the total energy that would distort our results. Periodic
boundary conditions were also omitted, as this is difficult to implement for a DirectSum
implementation in conjunction with three-body forces [Mar01l]. A thermostat was also
omitted, as our implementation of the thermostat directly scales the velocities of the
particles and thus has a direct influence on the kinetic energy.

In all experiments with the DirectSum implementation, 5 compute nodes with 72 cores
each, i.e. a total of 360 cores, were used.
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6. Results

6.2.1. Influence of Different ATM Parameters and Step-Size-Factors

In this experiment we investigate the effect of different values for the ATM parameter v a7y,
from 0.05 to 1.0 in combination with different step-size-factors from 1 to 12 on the Relative
Variation in True Energy. The parameters for the ATM potential were chosen to cover a
wide range from gaseous to solid materials. The following simulation parameters were used:

] Property / Parameter ‘ Value
Domain Size 10x10x10
Number of Particles 675
Number of Iterations 24000
ot 0.001
m 1
€LJ 1
OLJ 1

Table 6.1.: Parameters for the pseudo scenario.

Note: for the step-size-factors of 7, 9 and 11 we have used 24003, 24003, 24002 iterations
respectively, otherwise the number of iterations would not be a multiple of the step-size-factor.
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Figure 6.3.: Comparison of the Relative Variation In True Energy for different step-size-
factors and different values for the v4pps parameter. Each line represents one
step-size-factor. From bottom to top, this corresponds to a step-size-factor of 1
(Stérmer Verlet) up to 12.
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6.2. Direct Measurements

As we can see in Figure 6.3, we have a decreasing trend for a step-size-factor of 1 and
2, with an increasing varjs parameter. According to our observations, the inclusion of
three-body interactions provides a stabilization of the potential and kinetic energy, whereas
a pure two-body simulation showed much higher fluctuations in the energies. For this reason,
we assume that for these step-size-factors, increasing the vy parameter has a stronger
influence on the overall simulation. For a step-size-factor of 3, we see a similar value for all
vary parameters. For the higher step-size-factors from 4 to 12, we then see an increase
in the RVITE value as the var)s parameter increases and thus a loss of accuracy of the
r-RESPA algorithm.

We can therefore conclude from this experiment that step-size-factors up to around 4
achieve reasonably good results.

6.2.2. Argon Parameters

In this scenario we investigate how different step-size-factors affect a simulation performed
with parameters for an argon simulation.

The following simulation parameters were used:

Dimensionless Nor-
Property / Parameter malized Value Actual Value
Domain Size 20x20x20 20x20x20
Number of Particles 4995 4995
Number of Iterations 24000 24000
ot 0.000474628 1fs
m 1 39.948u
€LJ 1 1.653 - 10721
oL 1 3.403 A
VATM 0.073 7.35 - 107187 A

Table 6.2.: Parameters for the argon scenario.

Also here for the step-size-factors of 7, 9 and 11 we have used 24003, 24003, 24002
iterations respectively.

23



6. Results

Relative Variation In True Energy and Speedup
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Figure 6.4.: Relative Variation In True Energy on the y-axis for different step-size-factors
shown as labels at the respective measurements points. The SV label corre-
sponds to Stormer-Verlet. The speedup against Stormer-Verlet is plotted on
the x-axis. This Figure refers to the values for our argon simulation.

As we can see in Figure 6.4, calculation time is reduced by almost half with a step-size-factor
of 2 compared to Stormer Verlet. This trend continues for the other step-size-factors. The
result was to be expected, since the three-body interactions take up most of the calculation
time compared to the two-body interactions [May23].

In general, we see an increasing trend with increasing step-size-factor, but we also see
unexpected values for example at step-size-factor 2, 5, 6 and 7. Similar to the previous
experiment, where we observed a decrease in the RVITE value at low parameters for ATM
potential, we assume that the unexpected values are due to the more fluctuating dominant
two-body force.
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6.2. Direct Measurements

TwoBody vs. ThreeBody Energy Impact
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Figure 6.5.: Comparison of the minimum and maximum values of the total energy for
different step-size-factors of our argon simulation compared to a pure two-body
simulation. AF is the difference between the minimum and maximum measured
total energy for each simulation. The value above each bar is the average value

in the total energy.

In this experiment, we used the same parameters for oy ; and er; for both the pure LJ
simulation and the LJ+ATM simulation. In our literature research, we concluded that for
pure LJ simulations for argon approximately the same parameters for €77 and o are used
as for the LJ+ATM parameters, which we obtained from [AS22]. For example, in the work
by White [Whi99], 3.405 A is used for op; and 119.8 K for e7,;/kp for a pure LJ simulation.
Therefore, we concluded that we can compare the values for a pure LJ and a LJ+ATM
simulation.

As we can see in Figure 6.5, the average total energy is identical for all step-size-factors
up to the second decimal place. We also see that the average total energy for the two-body
simulation differs considerably from that with three-body interactions. Again, we conclude
that the inclusion of three-body interactions definitely has an influence on the simulation,
but the oscillations in the total energy up to a step-size-factor of 6 do not exceed those
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6. Results

of a pure two-body simulation. On the one hand this confirms our observation that the
three-body interactions stabilize the simulation, on the other hand we also see that up to
the step-size-factor of 6 we get quite good results regarding the values for AF.
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Figure 6.6.: Values of total energy relative to Stormer Verlet. Here, the range between the
minimum and maximum total energy across all step-size-factors was divided
into 50 bins and the values of the respective simulations of each iteration were
distributed across these bins. The line for Stérmer Verlet was intentionally not
shown here. It would be a vertical line at 0.0 with a height of 1.

Figure 6.6 compares the resulting total energy from our argon simulation with different
step-size-factors relative to Stormer Verlet. We divided the range between the maximum
deviation of the total energy in positive and negative direction into bins. For each step-size-
factor, the values of the total energy over all iterations after reaching the equilibrium were
then divided into bins.

As can be seen, for all step-size-factors except 12 the peak is at around zero deviation in
energy. However, it can also be seen that there is a clear shift in energy at a step-size-factor
of 12.
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6.2. Direct Measurements

6.2.3. Aluminium Parameters

In this scenario we investigate how different step-size-factors affect a simulation performed
with parameters for an aluminium simulation. The following simulation parameters were
used:

Dimensionless Nor-
Property / Parameter malized Value Actual Value
Domain Size 20x20x20 20x20x20

Number of Particles 4995 4995
Number of Iterations 24000 24000

ot 0.00304 1fs

m 1 26.982u

€LJ 1 2.688 - 10720

oL 1 2.5487 A

VAT M 0.3095 3.776 - 10717 J A?

Table 6.3.:

Parameters for the aluminium scenario.
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Relative Variation In True Energy and Time

Relative Variation In True Energy
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Figure 6.7.: Relative Variation In True Energy on the y-axis for different step-size-factors
shown as labels at the respective measurements points. The SV label corre-
sponds to Stormer-Verlet. The speedup against Stormer-Verlet is plotted on
the x-axis. This Figure refers to the values for our aluminium simulation.

Analogous to the argon experiment, we see the same behavior for the runtime for the
aluminum simulation in Figure 6.7. In contrast to the argon simulation, however, we see
the more expected values for the RVITE with these parameters. As already mentioned,
we assume that this is related to the stabilization of the simulation due to the stronger
three-body forces.
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6.2. Direct Measurements

TwoBody vs. ThreeBody Energy Impact
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Figure 6.8.: Comparison of the minimum and maximum values of the total energy for different
step-size-factors of our aluminium simulation compared to a pure two-body

simulation. AFE is the difference between the minimum and maximum measured
total energy for each simulation. The value above each bar is the average value

in the total energy.

Very similar to the RVITE values, we see an increasing trend in AFE with increasing step-
size-factor in Figure 6.8. Here, too, the average total energy is very similar across all
step-size-factors and the value for the pure two-body simulation deviates considerably from
the simulations with three-body interactions. Up to a step-size-factor of 4, we get quite

acceptable results here.
Compared to the measurements for the argon parameters, however, we see stronger

oscillations with increasing step-size-factor. This is due to the fact that the ATM parameter

is higher here.
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Energy Deviation
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Figure 6.9.: Values of total energy relative to Stormer Verlet. Here, the range between the
minimum and maximum total energy across all step-size-factors was divided
into 50 bins and the values of the respective simulations of each iteration were
distributed across these bins. The line for Stormer Verlet was intentionally not
shown here. It would be a vertical line at 0.0 with a height of 1.

In this experiment, a clearer offset of the energy values can be seen than in the simulation
with the argon parameters in Figure 6.9. Especially for step-size-factors 6 and 12, the
total energy measured by Stérmer Verlet shifts. We also attribute this to the higher ATM
parameter, which causes the three-body interactions to have a stronger influence.

6.3. Cutoff Measurements

In this section we examine the effect of different step-size-factors using the Cutoff implemen-
tation. Here, in contrast to the energy values we examined with DirectSum, we examine the
structural properties of the MD systems for argon and aluminum. The reason for this is that
we can more easily implement periodic boundaries here. In addition, we use a thermostat to
perform a physically correct simulation. We investigate the structural properties on the one

30



6.3. Cutoff Measurements

side using the radial distribution function and on the other side using the pressure of the
MD system.

The guard area approach, as mentioned in the introduction of this section, was used to
calculate the radial distribution function. Here, it is not the entire part of the particles within
the simulation domain that is used to classify the distance to neighboring particles, but only
an inner part. The space between the inner part and the boundaries of the MD system is
called guard area. Particles in this area are considered as neighbors, but they do not serve
as reference particles. In our measurements, a guard area of 3 was used. Accordingly, the
radial distribution function refers to the inner part of the 20x20x20 simulation domain with
a size of 14x14x14.

In all experiments with the Cutoff implementation, one compute node with 72 cores was
used.

For both the argon and the aluminium simulation we use a cutoff distance of 2.5 for all
our measurements.

Runtime: As we can see in Figure 6.10 and 6.11, we do not achieve as much speedup
here as for the measurements with the DirectSum algorithm. We assume that the Cutoff
implementation calculates significantly fewer triplets in relation to the pairwise interactions
than the DirectSum implementation. This is partly due to the criterion we use in the cutoff
implementation to form triplets. All three pairwise distances must lie within the cutoff
distance for a triplet to be classified as valid. For the measurement with the aluminum
parameters, we see that we achieve a higher speedup than with the argon simulation. This is
due to the fact that in the aluminum simulation the particles are denser in the equilibrium
and accordingly more triplets are formed for calculation within the cutoff distance.
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Figure 6.10.: Speedup for the argon simulation with different step-size-factors.
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Figure 6.11.: Speedup for the aluminium simulation with different step-size-factors.

6.3.1. Argon Parameters

We use the same parameters for the argon simulation as for the DirectSum measurements.
In addition, however, we use a thermostat that equilibrates the MD system at 300 K and,
as already mentioned, periodic boundary conditions. Furthermore, we could analyze the
simulation over a longer period of time due to the shorter calculation time. 120000 time

steps were performed.
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Figure 6.13.: RDF for the argon simulation
including a pure two-body sim-
ulation.

Figure 6.12.: RDF for the argon simulation.

For the argon simulation, we see no significant deviations in the absolute values for the
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6.3. Cutoff Measurements

RDF in Figure 6.12. We attribute this to the fact that the three-body potential only has a
relatively small influence here. This is also confirmed in Figure 6.13, which shows the values
for a pure two-body simulation in addition to the simulation with two-body and three-body
potential. On closer inspection, there is only a small difference in the first peak, which we
will look at in more detail in the next paragraph.
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Figure 6.14.: Values of the RDF of argon rel- Figure 6.15.: Values of the RDF of argon rela-
ative to Stormer Verlet. tive to Stérmer Verlet including
a pure two-body simulation.

To examine the effects in more detail, we look at the deviations relative to Stormer Verlet
in Figure 6.14 and 6.15. In Figure 6.15 in particular, we can see that there is a small shift
between two-body and three-body in the first peak. Since this peak is at approximately
the same level for all step-size-factors with three-body interactions, we conclude that the
structural change caused by the three-body interactions remains approximately the same for
all step-size-factors.
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6. Results
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Figure 6.16.: Comparison of the absolute values for the pressure of the MD system with
different step-size-factors. The values of all iterations for the respective step-
size-factors were distributed over 20 bins. The pressure values were calculated
here over 96000 iterations after reaching the equilibrium.

In this section, we investigate the pressure within the MD system. To do so, we use
the procedure mentioned in the introduction of this section. Since the pressure in our
measurements oscillates around a certain value after reaching the equilibrium, we again use
the approach of classifying the values for each step-size-factor and each iteration in bins.
This makes it easier for us to visually determine whether there are deviations or shifts in
the pressure.

For the argon parameters, we cannot detect any significant deviations with all step-size-
factors in Figure 6.16. We attribute this again to the fact that the three-body potential only
has a minor influence on the simulation here.

6.3.2. Aluminium Parameters

We also use the same parameters for the aluminum simulation as for the DirectSum im-
plementation. In addition to the DirectSum implementation, periodic boundaries are also
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6.3. Cutoff Measurements

used and the system is equilibrated at 300K with a thermostat. 120000 time steps
performed.
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Figure 6.17.: RDF for the aluminium simula- Figure 6.18.: RDF for the aluminium simula-
tion including a pure two-body

step-size-factors for the integration of the three-body interactions are relatively small.

RDF(r)

tion.

simulation.

For the aluminum simulation, we also see no significant differences with the two- and
three-body simulation with different step-size-factors. However, when comparing these
simulations with a pure two-body simulation, we see that there are clear differences in the
radial distribution function. We conclude that the inclusion of three-body interactions has a
noticeable influence on the structure of the system. However, the deviations using different
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Figure 6.19.: Values of the RDF for the alu- Figure 6.20.: Values of the RDF of the alu-
minium simulation relative to
Stormer Verlet including a pure
two-body simulation.

minium simulation relative to

Stormer Verlet.

If we analyze the relative differences, we see a deviation for a step-size-factor of 3 compared
to other step-size-factors in this experiment. However, we have not investigated this further
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6. Results

in this work. Again, the relative comparison in which the pure two-body simulation is
included is interesting. Because here we see again that the inclusion of the three-body
interactions has a clear influence on the structure of the system, but the relative deviation

with different step-size-factors is comparatively small.
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Figure 6.21.: Comparison of the absolute values for the pressure of the MD system with

different step-size-factors. The values of all iterations for the respective step-
size-factors were distributed over 20 bins. The pressure values were calculated
here over 84000 iterations after reaching the equilibrium.

In Figure 6.21 we have examined the pressure for the aluminum simulation analogous to
the argon parameters. For step-size-factors 2 to 6, we see no significant shift in the values
compared to Stormer Verlet. In contrast to the argon simulation, however, a shift in pressure
with a step-size-factor of 12 can be seen here. However, the peak remains at the same level

as for the other step-size-factors.
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7. Future Work

In our work we mainly used the step-size-factors 1, 2, 3, 4, 6 and 12, as they are all divisors
of 12 and thus we could make the measured quantities comparable. However, it would be
interesting to observe even larger step-size-factors to see whether the trend of increasing
oscillations in the total energy continues or whether this is just a coincidence and larger
step-size-factors might even bring an improvement again. If this is the case, it could possibly
also help to better understand the phenomenon of resonances.

For our measurements, we always used the same initial conditions for each scenario, i.e.
the same positions and velocities of the particles. However, it would be interesting to change
either the positions or the velocities slightly in order to achieve a different simulation process.
This would allow us to investigate how the measured values change and to what extent the
differences between the values for the different step-size factors can be attributed to the
chaotic behavior of the MD system and which deviations are actually due to the different
step-size-factors.

Ultimately, it would be interesting to examine the concept of different distance classes.
This is addressed and used for example in [GT98, NVK93], for example. Here, the cutoff
distance is divided into several intermediate cutoffs and the interactions are integrated
based on the distance with different step-size-factors. Interactions that lie in inner spherical
shells are integrated more often and interactions that lie further away are integrated with
larger time steps. In this way, one could investigate to what extent the calculation time of
three-body interactions can be further optimized while maintaining the measured quantities
of the MD system.

38



8. Conclusion

In our work, we have investigated whether we can use the r-RESPA method to optimize the
calculation time of three-body interactions in simulations with two-body and three-body
interactions by integrating the three-body interactions with larger time steps.

We have chosen three scenarios for this purpose, the first one being a pseudo-scenario
that has no relation to a real physical simulation. However, this scenario uses a range of
parameters that often occur in real scenarios and thus this experiment provides a good
overview of the effects of different step-size factors. The other two scenarios refer to
parameters for the real scenarios argon and aluminum. We examined all three scenarios
with our DirectSum implementation and different step-size factors for deviations in the
total energy. The last two scenarios were also analyzed with our Cutoff implementation for
structural properties such as the radial distribution function and the pressure.

Our measurements have shown that the deviations up to a step-size factor of 4 are
sufficiently low for the method to be applicable. Above this step-size, deviations become
increasingly noticeable. It should be noted, however, that a step-size factor of 4 already
results in an almost 4-times speedup in the DirectSum calculation and approximately a
speedup of 3 in the Cutoff calculation.

To summarize, we can state that the r-RESPA method can be used for MD simulations with
two-body and three-body interactions, whereby the three-body interactions are integrated
at larger time steps than the two-body interactions up to certain step-size factors in our
scenarios in order to reduce the calculation time.
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