
TECHNISCHE UNIVERSITÄT MÜNCHEN
TUM School of Computation, Information and Technology

Network Slicing with Reinforcement Learning and Transfer

Learning

Tianlun Hu

Vollständiger Abdruck der von der TUM School of Computation, Information and Tech-
nology der Technischen Universität München zur Erlangung des akademischen Grades
eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Chunyang Chen, Ph.D.
Prüfer der Dissertation: 1. Prof. Dr.-Ing. Georg Carle

2. Assistant Prof. Qiang Liu

Die Dissertation wurde am 24.06.2024 bei der Technischen Universität München eingereicht
und durch die TUM School of Computation, Information and Technology am 30.10.2024
angenommen

Abstract:

Network slicing, a pivotal aspect of 5G and beyond, allows operators to configure virtual
network instances tailored to diverse services with specific requirements. However, achiev-
ing efficient slice-aware radio resource scheduling poses challenges due to complex inter-cell
dependencies, inter-slice resource constraints, and service-specific needs.

Reinforcement Learning (RL) opens a novel avenue for addressing dynamic optimization
challenges, particularly in network management. As model-free solutions, RL approaches
are committed to dynamically providing optimal solutions by formulating real systems
as Markov Decision Process (MDP) and addressing the associated problems through RL
algorithms. Recent advancements in Deep Reinforcement Learning (DRL) further expand
their capabilities, enabling the resolution of more complex scenarios. This dissertation
proposes innovative solutions leveraging multi-agent DRL to enhance slice performance
while adhering to resource capacity constraints. This research also discusses the approaches
employing multiple DRL agents to cooperatively optimize resource partition in individual
cells for diverse slices, for escalating the densification of network deployment introduces
non-trivial inter-cell interference.

Recently, in several classical machine learning fields, Transfer Learning (TL) techniques
are also recommended to improve the model reproducibility and sample efficiency via
transferring prior knowledge. Recognizing the limitations of DRL approaches tied to spe-
cific network environments, this dissertation also investigates the TL-aided solutions for
network slicing. Experimental results indicate that integrating TL significantly improves
service performance, reduces exploration costs, accelerates convergence rates, and im-
proves model reproducibility of RL approaches, thereby outperforming existing baseline
approaches. Lastly, to overcome the limitations of deep learning models in managing
dynamic slicing configurations, the dissertation introduces a novel framework integrating
constrained optimization methods and deep learning models, which exhibits high scalabil-
ity, accommodating varying numbers of slices and configurations.

This comprehensive dissertation contributes to advancing network slicing optimization
through innovative applications of RL and TL techniques, specifically addressing the criti-
cal issue of slicing resource allocation. As closing remarks, we reiterate the caveats of using
RL and TL techniques in next-generation network management and argue for broader re-
search and practical usage of advanced machine learning methods in network optimization.

Kurzfassung:

Network Slicing, ein Schlüsselelement der 5G-Technologie und darüber hinaus, erlaubt Be-
treibern, virtuelle Netzwerkinstanzen zu erstellen, die für verschiedene Dienste mit spezifis-
chen Anforderungen maßgeschneidert sind. Allerdings ist die effiziente, slice-bewusste Pla-
nung von Funkressourcen aufgrund komplexer, zellübergreifender Abhängigkeiten, Inter-
Slice-Ressourcenbeschränkungen und dienstspezifischer Anforderungen eine Herausforderung.

Reinforcement Learning (RL) bietet neue Möglichkeiten, um dynamische Optimierungsprob-
leme zu lösen, insbesondere im Bereich des Netzwerkmanagements. Als modellfreie An-
sätze formulieren RL Methoden reale Systeme als Markov-Entscheidungsprozesse (MDP)
und lösen die damit verbundenen Probleme dynamisch durch RL Algorithmen. Fortschritte
im Bereich des Deep Reinforcement Learning (DRL) haben dessen Fähigkeiten erweit-
ert, um noch komplexere Szenarien zu bewältigen. Diese Dissertation präsentiert inno-
vative Lösungen, die Multi-Agent-DRL verwenden, um die Leistung von Network Slices
zu verbessern und gleichzeitig Ressourcenbeschränkungen einzuhalten. Sie diskutiert auch
Ansätze, bei denen mehrere DRL Agenten zusammenarbeiten, um die Ressourcenaufteilung
innerhalb einzelner Zellen für verschiedene Slices zu optimieren, wobei zunehmende Net-
zverdichtung erhebliche zellübergreifende Interferenzen verursacht.

Darüber hinaus werden in dieser Arbeit Transfer-Learning (TL) Techniken vorgeschlagen,
um in traditionellen Bereichen des maschinellen Lernens die Modellreproduzierbarkeit und
Sample-Effizienz durch die Übertragung von Vorwissen zu verbessern. Angesichts der Ein-
schränkungen von DRL, die oft an spezifische Netzwerkumgebungen gebunden sind, un-
tersucht diese Dissertation auch TL-unterstützte Lösungen für das Network Slicing. Ex-
perimentelle Ergebnisse zeigen, dass die Integration von TL die Dienstleistung erheblich
verbessert, die Erkundungskosten senkt, die Konvergenzraten beschleunigt und die Repro-
duzierbarkeit der Modelle von RL verbessert, wodurch bestehende Basisansätze übertroffen
werden. Abschließend wird ein neuartiges Framework vorgestellt, das die Einschränkun-
gen von Deep-Learning-Modellen bei der Verwaltung dynamischer Slicing-Konfigurationen
überwindet, indem es beschränkte Optimierungsmethoden und Deep-Learning-Modelle in-
tegriert und eine hohe Skalierbarkeit aufweist, die unterschiedliche Anzahlen von Slices und
Konfigurationen unterstützt.

Diese umfassende Dissertation leistet einen wesentlichen Beitrag zur Optimierung des Net-
work Slicings durch die innovative Anwendung von Transfer Learning und Reinforcement
Learning Techniken und adressiert insbesondere das kritische Problem der Ressource-
naufteilung. Abschließend betone ich die Notwendigkeit weiterer Forschung und praktis-
cher Anwendung fortschrittlicher maschineller Lernmethoden zur Optimierung von Net-
zwerken der nächsten Generation.

Acknowledgments:

This thesis would not have been possible without the extensive support I received from
many individuals. Although it is impossible to list everyone, I would like to highlight some
who have played an important role in my journey.

First and foremost, I would like to express my special thanks to Prof. Dr.-Ing. Georg
Carle for giving me the opportunity to join the Department of Network Architecture and
Services and for his invaluable guidance throughout my thesis. Each interaction with
him has greatly enriched my understanding and shaped my future plans and research
work. Secondly, I would like to thank Prof. Liu Qiang for serving as the second examiner.
His incisive questions during our discussions greatly broadened my understanding of the
research field and methodologies. Furthermore, I would also like to extend my gratitude to
my industrial mentor, Dr.-Ing. Liao Qi from Nokia Bell Labs, for her generous mentorship,
rigorous standards, and patience. Her guidance transformed me from a novice in scientific
research into a doctoral candidate.

I am deeply appreciative of the team at the network automation department of Nokia
Bell Labs in Stuttgart—Markus, Ilaria, Alessandro, and Lutz—for their selfless assistance
and the exceptional industrial training opportunities they provided. My heartfelt thanks
also go to my fellow colleagues Yanni, Changran, Haotian, Ruichuan, Marco, Naveenta,
Markus, Junqing, Lelio, Vladislav, and Emre, who infused my PhD journey with boundless
energy and joy. Additionally, I am grateful for the contributions of my co-authors Dan,
Antonio, Stanislaw, Patrick, and Nikolaj, whose collaborative efforts significantly elevated
the quality of our publications.

Lastly, I must express my profound appreciation to my parents, Weihou and Zhaofen.
Their constant support and inspiration have been fundamental to my academic success.
Thank you both for your love and encouragement, which propelled me on this path. I
could not have reached this point without your enduring support.

Garching bei München, 08.01.2025

Tianlun Hu

Contents

Contents . i

1 Introduction .1

1.1 Network Slicing in Next-Generation Networks . 4

1.1.1 Network Slicing Technique . 4

1.1.2 Challenges . 5

1.1.3 Key Aspects of Solutions .6

1.2 Methods of Slice Resource Allocation . 7

1.2.1 State-of-the-art . 8

1.2.2 Advantages of Reinforcement Learning . 9

1.2.3 Advances of Transfer Learning . 10

1.3 Research Objectives and Thesis Outline . 11

1.3.1 Research Objectives . 11

1.3.2 Thesis Outline . 15

1.3.3 Publications in the Context of this Thesis . 17

2 Reinforcement Learning . 19

2.1 Introdution to RL . 19

2.1.1 Concepts in RL . 20

2.1.2 Comparing with Conventional ML . 22

2.2 RL Basics . 23

2.2.1 Markov Decision Process (MDP) . 24

2.2.2 Value Function . 27

2.2.3 Bellman equation . 29

2.2.4 Policy-based Iteration. .31

2.2.5 Value-based Iteration . 32

2.3 Fundamental RL Approaches . 32

2.3.1 Monte Carlo Method . 34

2.3.2 Temporal Difference . 36

2.3.3 SARSA . 37

2.3.4 Q-Learning . 38

2.3.5 Deep Q-Learning Network . 39

ii CONTENTS

2.4 Policy Gradient Algorithm . 41

2.4.1 Policy Gradient . 41

2.4.2 Actor-critic . 42

2.5 Advances of RL Algorithms . 44

2.5.1 DDPG. .44

2.5.2 TD3 . 46

2.6 Challenges in Applications . 48

3 Transfer Learning . 51

3.1 Introduction to TL . 51

3.1.1 Overview of TL. 52

3.1.2 Importance and Applications . 53

3.1.2.1 Necessity of TL . 53

3.1.2.2 Applications. .54

3.2 Fundamentals of TL . 55

3.2.1 Basic Concepts . 55

3.2.2 Rationale of TL. .57

3.3 Selected TL Methods . 59

3.3.1 Pre-train and Fine-tuning . 59

3.3.2 Representation Learning . 60

3.3.3 Other TL Methods . 61

3.3.4 TL for RL . 62

4 RAN Slice Resource Allocation with RL .65

4.1 Motivation. .65

4.2 System Model . 66

4.3 Optimization Problem Formulation . 67

4.4 RL-based Slice Resource Allocation Optimization . 67

4.4.1 RL Formulation . 67

4.4.2 DQN-based Solution . 68

4.4.3 Distributed DQN Approach . 69

4.5 Experiments . 69

4.5.1 Experiment Setup . 70

4.5.1.1 Season II Simulator . 70

4.5.1.2 Network Environment Setup . 70

4.5.1.3 Slice Resource Allocation Formulation . 71

4.5.2 Experiment I: Sanity Check . 72

4.5.3 Experiment II: DQN-based Approaches . 74

4.5.3.1 Resource Efficiency as RL Reward . 74

4.5.3.2 Downlink Average Throughput as RL Reward 76

4.6 Insights to the Thesis . 77

CONTENTS iii

5 Distributed DRL as Per-cell Scheme .81

5.1 Motivation. .81

5.2 System Model . 82

5.3 Problem of Slice Resource Allocation. .83

5.4 Distributed DRL as Per-cell Scheme . 83

5.4.1 Multi-agent DRL with Coordination . 84

5.4.2 Actor-Critic Method . 85

5.4.3 Dealing with Resource Constraints . 86

5.4.3.1 Reward Reshaping . 86

5.4.3.2 Embedding Decoupled Softmax Layer . 86

5.5 Experiments . 87

5.5.1 Schemes for Comparison . 87

5.5.2 RL Training Setup . 88

5.5.3 Performance Evalutation . 88

5.6 Key Takeaways . 91

6 TL-aided DRL Approach I: Generalist-to-Specialist . 93

6.1 Introduction . 94

6.1.1 Motivation. .94

6.1.2 Related Works . 94

6.1.3 Outline . 95

6.2 System Model and Problem Formulation . 96

6.2.1 System Model . 96

6.2.2 Problem Formulation . 97

6.3 Distributed DRL Per-cell Scheme - DIRP Algorithm . 98

6.3.1 DIRP Algorithm. 98

6.3.2 Training Setup of DIRP . 100

6.3.3 Dealing with Resource Constraints . 101

6.4 TL-aided DIRP Algorithm. 102

6.4.1 TL Problem Formulation . 102

6.4.2 Generalist-to-Specialist TL . 104

6.5 Experiments . 105

6.5.1 Schemes for Comparison . 106

6.5.2 Hyperparameter Setup for Training . 108

6.5.3 Performance Evaluation . 108

6.5.3.1 Comparison of the Distributed MADRL Schemes 108

6.5.3.2 Comparison of RL Reward Formulation 111

6.5.3.3 Comparison of TL Schemes. .111

6.6 Key Takeaways . 113

iv CONTENTS

7 TL-aided DRL Approach II: Specialist-to-Specialist . 117

7.1 Motivation . 118

7.2 System Model . 119

7.3 Problem Formulation . 119

7.4 TL with Domain Similarity Analysis . 120

7.4.1 Distributed MADRL with Coordination. .121

7.4.2 Domain Distance Measurement for Similarity Analysis 121

7.4.3 Specialist-to-Specialist TL . 124

7.5 Experiments . 124

7.5.1 Network Environment Setup . 125

7.5.2 DRL Training Configuration . 125

7.5.3 Evalutation of TL-aided DRL. .125

7.5.4 Domain Similarity Analysis . 127

7.5.5 TL Evaluation based on Domain Distance Measurement 127

7.6 Key Takeaways . 127

8 IDLA: Per-Slice Scheme for Resource Allocation . 129

8.1 Motivation . 130

8.2 System Model . 130

8.3 Problem Formulation . 131

8.4 Per-slice Scheme: IDLA Algorithm. .132

8.4.1 DNN-based Slice-wise Network QoS Estimator 132

8.4.2 Lagrangian Method for Slicing Resource Partitioning.133

8.4.3 Efficient Implementation of Lagrangian Method 134

8.5 Experiments . 135

8.5.1 Network Environment Setup . 135

8.5.2 Per-Slice Resource Allocation with IDLA . 136

8.5.2.1 Network Sample Collection . 136

8.5.2.2 Training of Slice-wise QoS Estimator . 136

8.5.3 Performance Evaluation . 137

8.6 Key Takeaways . 139

9 TL-aided IDLA . 141

9.1 Motivation . 141

9.2 System Model and Problem Formulation . 143

9.2.1 System Model . 143

9.2.2 Problem Formulation . 144

9.3 TL-aided IDLA Algorithm . 145

9.3.1 DA Problem Formulation . 145

9.3.2 VIB-based Slice QoS Estimation . 147

9.3.3 IDLA with DA . 149

CONTENTS v

9.4 Experiments . 149

9.4.1 Network Environment Setup . 150

9.4.2 Deriving of VIB-based Slice QoS Estimator . 151

9.4.2.1 Domain Sample Collection . 151

9.4.2.2 Model Training. .151

9.4.3 Evaluation of Resource Allocation Performance 153

9.4.4 Evaluation of VIB-based QoS Estimator . 156

9.4.4.1 Comparison of DG Ability. .157

9.4.4.2 Comparison of DA Ability . 158

9.5 Key Takeaways . 159

10 Conclusion and Outlook . 163

10.1 RL Application in Network Slicing . 164

10.2 Integration of TL . 165

10.3 Comparison of Solution Granularity . 166

10.3.1 Centralized vs. Distributed DRL Approaches 166

10.3.2 Per-slice Resource Allocation with IDLA. .167

10.4 Answers to Research Questions . 168

10.5 Outlook to Future Research . 170

10.6 Conclusion . 170

Bibliography. .173

Acronyms . 183

List of Figures . 187

List of Tables . 191

1

1. Introduction

As the integration of mobile networks into our daily lives and production processes has
evolved into a fundamental aspect, the expectation of internet access at all times, re-
gardless of location, has become a universal consensus and a habitual necessity for human
society. In every instance of human interaction, whether with others or devices, the mobile
network serves as an essential element, which underscores its vital position in facilitating
connectivity within the context of wireless communication.

Envisioning next-generation communication networks, where individuals, devices, and sys-
tems communicate seamlessly and in real-time, establishes a framework where high-speed
connectivity, low latency, and reliability form the foundational elements of this visionary
landscape. In 5th Generation Mobile Network (5G) [1] and beyond, networks are expected
to meet a wide array of advanced requirements, far surpassing the capabilities of previous
generations of mobile communications (Fig. 1.1). In general, a network with 5G standard
[2] should have a high data rate of up to 20Gbps for downlink and 10Gbps for uplink
transition, ultra-low latency as low as 1ms and massive connectivity to support Internet
of Things (IoT). Besides, new network management should guarantee improved usage of
available spectrum to increase overall network performance, with efficient allocation and
utilization of network resources to optimize performance and reduce operational costs.

Network slicing technology occupies a pivotal position in the landscape of next-generation
networks to enable those characteristics. It offers a paradigm shift in how communica-
tion services are delivered. By allowing the creation of isolated and customized virtual
networks tailored to specific applications, industries, or user requirements, network slic-
ing introduces unparalleled flexibility and efficiency. This innovative approach enables
diverse services to coexist on a shared physical infrastructure. Advanced network slic-
ing technique optimizes resource utilization and facilitates dynamic adaptation to varying
traffic patterns and evolving service demands. In 5G and beyond, network slicing is also
regarded as a cornerstone leading wireless communication towards a more adaptive, re-
sponsive, and application-aware network framework, catalyzing transformative capabilities
of next-generation communication networks. To achieve service-specific use cases, 5G net-
work operators defined several commonly defined slice types, such as Extreme Mobile
Broadband (eMBB), Ultra-Reliable Low-Latency Communication (URLLC), and Massive
Machine-Type Communications (mMTC), to meet the diverse requirements of various
applications and services.

Version: January 20, 2025 – 13:20:04

2 1. Introduction

Figure 1.1: Evolution of network services in 5G

• eMBB: eMBB is designed to deliver significantly faster data rates and lower latency
compared to previous generations of mobile networks. eMBB slices prioritize high
data throughput and low latency to ensure a seamless user experience for bandwidth-
intensive applications, which is the type of network slicing designed for the 5G ap-
plications that generate the most traffic on mobile networks. It aims to support
applications such as high-quality video streaming, Virtual Reality (VR), Augmented
Reality (AR), and cloud gaming running on remote hardware.

• URLLC: URLLC focuses on providing ultra-reliable and low-latency communication
services, particularly for mission-critical applications where reliability and respon-
siveness are paramount. URLLC slices prioritize extremely low latency, high relia-
bility, and bounded fluctuation of connectivity to meet the stringent requirements
of mission-critical applications. The solution leverages state-of-the-art mobile edge
computing technology to provide dependable, low-latency guarantees to priority ap-
plications. It targets supporting industrial manufacturing, real-time control systems,
remote surgery, autonomous vehicles, and critical infrastructure monitoring applica-
tions.

• mMTC: mMTC is tailored to support numerous low-power devices that transmit
small amounts of data sporadically. mMTC slices prioritize scalability, energy ef-
ficiency, and coverage extension to accommodate devices with diverse traffic pat-
terns. Its applications are mainly under large-scale systems, such as smart cities,
smart homes, industrial IoT, and environmental monitoring. Network operators use
mMTC for applications where vast quantities of interconnected devices are under
the scope of 5G IoT.

The above-mentioned slice types enable 5G network to efficiently allocate resources and
meet the diverse requirements of different applications and services, ranging from high-
speed multimedia streaming to ultra-reliable mission-critical communications and massive

3

Figure 1.2: Services and slices with different requirements in 5G networks

IoT deployments. However, with the emerging evolution of network services recalled by
technical advancements in other domains, the types of slices in next-generation networks
are not static or predefined. In our research, we are not only considering slicing scenarios
involving eMBB, URLLC, and mMTC, but also exploring a broader spectrum of slice
types defined by diverse QoS requirements.

As breakthroughs continuously emerge across various fields such as Computer Vision (CV),
Large Language Model (LLM), intelligent vehicles, and space technology, there is a cor-
responding push for mobile networks to support a broad spectrum of network services,
including Extended Reality (XR), vehicular communication, online streaming, and even
satellite communication. The critical role of network slicing technology in new network
services, particularly for those advanced merging applications, can not be overstated. How-
ever, integrating network slicing in next-generation networks presents multifaceted chal-
lenges that demand highly efficient solutions for seamless operation. Efficient end-to-end
orchestration across different domains, dynamic adaptation to changing service demands,
and ensuring cross-domain interoperability further contribute to the complexity.

In the design process of network slicing techniques, the following principles should be
considered as outlined in [1]:

• Flexibility: The invention of implementing slicing techniques in networks is to ensure
case-specific traffic treatment while avoiding unnecessary functionalities at each slice.
This remarks the importance of flexibility, enabling the enhancement of existing
services and the development of new ones.

• Requirements Satisfaction: In the context of automotive network applications, the
slicing solutions should ensure exceptional slice security, reliability, and low latency.

• Function Granularity: Determining function granularity is critical. Although a finer
granularity can provide higher flexibility, it also introduces complexity. The chal-
lenges associated with testing different function combinations, implementing slice
configurations, and interference issues.

Addressing these issues effectively is crucial for successfully integrating network slicing
into next-generation networks, offering substantial benefits. Therefore, research into slic-
ing techniques is vital for advancing next-generation networks. This study proceeded under
consideration of comprehensive exploration of network slicing in 5G and beyond, empha-
sizing the need for innovative solutions to navigate the evolving challenges of resource
allocation, interference coordination, and real-time adaptability in the face of increasingly
diverse and dynamic network requirements.

4 1. Introduction

1.1 Network Slicing in Next-Generation Networks

The advent of 5G and beyond demands a sophisticated approach to network management,
while network slicing empowers operators to craft isolated virtual networks tailored for spe-
cific services on shared physical infrastructures. These slices, addressing diverse needs such
as enhanced mobile broadband, ultra-reliable low-latency communications, and emerging
technologies like autonomous driving, are characterized by varying performance require-
ments, including throughput and latency. The basic implementation of network slicing is
to partition radio resources dynamically across multiple base stations, such as gNodeBs
(gNBs), to maximize efficiency while minimizing inter-cell resource usage. As technologies
like high-load online streaming and emerging Artificial Intelligence (AI) models further
intensify network dynamics, the challenge for communications service providers lies in ef-
ficiently managing the dynamic and complex interplay of traffic, mobility, and demand
within network slices.

Efforts to realize dynamic network slicing under changing traffic conditions have led to
the development of slice-aware scheduling algorithms in RAN. However, the proliferation
of base station deployments, including small cells, adds a layer of complexity, especially
in multi-cell scenarios where the lack of interference coordination can degrade slice per-
formance. Traditional model-based solutions face limitations in this landscape, prompting
exploring novel approaches such as ML to address the ever-complicating resource man-
agement challenges. This dynamic environment also necessitates flexible and real-time
network monitoring and configuration efforts, exemplified by initiatives like Open Radio
Access Network (O-RAN).

1.1.1 Network Slicing Technique

Regarding the frequency of slicing orchestration changes, in the beginning, slicing tech-
niques are proposed as “static network slicing” that strictly isolated difference network
services for specific use cases [3]. Static network solutions are usually pre-planned by ex-
perts. This slicing method ensures that network resources, such as bandwidth, allocated to
network slice instances are exclusively dedicated to the instances. Under complex network
slicing scenarios, specific network resources are designated and reserved for corresponding
slices, thereby ensuring that the network Service Level Agreement (SLA) is maintained
at a satisfactory and robust level. Compared to static slicing methods, “dynamic network
slicing” offers a more flexible and operational approach to distributing network resources,
partitioning them among different slices based on real-time network demands and changing
service behaviors. The primary advantage of dynamic slicing over static solutions is its
ability to enable more efficient resource utilization across various use cases. Considering
the growing variety of services in the next-generation networks, the slicing methods are
expected to be embedded with dynamical optimization ability. Thus, in this work, we
mainly focus on exploring the methods of solving slicing resource allocation problems in
dynamic manners under the assumption of frequently changing network environments in
terms of network architecture, configuration, and user behavior.

Dynamically slicing a network system to accommodate various services is complicated with
the conventional network basis; thus, several techniques are designed to realize network
slicing on shared physical network architectures. Among these methods, Software-Defined
Networking (SDN) and Network Function Virtualization (NFV) are commonly known as
the key techniques for facilitating diverse, slice-specific services.

• Network Function Virtualization (NFV): NFV plays an important role in enabling
network slicing in 5G, which proposes to decouple network functions from propri-
etary hardware devices, allowing them to operate as software on virtual machines

1.1. NETWORK SLICING IN NEXT-GENERATION NETWORKS 5

or containers. This decoupling facilitates the creation and management of network
slices by enabling flexible and dynamic slicing resource allocation. NFV abstracts
physical resources into a pool that can be dynamically allocated to software-defined
network functions, such as firewalls, routers, and load-balancers. This abstraction
allows for the flexible creation and management of individual network slices with
specific resource allocations. Besides, virtual network functions can be scaled up
and down in real time to adapt to varying network load conditions and slice re-
quirements. These features of NFV build the fundamentals of slicing applications
by providing flexibility, scalability, and automation needed to create and manage
multiple network slices.

• Software-Defined Networking (SDN): SDN enables network administrators to man-
age network services by abstracting lower-level functionality. It facilitates dynamic,
programmable, and centralized control of network resources by separating the con-
trol plane from the data plane. As its name suggests, SDN programs and customizes
network policies and configurations according to slice requirements, simplifying the
creation and management of slices tailored to diverse use cases. It enables the dy-
namic allocation of network resources based on slice demands, ensuring optimal per-
formance and efficient resource utilization with appropriate methods. Performance
assessment of slice resource allocation methods is typically based on slice QoS, mea-
sured by evaluating whether slice users receive the necessary bandwidth, latency,
and reliability to meet their performance requirements.

Implementing acNFV and SDN in network slicing offers a flexible and efficient approach
to network slicing management. It enables operators to create customized, isolated, and
optimized virtual networks tailored to the diverse needs of modern applications and ser-
vices.

1.1.2 Challenges

Despite network slicing technology holds great promise in tailoring network services to
different needs, it faces many challenges that require careful consideration and innovative
solutions[4]. As wireless communication meshes continue to be deployed with expanded
coverage, the increasing scale of network systems introduces more difficulties for network
management and slicing methods in terms of complexity and efficiency. The discussion of
this work is based on the premise of large-scale network systems that comprise multiple
base stations and slices. Therefore, the following concerns were taken into consideration:

a) Resource Allocation: Efficiently allocating resources across network slices presents a
critical challenge for network slicing, as each slice has unique bandwidth, latency, and
computing requirements, which demands precise resource management. Balancing
these diverse needs to ensure optimal performance without resource wastage poses
a significant hurdle. Addressing this challenge requires advanced algorithms and
dynamic resource orchestration mechanisms to adapt to real-time fluctuations in
demand.

b) Inter-Cell Interference: The coexistence of multiple base stations within the same
physical infrastructure introduces the potential for inter-cell interference [5], impact-
ing overall network performance. Intelligent interference coordination strategies,
such as frequency planning and spectrum management [6], are commonly used to
mitigate conflicts and ensure smooth and reliable operation. Resolving inter-cell
interference is essential for achieving the envisioned seamless and interference-free

6 1. Introduction

connectivity across different slices. Under multi-cell and multi-slice network scenar-
ios, different network slices sharing the same physical infrastructure may experience
interference, affecting performance and reliability.

c) Slice Specific Requirements: Varying Slice-specific requirements pose significant
challenges for slicing solutions, including allocating resources effectively to meet di-
verse demands. Additionally, the dynamic nature of slice requirements, which may
change based on varying traffic patterns and user demands, complicates resource al-
location and configuration management. Scalability issues arise when attempting to
accommodate multiple slices while maintaining performance and efficiency, further
exacerbating the challenge. Coordinating slice management while ensuring network
stability and interoperability with existing infrastructure requires sophisticated al-
gorithms and frameworks.

Considering these challenges, successfully implementing network slicing requires a holistic
approach that can address resource allocation, inter-cell interference, and domain dis-
crepancies well. Tackling these challenges is essential for unlocking the full potential of
network slicing in 5G and beyond, enabling efficient communication, and evolving modern
applications and services.

1.1.3 Key Aspects of Solutions

In addition to addressing the challenges mentioned earlier, network slicing solutions must
also align with practical considerations for real-time implementation. Therefore, an ideal
slicing solution should account for both the effectiveness of the methods and the feasibility
of implementing these novel methods in real-world scenarios. Based on my knowledge of
network management, an effective dynamic slicing method should support rapid deploy-
ment, high scalability, and high reproducibility. This insight comes from the understand-
ing that deriving an optimal network solution is both computationally and temporally
intensive. Particularly during periods of network architecture expansion and frequent re-
planning, developing a new solution from scratch for a large-scale system is inefficient.
Therefore, the following aspects should be considered when developing an effective slicing
solution:

a) Processing Time: Efficient network slicing requires swift processing times to meet the
real-time demands of modern applications and services. Time-sensitive applications,
such as augmented reality and autonomous systems, necessitate minimal processing
delays. Therefore, an effective slicing solution must have the ability of rapid resource
allocation, orchestration, and decision-making to ensure low-latency communication
and a seamless user experience.

b) Model Accuracy: The accuracy of underlying models used in network slicing is crucial
for effective resource allocation and service customization. Precision in predicting
and understanding network conditions, traffic patterns, and service requirements
directly impacts the efficiency of the slices. Ensuring high model accuracy through
continuous refinement and validation is essential for meeting the diverse needs of
applications and users.

c) Reproducibility: An essential requirement for the viability of network slicing is the
capacity to replicate solutions across diverse network scenarios and environments.
Reproducibility ensures that successful slicing strategies can be consistently applied,
promoting scalability and adaptability. Standardized approaches, well-documented
methodologies, and open interfaces contribute significantly to ensuring the repro-
ducibility of slicing solutions across a range of deployment scenarios.

1.2. METHODS OF SLICE RESOURCE ALLOCATION 7

d) Various Granularity: Having network slicing solutions with different granularity is
crucial for effectively enabling diverse network management levels. Fine-grained
slicing allows for precise customization of resources, facilitating a higher degree of
service differentiation. However, balancing accuracy and granularity is essential,
as excessively granular slicing can introduce complexity and overhead. Defining the
optimal level of granularity ensures that the network can adapt to specific application
needs without sacrificing overall efficiency.

e) Flexibility and Adaptability: The dynamic nature of communication networks neces-
sitates flexibility and adaptability in network slicing solutions. As networks evolve
over time, the slicing framework must accommodate changes in traffic patterns, user
demands, and technological advancements. A solution capable of real-time adapta-
tion to shifting requirements ensures the longevity and relevance of network slicing
in an ever-changing technological landscape.

1.2 Methods of Slice Resource Allocation

In the context of network slicing, resource allocation and optimization are developed to
address the problem of efficiently distributing network resources to different network slices
while ensuring individual requirements are fulfilled for each slice. Generally, the primary
goal of slicing resource optimization is to maximize the overall network performance and
resource utilization with respect to the QoS and Quality of Experience (QoE) of each
slice. For specific network slicing scenarios, the optimization objectives are detailed by
certain requests, such as enhancing network efficiency, ensuring slice performance, reduc-
ing operational costs, or improving scalability and flexibility. However, those objectives
are challenging because of the dynamic nature of network demands, the heterogeneity of
services, and the constraints imposed by physical resources.

In wireless communication, network resources refer to a wide range of elements and ca-
pacities within a network system that are necessary to provide communication services,
including the frequency spectrum, bandwidth, and transmission power. For Long-Term
Evolution (LTE) and 5G networks, Physical Resource Block (PRB) presents the finest
unit of resource allocation in the time-frequency grid, consisting of a specific number of
frequency subcarriers over a certain time interval. The resource allocation methods on
PRB provide a fine-grained level of granularity, allowing for precise control over resource
distribution and efficient adaptation to diverse service requirements. PRBs can be dy-
namically allocated and managed based on the changing demands of network traffic and
QoS requirements of different slices. This approach scales effectively to handle the growing
complexity and demand of modern wireless communication systems, making PRB-based
resource allocation methods a practical and effective solution for network slicing.

Fig. 1.3 presents an instance of PRB pairs in the time-frequency domain of a typical LTE
network, where the concepts can be easily extended to 5G and beyond. Each block in
the grid represents a Resource Element (RE), which corresponds to a time symbol in the
time domain and a small subcarrier in the frequency domain, typically with 15kHz in
LTE. Information is encoded and mapped onto symbols through modulation techniques
determined by the channel quality. RE is recognized as the smallest identifiable resource
unit, which comprises a subcarrier and an Orthogonal Frequency-Division Multiplexing
(OFDM) symbol, serving as the fundamental unit for data modulation. In both LTE and
5G networks, a Resource Block (RB) is a virtually defined unit of resource allocation,
typically comprising 12 subcarriers and 7 symbols, which represents the resource unit that
can be directly assigned to users, this resource portion amounts to 180kHz of bandwidth
within a slot with 0.5ms. Despite the number of subcarriers in an RB remains fixed at

8 1. Introduction

Figure 1.3: Time-frequency grid of PRB in LTE

12 in both LTE and 5G, the bandwidth of these subcarriers varies in 5G, allowing for
greater flexibility and optimization in resource allocation. Above RB, PRB defines the
smallest unit of resource managed by the network resource scheduler and represents the
actual physical allocation of resources in the time and frequency domain grid. PRBs are
typically allocated in pairs forming as a Transmission Time Interval (TTI) or a subframe,
which consists of two RB adjacent in time and with the same subcarriers, serving as the
smallest downlink unit that can be scheduled to a User Equipment (UE).

The significance of network resource scheduler is evident in both LTE and 5G systems.
It manages the allocation of PRBs, determining the distribution ratio of PRBs for the
successive transmission of various slices to each user across different network services.
Thus, a sufficient partitioning strategy for the resource scheduler is vital for ensuring the
overall performance and efficiency of the network.

1.2.1 State-of-the-art

As network slicing technology becomes increasingly deployed in services, there is already
a sufficient number of research and successful applications focusing on optimizing slicing
resource partitioning despite encountering numerous challenges and critical requirements.
Recent advancements in slice resource partitioning methods can be broadly categorized
into two major groups: mathematical optimization and ML approaches.

a) Mathematical Optimization: Mathematical optimization methods, which refer to
linear programming, mixed-integer linear programming, and convex optimization,
provide the essential solution framework for network slicing. These methods can
precisely formulate the optimization problems and yield optimal or near-optimal
solutions under the given constraints. Despite their effectiveness, these methods of-
ten rely on simplified or approximated models of network systems based on certain
assumptions, which can not fully represent the complexities of real-life network sys-
tems. Moreover, the computational complexity of these solutions can be prohibitive,

1.2. METHODS OF SLICE RESOURCE ALLOCATION 9

especially in large-scale networks, acquiring significant computational resources for
solution derivation and implementation.

b) Machine Learning (ML): ML, particularly in subsets of Deep Learning (DL) and
RL, has been increasingly recognized for its potential in solving network slicing op-
timization. These techniques are proven to benefit in predicting traffic patterns,
identifying effective slicing strategies, and accommodating dynamic network changes
in real time. Specifically, RL has been applied to dynamically adjust resource alloca-
tion in response to fluctuation in network demand, thereby enhancing the efficiency
and flexibility of network slices. However, traditional RL approaches are not with-
out their challenges, primarily the exploration-exploitation dilemma, which requires
a lengthy process of searching through the action space to identify optimal strategies
and thus delays the decision-making and adaptation processes.

More importantly, from my literature research experience, it appears that the current
proposed methodologies in network slicing resource allocation focus more on the poten-
tial impacts and performance improvement of novel approaches within experimental en-
vironments. However, there lack of discussions regarding the efficiency of deriving slicing
solutions, as well as improving sample efficiency, model reusability, and the generality of
solutions that lean toward a one-size-fits-all approach. While many studies claim signif-
icant enhancements in network performance, particularly in terms of QoS within virtual
or manipulated network environments, they often overlook the challenges associated with
complex real systems. Despite the difficulties and limitations in applying immature so-
lutions in under-operational networks, the new proposed approaches should consider the
trade-off between novelty and practicality. As an application-oriented research field, works
within communication society are expected to bridge the gap between academic study and
industrial application, suggesting that proposed methods for network slicing should be
designed with real-world implementation in mind.

In the following chapters, from Chapter 5 to Chapter 9, we will conduct a detailed literature
review of the proposed solutions. This will facilitate convenient and relevant comparisons
of specific resource allocation methods across various slicing scenarios.

1.2.2 Advantages of Reinforcement Learning

RL is a subset of ML, which is dedicated to learning an agent to make sequential decisions
by performing dynamic actions under an exclusive environment to maximize defined cumu-
lative rewards. Unlike supervised ML, which relies on labeled data, RL learns and adapts
from interactions with the real environment. The advantages of RL over conventional ML
approaches can be summarized as following perspectives:

• Continuous Learning: RL agents continuously update their policies based on newly
collected samples, making them highly adaptable to changing conditions and dy-
namic environments. RL algorithms can balance exploration by trying new actions
to discover their effects on environments and exploitation using known actions that
yield high rewards. These features are essential in dynamic environments where
optimal solutions are not static and need continuous adjustment and outline the
high adaptability of RL in dynamic optimization problems, where the system states
change frequently.

• Sequential Decision Making: RL is good at solving optimization problems where
decisions need to be made sequentially over time. This is particularly useful in
dynamic optimization scenarios, where actions taken at a certain time step can affect
future states and rewards.

10 1. Introduction

• Model-free Approach: As RL learns system dynamics through online interactions, it
can operate without a precise environment model, which is advantageous when the
environment is complex or not fully understood.

By incorporating neural networks into RL, DRL demonstrates an excellent capacity for
managing high system complexity. It uses function approximation with DNN models to
handle high-dimensional state and action spaces, thereby facilitating the management of
complex systems. Furthermore, Multi-Agent Reinforcement Learning (MARL) distributes
the complexity across multiple agents, with each agent learning and optimizing a specific
part of the overall problem. Some modern RL implementations employ parallel comput-
ing to process multiple interactions simultaneously, accelerating the learning process and
efficiently managing large datasets. With these advantages, RL approaches have been ap-
plied in the wireless communication field to address several critical aspects such as network
traffic prediction, load balancing, energy efficiency, and anomaly detection. Under slicing
scenarios, RL can dynamically allocate network resources to different slices based on real-
time demands, ensuring optimal resource utilization and maintaining QoS across diverse
applications. In this dissertation, we intend to explore RL’s capability and drawbacks in
solving slice resource allocation problems.

Figure 1.4: Potential application of TL in the field of wireless communications

1.2.3 Advances of Transfer Learning

Considering the limited generalization capability of existing solutions, TL has emerged
as a paradigm in communication networks with the advent of 5G. Unlike the traditional
methods listed above, TL is dedicated to improving the adaptation of models trained
on one domain for application in another, thereby reducing the time and computational
consumption required to develop new solutions from scratch. For instance, a model suc-
cessfully implemented in one network segment can be adapted for use in another, leading
to faster and more efficient network management and troubleshooting [7]. Specifically,

1.3. RESEARCH OBJECTIVES AND THESIS OUTLINE 11

in the context of network slicing, TL becomes increasingly important as it broadcasts
knowledge between different service scenarios, each with unique bandwidth, latency, and
security requirements. This adaptability of TL significantly streamlines the slicing pro-
cess. When combined with RL approaches, TL allows pre-trained models from one network
scenario to be adapted to new scenarios, thereby reducing training time and enhancing
performance. This is particularly beneficial in network slicing, where different network
configurations necessitate rapid adaptation. In 5G and beyond networking, both network
solutions and physical architectures are expected to evolve, further enhancing support for
various network services and leveraging network slicing techniques more effectively.

Despite the advantages, TL in communication networks faces challenges such as data lim-
itation, cross-domain applicability, and model generalization. Besides, the discussion of
TL methods always appears along with the DL because of the natural generalization abil-
ity of neural network models, while for conventional mathematical models, TL plays a
rather less important role due to case-specific model derivation. Future research of TL is
directed towards overcoming these hurdles by enhancing model transferability, exploring
unsupervised or semi-supervised TL approaches to reduce the reliance on labeled applica-
tion domain data [8].

1.3 Research Objectives and Thesis Outline

1.3.1 Research Objectives

Under the context of network slicing, the motivation of this dissertation is to investi-
gate potential methodologies to generalize network slicing solutions to reduce resource
consumption, accelerate deployment progress in real-world applications, and ultimately
reduce reliance on human experts when network configuration changes (Fig. 1.5). This
research work aims to address the resource allocation challenge within 5G and beyond
network environments, evaluating the advantages of TL and examining resource allocation
strategies preliminary within the DRL paradigm. Specifically, our objective is to solve the
slice allocation problem at the Media Access Control (MAC) layer, providing guidance on
resource budgets of every slice for network Operation, Administration, and Maintenance
(OAM) in a medium or long term, as illustrated in Fig. 1.6. The RAN resource sched-
uler will then allocate the PRB resources to each slice accordingly at each snapshot time
interval.

Figure 1.5: Generalization of network solutions

As one of the most classical and crucial challenges in network slicing, solving optimal
resource partitioning has high research value and practical significance. Our consideration
is that if this problem is well addressed with the successful implementation of TL, the
same progress or pipeline could be easily extended and replicated to another application
in network slicing, communication networks, or even broader application fields. Secondly,
although RL, particularly DRL, has gained great success in the communication society

12 1. Introduction

and other research fields, only a few works discuss applying TL on DRL, neither looks
into its generalization ability. Despite the advantages of DRL, such as capturing dynamic
environments more effectively than traditional models, it suffers from notable drawbacks,
including slow convergence and dependency on large data samples. Thus, this thesis also
aims to tackle the inherent challenge of improving the transferability of DRL models, a
key obstacle due to the nature of DRL methodologies.

Figure 1.6: Dynamic slicing resource allocation for multi-cell multi-slice network

To fulfill these objectives, the thesis initiates by investigating the feasibility of employing
sophisticated DRL algorithms in multi-cell multi-slice network slicing scenarios, solving
optimal per-slice source partitioning at medium time scale (e.g., minutes or a quarter
of hour) on MAC layer, and facilitating PRB resource in time-frequency domain with
networkOAM. This exploration delves into DRL with various solution granularity levels,
ranging from centralized approaches to slice-wise methodologies as illustrated by Fig. 1.7.
Subsequently, the discussion of the examination of TL techniques is proceeded with the
incorporation of DRL. My plan is to assess the DRL and TL on the different function
granularity levels:

1. Centralized Scheme: The first scheme is solving resource partition optimization in
a centralized manner. The centralized solutions leverage a comprehensive view of
network systems, facilitating optimal resource distribution and coherent manage-
ment across the network. It simplifies the task of OAM with coherence and con-
sistency. However, these centralized approaches face scalability challenges as the
network expands, becoming potential bottlenecks, particularly when applying TL.
Furthermore, the use of larger models in centralized systems may result in increased
latency in decision-making and thus impair the system ability to respond to specific
local network conditions and demands effectively.

2. Distributed Scheme:

• Per-cell Scheme: The distributed approach applies on site-wise or cell-wise
granularity, enhancing scalability over the centralized scheme by letting each
gNB manage its slices based on local network states. The distributed manner
leads to more efficient use of local resources and faster response to local network
dynamics. More importantly, it provides higher scalability in adapting solutions
among gNBs, which builds a wider stage for applying TL methods. However,
this approach might lead to sub-optimal global resource distribution as each
gNB operates independently without a comprehensive network perspective, po-
tentially overlooking inter-cell interference effects. Additionally, developing and

1.3. RESEARCH OBJECTIVES AND THESIS OUTLINE 13

maintaining distinct solutions for various gNBs can be complex and resource-
intensive, which may cause inconsistencies in resource in resource allocation
across different gNBs.

• Per-slice Scheme: The distributed approach can be further refined into more
detailed granularity, i.e., slice-wise manner. This scheme enables highly cus-
tomized and flexible slicing orchestration, meeting the diverse requirements of
different network slices. It provides the highest generalization ability for TL ap-
plication. It can be seen as a “one-size-fits-all” approach since its derivation and
deployment do not depend on slice configurations within gNBs. It is also ideal
for facing dynamic network service setups for 5G and O-RAN. Unfortunately,
deriving per-slice solutions is challenging based on limited slice information and
dynamics. Coordinating between slices without coupling, such as inter-slice
resource constraints and inter-cell dependencies, makes it impossible to derive
sufficient solutions under the scope of the entire network system.

Figure 1.7: Slicing resource allocation on different granularity levels

Additionally, in the context of TL, we assess 2 knowledge transfer manners, aligned with
respective DRL application granularity levels:

• Generalist-to-Specialist: This method involves transferring knowledge from a general
model, trained on samples from a wide range of scenarios or tasks, to a specific model
tailored to a particular scenario or task within the network slicing domain.

• Specialist-to-Specialist: For the scenarios that are difficult to derive a general model,
this alternative approach entails transferring knowledge between models that are each
tailored to specific but different scenarios or tasks, enhancing the adaptability of DRL
models across similar yet distinct network environments or slice configurations.

In this thesis, we will investigate those topics and methods followed by associated assess-
ments and try to tackle the abovementioned challenges. This thesis is organized in detail
by answering the following scheme-aligned questions step-by-step.

Question 1: How to convert slice resource allocation into the form that RL ap-
proaches can handle?

Before diving into the research on implementing RL on resource allocation problems under
slicing networks, it is necessary to formulate the dynamic optimization under the scope
of Markov Decision Process (MDP). It is also vital to properly design the RL rewards
that can both facilitate network QoS and resource constraints. Besides, for solving dy-
namic optimization problems, we need to determine the definition of the utility function
considering fairness among slices and cells.

14 1. Introduction

Question 2: How to distribute the centralized resource allocation problem into
the per-cell scheme while maintaining the correlation of inter-cell dependency?

Intuitively, RL can handle the resource allocation optimization problem by deriving a
global agent that takes care of all network states and slice partitioning actions under the
interaction of every cell. While the distributed per-cell scheme is dedicated to resolving
this problem within the scope of local observations, despite decreasing the complexity of
RL agents, losing inter-cell dependencies may cause severe interference under multi-cell
scenarios. Thus, we need to find a way of distributing RL solutions to local cells and
recover the inter-dependencies with limited observations.

Question 3: How to proceed TL methods on the top of RL solutions?

For TL methods, it is essential to address the problems of how knowledge transfer pro-
ceeds under the given conditions. Different from TL implementation under supervised ML
approaches, RL methods have more dynamic characteristics. Thus, in this work, we need
to explain knowledge transferring in terms of knowledge type of transferring manners.

Question 4: How to determine the source of knowledge transfer given a target
slicing scenario?

Specifically, for “Specialist-to-Specialist” TL, in addition to addressing the ways of trans-
ferring, it is also necessary to determine the source domains before knowledge transferring.
This is because choosing improper source knowledge may cause negative effects on target
domains. A more detailed introduction about negative transfer will be provided in 3.2. In
combining with Question 3, these two questions address three fundamental questions for
TL implementation, namely, we need to answer the TL queries as what to transfer, how
to transfer, and when to transfer.

Question 5: Is TL helpful in enhancing the generality of RL solutions?

After addressing Question 3 and Question 4, it is essential to evaluate the improvement
that TL can provide to RL methods for slicing resource allocation to address its efficiency.
Therefore, during the experiment, we propose to design the comparison experiments prop-
erly to compare its performance with “training from scratch” under the same network
settings.

Question 6: How to address the resource constraints under different granularity
of solutions?

The inter-slice resource constraints are always retrievable under the fixed slice combinations
and correlations for centralized and distributed per-cell schemes. However, under the scope
of O-RAN, solutions on the slice level only rely on slice-wise network observations and are
required to provide slice partitions accordingly without the information of resource budgets
of other slices. After integrating them among slices, this self-interested progress on each
slice will lead to invalid resource partitions.

Question 7: How to facilitate slicing solutions under dynamic slice configurations?

Considering the requirements of O-RAN, the slice configurations may vary in real time.
Both centralized and per-cell distributed schemes are derived for fixed slicing scenarios
with poor adaptability, while theoretically, the per-slice can be applied to arbitrary combi-
nations of slice configurations. Thus, in this work, we aim to implement slice-wise resource
allocation solutions under dynamic slicing scenarios.

1.3. RESEARCH OBJECTIVES AND THESIS OUTLINE 15

Question 8: How to improve model generality under domain shift caused by slice
configuration changing?

In addition to the dynamic slice configurations under O-RAN, there are cases that face new
slice types or network environments where the data or features shift from the original space
from which we derived the slice-wise resource allocation solution. To further extend their
effectiveness, in this work, we aim to extend the generality of per-slice resource allocation
solutions, including investigating the methods of covering features of unseen data and
enhancing the model adaptability.

Corresponding answers to these questions will be given along with the discussions in the
rest of the dissertation. Specifically, we listed the positions of the answers in the following
table:

Table 1.1: Research questions waited to be answered throughout the dissertation

Assessment I: DRL-based Slice Resource Allocation Chapter 4

Q1: How to convert slice resource allocation into the form that RL can handle?

Assessment II: Distributed DRL Methods Chapter 5

Q2: How to distribute the centralized resource allocation problem into the per-cell scheme
while maintaining the correlation of inter-cell dependency?

Assessment III: Generalist-to-Specialist TL-aided RL Chapter 6

Q3: How to proceed TL methods to the top of RL solutions?

Q5: Is TL helpful in enhancing the RL methods?

Assessment IV: Specialist-to-Specialist TL-aided RL Chapter 7

Q4: How to determine the source of knowledge transfer given a target slicing scenario?

Assessment V: Per-slice Resource Allocation Chapter 8

Q6: How to address resource constraints under different granularity of solutions?

Q7: How to facilitate slicing solutions under dynamic slice configurations?

Assessment VI: DA of Per-slice Resource Allocation Chapter 9

Q8: How to improve the model generality under domain shifts caused by slice configu-
ration changing?

1.3.2 Thesis Outline

I hereby present the dissertation outline and list all the published works associated with
this thesis. To give a cohesive discussion with more detailed background information on
basic techniques used in this thesis. First, the overviews of RL and TL are given in
Chapter 2 and Chapter 3 respectively. At the end of each chapter, literature research
on the corresponding technique is provided, addressing the current challenges and future
impacts.

In Chapter 4, we first formulate the network slicing resource portion task of network OAM
into MDP and state the resource allocation optimization problem. Then, we implement a
series of trial experiments in a system-level virtual environment for sanity checks.

The rest of the thesis is organized into 5 main chapters, each corresponding to the dis-
cussion of applying RL and TL on one granularity level of resource allocation solution
mentioned above.

16 1. Introduction

Specifically, in Chapter 5, we discuss applying a distributed DRL algorithm to multi-
cell, multi-slice RAN slicing scenarios to address the dynamic inter-cell slicing resource
partitioning problem. This chapter explores transforming a centralized RL approach into
a distributed manner while preserving inter-cell dependency information. We introduce a
multi-agent DRL approach, exploring two coordination schemes, with and without inter-
agent coordination, and evaluate two methods to ensure DRL agents respect resource
constraints: reward shaping and decoupled softmax layer embedding.

Then, in Chapter 6, we integrate the proposed distributed DRL approach with TL tech-
niques to achieve higher model reproducibility and sample efficiency. We investigate meth-
ods for transferring a general distributed DRL model trained on a large dataset to a specific
domain. This chapter also explores two additional objectives: maximizing the minimum
service quality across all slices and cells and maximizing the average logarithmic utility
over all slices by developing a novel TL-based DIRP algorithm.

We discuss another TL scenario in Chapter 7, which focuses on transferring knowledge
from one specific domain to another and requires additional domain similarity analysis.
We propose a TL-aided MADRL approach with domain similarity analysis for inter-slice
resource partitioning. This includes designing a coordinated MADRL method for inter-
cell resource partitioning, where DRL agents share local information to mitigate inter-cell
interference, and integrating a TL method to accelerate policy deployment among different
agents.

Down to the per-slice scheme, Chapter 8 discusses an integrated method by combining
deep learning models with constrained optimization methods. We propose the IDLA algo-
rithm to address resource partitioning challenges in network slicing with assured inter-slice
resource constraints. This chapter demonstrates the near-optimal QoS satisfaction and
generalization performance of the IDLA algorithm through evaluations in a system-level
network simulator.

Finally, on top of the proposed per-slice solution, in Chapter 9, we investigate TL methods
for improved model reproducibility and sample efficiency, enhancing the generality of the
slice-wise estimator through TL techniques. We implement a DA-based model to replace
the traditional Multi-Layer Perceptron (MLP)-based regression, demonstrating its effec-
tiveness in mitigating domain discrepancies and enhancing the accuracy of slicing resource
partitioning in diverse network scenarios.

Chapter 10 concludes the thesis along with the potential future research directions by
summarizing the key findings and contributions made in the thesis, highlighting the efficacy
of RL and TL applications in solving network resource allocation tasks, and discussing their
limitations and future impact for further exploration.

1.3. RESEARCH OBJECTIVES AND THESIS OUTLINE 17

1.3.3 Publications in the Context of this Thesis

This thesis is based on the following peer-reviewed publications:

Inter-Cell Slicing Resource Partitioning via Coordinated Multi-Agent Deep Rein-
forcement Learning
Tianlun Hu, Qi Liao, Qiang Liu, Dan Wellington, Georg Carle
ICC 2022 - IEEE International Conference on Communications, 2022, pp. 1-6,
doi: 10.1109/ICC45855.2022.9838518.

Knowledge Transfer in Deep Reinforcement Learning for Slice-Aware Mobility Ro-
bustness Optimization
Qi Liao, Tianlun Hu, Dan Wellington
ICC 2022 - IEEE International Conference on Communications, 2022, pp. 1-6,
doi: 10.1109/ICC45855.2022.9838657.

Network Slicing via Transfer Learning aided Distributed Deep Reinforcement Learn-
ing
Tianlun Hu, Qi Liao, Qiang Liu, Georg Carle
GLOBECOM 2022 - 2022 IEEE Global Communications Conference, 2022, pp. 1-6,
doi: 10.1109/GLOBECOM48099.2022.10000763.

A Joint Industrial-Network Simulator for Leveraging Automation in 5G Private
Networks
Alessandro Lieto, Stanislaw Strzyz, Patrick Agostini, Tianlun Hu
European Wireless 2022; 27th European Wireless Conference, 2022, pp. 1-5.

Inter-Cell Network Slicing with Transfer Learning Empowered Multi-Agent Deep
Reinforcement Learning
Tianlun Hu, Qi Liao, Qiang Liu, Georg Carle
IEEE Open Journal of the Communications Society, Volume. 4, 2023, pp. 1-15,
doi: 10.1109/OJCOMS.2023.3273310

Fast and Scalable Network Slicing by Integrating Deep Learning with Lagrangian
Methods
Tianlun Hu, Qi Liao, Qiang Liu, Antonio Massaro, Georg Carle
GLOBECOM 2023 - 2023 IEEE Global Communications Conference, 2023, pp. 1-6,
doi: 10.1109/GLOBECOM54140.2023.10436849.

18 1. Introduction

19

2. Reinforcement Learning

In this dissertation, the proposed methods are preliminarily built under the context of RL.
Thus, the detailed introduction from RL basic to recent research is necessary to address the
challenges and advantages of applying RL in communication networks. In communication
society, most of the audiences possess expert knowledge of basic ML and DL methods but
may not be familiar with RL. This chapter is organized especially for readers with ML
background but not versed RL experience.

The rest of the chapter is organized as follows: In Section 2.1, we introduce the basic
concept of RL with precise experiments, followed by discussions on how it differs from
traditional ML methods. Section 2.2 covers the detailed foundational knowledge and key
elements in RL, from MDP formulations to the Bellman equation, and extends to DRL.
Policy-oriented and value-oriented RL are discussed independently in separate sections.
Starting from Section 2.3, we introduce successfully implemented classic RL and DRL
algorithms. Specifically, in Section 2.4, we outline the Policy Gradient (PG)-based DRL
approaches and their advancements. Finally, in Section 2.5, we discuss the DDPG and
TD3 algorithms, which provide the fundamental pipeline for the proposed methods in this
dissertation.

2.1 Introdution to RL

In 1904, Russian physiologist Ivan Pavlov conducted an experiment to study the concept
of the conditioned reflex. In the experiment, Pavlov used a bell as the neutral stimulus.
Whenever he gave food to his dogs, he also rang the bell. Initially, the dogs did not
respond to the bell since it was irrelevant to them. However, dogs salivate when they
see or smell food, a natural response to food, known as an unconditioned response to an
unconditioned stimulus. After repeating this procedure multiple times, the dogs started
associating the sound of the bell with the food. Eventually, Pavlov observed that the dogs
began to salivate merely at the sound of the bell, even when no food was presented. This
salivation in response to the bell is conditioned, demonstrating that a new behavior could
be learned through association. This famous experiment was initially designed to illustrate
the process of classical conditioning and is regarded as the kick-off research in behaviorism
and learning theories in psychology.

About 120 years later, Neuralink, a company started by Elon Mask, processed another
experiment involving a monkey named Pager. The company implanted a chip into the
monkey’s brain as a brain-computer interface, allowing the monkey to control a computer

Version: January 20, 2025 – 13:20:04

20 2. Reinforcement Learning

game, specifically Pong, through Bluetooth without needing a physical controller. This
no-touching interaction was enabled by decoding the monkey’s neuronal activity and pre-
dicting the signals the brain would typically send to the hands to move them, essentially
allowing the monkey to play the game with its mind. As a reward for playing, Pager re-
ceived sips of a milkshake. The experiment aims to demonstrate the potential of enabling
direct brain-to-computer communication.

Despite the above two cross-century experiments having different research goals, we can
still see a consistent framework when studying an “intelligent agent,” namely conditioning
response and real-time interaction.

2.1.1 Concepts in RL

RL plays an important role in the field of ML, where an “agent” learns to make decisions
by interacting with its environment to achieve a particular goal. The principles of RL can
also be described by classical conditioning, as exemplified by the above two experiments,
which underscore the foundational elements of RL, “state” (s ∈ S), “action” (a ∈ A),
“reward” (r ∈ R), and “policy” (π ∈ Π). As Fig. 2.1 illustrates, all these elements are
intricately linked to the concept of an intelligent agent, which can be regarded as the dog
in Pavlov’s experiments or the monkey in Neuralink scenario.

• State: In RL, a state represents the current situation within an environment. It
represents a snapshot of all the information necessary to describe the context in which
decisions are made. The state space encompasses all possible scenarios that might
occur. Specifically, in Pavlov’s experiment, the state is defined by environmental
stimuli, such as the presence or absence of food and the sound of a bell. Similarly, in
Neuralink experiment, a state represents the current condition within the game, such
as the position of the paddle, the ball, and their velocities. From Pager’s perspective,
it could also stand for the neural signals representing these game elements.

• Action: Actions are the set of all possible moves or decisions the agent can make.
In each state, the agent selects an action based on a policy. The action space can
vary dramatically depending on the problem - from moving in a direction in a maze
to choosing a stock to invest in a financial application. In Pavlov’s setup, the dog’s
actions are physiological responses, like salivating in reaction to stimuli. In the Neu-
ralink scenario, the action takes the form of imagined paddle movements, interpreted
from the monkey brain signals. Despite the physical inactivity, these mental deci-
sions align with the RL concept of actions, as they directly influence the outcomes
in the experimental environments.

• Reward: After taking an action, the agent receives a reward from the environment,
which is a signal reflecting the immediate benefit of the previous action. Rewards
are crucial as they guide the learning process. The goal of the agent is typically to
maximize the total amount of reward it receives over time. In RL, rewards guide the
agent by indicating the desirability of an action taken in a particular state. Pavlov’s
dogs received physical food as a reward, reinforcing the connection between the
bell and the expected outcome. In the Neuralink experiment, rewards are provided
through positive reinforcement, such as successfully controlling the game or receiving
a milkshake, guiding the agent (in this case, Pager) towards beneficial behaviors.
This reward structure is foundational in RL, shaping the agent strategy to maximize
these positive outcomes.

• Policy: RL policy refers to the strategy used by the agent to decide the actions to take
based on the current state. It can be seen as a mapping from states to actions. The

2.1. INTRODUTION TO RL 21

objective of RL is to find an optimal policy that maximizes the cumulative reward
of the agent over time. Through repeated trials, the dog in Pavlov’s experiment
developed a conditioned reflex, effectively a policy linking the sound of the bell with
the anticipation of food. In the Neuralink experiment, the policy that Pager follows
evolves through interaction and feedback, learning to manipulate the game effectively
with brain activity alone. This adaptation showcases the learning and optimization
at the heart of RL, where the objective is continually refining the policy to achieve
maximal rewards over time.

Above all these elements, the “agent” stands as the central concept of RL that represents
the entity or “intelligence” that learns and makes decisions based on its interactions with
the environment. The role of the agent is multifaceted: First, the agent interacts with
the environment, which can be anything from a physical space, such as a maze or a
real-world environment. The agent gathers information through these interactions and
experiences different states and outcomes. Then, based on the RL state, the agent makes
decisions based on its current policy. It chooses the optimal action based on its current
knowledge in response to the state and attempts to achieve its goals by maximizing the
long-term cumulative reward. The agent continuously learns from the outcomes of its
actions. Through a process of trial and error, it updates its knowledge or strategy, referred
to as the policy, based on the feedback received in the form of rewards or penalties. Besides,
the agent also evaluates the consequences of its actions based on the rewards received from
the environment. This evaluation helps the agent refine its policy to make better decisions
in the future.

The interaction between the agent and these elements underpins the learning process
in RL. In general, the objective of RL is to develop an optimal policy that allows the
agent to maximize the total reward it receives over the long run. The agent learns from
the consequences of its actions, which are evaluated by rewards, and adjusts its policy
accordingly to improve future decisions and outcomes. This dynamic process of action,
observation, and adjustment continues until the agent achieves its goals or until the policy
converges to the optimal strategy. A typical RL process can be described as a step-by-step
process in a loop based on common principles (Fig. 2.1):

1. Initialization: The RL process begins with the initialization of the environment and
the agent. The agent is typically unaware of the environment’s dynamics and has
no predefined policy. In practical implementation, the agent always starts with a
random or selected policy.

2. Interaction:

(1) Observation: The agent observes the current state of the environment. This
state could represent various elements depending on the problem, such as the
position of a player in a game, the current market conditions in trading, or the
readings from sensors in robotics.

(2) Taking action: Based on its current policy (which could initially be random),
the agent selects an action to perform in the environment. The policy is a
function that maps states to actions.

(3) State transition: The agent executes the chosen action in the environment,
which leads to a change or transition to a new state.

(4) Receiving reward: After the action is performed, the agent receives a reward
from the environment. This reward is a signal that indicates the success or
failure of the action with respect to the objective.

22 2. Reinforcement Learning

(5) Policy updating: The agent uses the reward it received and the transition infor-
mation (from the old state to the new state) to update its policy. This learning
process is aimed at improving the policy over time.

3. Repetition: The steps in 2 are repeated for many episodes or until a termination
condition is met, e.g., a certain level of performance is achieved, or a maximum
number of steps is reached.

4. Policy Improvement: Through repeated interactions with the environment and learn-
ing from the outcomes, the agent policy improves over time. Ideally, the agent learns
to make better decisions that maximize the cumulative rewards it receives.

Figure 2.1: General process of RL

2.1.2 Comparing with Conventional ML

From my experience, most applications of ML methods in communication fields are pri-
marily built on traditional ML, especially Supervised Learning (SL) approaches. Thus, it
is necessary to address the differences between RL and traditional ML methods, discuss
their advantages and weaknesses, and explain why RL is chosen as the basic pipeline in
this thesis. This comparison also provides a more intuitive understanding of RL for readers
familiar with ML.

Overall, traditional ML is primarily concerned with learning from a dataset to make predic-
tions, while RL focuses on learning an optimal strategy through interactions and feedback.
RL is suited for problems where an agent must make a series of decisions to achieve a goal,
especially in uncertain and dynamically changing environments. Meanwhile, SL is more
applicable when there is a clear set of instances and associated labels to learn from. The
main differences between RL and SL can be addressed from the following perspectives:

2.2. RL BASICS 23

• Training Data:

– SL: The training data consists of input-output pairs, where the input data are
always assumed to be Independent and Identically Distributed (i.i.d). The data
is labeled, meaning that each input is associated with the correct output. The
learning algorithm uses this dataset to learn a model that can make predictions
for new, unseen data.

– RL: There is no predefined dataset. Instead, the data is generated through
the interactions between the agent and the environment. The data may have
strong coherent relations, as previous outputs can affect future inputs. The
agent learns from the consequences of its actions, guided by a reward system
rather than direct instruction.

• Decision Making Process:

– SL: The decision-making process involves making predictions or classifications
based on the learned model. Once trained, the model applies what it has learned
to new data to predict an outcome.

– RL: The decision-making process is sequential, based on the selection of actions
that maximize cumulative reward as interactions continue. The agent decides
on actions based on a policy, which evolves through trial and error and feedback
from the environment.

• Ground Truth:

– SL: Operates on the premise of ground truth, meaning the correct answers
(labels) are provided during training, and the performance of the model can be
evaluated against this ground truth.

– RL: Does not have ground truth in the conventional sense. Instead, the “cor-
rectness” of an action is determined by the rewards received and how they align
with the long-term goal of maximizing cumulative reward.

• Feedback Mechanism:

– SL: Feedback comes in the form of the accuracy of the predictions compared to
the known labels in the training data. This feedback is direct and immediate.

– RL: Feedback is given through rewards and penalties. It is more indirect as the
agent learns which actions yield the highest total reward over time.

Unlike traditional ML, RL steps out of the “data collection-model training” loop, introduc-
ing more dynamic characteristics in deriving ML models. Therefore, RL is distinctively
suited for tasks that require sequential decision-making, learning from interaction, and
adaptation in dynamic environments. These tasks include game playing, robotics, finance,
healthcare, and resource management. Mobile networks are complex systems with numer-
ous dynamic features, and the slicing resource management task requires continuous and
coherent resource partitions across different time intervals. Thus, RL is inherently suitable
for solving slicing resource optimization problems in communication networks.

2.2 RL Basics

In this section, we formally introduce the foundational methods and algorithms of RL and
explain its basic principles from a mathematical perspective. Central to RL is the concept
of the MDP, which serves as the standard framework for formulating decision-making agent

24 2. Reinforcement Learning

models. This section starts with an introduction to the fundamental aspects of MDP,
moves to discussions on the Bellman equation, a critical component in understanding the
dynamics of RL, and finally explores two principal iterative approaches employed in RL:
value-based iteration and policy-based iteration, which provide mechanisms for optimizing
the decision-making process.

2.2.1 Markov Decision Process (MDP)

MDP is a mathematical framework used for modeling decision-making in situations where
outcomes are partly random and partly under the control of a decision-maker. MDPs are
extensively used in RL by providing a formalization of agent behavior in dynamic systems
to help agents learn how to behave in an environment to achieve a goal.

An MDP is defined by a tuple ⟨S,A, P, r, γ⟩, each element representing a fundamental
component of the decision-making model:

• States (S): The set of all possible states in which the agent can exist. A state s ∈ S
encapsulates all the information the agent needs to make decisions. In an MDP, it
is assumed that the future depends only on the current state and the action taken,
not on the sequence of events preceding it. This property is known as the Markov
property.

• Actions (A): The set of all actions available to the agent. In any given state s, the
agent can choose from a set of possible actions. The action taken by the agent can
lead to a change in the state, transitioning the agent from one state to another.

• Transition Probability (P): The probability that taking action a at state s will lead to
the next state s′ ∈ S. This is often denoted as P (s′|s, a), where P : S×A×S → [0, 1].
The transition probability reflects the dynamics of the environment, indicating how
likely it is to move between states under specific actions.

• Reward Function (r): The reward received after transitioning from state s to the
next state s′ by executing action a, denoted as r(s, a) with r : S×A → R. It measures
the immediate benefit to the agent of taking action a at state s. The reward function
guides the agent by indicating which actions are beneficial and which are not.

• Discount Factor (γ): A factor with γ ∈ [0, 1] that represents the difference in im-
portance between future rewards and present rewards. A discount factor of 0 makes
the agent “short-sighted” by considering only immediate rewards, while a discount
factor near 1 makes it “far-sighted” by valuing future rewards almost as highly as
immediate rewards.

The goal within an MDP framework is typically to find a policy π, a strategy defining the
action that the agent should choose when in a specific state to maximize some notion of
cumulative reward. The policy maps states to actions and is central to the behavior of
agent.

An Example

Imagine a robot trying to find its way out of a maze, similar to what Fig. 2.1 illustrates.
Each position in the maze can be regarded as a state s, and at each position, the robot can
choose to move in different directions: up, down, left, or right (as the choice of actions,
a). Some moves take the robot closer to the exit or lead to dead ends, corresponding to
reward or penalty, measured by r. The objective of RL agent is to maximize the total

2.2. RL BASICS 25

Figure 2.2: A RL example: robot navigation in maze

reward the robot receives, which in this case could be finding the fastest route out, i.e.,
the optimal policy π.

Before converting this procedure into an MDP process, let us focus on the factors deter-
mining whether the robot can eventually find the most effective path out of the maze. The
most critical factors are the state st (position) and the choice of action at (the forward di-
rection) at each step t. The state-action process of the robot in the maze can be described
as s0, a0, s1, a1, . . . , st−1, at−1, st. In this process, we can see two types of transitions: one
from state to action and the other from action to state.

• State-Action Transition: The transition from state to action reflects the decision-
making function of the agent, which is to select the best action (forward direction)
based on the current location of the robot. This is the agent policy π, that is, the
mapping from the state domain to the action domain or to the probability distri-
bution of the action. In the transition from state to action, the agent weighs the
consequences of each possible action in the current state based on the learned pol-
icy π and finally selects the action with the highest evaluation. Mathematically, a
policy can be expressed in several ways, depending on whether it is deterministic or
stochastic.

– Deterministic Policy: A deterministic policy is a direct mapping from states to
actions, i.e., under he current state st, the policy π selects a specific action at
with:

at = π({s0, ..., st−1, at−1, st}). (2.1)

For the current state st ∈ S, the policy π dictates exactly one action at ∈ A to
be taken.

– Stochastic Policy: A stochastic policy, on the other hand, provides probabilities
for taking each possible action in a given state. It can be represented as:

at = arg max
ait

pπ(ait|{s0, ..., st−1, at−1, st}). (2.2)

This means that for state st, the policy π gives the probability of choosing
action at from the action space.

We can see that the description of the current state includes all state-action transi-
tions before reaching the current state st. But, according to the Markov property,
for a MDP process, the action at to be taken is only related to the state st at the
current step t, and the previous conversion process can be represented by state st.
Therefore, Eq. 2.1 and Eq. 2.2 can be simplified as π(st) for deterministic policies
and arg max ait pπ(ait|st) for stochastic policies.

26 2. Reinforcement Learning

• Action-State Transition: The environment generally determines the transition from
action to state, i.e., the transition probability p(st+1|st, at). The environment ob-
jectively determines the results of the actions the agent decides. The best policy
obtained by the agent can generally only be applied in a specific or the same envi-
ronment. In subsequent sections of this dissertation, we will provide a more compre-
hensive discussion of this limitation and explore the strategies we have implemented
to address this challenge.

An MDP process can be regarded as alternating these two transitions. For RL, the differ-
ence is that it needs to explore and learn the best policy π through interactions, usually
termed as exploration and exploitation phases. This process is essential for steering the
MDP towards desirable outcomes, underscoring the necessity for rewards. Mathematically,
the reward r of transitions defined with a reward function R can be expressed as:

rt = R(st, at, st+1), (2.3)

which signifies the reward received after transitioning from state st to state st+1 as a
consequence of executing action at.

The reward function serves as a signal that reinforces desirable actions while discouraging
undesirable ones. By associating positive rewards with beneficial actions and negative
rewards with harmful ones, the agent learns to navigate the environment to maximize
cumulative rewards. It defines the goal within the MDP framework. The objective of
RL is to maximize the total accumulated reward over time, aligning its behavior with
the overarching goals of the task. Besides the reward that implies the immediate benefit,
the discount factor γ plays a crucial role in MDPs by affecting how future rewards are
valued. This ensures practical and realistic decision-making in uncertain environments.
The rationales for applying the discount factor γ are multifaceted:

• Present Value of Future Rewards: The discount factor ensures that immediate re-
wards are generally valued more than distant future rewards, modeling the uncer-
tainty and diminishing value of future outcomes in decision-making processes.

• Convergence and Stability: Incorporating a discount factor helps ensure the conver-
gence of value functions and policies, preventing the total accumulated reward from
becoming infinitely large, which can destabilize learning algorithms.

• Temporal Preferences: The discount factor allows for modeling preferences over time.
A lower γ makes the agent short-sighted, prioritizing immediate rewards, whereas a
higher γ makes the agent more far-sighted, considering the long-term consequences
of its actions.

• Decision Making in Uncertain Environments: In many real-world scenarios, the
future is uncertain, and immediate rewards are a more reliable indicator of sound
policy. The discount factor helps balance exploring new strategies with exploiting
known rewarding strategies, reflecting real-world decision-making challenges.

Based on the definitions above, this robot-maze process illustrated by Fig. 2.2 can be
exemplified by repeating the following steps under the framework of an MDP:

1. Defining the MDP Components:

2.2. RL BASICS 27

• S: Each position in the maze represents a state. For simplicity, imagine that
the maze is on a grid, and each cell on the grid is a potential state the robot can
occupy. Special states might include the starting position and the goal position.

• A: At each position (state), the robot has a set of possible actions. Typically,
these actions would be to move north, south, east, or west to adjacent cells.

• P : It describes the likelihood of moving from one state to another under the
given action. In a perfect world, if the robot decides to move north, it will
always move north. However, in a more realistic scenario, there might be a
probability distribution due to slippery floors or obstacles, e.g., there is a 90%
chance that moving north will succeed and a 10% chance the robot stays in
place.

• r: After each move, the robot receives a reward. Moving closer to the exit
yields positive rewards, while hitting the wall or moving away from the exit
incurs negative rewards. Reaching the exit could give a significant positive
reward and end a transition epoch.

• γ: This factor determines the importance of future rewards. A value close to
1 would make future rewards very significant, while a value close to 0 would
make the robot short-sighted, caring only about immediate rewards.

2. Navigating the Maze: The robot starts in the initial state, the starting point of the
maze, and decides the best action to take based on its policy. Initially, if the robot
has no prior knowledge, it will choose actions randomly. As the robot moves through
the maze, it accumulates rewards based on the distances moved toward or away from
the goal. It begins to learn which actions in which states lead to higher rewards.

3. Learning and Policy Improvement: Using algorithms such as value iteration or policy
iteration, the robot updates its policy, i.e., the strategy of choosing actions in different
states to maximize total future rewards. The policy of robot gets refined through
iteration:

• Value Iteration: The robot iteratively updates the expected cumulative reward
of each state under the current policy until the values stabilize. This helps the
robot indirectly improve its policy.

• Policy Iteration: The robot evaluates the current policy by implementing it
during interactions, then improves the policy by choosing actions that lead to
the best subsequent states, and repeats this process.

4. Reaching the Goal: After sufficient learning, the robot eventually develops an opti-
mal policy indicating the best action from any state. Following this policy, the robot
navigates the maze efficiently, reaching the goal while maximizing its accumulated
reward.

This toy scenario exemplifies how MDPs can be applied to real-life problems where decision-
making is sequential and the environment is uncertain. The MDP components: states,
actions, transitions, rewards, and the discount factor, all play crucial roles in this learning
and decision-making process.

2.2.2 Value Function

In the example above, we can find that in order to achieve the final goal of getting out
of the maze, the robot needs to consider choosing actions that are more consistent with
long-term returns for subsequent state actions when making every action decision. In RL,

28 2. Reinforcement Learning

for any action in each state, there is a corresponding value to quantify the contribution of
this action to the final goal. Based on this value, the RL agent can make optimal action
decisions under different states. This is called the value function V , which reflects the
total amount of reward an agent can expect to accumulate over time, starting from that
state.

In fact, in RL definitions, the instant reward r can already represent the simultaneous
value brought by taking an action a in a particular state s. However, this r only reflects
the return in the local state and is not the final goal of RL. For example, for the robot in
the maze, if only the local reward of each position is considered, the final result obtained
after a limited training round may only be a policy that can avoid hitting the wall. Such
a policy makes it difficult to guarantee that the robot can be guided out of the maze in
every instance. Therefore, we need to introduce the concept of long-term reward, which
is, in addition to considering the simultaneous return of the action, we must also consider
the value that can be obtained in the next state after the action occurs. The objective of
RL to derive the optimal policy π∗ is identical to maximizing

∑
t rt.

However, if we simply add the possible value in the future state to the local value, the ac-
cumulated reward may lead to divergent results. Therefore, RL agents utilize the discount
factor γ to mitigate the effects of the future return in the current state, and the revised
return is given as

∑
t γ

trt. In 2.2.1, we have provided the rationales of using discount
factor in MDP such as avoiding infinite returns in cyclic MDP and uncertainty about the
future rewards. Here, we complete the definition of long-term RL reward (also refer as
return) concerning discount factor γ as:

Gt := rt+1 + γrt+2 + ... =
∞∑
k=0

γkrt+k+1 (2.4)

In the context of RL, the value function is a fundamental concept used to estimate how
good it is for an agent to be in a given state or perform a specific action in a given state.
Essentially, the value function measures the expected long-term reward for different states
and actions, guiding the agent’s decision-making process. There are primarily two types
of value functions: the state value function and the action value function.

State Value Function The state value function, denoted as v(s), represents the expected
total reward an agent can expect to accumulate over the future, starting from state s and
following a particular policy π. The policy π dictates the behavior of the agent by defining
which action to take in each state. The state value function is expressed as:

vπ(s) = Eπ[Gt|St = s], (2.5)

where Eπ denotes the expected value when the agent follows policy π.

Action Value Function The action value function, denoted as q(s, a), estimates the expected
return of taking action a in state s and following policy π. It tells us how good it is to
perform a particular action from a particular state. The action value function is defined
as:

qπ(s, a) = Eπ[Gt|St = s,At = a], (2.6)

In comparison with the state value function vπ(s), the action value function qπ(s, a), also
known as the state-action value, reflects both the contributions of current state s and
action a to the RL agent.

Both value functions are crucial in RL as they encode the knowledge about the best ways
to act in different situations. They guide the agent towards more profitable behaviors.

2.2. RL BASICS 29

The objective of RL can also be expressed mathematically through these value functions,
which is to find the optimal policy π∗ that maximizes the value function of certain states
as:

π∗ = arg max
π

vπ(s),∀s, (2.7)

and for any action at state S, find the optimal action that can maximize its action value
function with

a∗ = arg max
a

qπ∗(s, a). (2.8)

With these objectives, an optimal policy can often be derived directly from the value
functions by choosing the action with the highest expected return in each state. Over time,
as the agent learns more about the environment, the value functions converge towards the
actual values, allowing the agent to make increasingly better decisions and ideally reach
optimal behavior.

2.2.3 Bellman equation

The Bellman equation plays an important role in calculating the best policy in RL based
on value functions. It provides a recursive solution to find the value of each state under a
particular policy. The value function V reflects the total amount of reward an agent can
expect to accumulate over time, starting from that state.

Given Gt =
∑∞

k=0 γ
krt+k+1, which denotes the total expected return from time step t

where rt+k+1 represents the reward received at time step t + k + 1, the value function
Eq. 2.5 can break down the total expected return Gt into immediate reward plus future
rewards:

vπ(s) =Eπ[Gt|St = s] (2.9)

=Eπ[rt+1 + γ vπ(St+1)|St = s]. (2.10)

Expanding based on the policy π, which gives the probability of taking action a at s, and
the Markov property (i.e., the future is independent of the past given the present), we
obtain:

vπ(s) =
∑
a

π(a|s)
∑
s′

p(s′|s, a)[r + γ vπ(s′)], (2.11)

where s′ represents the potential next state resulting from taking action a at the current
state s.

Figure 2.3: MDP with state value function

This is called the Bellman expectation equation for vπ(s), encapsulating the recursive
relationship between the value of a state and the expected values of the next states,
weighted by the transition probabilities and policy.

30 2. Reinforcement Learning

Similarly, the action value qπ(s, a) of taking action a in state s under policy π follows:

qπ(s, a) =Eπ[Gt|St = s,At = a] (2.12)

=Eπ[rt+1 + γ qπ(St+1, At+1)|St = s,At = a] (2.13)

Expanding this, considering the outcomes of action a, yields:

qπ(s, a) =
∑
s′

p(s′|s, a)[r + γ
∑
a′

π(a′|s′)qπ(s′, a′)]. (2.14)

This is the Bellman expectation equation for qπ(s, a), illustrating how the action-value
function depends on the expected reward for the action and the value of the subsequent
state-action pairs.

Figure 2.4: MDP process with action value function

Fig. 2.3 shows the MDP process starting from state s and transitioning to the next state
s′ under the guidance of policy π, as well as the value function of the corresponding state
node. Fig. 2.4 represents the state-action function similarly.

In RL, we often seek the optimal value function, which gives the maximum value attainable
under any policy:

• Optimal state value function:

v∗(s) = max
π

vπ(s) (2.15)

• Optimal action value function:

q∗(s, a) = max
π

qπ(s, a) (2.16)

Using the Bellman equations, we can express these optimal functions without reference to
a specific policy:

v∗(s) = max
a

[∑
s′

p(s′|s, a)[r + γ v∗(s′)]

]
, (2.17)

q∗(s, a) =
∑
s′

p(s′|s, a)[r + γ max
a′

q∗(s′, a′)]. (2.18)

These equations provide a way to compute the optimal strategies for decision-making.
Based on the recursive nature of the Bellman equation, it might appear straightforward
to solve the value function through iterative methods. However, in practice, we initially
lack value functions for states or actions following initialization. Furthermore, solving the
value function for a specific state requires knowledge of other value functions. This poses
the question: how do we effectively address this challenge? In the rest part of this section,
we will cover the development of algorithms such as Value Iteration and Policy Iteration
that approximate the optimal value functions.

2.2. RL BASICS 31

2.2.4 Policy-based Iteration

Policy-based iteration, or policy iteration, is a fundamental method in RL for finding an op-
timal policy. This technique iteratively evaluates and improves a policy until it converges
to the optimal policy evaluated by value functions. As Eq. 2.7 and Eq. 2.8 illustrate,
finding the optimal policy requires simultaneous updates of the policy and value func-
tion, which are closely interdependent. This interdependence creates a circular causation
dilemma: obtaining the optimal strategy requires precise state and action value functions,
yet accurately estimating these value functions necessitates a sufficiently effective strat-
egy. To address this challenge, iterative optimization is typically employed to progressively
converge toward the optimal outcome. The policy-based iteration method can be briefly
summarized as follows:

1. Initialization: Start from the initialized policy π(0) and calculate value functions
under the current policy.

2. Policy Evaluation: Assess the value functions under the current policy.

3. Policy Improvement: Improve the policy based on the evaluated value function.

4. Iteration: Repeat steps 2 and 3 until convergence or the iteration limit is reached.

Specifically, policy iteration uses the Bellman equation Eq. 2.11 to solve the state value
function based on the current policy under the assumption that the value functions on
both sides of the equation are at the same time index. In the policy iteration process,
new value functions are obtained iteratively with two steps, termed as policy evaluation
Eq. 2.19 and policy improvement Eq. 2.21:

• Policy Evaluation: Assess the value functions under the current policy;

• Policy Improvement: Improve the policy based on the evaluated value function.

At iteration step k, the Bellman equation of the value function v(k) for evaluating current
policy π(k) is

v(k+1) =
∑
a

π(k)(a|s)
∑
s′

p(s′|s, a)[r + γ v(k)(s′)], (2.19)

while the action-state value functions are calculated with

q(k) =
∑
s′

p(s′|s, a)[r + γv(k)(s
′)], (2.20)

and q(k+1) can be determined respect to Eq. 2.14. Finally, the policy is updated based on
new action-state values:

π(k+1)(a|s) = arg max
a

q(k+1)(s, a). (2.21)

Due to the discount factor γ, the state values tend to converge. The convergence proper-
ties of this procedure have been demonstrated in several studies [9, 10]. Each iteration of
the policy results in an improvement, implying that a specific policy is encountered only
once throughout the process. Given the finite number of possible policies, which is equal
to the product of the number of actions and the number of states, the process is bound
to converge after iterating through all potential policies. By the very definition of conver-
gence, the policy remains unchanged between successive iterations at convergence, such
that πk+1(s) = πk(s) for all states s. This stability implies that the policy satisfies the
Bellman equation, thereby confirming that it corresponds to the optimal value function.

32 2. Reinforcement Learning

2.2.5 Value-based Iteration

From the policy above iteration process, we can see that the current policy is evaluated by
solving the value function, and subsequently, the policy is updated based on this evaluation.
This process is relatively quick for problems with small state and action spaces. However,
as the complexity of the problem increases, policy iteration becomes less efficient. There-
fore, the value-based iteration process, also known as value iteration, focuses directly on
finding the optimal value function from which the optimal policy can be straightforwardly
determined.

The value iteration process is built upon the principle of dynamically updating the value
function v until it converges to the optimal v∗. Similarly, this process iteratively applies the
Bellman equation like policy iteration but aims to find the maximum value achievable for
each state given optimal actions, while the optimal policy π∗ is determined after deriving
the optimal state values. The procedure of value iteration can be illustrated as follows:

1. Initialization: Begin with an arbitrary value function v(0)(s) for all states s.

2. Value Function Update: Update the value function for each state using the Bellman
equation:

v(k+1) = max
a

∑
s′

p(s′|s, a)[r + γ v(k)(s′)], (2.22)

which refers to the action value function as v(s)← maxa q(s, a).

3. Convergence Check: Repeat step 2 until the changes in the value function between
iterations are below a predefined threshold, indicating convergence.

4. Policy Extraction: Once v∗(s) is determined, the optimal policy π∗(s) can be ex-
tracted by choosing the action that maximizes the expected return for each state
with

π∗(s) = arg max
a

∑
s′

p(s′|s, a)[r + γ v∗(s)]. (2.23)

In comparison to the policy iteration process, value iteration is typically more direct and
computationally efficient in terms of convergence speed, as it updates values for all states in
a sweeping manner using the Bellman equation. It requires no separate policy evaluation
and improvement phases. The algorithm converges directly towards the optimal value
function without needing multiple policy evaluations, making it generally faster, especially
when the state and action spaces are large. Nevertheless, policy iteration often requires
fewer iterations to converge compared to value iteration, as each iteration typically results
in significant policy improvement. However, each iteration is computationally costly since
it involves solving the entire system of equations to find the correct value function for the
current policy.

Both value-based and policy-based iterations are powerful methods for determining op-
timal policies in RL. The choice between these methods often depends on the specific
characteristics of the problem domain, such as the size of the state and action spaces and
the computational resources available. Starting from the next section, we will introduce
classical RL algorithms built upon policy and value iteration, respectively, and cover the
state-of-the-art advancements to further illustrate the effectiveness of these methods.

2.3 Fundamental RL Approaches

In this section, we will delve deeper into RL in more practical contexts. Previously, it
was assumed that the transition probabilities p(s′|s, a) were known at the beginning. For

2.3. FUNDAMENTAL RL APPROACHES 33

instance, in the robot and maze example, we operated under a “god view” of the maze,
precisely knowing the outcome of each action taken by the robot, referring to p(s′|s, a),
which can be regarded as a model-based RL problem. In reality, however, this scenario
is often referred to as a black box, where prior knowledge of p(s′|s, a) is absent, typically
referred to as a model-free problem. In RL, the key distinction between model-based and
model-free approaches lies in whether an environmental model that includes assumptions
or knowledge about the dynamics, such as transition probabilities and rewards, is used
[11].

• Model-based RL: Model-based RL algorithms utilize an explicit environmental model
that predicts the next state and reward following a specific action in a given state.
These methods necessitate understanding environment dynamics, which can be pre-
viously known or learned through interaction. They often involve a planning phase
to simulate the outcomes of various actions to determine the most advantageous
approach for environment system modeling. Model-based approaches are typically
more sample-efficient, maximizing the utility of limited data by learning a model and
leveraging it to derive optimal policies, potentially without additional real-world
interaction. However, the requirement to develop or understand the model adds
complexity, particularly in environments with complex dynamics.

• Model-free RL: In contrast, model-free RL methods do not rely on environmental
models. Instead, they learn policies or value functions directly from trial-and-error
interactions with the environment without presupposing knowledge of its dynamics.
These methods operate independently of any prior knowledge of transition proba-
bilities or rewards. Learning is based solely on data gathered through interactions.
Model-free approaches are key in developing DRL algorithms and involve directly
estimating value functions or learning policies that map states to actions. Although
generally less sample-efficient than model-based methods, model-free approaches re-
quire extensive interaction with the environment to perform effectively. Their inde-
pendence from a predefined model simplifies implementation and enhances flexibil-
ity, making them suitable for a broad spectrum of applications where environmental
modeling is unfeasible.

From the discussion on policy iteration in the previous section, we understand that the
RL agent generates experience by interacting with the environment under a certain policy
and then learns the policy from those experiences and solving for the optimal policy π∗

requires iterative execution of policy evaluation Eq. 2.19 and policy improvement Eq. 2.21,
assuming knowledge of the transition probabilities. However, deriving the optimal policy
using the Bellman equation is not feasible in scenarios where the transition probabilities
p(s′|s, a) are unknown. This brings us back to a fundamental characteristic of RL: learning
through interaction with the environment. A general approach to learning a model-free
solution in RL can be outlined as follows:

1. Initialization: Initialize the RL agent with an initial policy π(0).

2. Interaction: Allow the RL agent to interact with the environment using the current
policy, thereby collecting a sequence of state-action pairs {s0, a0, s1, a1, ..., st−1, at−1, st}.

3. Value Function Calculation: Calculate the value functions after accumulating suffi-
cient state-action sequences to facilitate policy evaluation.

4. Policy Improvement: Upon obtaining the value function, proceed with the policy
iteration steps to perform policy improvement. Repeat step 2 continuously until the
policy converges.

34 2. Reinforcement Learning

This exploration into model-free RL strategies provides a foundation for discussing more
nuanced strategies within RL, specifically on-policy and off-policy learning. While model-
free approaches focus on direct interaction without a predefined model of the environment,
those learning methods delve deeper into how policies are updated and utilized.

• On-policy RL: On-policy methods learn the value of the policy currently used for
decision-making, essentially evaluating or enhancing the policy that the agent ac-
tively employs. The agent knows the value function of this policy and accumulates
experiences directly under it. The learning process is intrinsically linked with explo-
ration; the policy must balance exploring the environment to discover new strategies
and exploiting known strategies to maximize rewards. These methods focus on di-
rectly improving the policy responsible for generating the data. A commonly used
on-policy algorithm is SARSA [12], where the agent updates its policy based on the
actions taken and the rewards received, thus aligning policy learning closely with the
chosen action-selection strategy, such as epsilon-greedy.

• Off-policy RL: Off-policy methods learn the value of a policy different from the one
used to generate the interaction data. This separation allows for evaluating and im-
proving a target policy using data collected from a distinct behavior policy. Learning
about the optimal policy occurs independently of the agent’s current actions. The
behavior policy, which is used for generating behavior, may differ from the target
policy that is being evaluated and refined. These methods are highly adaptable
as they can utilize experiences from past interactions stored in memory, data from
previous policies, or hypothetical scenarios. Q-learning [13] is a typical example of
off-policy methods where the updates are made based on selecting the best possible
action, regardless of the actual action taken.

These differences between on-policy and off-policy methods highlight their distinct charac-
teristics. Off-policy methods are typically more data-efficient because they can learn from
data generated by any policy, including older versions. This flexibility allows off-policy
learning to effectively utilize data from various policies, making it well-suited for learning
from observational data or in environments where experimentation is expensive. However,
off-policy methods exhibit more complex theoretical convergence properties due to the dif-
ferences between the target and behavior policies. In contrast, on-policy methods usually
exhibit simpler convergence properties, as they consistently evaluate and refine the same
policy.

In the rest of this section, we will delve into the fundamental aspects of RL solutions,
outlining the core principles necessary for deriving optimal RL strategies. Additionally,
we will explore basic RL algorithms across various categories, establishing a solid founda-
tion for understanding more advanced algorithms. This comprehensive overview aims to
equip readers with a thorough grasp of both the theoretical underpinnings and practical
applications of RL, serving as a stepping stone towards mastering complex RL systems.

2.3.1 Monte Carlo Method

The Monte Carlo method offers a powerful set of techniques in RL for solving problems
where the environment dynamics are partially or completely unknown. Unlike Dynamic
Programming (DP) approaches, Monte Carlo methods do not require knowledge of the en-
vironment transition probabilities and rewards. Instead, they estimate the value functions
on experience—specifically and derive policies based on samples of complete sequences of
states, actions, and rewards. These methods are particularly applicable in episodic tasks,
where interaction sequences naturally terminate.

2.3. FUNDAMENTAL RL APPROACHES 35

Monte Carlo methods require the completion of episodes to update the value estimates.
Each episode provides a sample of the rewards that follow from states and actions, which is
used to approximate the value functions. They do not require a model of the environment,
as they learn directly from the experiences generated by interacting with the environment.
Value function updates are performed at the end of each episode, not after each step. The
goal of Monte Carlo methods in RL is to estimate the value function, which can be either
state value function v(s) or action value function q(s, a):

• Estimation of v(s): Under the given policy π, the state value function vπ(s) is esti-
mated by averaging the returns following visits to state s in multiple episodes, the
return for state s at time t in one episode is given by its long-term reward Gt, as:

Gt = rt+1 + γrt+2 + γ2rt+3 + . . . + γT−t−1rT , (2.24)

where rt+k is the reward received in k time steps after time t, and T is is the terminal
time step of the episode. The value of state s is then updated as:

v(s) =
1

N(s)

N(s)∑
i=1

G
(i)
t , (2.25)

where N(s) is the counts of how many times state s has been visited across all

episode, and G
(i)
t is the long-term return at the i− th visit to state s.

• Estimation of q(s, a): Action values are estimated similarly, but they require tracking
returns for state-action pairs rather than just states:

q(s, a) =
1

N(s, a)

N(s,a)∑
i=1

G
(i)
t . (2.26)

Similarly, N(s, a) denotes the count of how many times action a is chosen at state s.

After obtaining the estimation of value functions, the RL policy can then be updated using
a greedy approach:

• Policy update using state value function v(s):

π(k+1)(s) = arg max
a

∑
s′,r

p(s′, r|s, a)[r + γ v(k)(s′)] (2.27)

• Policy update using action value function q(s, a):

π(k+1)(s) = arg max
a

q(k)(s, a) (2.28)

where p(s′, r|s, a) denotes the probabilities of transitioning to state s′ and receiving reward
r when taking action a in state s, estimated implicitly by the Monte Carlo method. Build-
ing upon the approach of estimating value functions using current policies, the distinction
between on-policy and off-policy Monte Carlo methods in RL can be addressed as follows:

• On-policy Monte Carlo Method: The on-policy Monte Carlo method estimates the
value function for the current policy using episodes generated from that same policy.
This method often applies an ϵ-soft policy, where each action has a small, finite
probability of being chosen to ensure sufficient exploration of alternative actions.
After each episode, the returns are used to learn the action-value function, and the
policy is then improved based on the updated value function for all the states visited
during the episode;

36 2. Reinforcement Learning

• Off-policy Monte Carlo Method: The off-policy Monte Carlo method estimates the
value function for a target policy using data generated from different policies. This
method evaluates the target policy independently by applying importance sampling
to adjust for differences between the target and behavior policies. Although data is
collected under the behavior policy, importance sampling enables the estimation of
expected returns under the target policy.

In on-policy Monte Carlo methods, the policy serves dual purposes: it generates state-
action sequences through exploration and simultaneously learns the optimal policy. This
approach is inherently a compromise because it learns action values not from the optimal
policy but from a near-optimal policy that continues to explore. In contrast, off-policy
Monte Carlo methods utilize two distinct policies: the behavior policy for exploration
and generating trajectories and the target policy for learning and improvement. This
method decouples the exploration process from the policy improvement process, following
the behavior policy while learning about and refining the target policy.

A common challenge with Monte Carlo methods is that updates to value estimations occur
only at the end of each episode, which can slow down the learning process, especially in
environments with lengthy episodes. This distinction highlights how off-policy approaches
can offer more flexibility and efficiency in environments where separate exploration and
exploitation are beneficial.

2.3.2 Temporal Difference

Temporal Difference (TD) is another method to minimize the estimation error in policy
evaluation. The TD method merges aspects of Monte Carlo and DP. Like the Monte
Carlo method, it determines the value function by acquiring sequences through interaction
and employs the Bellman equation for iterative updates. Yet TD learning stands out
by leveraging the strengths of both techniques, allowing for efficient policy evaluation
and control without requiring a model of the environment’s dynamics. This method’s
unique capability to learn directly from raw experience, updated incrementally after each
step, makes it especially powerful in environments where obtaining complete interaction
sequences (as required by Monte Carlo methods) is impractical.

TD methods are based on the principle that estimates are updated partly based on other
learned estimates without waiting for a final outcome (as is typical in Monte Carlo meth-
ods). This approach uses the Bellman equation not to compute exact updates, as in DP,
but to perform bootstrap updates—partial updates that improve estimates based on other
current estimates. TD methods update estimates based on existing estimates (bootstrap
from current estimates), allowing learning to occur before knowing the final outcome. Un-
like Monte Carlo methods, which wait until the end of an episode, TD methods update
value estimates incrementally at every step.

The simplest and most common TD method is called TD(0), or one-step TD learning,
which updates value estimates based on the value of the succeeding state. The update rule
for TD(0) for the state value function V (St) respect to learning rate α ∈ (0, 1] is given by:

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)]. (2.29)

This equation shows how the new estimate for V (St) is adjusted towards the estimated
return, Rt+1 +γV (St+1), a target that includes the reward received for moving to the next
state plus the discounted value of the next state. This is clearly different from the value
function update in the Monte Carlo methods, which use the actual return Gt, with:

V (St)← V (St) + α[Gt − V (St)]. (2.30)

2.3. FUNDAMENTAL RL APPROACHES 37

TD methods refine their estimates by incorporating updates based on previous estimates,
effectively learning from a series of educated guesses. This iterative refinement process has
been demonstrated to converge asymptotically to accurate predictions.

2.3.3 SARSA

Moving beyond simple value estimation, TD methods are readily extended to learn optimal
policies directly. An example of this application is SARSA [11], an on-policy TD-based
RL algorithm, originally proposed as Modified Connectionist Q-Learning (MCQ-L) [12].
As a direct extension of the TD approach, SARSA uses the same principle as TD(0) but
updates the action-value function Q, considering the action taken and the next action to
be taken, which is determined by the current policy. The learning process in SARSA is
continuous throughout the interaction between the agent and environment, updating its
estimates of the action values based on the transitions that occur from one state-action
pair to the next. The SARSA algorithm can be outlined as follows:

Algorithm 1 SARSA Algorithm

1: Initialize Q(s, a) arbitrarily for all s ∈ S, a ∈ A(s)
2: Initialize policy π to be ϵ-greedy relative to Q (typically all a equal probability)
3: repeat
4: Initialize S
5: Choose A from S using policy derived from Q (e.g., ϵ-greedy)
6: repeatfor each step of the episode:
7: Take action A, observe R, S′

8: Choose A′ for S′ using policy derived from Q (e.g., ϵ-greedy)
9: Q(S,A)← Q(S,A) + α[R + γQ(S′, A′)−Q(S,A)]

10: S ← S′; A← A′

11: until S is terminal
12: until convergence of Q or after a certain number of episodes

The SARSA update rule at each time step t can be regarded as a typical TD learning,
given by:

Q(St, At)← Q(St, At) + α[Rt+1 + γ Q(St+1, At+1)−Q(St, At)]. (2.31)

In SARSA, the policy used to determine At+1 from St+1 is the same as the policy being
evaluated and improved, making SARSA an on-policy method. Typically, policies such as
ϵ-greedy [11] are used to ensure adequate exploration of the action space. This approach
allows the agent to occasionally diverge from the greedy choice, thereby exploring new
actions that might lead to higher long-term rewards.

The ϵ-greedy algorithm selects the best-known action (greedy action) most of the time but
explores the environment by choosing a random action with a small probability ϵ ∈ [0, 1],
where the agent is purely greedy if ϵ = 0 and selects actions completely at random if ϵ = 1,
with:

π(a|s) =

{
1− ϵ + ϵ

|A(s)| if a = arg maxa′ Q(s, a′)
ϵ

|A(s)| otherwise,
(2.32)

where |A(s)| is the number of available actions under state s.

The complete process of SARSA is given in Algorithm 1. Since SARSA learns the value of
the policy it follows and incorporates exploration into its updates, it tends to be safer and
more stable than off-policy methods like Q-learning, which will be introduced in the next
section. SARSA seamlessly integrates varying degrees of exploratory behavior directly
into the policy improvement step, making it adaptable to various environmental dynamics

38 2. Reinforcement Learning

and complexities. This method is beneficial in tasks where the safety and stability of the
learning process are paramount. The subsequent discussion on Q-learning will further
illuminate the distinctions between on-policy and off-policy methods, providing a broader
perspective on choosing appropriate strategies for different challenges of RL.

2.3.4 Q-Learning

Unlike SARSA, Q-learning [13] is an off-policy RL algorithm that decouples the learning
policy from the behavior policy. This separation allows Q-learning to learn the optimal
policy, regardless of agent actions dictated by the current policy. This characteristic makes
Q-learning particularly effective for situations where a robust optimal policy is required
without the restrictions imposed by the adherence to a specific exploratory strategy, as is
the case with on-policy methods like SARSA.

Algorithm 2 Q-learning Algorithm

1: Initialize Q(s, a) arbitrarily for all s ∈ S and a ∈ A(s)
2: Initialize learning rate α, discount factor γ, and ϵ for ϵ-greedy policy
3: repeat
4: Initialize state S
5: repeat(for each step of the episode):
6: Choose action A from state S using ϵ-greedy policy derived from Q
7: Take action A, observe reward R, and next state S′

8: Q(S,A)← Q(S,A) + α[R + γ maxaQ(S′, a)−Q(S,A)]
9: S ← S′

10: until S is terminal
11: until convergence of Q or after a certain number of episodes

Q-learning aims to find the best strategy for action selection that maximizes the total
reward over successive steps, starting from the current state. It does this by updating its
estimates of the action values (in Q-learning also termed Q-values) based on the Bellman
equation, which provides a recursive definition for the optimal policy given by:

Q(St, At)← Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, a)−Q(St, At)]. (2.33)

The policy π is then implicitly defined as the greedy policy concerning the Q-values. In
Algorithm 2, we can intuitively find the difference of Q-learning compared to SARSA:
Q-learning directly approximates the optimal action-value function, independent of the
policy followed by the agent. This leads to learning the optimal policy even when the
actions are sub-optimal. The algorithm is simple to implement and robust across various
environments, particularly those with well-defined and discrete action spaces.

Figure 2.5: Update of Q-value in Q-learning algorithm

While Q-learning theoretically converges to the optimal action values with sufficient train-
ing under certain conditions (like all state-action pairs being visited infinitely often), in

2.3. FUNDAMENTAL RL APPROACHES 39

practice, especially in complex environments, finding the optimal policy can be compu-
tationally demanding and slow. Additionally, due to its maximization step, Q-learning
can suffer from overestimation of action values, especially in noisy environments. This
overestimation bias can lead to sub-optimal policies, making it essential to carefully tune
the learning parameters and explore strategies to mitigate this issue, such as using Double
Q-learning [14] methods.

2.3.5 Deep Q-Learning Network

Through tabular methods, Q-learning provides a robust framework for learning optimal
policies in discrete action spaces. However, as the complexity of the environment increases,
the table storing Q-values can become infeasibly large, making classical methods compu-
tationally expensive and less effective. Building upon the foundation set by Q-learning,
DQN [15] extends its principles by addressing dimensional limitation by using a deep neu-
ral network to approximate the Q-value function, allowing for generalization across similar
states without explicitly storing values for every possible state-action pair. This integra-
tion addresses the scalability issues associated with classical Q-learning when dealing with
high-dimensional state spaces, such as those in video games or robotic control systems.

Algorithm 3 DQN Algorithm

1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights θ
3: Initialize target action-value function Q̂ with weights θ− = θ
4: for episode = 1,M do
5: Initialize sequence s1 and preprocessed sequence ϕ1 = ϕ(s1)
6: for t = 1, T do
7: With probability ϵ select a random action at
8: Otherwise select at = maxaQ(ϕ(st), a; θ)
9: Execute action at in the environment

10: Observe reward rt and new state st+1

11: Set ϕt+1 = ϕ(st+1)
12: Store transition (ϕt, at, rt, ϕt+1) in D
13: Sample random minibatch of transitions (ϕj , aj , rj , ϕj+1) from D

14: Set yj =

{
rj for terminal ϕj+1

rj + γ maxa′ Q̂(ϕj+1, a
′; θ−) for non-terminal ϕj+1

15: Perform a gradient descent step on (yj −Q(ϕj , aj ; θ))2 with respect to θ
16: Every C steps reset Q̂ = Q with θ− = θ
17: end for
18: end for

As Algorithm 3 illustrates, a deep neural network predicts Q-values based on state input,
reducing the dimensionality and dependency on the state-space size. DQN utilizes a replay
memory to store transitions randomly sampled during the training process. This approach
breaks the correlation between consecutive samples and smooths over changes in the data
distribution, enhancing the stability of the neural network. To further stabilize training,
DQN uses a separate, fixed network to estimate the target Q-values that are updated less
frequently than the primary network used for value approximation. In DQN, two key
innovations significantly enhance the stability and performance of the algorithm: the use
of a replay buffer and a target network. These concepts address fundamental issues in
training deep learning models with RL, specifically when dealing with correlated data and
moving targets. Fig. 2.6 illustrates how the replay buffer and target network work in the
training procedure of DQN.

40 2. Reinforcement Learning

Figure 2.6: Update of Q networks in DQN

Replay buffer: A replay buffer is a structure that stores the experienced interaction se-
quences, consisting of tuples containing (s, a, r, s′). This concept is rooted in the idea of
experience replay. The capacity of this buffer is often defined as finite, so older experiences
are discarded once the capacity is reached. For each training step, a batch of experiences
is randomly sampled from the buffer to compute the loss and update the model. This
approach improves sample efficiency by reusing past experiences and helps smooth out
learning and avoid catastrophic forgetting.

Target network: The target network is a copy of the leading network (the network being
actively trained), but its weights are updated less frequently. The reason for introducing a
target network is to stabilize the learning process by providing a fixed target for a period
of time. The nature of RL targets a moving optimum, making the learning process chaotic
and unstable. To address this, the weights in the target network are kept fixed for several
iterations while the main network keeps updating. Typically, these weights are updated
by copying over the weights from the main network every few thousand steps or gradually
with a soft update rule, where the target network slowly tracks the main network. Fixing
the target network provides a stable baseline from which the main network can learn,
reducing the variability in the target during the learning updates.

DQN represents a typical extension from traditional RL to DRL by integrating deep learn-
ing, which facilitates handling environments with complex, high-dimensional data that
traditional methods cannot process efficiently. In comparison with RL approaches, DRL
has the following advantages:

• Scalability: DRL can manage larger, more complex environments thanks to the
function approximation capabilities of deep neural networks.

• Generality: Neural networks in DRL generalize across states, allowing the agent to
perform well in unseen states that resemble those it has encountered during training.

2.4. POLICY GRADIENT ALGORITHM 41

• Efficiency: While traditional RL might struggle with the curse of dimensionality in
large state or action spaces, DRL leverages the efficiency of deep learning in dealing
with high-dimensional data.

This progression from traditional RL to DRL broadens the scope of feasible applications
and enhances our ability to tackle complex decision-making tasks in dynamic and uncer-
tain environments. Due to its practical successes, DQN has been developed into several
variations, including Double DQN [14], Dueling DQN [16], and Rainbow DQN [17].

Figure 2.7: Categories of modern RL algorithms

2.4 Policy Gradient Algorithm

The critical steps in the previously discussed RL algorithms involve estimating the value
function and updating the policy. A robust value function estimate is essential for deriving
the optimal strategy. While the primary goal of RL is to determine the optimal policy,
the reliance on value function estimation distinguishes these algorithms. In this section,
we will explore more direct RL approaches that bypass the value function estimation and
directly compute potential policy update directions. Specifically, we will focus on PG
methods, starting with the basic policy gradient technique and progressing to the PG-
based extension, actor-critic.

2.4.1 Policy Gradient

PG [18] methods represent a class of RL algorithms that directly optimize the policy as a
mapping from states to actions without explicitly estimating value functions. Unlike value-
based methods, which focus on learning the value of actions to indirectly determine the
optimal policy, PG methods adjust the policy parameters directly based on the gradient of
the expected return. This approach offers several advantages, particularly in continuous
action spaces or environments where the policy needs to be highly expressive. While the

42 2. Reinforcement Learning

Bellman equation requires the optimal policy π∗ to satisfy Eq. 2.8, PG methods take a
different approach by maximizing the expectation of long-term RL return with:

π∗ = arg max
π

Eτ ∼ π(τ)[r(τ)], (2.34)

where τ represents a trajectory of states and actions, and r(τ) is the total reward obtained
from the trajectory. PG methods rely on optimizing the policy function parameterized by
θ, denoted as π(a|s; θ), which represents the probability of selecting action a in state s
given parameters θ. Then, the goal of solving the optimal policy π∗ becomes deriving θ
that maximizes the expected return. The objective of PG method is formulated as:

J(θ) = Eτ∼πθ
[r(τ)] =

∫
τ∼πθ

πθ(τ)r(τ)dτ. (2.35)

The parameters θ can be updated by finding the derivative of Eq. 2.35 and applying
gradient ascent [18]. Using the Monte Carlo method, the gradient of the policy objective
function J(θ) with respect to the parameters θ is given by:

∇θJ(θ) = Eτ∼πθ

[
T∑
t=0

∇θ log πθ(at|st)Gt

]
(2.36)

where τ represents a trajectory of states and actions with a total length T . The term
∇θ log πθ(at|st) allows the application of the likelihood ratio trick, simplifying the differ-
entiation of probabilities. With derivations of Jθ at hand, the policy parameters θ are
updated using gradient ascent given a learning rate α with:

θ ← θ + α∇θJ(θ). (2.37)

Algorithm 4 Policy Gradient Method

1: Initialize policy parameters θ randomly
2: for each episode do
3: Generate an episode s0, a0, r1, . . . , sT−1, aT−1, rT under πθ
4: for t = 0 to T − 1 do
5: Gt ← return from step t
6: θ ← θ + αγtGt∇θ log πθ(at|st)
7: end for
8: end for

The complete process of the PG method is illustrated in Algorithm 4. Compared to
value-based RL algorithms, PG methods often exhibit more stable convergence properties,
particularly when using function approximations. These methods suit environments with
continuous or high-dimensional action spaces in DRL. Unlike methods that only learn de-
terministic policies, PG can learn stochastic policies, which are crucial in environments
where randomness is inherent or exploration is beneficial. However, PG methods re-
quire many samples to estimate the gradient accurately, making them less sample-efficient
than their value-based counterparts. Additionally, the gradient estimates can have high
variance, leading to unstable training and the need for sophisticated variance reduction
techniques.

2.4.2 Actor-critic

While PG methods provide a robust framework for directly learning policies, their practical
implementation faces challenges like high variance in gradient estimates and poor sample
efficiency. This leads us to the actor-critic architecture [19], which enhances basic PG

2.4. POLICY GRADIENT ALGORITHM 43

Figure 2.8: Actor-critic structure of RL-based slice resource partitioning

approaches by combining them with value function approximation. By combining the
advantages of both PG and value-based approaches, actor-critic methods efficiently address
the challenges of high variance and slow convergence rates associated with traditional
policy gradient techniques.

As its name indicates, the actor-critic architecture consists of two main components:

1. Actor: The actor directly parameterizes the policy π(a|s; θ) with respect to parame-
ter θ. The actor decides which action to take in a given state by stochastic sampling
from the policy.

2. Critic: The critic evaluates the action taken by the actor by computing a value
function, which could be either state value function V (s) or action value function
Q(s, a). This component helps to estimate the performance of the policy.

The interplay between these two components allows the system to balance exploration,
implemented by the actor, and exploitation, performed by the critic. This effectively
learns optimal policies by reducing the variance of the updates and providing more stable
and reliable learning signals. Fig. 2.8 demonstrates an example of the actor-critic structure
for slice resource allocation.

The critic updates its value function parameters based on the difference between the com-
puted values and the rewards obtained from the environment (the TD error). Meanwhile,
the actor adjusts its policy parameters in the direction suggested by the critic to maximize
expected rewards. Similarly, the actor-critic aims to find the optimal policy that maxi-
mizes the long-term return. The gradient of the objective concerning policy parameters θ
is:

∇θJ(θ) = Eπθ

[∞∑
t=0

∇θ log πθ(at|st)Qπ(st, at)

]
(2.38)

This formulation directly incorporates the action-value function Qπ(s, a). This derivation
leads to the actor-critic update rules of two components:

1. Critic update: The critic updates its value function parameters ω to better estimate
the return for each state-action pair. This is typically done using TD learning,
particularly TD(0), with the update rule:

ω ← ω + αc · δ · ∇ωQ(s, a : ω), (2.39)

44 2. Reinforcement Learning

where δ = R + γQ(s′, a′ω) − Q(s, a : ω) is the TD error and αc is the learning rate
of critic.

2. Actor update: The actor updates its policy parameters θ in the direction suggested
by the critic to maximize the expected return. The update rule using the policy
gradient is:

θ ← θ + αa γt · δ · ∇θ log πθ(at|st), (2.40)

where αa is the actor learning rate.

Algorithm 5 Actor-critic Method

1: Initialize policy parameters θ and value function parameters w randomly
2: Initialize environment and observe initial state s
3: for each episode do
4: repeat
5: Choose action a according to the current policy π(a|s; θ)
6: Execute action a in the environment
7: Observe reward r and new state s′

8: Calculate TD error: δ = r + γQ(s′, a′;w)−Q(s, a;w)
9: Update critic by minimizing loss L = δ2:

w ← w + αw · δ · ∇wQ(s, a;w)

10: Update actor using the policy gradient:

θ ← θ + αθ · δ · ∇θ log π(a|s; θ)

11: Set s← s′

12: until end of episode
13: end for

The actor-critic can achieve more stable and efficient learning by maintaining separate
estimations for policy and value functions. With the basic actor-critic framework set, we
can extend it to more sophisticated versions like DDPG and TD3, which adapt the actor-
critic paradigm to continuous action spaces and improve stability and performance through
architectural enhancements such as separate target networks, delayed policy updates, and
noise for exploration.

2.5 Advances of RL Algorithms

While basic actor-critic methods provide a robust framework for balancing exploration
and exploitation, they can struggle with complex environments that feature large state or
action spaces, require handling delayed rewards, or exhibit significant observational noise.
To address these challenges, advanced actor-critic algorithms such as DDPG [20] and TD3
[21] have been developed. In this dissertation, we have implemented a specialized version
of the TD3 algorithm, tailored explicitly for network slicing, to serve as the RL mechanism
for addressing our optimization problem in slicing resource allocation. Consequently, this
section will provide a detailed examination of TD3 and its precursor, the DDPG algorithm.

2.5.1 DDPG

The DDPG [20] algorithm is an actor-critic approach based on the Deterministic Policy
Gradient Algorithm (DPG) [22] algorithm. DDPG maintains a parameterized actor func-
tion and a critic function, both learned using the Bellman equation. The actor function
specifies the policy by deterministically mapping states to specific actions, while the critic

2.5. ADVANCES OF RL ALGORITHMS 45

function estimates the value of taking a specific action in a given state. The actor is
updated by applying the chain rule to the expected return from the start distribution
with respect to the actor parameters. The algorithm uses neural network function ap-
proximations to learn in large state and action spaces online, inspired by the success of
DQN. The use of large, non-linear function approximation in DDPG allows for learning
and generalization in large state spaces, although convergence is not guaranteed. DDPG
has been shown to learn competitive policies for various physical control tasks, including
tasks with high-dimensional pixel inputs, using a straightforward actor-critic architecture
and learning algorithm.

DPG DPG uses a deterministic policy π(s|θ) that directly maps states to actions without
the variance introduced by stochastic policies. Here, θ represents the parameters of the
policy network. The critical innovation in DPG derives the policy gradient for deterministic
policies. Unlike stochastic policy gradients that average over the distribution of actions, the
deterministic policy gradient can be computed more directly, simplifying the computation
and reducing the variance of gradient estimates. The deterministic policy gradient is given
by:

∇θJ(θ) = Es∼ρπ [∇θπ(s|θ)∇aQ
π(s, a)|a=π(s|θ)], (2.41)

where Qπ(s, a) is the action-value function that evaluates the goodness of taking action
a in state s under policy π, and ρπ denotes the state distribution under policy π. By
employing a deterministic policy, DPG reduces the computational burden associated with
sampling actions, which is particularly beneficial in high-dimensional action spaces. The
gradient estimates in DPG tend to have lower variance compared to those in stochastic
policy gradients, leading to more stable learning.

Building on the principles of DPG, the DDPG algorithm extends the approach with func-
tion approximations using deep neural networks inspired by DQN. With the integration of
deep learning, DDPG adapts the insights of DPG to more complex and realistic settings.
DDPG also leverages experience replay to improve sample efficiency and break the corre-
lation between consecutive updates and target networks for both actor and critic networks
to enhance learning stability. Rather than abruptly copying the weights of the actor and
critic networks to the target networks, DDPG uses soft updates, where the target networks
are slowly adjusted towards the primary networks. This gradual transition ensures that
the learning process remains stable and consistent.

The process of DDPG algorithm is illustrated in Algorithm 6, where the actor and critic
networks are defined as π(s|θπ) and Q(s, a|θQ) with network parameters θπ and θQ, re-
spectively. The objective of the actor network is to maximize the expected return from
the start distribution:

J = Es∼ρπ ,a∼π[Q(s, a|θQ)] (2.42)

Specifically, the critic network in DDPG is updated by minimizing the estimation loss of
the value function:

L(θQ) =
1

N

∑
i

(yi −Q(si, ai|θQ))2 (2.43)

where yi = ri+γQ′(si+1, π
′(si+1|θπ′

)|πQ′
) is the target value for the current Q-value estima-

tion, Q′ and π′ are the target networks for the critic and actor, respectively. Subsequently,
the actor network is updated, referring to its gradient:

∇θπJ ≃
1

N

∑
i

∇aQ(s, a|θQ)|s=si,a=π(si)∇θππ(s|θπ)|si . (2.44)

In summary, DDPG refers to DPG by utilizing a deterministic policy function, which offers
enhanced performance in environments with high-dimensional continuous action spaces.

46 2. Reinforcement Learning

Algorithm 6 DDPG

1: Initialize critic network Q(s, a|θQ) and actor π(s|θπ) with weights θQ and θπ

2: Initialize target network Q′ and π′ with weights θQ
′ ← θQ, θπ

′ ← θπ

3: Initialize replay buffer R
4: for episode = 1, M do
5: Initialize a random process N for action exploration
6: Receive initial observation state s1
7: for t = 1, T do
8: Select action at = π(st|θπ) +Nt according to the current policy with noise
9: Execute action at and observe reward rt and new state st+1

10: Store transition (st, at, rt, st+1) in R
11: Sample a random minibatch of N transitions (si, ai, ri, si+1) from R
12: Set yi = ri + γQ′(si+1, π

′(si+1|θπ′
)|θQ′

)
13: Update critic by minimizing the loss: L = 1

N

∑
i(yi −Q(si, ai|θQ))2

14: Update the actor policy using the sampled policy gradient:

∇θπJ ≈
1

N

∑
i

∇aQ(s, a|θQ)|s=si,a=π(si)∇θππ(s|θπ)|si

15: Update the target networks:

θQ
′ ← τθQ + (1− τ)θQ

′
; θπ

′ ← τθπ + (1− τ)θπ
′

16: end for
17: end for

Additionally, it incorporates advanced methodologies from DQN such as replay buffer and
target networks, significantly improving the training efficiency of the models. Fig. 2.9
demonstrates the complete procedure of DDPG.

Figure 2.9: Update of actor-critic networks in DDPG algorithm

2.5.2 TD3

TD3 [21] is developed to address key challenges observed in DDPG, particularly the over-
estimation bias in Q-values due to the max operator in Bellman equations, a common
problem also seen in Q-learning. This overestimation can lead to sub-optimal policy learn-
ing and instability during training. The TD3 algorithm builds on the foundation laid by
DDPG by introducing key improvements, absorbing advantages from other RL approaches
such as Double DQN. TD3 uses two critic networks and takes the minimum value of the two
Q-functions to reduce overestimation bias. The key innovations of TD3 over the DDPG
algorithm are:

2.5. ADVANCES OF RL ALGORITHMS 47

Figure 2.10: The process of TD3 algorithm

• Double critic networks: TD3 employs two separate critic networks (and their corre-
sponding target networks) to estimate the action-value function. Besides the original
critic network Qθ1 and its target network Qθ′1

, TD3 defines an additional twin Qθ2

and its target network Qθ′2
. By taking the minimum of the two estimated Q-values

during the update steps, TD3 mitigates the positive bias in the policy improvement
step, which is a common issue in DDPG.

• Delayed policy updates: Unlike DDPG, which updates the policy at every step, TD3
delays policy updates, reducing the frequency with which the policy is trained. This
helps ensure that the value estimates are more stable and reliable before each policy
update, reducing the risk of policy degradation due to poor value estimates.

• Target policy smoothing: TD3 adds noise to the target policy action, smoothing out
the value estimates and preventing deterministic exploitation of Q-function inaccu-
racies.

With these modifications, targeting for the same objective as DDPG Eq. 2.42, the target
for updating the Q-value in the critic network is given as:

y = r + γ min
i=1,2

Qθ′i
(s′, ã), (2.45)

with ã = clip(π(s′)+clip(ϵ,−c, c), aLow, aHigh), where aLow and aHigh are the action bounds,
and noise ϵ ∼ N (0, σ). The critic networks are updated by minimizing the Q-value esti-
mation error:

L(θi) = E[(Qi(s, a)− y)2] (2.46)

The actor policy is updated by the deterministic policy gradient:

∇ϕJ ≈ E
[
∇ϕQθ1 (s,a) |s=st,a=πϕ(st)

]
= E

[
∇aQθ1 (s,a) |s=st,a=πϕ(st)∇ϕπϕ (st)

]
.

(2.47)

The TD3 algorithm is given in Algorithm 7, and Fig. 2.10 illustrates its procedure.

TD3 provides a mature way of handling continuous decision-making tasks in complex
environments. It complements the deterministic policy gradient approach by addressing
over-optimism that can undermine training in the actor-critic framework. This makes

48 2. Reinforcement Learning

Algorithm 7 Twin Delayed Deep Deterministic Policy Gradient (TD3)

1: Initialize critic networks Qθ1 , Qθ2 and actor network πϕ
2: Initialize target networks θ′1 ← θ1, θ

′
2 ← θ2, ϕ

′ ← ϕ
3: Initialize replay buffer B
4: for each episode do
5: Receive initial observation state s
6: for t = 1, T do
7: Select action a using policy µϕ(s) and exploration noise
8: Execute action a, observe reward r, and new state s′

9: Store transition (s, a, r, s′) in B
10: Sample a mini-batch of N transitions from B
11: Set y using the clipped double-Q targets from target networks
12: Update the critic networks by minimizing the loss L(θi)
13: if it is time to update the policy then
14: Update the actor network by the deterministic policy gradient
15: Update the target networks:

θ′i ← τθi + (1− τ)θ′i, i = 1, 2; ϕ′ ← τϕ + (1− τ)ϕ′

16: end if
17: end for
18: end for

TD3 stand out in comparison with DPG and DDPG. As we continue, the insights gained
from TD3 pave the way for exploring more complex algorithms and creating more potential
applications in multiple fields, including solving dynamic optimization problems in wireless
communication.

2.6 Challenges in Applications

Having explored the concepts of RL from its fundamentals to advanced algorithms, we
highlighted why RL has been successful in solving dynamic optimization problems. How-
ever, applying these successes to real-world scenarios presents several significant challenges,
notably the exploration-exploitation dilemma, sample efficiency, and the transfer of learned
policies across different tasks or environments.

Exploration-Exploitation Dilemma
One of the fundamental challenges in DRL is the exploration-exploitation dilemma, illus-
trated by Fig. 2.11, which involves deciding whether to explore the environment to discover
new strategies (exploration) or exploit known strategies to maximize immediate rewards
(exploitation). In most DRL applications, solutions are derived through real-time interac-
tions, meaning the agent’s policy is fine-tuned by enumerating collected explored actions.
Simultaneously, the agent dedicates itself to providing recommended actions based on the
current policy. This real-time exploration attempts to experience actions that deviate from
the current policy, while in the exploitation phase, the agent sticks to the current policy
to acquire more returns. However, under limited time or interactions, it is impossible to
have an infinite exploration phase to go through all potential actions of all states.

This dilemma leads to the discussion of compelling exploration in the application of DRL.
In complex environments, especially those with high-dimensional state and action spaces,
sufficient exploration is necessary to ensure that the learning algorithm does not miss the
areas that could contain optimal policies. Without adequate exploration, DRL algorithms
can quickly converge to sub-optimal policies, particularly in non-convex optimization prob-
lems. Balancing exploration and exploitation is also crucial for stabilizing the learning up-
dates in DRL. Too much exploitation can lead to premature convergence and poor policy

2.6. CHALLENGES IN APPLICATIONS 49

Figure 2.11: Exploration-Exploitation dilemma

performance, while excessive exploration can slow down the learning process or lead to
high variance in policy updates.

The aforementioned ϵ-greedy strategy Eq. 2.32 is one of the methods to tackle this issue. It
balances the choices of using the agent’s recommendation or exploring other possibilities,
which is widely applied in practical RL implementations. In the context of TD3, explo-
ration is typically managed by adding noise to the policy actions (e.g., Gaussian noise).
However, this method may not be sufficient for all scenarios, particularly those where the
environment’s dynamics are complex. Unfortunately, in wireless communication, network
systems are often coupled with high complexity and high-dimensional data, significantly
hindering the implementation of RL approaches despite their outstanding ability to solve
dynamic problems.

Sample Efficiency
Another critical challenge in applying DRL to real-world scenarios is sample efficiency,
which refers to the number of interactions or samples required to learn an effective policy.
Many RL algorithms require substantial data to converge to an optimal or near-optimal
policy. Collecting this data can be costly, time-consuming, or even infeasible in real-world
applications. Improving sample efficiency is crucial for practical applications of RL, where
each interaction with the environment might be expensive.

Given these challenges, TL presents a promising approach to address several issues associ-
ated with applying DRL algorithms like TD3 in practical scenarios. TL encourages reusing
resolved knowledge, including pre-trained models and collected samples. DRL models can
learn new tasks with fewer samples by transferring knowledge from similar tasks. This
is particularly valuable in real-world applications where interaction with the environment
can be costly or time-consuming. TL can also provide pre-learned models and policies
covering a broad portion of the state-action space, reducing the need for exploration when
adapting to new but related tasks. Moreover, learning policies that generalize across tasks
can prevent overfitting to the specifics of a single environment, leading to more robust
solutions in varied operational conditions.

In the next chapter, we will introduce TL as a promising approach to overcome several
challenges in applying DRL, specifically TD3, to practical scenarios. By leveraging pre-
trained models and transferring knowledge from similar tasks, TL can significantly enhance
sample efficiency and reduce the need for extensive exploration, making RL more applicable
and effective in real-world environments.

50 2. Reinforcement Learning

51

3. Transfer Learning

This dissertation explores the potential of applying TL to improve the sample efficiency
and model reproducibility of pre-solved solutions in network slicing. In the previous chap-
ters, we discussed solving dynamic optimization problems using RL approaches. In this
chapter, we introduce TL, starting from its background and basic concepts, moving to spe-
cific methods, and finally presenting successful case studies in various application fields.
Readers of this thesis are expected to have basic knowledge of ML and data science but
may not be familiar with TL concepts and related works. This chapter is organized as
follows: First, in Section 3.1, we introduce the background of TL and address its necessity
in ML and practical problems. Then, in Section 3.2, we go through the key concepts
and theories of TL with fundamental mathematical models. We further discuss the TL
methods, such as the pre-train and fine-tuning framework and DA techniques in Section
3.3, and the current trends of TL solutions in practical use cases.

3.1 Introduction to TL

Before delving into the specifics of TL, consider the following two scenarios:

Generality of Image Classifiers: Consider a Convolutional Neural Net (CNN) trained to
distinguish between images of cats and dogs. The next goal is to re-purpose this model for
other visual recognition tasks, such as identifying images of tigers and wolves or classifying
images of animated cats and dogs. The challenge lies in determining which aspects of the
pre-trained model can be leveraged or modified to support these new classification tasks.

Figure 3.1: Generality of image classifiers

Version: January 20, 2025 – 13:20:04

52 3. Transfer Learning

Commonality of Language Models: Imagine two pre-solved Natural Language Processing
(NLP) models, one for translating German to English and another for translating German
to Chinese, both developed using extensive language samples. Now, suppose we want to
create a new model for translating German to Japanese, but we face a challenge due to
the lack of sufficient language samples to ensure satisfactory performance. This situation
prompts whether we can enhance the sparse sample set for German-Japanese transla-
tion by incorporating language samples from the more robust datasets of German-English
and German-Chinese translations. Additionally, it is interesting to explore the effects of
choosing which models to transfer knowledge regarding the similarity of translation.

Figure 3.2: Commonality of language models

These scenarios highlight common challenges faced when deriving new models from scratch
is time-consuming or when training samples are scarce. This leads to the concept of TL,
which aims to leverage knowledge transfer from previously learned tasks to achieve faster
deployment and improved outcomes in new applications. The concept of TL was originally
discussed in the field of psychology under the term “transfer of learning” [23], emphasizing
the effects of one learning process on another. In the field of AI, TL has become a crucial
technique, characterized by its ability to adapt knowledge acquired from one problem and
apply it to different but related problems.

3.1.1 Overview of TL

TL is a research domain within ML that focuses on reusing a pre-trained model for a
new but related problem. Unlike traditional ML approaches, where a model is developed
from scratch for every new task, TL allows for significant efficiencies and advancements
by transferring the knowledge from one task to another. TL involves taking a model
trained on a large dataset for a specific task and repurposing it for another related task.
This methodology capitalizes on the commonalities between the source and target tasks.
For instance, a model trained to recognize objects within photographs can be adapted to
recognize objects in video clips without extensive retraining from the ground up. Hereby,
we give a general definition to TL:

“Transfer learning can exploit the similarities between data, tasks, or models
to apply models and knowledge learned in old domains to new domains.”

TL is especially helpful in the modern context where deep learning models require enor-
mous datasets, substantial computational power, and lengthy training times. TL offers a
pragmatic solution by enabling the deployment of sophisticated models without the as-
sociated high costs and computational burdens. It ensures that even those with limited
resources can participate in developing high-performing AI models, thus democratizing
access to cutting-edge technology.

3.1. INTRODUCTION TO TL 53

In [24], the authors describe three potential benefits that TL may bring to the model
training process:

• Jump Start: The initial performance (before the model fine-tuning) on the target
domain is higher than that of training a model from scratch.

• Faster Convergence: The rate of convergence of the transferred model during the
training process is faster than that without knowledge transfer.

• Higher Asymptote: The process with TL achieves a higher converged performance
after fine-tuning is completed.

Figure 3.3: Three benefits of TL on training process

3.1.2 Importance and Applications

After a brief overview of TL, in this section, we will address why it is crucial to focus on
TL research and continue applying it in practical use cases. We will also highlight specific
application fields that particularly benefit with the help of TL.

3.1.2.1 Necessity of TL

The importance and necessity of applying TL can be illustrated in multiple aspects. It
not only accelerates model development but also enhances performance, particularly in
environments where data is scarce.

• Efficiency: TL dramatically reduces the computational resources needed. Traditional
supervised ML models heavily depend on the availability of labeled data. However,
manually labeling large datasets is time-consuming, laborious, and inefficient, pos-
ing significant challenges to training deep learning models. High-quality, large-scale
data are often controlled by a limited number of companies or institutions, which
poses a substantial barrier for smaller or startup companies. Due to insufficient data,
developing a reliable model through general training is impossible for models target-
ing specific scenarios or applications. TL can identify similar labeled data within
large datasets or find data from similar datasets that can address specific problems,
thereby improving training outcomes.

54 3. Transfer Learning

• Adaptability: Moreover, TL can quickly adapt pre-existing solutions to new prob-
lems, showcasing remarkable flexibility. ML typically involves training a model with
sufficient generalization capabilities on provided data to make accurate predictions
in new, unknown scenarios and applications. However, developing a model that
performs well in new environments based on limited training data is challenging.
Under the scope of TL, DA and DG are methods designed to enhance the model
generality. This dissertation will explore these aspects in depth and investigate the
generalization methods of network solutions based on domain adaptation.

• Performance Enhancement: Models pre-trained on large datasets generally predict
better and are more robust than those trained from scratch on smaller datasets. TL
exploits this by fine-tuning pre-trained models to achieve higher accuracy and better
generalization on new tasks. This widely observed benefit of TL enables the fast
deployment of ML models.

• Resource Limitation: By reusing existing neural networks, organizations can opti-
mize their computational resources, reduce energy consumption, and lower the en-
vironmental impact associated with training complex models from scratch. This is
especially useful for startup companies or institutions with limited resources; because
of the high demands for computational resources and large amounts of data, the de-
velopment of some complex deep learning models is typically reserved for large-scale
companies. These requirements become even more vital with the rise of LLM and
visual-based CNN. TL offers a pre-train and fine-tuning mechanism that dramati-
cally reduces the cost of training from scratch by transferring existing models from
other use cases.

3.1.2.2 Applications

As an applicable technique in ML, the applications of TL extend across various fields. In
this section, we list examples from multiple fields to illustrate the impact of applying TL
on ML methods.

• NLP: TL has been particularly transformative in NLP. Traditional NLP faces nu-
merous challenges related to data shortages or data biases. Since text information
often exhibits domain specificity, a model trained on samples from one domain can-
not be directly applied to another. As illustrated by the translator model example
mentioned earlier in Fig. 3.2, if a new translator needs to be retrained for every
pair of languages, problems such as insufficient data and difficulties in subsequent
updates will frequently arise. Recent advanced models like Bidirectional Encoder
Representations from Transformers (BERT) [25] and Generative Pre-Trained Trans-
former (GPT) [26] are pre-trained on vast text data banks and then fine-tuned for
specific tasks such as text classification, summarization, and language understand-
ing. This has led to unprecedented improvements in processing and understanding
human languages.

• CV: The domain of CV has benefited significantly from TL. Visual images are more
sensitive to model specificities than textual data. Factors such as shooting angle,
lighting, background, and resolution can cause shifts in the statistical distribution of
the visual data. Therefore, in the field of CV, TL is recommended to enhance model
robustness. Pre-trained models on common CNN models, such as ImageNet [27], are
commonly adapted for more specific tasks like detecting diseases from radiographic
images or for autonomous driving systems where they help in object and pedestrian
detection.

3.2. FUNDAMENTALS OF TL 55

• Healthcare: In healthcare, TL is considered helpful in diagnostic procedures, partic-
ularly in the analysis of medical images where issues such as data scarcity and privacy
are prevalent. The lack of labeled medical datasets due to confidentiality and ethical
considerations often limits the development of robust models. Furthermore, health-
care data usually suffers from issues of non-renewability, as data collected under
different systems or formats may not be easily combined, and patient data cannot
be freely reproduced for research purposes. Despite these challenges, TL has proven a
valuable tool. For instance, deep learning models trained on vast numbers of images
have been fine-tuned to identify and diagnose specific pathologies in X-rays and MRI
scans [28]. This adaptation process reduces the need for large-scale medical datasets
and reduces the computational resources and time required to develop models from
scratch.

• Robotics: Robotics employs TL to bridge the gap between simulation and real-world
application. Robots trained in simulated environments can transfer their learned be-
haviors to physical environments, greatly reducing the risk and cost of direct training
in unpredictable real-world settings.

3.2 Fundamentals of TL

As a subset of ML, the framework of TL is set up under the context of traditional ML
frameworks but also introduces some new concepts. In this section, we will first introduce
the basic concepts of TL by comparing them with ML definitions, then explore three
fundamental questions in TL. Finally, we will discuss the basic solutions of TL.

3.2.1 Basic Concepts

TL introduces two new concepts, domain and task, which differentiate it from traditional
ML approaches:

• Domain: A domain D := {X ,Y, P (x, y)} comprises an input feature space X , a label
space Y, and the joint probability distribution of sample input x and its label y with
(x, y) ∼ P (x, y), respectively. For any random sample (xi, yi), there is xi ∈ X , yi ∈
Y.

• Task: A task T := {Y, f(·)} includes the label space Y and the mapping function
f : X → Y, which defines the objective of the model within the corresponding
domain.

In TL, the domain and task from which knowledge is transferred are usually referred to
as the source domain and source task, respectively, while the domain and task to which
the knowledge is transferred are termed the target domain and target task. Typically, the
source domain possesses a large amount of general data or expertise, and the primary goal
of TL is to transfer this knowledge from the source to the target domain. The definition
of TL can vary across different works. In this dissertation, we formally define TL by
extending and synthesizing the definitions from [29] and [30].

Definition 1 (Transfer Learning). Given a source domain DS := {XS,YS, PS(x, y)} with
a sufficient number of samples {(xS

k, y
S
k |

nS
k=1)} for solving the source learning task TS :=

{YS, f(·)} by minimizing the training loss l
(
f(x), y

)
over all samples referring to the model

f :

RS(f) :=E(x,y)∼PS(x,y)

[
l
(
f(x), y

)]
=

∫
y

∫
x
l
(
f(x), y

)
· PS

(
x, y
)
, (3.1)

56 3. Transfer Learning

and a target domain DT := {X ,Y, PT(x, y)} which only has a limited number of samples
{
(
xT
k , y

T
k |

nT
k=1

)
} with nT << nS, the objective of TL is to minimize the expectation of

estimation loss in the target domain with f :

RT(f) :=E(x,y)∼PT(x,y)

[
l(f(x), y)

]
=E(x,y)∼PS(x,y)

[PT

(
x, y
)

PS

(
x, y
) · l(f(x), y

)]
(3.2)

As Eq. 3.2 illustrates, when PT

(
x, y
)

= PS

(
x, y
)
, TL in the target domain becomes a

traditional ML problem that solves an optimal mapping function f(·) for samples from the
same distribution. TL addresses the cases where PT

(
x, y
)
̸= PS

(
x, y
)
. In this dissertation,

we won’t cover the cases involving different input feature spaces XS ̸= XT or label spaces
YS ̸= YT, as our focus is more on the topic of DA.

In general, solving a TL problem can be considered as answering three fundamental ques-
tions: what to transfer, when to transfer, and how to transfer:

• What to transfer: This question addresses the type of knowledge or information that
should be transferred from the source domain to the target domain. It is necessary
to identify which parts of expertise, such as features, instances, or model parameters,
are beneficial and relevant to the target task. Addressing this question upfront can
ensure that the transfer is effective and does not negatively affect the learning process
in the new context, known as negative transfer.

• When to transfer: Determining the appropriate time to transfer knowledge is es-
sential. This question involves understanding under which scenarios the transfer of
knowledge should occur. It requires evaluating the similarity and relevance of the
source domain to the target domain and deciding if the transfer would improve the
performance of the target model. The decision to transfer hinges on whether the
source and target are sufficiently related to warrant the use of TL as opposed to
training a new model from scratch.

• How to transfer: Considering how to implement knowledge transfer effectively is a
critical aspect. This involves choosing the suitable algorithm or technique to facilitate
TL. Methods can vary from transferring pre-trained models and fine-tuning them on
the target task to more complex strategies like feature augmentation or transforming
the feature space to align the source and target domains more closely. Each method
has its merits and suitability depending on the specifics of the source and target
tasks.

These three fundamental questions participate in the entire lifecycle of TL [31]. Address-
ing these questions before applying the transfer can lead to a smoother implementation of
TL. Moreover, these questions are also helpful for evaluating the effectiveness of TL after
the transfer is completed. By carefully considering these questions, we can also prevent
negative transfer, which refers to failed TL procedures. Intuitively, we often aim to pro-
vide as much detailed information as possible from the source domain to achieve better
results. However, transferring an abundance of knowledge does not always lead to positive
improvements in the target domain [32].

This issue arises from the underlying mechanisms of how TL works. TL leverages the
similarities between data across different domains to apply knowledge gained in the source
domain to the unknown target domain. The key challenge is to accurately measure the
similarity between these domains. Transferring more knowledge typically yields positive

3.2. FUNDAMENTALS OF TL 57

results when the data similarity between the two domains is sufficiently high. Conversely,
when domain similarity is limited, the effectiveness of TL can diminish significantly, some-
times even yielding worse results than training a new model from scratch in the target
domain.

This detrimental effect, where knowledge transfer from the source to the target domain
leads to negative effects, is known as negative transfer. Based on the statements in [31],
negative transfer can be defined as follows:

Definition 2 (Negative Transfer). Denote the resulted error on target domain DT by trans-
ferring knowledge from source domain DS by implementing TL method Υ as R (Υ(DS,DT)),
negative transfer occurs when:

R (Υ(DS,DT)) > R
(

Υ
′
(Φ,DT)

)
, (3.3)

where Φ denote the empty set, and Υ
′
is another algorithm. R

(
Υ

′
(Φ,DT)

)
denotes the

derived target domain error without applying TL.

The main reason that causes negative transfer is the discrepancies between source and
target domains while using inappropriate TL algorithms can also lead to negative transfer.
Therefore, in practical applications, selecting domains with reasonable similarities and
appropriate TL methods for effective knowledge transfer [33, 34] is crucial.

3.2.2 Rationale of TL

In this section, we will cover the basic rationales of TL solutions, starting from the nature
of domain discrepancies and extending to discussions of some fundamental TL methods.

The basic idea of TL algorithms is to identify similarities between the source and target
domains, using these similarities as a basis to rationally extend the common aspects to
other parts of the domain. This necessitates the ability of TL to quantify and effectively
utilize domain similarity. According to the definition of TL (see Definition 4), the difference
between the source domain and the target domain is primarily reflected in the joint prob-
ability density, i.e., PT

(
x, y
)
̸= PS

(
x, y
)
. Consequently, the initial challenge that TL must

address is measuring the difference between the two joint probability densities. Based
on basic statistical knowledge, the relationship between joint probability distribution,
marginal probability, and conditional probability is P

(
x, y
)

= P (x)P (y|x) = P (y)P (x|y).

Figure 3.4: Categories of domain discrepancies according to joint distributions

Based on the assumptions of the TL problems, there must be a certain level of similarity
between the source and target domains. This similarity is reflected in the probability
distribution function, allowing us to categorize TL problems based on the nature of domain
discrepancy [30], as illustrated in Fig. 3.4:

58 3. Transfer Learning

• Prior Shift: A prior shift occurs when the prior probabilities of the target classes
differ from those in the source domain with PS(y) ̸= PT(y), while the conditional
distributions are equivalent as PS(x|y) = PT(x|y). This occurs rarely in practical
use cases, where the data collection process or the population distribution changes
over time or across different regions.

• Conditional Shift: In contrast to the prior shift, a conditional shift occurs when the
conditional distributions of the input features given the class labels are different,
while the prior probabilities of the labels remain the same, i.e., PS(x|y) ̸= PT(x|y),
PS(y) = PT(y). Conditional shift typically arises when the underlying conditions
or contexts of data collection vary between the source and target domains. For
instance, in CV tasks, changes in lighting, camera angles, or backgrounds can lead
to a conditional shift.

• Covariate Shift: The covariate shift, also known as data drift, indicates scenarios
where the marginal distributions of source and target domains are different PS(x) ̸=
PT(x), but their conditional distributions are identical as PS(y|x) = PT(y|x). This
kind of domain discrepancy often occurs in real-world scenarios where specific run-
ning systems change or dynamic environment conditions evolve over time. The dif-
ference caused by network condition changes often leads to this domain drift.

• Concept Shift: Concept shift, also known as label drift, occurs when the input feature
distribution of source and target domains remains the same as PS(x) = PT(x) while
resulting in different label distributions PS(y|x) ̸= PT(y|x). This shift means that
even if the distribution of the input features remains stable, how those features relate
to the output changes, potentially degrading the performance of a model trained on
data sequences varying over time.

In response to the various types of domain discrepancy discussed above, TL has introduced
several methods that leverage the correlations between domain samples to develop models
that perform effectively in the target domain. The most widely used methods include
sample re-weighting, the pre-train and fine-tuning approach, and representation (feature)
learning:

• Sample Re-weighting: The idea of the sample re-weighting method is to enhance the
participation of source domain samples that are more similar to those in the target
domain during training. In practice, this method adjusts the frequency of samples
in the training set based on their relevance to the target domain or modifies the
training loss attributed to those samples. Relevant samples in the source domain for
re-weighting can be collected based on prior knowledge if it is available. Some studies
[35, 36] suggest using RL to manage this sample selection process by formulating a
sample selector as an RL agent and using sample similarity as the reward metric.

• Pre-train and Fine-tuning: As one of the most frequently used TL methods, pre-
train and fine-tuning initially train the models on the source domain with a large,
generic dataset and fine-tune it on the target domain with a smaller, domain-specific
dataset. This method leverages the broad generalizability learned during pre-training
and adapts it to the specificity of the target domain during fine-tuning. This training
mode has been widely used in ML applications. For example, BERT and GPT models
both apply this method to enhance the generality of NLP models.

• Representation Learning: The representation learning method aims to minimize the
difference between the source and target domains by solving a feature transition

3.3. SELECTED TL METHODS 59

that maps both into a common feature space that reduces domain variance while
enhancing task-relevant information. This approach often involves extracting rep-
resentative features from source domain samples and modifying the feature space
to create robust and transferable representations across domains. Throughout this
process, various distribution difference metrics, such as Euclidean distance, Kullback-
Leibler Divergence (KL-divergence), and mutual information, are utilized to quantify
domain discrepancies.

3.3 Selected TL Methods

In this section, we delve deeper into pre-train fine-tuning and representation learning
methods, as they are more applicable in solving practical problems. Subsequently, we will
discuss the ways of evaluating a TL approach and provide its open topics, including the
TL methods for RL.

3.3.1 Pre-train and Fine-tuning

The method of pre-train and fine-tuning is generally split into two distinct phases: pre-
training, where a model is trained on a large, often generic dataset, and fine-tuning, where
the pre-trained model is adapted to a specific, often smaller, target task:

• Pre-train: During the pre-train phase, the model f characterized by parameters θP
is trained on a large dataset regarded as source domain DS that is typically diverse
and covers a broad range of topics or features. This dataset does not necessarily
need to be closely related to the target tasks for which the model will eventually be
used. The learning process of the pre-trained model fθP respects to cost function L
can be denoted as:

θ∗P = arg min
θP

L(DS; θP). (3.4)

Here, the model aims to learn a rich and robust representation of the input data
features. For instance, models like BERT or GPT are pre-trained on extensive
collections of text sourced from books, Wikipedia, or websites, allowing these models
to comprehensively understand language dynamics, grammar, and context.

• Fine-tuning: The fine-tuning phase begins once the pre-trained model has converged.
The target model fθF is fine-tuned by using the parameters of the pre-trained model
as the initial starting point, denoted as θ0F = θ∗P , and then trained on the target
domain DT with a much smaller dataset. The training process on the target domain
is then formulated as follows:

θ∗F = arg min
θF

L(DT; θF |θ0F = θ∗P). (3.5)

During fine-tuning, the model parameters are slightly adjusted to optimize perfor-
mance for the specifics of the target task. This can involve minimal changes to the
model’s weights or require more significant adaptations, depending on the similarity
between the pre-training data and fine-tuning data. In some cases, only the top
layers of the model are adjusted, while in others, the entire network may continue
to learn and adapt.

Sometimes, we can use the first few layers of the pre-trained model to initialize the target
model and then fine-tune the subsequent layers. This is because the initial layers typically
extract more general information, whereas the higher layers may contain domain-specific

60 3. Transfer Learning

features. This approach also addresses the fundamental question of what to transfer in
TL. The pre-train and fine-tuning method is particularly popular in fields where obtaining
large amounts of labeled data is difficult or expensive.

The pre-trained models on large datasets generally perform better on specific tasks, even
with smaller training data sets, because they have already learned useful representations.
And fine-tuning a pre-trained model is usually much faster and computationally cheaper
than training a model from scratch on a smaller dataset. Besides, the same pre-trained
model can be adapted to multiple tasks, making it a generalizable tool for various ap-
plications. However, this TL approach may risk overfitting during the fine-tuning phase,
especially if the target dataset is very small or if the task is significantly different from the
pre-training task. There’s also the question of how much of the model to fine-tune and
how to adjust the learning rates, which can significantly affect the final performance.

3.3.2 Representation Learning

Representation learning, also known as feature learning, focuses on automatically discover-
ing the representations needed for feature detection or classification from raw data. In TL,
especially for DA, it helps to leverage helpful information from one task (source domain)
to improve performance on another (target domain), even when the direct difference be-
tween the two domains is enormous. In general, it involves developing a model fR that can
identify and extract a latent feature space Z from the source domain X with fR : X → Z,
where Z may not be relevant to the source task but is also beneficial for the target domain
task. A general process of representation learning can be illustrated in Fig. 3.5.

Figure 3.5: Overview of general representation learning process

Representation learning does not have a unified pipeline of solution derivation. Several
techniques are employed to achieve effective transfer of knowledge:

• Autoencoder: Autoencoder [37] is a type of neural network used to learn efficient
coding of unlabeled data, typically for dimension reduction or feature learning. Au-
toencoder has two main components: the encoder h and the decoder g. The encoder
aims to compress the input data into a smaller, encoded representation with z = h(x),
where z ∈ Z is a compact version of the input data but retains most of its significant
information. On the other hand, the decoder attempts to reconstruct the input data
from this encoded representation by minimizing ∥x − g (h(x)) ∥22. In the context of
representation learning, autoencoders can learn to encode the input data into a set
of features that can be useful for classification or other predictive tasks.

• Transformer: The transformer model, introduced in [38], relies fundamentally on
the self-attention mechanism. This allows each position in the input sequence to
attend to every other position, thereby capturing intricate relationships in the data.
A transformer model typically consists of an encoder and a decoder, but different
from the autoencoder, each layer in the encoder and decoder is coupled with the

3.3. SELECTED TL METHODS 61

attention mechanism. Originally developed for NLP tasks, transformers learn con-
textual relationships between elements in a sequence. They are particularly effective
for tasks that require understanding the context and relationships within data, which
provides rich feature representations that can be adapted to different tasks beyond
language processing.

In the field of domain adaptation, representation learning is frequently employed to identify
common latent features in samples from two domains. However, if the source and target
domains are substantially different, the learned representations may not transfer effectively.
Additionally, the performance of TL is highly correlated with the representative of the
extracted features. Complex models might overfit the differences in the source domain
that are irrelevant to the target domain.

3.3.3 Other TL Methods

Feature Transformation Feature transformation [39] methods modify the feature space to
align the source and target domains more closely. This approach often involves extracting
representative features from source domain samples and adjusting the feature space to cre-
ate robust and transferable representations across domains. Various distribution difference
metrics, such as Euclidean distance, KL-divergence, and mutual information, are utilized
to quantify domain discrepancies. Popular feature transformation techniques include:

• Principal Component Analysis (PCA): PCA reduces the dimension of the data while
retaining most of the variability in the dataset, thereby aligning the feature space of
the source and target domains.

• Kernel PCA: An extension of PCA that uses kernel methods to capture non-linear
relationships in the data, making it more flexible for aligning complex feature spaces.

• Variational Autoencoder (VAE): VAE learns a probabilistic latent space from which
they can generate new samples. This probabilistic approach helps create smooth and
continuous feature representations, aiding in the alignment of the source and target
domains.

• VIB: VIB is a method that maximizes the mutual information between the input
and a compressed latent representation while minimizing the information about the
input. This helps in learning robust feature representations that are invariant to
domain shifts.

Generative Adversarial Net (GAN)
GAN [40] is a powerful tool for representation learning, particularly in generating new data
samples that resemble the training data. A GAN network consists of a generator and a
discriminator. The generator creates new data samples while the discriminator evaluates
them against real data. This adversarial process helps the generator learn to produce
realistic data, which can then be used to augment the target domain data or improve
feature extraction.

Domain Adversarial Training
Similar to the concept of GAN, domain adversarial training methods use adversarial learn-
ing to make the features of the source and target domains indistinguishable. The main
idea is to train a feature extractor that can produce domain-invariant features, which
are then used to train the classifier. The process involves min-max fairness between two
components: a feature extractor and a domain discriminator. Specifically, Domain Adver-
sarial Neural Network (DANN) [41] integrate domain adversarial training into the neural

62 3. Transfer Learning

network architecture. The feature extractor learns to produce features that confuse the
domain discriminator, while the domain discriminator learns to distinguish between source
and target domain features.

Few-shot Learning
Few-shot learning [42] focuses on training models that can be generalized from a few
training examples. Techniques such as prototypical networks and meta-learning enable
models to quickly adapt to new tasks with limited data. Few-shot learning is particularly
beneficial in TL, where the target domain often has scarce labeled data.

Deep Domain Confusion
Deep domain confusion methods aim to reduce domain discrepancy by incorporating do-
main confusion loss into the training process. This loss penalizes the model if it can dis-
tinguish between the source and target domains, encouraging it to learn domain-invariant
features. Maximum Mean Discrepancy (MMD) measures the distance between two dis-
tributions. The MMD loss is added to the training objective in deep domain confusion
methods to minimize the discrepancy between the source and target domain features.

The various TL methods, ranging from feature transformation to domain adversarial train-
ing, offer a robust toolkit for addressing domain discrepancies. These techniques enhance
the transferability of models across different domains, thereby improving performance and
generalization in target tasks. However, despite the advances in TL, several open topics
and challenges remain, including:

• Understanding Negative Transfer: Investigating the causes of negative transfer and
developing methods to mitigate its effects.

• Transferability Across Domains: Exploring how knowledge can be transferred across
vastly different domains, especially in cases with limited labeled data.

• Scalability: Developing scalable TL methods that can handle large-scale datasets
and complex models efficiently.

Additionally, applying TL to RL approaches is more complex compared to ML models. In
the next section, we will specifically discuss TL methods for RL.

3.3.4 TL for RL

In this dissertation, we focus on applying TL to network optimization solutions, particu-
larly RL-based solutions. Combining TL with RL can significantly enhance learning effi-
ciency and effectiveness, especially in complex environments where learning from scratch
can be prohibitively costly in terms of time and resources [43, 44].

TL enables RL agents to benefit from pre-existing knowledge and experiences, reducing the
need for extensive interactions and enhancing sample efficiency. TL in RL can facilitate
better initial performance, making it particularly valuable for domains with prohibitive
sampling costs or safety concerns. By transferring knowledge between domains, RL frame-
works can adapt and generalize more effectively, addressing the exploration-exploitation
dilemma and improving overall performance. Here are some examples of successful appli-
cations of TL to RL:

• Policy Transfer: The methods of policy transfer directly apply a policy trained in
one environment to another. More advanced versions, such as policy distillation, in-
volve training a more compact and often faster policy that imitates a more complex

3.3. SELECTED TL METHODS 63

policy. It can be particularly useful when transferring between different types of en-
vironments or when simplifying policies for deployment. Following this method, [45]
enabled policy transfer from complex teacher networks to simpler student networks,
which can perform efficiently in similar tasks.

• Representation Transfer in RL: State representation learning focuses on developing a
mapping from raw states into a feature space that encapsulates the essential dynamics
of these states. This process facilitates faster learning in new but similar tasks.
Universal value function approximation [46] is designed to generalize across both
states and goals by learning a value function that is conditioned on both state and
goal. This approach has demonstrated effectiveness in settings where agents need to
adapt to varying goals within the same environment.

• Reward Shaping: Reward Shaping modifies the reward structure of the source task to
more closely align with the target task, facilitating smoother policy transfer. Before
applying a learned policy to a new task, the task inference method assesses how
the new task relates to previously learned tasks and adapts the policy accordingly.
These strategies work in tandem to enhance the effectiveness and efficiency of policy
application across different tasks. [47] explores how knowledge from one task can
be effectively transferred to improve learning in a different but related task. The
adaptive utilization of shaping RL rewards aligns with the concept of TL, where
insights gained from one domain can be leveraged to enhance performance in a
different domain. The study demonstrates the potential for TL to optimize rewards in
various environments by adapting shaping weights across different states and actions.

• Multi-task RL: This approach trains a single agent on multiple tasks simultaneously,
encouraging the development of a generalized policy or value function. In multi-task
RL, the process involves leveraging knowledge gained from previous tasks to enhance
learning efficiency in new tasks. [48] use pre-trained language models to capture task
context and project it to a lower-dimensional space, demonstrating the application of
TL techniques in contextual representation learning. By incorporating task metadata
to decide which information should be shared across tasks, the proposed method
aims to alleviate negative interference, a common challenge in multi-task learning,
showcasing the importance of TL concepts in improving multi-task RL performance.

Despite these successes, applying TL to RL is considered challenging in practical use cases.
The difficulties include:

• Domain Differences: Variations in state space, action space, reward functions, transi-
tion dynamics, initial states, and trajectories between the source and target domains
can hinder effective transfer.

• Knowledge Transfer Quality: Determining the amount and quality of necessary
knowledge required for effective TL is crucial. Inadequate or excessive transfer can
negatively impact the performance of the target agent.

• Framework-specific Nature: Many TL approaches are framework-specific, meaning
that certain methods may only be applicable to specific RL algorithms designed for
discrete or continuous action spaces.

In this dissertation, we aim to address these challenges by applying TL to RL-based
resource allocation methods within the context of 5G slicing scenarios. This involves
developing and evaluating techniques that can effectively transfer knowledge across varying
network conditions, ensuring robust and efficient performance in dynamic and complex
environments.

64 3. Transfer Learning

65

4. RAN Slice Resource Allocation with RL

In this chapter, we explore the application of RL methods to RAN slice resource manage-
ment problems and conduct preliminary experiments for validation. First, we recap the
motivation for applying RL methods to slice resource allocation to improve network per-
formance, along with the associated challenges, in Section 4.1. In Section 4.2, we introduce
the system model for multi-cell multi-slice scenarios, followed by the problem formulation
for optimizing slice resource allocations in Section 4.3.

To address Question 1, in Section 4.4, we propose the MDP formulation for the slice
resource allocation problem in multi-cell multi-slice scenarios in a centralized manner.
We then discuss a distributed DQN-based resource allocation solution, including a brief
introduction to the practical implementation process of distributed RL in the simulated
network scenario. In Section 4.5, we present the numerical results from the preliminary
experiments of the distributed DQN-based slice resource allocation solution. These results
aim to validate the experimental environments and evaluate the effects of applying different
definitions of RL rewards.

4.1 Motivation

As mentioned in Section 1.1, resource allocation for different slices in mobile communica-
tion networks is crucial for enhancing individual slice Key Performance Indicators (KPIs)
and overall system performance. This is especially important for Self-Organizing Networks
(SON), where dynamic systems need to adjust per-slice configurations to achieve better or
more stable network KPIs. Traditionally, real-time network modifications require expert
intervention, leading to high human resource and time costs. In advanced networks, such
as SON systems, the network can adjust configurations based on its behavior, but these
networks still face significant constraints in self-regulation.

In Chapter 2, we introduce the concept of RL, from basic to advanced algorithms. Given
its effectiveness in solving dynamic optimization problems, RL is highly suitable for ad-
dressing issues in dynamic systems, as well as the SON problems as Fig. 4.1 indicated. RL
algorithms are based on the concept of MDPs, enabling systems to learn optimal behavior
based on the state of the environment. By modeling network systems as RL agents with
appropriate formulations, networks can learn to reconfigure optimally in response to grad-
ual changes in different environments. However, applying RL to RAN network scenarios
is challenging due to the high complexity of these systems, as discussed in Section 2.6.

Version: January 20, 2025 – 13:20:04

66 4. RAN Slice Resource Allocation with RL

Figure 4.1: Framework of RL-based solution for SON problem

In this chapter, we aim to address Question 1, i.e., exploring the method of formulating the
slice resource allocation problem such that RL can handle it. Additionally, we will focus
on the parameter settings for per-slice resource budgets in a network slicing scenario.
To analyze the influence of per-slice resource budget configurations on network slicing
behaviors, we conducted a sanity check experiment examining the corresponding per-slice
KPIs such as downlink throughput, number of active users, and actual slice load. The
experiments were carried out using the SEASON II simulator [49]. Specifically, to test the
feasibility of applying RL algorithms to the network slice resource allocation problem, we
implemented a distributed DQN algorithm as a trial experiment for single cells to modify
the configuration of per-slice resource budget parameters.

4.2 System Model

Assume a set of base stations (hereafter also referred to as cells, indicating the geo-
graphic area covered by the base station) B := {1, 2, . . . , B} and a set of slices N :=
{1, 2, . . . , N}. At each time t, each cell i ∈ B observes its local state si(t), and let
s(t) := [s1(t), . . . , sB(t)] ∈ S denote the state of the overall system, where S denotes
the state space. The state of the system s(t) is controlled by the configured RAN slice
resource budget a := [a1, . . . ,aB] ∈ A, where A denotes the space in which a lies. Each
cell i ∈ B can choose its local configuration ai := [ai,1, . . . , ai,N]. Note that the resource
budget ai,n indicates the percentage of RAN resources as PRB allocated to the n-th slice
in the i-th cell, and we have

∑
n∈N ai,n ≤ 1 for each i ∈ B.

The environment operates on discrete time steps t = 0, 1, . . ., where at each step, the
system selects its RAN slice resource budget a(t) based on a full observation (i.e., without
information loss) of the state s(t). The dynamics of the environment are governed by the
conditional probability mass function:

P
(
s(t + 1)|s(t),a(t)

)
= Pr

{
St+1 = s(t + 1)|St = s(t),a(t)

}
, (4.1)

where P (·) defines the probability that the slice configuration a(t) in system state s(t) will
lead to the next state s(t + 1), and St denotes the random variable of the system state at
time t.

Given a deterministic utility function r(·) : S × A → R that indicates the system util-
ity, the network system can be defined in terms of an MDP, determined by the tuple
{S,A, P (·), r(·)}.

4.3. OPTIMIZATION PROBLEM FORMULATION 67

4.3 Optimization Problem Formulation

To achieve the optimal slice resource allocation solution, we aim to find an effective policy
πa : S → A that helps determine the RAN slice resource budget a based on the network
state s. The objective is to maximize a cumulative function of the defined utility (or
reward), typically the expected discounted sum over a potentially infinite horizon. The
problem can be formulated as:

max
πa

E

[∞∑
t=0

γtr
(
s(t),a(t)

)]
s.t.

∑
n∈N

ai,n(t) ≤ 1,∀i ∈ B, . . . (4.2)

where γ is the discount factor with 0 ≤ γ ≤ 1.

4.4 RL-based Slice Resource Allocation Optimization

To solve the problem formulated above, we aim to maximize the accumulated utility or
reward, which indicates network performance, by adjusting the per-slice resource budget a
in real time. We consider applying RL approaches to this optimization problem in dynamic
systems.

4.4.1 RL Formulation

We define the state, action, and corresponding reward function as follows:

• State: The states are selected from the network KPIs, which can indicate or influence
the utility function:

si := [si,1, si,2, . . . , si,M] ∈ Si (4.3)

where M is the number of KPIs we consider as state indicators. For example, we
may include KPIs such as cell load and throughput in the cell state. The joint cell
states have a state space of S :=

∏
i∈B Si.

• Action: The action is defined as the RAN slice resource budget a. Each cell i ∈ B
can choose its local configuration ai := [ai,1, . . . , ai,N]. The per-cell per-slice action
should satisfy ai,n ∈ Ω, where Ω can be defined as continuous space Ω := [0, 1] or a
finite set of pre-defined discrete values within [0, 1]. The sum of resource budgets
for each cell should be less than or equal to 1, so the action space for each cell is:

Ai :=

{
ai ∈ ΩN

i :
∑
n∈N

ai,n ≤ 1

}
(4.4)

The joint cell actions have the corresponding action space of A :=
∏

i∈BAi.

• Reward: We introduce two types of reward functions: resource efficiency and down-
link average throughput (over users) of the mobile network systems.

1. Downlink Average Throughput: Let the downlink average throughput over
all users in cell i be denoted as ϕi(t) in Mbit/s. The reward based on the
throughput is:

r(t) :=
∑
i∈B

ϕi(t) (4.5)

68 4. RAN Slice Resource Allocation with RL

2. The resource efficiency for each cell is calculated from the per-slice downlink
throughput ϕi,n(t) and the real slice load li,n(t) in the network systems, where
the load is defined as the percentage of frequency resource occupied in a cell.
The resource efficiency (in Mbit/s/Hz) is denoted as:

ηi,n(t) :=
ϕi,n(t)

li,n(t)× b
for i ∈ B and n ∈ N (4.6)

where b is the bandwidth (in Hz) of the network systems. For each cell i ∈ B,
we take the weighted sum of resource efficiency for each slice:

ηi(t) :=
∑
n∈N

βnηi,n(t) (4.7)

where βn is the weight factor for each slice, satisfying
∑

n∈N βn = 1. Thus, the
reward function for resource efficiency is:

r(t) :=
∑
i∈B

ηi(t) (4.8)

Hereby, we give our answer to the Question 1: By defining the states, actions, and rewards
in this manner, the slice resource allocation problem can be transformed into an RL prob-
lem, where the RL agent aims to learn the optimal policy πa to maximize the accumulated
reward. This approach leverages the ability of RL algorithms, such as DQN, to handle
complex dynamic systems and optimize resource allocation effectively.

4.4.2 DQN-based Solution

As discussed in 2.3.5, DQN is a widely used RL algorithm that combines the principles
of conventional Q-Learning with DNN. By replacing the Q-table with a Q-Network, DQN
can effectively handle RL problems with larger state and action spaces. To train the DNN
model with parameters θ, collecting a sufficient amount of samples in state-action pairs
(s,a) is essential. The loss function J(θ) used to update the network parameters is defined
as:

J(θ) := E
[
(y − Q̂(s,a; θ))2

]
(4.9)

DQN implements the ϵ-greedy policy for sample collection by the RL agents. The network
parameters are updated iteratively using the Stochastic Gradient Descent (SGD) method.
The target Q-value y is calculated based on the RL discounted reward, incorporating the
discount factor γ, similar to the Q-value update method in Q-Learning. For an RL agent
at step j, the target Q-value is:

yj = rj + γ max
aj+1

Q̂(sj+1,aj+1; θ) (4.10)

The DQN model utilizes a double network structure to stabilize target Q-value updates
and predictions, involving the primary network with parameters θ and the target network
with parameters θ̂. The parameters of both networks are periodically synchronized by
copying θ to target network θ̂. This double network architecture is illustrated in Fig. 4.2.
This architecture helps reduce the overestimation bias and improve the stability and per-
formance of learning process. By employing the DQN algorithm, we aim to effectively
optimize the resource allocation for network slices in dynamic environments.

4.5. EXPERIMENTS 69

Figure 4.2: Double network structure of DQN model

4.4.3 Distributed DQN Approach

Solving the optimal per-slice resource budget for all cells in a network system is a chal-
lenging problem. If the entire system is formulated as a single RL agent (a centralized
approach), the dimensions of both the state space S and the action space A would be
extremely large. This high dimensionality would result in significantly longer convergence
times for the RL algorithm, potentially preventing it from reaching an optimal solution.

At this stage, we only consider the local state within each cell as the input to the DQN.
Later studies will explore coordinated multi-agent RL, incorporating both local observa-
tions and selected observations from other cells. For each cell i ∈ B, the corresponding RL
agent for the distributed DQN has the state si ∈ Si, the action ai ∈ Ai, and two options
for the reward ri: downlink average throughput or resource efficiency.

After formulating the RL agent, the new framework for the per-slice resource budget
optimization problem is illustrated in Fig. 4.3:

Figure 4.3: RL-based slice resource allocation optimization for single cell scenario

4.5 Experiments

Implementing the proposed RL algorithms directly on actual mobile networks is impracti-
cal due to the potential risks and resource constraints. The real network environments are
highly complex, with numerous interconnected components and dynamic conditions that
challenge RL algorithms, which require substantial data and computational resources to
learn optimal policies. High dimensional state and action spaces make convergence to op-
timal solutions difficult and time-consuming. Additionally, ensuring network reliability is
crucial, as disruptions can have widespread impacts on businesses, emergency services, and
daily communications. RL algorithms, especially during exploration, can degrade service
quality or even cause network outages, posing unacceptable risks. Furthermore, testing

70 4. RAN Slice Resource Allocation with RL

RL algorithms in real networks is costly, requiring extensive monitoring and expert inter-
vention to manage potential negative impacts, leading to significant operational expenses
and prolonged instability.

4.5.1 Experiment Setup

As an alternative option, network simulators offer a controlled, reproducible environment
where various network conditions can be tested without affecting actual users. This allows
for rigorous experimentation and fine-tuning of RL algorithms. They eliminate the risk
of real-world disruptions, enabling the safe exploration of different strategies. Simulators
can scale to accommodate large networks and complex scenarios, providing flexibility in
adjusting network parameters and conditions for comprehensive testing. They are cost-
effective, reducing the need for extensive hardware, minimizing operational expenses, and
accelerating development with immediate feedback and parallel experimentation. Addi-
tionally, simulators generate large volumes of synthetic data for training RL algorithms,
including rare or extreme conditions, enhancing their robustness. Therefore, in this dis-
sertation, we deployed a virtual environment capable of simulating real network system
behaviors.

4.5.1.1 Season II Simulator

To imitate the complex behaviors of network systems, we use a system-level simulator,
Season II [49], as the virtual environment. Season II was initially designed to address and
study issues in SON. It is also capable of evaluating and visualizing network behaviors.

Figure 4.4: Graphic user interface and console of Season II

The main features of the Season II simulator include dynamic implementation, runtime
reconfiguration, and two-way real-time communication. The real-time communication fea-
ture is particularly important for our use case, allowing us to receive network KPI reports
and send new configurations periodically. Additionally, Season II integrates functions for
multiple network simulation environments and scenarios, various service groups of users,
and adjustable network parameters such as antenna settings, mobility (handover) pa-
rameters, network slicing parameters, and user group settings. The simulator processes
simulations based on parameters in JSON format files and can dynamically react to con-
figuration changes during the simulation. In summary, the ability of Season II to both
report network KPIs and receive new configurations simultaneously makes it an ideal tool
for our experiments.

4.5.1.2 Network Environment Setup

As for the environment setup of the experiments, we built a simple scenario of a mobile
communication network system based on the Season II simulator, which contains 5 sites
in total, and each site consists of 3 cells. The set of cells is noted as B = [1, 2, . . . 15]. The
system is configured with two network slices, N = 1, 2. Slice 1 has an expected bit rate of

4.5. EXPERIMENTS 71

5 Mbit/s, while slice 2 has an expected bit rate of 3 Mbit/s. The default resource budgets
allocated to slice 1 and slice 2 are ai,1 = 0.8 and ai,2 = 0.2, respectively. We included 100
UEs in the scenario, with group A consisting of 60 UEs served by the slice 1 and group B
consisting of 40 UEs served by the slice 2. These UEs move between different cells in the
test environment according to specific traffic models. The slice settings are summarized
in Table 4.1. This simple environment setup is intended to test the characteristics of the
Season II simulator under dynamic system behavior and to implement preliminary RL
algorithm experiments. Please note that in this trial experiment, we do not specify the
types of slices; instead, we define them by their QoS requirements in terms of throughput
and delay. This setup can be easily extended to a broader range of slice types.

Table 4.1: Slice Configurations

Slice name Default Resource Budget Expected Throughput Number of UEs

Slice 1 0.8 5 Mbit/s 60

Slice 2 0.2 3 Mbit/s 40

4.5.1.3 Slice Resource Allocation Formulation

Based on the experimental scenario built in the Season II simulator, we update the formu-
lation of the RL agent for further experiments. The utility functions we aim to optimize
are set to reflect the behaviors and KPIs of the network systems. In the Season II simula-
tor, network KPIs can be read from the returned reports, and the corresponding settings
for the per-slice resource budgets can be modified by configuring the per-slice resource
budget for each cell. We can formulate the RL agent with corresponding elements with
these periodic reports and real-time configurations.

Based on our experience with mobile network systems, we select KPIs from the simulator
reports related to the utility or reward functions of the RL agent. The selected KPIs for
each slice n ∈ N in each cell i ∈ B as RL agent states are:

• Per-slice Throughput: As the throughput Φi,n from all UEs of slice n ∈ N ;

• Slice Load: The slice load li,n indicates the actual percentage of resources that are
occupied by slice n ∈ N ;

• Per-slice Number of UEs: The number of active UEs served by each slice, denote as

u
(3)
i,n for n ∈ N .

For the action space of the RL agent for each cell, the DQN algorithm uses the benefits
of DNNs to replace the Q-table in conventional Q-Learning, yet it still has limits on the
dimension of the action space. Thus, we constrain the action space of distributed DQN
to a discrete space. For convenience, we consider the case where the settings of the slice
resource budgets are actions in ai ∈ Ω2, i ∈ B, where Ω := 0.0, 0.1, . . . , 1.0 is a finite
discrete space, and the action must strictly abide by the restriction of

∑
n∈N ai,n = 1.

The customized RL agent for each cell i ∈ B is defined as:

• State: si := [s1,1, ..., si,n] with si,n = [Φi,n, li,n, ui,n], n ∈ 1, 2, k ∈ 1, 2, 3.

• Action: ai := [ai,1, ai,2] with an action space of

Ai :=

ai ∈ Ω2
∣∣∣ ∑
n=1,2

ai,n = 1; Ω = {0.0, 0.1, . . . , 1.0}

 , (4.11)

where the cardinality of the action space is |Ai| = 11.

72 4. RAN Slice Resource Allocation with RL

• Reward:

– Downlink Average Throughput of cell i ∈ B: ri(t) := ϕi(t).

– Resource Efficiency of cell i ∈ B: r(t) := ηi(t).

The formulation above ensures that the RL agent for slice resource allocation aligns with
the practical constraints and objectives of the simulated network environment, allowing
us to effectively evaluate the proposed DQN algorithm.

4.5.2 Experiment I: Sanity Check

Before implementing the proposed solution with distributed DQN, we performed a sanity
check with the experimental environment to analyze the basic behaviors of the network
system and establish baselines for comparison. The experiments for the sanity check were
organized similarly to those that would demonstrate a distributed DQN algorithm, except
the RL agent’s actions followed specific mechanisms for selection. To explore all potential
configurations of per-slice resource budgets in test cell î ∈ B, we adjusted the real-time
configuration using the following mechanisms:

• Repeat Configuration: The RL agent periodically updates the per-slice resource bud-
gets of cell I ∈ B by iteratively choosing actions following a certain order throughout
the entire action space AI .

• Random Configuration: This method randomly selects an action from the action
space AI based on a uniform distribution to update the per-slice resource budgets
of cell I ∈ B.

The basic setup for the sanity check experiment included the following steps:

1. Choose cell I ∈ B as the target cell for algorithm implementation.

2. Change the configuration of the RAN slice resource budget in cell I ∈ B only, keeping
the settings of all other cells as default.

3. Set the reporting period of Season II to 1000 timestamps. After changing the config-
uration, the statistics within the subsequent 1000 timestamps are used to compute
the next network state and reward.

For both reward functions, i.e., downlink average throughput and resource efficiency, we
implemented the two methods, repeat configuration and random configuration, for the
sanity checks. Each experiment collected 2000 samples of the changed configurations to
ensure sufficient states and actions (updated configurations) for analysis. The results of
all experiments are summarized in Fig. 4.5 and Fig. 4.6

The figures above demonstrate the change in per-slice throughput of s
(1)
I,n for both slices

at different configurations of per-slice resource budgets for target cell I ∈ B. The solid
dot markers indicate the mean value of “throughput per slice” at each configuration, while
the vertical bars represent the corresponding standard deviations. It is evident that for all
experiments with different setups, as the per-slice resource budget for each slice increases,
the throughput also increases, as does the standard deviation. The throughput of slice 2
tends to saturate when the resource budget increases to a high value (e.g., higher than
0.7). This saturation occurs because users in this slice have fixed data rate requirements,
and once these requirements are met, additional resources do not increase throughput.

4.5. EXPERIMENTS 73

(a) (b)

(c) (d)

Figure 4.5: Sanity check for per-slice resource budget vs. per-slice throughput

Similar conclusions can be drawn from the comparison of results for per-slice resource
budget vs. “slice load.” Since “slice load” indicates the actual load on the slice, the per-
slice resource budget in the configuration sets an upper bound on the actual slice load,
which yields:

s
(2)
i,n <= ai,n, ∀i ∈ B, n ∈ N (4.12)

As shown in Fig. 4.6, the allocated loads on slice 1 are nearly fully occupied for per-slice
resource budgets aI,1 < 0.7, implying that a resource budget less than 0.7 is insufficient to
serve the existing users in slice 1.

In RL state, the number of UEs on each slice ui,n is rather dependent on the traffic config-
urations of user groups. Since the number of UEs per group was fixed in this experiment,
it does not show significant changes. For future work, to simulate network behaviors under
a more realistic environment, we should consider the traffic models of different groups of
users as well. From the above sanity check experiments, we can conclude that under the
toy environment we designed, Season II performs well in imitating the behaviors of the
mobile network system. Season II returns system KPIs reports that correspond appro-
priately to configuration changes, aligning with theoretical properties. Additionally, we
obtained multiple sets of baselines for comparison, which are critical for evaluating our
proposed solution.

74 4. RAN Slice Resource Allocation with RL

(a) (b)

(c) (d)

Figure 4.6: Sanity check for per-slice resource budget vs. slice load

4.5.3 Experiment II: DQN-based Approaches

In this experiment, we implement the distributed DQN algorithm using the same setup as
in the sanity check. However, in this case, the RL agent updates the actions (i.e., the per-
slice resource configurations) with the predicted optimal action from the DQN algorithm
based on the current system states.

4.5.3.1 Resource Efficiency as RL Reward

First, we define the reward function of the RL agent as resource efficiency ηI(t). For
DQN implementation, we set the discount factor γ = 0.09 and build a replay buffer with
capacity D = 100. The model is built with 3 hidden layers, with the number of neurons
(256, 128, 64). The learning rate of DQN model is 0.002 with Adam optimizer, and the
batch size is 32. We run the RL agent for 2000 steps with the RL sample structure
illustrated in Table 4.2:

Table 4.2: Elements of the RL agent with resource efficiency as reward

Values

State ∈ R6 sI := [s1I,1, s
1
I,2, s

1
I,3, s

2
I,1, s

2
I,2, s

2
I,3]

Action ∈ R11×2 aI ∈ Ω2 with
∑

n∈N aI,n = 1, aI,n ∈ {0.0, 0.1, . . . , 1.0}
Reward ∈ R ηI(t) =

∑
n∈N βnηI,n(t) with βn = 0.5,∀n ∈ N

Fig. 4.7 and Fig. 4.8 show that the configuration of the per-slice resource budget converges
to a steady choice of action aî = [0.7, 0.3].

4.5. EXPERIMENTS 75

Figure 4.7: Change of slice budget combinations with resource efficiency as RL reward

In Fig. 4.8, the solid lines represent the configuration change along the time axis, while
the dots represent the actual load on each slice. It is evident that the choice of configu-
rations converges to [0.7, 0.3] after about timestamp 1000. Most actual loads align with
the configuration, but there are still discrepancies, especially in slice 2. It is common to
observe that the actual load does not fully occupy the allocated slice load, which could
also cause instability in the accumulated average resource efficiency curve.

We compare the results to the sanity check experiment as baselines to observe the bene-
fits of implementing the distributed DQN. In Fig. 4.9, we plot the accumulated average
resource efficiency curves with distributed DQN, repeat configuration, and random con-
figuration separately.

In this case, the resource efficiency curve indicated by the blue, solid line is generally
higher along the time axis compared to the other two curves, indicating changes without
the distributed DQN. However, it does not always outperform the others. We can conclude
that resource efficiency is not a direct criterion to reflect the benefits of configuration
changes, so it is not an ideal reward function for RL agents. The reason is that resource
efficiency mainly depends on the quality of the received signal. An increase in the allocated
resource leads to an increased data rate, but the ratio between the data rate and resource
remains the same if the signal quality does not change. Using Shannon channel capacity,
the downlink throughput of UE k associated with base station i is usually modeled by:

rk = ai,k log(1 + SINRi,k) (4.13)

where rk denotes the data rate achieved by UE k in bit/s, ai,k denotes the amount of
frequency resource in Hz, and SINRi,k is the downlink Signal-to-Interference-plus-Noise
Ratio (SINR).

As shown in Eq. 4.13, the resource efficiency rk/ai,k of UE solely depends on SINRi,k.
Thus, the per-cell averaged resource efficiency depends mainly on the performance of the
scheduler, i.e., how to allocate the resource to each UE with different conditions of SINR.
With the pre-defined scheduler, the configuration of the per-slice resource budget does not
significantly influence the per-cell resource efficiency. However, we still observe a slight
performance improvement compared to the baseline and the convergence of the configu-
ration. The pre-defined proportional fairness scheduler, which tries to balance the service

76 4. RAN Slice Resource Allocation with RL

Figure 4.8: Comparison of actual load and allocated resource budgets with resource effi-
ciency reward

quality for all UEs, including those with low signal quality, credits this improvement.
When the total amount of allocated resources for a slice is insufficient, the scheduler still
needs to allocate a good amount of resources to the UEs with poor signal quality, leading
to decreased resource efficiency. Thus, the RL agent can still converge to a configuration
that provides sufficient resources to each slice to improve resource efficiency.

4.5.3.2 Downlink Average Throughput as RL Reward

In the previous experiment, we used resource efficiency as the reward function, which
provided some improvement, but the performance gains were not significant. In this ex-
periment, we switch to using downlink average throughput as the reward function. Unlike
resource efficiency, downlink average throughput is a more direct KPI that describes the
behavior of mobile networks and can be read directly from the raw KPI reports generated
by the simulator without additional calculations.

The setup for this experiment remains the same as the previous experiments, with the
only change being the reward function, as shown in Table 4.3. The RL agent is run for
2000 steps with the same DQN algorithm structure as in Experiment II.

Table 4.3: Elements of the RL agent with downlink average throughput as reward

Values

State ∈ R6 sI := [s1I,1, s
1
I,2, s

1
I,3, s

2
I,1, s

2
I,2, s

2
I,3]

Action ∈ R11×2 aI ∈ Ω2 with
∑

n∈N aI,n = 1, aI,n ∈ {0.0, 0.1, . . . , 1.0}
Reward ∈ R ϕI(t)

Similar to the results in Experiment II, the predicted actions as new configurations still
converge to a specific choice in the action space, as shown in Fig. 4.10 and Fig. 4.11.

In this experiment, the RL agent converges faster than in the previous experiment, reach-
ing the configuration [0.6, 0.4] after about 200 timestamps. We can observe similar results
from Fig. 4.11. Most of the actual loads match the predicted configuration for slice 1,
while slice 2 still has many outliers. This suggests that slice 1 may need a higher resource
ratio, while slice 2 might require fewer resources. We compare the changes in downlink av-

4.6. INSIGHTS TO THE THESIS 77

Figure 4.9: Compare accumulated average resource efficiency between different resource
partition methods

Figure 4.10: Change of slice budget combinations with average throughput as RL reward

erage throughput across distributed DQN, repeat configuration, and random configuration
methods. The curves are shown in Fig. 4.12.

It is evident that the distributed DQN consistently outperforms the other methods, es-
pecially after the timestamp of 750. This highlights the effectiveness of using downlink
average throughput as the reward for the RL agent. This experiment demonstrates that
direct KPIs, such as downlink average throughput, is a more suitable utility indicator for
RL agents.

The mobile network system is a dynamic environment characterized by uncertainties and
rapid changes contributing to its unpredictability. These challenges make it difficult to con-
trol and update configurations according to network behavior. However, the distributed
DQN algorithm can maintain its KPIs at a stable level, proving its effectiveness in opti-
mizing network performance.

4.6 Insights to the Thesis

Based on the experiments conducted above, we can draw the following insights:

78 4. RAN Slice Resource Allocation with RL

Figure 4.11: Comparison of actual load and allocated resource partitions with average
throughput reward

1. Season II Simulator as a Tool for RL-based Network Optimization: The Season II
simulator has proven to be a suitable tool for implementing RL-based algorithms for
network system optimization problems. It responds appropriately to configuration
changes in accordance with theoretical mechanisms.

2. Effectiveness of the Distributed RL Approach: The proposed distributed RL ap-
proach effectively addresses the optimization problem in network slicing environ-
ments.

3. Evaluation of Different RL Agent Rewards: Among the various types of RL agent
rewards, downlink average throughput as a direct KPI demonstrates more observable
effects compared to indirect rewards like resource efficiency.

These findings provide a promising starting point for further exploration of RL-based
algorithms for optimizing configurations in mobile network systems. However, several
areas require further investigation, as outlined below:

1. Analysis of Different Reward Functions: Future research should explore various re-
ward functions, including those considered user-specific QoS requirements.

2. Simulating Realistic Network Traffic Models: To create a more realistic environment,
future experiments should incorporate dynamic changes in the number of UEs based
on realistic network traffic models rather than fixing the total number of UEs for
each slice.

3. Exploring RL Algorithms for Continuous Action Spaces: The current DQN algo-
rithm uses a discrete action space, limiting the precision of the optimal solution. Fu-
ture research should investigate RL algorithms designed for continuous action spaces,
such as DDPG or TD3. These algorithms could help achieve optimal solutions and
handle multi-agent problems with more complex state and action spaces.

4.6. INSIGHTS TO THE THESIS 79

Figure 4.12: Compare accumulated average downlink throughput between different re-
source partition methods

4. Addressing Multi-Agent Problems: After thoroughly analyzing single-agent prob-
lems, future work should focus on multi-agent problems. The challenge lies in cap-
turing the dependencies between multiple cells and achieving consensus on RAN slice
resource budget decisions among neighboring cells.

5. Applying TL: A long-term goal is to apply the concept of TL to reuse the knowledge
learned by an RL agent in one cell (or cell cluster) in another cell (or cell cluster).
This could enhance the learning rate and sample efficiency, making the optimization
process more effective.

These future research directions are expected to build on the findings of this study, further
enhancing the application of RL algorithms in mobile network systems optimization.

80 4. RAN Slice Resource Allocation with RL

81

5. Distributed DRL as Per-cell Scheme

In this chapter, we discuss applying a distributed DRL algorithm to multi-cell, multi-
slice RAN slicing scenarios to address Question 2. Specifically, we aim to transform a
centralized RL approach into a distributed manner while preserving inter-cell dependency
information. We formulate the dynamic inter-cell slicing resource partitioning problem to
enhance max-min slice performance while adhering to resource capacity constraints. For
the distributed DRL implementation, we introduce a multi-agent DRL approach, exploring
two coordination schemes: with and without inter-agent coordination. To ensure that the
DRL agents respect resource constraints, we evaluate two methods: reward shaping and
decoupled softmax layer embedding. As with the trial experiments in the previous chapter,
the evaluation was conducted using a system-level simulator.

This chapter is based on the collaborative research work previously published in the paper:

Inter-Cell Slicing Resource Partitioning via Coordinated Multi-Agent Deep Rein-
forcement Learning Tianlun Hu, Qi Liao, Qiang Liu, Dan Wellington, Georg Carle
ICC 2022 - IEEE International Conference on Communications, 2022, pp. 1-6, doi:
10.1109/ICC45855.2022.9838518.

My contributions to this paper include conducting extensive literature research, conceptu-
alizing and designing the methodology, implementing the proposed models, and rigorously
evaluating their effectiveness. Additionally, I was responsible for drafting the manuscript.
This chapter extends the discourse from the paper by delving deeper into the application
of RL for network slice resource allocation, a topic initially introduced and explored in
Chapter 4.

This chapter is organized as follows. In Section 5.1, we review the state-of-the-art slice
resource allocation methods and discuss related works. Section 5.2 defines the system
model, while Section 5.3 formulates the inter-cell, inter-slice resource partitioning prob-
lem. In Section 5.4, we propose distributed DRL solutions to this problem, exploring two
schemes: with and without coordination. The numerical results are presented in Section
5.5. Finally, we conclude this chapter in Section 5.6.

5.1 Motivation

To meet the performance and coverage requirements of different slices, network operators
aim to partition the radio PRBs resources across multiple base stations, also referred to as

Version: January 20, 2025 – 13:20:04

82 5. Distributed DRL as Per-cell Scheme

cells. In this chapter, our objective is to satisfy the performance requirements of distinct
slices with minimal inter-cell resource usage, thereby maximizing resource efficiency.

Existing model-based solutions approach the resource partitioning problem with math-
ematical models and solve it using various optimization techniques, such as linear pro-
gramming [50, 51] and convex optimization [52, 53]. For instance, Addad et al. [50]
formulated the network function deployment problem as a Mixed Integer Linear Program-
ming (MILP) under resource constraints, latency, and bandwidth and proposed a heuristic
algorithm to solve it. Cavalcante et al. [54] formulated a max-min fairness problem to con-
trol load-coupled interference in wireless networks, transforming the problem into a fixed
point problem solvable by existing low-complexity iterative algorithms. However, these
solutions fail to achieve optimal performance in real networks because the approximated
models cannot fully represent complex network behaviors.

Recently, model-free solutions, particularly DRL, have shown significant potential in auto-
matically managing radio access networks without the need for prior models. For example,
Liu et al. [55] proposed an adaptive constrained RL algorithm based on interior-point pol-
icy optimization (IPO) for a single base station scenario. Liu et al. [56] designed the
DeepSlicing algorithm to allocate resources to different slices, with each slice associated
with a DRL agent and a coordinator to manage resource capacity in the base station.
However, these works focus on single-cell scenarios.

In multi-cell scenarios, DRL solutions with discrete action spaces have been proposed,
such as in [57] and [58]. Still, the achievable performance is limited due to the discrete
nature of resource partitioning actions. Other works, such as [59] and [60], introduced
resource management systems with continuous DRL for complex scenarios but did not
address inter-cell interdependencies and inter-slice resource constraints.

As network deployments become denser, causing more severe inter-cell interference among
a large number of cells, there is a need for a coordinated multi-agent DRL design capable of
capturing complex inter-cell and inter-slice interactions with low model complexity. In this
chapter, we investigate DRL-based resource partitioning problem in network slicing under
a multi-cell scenario. We aim to improve the max-min slice performance while adhering to
resource capacity constraints. To tackle inter-cell interference, we propose a multi-agent
DRL approach with two coordination schemes: with and without inter-agent coordination.
Additionally, we develop two methods to handle the constraints of instantaneous resource
capacity in each agent.

5.2 System Model

We consider a network system consisting of a set of cells K := {1, . . . ,K} and a set of
slices N := {1, . . . , N}. Each slice n has pre-defined throughput requirement ϕ∗

n and delay
requirement d∗n. The system runs on discrete time slots t ∈ N0. To adapt to the time-
varying network traffic and satisfy the slice-aware service requirements in terms of both
throughput and delay, the OAM adjusts the inter-slice resource partitioning for all cells
periodically. The optimized slicing resource partitions are provided to the RAN scheduler
in each cell, and used by the scheduler as the slicing resource budget for the further PRB
allocation at a finer time-granularity (as shown in Fig. 1.6).

Considering the temporal and inter-cell interdependencies, we model the multi-cell system
as a MDP defined by the tuple (S,A, P (·), r(·), γ), where P : S ×A×S → [0, 1] indicates
the transition dynamics by a conditional distribution over the state space S and the action
space A, r : S ×A → R denotes the reward function, and γ ∈ [0, 1] is the discount factor.

The state at time slot t, denoted by s(t) := [s1(t), . . . , sK(t)] ∈ S, is an observation of the
entire system, where sk(t) ∈ Sk is the local state observed from cell k. The action at slot t,

5.3. PROBLEM OF SLICE RESOURCE ALLOCATION 83

denoted by a(t) := [a1(t), . . . ,aK(t)] ∈ A, includes the resource partitioning to each slice
and each cell ak,n(t) ∈ [0, 1], for k ∈ K, n ∈ N . We further introduce a “headroom” (or
reserved bandwidth) to the allocated resource for two reasons: 1) improving the resource
efficiency, and 2) converting the inequality action constraints to the equality ones. Let
the headroom in cell k be denoted by ak,0(t) ∈ [0, 1]. The local action is then defined as
ak(t) := [ak,0(t), . . . , ak,N (t)] ∈ Ak. Given the inter-slice resource constraints in each cell,
the local action space Ak and the global action space A yield:

Ak :=

{
ak

∣∣∣∣ak,n ∈ [0, 1], ∀n ∈ N ∪ {0};
N∑

n=0

ak,n = 1

}
(5.1)

A :=
{
a
∣∣ak ∈ Ak,∀k ∈ K

}
. (5.2)

Our objective is to satisfy the throughput and delay requirements(ϕ∗
n, d

∗
n) for every slice

n ∈ N and every cell k ∈ K. Thus, given the observed average throughput ϕk,n(t) and
average delay dk,n(t) at slot t for each slice n and cell k, we define the reward function as
below:

r(t) := min
k∈K,n∈N

min

{
ϕk,n(t)

ϕ∗
n

,
d∗n

dk,n(t)
, 1

}
. (5.3)

Eq. 5.3 means that if any per-slice throughput or delay in any cell does not meet the
requirement, we have r(t) < 1. Otherwise, if all requirements are met, the reward is upper
bound by 1. Note that the second term d∗n/dk,n(t) is inversely proportional to the actual
delay, namely, if the delay is longer than required, this term is smaller than 1.

5.3 Problem of Slice Resource Allocation

Our problem is to find the policy π : S → A, which decides the inter-cell inter-slice
resource partitioning a ∈ A based on the observation of network state s ∈ S, to maximize
the expectation of the cumulative discounted reward defined in Eq. 5.3 of a trajectory for
a finite time horizon T . The problem is given by:

Problem 1.

max
π

Eπ

[
T∑
t=0

γtr
(
s(t),a(t)

)]
s.t. a ∈ A, (5.4)

where A is defined by Eq. 5.1 and Eq. 5.2.

The challenge of solving the above-defined problem is two-fold. Firstly, the reward function
Eq. 5.3 depends on high-dimensional global state and action spaces and involves complex
inter-agent dependencies. For example, increasing resource partition in one slice n and
cell k improves its own service performance. However, it decreases the available resource
allocated to other slices in the same cell and increases the interference received in the
neighboring cells, which may further result in a general service degradation. The second
challenge is caused by the intra-cell inter-slice resource constraints Eq. 5.1. Although
various methods are proposed to solve the constrained MDP problems, e.g., by using
the Lagrangian method [61] or Projection-based Safety layer [62], there still exists the
problem of oscillations and overshooting caused by constraint-violating behavior during
agent training.

5.4 Distributed DRL as Per-cell Scheme

In this section, we first present the distributed multi-agent DRL approach in terms of
two different schemes to solve Problem 2: distributed scheme without coordination, and
distributed scheme with inter-agent coordination. Then, we briefly introduce the actor-
critic method to solve the DRL problem. Last but not least, we propose two methods to
deal with the inter-slice resource constraints.

84 5. Distributed DRL as Per-cell Scheme

5.4.1 Multi-agent DRL with Coordination

The distributed approach allows each agent to learn a possibly different model and make
its own decision on the local action, based on local or partial observation. In contrast
to the conventional centralized approach, the distributed approach may not achieve the
performance as well as the centralized one due to the limited observation. However, it may
converge much faster and be more sample-efficient by using a less complex model based
on local states and actions.

We first consider the distributed approach without coordination, i.e., each agent k only
observes its local state sk. In particular, we include the following measurements and
performance metrics into the state sk for each cell k ∈ K:

• Average per-slice user throughput {ϕk,n : n ∈ N};

• Per-slice load {lk,n : n ∈ N};

• Per-slice number of active users {uk,n : n ∈ N}.

Thus, with the above-defined three slice-specific features, the local state sk has a dimension
of 3N .

Each agent k computes a local reward rk, and makes decision on the local action ak ∈
Ak ⊂ [0, 1]N+1. The local reward based on the local observations is computed by

rk(t) := min
n∈N

min

{
ϕk,n(t)

ϕ∗
n

,
d∗n

dk,n(t)
, 1

}
. (5.5)

Each agent trains an independent model without communicating with others. Note that
rk depends not only on the local state-action pairs, but also on the states and actions
of other agents, and we have r(s(t),a(t)) = mink∈K rk(s(t),a(t)). Thus, the distributed
scheme approximates rk(s,a) with r̃k(sk,ak), decomposes Problem 2 with K independent
sub-problems, and finds the following local policies πk : Sk → Ak, ∀k ∈ K:

π∗
k = arg max

πk;ak∈Ak

Eπk

[
T∑
t=0

γtr̃k
(
sk(t),ak(t)

)]
,∀k ∈ K. (5.6)

The disadvantage of Eq. 5.6 is that, because rk(s(t),a(t)) are strongly coupled to the joint
actions and states of all neighboring agents, the approximation r̃k

(
sk(t),ak(t)

)
based on

the local observations can be erroneous, which may result in poor learning performance.

To handle the curse of dimension, individual RL agent Rk for each cell k ∈ K is intro-
duced for fast convergence in a distributed approach. However, the distributed RL agent
would miss the information of inter-cell dependencies and, therefore, could conclude poor
performance compared to the centralized one. We propose an inter-cell communication
mechanism for a distributed approach to involve the neighbor cells’ information in the
state sk of local agent Rk to mitigate the interference.

In recent years, a promising direction of distributed learning with inter-agent coordination
has attracted much attention [63]. Allowing the agents to communicate to acquire a better
estimate of the global state improves the performance of distributed method while main-
taining low model complexity. To help the distributed agents better estimate rk(s(t),a(t))
and capture the inter-agent dependencies, we propose to let the agents communicate and
exchange additional information. Let each agent k send a message mk to a set of its

5.4. DISTRIBUTED DRL AS PER-CELL SCHEME 85

neighboring agents, denoted by Kk. Then, each agent k holds the following information:
local state and action pair (sk,ak) and received messages mk := [mi : i ∈ Kk].

One option is to directly use all received messages mk along with (sk,ak) to estimate
rk(s,a) with r̃k(sk,mk,ak). However, if the dimension of the exchanged message is high,
this increases the complexity of the local model.

An alternative is to extract from the received messages mk ∈ RZ(m)
useful information

ck ∈ RZ(c)
with g : RZ(m) → RZ(c)

: mk 7→ ck, such that Z(c) ≪ Z(m), where Z(m) and Z(c)

stand for the corresponding dimension. We can then use r̃k(sk, ck,ak) to approximate rk by
capturing the hidden information in the global state while remaining low model complexity.
Pioneer works such as [63] proposed to learn the extraction of the communication messages
by jointly optimizing the communication action with the RL model. However, for practical
systems, the joint training of multiple interacting models can easily result in unstable
convergence problems. We want to leverage expert knowledge to extract the information
to provide a robust and efficient practical solution. Knowing that the load-coupling inter-
cell interference mainly causes the inter-agent dependencies, we propose to let each agent
k communicate with its neighboring agent the slice-specific load information lk,n, ∀n ∈
N . Then, based on the exchanged load information, we compute the average per-slice
neighboring load as the extracted information ck(t). Namely, we define a deterministic
function:

gk :RN |Kk| → RN : [li,n : n ∈ N , i ∈ Kk] 7→ ck(t)

with ck(t) :=

 1

|Kk|
∑
i∈Kk

li,n(t) : n ∈ N

 .
(5.7)

Therefore, the proposed scheme is to find the following local policies πk : Sk × RN → Ak

with distributed DRL agents k ∈ K:

π∗
k = arg max

πk;ak∈Ak

Eπk

[
T∑
t=0

γtr̃k
(
sk(t), ck(t),ak(t)

)]
,∀k ∈ K. (5.8)

5.4.2 Actor-Critic Method

We consider solving the DRL problems with actor-critic approaches [64], because of its
effectiveness when dealing with high dimensional and continuous state and action spaces.
Such approaches solve the optimization problem by using critic function Q(st,at|θQ) (in
this section, we denote s(t) and a(t) by st and at respectively for brevity) to approximate
the value function, i.e., Q(st,at|θQ) ≈ Qπ(st,at), and actor π(st|θπ) to update the policy
π at every DRL step in the direction suggested by critic.

For DRL implementation, we deployed TD3 [65] as an off-policy DRL algorithm built
on top of the actor-critic methods. As the extension of DDPG [66], TD3 overcomes the
problem of DDPG that overestimates Q-values by introducing twin critic networks for both
networks Qθ1 , Qθ2 and target networks Qθ′1

, Qθ′2
. The actor is updated by policy gradient

on the expected cumulative reward J with respect to actor parameter θπ, as:

∇θπJ ≈ E
[
∇θπQ(s,a|θQ)|s=st,a=π(st|θπ)

]
= E

[
∇aQ(s,a|θQ)|s=st,a=π(st)∇θππ(st|θπ)

] (5.9)

The critic parameter θQ is updated with temporal difference learning, given by:

L
(
θQ
)

= E
[(
gt −Q(st,at|θQ)

)2]
,

where gt = rt + γQ
(
st+1, π (st+1|θπ) |θQ

)
.

(5.10)

86 5. Distributed DRL as Per-cell Scheme

5.4.3 Dealing with Resource Constraints

We compare two solutions to address the inter-slice resource constraints in Eq. 5.1. The
first is to reshape the reward function with an additional term to penalize the violation of
the resource constraints, and the second is to reconstruct the network architecture with
an additional regularization layer.

5.4.3.1 Reward Reshaping

We add a penalty term to the original reward function Eq. 5.3 to penalize the actions
violating the constraints

∑N
n=0 ak,n = 1, ∀k ∈ K. At time slot t, the penalty is defined by

the allocated resource ratio exceeding the maximum quota. The modified reward function
with penalty term is defined as:

r(t) := min
k∈K,n∈N

min

{
ϕk,n(t)

ϕ∗
n

,
d∗n

dk,n(t)
, 1

}
− βhk,n(t)

with hk,n(t) :=

∣∣∣∣∣1−
N∑

n=1

ak,n(t)

∣∣∣∣∣ ,
(5.11)

where β is the weight factor for leveraging the desired reward and the constraint-based
penalty.

5.4.3.2 Embedding Decoupled Softmax Layer

Actor

Network

…

𝒂𝟏

𝒂2

𝒂𝐾

softmax

softmax

softmax

…
…

…
…

𝑎2,0

𝑎2,2

𝑎2,𝑁

𝑎2,1

Figure 5.1: Actor output layer with decoupled softmax activation

In this method, we introduce a decoupled regularization layer into the output layer of
the actor network, such that this layer becomes part of the end-to-end back propagation
training of the neural network. Since the softmax function realizes for each ak the following
projection

σ : RN+1 →
{
ak ∈ RN+1

∣∣∣ak,n ≥ 0,
N∑

n=0

ak,n = 1

}
,

the decoupled softmax layer well addresses the intra-cell inter-slice resource constraints∑N
n=0 ak,n = 1, ∀k ∈ K as shown in Fig. 5.1.

The benefit of applying the decoupled softmax layer versus the reshaping of the reward
function is that, because the softmax regularization is part of the end-to-end backpropa-
gation, the agent training is usually more stable and converges faster.

5.5. EXPERIMENTS 87

5.5 Experiments

In this section, we evaluate the performance of the proposed distributed schemes for inter-
cell slicing resource partitioning introduced in Section 5.4.1 with the Season II simulator,
which mimics real-life network scenarios with customized network slicing traffic, user mo-
bility, and network topology. A small urban area of three sites is selected, as demonstrated
in Fig. 5.2. At each three-sector site, three cells are deployed using LTE radio technology
with 2.6 GHz. Thus, we have in total K = 9 cells. We use the realistic radio propagation
model Winner+[67]. The system is built up with N = 2 network slices: slice 1 supporting

Figure 5.2: Environment setup for experiments

video traffic and slice 2 supporting HTTP traffic. We define slice-specific expected bit rates
ϕ∗
1 = 5 Mbit/s and ϕ∗

2 = 3 Mbit/s respectively and the same network latency requirements
dn = 1 ms, n = 1, 2 (due to the current scheduler limitation of the simulator, we can only
apply one latency requirement but different throughput requirements). All cells in the
network have the same fixed bandwidth B = 20 MHz.

We define two groups of UEs associated with the defined two slices respectively, both with
the maximum group size of 32, and both move uniformly randomly within the playground.
To imitate the time-varying traffic pattern, we also apply a time-dependent traffic mask
τn(t) ∈ [0, 1] for each slice n = 1, 2 to scale the total number of UEs in the scenario.

5.5.1 Schemes for Comparison

We compare the proposed distributed DRL schemes in Section 5.4 with the conventional
centralized DRL approach and a traffic-aware baseline approach. The schemes to evaluate
and compare are summarized as follows.

Table 5.1: Comparison of dimensions of DRL models used in simulation

Centralized Dist. without Coord. Dist. with Coord.

State Global state s ∈ R54 Local state sk ∈ R6 Local state + coord.
[sk, ck] ∈ R8

Action Global action a ∈ [0, 1]27 Local action ak ∈ [0, 1]3 Local action ak ∈ [0, 1]3

Reward
Global reward r in

Eq. 5.3
Local reward rk in

Eq. 5.5
Local reward rk in

Eq. 5.5

• Cen-Pen: centralized DRL approach with penalized reward as described in Section
5.4.3.1. We assume that a single agent has full observation of the global state s ∈ S,
computes the global reward r based on Eq. 5.3, and makes the decision of the slicing

88 5. Distributed DRL as Per-cell Scheme

resource partitioning for all agents a ∈ A. The dimensions of the centralized and
distributed DRL models used in the simulation are compared in Table 6.2.

• Cen-Soft: same centralized DRL approach as Cen-Pen but with embedded softmax
layer as introduced in Section 5.4.3.2.

• Dist: distributed multi-agent DRL scheme as introduced in Section 5.4.1 with em-
bedded softmax layer.

• Dist-Comm: coordinated distributed multi-agent DRL scheme with inter-cell com-
munication introduced in Section 5.4.1 and embedded softmax layer.

• Baseline: a traffic-aware baseline that dynamically adapts to the current per-slice
traffic amount. In each cell, the resources are split proportionally to the number of
active UEs per slice.

5.5.2 RL Training Setup

As for DRL training, we use MLP architecture for actor-critic networks. In Cen-Soft and
Cen-Pen schemes, the models of actor-critic networks are both built up with 3 hidden
layers, with the number of neurons (96, 64, 48) and (120, 64, 32), respectively. While for
distributed schemes, both actor-critic networks only have two hidden layers as (48, 24)
and (64, 24). In all schemes, the learning rate of actor and critic are 0.0005 and 0.001
respectively with Adam optimizer and training batch size of 32. We choose a small DRL
discount factor γ = 0.1, since the current action has a strong impact on the instantaneous
reward while much less impact on the future. For training setups, we applied 2500 steps
for exploration, 10000 steps for DRL learning, and final 2500 steps for evaluation.

5.5.3 Performance Evalutation

0 2000 4000 6000 8000 10000 12000 14000
Timestamp

0.2

0.4

0.6

0.8

R
L

R
ew

ar
d

Dist
Dist-Comm
Cen-Soft
Baseline

Figure 5.3: Comparison of reward among schemes

Fig. 5.3 demonstrates the comparison of reward defined in Eq. 5.5 during the training
process among the schemes Cen-Soft, Dist, Dist-Comm and Baseline defined in Section
5.4.1, while Fig. 5.4 compares minimum resource efficiency among slices. The resource
efficiency ηk for cell k ∈ K is given by ηk = (1/N)

∑
n∈N ϕk,n(t)/(ak,nB).

As shown in Fig. 5.3 and Fig. 5.4, all DRL approaches learn to achieve similar service
performance to Baseline, while proving more than two-fold increase in resource efficiency
by introducing the headroom in action choices. Note that Baseline dynamically captures
time-varying traffic patterns and offers all resources to the UEs. It provides sufficiently
good service performance while suffering from low resource efficiency.

5.5. EXPERIMENTS 89

0 2000 4000 6000 8000 10000 12000 14000
Timestamp

0.25

0.50

0.75

1.00

1.25

R
es

ou
rc

e
E

ffi
ci

en
cy

Dist
Dist-Comm
Cen-Soft
Baseline

Figure 5.4: Comparison of resource efficiency among schemes

Another observation is that the proposed Dist-Comm scheme slightly outperforms Cen-
Soft within the same training time period. The centralized approach converges slower and
often experiences extremely poor performance during training because it has much higher
action and state dimensions and requires longer training to converge to a good solution. In
comparison between Dist and Dist-Comm schemes, it is obvious that inter-agent coordina-
tion helps Dist-Comm outperform Dist in terms of both service performance and resource
efficiency. while scheme Dis without inter-cell communication concludes worse output than
others. However, from the perspective of resource efficiency, all the DRL schemes perform
better than the baseline, which means that the DRL resource scheduler could provide as
good network performance as the baseline but with less resource occupation. The reason
is that the baseline always takes full bandwidth in use, while the “headroom” in DRL
schemes reserved partial resources during the training process to enable the DRL agent to
explore optimal per-slice occupation.

12500 13000 13500 14000 14500 15000
0.2

0.4

0.6

0.8

Pr
ed

ic
te

d
pe

r-
sl

ic
e

A
ct

io
n

Slice1
Slice2

12500 13000 13500 14000 14500 15000
Timestamp

0

2

4

6

N
o

of
U

E
s

Slice1
Slice2

Figure 5.5: Adaptive action to traffic mask after training

Fig. 5.5 shows the predicted action, i.e., per-slice resource partitioning, and the pre-defined
traffic mask of scheme Cen-Soft in cell k = 9. It verifies that the DRL approach predicts

90 5. Distributed DRL as Per-cell Scheme

actions that adapt well to network traffic dynamically concerning different slice-specific
throughput requirements.

The above-illustrated results show the algorithms’ performance in terms of our objectives,
i.e., maximizing the minimum service quality among all slices and cells. In the follow-
ing, let us take a deeper look into the general performance in terms of the service quality
distributions. Fig. 5.6 illustrates the empirical complementary Cumulative Distribution
Function (CDF) (or called survival function) that equals 1− FX(x) where FX(x) denotes
the CDF. We observe that our proposed Dist-Comm achieves the best balance between
the two slices, with both slices achieving > 88% of the satisfaction ratio with the expected
throughput, while Baseline and Cen-Soft provide only 82% and 84% for slice 1 , respec-
tively. Fig. 5.7 illustrates the CDF of the slice delay. And similar observation can be made,
that the proposed Dist-Comm provides fairly balanced service quality to the two slices.

A summarized comparison of the average performance metrics among all approaches in
the testing phase is listed in Table 5.2. We can see that Dist-Comm provides the best
performance in terms of the desired reward, resource efficiency, and throughput and delay
requirements. Moreover, it encourages a more balanced service quality between the two
slices.

0.00.20.40.60.81.0
Average Throughput / Throughput Requirement

0.80

0.85

0.90

0.95

1.00

E
m

pi
ri

ca
lC

om
pl

em
en

ta
ry

C
D

F

Dist Slice1
Dist Slice2
Dist-Comm Slice1
Dist-Comm Slice2
Cen-Soft Slice1
Cen-Soft Slice2
Baseline Slice1
Baseline Slice2

Figure 5.6: Comparing slice throughput from different approaches

1 2 3 4 5 6 7
Delay [in ms]

0.80

0.85

0.90

0.95

1.00

E
m

pi
ri

ca
lC

D
F

Dist Slice1
Dist Slice2
Dist-Comm Slice1
Dist-Comm Slice2
Cen-Soft Slice1
Cen-Soft Slice2
Baseline Slice1
Baseline Slice2

Figure 5.7: Comparing slice delay from different approaches

Last but not least, Fig. 5.8 illustrates the comparison between the solutions to resource
constraints. The embedded softmax layer demonstrates a better performance than the re-
ward shaping. It is also worth mentioning that the results shown in Fig. 5.8 were obtained
with a different smaller environment consisting of 6 cells, with first 1000 timestamps for
exploration, 6000 for training and final 1000 for testing, while with 9 cells we have diffi-

5.6. KEY TAKEAWAYS 91

Table 5.2: Comparison of average performance metrics among different approaches

Dist Dist-Comm Cen-Soft Baseline

RL Reward 0.697 0.775 0.756 0.771

Resource
Efficiency

0.367 0.374 0.362 0.183

Per-slice
Throughput
Satisfaction

(0.940, 0.969) (0.975, 0.972) (0.950, 0.972) (0.942, 0.985)

Per-slice
Delay (ms)

(1.14, 1.06) (1.04, 1.11) (1.15, 1.07) (1.15, 1.03)

0 1000 2000 3000 4000 5000 6000 7000
Timestamp

−0.25

0.00

0.25

0.50

0.75

1.00

R
L

R
ew

ar
d

Cen-Pen
Cen-Soft

Figure 5.8: Comparing solutions to DRL with resource constraints

culties in obtaining converging results using reward shaping. Thus, a hypothesis is that
the shaped reward function is more complex, and easily causes oscillating and unstable
training experience.

5.6 Key Takeaways

In this section, we summarize the key insights gained from experiment analysis:

• RL Learning Capability: Both centralized and distributed DRL-based approaches
effectively adapt to slice-aware traffic, providing high service quality. With the in-
troduction of the headroom concept, these approaches offer more than a two-fold
increase in resource efficiency compared to traffic-aware baselines.

• Performance of Distributed Schemes: The distributed DRL outperforms the central-
ized approach when both are trained within the same limited time period. Inter-agent
coordination mechanism, which allows multiple agents to share load information, en-
hances the performance of the distributed scheme. This approach maintains lower
model complexity, achieves faster convergence, and provides more balanced service
quality among different slices.

• Inter-Slice Resource Constraints: When addressing inter-slice resource constraints,
embedding a decoupled softmax layer proves superior to reward shaping. This
method leads to faster convergence and avoids deep oscillations during training.

In this chapter, we tackled the dynamic inter-cell slicing resource partitioning problem to
meet slice-aware service requirements and improve resource efficiency. Our approach in-
volved jointly optimizing inter-cell inter-slice resource partitioning and resource headroom.
Thereby, we answer the Question 2 by providing the following contributions:

92 5. Distributed DRL as Per-cell Scheme

1. Distributed Multi-Agent DRL Solution: We proposed a distributed multi-agent DRL
solution to address the problem, exploring two schemes: with and without inter-agent
coordination.

2. Handling Resource Constraints: We developed two methods, reward reshaping and
decoupled softmax embedding, to enable DRL agents to be aware of inter-slice re-
source constraints.

3. Extensive Evaluation: We extensively evaluated our proposed solutions using a
system-level simulator. The results demonstrated that the coordinated distributed
scheme provides superior slice-aware service performance compared to the central-
ized approach, with the added benefit of more than doubling resource efficiency over
traffic-aware baselines.

Despite the promising results of DRL in resource management, several challenges hinder
its broader applicability and effectiveness. One major issue is the poor generality of DRL
models, which often struggle to perform well outside the specific training scenarios due
to their inability to generalize across different network conditions. Additionally, sample
efficiency poses a significant challenge, as DRL algorithms typically require vast amounts
of data to learn effective policies, making training time-consuming and computationally
expensive. Lastly, model reproducibility is a critical concern, as the complex and stochas-
tic nature of DRL agent can lead to inconsistent performance across different runs and
environments.

Building on these findings, the next step is to integrate TL into the distributed DRL
framework. TL can enhance the learning efficiency and performance of DRL agents by
leveraging knowledge from previously learned tasks or domains. This approach is partic-
ularly useful in scenarios with complex state-action spaces or when dealing with multiple
agents. In the upcoming chapters, we will explore how TL can be used to:

• Improve the learning rate and sample efficiency of DRL agents;

• Facilitate knowledge transfer between cells or cell clusters, allowing agents to adapt
more quickly to new environments;

• Further enhance the coordination between multiple agents in a distributed DRL
setting.

By incorporating TL, we aim to overcome the challenges associated with training DRL
agents in large-scale, dynamic network environments, ultimately leading to more efficient
and robust resource management solutions.

93

6. TL-aided DRL Approach I:
Generalist-to-Specialist

In this chapter, we integrate the proposed distributed DRL approach with TL techniques
to achieve higher model reproducibility and sample efficiency. Specifically, we investigate
methods for transferring a general distributed DRL model trained on a large dataset to a
specific domain.

We continue to address the dynamic inter-cell resource partitioning problem to meet the
throughput and latency requirements for all slices under inter-slice resource constraints. In
addition to the main objectives, we study two additional goals: maximizing the minimum
service quality across all slices and cells and maximizing the average logarithmic utility
over all slices. We refer to the multi-agent DRL algorithm with inter-agent coordination,
as proposed in Section 5.4, as the DIRP algorithm. Furthermore, to address Question 3
and Question 5, we develop a novel TL-based DIRP algorithm to facilitate the transfer of
DIRP solutions across different network environments. The effectiveness of TL-DIRP is
analyzed through pre-trained model transfer, instance transfer, and combined model and
instance transfer schemes.

This chapter incorporates findings from research published in the following papers:

Knowledge Transfer in Deep Reinforcement Learning for Slice-Aware Mobility
Robustness Optimization Qi Liao, Tianlun Hu, Dan Wellington ICC 2022
- IEEE International Conference on Communications, 2022, pp. 1-6, doi:
10.1109/ICC45855.2022.9838657.

For the paper mentioned above, my contributions were primarily in the design and im-
plementation of applications combining TL with RL concepts. This work specifically
addressed enhancing network mobility robustness by optimizing handover behaviors us-
ing RL methods, supplemented by TL techniques to boost performance. Although this
specific network optimization task is not discussed in the dissertation, the methodologies
developed for RL and TL are adapted and applied.

Version: January 20, 2025 – 13:20:04

94 6. TL-aided DRL Approach I: Generalist-to-Specialist

Inter-Cell Network Slicing with Transfer Learning Empowered Multi-Agent Deep
Reinforcement Learning Tianlun Hu, Qi Liao, Qiang Liu, Georg Carle IEEE
Open Journal of the Communications Society, Volume. 4, 2023, pp. 1-15, doi:
10.1109/OJCOMS.2023.3273310

In the second publication, I was responsible for conducting the literature review, designing
and implementing the proposed TL methods on top of RL-based solutions for slice resource
allocation, and evaluating the experiments. Additionally, I took on the task of drafting
the manuscript. In this dissertation, the work is extended by connecting to the discus-
sions in previous chapters, particularly focusing on applying TL in Generalist-to-Specialist
scenarios. This sets the stage for the initial discussions in Chapter 7, which covers other
scenarios of applying TL to RL-based soluitions.

This chapter is organized as follows. In Section 6.2, we define the system model and
formulate the inter-cell inter-slice resource partitioning problem. In Section 6.3, we propose
the DIRP algorithm to solve the problem with inter-agent coordination. In Section 6.4,
we enhance the DIRP algorithm with TL and investigate different types of transferable
knowledge. The numerical results are demonstrated in Section 6.5. Finally, we conclude
this paper in Section 6.6.

6.1 Introduction

With the increasing deployment of base stations in 5G and beyond, network slicing is
becoming more complex. The lack of interference coordination in existing individualized
approaches can degrade slice performance in multi-cell scenarios.

6.1.1 Motivation

Based on the findings from the last chapter, distributed schemes, such as those proposed in
[57, 58, 68], independently train agents with individualized policies. These schemes show
promising performance improvements in terms of convergence speed and communication
overhead compared to centralized schemes. Zhao et al. [58] investigated dynamic resource
allocation in network slicing with distributed DRL. However, their approach lacks inter-
agent coordination, leading to uncoordinated interference in multi-cell slicing management.
Efforts by Nie et al. [69] have addressed non-stationary environments by augmenting the
state space of individual agents, but concerns about sample efficiency, lengthy exploration,
and convergence speed remain, hindering practical implementation in large-scale networks.

Emerging TL techniques [70] have been increasingly studied to address challenges regarding
algorithm scalability, model reproducibility, and sample efficiency in machine learning-
based approaches [71, 72, 73]. The basic idea of TL is to utilize prior knowledge from
pre-trained models to benefit the learning process in target models. While extensive TL
research exists in the supervised learning domain [74, 75], these techniques cannot be
directly applied to the RL domain [76, 77]. A few studies [78, 79] have explored TL in
resource allocation for mobile networks, such as spectrum sharing in Vehicle-to-Everything
(V2X) [80] and parameter optimization in network slicing. However, TL-assisted MADRL
in inter-cell network slicing scenarios remains an open problem.

6.1.2 Related Works

The topics discussed in this chapter relate to network resource management, DRL, and
TL methods in mobile networks.

Model-based Resource Management
Extensive works use model-based approaches to manage RAN slice resource allocation in

6.1. INTRODUCTION 95

5G and beyond networks. Some studies [52, 53] investigated network slice resource allo-
cation by assuming known and static resource demands, leveraging convex optimization
methods to solve the problem with various utility functions. In machine-type communi-
cations, Beshley et al. [51] proposed a radio resource allocation method to dynamically
select channel bandwidth based on QoS requirements and traffic aggregation in Machine-
to-Machine (M2M) gateways. Addad et al. [50] analyzed virtual network function de-
ployment in network slicing, formulating a mixed-integer linear programming model and
proposing a heuristic algorithm under different resource constraints. Cavalcante et al. [81]
formulated a max-min fairness problem to handle load-coupled interference, transforming
it into a fixed-point problem solved with a low-complexity iterative algorithm. Recently, an
inter-cell coordinated scheme for dense cellular network resource scheduling was proposed
[82], addressing inter-cell interference and showing promising results. However, these ap-
proximated mathematical models cannot fully represent complex network characteristics.
More importantly, applying these model-based solutions in OAM is challenging due to the
lack of Channel State Information (CSI) measurements at fine time granularity.

DRL Approaches in Networking
Liu et al. [55] proposed a constrained DRL based on interior-point policy optimization
(IPO) to solve the slicing resource allocation problem in a single base station scenario. Xu
et al. [83] studied a DRL-based solution to extract the behavior of per-slice users with
traffic-aware exploration and allocate sufficient RAN resources accordingly. Liu et al. [56]
proposed a DRL-based algorithm named DeepSlicing, decomposing RAN slicing optimiza-
tion into a master problem and several slave problems, addressed with a joint coordinator
and associated DRL agent for each slice. However, these works focus on single-cell sce-
narios. Some studies [57, 58] explored multi-cell scenarios and proposed DRL solutions
with discrete action spaces. Recent efforts [59, 60] extended the discrete action space into
continuous action space, showing improved performance in handling complex scenarios.
However, none addressed inter-cell dependencies and inter-slice resource constraints.

TL Methods in Networking
Xu et al. [84] proposed an aggregation TL method applied to MADRL for real-time strat-
egy games, transferring knowledge from small-scale to large-scale multi-agent systems,
improving the convergence speed of the algorithm. Zafar et al. [80] enhanced double
Q-learning with TL for decentralized spectrum sharing in V2X communication networks,
accelerating the learner model’s convergence rate by transferring Q-values from the expert
model. Mai et al. [79] proposed optimizing slice parameters, such as transmission power
and spreading factor, with DDPG and TL, by pre-training a model on a centralized con-
troller and using it as the initial model for local slice optimization tasks. Nagib et al. [78]
studied TL to accelerate DRL algorithms for dynamic RAN slicing resource allocation in
single-cell scenarios, transferring the model pre-trained from an expert base station to a
learner base station. However, none of the above works studied TL in coordinated MADRL
for inter-cell slicing resource partitioning.

6.1.3 Outline

In this chapter, we first develop a DIRP algorithm, which effectively solves the problem
with an inter-agent coordination mechanism, allowing information sharing between cells.
The optimization is based on two alternative objectives: 1) maximizing the minimum
service quality over all slices and cells, and 2) maximizing the average logarithmic utility
over all slices. The former ensures that all slice-specific requirements for throughput and
delay are fulfilled, aligning with 3rd Generation Partnership Project (3GPP) specifications
that the service provided by any network slice must comply with the SLA [85]. Max-min
fairness, known to provide the best fairness guarantees, is a special case of the general
class of well-known α-fair utility functions [86, 87]. The latter, as a classical concave

96 6. TL-aided DRL Approach I: Generalist-to-Specialist

utility function and also part of the α-fair utility functions, compromises SLA fairness to
improve resource efficiency [88].

Next, we design a TL-aided DIRP algorithm to further improve sample efficiency, model
reproducibility, and algorithm scalability. We investigate the effectiveness of transferable
knowledge through 3 schemes: pre-trained model transfer, instance transfer, and combined
model and instance transfer. We derive several key insights from the simulation results
when integrating TL in MADRL under these schemes.

6.2 System Model and Problem Formulation

In this section, we first describe the MDP-based system model in Section 6.2.1. Then, we
formulate the optimization problem based on the MDP model in Section 6.2.2. Table 6.1
summarizes the notations used in this work.

Table 6.1: Table of notations

Symbol Meaning

s Global state in S
a Global action in A
r Global reward

sk Local state in Sk of Agent k

ak Local action in Ak of Agent k

rk Local reward of agent k

r̃k Approximated local reward of Agent k

mk Message sent from Agent k to neighbors

mk Received messages from all neighbors of Agent k

ck Extracted information from mk of Agent k

Qθ Current critic network with parameter θ

πϕ Current actor network with parameter ϕ

Qθ′ Target critic network with parameter θ′

πϕ′ Target actor network with parameter ϕ′

π(G) Generalist policy learned by central controller

πk Specialist policy learned by Agent k

DS Source domain DS := D(G), i.e., generalist domain

TS Source task TS := T (G), i.e., generalist task

DT Target domain DT := D(S)
k , k ∈ K, i.e., specialist domain

TT Target task TT := T (S)
k , k ∈ K, i.e., specialist task

6.2.1 System Model

Similar to the setup in the previous chapter, we consider a network system consisting of a
set of cells K := {1, 2, . . . ,K} and a set of slices N := {1, 2, . . . , N}. Each slice n ∈ N has
predefined throughput and delay requirements, denoted by ϕ∗

n and d∗n, respectively. The
network system runs on discrete time slots t ∈ N0. OAM adapts the inter-slice resource
partitioning for all cells periodically to meet their performance requirements.

To capture the temporal and inter-cell dependencies, we model the multi-cell resource
partition as an MDP defined by M := {S,A, P (·), r(·), γ}, where P : S × A × S → [0, 1]
denotes the transition probability distribution over state space S and action space A.
r : S × A → R is the reward function, which evaluates the per-slice QoS for all cells and
γ ∈ [0, 1] denotes the discount factor for cumulative reward calculation. Assuming that
at each time step t, the network observes the global state s(t) := [s1(t), . . . , sK(t)] ∈ S,
where sk(t) is the local state observed from cell k. The action at slot t denoted by a(t) :=
[a1(t), . . . ,aK(t)] ∈ A, includes the RAN slice resource budget, where the local action

6.2. SYSTEM MODEL AND PROBLEM FORMULATION 97

ak(t) ∈ Ak indicates the partitioning ratio ak,n(t) ∈ [0, 1] to each slice for n ∈ N aligning
with inter-slice resource constraints. Thus, the local action space Ak and the global action
space A yield

Ak :=

{
ak

∣∣∣∣ak,n ∈ [0, 1], ∀n ∈ N ;
N∑

n=1

ak,n = 1

}
. (6.1)

A :=
{
a
∣∣ak ∈ Ak, ∀k ∈ K

}
. (6.2)

The goal is to maximize the satisfaction level of QoS in terms of throughput and delay
requirements (ϕ∗

n, d
∗
n) for every slice n ∈ N in each cell k ∈ K. Thus, we design two alter-

native reward functions for the two alternative objective designs: max-min fairness and
maximizing the average logarithmic utilities. The former provides the best fairness that
guarantees overall slice requirements by giving the maximum protection to the most criti-
cal and resource-demanding slice. While the latter, although taking fairness into account,
still tries to achieve a good fairness-efficiency trade-off.

The global reward function r(t), based on the two alternative objectives, respectively, is
defined as follows:

1. Max-min fairness: we define r(t) as the minimum per-slice QoS satisfaction level
based on the observed average throughput ϕk,n(t) and average delay dk,n(t) at time
step t for each slice n in cell k, as

r(t) := min
k∈K,n∈N

min

{
ϕk,n(t)

ϕ∗
n

,
d∗n

dk,n(t)
, 1

}
. (6.3)

The reward formulation drops below 1 when the actual average throughput or delay of
any slices fails to fulfill the requirements. Note that the reward is upper-bounded by
1 even if all slices achieve better performance than the requirements to achieve more
efficient resource utilization. The second item in Eq. 6.3 is inversely proportional to
the actual delay, namely, if the delay is longer than required, this term is lower than
1.

2. Maximizing the average logarithmic utilities: we define r(t) as the average logarith-
mic utilities over the service satisfaction levels of all slices, given by

r(t) :=
1

K ·N ·
∑

k∈K,n∈N
log

(
min

{
ϕk,n(t)

ϕ∗
n

,
d∗n

dk,n(t)

}
+ 1

)
. (6.4)

where the service satisfaction level per slice per cell min
{

ϕk,n(t)
ϕ∗
n

, d∗n
dk,n(t)

}
≥ 0 is

defined as the minimum between the throughput and delay satisfaction levels. Thus,
if either throughput or delay does not meet the requirement, this term is below 1.
The per-slice logarithmic utility function is always non-negative by adding an offset 1
within the log function with base 2. Note that unlike Eq. 6.3, the reward in Eq. 6.4 is
not upper bounded by 1, because the service satisfaction level is not upper-bounded.
However, if all slices’ requirements are exactly met, we have r(t) = 1.

6.2.2 Problem Formulation

The problem is to find the optimal policy π : S → A, which decides the inter-cell inter-slice
resource partitioning a ∈ A based on the observation of network state s ∈ S, to maximize
the expectation of the cumulative discounted reward defined in Eq. 6.3 or Eq. 6.4 of a
trajectory for a finite time horizon T . The problem is given by:

98 6. TL-aided DRL Approach I: Generalist-to-Specialist

Problem 2.

max
π

Eπ

[
T∑
t=0

γtr
(
s(t),a(t)

)]
, s.t. a ∈ A, (6.5)

where A is defined by Eq. 6.1 and Eq. 6.2, r is given by Eq. 6.3 or Eq. 6.4.

The challenges of solving the problem above are two-fold. First, the global reward func-
tions depend on high-dimensional state and action spaces and involve complex inter-cell
dependencies, which are difficult to accurately obtain in practical network systems. For
example, increasing resource partition in one slice n and cell k improves service perfor-
mance. However, it decreases the available resources allocated to other slices in the same
cell and may aggravate the interference received in neighboring cells. Besides, because
we aim at solving the inter-cell inter-slice resource partitioning problem in OAM, only a
limited set of KPIs (e.g., averaged cell throughput and delay) at a medium time scale (e.g.,
every 15 minutes) is available. It is extremely difficult to derive closed-form expressions for
the multi-cell network with the extracted data at the higher layers (above MAC layer) of
the network system. Second, the dynamic of network systems, e.g., additional cell deploy-
ments, changes the properties of the problem, e.g., leading to expanded state and action
space. This requires the solution of this problem to be efficient and scalable in terms of
fast convergence speed, high sample efficiency, and low computational efforts.

6.3 Distributed DRL Per-cell Scheme - DIRP Algorithm

In this section, we summarize the distributed MADRL approach for inter-cell inter-slice
resource partition introduced in Section 5.4 and nominate it as DIRP algorithm. Then,
we briefly introduce the actor-critic method to solve the DRL problem. Next, we pro-
pose the method to tackle the inter-slice resource constraint with modified DRL network
architecture.

6.3.1 DIRP Algorithm

The DIRP algorithm enables each agent to learn an individual policy and make its own
decision on the local action based on local observations and neighboring information.
Unlike centralized DRL, which collects global observations from all slices and cells in the
network system, the DIRP algorithm may not achieve the same level of global performance
due to its limited view of the entire network. However, it can converge much faster and be
more sample-efficient by utilizing a less complex model with lower-dimensional state and
action spaces. Additionally, the coordination mechanism can enhance the performance of
distributed agents by providing supplementary side information about the environment.

Each agent k observes its local state sk to capture local network observations. Specifically,
we include the following measurements and performance metrics:

• Average per-slice user throughput {ϕk,n : n ∈ N};

• Per-slice load {lk,n : n ∈ N};

• Per-slice number of active users {uk,n : n ∈ N};

• Per-slice throughput requirement {ϕ∗
k,n : n ∈ N};

• Per-slice delay requirement {d∗k,n : n ∈ N}.

6.3. DISTRIBUTED DRL PER-CELL SCHEME - DIRP ALGORITHM 99

In the conventional distributed DRL approach, each agent k computes a local reward rk
and decides on the local action ak ∈ Ak ⊂ [0, 1]N . The local reward, based on the local
observations, is designed for either max-min fairness or maximizing average logarithmic
utilities, as follows:

1. Max-min Fairness:

rk(t) := min
n∈N

min

{
ϕk,n(t)

ϕ∗
n

,
d∗n

dk,n(t)
, 1

}
, (6.6)

2. Maximizing Average Logarithmic Utilities:

rk(t) :=
1

N
·
∑
n∈N

log

(
min

{
ϕk,n(t)

ϕ∗
n

,
d∗n

dk,n(t)

}
+ 1

)
. (6.7)

Note that rk depends not only on the local state-action pair but also on the states and ac-
tions of other agents. The global reward can be formulated as r(t) = mink∈K rk(a(t), s(t))
with the local reward defined in Eq. 6.6 or r(t) = 1

K

∑
k∈K rk(a(t), s(t)) with the local

reward defined in Eq. 6.7. We approximate rk(s,a) based on local observations (sk,ak),
denoted by r̃k(sk(t),ak(t)). However, this estimation can be inaccurate because it neglects
inter-cell dependencies and estimates local rewards independently.

Agents communicate and exchange additional information with neighboring cells to cap-
ture inter-agent dependencies in the DIRP algorithm. Each agent k sends a message mk

to a set of its neighboring agents, denoted by Kk. Each agent k then holds the following in-
formation: local state and action pair (sk,ak) and received messages mk := [mi : i ∈ Kk].
One option is to directly use all received messages mk along with (sk,ak) to estimate
rk(s,a) as r̃k(sk,mk,ak). However, if the dimension of the exchanged message is high,
this increases the complexity of the local model.

An alternative is to extract useful information ck ∈ RZ(c)
from the received messages

mk ∈ RZ(m)
using a function g : RZ(m) → RZ(c)

: mk 7→ ck, such that Z(c) ≪ Z(m),
where Z(m) and Z(c) represent the corresponding dimensions. We then use r̃k(sk, ck,ak)
to approximate rk, capturing hidden information in the global state while maintaining low
model complexity.

Pioneering works such as [89] proposed learning the extraction of communication mes-
sages by jointly optimizing the communication action with the RL model. However, joint
training of multiple interacting models often leads to extended convergence times and even
diverged training. We leverage domain knowledge to extract information to provide a ro-
bust and efficient practical solution. Knowing that inter-agent dependencies are primarily
caused by load-coupling inter-cell interference, we propose that each agent k communi-
cates the slice-specific load information lk,n, ∀n ∈ N with its neighboring agents. Based
on the exchanged load information, we compute the average per-slice neighboring load as
the extracted information ck(t). We define a deterministic function:

gk :RN |Kk| → RN : [li,n : n ∈ N , i ∈ Kk] 7→ ck(t)

with ck(t) :=

 1

|Kk|
∑
i∈Kk

li,n(t) : n ∈ N

 .
(6.8)

In this way, the DIRP algorithm solves Problem 2 with approximated local rewards while
considering inter-cell dependencies by including neighboring information. The DIRP algo-
rithm approximates rk(s,a) with r̃k(sk, ck,ak), decomposes Problem 2 into K independent

100 6. TL-aided DRL Approach I: Generalist-to-Specialist

subproblems, and finds the following local policies πk : Sk×RN → Ak for each DIRP agent
k ∈ K:

π∗
k = arg max

πk;ak∈Ak

Eπk

[
T∑
t=0

γtkr̃k
(
sk(t), ck(t),ak(t)

)]
. (6.9)

6.3.2 Training Setup of DIRP

We follow the actor-critic method [64] to train the agents, which has proven effective
when dealing with high dimensional and continuous state space. Such method solves the
optimization problem by using critic function Q(st,at|θ) (in this subsection, we denote
s(t) and a(t) by st and at respectively for brevity) to approximate the value function, i.e.,
Q(st,at|θ) ≈ Qπ(st,at), and actor π(st|ϕ) to update the policy π at every DRL step in the
direction suggested by critic. For brevity, we denote the network with parameters in the
form Qθ and πϕ for critic and actor respectively.

Same as the training process of distributed DRL, we use TD3 algorithm [65] as an off-
policy DRL algorithm built on top of the actor-critic method. As an extension of DDPG
[66], TD3 overcomes the DDPG’s problem of overestimating Q-values by introducing a
double critic structure for both current networks Qθ1 , Qθ2 and target networks Qθ′1

, Qθ′2
.

The minimum of the two Q-values is used to represent the approximated Q-value of the
next state. Besides, the updates of the policy network are less frequent than the value
network, which allows the value network to reduce errors before it is used to update the
policy network. Moreover, TD3 uses target policy smoothing, i.e., adding noise to the
target action, to make it harder for the policy to exploit Q-function errors by smoothing
out Q along with changes in action.

The target actions are computed based on the next state collected in the sample, given by

a′(st+1) = clip
(
π′
ϕ′ (st+1) + clip(ϵ,−c, c),aL,aH

)
(6.10)

where the added noise ϵ ∼ N (0, σ) is clipped to keep the target close to the original action,
and aL,aH are the lower and upper bounds of the action, respectively.

The target update in TD3 is given by:

yt = rt + γ min
i=1,2

Qθ′i

(
st+1,a

′(st+1)
)
. (6.11)

The critic parameters θi, i ∈ {1, 2} are updated with temporal difference (TD) learning,
given by:

L (θi) = E
[
(yt −Qθi (st,at))

2
]
. (6.12)

The actor is updated by policy gradient based on the expected cumulative reward J with
respect to the actor parameter θπ with:

∇ϕJ ≈ E
[
∇ϕQθ1 (s,a) |s=st,a=πϕ(st)

]
= E

[
∇aQθ1 (s,a) |s=st,a=πϕ(st)∇ϕπϕ (st)

]
.

(6.13)

The parameters of the target networks are updated with the soft update to ensure that
the TD-error remains small:

θ′i ← τθi + (1− τ)θ′i, i = 1, 2;ϕ′ ← τϕ + (1− τ)ϕ′. (6.14)

6.3. DISTRIBUTED DRL PER-CELL SCHEME - DIRP ALGORITHM 101

6.3.3 Dealing with Resource Constraints

To address the inter-slice resource constraints in Eq. 6.1, we propose a method by recon-
structing the network architecture of DRL model with an additional regularization layer.

Based on the findings of comparing RL reward formulation in Section 5.4.3.2, we embed
a decoupled regularization layer into the output layer of the actor network, such that this
layer becomes part of the end-to-end back propagation training of the neural network.
Since the softmax function realizes for each ak the following projection

σ : RN →
{
ak ∈ RN

∣∣∣ak,n ≥ 0,
N∑

n=1

ak,n = 1

}
,

In summary, we provide the TD3-based DIRP algorithm with inter-agent coordination in
Algo. 8.

Algorithm 8 The DIRP Algorithm

1: Initialize parameters for critics Qθk1
, Qθk2

, and actor πϕk with random parameters θk1 ,

θk2 , ϕk, ∀k ∈ K
2: Initialize target networks θ′k1 ← θk1 , θ′k2 ← θk2 , ϕ′k ← ϕk

3: Initialize empty replay buffer Bk
4: Initialize ϵ ∈ [0, 1] and decay d ∈ [0, 1] for ϵ-greedy exploration
5: Define time periods H(Expl),H(Train),H(Eval) for exploration, training, and evaluation

phases, respectively
6: Repeat
7: for local agent k ∈ K do
8: Observe local state sk(t) and information ck(t)
9: Select and execute action:

10: if t ∈ H(Expl) then
11: ak(t)← random choice
12: else if t ∈ H(Train) then

13: ak(t)←
{
πk(sk(t), ck(t)) + ε, if U [0, 1] > ϵ

random choice, otherwise

14: where U [0, 1] is the random value following uniform distribution in [0, 1].
15: ϵ← dϵ
16: else if t ∈ H(Eval) then
17: ak(t) = πk(sk(t), ck(t))
18: end if
19: Observe next state sk(t + 1), received information ck(t + 1), and compute rk(t)

20: Store instance in Bk:
((

sk(t), ck(t)
)
,ak(t),

(
sk(t + 1), ck(t + 1)

)
, rk(t)

)
21: if time to update networks then
22: Sample mini-batch of B instances from Bk
23: Compute target actions and targets using Eq. 6.12 and Eq. 6.13
24: Update critic and actor based on Eq. 6.12 and Eq. 6.13
25: if t mod policy delay then
26: Update target networks using Eq. 6.14
27: end if
28: end if
29: end for

102 6. TL-aided DRL Approach I: Generalist-to-Specialist

Figure 6.1: Generalist-to-Specialist TL scheme

6.4 TL-aided DIRP Algorithm

In this section, we introduce a TL method for multi-agent DRL approach with knowledge
transfer in three ways, as sample knowledge transfer, model knowledge transfer, and full
knowledge transfer, for faster training convergence, higher sample efficiency and model
reproducibility.

As discussed in Section 6.3.1, the DIRP algorithm achieves a good trade-off between re-
ducing model complexity and capturing the inter-cell dependencies. However, each agent
needs to learn the local policy from scratch and still faces the well-known challenge of the
exploration-exploitation dilemma. The environment dynamics and state transitions are
usually unknown at the early stage of training, and the agent cannot exploit its knowledge
until the state-action space is exhaustively explored. Moreover, because the local model is
trained on a specific data domain, the learned model is sensitive to domain shift (a change
in the data distribution between the training dataset and the dataset that it encounters
when deployed). This means that even a slight change in the environment may result in
deteriorated performance, and the agent may face a long period of retraining time.

To overcome the above-addressed challenges, we raise a hypothesis that some common
hidden pattern may exist in the critic and actor networks across different agents and
propose to enhance the developed coordinated MADRL algorithm with TL. We expect
the TL to improve the model reproducibility and speed up the learning convergence by
performing the following two major steps as demonstrated in Fig. 6.1:

1. Centralized training of a “generalist”: A centralized controller collects the samples

from all local agents
((

sk(t), ck(t)
)
,ak(t),

(
sk(t + 1), ck(t + 1)

)
, rk(t)

)
, ∀k ∈ K for a

time period t = 0, . . . , T (G) and trains a generalized model by interacting with the
environment based on the same model in training for all agents.

2. Distributed TL and fine-tuning to the “specialists”: After time slot T (G), we transfer
the learned knowledge in the “generalist” to each local agent (i.e., the “specialists”),
and fine-tune the customized model locally. The details of different types of trans-
ferable knowledge are provided later in Section 6.4.2.

6.4.1 TL Problem Formulation

Before introducing the TL problem in the context of MADRL, let us first introduce a
general definition of TL.

6.4. TL-AIDED DIRP ALGORITHM 103

A domain D := {X , P (X)} consists of a feature space X and its probability distribution
P (X), X ∈ X . A task T := {Y, f(·)} consists of a label space Y and a predictive function
f(·), where f(·) can be written as P (Y |X), Y ∈ Y and X ∈ X . Formally, the general
definition of the TL is given below.

Definition 3 (TL [70]). Given a source domain DS and a source learning task TS, a target
domain DT and a target learning task TT , TL aims to improve the learning of the target
predictive function fT (·) in DT using the knowledge in DS and TS, where DS ̸= DT , or
TS ̸= TT .

In the context of DRL, a domain D := {S, P (s)} consists of the state space S and its
probability distribution P (s), s ∈ S, while the task T := {A, π(·)} consists of the action
space A and a policy function π(·). In general, the policy π is a mapping from states
to a probability distribution over actions. With the actor-critic method introduced in
Section 6.3.2, the policy directly maps the state space to optimized action, thus, we have
π : S → A.

In the scope of our proposed generalist-to-specialist TL-DIRP algorithm, we introduce the
following definitions of the source domain, source task, target domain, and target task.

• Source domain: DS := D(G) consists of the joint state and communicated message
space S(G)×RN and its probability distribution P

(
s(G), c(G)

)
, where s(G) ∈ S(G) :=

∪k∈KSk and c(G) ∈ RN . The state s(G) and message c(G) are collected by the
centralized controller from all local agents.

• Source task: TS := T (G) consists of the general action space A(G) and the policy
function π(G) : S(G)×RN → A(G). The general policy π(G) is trained on the instances
collected by all agents.

• Target domain: DT := D(S)
k , k ∈ K consists of the joint local state and communication

message space Sk×RN and its probability distribution P (sk, ck), where sk ∈ Sk and
ck ∈ RN .

• Target task: TT := T (S)
k , k ∈ K consists of the local action space Ak and local policy

πk : Sk × RN → Ak.

The problem of TL from a source DRL agent as a“generalist”to a set of target DRL agents,
i.e., the local “specialists”, is formulated in Problem 3.

Problem 3. Given source domain D(G) :=
{
S(G) × RN , P

(
s(G), c(G)

)}
and pre-trained

source task T (G) :=
{
A(G), π(G)(·)

}
, TL aims to learn an optimal local policy for the target

domain D(S)
k :=

{
Sk × RN , P (sk, ck)

}
, ∀k ∈ K by leveraging the knowledge extracted from(

D(G), T (G)
)
, as well as the knowledge exploited in the target domain D(S)

k . The problem
is given by

max
πk|π

(0)
k =Λ(π(G))

Eπk

[
T∑
t=0

γtkr̃k
(
sk(t), ck(t),ak(t)

)]
(6.15)

s.t. (sk, ck,ak) ∈ Ω
(
D(G),D(S)

k ,A(G),Ak

)
.

where Λ
(
π(G)

)
is the policy transfer strategy which maps the pre-trained source policy

π(G) to an initial local policy π
(0)
k , while Ω

(
D(G),D(S)

k ,A(G),Ak

)
is the instance transfer

strategy which extracts the instances from the source domain and combines them with the
experienced instances from the target domain.

104 6. TL-aided DRL Approach I: Generalist-to-Specialist

6.4.2 Generalist-to-Specialist TL

The problem defined in Eq. 6.15 offers various options for transferable knowledge:

• pre-trained model transfer: The policy transfer strategy Λ(·) simply maps the pre-
trained source policy to itself, i.e., the local agent uses the pre-trained general policy

π(G) as the initial policy π
(0)
k and fine-tunes it by further interacting with the envi-

ronment with locally made decisions.

• Feature extraction: Λ(·) keeps partial knowledge of π(G). In DRL, the policy
π(G)

(
s(G), c(G)|ϕ(G)

)
is characterized by the pre-trained parameters (weights) of

the neural networks. Feature extraction freezes partial of the layers (usually the
lower layers) of the pre-trained neural networks while leaving the rest of them to be
randomly initialized.

• Instance transfer: Except for the instances from the target domain, the agent also
trains its policy using the extracted instances from the source domain. The instance
transfer strategy Ω (·) decides which instances are chosen from the source domain to
be combined with the instances from the target domain in the local replay buffer.

The above-mentioned knowledge from the source domain and task can be transferred
separately or in a combined manner. In this paper, we focus on studying the following
three TL schemes:

• pre-trained model transfer only: Each local agent k uses the pre-trained general

policy π(G) to initialize the local policy π
(0)
k . With the actor-critic method described

in Section 6.3.2, we simply load the pre-trained parameters of the actor and critic
networks from the generalist to the local agents. However, when the difference
between the source and target domain is large, the local agent still needs extensive
exploration to fine-tune the general policy to a customized local policy.

• Instance transfer only: Each local agent offloads a set of selected instances in the
source domain from the centralized controller to the local replay buffer. Then, the
local agent trains a policy from scratch with the replay buffer containing mixed
offline instances from the source domain and the experienced online instances in the
target domain. In this paper, we select the instances collected from the exact same
local agent. Future work includes the similarity analysis between agents and instance
selection from similar agents, which falls into the subject of domain adaptation [90].

• Combined model and instance transfer: To fully exploit the transferable knowledge,
we combine the pre-trained model transfer and instance transfer. Firstly, each local
agent retrieves π(G) from the centralized controller and uses it to initialize the local

policy π
(0)
k . Then, we further investigate two options for local fine-tuning:

– Online fine-tuning with mixed replay buffer:
The local agent further online fine-tunes the policy with the replay buffer con-
taining both the offloaded instances from the source domain and the locally
experienced instances from the target domain.

– Offline fine-tuning with offloaded instances & online fine-tuning with experi-
enced instances:
The local agent first offline fine-tunes π(G) with the offloaded instances. Then,

the offline fine-tuned model is used to initialize π
(0)
k and further fine-tuned online

with the locally experienced instances in the target domain.

6.5. EXPERIMENTS 105

Note that our experiments focus on the pre-trained model transfer and instance transfer,
while do not include the feature extraction. This is because feature exaction usually
performs well when the target domain is highly similar to the source domain. However,
in general, the similarity between the generalist domain and the specialist domain is not
sufficiently high. Thus, the feature exaction method may better suit the scenario of inter-
agent TL, while it may not be appropriate for generalist-to-specialist knowledge transfer.

We illustrate the TL-DIRP algorithm with a combined model and instance transfer in
Algo. 9.

Algorithm 9 TL-Aided DIRP Algorithm

1: I. Generalist training in centralized controller

2: Initialize generalist critics Q
θ
(G)
1

, Q
θ
(G)
2

and actor πϕ(G) with random parameters θ
(G)
1 ,

θ
(G)
2 , ϕ(G)

3: Initialize target networks θ
′(G)
1 ← θ

(G)
1 , θ

′(G)
2 ← θ

(G)
2 , ϕ′(G) ← ϕ(G)

4: Initialize empty replay buffer B(G)

5: Define time periods H(G),H(S) for generalist training and specialist fine-tuning respec-
tively

6: for t ∈ H(G) do
7: Collect observations of local states sk(t) and received information ck(t), ∀k ∈ K
8: Use general policy π(G) to select and execute action ak(t),∀k ∈ K
9: Observe the next local states sk(t + 1) and information ck(t + 1), compute local

rewards rk(t), ∀k ∈ K
10: Store K instances in replay buffer B(G)

11: Train and update the general critics Q
θ
(G)
i

, i = 1, 2, actor πϕ(G) , and target critics

Q
θ
′(G)
i

, i = 1, 2 and actor πϕ′(G) using the TD3 algorithm in Section 6.3.2

12: end for

13: II. Specialist fine-tuning in local agents

14: Initialize parameters for critics Qθk1
, Qθk2

and actor πϕk with θk1 ← θ
(G)
1 , θk2 ← θ

(G)
2 ,

ϕk ← ϕ(G), ∀k ∈ K
15: Initialize target networks θ′k1 ← θk1 , θ′k2 ← θk2 , ϕ′k ← ϕk

16: Offload selected instances from B(G) to Bk
17: for t ∈ H(S) do
18: for Local agent k ∈ K do
19: fine-tune local policy with Algo. 8 (except for the initialization steps)
20: end for
21: end for

By introducing Algo. 9, we partially address Question 3 by proposing the transfer of
general knowledge captured from multiple source domains and broadcasting it to individual
agents. This approach assumes that we have sufficient samples to derive a generalist DRL
agent. Later, in Chapter 7, we will explore another case where there is limited knowledge
available for solving a general distributed DRL problem.

6.5 Experiments

In this section, we evaluate the performance of the proposed methods for inter-cell slicing
resource partitioning introduced in Sections 6.3 and 6.4 with Season II simulator. To
implement our proposed DRL solution, we build in the simulator a network with 4 sites
(12 cells) covering an urban area of Helsinki city, as demonstrated in Fig. 6.2, consisting
of 4 three-sector macro sites. All cells are deployed using LTE radio technology with 2.6
GHz. We use the realistic radio propagation model Winner+ [67].

106 6. TL-aided DRL Approach I: Generalist-to-Specialist

Figure 6.2: Network environment setup with 12 cells

The network is built up with N = 4 network slices, with per-slice throughput requirements
of ϕ∗

1 = 4 Mbit/s, ϕ∗
2 = 1 Mbit/s, ϕ∗

3 = 3 Mbit/s, and ϕ∗
4 = 0.5 Mbit/s and per-slice delay

requirements of d∗1 = 1 ms, d∗2 = 1.5 ms, d∗3 = 2 ms, and d∗4 = 1 ms respectively. All cells
in the network have a fixed bandwidth of 20 MHz.

We define four groups of UEs associated with each defined slice respectively, i.e., 16 groups
of UEs in total, all with the maximum group size of 10. UEs are moving uniformly
randomly within the defined moving sphere of each group. The positions and moving
radius of UEs groups are defined heterogeneously to ensure that each site can serve UE
from all slices. To imitate the time-varying traffic pattern, we also apply a time-dependent
traffic mask τn(t) ∈ [0, 1] for each slice n ∈ N to scale the total number of UEs in the
scenario. In Fig. 6.3, we demonstrate the changes of the first 2 days from a three-week
traffic mask. The UE traffic volume is updated every timestamp, which corresponds to
15 minutes in real time, also known as the typical KPI reporting time in OAM. In the
experiments, the entire traffic mask is extended and periodically repeated after every 2016
timestamp corresponding to the three-week time period (96 timestamps per day).

0 25 50 75 100 125 150 175 200
Timestamp

0.2

0.4

0.6

0.8

1.0

Tr
af

fic
 M

as
k

Slice 1
Slice 2
Slice 3
Slice 4

Figure 6.3: The first two days of a three-week traffic mask

6.5.1 Schemes for Comparison

For performance evaluation, we compare the proposed DIRP and TL-DIRP algorithms
with the following three baselines:

6.5. EXPERIMENTS 107

Table 6.2: Comparison of dimensions of DRL models used in simulation

BL-Cen BL-Dist DIRP & TL-DIRP

State Global state s ∈ R240 Local state sk ∈ R20
Local state with

extracted message
[sk, ck] ∈ R24

Action
Global action
a ∈ [0, 1]48

Local action ak ∈ [0, 1]4 Local action ak ∈ [0, 1]4

Reward
Global reward rmG in

Eq. 6.3
Local reward rmk in

Eq. 6.6
Local reward rmk in

Eq. 6.6

• BL-Cen: The centralized DRL approach solving Eq. 6.5 referring to [91], assuming
full observation of the global state s ∈ S. The agent computes the global reward and
makes the decision of the slicing resource partitioning for all agents a ∈ A.

• BL-Dist: The distributed DRL approach without inter-agent coordination [58].

• BL-Heur: A traffic-aware heuristic approach that assumes perfect knowledge about
per-slice traffic demand and dynamically adapts to the current per-slice traffic amount.
It is implemented by dividing the resource in each cell k ∈ K to each slice propor-
tionally to the amount of traffic demand per slice.

The DRL-based schemes to evaluate and compare are summarized in Table 6.2. Similarly,
to evaluate the TL-DIRP algorithm and compare between different types of knowledge to
transfer, we implement the proposed TL method in Section 6.4, i.e., centralized training
of a generalist and then distributed fine-tuning to the specialist. We compare different
transferable knowledge: instances, pre-trained model, and combined instances and pre-
trained model. In addition, to ensure a safer exploration and better performance during
online training, we perform the offline fine-tuning using the transferred instance before the
online training in each local agent.

• Gen: centralized training of a general policy in the centralized controller based on
the collected samples from all local agents, as described in Algo. 9.

• Spec: distributed fine-tuning of the specialists with full knowledge transfer. Each
local agent initializes its critic and actor networks with the generalist model param-
eters. It also initializes the local replay buffer with the offloaded selected instances
from the generalist buffer.

• Spec-Instance: distributed fine-tuning of the specialists with instance transfer only.
The model parameters in each local agent are randomly initialized.

• Spec-Model: distributed fine-tuning of the specialists with model transfer only. Each
local agent initializes its critic and actor networks by loading the generalist model
parameters, while the local buffer is initialized as an empty queue.

• TL-DIRP: In addition to Spec (full knowledge transfer), we apply the offline fine-
tuning based on the transferred instances before the online training.

Note that for“generalist-to-specialist”TL schemes with complete knowledge, we apply both
max-min fairness and logarithmic utilities as local reward rk for k ∈ K respectively:

• TL-DIRP-Maxmin: TL-DIRP approach with max-min fairness reward Eq. 6.6.

• TL-DIRP-Log: TL-DIRP approach with on logarithmic utility reward Eq. 6.7.

108 6. TL-aided DRL Approach I: Generalist-to-Specialist

0 1000 2000 3000 4000 5000
Timestamp

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
L

re
w

ar
d

TL-DIRP
DIRP
BL-Cen
BL-Dist
BL-Heur

Figure 6.4: Comparison of reward among schemes

6.5.2 Hyperparameter Setup for Training

For DRL training, we use MLP architecture for actor-critic networks of TD3 algorithm.
In the BL-Cen scheme, the actor and critic network models are built up with 3 hidden
layers, with the number of neurons (384, 192, 64) and (324, 144, 64), respectively. While for
BL-Dist and DIRP schemes, both actor-critic networks only have 2 hidden layers, with the
number of neurons (48, 24) and (64, 24), respectively. In all schemes, the learning rates of
actor and critic are 0.0005 and 0.001, respectively, with Adam optimizer and training batch
size of 32. We choose a small DRL discount factor γ = 0.1 since the current action strongly
impacts the instantaneous reward while having a weaker impact on the future reward. For
the distributed DRL approaches, we only apply 100 steps for exploration, while for the
centralized approaches, we apply 500 steps of exploration since the centralized agent has
much higher dimensions of state and action. After the exploration phase, we apply 5000
steps for training and the final 500 steps for evaluation of all approaches.

In TL training, we apply the same DRL settings. For TL training setup, we set 100 steps
for exploration, 5000 steps for learning, and 500 steps for evaluation in Gen and Spec-
Model schemes, while in other TL execution schemes, we skip the exploration phase. The
result of each process is derived from the average of 3 times of experiments.

In this work, we apply an orientated exploration strategy that chooses the new action under
the recommendation of the traffic-aware heuristic policy, namely, the heuristic baseline
BL-Heur. The reason is that we observe that BL-Heur provides sub-optimal performance
without any training process. At the beginning of the exploration phase, the probability
of using traffic-aware exploration is 0.5, and that of random exploration is also 0.5. Then,
during the exploration, the probability of traffic-aware exploration gradually increases, and
that of random exploration decreases.

6.5.3 Performance Evaluation

In this section, we provide the numerical results derived from experiments on the virtual
network systems in Season II.

6.5.3.1 Comparison of the Distributed MADRL Schemes

In this comparison, we apply the reward design for max-min fairness to all approaches, i.e.,
global reward based on Eq. 6.3 for BL-Cen and local reward based on Eq. 6.4 for BL-Dist
and DIRP. While for comparison between the different reward functions, we implement
DIRP algorithm with both types of local reward rk based on Eq. 6.6 and Eq. 6.7.

6.5. EXPERIMENTS 109

4500 4600 4700 4800 4900 5000 5100
0.00

0.25

0.50

0.75

Pr
ed

ic
te

d
pe

r-s
lic

e A
ct

io
n

Slice1
Slice2
Slice3
Slice4

4500 4600 4700 4800 4900 5000 5100
Timestamp

0

2

4

N
o

of
 U

Es

Slice1
Slice2
Slice3
Slice4

Figure 6.5: Adaptive action to traffic mask after training

Fig. 6.4 demonstrates the comparison of max-min fairness reward Eq. 6.3 during the train-
ing process among the baseline schemes BL-Cen, BL-Dist, BL-Heur, and the proposed
DIRP and TL-DIRP algorithms.

As shown in Fig. 6.4, TL-DIRP provides the best performance among all approaches in
terms of faster convergence, higher start point, and higher robustness after convergence.

0.00.20.40.60.81.0
Throughput satisfaction level

0.75

0.80

0.85

0.90

0.95

1.00

Em
pi

ric
al

 C
om

pl
em

en
ta

ry
 C

D
F

TL-DIRP Slice_1
TL-DIRP Slice_2
TL-DIRP Slice_3
TL-DIRP Slice_4
BL-Heur Slice_1
BL-Heur Slice_2
BL-Heur Slice_3
BL-Heur Slice_4

Figure 6.6: Comparing throughput QoS between TL-DIRP and BL-Heur

Compared to baselines, the DIRP algorithm achieves a significantly better global reward
than BL-Heur after convergence. Note that BL-Heur is already a well-performed baseline
because it assumes perfect traffic awareness and offers all resources to the UEs. On the
other hand, BL-Cen fails to achieve performance as good as DIRP within the same training
time. As Table 6.2 indicates, the dimensions of the state and action spaces of BL-Cen are
much higher than the distributed approaches, making the training process more difficult
for large-scale networks. Not only does BL-Cen converge slower, but it also often experi-
ences poor performance at the early stage of training. The training curves are turbulent,
corresponding to the time-varying traffic demand in Fig. 6.3, while DIRP is more robust
compared to BL-Heur and BL-Cen.

110 6. TL-aided DRL Approach I: Generalist-to-Specialist

0.00.20.40.60.81.0
Delay satisfaction level

0.80

0.85

0.90

0.95

1.00

Em
pi

ric
al

 C
om

pl
em

en
ta

ry
 C

D
F

TL-DIRP Slice_1
TL-DIRP Slice_2
TL-DIRP Slice_3
TL-DIRP Slice_4
BL-Heur Slice_1
BL-Heur Slice_2
BL-Heur Slice_3
BL-Heur Slice_4

Figure 6.7: Comparing delay QoS between TL-DIRP and BL-Heur

In comparison between the two distributed schemes, according to Fig. 6.4, DIRP outper-
forms the BL-Dist scheme within the same training time period in terms of both converged
global reward and convergence rate, which verifies the advantage of inter-agent coordina-
tion.

Fig. 6.5 shows the predicted action, i.e., per-slice resource partitioning as the ratio, and
the actual traffic amount of DIRP in cell k = 5 after convergence. it verifies that the DRL
approach well adapts its predicted actions to the dynamic network traffic demand with
respect to different slice-specific QoS requirements.

0.20.40.60.81.0
Throughput satisfaction level

0.90

0.92

0.94

0.96

0.98

1.00

Em
pi

ric
al

 C
om

pl
em

en
ta

ry
 C

D
F

TL-DIRP-Maxmin Slice_1
TL-DIRP-Maxmin Slice_2
TL-DIRP-Maxmin Slice_3
TL-DIRP-Maxmin Slice_4
TL-DIRP-Log Slice_1
TL-DIRP-Log Slice_2
TL-DIRP-Log Slice_3
TL-DIRP-Log Slice_4

Figure 6.8: Comparing throughput QoS between utilities

Although DIRP shows better performance than baselines, it still faces two major chal-
lenges: slow convergence and oscillation. In Fig. 6.4, we show that TL-DIRP overcomes
these challenges by transferring pre-learned knowledge. In particular, TL-DIRP achieves a
much higher reward from the beginning of the learning process and quickly converges after
a few hundred timestamps, while DIRP converges much slower because each local agent
needs to learn from scratch. TL-DIRP outperforms DIRP in terms of both convergence
rate and converged performance within the same time period.

Fig. 6.4 shows the evolving algorithms’ performance during the training and testing pro-
cess, while in the following, let us take a deeper look into the distributions of the converged
service quality in terms of throughput and delay satisfaction level for each slice. Fig. 6.6
and Fig. 6.7 illustrate the empirical complementary CDF (or called survival function)

6.5. EXPERIMENTS 111

0.20.40.60.81.0
Delay satisfaction level

0.90

0.92

0.94

0.96

0.98

1.00

Em
pi

ric
al

 C
om

pl
em

en
ta

ry
 C

D
F

TL-DIRP-Maxmin Slice_1
TL-DIRP-Maxmin Slice_2
TL-DIRP-Maxmin Slice_3
TL-DIRP-Maxmin Slice_4
TL-DIRP-Log Slice_1
TL-DIRP-Log Slice_2
TL-DIRP-Log Slice_3
TL-DIRP-Log Slice_4

Figure 6.9: Comparing delay QoS between utilities

which equals 1− FX(x), where FX(x) denotes the CDF of per-slice throughput and delay
satisfaction level between TL-DIRP and BL-Heur schemes, respectively.

Fig. 6.6 shows that TL-DIRP achieves 14% higher the worst-case throughput QoS among
all slices than the traffic-aware baseline BL-Heur. It also guarantees that all the slices
achieve a throughput satisfaction level above 90%, while BL-Heur serves Slice 3 with only
75% throughput satisfaction level.

Similar observation can be made for the delay satisfaction level in Fig. 6.7. TL-DIRP
provides over 90% of the delay satisfaction level for all slices, while BL-Heur serves Slice
1 and 3 with only 77% and 83% respectively. In terms of the average delay satisfaction
level over all slices, TL-DIRP achieves over 96% while BL-Heur only 88%. We observe
that TL-DIRP attempts to fulfill more critical requirements by compromising resources
from the less demanding slices while remaining sufficient satisfaction levels in others.

6.5.3.2 Comparison of RL Reward Formulation

Fig. 6.8 and Fig. 6.9 compare the two designs of the reward function, corresponding to
max-min fairness Eq. 6.6 and maximizing average logarithmic utilities Eq. 6.7, respectively.
They demonstrate the empirical complementary CDF of QoS in terms of throughput and
delay satisfaction level for TL-DIRP with both reward functions. The results show that
max-min fairness gives the maximum protection to the slice with the weakest performance,
such that the minimum per-slice satisfaction level over all slices achieves 90% for both
throughput and delay while maximizing average logarithmic utilities provides slightly lower
satisfaction levels, about 89% for both throughput and delay, but higher maximum per-slice
throughput satisfaction levels. This is because the logarithmic utility tends to distribute
the resource more efficiently than max-min fairness, i.e., allocating more resources to the
slice that can improve the averaged performance over all slices.

From an engineering perspective, max-min fairness is preferred for scenarios that require
sufficiently good performance for all slices, especially those highly demanding ones. While
the logarithmic utility is more suitable for cases that desire higher resource efficiency.

6.5.3.3 Comparison of TL Schemes

Fig. 6.10 illustrates the evolving rewards during the training and testing processes with
different TL methods. Note that this comparison is based on max-min fairness in all TL
methods. Here, we aligned the training process with the Spec scheme for comparison.
The results are derived from the average of 3 independent instances of experiments. Spec

112 6. TL-aided DRL Approach I: Generalist-to-Specialist

0 1000 2000 3000 4000 5000
Timestamp

0.75

0.80

0.85

0.90

0.95

1.00

R
L

re
w

ar
d

TL-DIRP
Gen
Spec
Spec-Instance
Spec-Model

Figure 6.10: Comparing of reward among TL schemes

Table 6.3: Performance comparison among different schemes

RL Reward
Min Slice Average
Throughput Satisfy

Min Slice Average
Delay Satisfy

BL-Cen 0.801 0.738 0.739

BL-Dist 0.948 0.952 0.962

BL-Heur 0.891 0.903 0.902

DIRP 0.968 0.967 0.967

Gen 0.961 0.960 0.961

Spec 0.972 0.968 0.968

Spec-Instance 0.971 0.970 0.974

Spec-Model 0.962 0.965 0.966

TL-DIRP 0.973 0.971 0.971

with complete knowledge transfer leads to higher reward and robustness compared to
Spec-Instance and Spec-Model schemes with partial knowledge at the early stage of the
training process, while in the latter two schemes, TL also helps in terms of convergence
rate, compared with Gen. Furthermore, with offline fine-tuning TL-DIRP provides better
performance with faster convergence and higher reward within the same training time. In
most of the TL schemes, we observe that each specialist agent improves its performance
with local fine-tuning from a higher starting point, which helps avoid risky action choices
during exploration. With Spec-Instance, the agents behave the worst at the beginning
of the training but converge fast later. On the other hand, Spec-Model also suffers from
a weaker performance at the beginning and takes a longer time to learn. Eventually,
Spec-Instance converges to a similar performance as Spec while Spec-Model achieves a
slightly worse performance. Our guess is that there is still a substantial difference between
the source and target domains. The initialized general policy cannot quickly adapt to
the target task without transferring sufficient instances in the source domain (instances
following a similar distribution to the target domain). Moreover, introducing offline fine-
tuning with the transferred instances to the TL scheme further improves the performance
by providing even faster convergence and more robust training.

In Fig. 6.11, we plot the change of local reward in each cell during the complete TL
procedure from generalist training to specialist fine-tuning as described in Algo. 9. During
the time in H(G), the local rewards achieved by the generalist agent converge to a generally
good reward over all cells. Later, in the local fine-tuning period H(S), the Spec scheme
further fine-tunes the general agent locally and concludes better performance in each cell.

6.6. KEY TAKEAWAYS 113

ℋ(") ℋ($)

Figure 6.11: Change of local reward during TL scheme

The averaged local reward in H(S) also indicates better robustness under time-varying
traffic demand. We can also observe that the rewards from two cells are always lower
compared to others during H(G), and achieve relatively poor performance after knowledge
transfer in H(S). Fig. 6.12 shows the comparison of CQI distributions from all cells, it is
clear to see that in cell 2 and cell 6 which derive poorer performance as shown in Fig. 6.11
correspondingly, the CQI histograms are significantly different compared to others. The
difference in user distribution or radio propagation can make the “generalist”ambiguous
on learning a general policy for all cells, and the derived policy is better for handling the
samples from others. Thus, during H(G), the rewards in these two cells are lower than
others, while in H(S), the performances in these two cells get better with local fine-tuning
yet still worse than the others.

Summarized comparisons of the average performance metrics among all schemes in the
testing phase are listed in Table 6.3. We can see that TL-DIRP as offline fine-tuned Spec
provides the best performance in terms of the desired RL reward and minimum (worst-case)
per-slice throughput satisfaction level among the schemes, while Spec-Instance provides a
slightly better minimum per-slice delay satisfaction level. Moreover, TL-DIRP encourages
a more balanced service quality between all slices in comparison to TL-DIRP-Log. It
is also worth noting that the inference time for a pre-trained distributed DRL model to
make a local decision is less than 4 milliseconds due to the small sizes of our defined neural
networks.

The comparison of QoS performance metrics during the testing phase among all approaches
are listed in Table 6.3. Same as indicated by the reward curves, the Spec-fine-tune scheme
outperforms in all terms. Also, in comparison with the performance metrics of DIRP, Spec
also provides better slice-specific performance.

6.6 Key Takeaways

Hereby, we summarize the key insights from the experiments above:

1. Distributed vs. Centralized DRL Approaches: Distributed DRL algorithms demon-
strate superior learning capability for adapting to slice-aware traffic and maintaining
good service quality in a network scenario with 12 cells. Due to high model complex-
ity and large state and action spaces, the centralized scheme struggles to converge

114 6. TL-aided DRL Approach I: Generalist-to-Specialist

0.0

0.2

0.4

H
is

to
gr

am

Cell 1
Cell 2 Cell 3

0.0

0.2

0.4
H

is
to

gr
am

Cell 4 Cell 5 Cell 6

0.0

0.2

0.4

H
is

to
gr

am

Cell 7 Cell 8 Cell 9

0 10
CQI

0.0

0.2

0.4

H
is

to
gr

am

Cell 10

0 10
CQI

Cell 11

0 10
CQI

Cell 12

Figure 6.12: Comparison of Channel Quality Indicator (CQI) distribution between cells

Table 6.4: Comparison of average performance metrics among different TL approaches

RL Reward
Min Per-slice Through-

put/Requirement
Max Per-slice
Delay (ms)

Gen 0.263 0.830 1.426

Spec 0.385 0.848 1.370

Spec-Data 0.363 0.841 1.388

Spec-Model 0.306 0.836 2.023

Spec-fine-tune 0.400 0.853 1.339

to an optimal reward within the same training time. As network scale increases,
distributed schemes achieve even higher gains compared to centralized approaches.

2. Inter-agent Coordination of MADRL: The DIRP algorithm, which incorporates
inter-agent coordination and allows multiple agents to share load information, out-
performs distributed DRL without coordination. It achieves better performance in
terms of converged reward and convergence rate while maintaining lower model com-
plexity.

3. Benefits of TL: The proposed TL-DIRP algorithm further enhances the converged
reward of DIRP by approximately 11.5%, achieves 87.5% faster convergence, and
reduces exploration costs. It also provides about 15% higher QoS satisfaction for
the most critical slice and an 8.8% higher average slice QoS satisfaction level than
the traffic-aware baseline. Additionally, TL-DIRP demonstrates higher robustness
in converged performance compared to DIRP without TL. With this finding, we can
partially answer Question 5.

4. Generalist-to-Specialist TL: During the “generalist”training process of TL-DIRP,
variations in CQI between cells can make learning a general policy ambiguous.
Agents from different CQI conditions initially derive poorer performance. However,

6.6. KEY TAKEAWAYS 115

0 1000 2000 3000 4000 5000
Timestamp

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
L

re
w

ar
d

av
g

av
g

Spec-Fintune
DIRP

Figure 6.13: Comparing of reward between DIRP and Spec-fine-tune

agents achieve higher rewards and robustness with local fine-tuning in the“specialist”
phase.

5. Reward Functions Comparison: The TL-DIRP approach, using both max-min fair-
ness and logarithmic utility rewards, provides good performance across all slice QoS.
Max-min fairness rewards better fulfill critical slice requirements by reallocating re-
sources from less critical slices, whereas logarithmic utility rewards offer higher re-
source efficiency. Different reward definitions should be selected based on specific
use cases.

6. How to Transfer Knowledge: The TL scheme that combines model and instance
transfer, enhanced by offline fine-tuning, provides the best starting point and con-
vergence rate performance. Transferring instances alone requires agents to train from
scratch, resulting in low initial performance. Transferring a pre-trained model offers
better initial performance but requires more time to converge. The disparity between
source and target domains (e.g., CQI distribution) necessitates transferring sufficient
instances to enable the general policy to adapt quickly to the target task. Offline
fine-tuning with transferred instances further enhances performance by providing a
higher start point and faster convergence.

In this chapter, we addressed the dynamic inter-cell resource partitioning problem to meet
slice-aware service requirements by optimizing inter-cell inter-slice resource partitioning.
We introduced the DIRP algorithm to solve this problem with inter-agent coordination. To
enhance algorithm transferability, we developed the TL-DIRP algorithm using a generalist-
to-specialist TL framework with various types of transferable knowledge. We evaluated the
proposed solutions in a 12-cell network scenario in Season II. The results showed that the
TL-DIRP algorithm offers superior slice-aware service performance compared to baseline
approaches. Additionally, incorporating TL in MADRL improves training performance,
including higher start points, faster convergence speeds, and higher asymptotes.

In addition to the generalist-to-specialist TL scheme, future work includes exploring TL
among cells by transferring knowledge from a pre-trained DRL agent to another, such
as transferring knowledge from a pre-trained cell to a newly deployed cell. However, as
observed in numerical experiments, transferring knowledge between agents with different
domains and tasks may initially degrade performance or cause negative transfer. Therefore,
quantitative analysis is needed for efficient knowledge transfer to identify similar DRL
agents.

116 6. TL-aided DRL Approach I: Generalist-to-Specialist

117

7. TL-aided DRL Approach II:
Specialist-to-Specialist

In this chapter, we further explore the TL-aided DRL approaches, focusing on transferring
knowledge from one specific domain to another. Unlike generalized knowledge transfer,
ensuring the effectiveness of TL in the target domain requires additional domain similarity
analysis. By addressing these TL scenarios, we aim to tackle Question 4 and complete the
answer to Question 5.

We propose a novel TL-aided MADRL approach with domain similarity analysis for inter-
slice resource partitioning. First, we design a coordinated MADRL method for inter-cell
resource partitioning in network slicing, where DRL agents share local information to miti-
gate inter-cell interference. The objective is to maximize the satisfaction of per-slice service
requirements, focusing on average user throughput and delay in each cell. Additionally,
we integrate a TL method to accelerate policy deployment among different agents. This
new method consists of two parts: a feature-based inter-agent similarity analysis approach,
which measures domain and task differences by extracting representative feature distribu-
tions in latent space, and a knowledge transfer approach combining model (policy) and
instance transfer.

This chapter incorporates research that has been detailed in the following published papers:

Network Slicing via Transfer Learning Aided Distributed Deep Reinforcement
Learning Tianlun Hu, Qi Liao, Qiang Liu, Georg Carle GLOBECOM 2022 - 2022
IEEE Global Communications Conference, 2022, pp. 1-6, doi: 10.1109/GLOBE-
COM48099.2022.10000763.

My contributions to this paper involved the design, implementation, and evaluation of
TL methods specifically tailored for the Specialist-to-Specialist use case, as well as the
drafting of the paper. This dissertation expands upon this work in conjunction with the
discussions presented in Chapter 6, and it completes the exploration of two typical TL use
cases in RL-based slice resource allocation strategies.

A Joint Industrial-Network Simulator for Leveraging Automation in 5G Private Net-
works Alessandro Lieto, Stanislaw Strzyz, Patrick Agostini, Tianlun Hu European
Wireless 2022; 27th European Wireless Conference, 2022, pp. 1-5.

Version: January 20, 2025 – 13:20:04

118 7. TL-aided DRL Approach II: Specialist-to-Specialist

In the above paper, we introduced a sophisticated industrial network simulator. My role
specifically involved implementing TL methods to assess an RL-based slice resource allo-
cation solution within simulated environments. This contribution highlights the practical
application of advanced ML techniques to optimize network operations in virtual settings,
bridging theoretical concepts with tangible, industry-relevant applications.

This chapter is organized as follows. In Section 7.1, we illustrate the motivation of study-
ing TL-aided DRL approaches by supplementing the literature research of TL application
in networking. The system formulation and fundamental problem formulation are pro-
vided in Section 7.2 and Section 7.3, respectively. In Section 7.4, we introduce a domain
similarity measurement method for addressing the question of “From whom to transfer”
for Specialist-to-Specialist TL approaches. The numerical results and discussions are em-
bedded in Section 7.5.

7.1 Motivation

As the network scale grows, the action and state space of the centralized problem increases
exponentially, which challenges the convergence and sample efficiency of DRL. MADRL
[58, 68] has been explored to address this issue by creating and training multiple coopera-
tive DRL agents, where each agent focuses on an individual site or cell. However, training
all individual DRL agents from scratch can still be costly and time-consuming due to
expensive queries with real networks and unstable environments from the perspective of
individual agents.

Recently, TL [70] methods have been increasingly studied to improve sample efficiency
and model reproducibility in various machine learning fields [71, 72, 73]. The basic idea of
TL is to utilize prior knowledge from pre-learned tasks to benefit the training process in
new tasks. For example, the resource partitioning policy of one cell can be transferred to
another cell with similar network settings, such as bandwidth, transmit power, and traffic
patterns.

To effectively use TL methods, several key questions need to be addressed: what to transfer,
from whom to transfer, and how to transfer. Most existing TL methods focus on supervised
machine learning, such as computer vision and natural language processing [75], providing
limited insights for DRL tasks [76, 92, 93, 79]. Therefore, it is imperative to study how
TL can improve the performance of MADRL in terms of sample efficiency and fine-tuning
costs for inter-cell resource partitioning problems.

Figure 7.1: Specialist-to-Specialist TL scheme

In this chapter, we aim to address the challenge of transferring specific knowledge using
domain similarity analysis, as illustrated in Fig. 7.1. This approach ensures that the TL

7.2. SYSTEM MODEL 119

process is effective in the target domain, enhancing the overall efficiency and performance
of MADRL-based slice resource allocation methods.

7.2 System Model

Aligning with the setup of Chapter 6, here we also consider a network consisting of a
set of cells K := {1, 2, . . . ,K} and a set of slices N := {1, 2, . . . , N}. Each slice n ∈
N has pre-defined average user throughput and delay requirements, denoted as ϕ∗

n and
d∗n, respectively. The network system runs on discrete time slots t ∈ N0. The network
operation and maintenance OAM adapts the inter-slice resource partitioning for all cells
to periodically provide per-slice resource budgets to each cell. Then, within each cell, the
RAN scheduler uses the provided resource budgets as constraints and performs resource
scheduling and PRB allocation. In this chapter, we focus on the inter-cell inter-slice
resource partitioning problem in network OAM.

Same as the formal RL formulation, we model the multi-cell resource partitioning system as
a set of K distributed MDPsMk := {Sk,Ak, Pk(·), rk(·), γk} defined for each agent k ∈ K
(with a slight abuse of notation, hereafter we use k for cell and agent interchangeably). Sk
and Ak denote the state space and action space, respectively. Pk(·) : Sk×Ak×Sk → [0, 1]
is the transition probability over Sk and Ak for cell k. rk : Sk ×Ak → R is defined as the
reward function which evaluates the network service of all slices in cell k, and γk denotes
the discount factor for cumulative reward calculation.

At each time step t, agent k collects state sk(t) ∈ Sk and decides an action ak(t) ∈ Ak

according to policy πk : Sk → Ak, which indicates the per-slice resource partitioning ratio
ak,n ∈ [0, 1] for n ∈ N while aligning with inter-slice resource constraints. Thus, the local
action space Ak yields

Ak :=

{
ak

∣∣∣∣ak,n ∈ [0, 1], ∀n ∈ N ;
N∑

n=1

ak,n = 1

}
. (7.1)

For each cell k ∈ K, our objective is to maximize the minimum service satisfaction level
in terms of average user throughput and delay (ϕ∗

n, d
∗
n) over all slices. Thus, for each

agent k, we define the local reward function based on the observed per-slice average user
throughput ϕk,n(t) and delay dk,n(t) at time t as

rk(t) := min
n∈N

min

{
ϕk,n(t)

ϕ∗
k,n

,
d∗k,n

dk,n(t)
, 1

}
. (7.2)

The reward formulation drops below 1 when the actual average throughput or delay of
any slices fails to fulfill the requirements. Note that the reward is upper-bounded by 1
even if all slices achieve better performance than the requirements to achieve more efficient
resource utilization. The second item in Eq. 7.2 is inversely proportional to the actual
delay, namely, if the delay is longer than required, this term is lower than 1.

7.3 Problem Formulation

RL Problem: The problem is to find a policy πk : Sk → Ak for each k ∈ K that predicts
optimal inter-slice resource partitioning ak(t) ∈ Ak base on the local state sk(t) ∈ Sk dy-
namically, to maximize the expectation of the cumulative discounted reward rk(t) defined
in Eq. 7.2, in a finite time horizon T . The problem is given by:

max
πk;ak(t)∈Ak

Eπk

[
T∑
t=0

γtkrk
(
sk(t),ak(t)

)]
, ∀k ∈ K, (7.3)

120 7. TL-aided DRL Approach II: Specialist-to-Specialist

where Ak is defined in Eq. 7.3.

In Chapter 5, we proposed a coordinated multi-agent DRL approach to transform an
MADRL problem to the distributed DRL problem similar to Eq. 7.3, where the extracted
information from neighboring cells is included into the state observation to better capture
the inter-agent dependency. However, training all local agents in parallel from scratch can
be costly and time-consuming. Moreover, the trained models are sensitive to environmental
changes and the retraining cost can be high.

Thus, in this chapter, we raise the following new questions:
Can we reuse the knowledge in a pre-trained model? When is the knowledge transferable?
And, most importantly, how to transfer the gained knowledge from one agent to another?

TL Problem: To tackle the TL problem, let us first introduce two definitions, domain and
task, in the context of RL.

A domain D := {S, P (s)} consists of a state feature space S and its probability distribution
P (s), for s ∈ S. A task T := {A, π(·)} consists of the action space A and a policy function
π : S → A.

Thus, our inter-agent TL problem is to find the optimal source agent among a set of pre-
trained agents and transfer its knowledge (pre-trained model and collected instances) to
the target agent, such that problem Eq. 7.3 can be solved in the target agent with fast
convergence and a limited amount of samples. In particular, the problem is defined in
Problem 4.

Problem 4. Given a set of pre-trained source agents K ⊂ K with source domains D(S) :={
D(S)

i : i ∈ K
}

and pre-trained tasks T (S) :=
{
T (S)
i : i ∈ K

}
, also given any target agent

k /∈ K with target domain D(T)
k and untrained task T (T)

k , find the optimal source agent
i∗k ∈ K for target agent k to transfer knowledge such that

i∗k := arg max
πk|π

(0)
k =Λ

(
π
(S)
i

)
i∈K

Eπk

[
T∑
t=0

γtkrk
(
sk(t),ak(t)

)]
(7.4)

s.t. (sk,ak) ∈ Γ
(
D(S)

i ,D(T)
k ,A(S)

i ,A(T)
k

)
,

where Λ
(
π
(S)
i

)
is the policy transfer strategy which maps a pre-trained source policy π

(S)
i

to the initial target policy π
(0)
k , while Γ

(
D(S)

i ,D(T)
k ,A(S)

i ,A(T)
k

)
is the instance transfer

strategy which selects the instances from the source agent, combines them with the expe-
rienced instances from the target agent, and saves them in the replay buffer for model
training or fine-tuning in the target agent. More details about the TL strategies will be
given in Section 7.4.3.

7.4 TL with Domain Similarity Analysis

In this section, we first recap the distributed MADRL approach to solve the slicing resource
partitioning problem in Eq. 7.3. Then, to solve problem Eq. 7.4 to find the optimal source
agent, we propose a novel approach to inter-agent similarity analysis based on the extracted
features using VAE. Finally, for inter-agent TL, we introduce a TL strategy that combines
the model (policy) transfer and instance transfer.

7.4. TL WITH DOMAIN SIMILARITY ANALYSIS 121

7.4.1 Distributed MADRL with Coordination

As stated in Eq. 7.3 , the distributed DRL approach allows each agent to learn a local policy
and make its own decision on inter-slice resource partitioning based on local observation.
Using the distributed DRL approach with inter-agent coordination proposed in Section
5.4, we briefly summarize the coordinated distributed DRL approach below because we
would like to focus on the main contribution, namely, the inter-agent TL, in this chapter.

Each local agent k observes a local state s′k, which contains the following network mea-
surements:

• Per-slice average user throughput {ϕk,n : n ∈ N};

• Per-slice network load {lk,n : n ∈ N};

• Per-slice number of users {uk,n : n ∈ N}.

Thus, with the above-defined three slice-specific features, the local state s′k has the dimen-
sion of 3N . Additionally, we introduce an inter-agent coordination mechanism through
network information sharing among agents to better capture the inter-cell dependencies
and estimate the global network performance. Let each agent k broadcast a message mk

to its neighboring group of agents, denoted by Kk, which means, each agent k receives a
collection of messages mk := [mi : i ∈ Kk] ∈ RZ(m)

. Instead of using all received messages

in mk, we propose to extract useful information ck ∈ RZ(c)
to maintain the low model

complexity. We aim to find an feature extractor g : RZ(m) → RZ(c)
: mk → ck, such that

Z(c) ≪ Z(m). Then, we include the extracted features from the shared messages into the
local state: sk := [s′k, ck].

Knowing that the inter-agent dependencies are mainly caused by inter-cell interference
based on cell load coupling [81], we propose to let each cell k share its per-slice load
lk,n,∀n ∈ N to its neighboring cell. Then, we compute the extracted information ck as the
average per-slice neighboring load. Namely, we define a deterministic feature extractor,
given by:

gk :RN |Kk| → RN : [li,n : n ∈ N , i ∈ Kk] 7→ ck(t)

with ck(t) :=

 1

|Kk|
∑
i∈Kk

li,n(t) : n ∈ N

 .
(7.5)

With the extended local state including the inter-agent shared information, we can use
classical DRL approaches, e.g., the actor-critic algorithms such as TD3 [65] to solve Eq. 7.3.

7.4.2 Domain Distance Measurement for Similarity Analysis

The distributed DRL approach introduced in Section 7.4.1 allows us to derive a set of
pre-trained local agents. Still, given a target cell k, e.g., a newly deployed cell, or an
existing cell but with a changed environment, more questions need to be answered: Can
we transfer the pre-learned knowledge from at least one of the pre-trained agents? Which
source cell provides the most transferable information? How to transfer the knowledge?

To solve the TL problem in Eq. 7.4, we develop a distance measure Di,k to quantify the
inter-agent similarity between a source agent i and a target agent k. As Fig. 7.2 indi-
cates, we aim to transfer the knowledge from the source agent with the highest similarity
(reflected by the lowest distance measure).

122 7. TL-aided DRL Approach II: Specialist-to-Specialist

Figure 7.2: Domain similarity analysis for source domain selection

The ideal approach to analyze the domain and task similarity between two agents is to
obtain their probability distributions of the state P (s) and derive the conditional proba-
bility distribution P (a|s). However, the major challenge here lies in the limited samples in
the target agent. Considering that the target agent is a newly deployed agent, there is no
information available about its policy P (a|s), and P (s) is very biased because all samples
are collected under the default configurations (i.e., constant actions).

Thus, we need to design a distance measure constrained by very limited and biased samples
in the target agent, without any information about its policy P (a|s). Our idea is to derive
and compare the joint state and reward distribution under the same default action a′,
P (s, r|a = a′), in both source and target agent. The rationale behind this is that, when
applying the actor-critic-based DRL architecture, the critic function estimates the Q value
Qπ(a, s) based on action and state. Hence, the conditional probability P (r|s,a) should
provide useful information on the policy. With a = a′, we can consider to estimate
P (r|s,a = a′). To efficiently capture the information for both domain similarity (based on
P (s|a = a′)) and task/policy similarity (based on P (r|s,a = a′)), we propose to estimate
the joint probability P (s, r|a = a′) = P (r|s,a = a′)P (s|a = a′).

Figure 7.3: Variational autoencoder

7.4. TL WITH DOMAIN SIMILARITY ANALYSIS 123

Sample collection: To estimate the distance between P (s, r|a = a′) of both the source and
target agents, we use all available samples from the target agent k under the default action
a′, Xk = {(sk(n), rk(n))ak(n)=a′ : n = 1, . . . , Nk}, and select a subset of the samples from
the source agent i with the same default action Xi = {(si(n), ri(n))ai(n)=a′ : n = 1, . . . , Ni}.
Note that in this section, we slightly abuse the notation by using n as the index of sample,
and Nk as the number of samples with default action collected from agent k.

Feature extraction with VAE: To extract the representative features from the high-dimension
vector [s, r], we propose to apply VAE [94] to map the samples into a low dimensional la-
tent space. As Fig. 7.3 illustrates, for each sample x := [s, r] ∈ X , the encoder of VAE
estimates an approximated distribution P (z) in latent space Z as a multi-variate Gaussian
distribution with N (µ, diag(σ)), where diag denotes the diagonal matrix. The decoder
samples a latent variable z ∈ Z from the approximated distribution z ∼ N (µ, diag(σ))
and outputs a reconstructed sample x̂ by training on the following loss function:

L := ∥x− x̂∥2 + α ·DKL (N (µ,diag(σ)) ∥N (0,diag(1))) , (7.6)

where α is the weight factor and DKL denotes the KL-divergence.

Inter-agent similarity analysis: Since VAE does not directly provide the probability dis-
tribution function P (x), we propose to utilize the extracted features in the latent space to
evaluate the inter-agent similarity. Considering the limited amount of samples (only those
under default action), we propose to train a general VAE model based on the samples from
all candidate source agents and the target agent, e.g., X =

⋃
j∈K∪{k}Xj . The idea is to

extract the latent features from samples from all relevant agents with a general encoder
and to distinguish the agents within a common latent space.

Thus, for each sample xn ∈ X , we can derive its extracted features, i.e., the posterior
distribution P (zn|xn) = N (µn,diag(σn)). We denote the extracted latent space for agent
k by Zk. Next, we can measure the inter-agent distance between an arbitrary source
agent i and target agent k by calculating the KL-divergence based on the extracted latent
variables from their collected samples:

Di,k :=
1

NiNk

∑
(µn,σn)∈Zi

(µm,σm)∈Zk

DKL (N (µn,diag(σn))∥N (µm,diag(σm))) . (7.7)

This requires computing the KL-divergence of every pair of samples (n,m) for n ∈ Xi and
m ∈ Xk, which could be computing intensive.

Note that they are both Gaussian distributions. We can efficiently compute them with
closed-form expression (as will be shown later in Eq. 7.8). Besides, from our experiment,
we observed that σn → 0 for nearly all the collected samples xn ∈ X , i.e., their variances
are extremely small (to the level below 10e − 5 from our observation). Thus, for our
problem, we can use a trick to evaluate the distance measure more efficiently based on the
following lemma.

Lemma 1. Given two multi-variate Gaussian distributions p = N (µn,Σn), and q =
N (µm,Σm), where µn,µm ∈ RL, Σn = Σm = diag(σ) ∈ RL×L and every entry of σ
is equal to a small positive constant σ ≪ 1, the KL-divergence DKL(p||q) is proportional
to
∑L

l=1(µn,l − µm,l)
2.

Proof. It is easy to derive that

DKL(p∥q) =
1

2

[
log
|Σn|
|Σm|

− L + (µn − µm)TΣ−1
m (µn − µm) + Tr

{
Σ−1

m Σn

}]
. (7.8)

124 7. TL-aided DRL Approach II: Specialist-to-Specialist

Because Σn = Σm = diag([σ2, ..., σ2]), we have the first term in Eq. 7.8 equals to 0, and
the last term equals to L. Thus, we obtain

DKL(p∥q) =
1

2σ2

L∑
l=1

(µn,l − µm,l)
2. (7.9)

With Lemma 1, we can measure the distance between two agents more efficiently, based on
the extracted µn and µm in the source and target latent spaces. Thus, to solve Problem
(4), we propose to choose the source agent:

i∗k := arg min
i∈K

Di,k, (7.10)

where Di,k is computed based on Eq. 7.7 and Eq. 7.9.

7.4.3 Specialist-to-Specialist TL

In general, the pre-learned knowledge can be transferred from a source agent i to the target
agent k with various policy transfer strategies Λ(·) and instance transfer strategy Γ(·):

• Model transfer: The policy transfer strategy Λ(·) simply initializes the target agent

policy π
(0)
k by loading the parameters (e.g., weights of the pre-trained neural net-

works) of the pre-trained policy π
(S)
i from the source agent i.

• Feature transfer: The policy transfer strategy Λ(·) keeps partial information ex-

tracted from the source agent pre-trained policy π
(S)
i . In particular, the target agent

loads partial of the layers (usually the lower layers) of the pre-trained neural net-

works of π
(S)
i , while leaving the rest of them to be randomly initialized. Then,

during training, the loaded layers are frozen and only the randomly initialized layers
are fine-tuned with the instances newly collected by the target agent.

• Instance transfer: The instance transfer strategy Γ(·) transfers the collected instances
from the source agent i to the target agent k and saves them in the replay buffer
of target agent. Then, the target agent trains a policy from scratch with randomly
initialized parameters and mixed instances collected from both source and target
agents.

The above-mentioned knowledge from the source domain and source task can be transferred
separately or in a combined manner. In this chapter, we propose the integrated transfer
method with both model and instance transfer. Specifically, the target agent k initializes

its local policy π
(0)
k by loading the pre-trained policy of the source agent π

(S)
i and fine-

tunes the policy by sampling from the replay buffer containing both types of instances: the
instances transferred from the source agent and those locally experienced. Here, we skip
the feature transfer because it practically performs well only when the similarity between
the source domain/task and target domain/task is very high. Although this assumption
may hold for some regression and classification tasks, we empirically find that it fails in
this context of MADRL.

7.5 Experiments

In this section, we evaluate the performance of the proposed solution within Season II.
In addition, we introduce a traffic-aware baseline that allocates resources proportionally
to the data traffic demand per slice. Note that the baseline assumes perfect information
about per-cell per-slice traffic demands, which has already provided very good results.

7.5. EXPERIMENTS 125

7.5.1 Network Environment Setup

We build a radio access network with 4 three-sector sites (i.e., K = 12 cells). All cells
are deployed using LTE radio technology with 2.6 GHz under a realistic radio propagation
model Winner+ [67]. Each cell has N = 4 slices with diverse per-slice requirements in
terms of average user throughput and delay. In the cells with label 1, 2, 3, 7, 8, 9, we define
per-slice average throughput requirements of ϕ∗

1 = 4 Mbit/s, ϕ∗
2 = 3 Mbit/s, ϕ∗

3 = 2
Mbit/s, and ϕ∗

4 = 1 Mbit/s respectively, and per-slice delay requirements of d∗1 = 3 ms,
d∗2 = 2 ms, d∗3 = d∗4 = 1 ms. In the cells with label 4, 5, 6, 10, 11, 12, we define per-slice
throughput requirements as ϕ∗

1 = 2.5 Mbit/s, ϕ∗
2 = 2 Mbit/s, ϕ∗

3 = 1.5 Mbit/s, and ϕ∗
4 = 1

Mbit/s, and delay requirements of d∗n = 1 ms, ∀n ∈ N . All cells have the same radio
bandwidth of 20 MHz.

We define four groups of UE associated with four slices in each cell, respectively. Each
UE group has the maximum size of 32 and moves randomly among the defined network
scenario. To mimic the dynamic behavior of real user traffic, same to the experiment in
6, we apply a varying traffic mask τn(t) ∈ [0, 1] to each slice to scale the total number of
UEs in each cell as Fig. 6.3.

7.5.2 DRL Training Configuration

For MADRL training, we implemented TD3 algorithm at each local agent using MLP
architecture for actor-critic networks. In each TD3 model, both actor and critic neural
works consist of two layers with the number of neurons as (48, 24) and (64, 24), respectively.
The learning rates of actor and critic are 0.0005 and 0.001 accordingly with Adam optimizer
and training batch size of 32. We set the discount factor as γ = 0.1 since the current action
has a stronger impact on instant network performance than future observation. As for the
training, for distributed DRL agents we applied 3000 steps for exploration, 5500 steps for
training, and final 250 steps for evaluation. For the TL training process, we apply the
same model setups as DRL approaches, while only setting 4000 steps for training and 250
for evaluation since knowledge transfer saves time for exploration.

Figure 7.4: Comparing reward during the training process

7.5.3 Evalutation of TL-aided DRL

In Fig. 7.4 we compare the evolution of reward during the training processes among the
baseline, DRL approach (proposed in Section 7.4.1), and TL approaches when transferred
from source agent with low and high similarity (proposed in Section 7.4.2 and 7.4.3),
respectively. For DRL, we present the first 4000 step, i.e., the same training time as TL
approaches with a solid line and the rest training curve with a dashed line.

126 7. TL-aided DRL Approach II: Specialist-to-Specialist

Figure 7.5: Comparing CDF of minimum slice throughput satisfaction

Figure 7.6: Comparing CDF of maximum slice delay

As shown in Fig. 7.4, the distributed DRL approach learns to achieve a similar reward
as the baseline after a lengthy exploration phase, while both TL approaches start with
much higher start compared to DRL. After a short fine-tuning period, the TL approaches
outperform the baseline with higher robustness, especially during the period with higher
traffic demands and strong inter-cell interference where the baseline has sharp performance
degradation. Besides, in comparison between the TL from agents with different similarity
measures, we observe that with higher similarity, TL provides higher starts at the early
stage of training, while both of them converge to similar performance after the training
converges.

For performance evaluation, we compare the statistical results on minimum per slice
throughput satisfaction level and maximum per slice delay, respectively, among all cells
among the methods baseline, distributed DRL and the proposed TL approach after con-
vergence. Fig. 7.5 illustrated the empirical complementary CDF which equals 1 − FX(x)
where FX(x) is the CDF of minimum per slice throughput satisfaction level. We observe
that the TL approach provides the best performance compared to others by achieving only
about 12% failure to satisfy 0.95 of the requirement, while converged DRL and baseline
conclude 19% and 25% failure rate respectively. By average satisfaction level, the TL
approach concludes 0.92 while DRL and baseline only provide 0.90 and 0.87. A similar
observation can be made from Fig. 7.6, which illustrates the CDF of maximum slice delay

7.6. KEY TAKEAWAYS 127

in ms. The TL approach provides 1.5 ms maximum average per-slice delay, while DRL
achieves 1.7 ms and baseline achieves 1.8 ms.

7.5.4 Domain Similarity Analysis

We implemented the similarity analysis method introduced in Section 7.4.2 with a VAE
model in MLP architecture, both networks of encoder and decoder consist of 3 layers with
the number of neurons as (64, 24, 4) and (4, 24, 64) respectively. To achieve a good trade-
off between low dimensional latency space and accurate reconstruction with VAE, we map
the original sample x ∈ R17 to the latent variable z ∈ R4.

Figure 7.7: Inter-agent distance measure

Fig. 7.7 illustrates the results of inter-agent similarity analysis as a metric of distance
measure proposed in Eq. 7.7. It shows that our proposed method can distinguish cells
with different per-slice service quality requirements and gather the cells with similar joint
state-reward distribution.

7.5.5 TL Evaluation based on Domain Distance Measurement

In Fig. 7.8 we compare the benefits of TL in the training process by transferring knowledge
from source agents with different average inter-agent distance measures. The TL gains are
derived by comparing the reward to the DRL approach at the same training steps. The
results show that before 200 steps of TL training, the TL approaches with the lowest
distance measure provide about 3% higher gain than the one with the largest distance.
As the training process continues, the gains in all TL approaches increase with local fine-
tuning and the difference between transferring from highly similar and less similar agents
is getting smaller. However, TL from the most similar agent provides higher gains for all
training steps.

7.6 Key Takeaways

The numerical results from the experiments and discussions above provide several signifi-
cant insights:

• Distributed DRL Performance: All distributed DRL-based approaches consistently
achieve superior per-slice network service compared to the traffic-aware baseline

128 7. TL-aided DRL Approach II: Specialist-to-Specialist

Figure 7.8: TL performance gain depending on distance measure

post-convergence. However, TL schemes notably outperform conventional DRL ap-
proaches in terms of convergence rate, as well as initial and converged performance.

• VAE-based Similarity Measure: Our proposed VAE-based similarity measure effec-
tively quantifies the distance between agents. This measure can be utilized to map
the defined distance to the TL performance gain, facilitating more effective knowl-
edge transfer.

• Transfer from Similar Agents: The performance gains achieved by transferring
knowledge from highly similar agents are significantly greater compared to less simi-
lar agents, particularly when the number of training steps is limited (i.e., with fewer
online training samples). Although the advantage diminishes as the number of on-
line training steps increases, a slight performance gain is consistently achieved by
transferring knowledge from the most similar source agent.

In this chapter, we developed a novel integrated TL method to transfer learned DRL poli-
cies among different local agents under the scenarios that differ from Chapter 6, thereby
accelerating policy deployment. This method incorporates a new inter-agent similarity
measurement approach and an innovative knowledge transfer approach. We evaluated our
proposed solution through extensive simulations using a system-level simulator. The re-
sults demonstrate that our approach significantly outperforms conventional DRL solutions,
showcasing its effectiveness in enhancing network service quality and efficiency. Building
on the success of our Generalist-to-Specialist and Specialist-to-Specialist TL-aided DRL
approaches, future research will focus on investigating per-slice distributed solutions. This
involves further refining the granularity of resource allocation and optimizing individual
slice performance within the distributed network framework. By continuing to explore
these advanced methods, we aim to develop more robust and efficient solutions for dy-
namic network environments.

129

8. IDLA: Per-Slice Scheme for Resource
Allocation

In this chapter, we downgrade the granularity of the slicing resource allocation solution
from the cell-wise scheme to the slice-wise scheme to explore the capability of TL in
RAN slicing scenarios. We introduce a novel framework that integrates deep learning
models with constrained optimization methods, allowing for generalization to arbitrary
slice combinations. This solutions are proposed to address Question 6 and Question 7.
First, we derive a general DNN model to approximate the slice network utility, capable
of handling slices with different requirements. Leveraging the efficient computation of the
partial derivatives of the slice utility function approximated by the DNN model, we design
a Lagrangian method for optimal per-slice resource allocation while adhering to inter-
slice resource constraints. We evaluate the proposed algorithm in a system-level network
simulator, demonstrating that our algorithm achieves near-optimal QoS satisfaction and
promising generalization performance compared to state-of-the-art solutions, including
widely used DRL approaches.

This chapter partially draws from research that has been published in the following paper:

Fast and Scalable Network Slicing by Integrating Deep Learning with Lagrangian
Methods Tianlun Hu, Qi Liao, Qiang Liu, Antonio Massaro, Georg Carle GLOBE-
COM 2023 - 2023 IEEE Global Communications Conference, 2023, pp. 1-6, doi:
10.1109/GLOBECOM54140.2023.10436849.

In contributing to this paper, my roles were multifaceted, involving conceptualizing and
designing innovative slice-wise resource allocation solutions. I was also responsible for the
implementation and rigorous evaluation of these solutions, as well as the task of drafting the
manuscript. In this dissertation, we extend the scope of the original paper. The extension
includes the development and integration of a TL -based approach tailored explicitly for
optimizing slice-wise resource allocation. The subsequent chapter will present a detailed
discussion of this TL-based methodology, providing a deeper insight into its advantages
and implementation challenges in real-world network environments.

This chapter is organized as follows. We define the system model in Section 8.2 and
formulate the slice-aware resource allocation problem in Section 8.3. In Section 8.4, we
propose the solutions with DNN-based slice utility estimator and constrained nonlinear

Version: January 20, 2025 – 13:20:04

130 8. IDLA: Per-Slice Scheme for Resource Allocation

optimization. The numerical results are shown in Section 8.5. We conclude this chapter
in Section 8.6.

8.1 Motivation

As discussed in previous chapters, RL methods have been increasingly explored to tackle
complex allocation problems in dynamic mobile networks. However, RL-based solutions
struggle to scale to large state and action spaces. In Chapter 5, we investigated coordinated
multi-agent DRL to handle the high-dimensional continuous action space and complex
resource optimization in network slicing, embedding inter-slice resource constraints within
the neural network architecture. Although effective, the proposed solution was explicitly
trained for a fixed network scenario, making it difficult to generalize to different slice
setups in terms of slice type and number. Additionally, recent works lack the discussion of
generalizing the solution to different multi-cell network scenarios with flexible slice setups.

This limitation prompts us to revisit conventional approaches, where the problem of re-
source allocation in network slicing is often optimized under the assumption that the
resource demand of slices is known in advance. Existing works derive their solutions by
formulating analytical closed-form models and solving the network slicing problem using
constrained nonlinear optimization methods. For instance, in [95], the authors initially
formulated the slice-wise resource allocation problem and streamlined it by finding the
upper and lower bounds of network utility using the Lagrangian method, subsequently
obtaining a sub-optimal solution with a greedy algorithm. Although effective, this model
is still tailored to specific slice configurations. In [96], a flexible slice deployment solution
with dynamic slice configurations was proposed, formulating a slice model with adjustable
parameters and solving resource partitioning through an optimization process. However,
recent findings [97, 98] show that these approximated models cannot accurately represent
the diverse demand and performance of slices.

In this chapter, we aim to address the slice resource allocation problem with a per-slice
scheme by combining conventional optimization approaches and DNN models. We present
a novel algorithm called IDLA, that optimizes slicing resource allocation and can be gen-
eralized to adapt to arbitrary slice combinations under time-varying dynamics. This inte-
grated approach leverages the strengths of both conventional optimization and advanced
deep learning techniques to overcome the limitations of current methods and provide a
robust solution for dynamic network environments.

8.2 System Model

We consider a discrete-time network system that comprises a set of cells denoted by C :=
{1, 2, ..., C}. The set of slices in each cell c ∈ C can be time-varying, denoted by Sc(t) :=
{1, 2, ..., Sc(t)}, where Sc(t) is the number of slices served by cell c at time slot t ∈ N0. Each
slice s ∈ Sc(t) in cell c needs to meet the pre-defined QoS requirements, e.g., throughput
and delay requirements denoted by ϕ∗

s and d∗s respectively. Note that although here the
slices are defined by throughput and delay requirements, the problem formulation and
the proposed approach in the following sections can be generalized to a broader set of
requirements.

OAM dynamically partitions the inter-slice resource to provide per-slice resource budgets
to each cell periodically. Within each cell, the RAN scheduler allocates PRBs to individual
services, using the provided resource budgets as upper-bound constraints. Same as the
previous chapters, the focus of this chapter is to solve the inter-slice resource partitioning

8.3. PROBLEM FORMULATION 131

problem in network OAM. At each time slot t, OAM optimizes slicing resource partitioning
xc(t) for each cell c, i.e., the ratio of the radio resource to allocate to each slice, given by

xc(t) :=
[
xc,1(t), . . . , xc,Sc(t)(t)

]
∈ Xc(t), ∀c ∈ C, (8.1)

where Xc(t) :=

[0, 1]Sc(t)
∣∣∣ ∑
s∈Sc(t)

xc,s(t) ≤ 1

 . (8.2)

Let x(t) := [x1(t), . . . ,xC(t)] be a collection of the per-cell slicing partitioning, the perfor-
mance of each slice s ∈ Sc(t) in cell c ∈ C at time t is measured by the QoS satisfaction
level rc,s(x(t)), defined as

rc,s(x(t)) := min

{
ϕc,s(x(t))

ϕ∗
s

,
d∗s

dc,s(x(t))
, 1

}
, (8.3)

where ϕc,s(x(t)) and dc,s(x(t)) are the throughput and delay associated with slice s at
cell c at time slot t, respectively. This performance metric takes the minimum between
throughput and delay and is upper bounded by 1, such that both requirements need to be
met to achieve the satisfaction level of 1.

Remark 1. Theoretically, due to the inter-cell and possibly inter-slice interference, the
achievable throughput and delay not only depends on the locally allocated resource to its own
slice and cell but also the resource occupation of other slices in the neighboring cells. Thus,
in Eq. 8.3, the QoS metric rc,s is written as a function of the global slicing partitioning
x(t).

8.3 Problem Formulation

Our objective is to find an efficient and scalable solution to optimize the utility of QoS
satisfaction over all slices and cells by optimizing slicing resource partitioning at each time
slot. The per-slot optimization problem is formulated in Problem 5.

Problem 5 (Global Problem).

max.
x(t)

U(r(x(t)))

subject to r(x(t)) :=
[
rc,s(x(t)) : c ∈ C, s ∈ Sc(t)

]
,

(8.1), (8.2), (8.3), ∀t.
(8.4)

Note that the utility function can be defined based on various system designs. For example,
a common utility function to consider fairness is the sum of the logarithmic function of
the local performance metric:

U(r(x(t))) :=
∑

s∈Sc(t),c∈C

log (rc,s(x(t)) + 1) . (8.5)

In this chapter, we use Eq. 8.5 as an example of the utility function. However, by lever-
aging the superior approximation capability of deep learning, our proposed approach can
be applied to a wide range of utility functions. The challenge of solving Problem 5 is
multifaceted. Firstly, the utility function complexity poses a challenge to function approx-
imation, particularly due to limited measurements in OAM. In contrast to RAN, where
user and channel feedback can be collected with fine time granularity (e.g., in milliseconds),
OAM only collects averaged cell- and slice-level KPIs with a coarse granularity (e.g., in

132 8. IDLA: Per-Slice Scheme for Resource Allocation

minutes). Consequently, deriving closed-form expressions becomes extremely challenging.
Secondly, the flexible slice configurations and inter-slice constraints further complicate the
problem, resulting in slow convergence and poor adaptability of deep learning-based ap-
proaches. Finally, the high scalability of OAM demand, e.g., up to over 100k cells, makes
it challenging to use either large global deep learning models or collaborative multi-agent
local models that require extensive exploration to learn from scratch.

8.4 Per-slice Scheme: IDLA Algorithm

In this section, we introduce IDLA algorithm to address the aforementioned challenges.
The structure of IDLA model is illustrated in Fig. 8.1. First, we design and train a DNN
to approximate the per-slice utility function. Then, with the derived slice-based utility
model, we decompose Problem 5 into distributed cell-based resource allocation problems
with inter-slice resource constraints. This decomposition allows the IDLA algorithm to
adapt to a flexible number of slices per cell. Next, we use the Lagrangian method to
solve the constrained decomposed problem, where the partial derivatives can be efficiently
computed based on the DNN-based utility model. Finally, by leveraging the automatic
differentiation engine of deep learning libraries, we improve the efficiency of the Lagrangian
method.

Figure 8.1: IDLA framework - DNN-based estimator + non-linear optimization

8.4.1 DNN-based Slice-wise Network QoS Estimator

The complexity of global utility in Eq. 8.5 is caused by the dependency of each local
utility Uc,s(rc,s(x(t))) on the global slice resource partition x(t). Our idea is to investigate
whether each local per-slice QoS satisfaction level rc,s(t) can be approximated by a single
general DNN fθ(xc,s(t), zc,s(t)),∀c, s based on the local observations only, including the
allocated slice resource xc,s(t) and a set of slice-based KPIs zc,s(t), i.e., to find

fθ(xc,s(t), zc,s(t)) ≈ rc,s(x(t)), ∀s ∈ Sc(t), c ∈ C, (8.6)

where the DNN is parameterized by θ.

Data Collection: The DNN model serves as a general slice-based QoS estimator, trained
on slice-wise data collected from network KPIs of different cells and slice configurations.
Such data are collected in network OAM periodically, e.g., every 15 minutes, as a standard
practical setting. Based on the experts’ prior knowledge, to predict the slice utility rc,s(t),
computed with the achievable throughput ϕc,s(t) and latency dc,s(t), ∀c, s, the following
network KPIs are highly correlated:

• Per-slice required throughput ϕ∗
s and required delay d∗s;

8.4. PER-SLICE SCHEME: IDLA ALGORITHM 133

• Per-slice PRB utilization ratio pc,s(t), defined as the ratio of the PRBs occupied by
the slice, which can be seen as the input of the allocated resource xc,s(t). This is
because, if resource xc,s(t) := pc,s(t) was allocated to the slice, the corresponding
achieved throughput and delay would be the same as ϕc,s(t) and dc,s(t), respectively;

• The previous H states of per-slice average number of active users

v
(H)
c,s (t) := [vc,s(t−H), . . . , vc,s(t− 1)];

• The previous H states of per-slice average CQI q
(H)
c,s (t) := [qc,s(t−H), . . . , qc,s(t−1)].

Note that we collect multiple historical states of the average number of active users and
CQI, in the hope that the historical slice states not only capture temporal correlation
but also reflect some hidden information extracted from the missing global states, e.g.,
experienced inter-cell and inter-slice interference. Also, we follow the realistic assumption
that for model inference, the real-time vc,s(t) and qc,s(t) are unknown while only the
previous states within [t−H, t− 1] are available.

Thus, a set of the local observations as the input samples during a time period [1, T] is
then denoted by:

X T
t=1 :={(xc,s(t), zc,s(t)) : for t = 1, . . . , T, ∀c, s}, (8.7)

where zc,s(t) := [vc,s(t),qc,s(t), ϕ
∗
s, d

∗
s] ∈ R2H+2, (8.8)

while the set of output samples is denoted by:

YT
t=1 := {rc,s(t) : for t = 1, . . . , T,∀c, s} , (8.9)

where the QoS satisfaction level rc,s(t) is computed by Eq. 8.3 based on the observed
throughput ϕc,s(t) and delay dc,s(t).

Local Utility Approximation: We learn a general slice QoS estimator fθ : R2H+3 → R :
(xc,s, zc,s) 7→ rc,s, as defined in Eq. 8.6, such that the local utility in Eq. 8.5 can be
approximated by:

Uc,s(rc,s(x(t))) ≈ log(fθ(xc,s(t), zc,s(t)) + 1). (8.10)

With the collected data Eq. 8.7 and Eq. 8.9, we can train a MLP with [xc,s(t), zc,s(t)] ∈
X T
t=1 as inputs and rc,s(t) ∈ YT

t=1 as output. Because fθ(·) is a general distributed model
that can apply to any slice, at each time t the samples from any cell and slice can contribute
to model training, leading to a much higher sample efficiency and faster learning speed than
training a large number of local models for distinct cells and slices. Moreover, a general
model, that includes the throughput and delay requirements into the input features, can
handle flexible slice configurations, even with unseen requirements.

Remark 2. More details of data augmentation for unseen samples of different slice config-
urations will be given in Section 8.5. Moreover, in Section 8.5 we validate the viability of
learning Eq. 8.6 not only on the simulated data but also on a collected real dataset from a
commercial LTE network.

8.4.2 Lagrangian Method for Slicing Resource Partitioning

With DNN-based utility approximation Eq. 8.10 at hand, we can decompose Problem
5 into independent per-cell optimization problems with intra-cell and inter-slice resource
constraints. For each cell c ∈ C at time t, optimization problem is written as:

134 8. IDLA: Per-Slice Scheme for Resource Allocation

Problem 6 (Decomposed Local Problem).

max.
xc

F (xc) :=
∑

s∈Sc(t)

log
(
fθ
(
xc,s(t), ẑc,s(t)

)
+ 1
)

(8.11)

subject to (8.1), (8.2), ∀t,∀c ∈ C, (8.12)

where ẑc,s(t) is the local observations defined in Eq. 8.8.

Problem 6 is a classical constrained non-linear optimization problem. Note that the ob-
jective in Eq. 8.12 is a monotonic non-decreasing function over x ∈ R+, i.e., we have
F (x′

c) ≥ F (xc) if x′
c ≥ xc (entrywise greater). Therefore, the optimal solution to the prob-

lem with the equality constraint is also an optimal solution to the original problem, and we
can solve it by using the Lagrange multiplier method. Since the problem is independently
formulated for each time slot t and cell c ∈ C, hereafter in this subsection we omit the
index of t for brevity. For each cell c ∈ C, the Lagrangian is given by:

L(xc, λc) :=
∑
s∈Sc

log fθ(xc,s) + λc

(
1−

∑
s∈Sc

xc,s
)
, (8.13)

where fθ(xc,s) := fθ
(
xc,s(t), ẑc,s(t)

)
is the learned DNN in Eq. 8.12, and λc ∈ R+ is the

real non-negative Lagrangian multiplier. Then, we can solve the primal and dual problems:

x∗
c(λc) = arg max

xc∈R+

L(xc, λc), (8.14)

λ∗
c = arg min

λc≥0
L(x∗

c(λc), λc), (8.15)

by computing the partial derivatives with respect to each variable and performing Gradient
Descent (GD) iteratively:

x(i+1)
c,s :=

x(i)
c,s + δ(i)x ·

∂Lc

(
x
(i)
c , λ

(i)
c

)
∂x

(i)
c,s

+

,∀s ∈ Sc

λ(i+1)
c :=

[
λ(i)
c − δ

(i)
λ ·

(
1−

∑
s∈Sc

x(i+1)
c,s

)]
+

,

(8.16)

where i is the index of iteration, δx and δλ are the positive updating rates of xc,s, ∀s ∈ Sc
and λc, respectively, and [x]+ is equivalent to max{x, 0}. The partial derivative of Lc with
respect to xc,s, ∀s ∈ Sc is given by:

∂Lc

(
x
(i)
c , λ

(i)
c

)
∂x

(i)
c,s

=
1

fθ

(
x
(i)
c,s

)
+ 1
·
∂fθ

(
x
(i)
c,s

)
∂x

(i)
c,s

− λ(i)
c . (8.17)

8.4.3 Efficient Implementation of Lagrangian Method

One major limitation of the Lagrangian methods is that, if the function is non-linear
and non-convex, multiple solutions or folds might exist on the functional surface, and
searching on one path may easily get stuck in a local optima. To overcome this, we exploit
the automatic differentiation engine of deep learning libraries and design a robust search
strategy. By using the automatic differentiation module torch.autograd of PyTorch [99],
we can efficiently compute the partial derivative of the trained function with respect to any

input variables on tensors, e.g., the partial derivative ∂fθ

(
x
(i)
c,s

)
/∂x

(i)
c,s in Eq. 8.17. This

allows fast parallel computing of multiple searching paths. Thus, we propose the following
search strategy:

8.5. EXPERIMENTS 135

(1) Based on the assumption that the network states between two successive time steps
change smoothly, we propose to initialize the starting points for the optimization
of each time slot t with the optimized solution of the previous time slot t − 1, i.e.,

x
(0)
c (t) := x∗

c(t− 1);

(2) To find a better (possibly local) optima, we take P neighboring points near x
(0)
c (t) and

run the GD optimizations from all P initial points in parallel. After GD optimizations
have finished, we select the best solution among them.

The proposed IDLA algorithm is summarized in Algo. 10, where N (µ,Σ), i(max), and η
denote the normal distribution for taking neighboring points with mean µ and covariance
matrix Σ, the maximum iteration steps, and criterion for stopping iteration, respectively.

Algorithm 10 IDLA Algorithm

1: for t ∈ T and c ∈ C do
2: i← 0

3: x
(i)
c (t)←

{
default action, if t = 0

x∗
c(t− 1), Otherwise

4: Take P neighboring points as:

5: x
(i)
cp (t) := x

(i)
c (t) + ϵ, p ∈ [1, ..., P] with ϵ ∈ N (µ,Σ)

6: Parallelly compute for all p ∈ [1, ..., P]:

7: Initialize Lagrangian multiplier λ
(i)
cp

8: Initialize update rate δ
(i)
xp > 0, δ

(i)
λp

> 0

9: while i ≤ i(max) and ∥x(i)
cp (t)− x

(i−1)
cp (t)∥ ≥ η do

10: Compute partial derivative with (8.17) ∀s ∈ Sc(t)
11: Update optimization variables and Lagrangian multipliers with (8.16)
12: Decrease update rate δixp

, δiλp

13: i += 1
14: end while
15: x∗

cp(t)← x
(i)
cp (t)

16: Choose the best solution among all P points that provides the highest utility:

17: x∗
c(t) := arg maxx∗

cp
(t)

∑
s∈Sc(t)

log
(
fθ

(
x∗cp,s(t)

))
.

18: end for

8.5 Experiments

We evaluate the performance of the proposed algorithm by implementing it in Season II
and compare the real-time processing performance of the IDLA scheme with two state-of-
art schemes including a cell-wise DRL scheme and a traffic-aware baseline that allocates
resources proportionally to data traffic demand per slice. We also compare it with an oracle
scheme obtained by brute force optimization with the theoretically optimal performance.
In addition, we explore the flexibility of the IDLA algorithm when facing slice configuration
changes and its transferability from sample-collecting network configurations to a new
network configuration.

8.5.1 Network Environment Setup

We built a network system consisting of 4 three-sector base stations with the operating
frequency band of 2.6 GHz, i.e., C = 12 cells. We defined 4 types of services, where the
slice combination Sc(t) can be configurable and time-varying. Each service has different re-
quirement as average user throughput ϕ∗

s for s = 1, 2, 3, 4 defined as {2, 1, 1.5, 0.5} Mbit/s,
respectively. All cells are provided with the same bandwidth of 20 MHz. In addition, to

136 8. IDLA: Per-Slice Scheme for Resource Allocation

imitate the real user traffic, we apply a varying traffic mask τs(t) ∈ [0, 1], which is collected
from a real network system, for each slice s ∈ Sc(t) to reflect the daily periodic pattern of
per-slice user traffic.

8.5.2 Per-Slice Resource Allocation with IDLA

Before the training process of network QoS estimator fθ(·), we collected the training
samples from the built network scenario in the simulator following the pipeline introduced
in Section 8.4.1.

8.5.2.1 Network Sample Collection

We implemented a data augmentation strategy to cover a wider range of (unseen) sample
space. The data augmentation strategy is summarized as follows:

(1) For the per-slice samples that achieve lower network QoS than the requirements,
i.e., for rc,s(t) < 1, we generated augmented samples by replacing the QoS require-
ments (ϕ∗

s, d
∗
s) in the input training sample with the achieved QoS (ϕc,s(t), dc,s(t))

and replacing the QoS satisfaction rc,s(t) (sample output) with 1. If the achieved
(ϕc,s(t), dc,s(t)) were given as requirements, then the requirement would be met.

(2) Conversely, for the per-slice samples that achieve no less network QoS than the
requirement, i.e., for rc,s(t) = 1, we generated augmented samples by replacing the
slice resource partition xc,s(t) in the input training samples with a random value
x′c,s(t) ∈ [xc,s(t), 1]. Because the QoS is upper bounded by 1 based on Eq. 8.3, if
more resource was given to the slice, due to the monotonicity of rc,s over xc,s, the
achieved rc,s would be 1 as well.

8.5.2.2 Training of Slice-wise QoS Estimator

Then, for the training of QoS estimator fθ(·), we built the DNN model with MLP ar-
chitecture consisting of 4 hidden layers with the number of neurons (36, 24, 16, 16). As
proposed in 8.4.1, to better capture the temporal correlation, we used h = 5 steps of the
historical network reports for estimator training, i.e., the training input [xc,s, zc,s] ∈ R13.
The training data was collected from the network environment defined in 8.5.1. The model
was trained for 200 epochs on 75% training samples and 25% testing samples with Adam
optimizer with respect to Mean Absolute Error (MAE) loss.

Figure 8.2: Network QoS estimator MAE histogram

Fig. 8.2 shows the histogram of the MAE of network QoS estimator after training was
completed. To validate the viability of training a utility estimator, We investigated the

8.5. EXPERIMENTS 137

DNN model not only on the simulated data but also on a dataset collected from a real
commercial LTE network. By incorporating historical network reports, the estimator can
provide accurate network QoS predictions based on the given slice resource partition. The
average MAE was 0.0639 and 0.0573 for the simulation and real dataset respectively. The
close performances indicate that our method is valid for handling real network systems.

8.5.3 Performance Evaluation

With the derived slice QoS estimator fθ(·) in hand, we further implement the optimization
proposed in 8.4.3 to obtain optimal resource partitions. We compare the performance of
the following schemes:

• IDLA scheme: our proposed algorithm in Algo. 10 with P = 5 neighboring start
points, where the offset ϵ for each point follows a normal distribution N (0, 0.05).

• DRL scheme: a distributed TD3 algorithm-based DRL approach similar to our pre-
vious work [100], which solves cell-wise optimal slicing resource partitions regarding
the reward defined by minimum of network QoS Eq. 8.10 among all slices.

• Traffic scheme: a traffic-aware baseline that dynamically adapts slicing resource
partitions in each cell proportionally to the current per-slice traffic amount, assuming
perfect knowledge of traffic amount.

• Oracle scheme: an oracle scheme that provides the near-optimum for the constrained
optimization problem. It is derived by using brute-force search for the optimal utility
based on the pre-trained fθ(·) over all potential combinations of xc ∈ Xc with an
interval of 0.05.

To evaluate the performance of IDLA against the other schemes, we implemented an
online experiment in the network simulator with dynamic slice configuration, i.e., during
the processing of the schemes, we changed the combination of network slices. For a fair
comparison, we divide the whole online process into 3 time periods, denoted by H0, H1,
and H2 respectively:

• H0 (t ∈ [0, 1000)): First, we set the network system with 3 slices with combination
Sc(t) := [1, 2, 4], t ∈ H0, c ∈ C. Both IDLA and Oracle schemes are under the stage
of sample collection, while DRL is under the exploration phase for buffer collec-
tion without agent training. The Traffic scheme provides slice resource partitioning
proportional to instantaneous slice traffic demands.

• H1 (t ∈ [1000, 3000)): The network keeps the same slice configuration as H0. The
IDLA and Oracle schemes optimize resource allocation based on the pre-trained fθ(·)
over the samples collected within H0, and DRL enter the phase of online training,
with the samples collected within H0 also stored in the replay buffer.

• H2 (t ∈ [3000, 5000]): At t = 3000, the network slice configuration changes to slice
combination Sc(t) := [1, 2, 3, 4], t ∈ H2, c ∈ C, i.e., we introduce a new slice with the
corresponding user group into the network system with the same resource constraints.

In Fig. 8.3, we compare the averaged per-slice user throughput ϕc,s(t) referring to its
requirements ϕ∗

s over all cells for s ∈ Sc(t) of all schemes during the entire process
{H0,H1,H2}. Note that in H0 and H1, there are only 3 slices with index [1, 2, 4], while
later in period H2, we add a new slice with index 3.

138 8. IDLA: Per-Slice Scheme for Resource Allocation

F
ig

u
re

8.3:
C

om
p

arison
of

average
u

ser
th

rou
gh

p
u

t
am

on
g

sch
em

es

8.6. KEY TAKEAWAYS 139

After the offline training of QoS estimator fθ(·), the IDLA provides the best performance
among all schemes and faster convergence than DRL scheme in both online processing
phases H1 and H2. Moreover, IDLA quickly adapts to the new slice configuration (with
an added slice) in H2 and provides robust performance. On the contrary, due to the
poor scalability of the cell-wise agent, the DRL scheme needs to retrain the model when
the slice configuration changes. It is worth noting that since the total network resource
remains the same after adding a new slice, the user throughputs in other slices decrease
correspondingly to serve the users in the new slice.

To compare the converged performance of all schemes, in Fig. 8.4 we compare the em-
pirical CDF of the converged network QoS satisfaction level of all schemes under both
slice configurations. The IDLA scheme provides the highest probability of QoS satisfac-
tion under both slice configurations with 0.973 and 0.629 respectively, while Oracle and
DRL schemes achieved similar converged QoS satisfaction. Note that, theoretically, with
brute-force search Oracle scheme should find a near-optimal solution if the utility estima-
tor can be learned with 100% accuracy. However, in this experiment, the performance of
Oracle is not as good as IDLA due to the estimation error of the utility estimator and the
discretization of the searching grid space. In general, IDLA provides the best performance
in terms of convergence rate, converged performance, and scalability.

Figure 8.4: Comparison of network utility

8.6 Key Takeaways

In this chapter, we introduced a novel algorithm IDLA that integrates the strong general-
ization capabilities of the Lagrangian method with the superior approximation capabilities
of deep learning. which addresses the resource partitioning problem in network slicing, en-
suring compliance with inter-slice resource constraints. Experimental results demonstrate
that the IDLA algorithm can achieve near-optimal performance with fast convergence and
high generality compared to state-of-the-art solutions. Furthermore, we evaluated the
scalability of our approach by deploying the derived model in different network scenarios
with varying slicing configurations. The slice-wise resource scheduler in our proposed al-
gorithm provides high scalability and generality, enabling fast and efficient deployment in
real network systems.

In the next chapter, we aim to improve IDLA solution by incorporating TL techniques,
particularly focusing on DA methods to improve the generality of the DNN model. TL
can significantly reduce the training time and data requirements for new scenarios by
leveraging knowledge from previously trained models. By applying domain adaptation
techniques, we can further refine the DNN model to adapt to diverse and evolving network

140 8. IDLA: Per-Slice Scheme for Resource Allocation

conditions, ensuring that the IDLA algorithm maintains high performance across various
deployments. Specifically, we will explore the following key aspects:

• Pre-trained Model Adaptation: Investigating the use of pre-trained models from
similar domains and fine-tuning them for specific network scenarios.

• Instance-based Transfer: Utilizing data samples from different but related domains
enhances the training dataset and improves the robustness of the model.

• Feature-based DA: Extracting and aligning feature distributions between the source
and target domains to ensure the DNN model can effectively generalize across dif-
ferent environments.

141

9. TL-aided IDLA

Based on the per-slice resource partitioning algorithm IDLA, in this chapter, we investigate
the TL methods for improved model reproducibility and sample efficiency. Building on
the IDLA framework, we address domain gaps across network environments by improving
the generality of the slice-wise estimator through TL techniques and thereby tackle the
Question 8. Specifically, we implement a VIB-based regression model, consisting of an
encoder for invariant feature extraction and a network performance estimator, replacing
the traditional MLP-based regression. This VIB model adapts to a broader range of
network scenarios, enhancing the derivation of slicing resource partitions following the
IDLA approach.

We assess the performance of VIB-based model in mitigating domain discrepancies by
comparing its estimation accuracy in source and target domains across various sample
combinations and network setups. The evaluation includes comparisons with two baseline
methods: one using domain sample re-weighting and the other employing a conventional
MLP regression model. Numerical results indicate that the VIB approach significantly en-
hances target domain accuracy with fewer samples, while maintaining robust performance
in source domains. In domain adaptation scenarios, the VIB method outperforms both
MLP and loss re-weighting baseline methods. We also implement the IDLA method with
the proposed VIB-based estimators in a system-level network simulator to evaluate their
practical efficiency in diverse slicing scenarios. Specifically, we demonstrate a dynamic
network slicing scenario with varying slicing configurations in real-time, showcasing the
high flexibility and scalability of the TL-aided IDLA algorithm compared to a DRL slicing
approach and IDLA without TL.

The rest of the chapter is organized as follows. In Section 9.2, we first define the network
slicing model, then formulate the slicing resource allocation and DA problems. In Section
9.3, we introduce VIB-aided IDLA as DA process for higher solution generality. The
numerical results are demonstrated in Section 9.4, and we conclude this chapter in Section
9.5.

9.1 Motivation

To overcome the challenges of poor model reproducibility and limited sample efficiency
in dynamic mobile networks, recent advancements have turned to TL techniques [70].
TL enables the rapid adaptation of pre-solved solutions to new tasks, thereby reducing
processing time and data demand. Leveraging prior knowledge from pre-learned tasks, TL

Version: January 20, 2025 – 13:20:04

142 9. TL-aided IDLA

enhances the training process for new tasks that share common features. This approach has
demonstrated significant advantages across various machine learning applications, inspiring
the introduction of knowledge transfer methods in the field of wireless communication [71,
72, 73]. For network optimization problems, several works [101, 102, 103] have highlighted
TL’s potential in reducing resource consumption and improving efficiency.

However, effective TL implementation must address challenges such as data imbalance, do-
main similarity analysis, and negative knowledge transfer. Domain adaptation (DA) [104],
which addresses disparities between source and target domains to enhance knowledge trans-
ferability, has gained significant attention [105]. In the wireless communication field, DA
is applied to boost the robustness and generalizability of network solutions [106, 107, 108].
For instance, the information bottleneck (IB) method [109] identifies maximum informa-
tive representations of samples through rate-distortion theory [110], characterizing the
trade-off between quantization ratio and expected distortion. This approach has practical
applications in classification and generative modeling tasks [111], paving the way for ex-
ploring Information Bottleneck (IB)-based methods in wireless communication to achieve
flexible and generalizable solutions across different network environments.

The method of TL has been well explored in various fields, while its application in wireless
communication remains relatively scarce but is gradually gaining attention. Yang et al.
[112] applied TL to adapt a pre-trained beamforming model in a massive MIMO system,
mitigating hardware limitations and requiring fewer channel data for derivation. TL was
also recommended in [113] for radio map estimation, where the authors fine-tuned a source
model trained on a specific network for other environments, highlighting TL’s efficacy
with limited training data. Tailored for DRL, Janiar et al. proposed a TL approach
[114] to accelerate DRL training in wireless networks with an integrated feature extractor
that quantifies the disparity between source and target domains. Experimental results
demonstrated significant reductions in training time, outperforming conventional DRL
approaches.

Among TL techniques, DA has attracted significant attention in practical applications
[115, 116, 117]. Guan et al. [118] introduced an uncertainty-aware domain adaptation
network (UaDAN) for object detection, applying conditional adversarial learning to align
samples with varying degrees of similarity and leveraging uncertainty metrics for adaptive
learning. Chen et al. [119] introduced CrossTrainer, a DA system that leverages loss
re-weighting to improve model reproducibility across different sample sources, though the
sensitivity of the loss re-weighting hyperparameter requires expensive tuning and retrain-
ing procedures. In end-to-end communication, Raghu et al. [120] advocated for DA via
autoencoders to reduce the need for frequent retraining amidst changing channel condi-
tions, proposing a method for adapting a Gaussian mixture density network with minimal
target distribution samples and validating its effectiveness through simulation. Chen et
al. [121] introduced an IB-based GAN for medical imaging, using IB theory to enhance
cross-domain image translation by preserving relevant features while discarding extraneous
information, maintaining object consistency in domain adaptation.

In wireless communication, Zhou et al. [108] presented SemiAMR, a semi-supervised
network utilizing adversarial learning for cross-domain modulation recognition without
the need for pre-training on labeled target domain data, improving classification accuracy.
Shi et al. [122] addressed the simulation-to-reality gap in network configuration prediction
through a teacher-student DNN approach for DA, merging simulation and real-world data
to enhance training outcomes.

Fig. 9.1 illustrates the process of slicing resource partitioning in OAM, dynamically allo-
cating per-slice resource budgets as ratios of network resource partitions in each cell at

9.2. SYSTEM MODEL AND PROBLEM FORMULATION 143

Figure 9.1: TL of network slicing resource allocation

medium time scales, i.e., minutes or quarters. The RAN resource scheduler then period-
ically allocates PRBs to each service based on these partitions. However, deploying new
base stations with dynamic slice configurations and sparse samples poses challenges for
slicing resource schedulers using existing strategies. To address this, we propose a TL-
aided deep learning approach with DA to optimize slicing resource allocation for OAM,
ensuring adaptability to diverse slice configurations and network conditions with high flex-
ibility and generality. Our objective is to optimize slice-wise resource allocation for both
existing (source domain) and newly deployed (target domain) network slices by deriving
common solutions based on limited domain samples.

9.2 System Model and Problem Formulation

In this section, first, we define the dynamic network slicing system model in Section 9.2.1.
Then, in Section 9.2.2, we formulate the scalable slice-wise resource allocation as a nonlin-
ear optimization problem. The DA problem formulation under the context of TL is given
later in Section 9.3.1.

9.2.1 System Model

In this work, we consider multi-cell slicing scenarios within a network system comprising a
set of cells C := {1, 2, . . . , C} with dynamically configured slices from a collection denoted
as set S := {1, 2, . . . , S}. For each cell c ∈ C, the set of slicing can be time-varying,
represented as Sc(t) ⊂ S with cardinality |Sc(t)| = Sc(t), where Sc(t) is the number of
slices in cell c at time slot t ∈ N0. At each time slot t, the instantaneous slice performance
is measured by the network QoS in terms of per-slice user throughput ϕc,s(t) and delay
dc,s(t), referring to pre-defined requirements ϕ∗

s and d∗s, respectively. It is worth noting
that the slice types in this work are defined with network QoS referencing throughput
and delay requirements. The problem formulation and proposed solutions in the following
sections can be easily generalized to a broader set of requirements.

For each cell c ∈ C at time slot t, OAM optimizes inter-slice resource partitions xc(t),
composed of ratios of resource allocation to all slices, given by

xc(t) :=
[
xc,1(t), . . . , xc,Sc(t)(t)

]
∈ Xc(t), ∀c ∈ C, (9.1)

where Xc(t) :=

[0, 1]Sc(t)
∣∣∣ ∑
s∈Sc(t)

xc,s(t) ≤ 1

 . (9.2)

Then, the overall collection of network slicing resource partitions is denoted as x(t) :=
[x1(t), . . . ,xC(t)]. The slice-wise performance of slice s ∈ Sc(t) in cell c ∈ C is measured

144 9. TL-aided IDLA

by the QoS satisfaction level yc,s(x(t)), which refers to the metric for assessing partitioned
slice resource resulted by proposed methods, defined as

yc,s(x(t)) := min

{
ϕc,s(x(t))

ϕ∗
s

,
d∗s

dc,s(x(t))
, 1

}
, (9.3)

where ϕc,s(x(t)) and dc,s(x(t)) are the instantaneous slice throughput and delay at time
slot t, respectively. As Eq. 9.3 illustrates, slice performance is determined as the minimum
satisfaction level among slice throughput and delay, which is upper-bounded by 1. In other
words, the slice performance yc,s is measured as 1 only if both throughput ϕc,s and delay

dc,s meet the requirements; otherwise, it is measured as the minimum between
ϕc,s

ϕ∗
s

and
d∗s
dc,s

.

9.2.2 Problem Formulation

In this work, our primary objective is to provide efficient and scalable solutions for slicing
resource partitioning to optimize the utility of network QoS across all slices and cells at
each time slot t. In Problem 7, we formulate the general problem of optimizing global
network resource partitions concerning the QoS performance at each time slot.

Problem 7 (Global Slicing Problem).

max.
x(t)

U(y(x(t)))

subject to y(x(t)) :=
[
yc,s(x(t)) : c ∈ C, s ∈ Sc(t)

]
,

(9.1), (9.2), (9.3), ∀t.
(9.4)

We define the network utility function as the sum of the logarithms of the local network
performance metrics:

U(y(x(t))) :=
∑

c∈C,s∈Sc(t)

log (yc,s(x(t)) + 1) . (9.5)

Note that the utility function can be defined based on various system designs and re-
quirements. For example, here we choose Eq. 9.5 as a utility function because we aim to
leverage the resource partitions for overall slicing performance without considering specific
slice priorities. However, with the superior approximation capability of deep learning, our
proposed approach can be applied to a wide range of utility functions.

Solving Problem 7 presents multifaceted difficulties. Firstly, the complexity of the utility
function poses challenges for function approximation, mainly due to limited measurements
in OAM. In contrast to RAN, where user and channel feedback can be collected with
fine time granularity (e.g., in milliseconds), OAM only collects averaged cell and slice-
level KPIs with a coarse granularity (e.g., in minutes). Consequently, deriving closed-form
expressions becomes exceptionally challenging. Secondly, the flexible slice configurations
and inter-slice constraints further complicate the problem, resulting in slow convergence
and poor adaptability of deep learning-based approaches. Finally, OAM high scalability
demand makes it challenging to use large global models or collaborative multi-agent local
models that require extensive exploration to learn from scratch.

Moreover, the challenges of deriving the solution for Problem 7 also raise another con-
cern: since deriving slicing resource partitions for one specific network scenario can be
time-consuming and complicated, deploying the same approach when the network sce-
nario changes or under a new environment can incur significant costs in both time and
resources. Hence, we pose the question: Can we enhance the adaptability of this solution
to accommodate various network environments or setups more effectively?

9.3. TL-AIDED IDLA ALGORITHM 145

9.3 TL-aided IDLA Algorithm

In Chapter 8, we introduced the slice-wise resource partitioning solution IDLA for scal-
able slice configurations within the same network scenario. However, the transferability of
IDLA from one specific network scenario to another raises concerns about its performance.
This is because even a minor configuration change in the network system can introduce
a drift in the slice sample space, which the derived slice-based model may not have en-
countered before, leading to a possible degradation in the accuracy of the QoS estimator.
Consequently, the Lagrangian method loses the gradient guidance necessary to find op-
timal solutions. To address these challenges, in this section, we propose to enhance the
generality of the estimator with a DA model structure. We first provide the domain defi-
nitions under the context of the proposed IDLA framework and formulate the DA problem
of slice-wise QoS estimation model in Section 9.3.1. Then, in Section 9.3.2, we introduce
a VIB-based estimator. The derivation of this model involves finding a common latent
sample space, which extracts representative features across different slice configurations.
The underlying hypothesis is that certain common hidden patterns exist in samples across
diverse cells and slices. By leveraging TL, we aim to identify these representative sample
space features, leading to the derivation of a general slice QoS estimator model. Lastly,
we evolve VIB-based estimator into IDLA approach.

9.3.1 DA Problem Formulation

Before we formulate the DA problem of the IDLA solution, let us introduce two general
definitions related to TL:

• Domain: A domain D := {X ,Y, P (X,Y)} comprises an input feature space X , a
label space Y, and the joint probability distribution of random variables X and Y
with the sample space X and Y, respectively.

• Task: A task T := {Y, f(·)} includes the label space Y and the mapping function
f : X → Y.

In the following, we use upper case letters for random variables, e.g., X,Y , and lower case
letters for the particular realizations (measured samples) of the random variables, e.g.,
x, y. Formally, we extend the general definition of the TL problem in [104] as follows:

Definition 4 (Transfer Learning). Given a source domain DS := {XS,YS, PS(X,Y)} with a

sufficient number of samples Ω(S) :=
{(

x
(S)
k , y

(S)
k

)
: k = 1, . . . , NS

}
for solving the source

learning task TS := {YS, f(·)} by minimizing the training loss l
(
f(x), y

)
over all samples

referring to the model f(·):

RS(f) :=E(x,y)∼PS(x,y)

[
l
(
f(x), y

)]
=

∫
l
(
f(x), y

)
· PS

(
x, y
)
dxdy, (9.6)

and a target domain DT := {XT,YT, PT(X,Y)} which only has a limited number of samples

Ω(T) :=
{(

x
(T)
k , y

(T)
k

)
: k = 1, . . . , NT

}
with NT << NS, the objective of TL is to minimize

the expectation of estimation loss in the target domain with f(·):

RT(f) :=E(x,y)∼PT(x,y)

[
l(f(x), y)

]
=

∫
l
(
f(x), y

)
· PT

(
x, y
)

PS

(
x, y
)PS

(
x, y
)
dxdy

=E(x,y)∼PS(x,y)

[
PT

(
x, y
)

PS

(
x, y
) · l(f(x), y

)]
. (9.7)

146 9. TL-aided IDLA

Note that in this work, the source and target tasks are identical with the same label space
YT = YS, the objective of TL in this work is to leverage the source data and limited target
data to learn a slice QoS estimator model f(·) capable of performing well in the target
domain. Under the context of the slice-based QoS estimator in the IDLA approach, each
slice s ∈ Sc of cell c ∈ C can be regarded as a domain Dc,s. While all Dc,s and Tc,s,
∀s ∈ Sc, c ∈ C share the same sample spaces, such as xc,s ∈ [0, 1] in Eq. 9.2, oc,s ∈ ℜ2H+2

in Eq. 8.8, and yc,s ∈ [0, 1] in Eq. 8.9, respectively. For brevity, in this section we denote
x̄c,s(t) := (xc,s(t),oc,s(t)) with x̄c,s(t) ∈ X̄c,s, where X̄ stands as an extension of X because
of adding o(t). For each domain, the set of input samples for the QoS estimator is given
by:

X̄c,s := {x̄c,s(t) : for t = 1, . . . , T} ⊂ X̄ , (9.8)

and the set of output samples is denoted by:

Yc,s := {yc,s(t) : for t = 1, . . . , T} ⊂ Y, (9.9)

where X̄ :=
⋃

c∈C,s∈Sc(t)
X̄c,s and Y :=

⋃
c∈C,s∈Sc(t)

Yc,s are the collections of input sam-
ples and output samples, respectively. Then, the local domain can be denoted as Dc,s :=
{X̄ ,Y, Pc,s(X̄, Y)}, and the local task of solving local utility estimation is Tc,s := {Y, fc,s(·)},
where fc,s : X̄ → Y.

Based on TL formulation, the problem of DA for training a slice-based QoS estimator
can be formulated as Problem 8. For brevity, we omit the time index t starting from this
section.

Problem 8 (DA Problem for Slice QoS Estimator). Given a set of source domains DS :=
{Dc,s : c ∈ C̄, s ∈ S̄c}, where each domain comprises collected samples from source cells
C̄ ⊂ C and slices S̄c ⊂ Sc, and a target domain DT := {X̄ ,Y, PT(X̄, Y)} representing the
slice s′ ∈ Sc′ of cell c′ /∈ C̄, we aims to derive a slice-based QoS estimator f (TL)(·) based
on the samples from DS, such that the expectation of QoS estimation loss over samples in
DT is minimized. The problem is given by

min.
f (TL)

RT

(
f (TL)

)
:=E(x̄,y)∼PT(x̄,y)

[
l
(
f (TL)(x̄), y

)]
=E(x̄,y)∼PS(x̄,y)

[
PT(x̄, y)

PS(x̄, y)
l
(
f (TL)(x̄), y

)]
,

subject to (9.8), (9.9),

(9.10)

PS(x̄, y) :=
∑

s∈S̄c,c∈C̄ ωc,sPc,s(x̄, y) is the mixture distribution of samples from all source

domains used to derive the model f (TL) : X̄ → Y, where ωc,s are the weights assigned to
each local distribution with

∑
s∈S̄c,c∈C̄ ωc,s = 1. In this work, we assume the domain weights

are equally distributed as ωc,s := 1
|C̄|·|S̄c|

, ∀s ∈ S̄c, c ∈ C̄. PT(x̄, y) denotes the distribution

of samples collected in slice s′ of cell c′.

The challenges in developing an adaptive QoS estimator f (TL)(·), that performs well on
both source and target domains, arise primarily from the differences between PS(x̄, y)
and PT(x̄, y). In our problem, the source and target task functions are the same, i.e.,
Pci,sp(y|x̄) = Pcj ,sq(y|x̄) with respect to a common slice-based estimator f (TL)(x̄) = y in
Eq. 8.6. Hence, we can express the relationship as:

PT(x̄, y)

PS(x̄, y)
=

PT(x̄)PT(y|x̄)

PS(x̄)PS(y|x̄)
=

PT(x̄)

PS(x̄)
. (9.11)

The difference between domains depends solely on the distributions of input samples. This
allows us to rewrite Eq. 9.10 as:

min.
f (TL)

E(x̄,y)∼PS(x̄,y)

[
PT(x̄)

PS(x̄)
· l
(
f (TL)(x̄), y

)]
. (9.12)

9.3. TL-AIDED IDLA ALGORITHM 147

9.3.2 VIB-based Slice QoS Estimation

From Eq. 9.12, it is evident that the TL problem becomes an authentic machine learning
problem if PT(x̄) = PS(x̄), i.e., training and validating model f (TL) on the same sample
distribution. We aim to map samples from different domains into a common representative
latent feature space. This common space should extract features informative enough to
distinguish and represent the patterns of various domains, allowing the derivation of a
general QoS estimator capable of handling samples from different distributions.

Information Bottleneck: In this work, we propose to derive an adaptive slice-based network
QoS estimator f (TL) based on source domain samples from PS(x̄, y) that performs well on
target samples from PT(x̄, y) using a domain adaptation approach inspired by the VIB
method [123]. Specifically, we aim to find intermediate representations of X̄ as latent
variables Z by solving an encoder gϵ parameterized by ϵ. We aim for Z ∈ Z to be
maximally informative about the training output Y ∈ Y. The informative level is measured
by the mutual information:

I(Z, Y ; ϵ) :=

∫
P (z, y|ϵ) log

P (z, y|ϵ)

P (z|ϵ)P (y|ϵ)
dzdy. (9.13)

Figure 9.2: VIB-based slice QoS estimator
We aim for a representative space Z that is informative enough for capturing Y while
maintaining a low dependency on X̄ . To restrict the complexity of the representation space,
we introduce a constraint on the mutual information between X̄ and Z as I(Z, X̄; ϵ) ≤ Ic.
Here, Ic represents the information bottleneck [109], which sets the limit of information
about X̄ that Z can obtain. The problem of finding the encoder gϵ is given by:

max.
ϵ

I(Z, Y ; ϵ), subject to I(Z, X̄; ϵ) ≤ Ic. (9.14)

And by introducing a constant β ≥ 0, the objective function for solving Eq. 9.14 is:

LIB(ϵ) := I(Z, Y ; ϵ)− βI(Z, X̄; ϵ). (9.15)

By maximizing the first term of Eq. 9.15, the function encourages the representation Z
to be predictive of output Y , while minimizing the second term encourages Z to “forget”
X̄. This means Z is forced to be a minimal sufficient statistic of X̄ for predicting Y .
This objective function aligns with Shannon rate-distortion theory [110], where I(Z, X̄)
represents the “rate” of information about X̄ encoded in Z, and I(Z, Y) inversely relates
to “distortion”, reflecting how well the representation Z predicts Y . The weight factor β
adjusts the trade-off between the information compression rate and prediction distortion.

148 9. TL-aided IDLA

VIB-based model: To derive the solution for Eq. 9.15, we propose using the VIB approach,
approximating the problem with variational inference. We assume P (z|x̄, y) = P (z|x̄)
corresponding to the Markov chain Y → X → Z → Ŷ, i.e., the representation variables
Z are not directly dependent on output labels Y , while Ŷ denoted the prediction of Y
generated from Z without direct dependence on Y . Under this assumption, the joint
distribution of P (x̄, z, y) can be factorized as:

P (x̄, z, y) =P (z|x̄, y)P (y|x̄)P (x̄)

=P (z|x̄)P (y|x̄)P (x̄).
(9.16)

Recalling the objective function Eq. 9.14, besides P (x̄, y) which is determined by the
sample distribution, the only content we need now is the encoding function P (z|x), while
other distributions can be derived based on the Markov chain.

Following the derivation process of VIB, we can simplify two terms in Eq. 9.15 respectively:

I(Z, Y) ≥
∫

P (x̄)P (z|x̄)P (y|x̄) logQ(y|z)dx̄dzdy, (9.17)

I(Z, X̄) ≤
∫

P (x̄)P (z|x̄) log
P (z|x̄)

R(z)
dx̄dz, (9.18)

where Q(y|z) and R(z) are the variational approximations of P (y|z) and P (z) respec-
tively. It is necessary to address that our proposed VIB-based estimator aims to extract
latent variables Z as sufficient representatives of the original slice samples from different
domains and thereby capture common latent features in between to conduct robust slice
QoS estimations.

In this way, solving the Lagrangian Eq. 9.15 boils down to maximizing LIB to find the
optimal gϵ for encoding P (z|x̄; ϵ). In the context of slice-based QoS estimation presented
in this work, the joint sample distribution P (x̄, y) can be approximated based on collected
samples from domains, as indicated by Eq. 9.8 and Eq. 9.9, using the empirical distribution.
Therefore, in practice, we can compute LIB by:

LIB ≈
1

NS

∑
c∈C̄,s∈S̄c

[∑
z

P (z|x̄c,s) logQ(yc,s|z)− β P (z|x̄c,s) log
P (z|x̄c,s)

R(z)

]
, (9.19)

where NS is the number of collected samples from source domains. Assuming P (z|x̄c,s)
follows a Gaussian distribution, we define the encoding P (z|x̄c,s) := N (z|gµϵ (x̄c,s), g

Σ
ϵ (x̄c,s))

with respect to the encoder gϵ. To enable differenitability for backpropagation, we sample z
from P (z|x̄c,s) using the reparameterization trick [124] with respect to a Gaussian random
variable ε ∼ N(0, I). For convenience, we denote ḡϵ(x̄c,s, ε) as deterministic function by
compositing of gϵ and reparameterization trick.

In summary, we can derive the VIB model for slice-based QoS estimation with domain
adaptation by minimizing the following objective function:

JV IB =
1

NS

∑
c∈C̄,s∈S̄c

E
[

logQ(yc,s|ḡϵ(x̄c,s, ε)) + β DKL

[
P (z|x̄c,s)∥R(z)

]]
, (9.20)

the variational estimation Q(yc,s|ḡϵ(x̄c,s, ε)) can be defined as a DNN model hθ : Z → Y
for QoS estimation, considering the derived representations z = ḡϵ(x̄c,s, ε). Therefore,
the proposed VIB model for QoS estimation comprises two sub-models, namely, gϵ as the
encoder and hθ as the QoS estimator. The model structure is illustrated in Fig. 9.2.

9.4. EXPERIMENTS 149

9.3.3 IDLA with DA

In Chapter 8, we propose to collect slice-wise network observations as in Eq. 8.8 to capture
common features from different slices for learning a general slice QoS estimator fθ. For
DA problems, the model is required to be generalizable to different source domains but
also “predictable” for adapting to unseen domains. This implies that DA model should
be capable of distinguishing domains and learning hidden patterns through the collected
source samples. Following the approach proposed in Section 9.3.2, we can derive a VIB-
based model as an adaptive QoS estimator.

Based on the VIB model, in the IDLA approach, the Lagrangian function for solving local
Problem 6 of each cell c ∈ C is reformulated as:

LV IB(xc, λc; ε) :=
∑
s∈Sc

log
(
hθ ◦ ḡϵ(x̄c,s, ε) + 1

)
+ λc

(
1−

∑
s∈Sc

xc,s

)
. (9.21)

Similarly, we can solve the primal and dual problems and solve each local optimization
with GD iteratively:

x(i+1)
c,s :=

x(i)
c,s + δ(i)x ·

∂LV IB

(
x
(i)
c , λ

(i)
c

)
∂x

(i)
c,s

+

,∀s ∈ Sc

λ(i+1)
c :=

[
λ(i)
c − δ

(i)
λ ·

(
1−

∑
s∈Sc

x(i+1)
c,s

)]
+

.

(9.22)

The VIB model is composed of models gϵ and hθ, and their differentiability is guaranteed
by implementing the reparameterization trick for sampling latent representation z, the
derivatives of LV IB are derivable with respect to xc,s as:

∂LV IB

∂x
(i)
c,s

=
1

hθ ◦ ḡϵ + 1
· ∂hθ ◦ ḡϵ

∂ḡϵ
· ∂ḡϵ

∂x
(i)
c,s

− λ(i)
c . (9.23)

With these changes, the VIB can further proceed with the slicing resource partitioning
following the pipeline of the IDLA algorithm. Similarly, to ensure a robust and efficient
optimization process, for VIB-aided IDLA algorithm, we also implement the searching
strategies presented in Section 8.5.2. Specifically, for parallel exploration in Π different
paths, we select the optimal among them after convergence with:

x∗
c := arg max

x∗
cπ

∑
s∈Sc

log
(
hθ ◦ ḡϵ

(
x∗cπ ,s,oc,s, ε

)
+ 1
)
. (9.24)

In Algo. 11, we demonstrate the complete process of IDLA algorithm with VIB-based
estimator, where N (µ,Σ), i(max), and η denote the normal distribution for taking neigh-
boring points with mean µ and covariance matrix Σ, the maximum iteration steps, and
criterion for stopping iteration, respectively.

9.4 Experiments

In this section, we evaluate the performance of the proposed VIB-based model and IDLA
algorithm under Season II, where we can define various types of slices regarding slice service
requirements and build up network environments with arbitrary scales. First, we introduce
the network environments for assessing our proposed methods, focusing on the analysis
of sample-based domain discrepancies. Utilizing samples gathered from corresponding do-
mains, we derive slice-wise network QoS estimators. Subsequently, to evaluate the slicing

150 9. TL-aided IDLA

Algorithm 11 VIB-aided IDLA Algorithm

1: for t ∈ T and c ∈ C do
2: i← 0

3: x
(i)
c (t)←

{
default action, if t = 0

x∗
c(t− 1), otherwise

4: Take Π neighboring points as:

5: x
(i)
cπ (t) := x

(i)
c (t) + ϵ, π ∈ [1, ...,Π], with ϵ ∈ N (µ,Σ)

6: Parallelly compute for all π ∈ [1, ...,Π]:

7: Initialize Lagrangian multiplier λ
(i)
cπ

8: Initialize update rates δ
(i)
x > 0, δ

(i)
λ > 0

9: while i ≤ i(max) and ∥x(i)
cπ (t)− x

(i−1)
cπ (t)∥ ≥ η do

10: Compute partial derivatives with respect to (9.23)
11: Update optimization variables multipliers with (9.22)

12: Decrease update rates δ
(i)
x , δ

(i)
λ

13: i += 1
14: end while
15: x∗

cπ(t)← x
(i)
cπ (t)

16: Choose the optimal among Π points with (9.24)
17: end for

resource allocation performance of the VIB-aided IDLA algorithm in real-time, we deployed
in an evolving network slicing scenario within Season II, benchmarking its performance
against other state-of-the-art solutions, including a IDLA approach with DNN-based esti-
mator, a DRL approach and a traffic-aware resource allocation method. Finally, we assess
the adaptability and scalability of the VIB-based models by comparing their DA efficacy
against traditional DNN models and a sample re-weighting baseline to address their DA
performance under data imbalance scenarios.

9.4.1 Network Environment Setup

To implement the proposed methods and evaluate their transferability and scalability, we
aimed for building a network system that can imitate a realistic scenario where slicing
settings, such as slice requirements or served user behaviors, may vary within a consistent
network architecture. Therefore, to induce domain disparities, we constructed a virtual
network system consisting of 4 three-sector base stations operating at 2.6 GHz located in a
small area of Helsinki city, represented by a network environment with C = 12 cells under
the buildings map of Helsinki in Season II. All cells are provided with the same bandwidth
of 20 MHz.

We defined a set of network slices with distinct service requirements with varying user
throughput ϕ∗ varying from 0.5 to 4 Mbit/s. The slice combination of any cell c can
be configurable and time-varying, while each slice s ∈ Sc(t) is correspondingly assigned
to a specific service. Besides, to manually create diverse user behaviors across cells, we
categorized users into groups with varying moving radius U (R) from 200 to 100 meters,
and the maximum user number per service U (N) changing between 12− 36.

These deliberate discrepancies among slices and user groups aim to simulate diverse domain
sample characteristics under an identical network architecture. During experiments, we
have the flexibility to construct slicing scenarios by selecting various combinations of slices
and user groups under the structure of the pre-built network system. Specifically, to
address the performance of the proposed DA method, we are able to acquire network data
from a particular set of cells, denoted as source domains, to train slice-aware network
performance estimation models. Subsequently, we evaluate these models’ efficacy on the

9.4. EXPERIMENTS 151

cell not included in the source domain, i.e., denoted as the target domain, to assess their
transferability. For convenience, we omit the units in the rest of the section.

9.4.2 Deriving of VIB-based Slice QoS Estimator

In this subsection, we first outline the process for collecting training samples from the net-
work system we established above for training slice-wise QoS estimators. This is followed
by an introduction of training setups for these estimators, including the specification of
training hyperparameters. We explored various configurations of slices and user groups to
generate diverse per-slice samples for DA assessment. The per-slice samples that exhibited
common characteristics were aggregated as source domains for training slice-wise QoS es-
timators. Subsequently, we deployed these models on target domain samples after training
convergence to evaluate the DA features of the proposed estimator model. These target
domains, while distinct, retain relevance to their corresponding source domains. In Section
9.4.4, we introduce the selection of source and target domain pairs by identifying specific
combinations of network slice setups as indicated in Table 9.1 to facilitate evaluation.

9.4.2.1 Domain Sample Collection

Before implementing the training of proposed slice QoS estimators, we first demonstrate
the data collection process within the Season II network system. Following the data col-
lection pipeline presented in Section 8.5.2.1, we collect per-slice samples across all cells,
incorporating H = 5 steps of historical data to enhance the capture of temporal correla-
tions. Consenquently, this forms the training input [xc,s,oc,s] ∈ ℜ17 refer to Eq. 8.8.

It is worth mentioning that consistent with DA assumption, we have limited data vol-
umes in target domains, which results in a much smaller set of samples compared to those
from source domains. Before initiating the training of QoS estimators with these per-slice
samples, we conducted an analysis of the discrepancy between source and target domains.
This preliminary step was essential for assessing the feasibility and potential challenges of
implementing DA techniques across domains. Accordingly, we derived the domain discrep-
ancy measurements utilizing the approach from Section 7.5.2. This discrepancy metric is
determined by averaging the Kullback-Leibler (KL) divergence across latent variables of
the source and target samples with Eq. 7.7.

where i, j are the domain labels and (µk,σk)k ∈ i, j are the parameters of latent variable
distributions extracted with PVAE(zk|xk) = N (µk, diag(σk)) from xn ∈ Xi and xm ∈ Xj .
Please note that the encoder used here differs from the one in the VIB-based estimation
model.

9.4.2.2 Model Training

In this section, we evaluate the DA performance of proposed models by comparing slice
QoS estimation accuracy across source and target domains in each defined comparison pair.
Regarding the DA approach, in addition to our proposed VIB model, we implement a Label
Distribution Smoothing (LDS) [125] technique to address the data distribution imbalance
issue across different slices. LDS decicates to smooth the domain label distribution by
convolving the empirical distribution with a symmetric kernel. In this work, we obtained
a smoothed version of the domain label distribution. This smoothed distribution was
used to re-weight the loss function during training, inversely proportional to the effective
density of each domain label, thereby giving more emphasis to rarer domain samples and
improving the model performance on under-represented data. The weighted estimation
loss in the form of the MAE for LDS training can be expressed as:

LLDS =
1

N

N∑
i=1

wi · |ŷi − yi|. (9.25)

152 9. TL-aided IDLA

Figure 9.3: Compare distributions of input between domains

The weights for each sample are given as wi = 1
p̃(yi)

, where p̃(yi) represents the effective
presenting frequency of yi determined by its distribution, emphasizing domains with fewer
samples to potentially mitigate the impact of label imbalance. Specifically, we compare
the following estimation models with corresponding model configurations:

• VIB: The VIB-based model incorporated both an encoder and a predictor, both
structured as MLPs with hidden layers (36, 24, 16) for the encoder and (24, 16, 16)
for the predictor, respectively. To achieve a good trade-off between representative
richness and estimation precision, we mapped the original input samples [xc,s,oc,s] ∈
ℜ17 into latent variables zc,s ∈ ℜ12. It is trained by targeting Eq. 9.20, where β
was set to 0.002 to balance the model ability to generalize across domains while
maintaining meaningful information in the latent representation. The distribution
r(z) of the latent variables is assumed as a standard Gaussian N(0, I).

• DNN: The conventional DNN-based estimator, constructing with a MLP architec-
ture comprising 5 hidden layers with neurons (64, 36, 24, 16, 16), targeting MAE as
estimatino loss metric LDNN = 1

N

∑N
i=1 |ŷi − yi|;

• LDS: While not as a model itself, the LDS technique is applied to DNN estimator
model to address label imbalance through effective re-weighting, enhancing the DA

9.4. EXPERIMENTS 153

performance of DNN estimator, serves as a baseline to assess the performance of
VIB models. The LDS model is built upon the DNN setups, while training respect
to weighted loss Eq. 9.25;

For each domain pair, we trained all model types over 200 epochs, partitioning the data
into 75% for training and 25% for testing, utilizing the Adam optimizer.

9.4.3 Evaluation of Resource Allocation Performance

In this subsection, we assess the online performance of slice QoS estimators by implement-
ing the proposed IDLA procedure presented in 9.3. Our objectives were twofold: firstly, we
intend to evaluate the online performance of the estimators within the framework of the
proposed IDLA algorithm, and secondly, we aim to explore the adaptability of the IDLA
approach in practical network dynamics. Specifically, we investigated how the IDLA would
respond to domain shifts when facing network slicing changes. In this subsection, we im-
plement the IDLA approaches based on derived models in a scenario with dynamically
changing networks. For comparison, we also implemented a DRL-based approach and a
traffic-aware slicing resource partitioning mechanism as baselines. In detail, the following
schemes were implemented for online comparisons:

• IDLA-VIB: the proposed IDLA algorithm based on the VIB-based slice QoS estima-
tor. The IDLA algorithm is implemented by setting the number of initial neighboring
points P = 5 with offset ε ∼ N(0, 0.05);

• IDLA scheme: the proposed IDLA algorithm with a DNN-based QoS estimator. The
initial neighboring point setting is identical to the IDLA-VIB;

• DRL: a distributed cell-wise DRL approach using a TD3 algorithm, as discussed in
Section 5.4, which solves optimal slicing resource partitions in a cell-wise manner
regarding defined DRL reward as the minimum QoS satisfaction level among all
slices;

• Traffic: a traffic-aware approach that dynamically adapts slicing resource partitions
in each cell proportionally to the current per-slice user traffic demands, which as-
sumes perfect knowledge of the traffic amount;

We applied the IDLA approaches with the help of derived slice performance estimators,
i.e., VIB-based and DNN-based models, that were derived with source domain data from
the corresponding network environments. To evaluate the adaptation performance of the
IDLA-VIB scheme against the others, we implemented an online assessment in the net-
work simulator under dynamic network slicing configurations and various user groups, i.e.,
during the network processing, we changed network slicing combinations or user behaviors.
For fair comparisons, we divided the whole online process into 3 time periods, denoted by
H1, H2, H3, respectively:

• H1 (t ∈ [0, 1000)): First, in time phase H1 we set 3 slices with combination Sc(t) :=
[1, 2, 4], t ∈ H1, c ∈ C in network, with slice throughput requirements as ϕ∗

H1
∈

{2.0, 1.0, 0.5} Mbit/s respectively.

• H2 (t ∈ [1000, 2000)): At time step 2000, the network scenario enters phase H2,
and we changed the network slicing configuration by introducing a new slice with
index 3, i.e., the new slice combination becomes Sc(t) := [1, 2, 3, 4]. The new slice
throughput requirements become ϕ∗

H2
∈ {2.0, 1.0, 1.5, 0.5} Mbit/s.

154 9. TL-aided IDLA

F
igu

re
9.4:

C
om

p
arison

of
on

lin
e

slice
th

rou
gh

p
u

t
in

d
y
n

am
ic

slicin
g

9.4. EXPERIMENTS 155

• H3 (t ∈ [2000, 3000]): We further changed the slicing configuration at the switching
point between phase H2 and H3 by increasing the throughput requirement of each
slice by 0.5 Mbit/s, i.e., the new slice requirements are ϕ∗

H3
∈ {2.5, 1.5, 2.0, 1.0}

Mbit/s.

Figure 9.5: Comparing CDF of network utility

Table 9.1: Table of Source-Target Domain Pairs

Source Domain Target Domain
Distance
Metric

Pair 1
ϕ∗
S ∈ {2.0, 1.5, 1.0, 0.5},

U
(R)
S = 500, U

(N)
S ∈ {16, 24}

ϕ∗
T ∈ {2.0, 1.5, 1.0, 0.5},
U

(R)
T = 500, U

(N)
T = 36

0.311

Pair 2
ϕ∗
S ∈ {2.0, 1.5, 1.0, 0.5},

U
(R)
S ∈ {250, 360}, U (N)

S = 24

ϕ∗
T ∈ {2.0, 1.5, 1.0, 0.5},

U
(R)
T ∈ {750, 900}, U (N)

T = 24
1.312

Pair 3
ϕ∗
S ∈ {2.0, 1.5, 1.0, 0.5},
U

(R)
S = 500, U

(N)
S = 24

ϕ∗
T ∈ {2.5, 2.0, 1.5, 1.0},
U

(R)
T = 500, U

(N)
T = 24

0.383

Pair 4
ϕ∗
S ∈ {2.0, 1.0, 0.5},

U
(R)
S = 500, U

(N)
S = 24

ϕ∗
T ∈ {2.0, 1.5, 1.0, 0.5},
U

(R)
T = 500, U

(N)
T = 24

0.958

To assess transferability, during this process, we kept collecting new samples from the
network simulators and fine-tuned the estimators periodically every 200 steps for 100
epochs for IDLA-VIB and IDLA schemes, while the DRL fine-tunes itself through online
interaction when entering a new phase with new slicing setups. For fairness comparison,
the initial exploration phase of the DRL scheme was excluded at the beginning of H1.
To simulate realistic user traffic patterns, we applied varying traffic masks τs(t) ∈ [0, 1]
collected from a real network system to each slice s ∈ Sc(t), reflecting the daily periodic
pattern of the per-slice user traffic, where each step represents 15 minutes in real time.
Similarity, a traffic mask is applied to avoid overlapping of traffic peaks. On each slice,
the traffic mask has 16 steps shift to the next.

Fig. 9.4 illustrates the trends in average throughput across all cells for each slice during
phase H1, H2, and H3 by implementing different slicing resource allocation schemes. The
IDLA-VIB and IDLA schemes demonstrate consistent throughput levels across all slices
before encountering network condition changes, with IDLA-VIB offering slightly better
and more robust performance. In contrast, the DRL and Traffic schemes exhibit more
fluctuating performance, particularly after each configuration changes. At each network
change point, there is a visible impact on throughput for all schemes. However, the IDLA-
based schemes show better adaptability and quickly stabilize within 300 steps, whereas
IDLA-VIB exhibits faster convergence with online fine-tuning. The DRL scheme, which
is tailored to specific cases, requires a period of exploration and training after each con-

156 9. TL-aided IDLA

figuration change, shows fluctuating performance after the change, and tends to converge
after 600 steps. Although the Traffic-aware baseline initially knows traffic demands well,
its adaptability varies. Across the slices, the IDLA-VIB scheme consistently outperforms
the others in maintaining higher throughput levels. This underscores the VIB-based es-
timator robustness and efficiency in optimizing slicing resource allocation under dynamic
conditions. Overall, the IDLA-VIB scheme outperforms the other schemes, demonstrat-
ing its capability to effectively manage and optimize resource allocation for varying slice
requirements.

In Fig. 9.5, we compare the convergence performance of each scheme referring to defined
network utility Eq. 9.5 during phase H2 and H3, which are regarded as target domains in
this comparison. The network utility Eq. 9.5 is taken by taking the logistic of minimum
among slice throughput and delay satisfaction level, with a maximum defined utility of
2.773. In general, the IDLA-VIB scheme exhibits the highest utility across the phases,
closely followed by the IDLA scheme. In phase H2, the IDLA-VIB scheme achieves a
53.56% ratio of 95% utility, compared to IDLA and DRL, which only reach 38.22% and
33.38%, respectively. Similarly, in phase H3, IDLA-VIB continues to lead, achieving the
highest ratio at 41.28%. This is in contrast to 30.68% with DRL and 10.06% with IDLA.
The superior performance of the IDLA-VIB scheme, in particular, underscores its ro-
bustness and adaptability in optimizing network performance under slicing configuration
changes. This comparison shows that the IDLA algorithm can provide scalable and fast
deployable resource slicing resource allocation solutions, and the high transferability and
adaptivity of VIB models can further expand its efficiency.

9.4.4 Evaluation of VIB-based QoS Estimator

To assess the models’ adaptability to samples across domains, we set up 4 domain pairs
with variant network living setups under the experimental network scenario. Specifically,
our defined categories of domain setups are summarized as follows:

• Pair 1: Different maximum number of users. In the source domain, the maximum

number of users ranges between U
(N)
S ∈ {16, 24}, whereas in the target domain, this

expands to a larger group with U
(N)
T = 36;

• Pair 2: Different user moving radius. In the source domain, users move within

a radius of U
(R)
S ∈ {250, 360} meters, compared to the target domain, where the

moving radius increases to U
(R)
T ∈ {750, 900} meters, indicating a significantly wider

range of movement;

• Pair 3: Different slice combinations. The source domain features slice types with
throughput requirements of ϕ∗

S ∈ {2.0, 1.5, 1.0, 0.5} Mbit/s. In contrast, the target
domain requires higher throughputs for each slice, with values at ϕ∗

T ∈ {2.5, 2.0, 1.5, 1.0}
Mbit/s, making an increase of 0.5 Mbit/s per slice.

• Pair 4: Different number of slices. The source domain includes 4 slice types with
throughput requirements of ϕ∗

S ∈ {2.0, 1.0, 0.5} Mbit/s. The target domain ex-
pands this set by introducing an additional slice, making the slice combination
ϕ∗
T ∈ {2.0, 1.5, 1.0, 0.5} Mbit/s.

Table 9.1 specifies these domain configurations pairwisely. In the final column of Table 9.1,
we provide the domain discrepancy measures derived with Eq. 7.7, higher metric values
indicate greater domain differences, notably in pairs 3 and 4, attributed to varying slice
types despite similar user counts and CQI distributions.

9.4. EXPERIMENTS 157

To demonstrate the domain difference, Fig. 9.3 illustrates a comparison of sample distri-
butions of four key parameters - actual load, number of users, and CQI - between the
source and target domains for each evaluated domain pair. The distribution comparisons
highlight distinct differences, such as the number of users in pair 1 and CQI in pair 2,
which also lead to variations in per-slice resource occupations as depicted by the actual
load. However, for some domain pairs, these differences are not as apparent from the
sample distribution.

9.4.4.1 Comparison of DG Ability

To investigate the DG ability of models, we first trained these estimators exclusively on
source domain samples following the procedures outlined in Section 9.4.2.1 and subse-
quently evaluated their accuracy on both source and target domains.

Figure 9.6: Compare MAE CDF on source and target domains

Fig. 9.6 presents the distributions of MAE for both VIB and DNN models across all
domain pairs, comparing the accuracy on source and target domains. Each subfigure
corresponds to a specific domain pair and model type. As CDFs illustrate, the VIB models
consistently achieve lower MAE values in source domains compared to DNN models, while
in target domains, the performance of both models is comparable except domain pair 3.
Additionally, both models exhibit varying degrees of performance degradation in target
domains in comparison with their source domains. However, the VIB model demonstrates a
better ability to balance MAE across domains, indicating superior estimation accuracy and

158 9. TL-aided IDLA

enhanced DG and robustness capabilities. Specifically, in the comparisons of domain pair
1 and 2, the MAE distributions for both source and target domains are distributed towards
low errors. In contrast, for pairs 3 and 4, the target domains show much worse and broader
MAE distributions, reflecting greater variability in estimation accuracy compared to source
domains. The metrics in Table corroborate this 9.1, which indicate that the differences
between source and target domains in pair 3 and 4 are more significant, consistent with
the observed decline in QoS estimator performance demonstrated in Fig. 9.6.

9.4.4.2 Comparison of DA Ability

In response to the diminished performance in target domains with substantial domain
gaps identified in DG scenarios, we further explored the models’ DA capabilities by in-
corporating varying proportions of limited target domain samples in the training data.
Specifically, we implemented the training process of estimators under the DA scenarios,
utilizing target domain sample inclusion ratio of [0%, 20%, 50%, 70%, 90%]. It is important
to note that even with a 90% inclusion rate of target samples, the aggregate proportion
of target domain data within the training set remains significantly lower than the portion
of the source domain data, which reflects the basic assumption of DA scenarios. Table 9.2
demonstrates the estimation error in MAE of models in comparison under different usage
ratios of target domain samples under all domain pairs.

As Table 9.2 illustrates, VIB models outperform DNN estimators in all domain pairs,
demonstrating notable reductions in estimation errors as the target sample ratio increases.
Particularly in pairs 2 and 4, where the VIB model presents remarkable adaptability, sig-
nificantly narrowing the performance loss from source to target domains, while the DNN
model exhibited lesser flexibility and adaptability across varying domain conditions. When
integrated with the LDS method, the DNN model showed improved performance, partic-
ularly in managing data imbalance, indicating the effectiveness of LDS in adaptability.
However, even with the enhancement provided by LDS, conventional models still exhibit
lower estimation accuracy compared to VIB. Specifically, in pair 1, which has the smallest
domain discrepancy, the VIB model offers improvements ranging from 18.02% to 35.84%
under varying inclusion rates of target samples. This is compared to the 14.33% to 18.17%
improvement range provided by the LDS model. This improvement becomes even more
evident as domain discrepancy increases. The last column of each sub-table showcases the
baseline estimation accuracy achieved by applying models exclusively on target domain
samples. The estimation errors of both VIB and DNN models suggest that including target
domain samples may slightly impact their performance on source domains. On the con-
trary, with the LDS method, the models’ accuracy in the source domain is not adversely
affected by including fewer samples. It even achieves higher accuracy in source domains
with the re-weighted loss. In Fig. 9.7, we visualize the models’ estimation errors in target
domains across various target sample ratios, where shadowed solid lines depict the base-
lines for each model. The comparison focuses on the impact of incorporating varying ratios
of target domain samples into the training process under the DA scenarios.

In domain pairs 1 and 3 with narrower domain discrepancies, the VIB based estimator
enhances target domain accuracy as the ratio of target sample inclusion increases, stabiliz-
ing around 70% inclusion rate in pair 1 and also showing marked improvements in pair 3.
While in pairs 2 and 4, which have wider domain gaps, the VIB model exhibits even more
significant reductions in target domain MAE, suggesting robust adaptability in response to
increased proportions of target domain samples. The DNN model, across all domain pairs,
shows improvements as well, but these are more restrained compared to those of the VIB
model, and it does not achieve as low an MAE as the VIB model does. Additionally, the
LDS-enhanced DNN model improves upon the basic DNN model performance, but it does

9.5. KEY TAKEAWAYS 159

Figure 9.7: Compare MAE with involvement of target samples

not consistently reach the enhanced performance levels of the VIB model, particularly in
domain pairs with wider gaps.

Overall, incorporating target domain samples into the training significantly improved the
VIB model accuracy in the target domain, with a little compromising of source domain
performance in the cases of small domain discrepancies, while the DNN model does not
exhibit clear enhancements from the inclusion of target domain samples. The VIB model
consistently demonstrates superior generalization to the target domain across all pairs
under both DG and DA contexts, particularly with higher ratios of target samples. The
numerical results of estimation performance underscore VIB model superior adaptability
and robustness relative to the DNN model.

9.5 Key Takeaways

In this chapter, we present a comprehensive framework that merges the robust general-
ization capabilities of the Lagrangian method with the approximation potential of deep
learning. Our proposed IDLA algorithm addresses the resource partitioning challenges
inherent in network slicing while considering inter-slice resource constraints. The empiri-
cal results from a system-level network simulator underscore the efficacy of our approach,
demonstrating superior transferability, faster convergence, and better scalability compared
to state-of-the-art solutions.

Implementing the IDLA algorithm in real-time network slicing scenarios revealed its high
scalability in resource partitioning. When compared to other approaches, such as DRL
methods and traffic-aware allocation mechanisms, the IDLA algorithm, especially when
combined with VIB-based estimators, provided significant improvements in managing slic-
ing resources dynamically and efficiently. It achieved twice the convergence speed, showcas-
ing its potential for rapid and efficient deployment in diverse network environments. Fur-
thermore, the evaluation within dynamically changing network environments highlighted
the adaptability of the IDLA-VIB scheme. Despite the challenges posed by varying network
conditions and slicing configurations, the VIB-based approach consistently outperformed

160 9. TL-aided IDLA

other models, achieving higher throughput levels across different slices with the highest ra-
tios of utility satisfaction. This demonstrated its robustness in optimizing slicing resource
allocation under dynamic conditions.

The transferability of the VIB-based model was further emphasized when deployed in dy-
namically changing network settings. The model exhibited higher adaptability compared
to the original IDLA approach without TL, underscoring the flexibility of VIB in opti-
mizing resource allocation under varying slice configurations. Additionally, the VIB-aided
slice-wise network QoS estimators demonstrated enhanced DA capabilities compared to
traditional DNN-based models. This was evident under various TL tasks, where the VIB-
based models showed lower MAE values across both source and target domains, indicating
improved estimation accuracy and robust DA performance.

In conclusion, our proposed IDLA algorithm, enhanced with TL and DA methods, provides
a highly scalable and transferable solution for network slicing. By ensuring near-optimal
performance, fast convergence, and high generality, the IDLA algorithm with the VIB-
based DA model sets a new standard for slicing resource partitioning. This approach
paves the way for its scalable and generalized application in real-world network systems,
highlighting its potential for effective deployment in dynamic and diverse network envi-
ronments.

9.5. KEY TAKEAWAYS 161

Table 9.2: Comparison of Estimator Performance as Slice QoS Estimation Error

(a): Estimation Error in Domain Pair 1 (in 0.01)

Model Domain
Target Sample Ratio (in %)

Target Only
0 20 50 70 90

VIB
DS 3.73 3.76 3.96 4.10 4.20 —
DT 10.10 8.28 7.38 6.98 6.48 6.04

DNN
DS 6.10 6.36 6.50 6.49 6.50 —
DT 9.63 8.82 8.44 8.35 8.24 7.13

LDS
DS — 6.67 6.33 6.28 6.29 —
DT — 8.25 7.88 7.96 7.95 —

(b): Estimation Error in Domain Pair 2 (in 0.01)

Model Domain
Target Sample Ratio (in %)

Target Only
0 20 50 70 90

VIB
DS 1.44 1.63 1.58 1.68 1.75 —
DT 15.95 9.29 8.20 7.60 7.25 7.21

DNN
DS 3.06 3.13 3.11 3.17 3.19 —
DT 15.74 10.39 9.83 9.84 9.68 9.16

LDS
DS — 3.30 3.16 3.22 3.22 —
DT — 9.92 9.74 9.35 9.54 —

(c): Estimation Error in Domain Pair 3 (in 0.01)

Model Domain
Target Sample Ratio (in %)

Target Only
0 20 50 70 90

VIB
DS 3.79 4.05 4.20 4.42 4.53 —
DT 15.41 7.07 5.68 5.11 4.82 4.64

DNN
DS 6.05 6.18 6.23 6.31 6.41 —
DT 16.95 9.50 8.92 8.61 8.57 7.57

LDS
DS — 6.58 6.41 6.29 6.30 —
DT — 8.95 8.24 8.36 8.18 —

(d): Estimation Error in Domain Pair 4 (in 0.01)

Model Domain
Target Sample Ratio (in %)

Target Only
0 20 50 70 90

VIB
DS 1.88 2.08 2.19 2.23 2.33 —
DT 7.08 5.29 4.61 4.46 4.10 4.06

DNN
DS 3.78 3.86 3.97 3.93 3.96 —
DT 7.25 6.54 6.30 6.24 6.24 5.37

LDS
DS — 4.03 3.92 3.99 3.82 —
DT — 6.22 5.95 6.10 5.83 —

162 9. TL-aided IDLA

163

10. Conclusion and Outlook

Mobile networks are essential for facilitating connectivity in all human interactions, whether
between individuals or devices, underscoring their vital role within wireless communica-
tion. As we move towards future communication networks, sophisticated algorithms will
be required to automate complex cognitive processes currently managed by human reason-
ing. This thesis has focused on developing and applying advanced DRL and TL techniques
to address the challenges of network resource allocation in dynamic and heterogeneous en-
vironments. Through comprehensive research, experimentation, and evaluation, several
key insights and contributions have been made that will shape the future of network au-
tomation.

Specifically, we have explored DRL and TL methods within the context of network slic-
ing, addressing the optimization problems associated with slice resource allocation. The
discussions were divided into 3 main topics: RL application in network slicing, in-
tegration of TL, and comparison of solution granularity. For the third topic, we
investigated 3 levels of solution granularity: a centralized scheme that handles resource
partitioning across the entire network, a per-cell distributed scheme that decomposes the
central solver into cell-level models with lower complexity, and finally, a per-slice scheme
that offers the highest scalability and flexibility, theoretically serving as a “one-size-fits-
all” solution. Within each distributed scheme, we examined RL-based solutions and the
integration of TL methods.

Each chapter concluded with a summary based on numerical assessments from experi-
ments, demonstrating the effectiveness of the proposed solutions within their respective
contexts. The proposed algorithms were rigorously tested using system-level network sim-
ulators, validating their practical efficiency and scalability. The results highlighted the
superiority of TL-aided RL and IDLA algorithms in dynamically and efficiently managing
slicing resources. These findings pave the way for real-world deployment, showcasing the
potential for rapid and effective network automation.

In this final chapter, we will assess and evaluate the applications of RL and TL, highlighting
their efficacy in solving resource allocation tasks within network slicing scenarios. We will
also discuss their limitations in certain use cases and suggest future research directions
based on the findings of this dissertation.

Version: January 20, 2025 – 13:20:04

164 10. Conclusion and Outlook

10.1 RL Application in Network Slicing

This dissertation has focused on the application of RL techniques to enhance network
slicing in dynamic communication networks. In this initial Chapter 2, we provided a com-
prehensive introduction to RL, covering fundamental concepts and advanced algorithms
such as DQN, DDPG, and TD3. These algorithms were evaluated for their potential to
optimize network performance autonomously, especially in the context of 5G and future
networks. The research demonstrated that RL can significantly improve network perfor-
mance by dynamically adjusting configurations in response to changing conditions.

To address the optimization of slice resource allocation, we explored both centralized and
distributed RL approaches. Initially, we formulated the slice resource allocation problem
using MDP models in multi-cell, multi-slice scenarios. The centralized approach served as
a benchmark for comparison. To validate the effectiveness of RL in network slicing, we
proposed a distributed DQN-based resource allocation solution. Preliminary experiments
showed promising results, demonstrating the practical implementation and benefits of RL
in a simulated network environment. The distributed approach aimed to address the
complexity and scalability issues inherent in centralized solutions. Further extending the
distributed approach, we explored multi-agent DRL algorithms to enhance inter-cell and
inter-slice resource partitioning. This approach aimed to maximize slice performance while
adhering to resource constraints.

Our key findings and contributions to exploring multi-agent DRL application in network
slicing include:

1. Distributed Multi-Agent DRL Solution: We proposed a distributed multi-agent DRL
framework, exploring schemes with and without inter-agent coordination. This ap-
proach allowed agents to share load information, enhancing overall performance.

2. Handling Resource Constraints: To respect resource constraints, we developed two
methods: reward reshaping and decoupled softmax layer embedding. These methods
ensured that the agents operated within the defined resource limits.

3. Performance Evaluation: Using a system-level simulator, we extensively evaluated
the proposed solutions. The coordinated distributed scheme outperformed the cen-
tralized approach, providing superior slice-aware service performance and more than
doubling resource efficiency compared to traffic-aware baselines.

4. Effectiveness of RL in Network Slicing: RL, particularly in distributed and multi-
agent settings, effectively addresses the dynamic and complex nature of network
slicing, offering significant improvements in resource management.

5. Practical Implementation: The proposed algorithms were rigorously tested in sim-
ulated environments, validating their practical applicability and scalability in real-
world network scenarios.

6. Enhanced Performance: The integration of TL techniques further boosted the perfor-
mance of DRL algorithms, demonstrating faster convergence rates, improved initial
and final performance, and enhanced robustness.

In conclusion, the application of RL in network slicing presents a promising avenue for
achieving efficient and autonomous network management. The contributions of this dis-
sertation lay a strong foundation for future advancements in network automation, paving
the way for more adaptive, scalable, and robust communication networks.

10.2. INTEGRATION OF TL 165

10.2 Integration of TL

This dissertation has explored the integration of TL with RL to enhance the sample effi-
ciency and model reproducibility of network slicing solutions. By leveraging TL, we aimed
to overcome the limitations of RL models, such as sample inefficiency and lack of general-
ity, to provide more robust and scalable network management solutions. We began with a
detailed introduction to TL, covering its background, basic concepts, and specific methods,
including the pre-train and fine-tuning framework and DA techniques. The necessity of TL
in ML and practical applications was emphasized, highlighting how TL can significantly
improve the learning rate and initial performance of RL agents by leveraging pre-trained
models and knowledge from similar tasks.

In our research, we integrated TL into the distributed DRL approach, specifically focusing
on the methods of transferring the per-cell DRL-based slice resource allocation method,
denoted as the DIRP algorithm, under two TL scenarios: Generalist-to-Specialist and
Specialist-to-Specialist. This integration aimed to enhance the performance of RL in dy-
namic network environments by addressing inter-slice resource constraints and optimizing
inter-cell resource partitioning. Building on the IDLA framework, we further investigated
TL methods to enhance model reproducibility and sample efficiency. We introduced a
VIB-based regression model to improve the generality of the slice-wise estimator across
different network environments. Our contributions and findings are summarized as follows:

Generalist-to-Specialist with TL-aided DIRP

1. Improved Sample Efficiency and Performance: The TL-aided DIRP algorithm demon-
strated higher rewards, faster convergence, and better performance in diverse network
scenarios compared to baseline approaches.

2. Enhanced Algorithm Transferability: By using pre-trained model transfer, instance
transfer, and combined model and instance transfer schemes, we significantly im-
proved the transferability of the DIRP algorithm across different network environ-
ments.

3. Experiment Evaluation: The proposed solutions were evaluated using a system-level
simulator, showing superior slice-aware service performance and increased resource
efficiency over traffic-aware baselines.

Specialist-to-Specialist TL with Domain Similarity Analysis

1. Domain Similarity Analysis: We further explored TL-aided DRL approaches that
focus on transferring knowledge from one specific domain to another. We developed
a novel TL-aided multi-agent DRL approach with domain similarity analysis for
inter-slice resource partitioning. Using a feature-based inter-agent similarity analysis
approach, this method measures domain and task differences.

2. Specialist-to-Specialist Transfer: We achieved greater performance gains by focusing
on transferring knowledge between highly similar agents, particularly in scenarios
with limited training steps.

TL for Per-slice Resource Allocation

1. Enhanced Adaptability: The VIB-based model adapted to a broader range of network
scenarios, significantly improving the accuracy of slicing resource partitions.

166 10. Conclusion and Outlook

2. Mitigating Domain Discrepancies: The VIB approach effectively mitigated domain
discrepancies, outperforming conventional MLP regression models and domain sam-
ple re-weighting methods.

3. Practical Efficiency: Implemented in a system-level network simulator, the TL-aided
IDLA algorithm demonstrated high flexibility and scalability in dynamic network
slicing scenarios, outperforming traditional DRL and IDLA approaches without TL.

In conclusion, the integration of TL into RL-based network slicing solutions and the
IDLA algorithm has demonstrated significant improvements in performance, efficiency,
and adaptability. Key findings include:

• Enhanced Performance and Convergence: TL techniques have significantly improved
the learning rate and overall performance of RL agents, resulting in faster conver-
gence and higher rewards.

• Scalability and Flexibility: The proposed TL-aided approaches, particularly the Vari-
ational Information Bottleneck (VIB)-based IDLA algorithm, have showcased supe-
rior scalability and flexibility in managing dynamic slicing resources.

• Robustness in Diverse Scenarios: TL methods have enhanced the robustness of RL
models across various network environments, ensuring consistent performance even
with domain discrepancies.

These advancements highlight the significant promise of integrating TL into RL-based slice
resource allocation methods. The improvements in efficiency, scalability, and robustness
lay a strong foundation for future research and practical implementations in dynamic and
heterogeneous network environments.

10.3 Comparison of Solution Granularity

10.3.1 Centralized vs. Distributed DRL Approaches

One of the core aspects of this research was the comparison between centralized and dis-
tributed DRL approaches for network slicing. While effective in controlled environments,
centralized methods faced significant scalability and convergence challenges when applied
to large-scale networks. In contrast, distributed DRL approaches, particularly those in-
corporating inter-agent coordination mechanisms, demonstrated superior performance in
terms of convergence rates, resource efficiency, and overall service quality.

We proposed a distributed multi-agent DRL solution to enhance resource allocation in net-
work slicing. By exploring two coordination schemes—one with inter-agent coordination
and one without—we enabled agents to share local information, improving convergence
rates and service quality. We developed two methods to ensure that DRL agents respect
resource constraints: reward reshaping and decoupled softmax embedding. These methods
allowed for more effective management of inter-slice resource constraints. The proposed so-
lutions were rigorously tested using a system-level simulator, showing that the coordinated
distributed scheme more than doubled resource efficiency over traffic-aware baselines while
providing superior slice-aware service performance compared to the centralized approach.

10.3. COMPARISON OF SOLUTION GRANULARITY 167

10.3.2 Per-slice Resource Allocation with IDLA

We developed the IDLA algorithm to further enhance resource allocation. This approach
combines deep learning models with constrained optimization techniques, enabling robust
and scalable resource allocation for various slice combinations. The IDLA algorithm ad-
dresses the limitations of traditional RL methods, offering a practical solution for dynamic
network environments.

A general DNN model was derived to approximate slice network utility, capable of han-
dling slices with different requirements. This model facilitated efficient computation of the
partial derivatives of the slice utility function. Leveraging the DNN model, a Lagrangian
method was designed for optimal per-slice resource allocation while adhering to inter-slice
resource constraints. This approach ensures near-optimal QoS satisfaction and generalizes
well across various network scenarios. The slice-wise resource scheduler in the IDLA algo-
rithm demonstrated high scalability and flexibility, enabling fast and efficient deployment
in real network systems. Experimental results showed that the IDLA algorithm achieved
near-optimal performance with fast convergence compared to state-of-the-art solutions.

Summary of Findings
The research provided several significant insights into network slicing solutions:

1. Scalability and Efficiency: Distributed DRL approaches, particularly with inter-agent
coordination, are more scalable and efficient than centralized methods, making them
suitable for large-scale network environments.

2. Advanced Resource Allocation: The IDLA algorithm combination of deep learning
and constrained optimization techniques offers a robust and flexible solution for
dynamic network conditions, outperforming traditional RL methods.

3. Enhanced Performance through TL: Integrating TL techniques into DRL models
significantly improved sample efficiency, learning rates, and overall performance,
demonstrating the potential for rapid and effective network automation.

This dissertation contributes to a thorough discussion of effectively managing network
resources in dynamic and heterogeneous environments by investigating these various gran-
ularities of slice resource allocation. Combining with the advanced RL and TL techniques,
the findings lay a strong foundation for future network slicing and automation advance-
ments for more adaptive, scalable, and robust communication networks. The framework
of the potential application of this dissertation is provided in Fig. 10.1. It showcases cells
C1 to CN , which collectively form the source domain DS , each populated with various
network slices. These slices are transferred to a target domain represented by cell CT ,
highlighting a process where learned strategies and network management solutions are
adapted from source to target, facilitating quick deployment and resource optimization.
The figure also indicates a centralized knowledge data repository that gathers data from
current network systems, which is essential for TL by providing a rich dataset for training
and refining RL models. TL schemes like per-cell (DIRP) and per-slice (IDLA) indicate
strategic approaches to applying TL, either focusing on entire cells or individual slices,
suggesting flexibility in optimization strategies. The implementation in new network sys-
tems shown at the bottom part of the diagram implies that these transferred strategies
enhance performance and efficiency, particularly useful in dynamic network environments
where rapid adaptation to changing conditions is crucial. This approach not only acceler-
ates the deployment of network resources but also significantly improves the adaptability
and efficiency of network automation solutions.

168 10. Conclusion and Outlook

Figure 10.1: Knowledge and data services for network automation

10.4 Answers to Research Questions

Answer to Question 1: How to convert slice resource allocation into the form that
RL approaches can handle?

To convert slice resource allocation into a form suitable for RL, we modeled the problem as
a MDP. This involves defining states, actions, and rewards that accurately represent the
dynamic environment of network slicing. The state space includes variables such as current
resource allocation, network traffic, and slice performance metrics. Actions correspond to
possible adjustments in resource distribution among slices, and the reward function is
designed to reflect KPIs like throughput, latency, and resource efficiency. This MDP
formulation enables the application of RL algorithms to optimize slice resource allocation
dynamically.

Answer to Question 2: How to distribute the centralized resource allocation prob-
lem into the per-cell scheme while maintaining the correlation of inter-cell depen-
dency?

To distribute the centralized resource allocation problem into a per-cell scheme while pre-
serving inter-cell dependencies, we introduced a distributed multi-agent DRL approach.
Each cell operates as an independent agent that collaborates with neighboring cells. Inter-
agent coordination is achieved through mechanisms such as information sharing and co-
ordination protocols, which help maintain inter-cell dependency. Techniques like reward
shaping and decoupled softmax embedding were developed to ensure resource constraints
are respected across the network. This distributed approach allows for scalable and efficient
resource allocation in large-scale networks.

Answer to Question 3: How to proceed TL methods on the top of RL solutions?

We employed a two-phase approach: pre-training and fine-tuning to integrate TL methods
with RL solutions. Initially, RL models are trained on a source domain with ample data
to develop a robust base policy. This pre-trained model is then fine-tuned on the target
domain with limited data, allowing it to adapt to specific network conditions. We explored
different TL techniques such as model transfer, instance transfer, and combined transfer
methods. When applied to new or varying network scenarios, this process enhances the
learning rate, sample efficiency, and initial performance of RL agents.

10.4. ANSWERS TO RESEARCH QUESTIONS 169

Answer to Question 4: How to determine the source of knowledge transfer given
a target slicing scenario?

Determining the source of knowledge transfer involves analyzing the similarity between
the source and target domains. We developed a domain similarity analysis using feature-
based inter-agent similarity measures. This method evaluates potential source domains’
characteristics and performance metrics to identify the most relevant and similar one
for transfer. By extracting representative feature distributions in latent space, we can
effectively match target slicing scenarios with the best-suited pre-trained models, ensuring
efficient and effective knowledge transfer.

Answer to Question 5: Is TL helpful in enhancing the generality of RL solutions?

TL is significantly helpful in enhancing the generality of RL solutions. Our research
demonstrated that TL techniques improve the adaptability of RL models to diverse net-
work environments. By leveraging pre-trained models, TL reduces the need for extensive
training data and computational resources in the target domain. This approach results
in faster convergence rates, higher initial performance, and greater robustness against do-
main discrepancies, thereby extending the applicability and effectiveness of RL solutions
across different network scenarios.

Answer to Question 6: How to address the resource constraints under different
granularity of solutions?

We developed specific methods tailored to each granularity level to address resource con-
straints under different granularities. We used comprehensive resource allocation algo-
rithms for centralized schemes that consider the entire network resource demands and con-
straints. For per-cell distributed schemes, we implemented reward shaping and decoupled
softmax embedding to manage resources at a local level while maintaining network-wide
constraints. We combined deep learning models with constrained optimization techniques
in per-slice schemes to ensure efficient and compliant resource distribution. These methods
collectively ensure optimal resource management across varying granularity levels.

Answer to Question 7: How to facilitate slicing solutions under dynamic slice
configurations?

Facilitating slicing solutions under dynamic configurations involves developing adaptable
algorithms capable of real-time adjustments. We proposed the IDLA algorithm, which
combines deep learning with constrained optimization to manage varying slice configu-
rations. The IDLA algorithm’s flexibility allows it to handle different numbers of slices
and configuration changes efficiently. This approach ensures consistent and optimal re-
source allocation in dynamic environments by continuously learning and adapting to new
conditions.

Answer to Question 8: How to improve model generality under domain shift
caused by slice configuration changing?

Improving model generality under domain shifts caused by slice configuration changes was
achieved by incorporating advanced TL techniques, specifically domain adaptation meth-
ods. We introduced a VIB-based regression model to enhance the generality of slice-wise
estimators. This model focuses on invariant feature extraction and robust performance
estimation across different domains. By mitigating domain discrepancies through VIB, we
ensured that models remain accurate and reliable despite changes in slice configurations,
thereby maintaining high performance across diverse network scenarios.

170 10. Conclusion and Outlook

10.5 Outlook to Future Research

Building on the numerical results from the integration of RL and TL methods for network
slicing, there are several potential experiments for future research to further enhance and
refine these approaches. This chapter outlines potential research directions based on the
insights and findings of this dissertation.

Advanced Reward Function Analysis One significant area for future research is the analysis
of different reward functions. The current study highlighted the effectiveness of using
downlink average throughput as a KPI. However, future research should explore a variety
of reward functions, including user-specific QoS requirements, to optimize RL performance
in network slicing. This could involve developing more sophisticated reward structures that
capture the nuances of user experiences and network performance metrics.

Incorporating Realistic Network Traffic Models To create more accurate and adaptable
RL models, future experiments should incorporate dynamic changes in the number of UE
based on realistic network traffic models. This approach would provide a more authentic
simulation environment, allowing RL algorithms to adapt to varying traffic conditions and
improve their generalizability and robustness.

Enhancing Multi-Agent Coordination Future work should focus on improving multi-agent
coordination mechanisms to better capture dependencies between multiple cells and achieve
consensus on RAN slice resource budget decisions among neighboring cells. This involves
developing advanced coordination strategies that enhance the efficiency and effectiveness
of distributed RL approaches in complex network environments.

Expanding TL Applications The long-term goal is to expand the use of TL to enhance
sample efficiency and learning rates by transferring knowledge across different network
environments. Future research should explore TL applications in other network manage-
ment tasks, such as load balancing and interference management, to significantly improve
network automation capabilities and make the optimization process more effective and
adaptable. Additionally, further exploration of advanced DA methods is crucial to en-
hancing the generality and adaptability of RL models across diverse network scenarios.
Implementing sophisticated DA techniques will help mitigate domain discrepancies, en-
suring consistent performance of RL models in various network environments.

Real-World Validation and Implementation Finally, implementing and validating the pro-
posed TL-aided RL approaches in real-world network environments is essential to ensure
their practical applicability and effectiveness. This involves rigorous testing and adap-
tation of the algorithms in live network settings, providing valuable insights into their
operational performance and scalability.

10.6 Conclusion

This dissertation has advanced the state-of-the-art network slicing and resource allocation
through innovative applications of RL and TL. The proposed solutions offer practical,
scalable, and efficient approaches for managing the complexities of next-generation net-
works. The findings and methodologies developed here provide a strong foundation for
future research and development.

The methodologies developed in this thesis offer scalable solutions for network slicing,
which is essential for managing future networks’ increasing complexity. By reducing op-
erational costs and complexity, these approaches facilitate more autonomous and self-
optimizing networks, critical for supporting diverse applications and services. The pro-
posed algorithms ensure efficient resource allocation and adherence to QoS requirements,

10.6. CONCLUSION 171

supporting a wide range of applications with varying performance needs. This capabil-
ity enables advanced services such as autonomous driving, remote surgery, and immersive
AR/VR experiences.

The integration of TL techniques ensures that developed models can quickly adapt to
new network conditions and configurations, maintaining high performance despite rapidly
changing traffic patterns and emerging technologies. The insights and methodologies from
this research lay a strong foundation for future communication systems, such as 6G. The
principles of RL, TL, and dynamic resource allocation explored in this thesis will be critical
for managing next-generation networks’ increased complexity and demands.

Furthermore, the successful application of TL and RL highlights their potential for broader
use in various aspects of network management, including fault detection, traffic predic-
tion, and energy-efficient operations. Future research can extend these techniques to other
domains within the communication network ecosystem. Developing policy transfer tech-
niques within TL-aided RL frameworks opens new avenues for creating more generalized
and adaptable network management solutions. These techniques can facilitate the transfer
of learned policies across different network segments, enhancing the overall efficiency and
performance of network management.

The proposed algorithms, particularly those enhanced with TL and domain adaptation
methods, have demonstrated their potential for real-time network optimization. This
capability is crucial for ensuring that next-generation networks can meet the stringent
demands of emerging applications and services. By continuing to refine and expand these
advanced methods, we aim to develop more robust and efficient solutions for dynamic
network environments, paving the way for more adaptive, scalable, and efficient commu-
nication networks.

In conclusion, the integration of TL into RL-based network slicing solutions and the IDLA
algorithm has shown significant improvements in performance, efficiency, and adaptability.
These advancements lay a strong foundation for future research and practical implemen-
tations in dynamic and heterogeneous network environments. As we move towards more
intelligent and adaptive communication systems, integrating RL, TL, and advanced op-
timization techniques will be crucial for realizing the full potential of next-generation
networks.

BIBLIOGRAPHY 173

Bibliography

[1] Rachid El Hattachi and Javan Erfanian. 5G white paper. Technical report, 02 2015.

[2] Mansoor Shafi, Andreas F. Molisch, Peter J. Smith, Thomas Haustein, Peiying Zhu,
Prasan De Silva, Fredrik Tufvesson, Anass Benjebbour, and Gerhard Wunder. 5g:
A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE
Journal on Selected Areas in Communications, 35(6):1201–1221, 2017. doi:10.

1109/JSAC.2017.2692307.

[3] Nicolas Huin, Paolo Medagliani, Sébastien Martin, Jérémie Leguay, Lei Shi, Sheng-
ming Cai, Jinchun Xu, and Hao Shi. Hard-isolation for network slicing. In IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS), pages 955–956, 2019. doi:10.1109/INFCOMW.2019.8845282.

[4] Xin Li, Mohammed Samaka, H. Anthony Chan, Deval Bhamare, Lav Gupta,
Chengcheng Guo, and Raj Jain. Network slicing for 5g: Challenges and oppor-
tunities. IEEE Internet Computing, 21(5):20–27, 2017. doi:10.1109/MIC.2017.

3481355.

[5] Abdelbaset S. Hamza, Shady S. Khalifa, Haitham S. Hamza, and Khaled Elsayed.
A survey on inter-cell interference coordination techniques in ofdma-based cellular
networks. IEEE Communications Surveys Tutorials, 15(4):1642–1670, 2013. doi:

10.1109/SURV.2013.013013.00028.

[6] Mahmudur Rahman and Halim Yanikomeroglu. Enhancing cell-edge performance: a
downlink dynamic interference avoidance scheme with inter-cell coordination. IEEE
Transactions on Wireless Communications, 9(4):1414–1425, 2010. doi:10.1109/

TWC.2010.04.090256.

[7] Meiyu Wang, Yun Lin, Qiao Tian, and Guangzhen Si. Transfer learning promotes 6g
wireless communications: Recent advances and future challenges. IEEE Transactions
on Reliability, 70(2):790–807, 2021. doi:10.1109/TR.2021.3062045.

[8] Cong T. Nguyen, Nguyen Van Huynh, Nam H. Chu, Yuris Mulya Saputra, Dinh Thai
Hoang, Diep N. Nguyen, Quoc-Viet Pham, Dusit Niyato, Eryk Dutkiewicz, and Won-
Joo Hwang. Transfer learning for wireless networks: A comprehensive survey. Pro-
ceedings of the IEEE, 110(8):1073–1115, 2022. doi:10.1109/JPROC.2022.3175942.

[9] Manuel S. Santos and John Rust. Convergence properties of policy iteration. SIAM
J. Control. Optim., 42:2094–2115, 2003.

[10] Anna Winnicki and R Srikant. On the convergence of policy iteration-based rein-
forcement learning with monte carlo policy evaluation. In International Conference
on Artificial Intelligence and Statistics, pages 9852–9878. PMLR, 2023.

[11] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.

Version: January 20, 2025 – 13:20:04

https://doi.org/10.1109/JSAC.2017.2692307
https://doi.org/10.1109/JSAC.2017.2692307
https://doi.org/10.1109/INFCOMW.2019.8845282
https://doi.org/10.1109/MIC.2017.3481355
https://doi.org/10.1109/MIC.2017.3481355
https://doi.org/10.1109/SURV.2013.013013.00028
https://doi.org/10.1109/SURV.2013.013013.00028
https://doi.org/10.1109/TWC.2010.04.090256
https://doi.org/10.1109/TWC.2010.04.090256
https://doi.org/10.1109/TR.2021.3062045
https://doi.org/10.1109/JPROC.2022.3175942

174 BIBLIOGRAPHY

[12] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist
systems, volume 37. University of Cambridge, Department of Engineering Cam-
bridge, UK, 1994.

[13] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989.

[14] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with
double q-learning. CoRR, abs/1509.06461, 2015. URL: http://arxiv.org/abs/1509.
06461, arXiv:1509.06461.

[15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep re-
inforcement learning, 2013.

[16] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando
Freitas. Dueling network architectures for deep reinforcement learning. In Interna-
tional conference on machine learning, pages 1995–2003. PMLR, 2016.

[17] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow:
Combining improvements in deep reinforcement learning. In Proceedings of the AAAI
conference on artificial intelligence, volume 32, 2018.

[18] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. Advances
in neural information processing systems, 12, 1999.

[19] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural infor-
mation processing systems, 12, 1999.

[20] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971, 2015.

[21] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation
error in actor-critic methods. In International conference on machine learning, pages
1587–1596. PMLR, 2018.

[22] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller. Deterministic policy gradient algorithms. In International conference on
machine learning, pages 387–395. Pmlr, 2014.

[23] C. W. Bray. Transfer of learning. Journal of Experimental Psychology, 11(6):443–467,
1928.

[24] Lisa A. Torrey and Jude W. Shavlik. Transfer learning. In Handbook of Research on
Machine Learning Applications and Trends: Algorithms, Methods, and Techniques,
pages 249–256. IGI Global, 2010.

[25] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[26] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. Advances in neural information pro-
cessing systems, 33:1877–1901, 2020.

http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1509.06461

BIBLIOGRAPHY 175

[27] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255, 2009. doi:10.1109/CVPR.2009.

5206848.

[28] Edoardo Giacomello, Daniele Loiacono, and Luca Mainardi. Brain mri tumor seg-
mentation with adversarial networks. In 2020 International Joint Conference on
Neural Networks (IJCNN), pages 1–8. IEEE, 2020.

[29] Qiang Yang, Yu Zhang, Wenyuan Dai, and Sinno Jialin Pan. Transfer Learning.
Cambridge University Press, 2020.

[30] Wouter M. Kouw. An introduction to domain adaptation and transfer learning.
CoRR, abs/1812.11806, 2018. URL: http://arxiv.org/abs/1812.11806.

[31] Jindong Wang and Yiqiang Chen. Introduction to Transfer Learning: Algorithms
and Practice. Springer Nature, 2023. URL: jd92.wang/tlbook.

[32] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are
features in deep neural networks? Advances in neural information processing sys-
tems, 27, 2014.

[33] Zirui Wang, Zihang Dai, Barnabás Póczos, and Jaime Carbonell. Characterizing and
avoiding negative transfer. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 11293–11302, 2019.

[34] Wen Zhang, Lingfei Deng, Lei Zhang, and Dongrui Wu. A survey on negative
transfer. IEEE/CAA Journal of Automatica Sinica, 10(2):305–329, 2022.

[35] Miaofeng Liu, Yan Song, Hongbin Zou, and Tong Zhang. Reinforced training data
selection for domain adaptation. In Proceedings of the 57th annual meeting of the
association for computational linguistics, pages 1957–1968, 2019.

[36] Yash Patel, Kashyap Chitta, and Bhavan Jasani. Learning sampling policies for
domain adaptation. arXiv preprint arXiv:1805.07641, 2018.

[37] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders. Machine learning
for data science handbook: data mining and knowledge discovery handbook, pages
353–374, 2023.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[39] A. Kusiak. Feature transformation methods in data mining. IEEE Transactions
on Electronics Packaging Manufacturing, 24(3):214–221, 2001. doi:10.1109/6104.
956807.

[40] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks,
2014. arXiv:1406.2661.

[41] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial
training of neural networks. J. Mach. Learn. Res., 17(1):2096–2030, jan 2016.

[42] Yaqing Wang, Quanming Yao, James Kwok, and Lionel M. Ni. Generalizing from a
few examples: A survey on few-shot learning, 2020. arXiv:1904.05046.

https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
http://arxiv.org/abs/1812.11806
jd92.wang/tlbook
https://doi.org/10.1109/6104.956807
https://doi.org/10.1109/6104.956807
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1904.05046

176 BIBLIOGRAPHY

[43] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning
domains: A survey. Journal of Machine Learning Research, 10(7), 2009.

[44] Zhuangdi Zhu, Kaixiang Lin, Anil K. Jain, and Jiayu Zhou. Transfer learning in
deep reinforcement learning: A survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(11):13344–13362, 2023. doi:10.1109/TPAMI.2023.

3292075.

[45] Simon Schmitt, Jonathan J. Hudson, Augustin Źıdek, Simon Osindero, Carl Doersch,
Wojciech M. Czarnecki, Joel Z. Leibo, Heinrich Küttler, Andrew Zisserman, Karen
Simonyan, and S. M. Ali Eslami. Kickstarting deep reinforcement learning. ArXiv,
abs/1803.03835, 2018.

[46] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value func-
tion approximators. In Francis Bach and David Blei, editors, Proceedings of the
32nd International Conference on Machine Learning, volume 37 of Proceedings of
Machine Learning Research, pages 1312–1320, Lille, France, 07–09 Jul 2015. PMLR.

[47] Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao,
Feng Wu, and Changjie Fan. Learning to utilize shaping rewards: A new approach
of reward shaping. Advances in Neural Information Processing Systems, 33:15931–
15941, 2020.

[48] Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learn-
ing with context-based representations. In International Conference on Machine
Learning, pages 9767–9779. PMLR, 2021.

[49] Nokia Siemens Networks. White paper: Self-organizing network (son): Introducing
the nokia siemens networks son suite-an efficient, future-proof platform for son. 2009.

[50] R. A. Addad, Miloud Bagaa, T. Taleb, D. Dutra, and H. Flinck. Optimization
model for cross-domain network slices in 5g networks. IEEE Transactions on Mobile
Computing, 19:1156–1169, 2020.

[51] Halyna Beshley, Mykola Beshley, Mykhailo Medvetskyi, and Julia Pyrih. Qos-aware
optimal radio resource allocation method for machine-type communications in 5g
lte and beyond cellular networks. Wirel. Commun. Mob. Comput., 2021:9966366:1–
9966366:18, 2021.

[52] Francesca Fossati, Stefano Moretti, P. Perny, and S. Secci. Multi-resource allocation
for network slicing. IEEE/ACM Transactions on Networking, 28:1311–1324, 2020.

[53] Tengteng Ma, Yong Zhang, Fanggang Wang, Dong Wang, and Da Guo. Slicing
resource allocation for embb and urllc in 5g ran. Wirel. Commun. Mob. Comput.,
2020:6290375:1–6290375:11, 2020.

[54] Renato L. G. Cavalcante, Qi Liao, and Slawomir Stańczak. Connections be-
tween spectral properties of asymptotic mappings and solutions to wireless net-
work problems. IEEE Transactions on Signal Processing, 67(10):2747–2760, 2019.
doi:10.1109/TSP.2019.2908147.

[55] Yongshuai Liu, Jiaxin Ding, and Xin Liu. A constrained reinforcement learning
based approach for network slicing. In 2020 IEEE 28th International Conference
on Network Protocols (ICNP), pages 1–6, 2020. doi:10.1109/ICNP49622.2020.

9259378.

https://doi.org/10.1109/TPAMI.2023.3292075
https://doi.org/10.1109/TPAMI.2023.3292075
https://doi.org/10.1109/TSP.2019.2908147
https://doi.org/10.1109/ICNP49622.2020.9259378
https://doi.org/10.1109/ICNP49622.2020.9259378

BIBLIOGRAPHY 177

[56] Qiang Liu, Tao Han, Ning Zhang, and Ye Wang. DeepSlicing: Deep reinforcement
learning assisted resource allocation for network slicing. In GLOBECOM 2020 -
2020 IEEE Global Communications Conference, pages 1–6, 2020. doi:10.1109/

GLOBECOM42002.2020.9322106.

[57] Ismail Alqerm and Basem Shihada. A cooperative online learning scheme for resource
allocation in 5g systems. 2016 IEEE International Conference on Communications
(ICC), pages 1–7, 2016.

[58] Nan Zhao, Ying-Chang Liang, Dusit Tao Niyato, Yiyang Pei, Minghu Wu, and Yun-
hao Jiang. Deep reinforcement learning for user association and resource allocation in
heterogeneous cellular networks. IEEE Transactions on Wireless Communications,
18:5141–5152, 2019.

[59] Hao Song, Lingjia Liu, Jonathan D. Ashdown, and Yang Cindy Yi. A deep reinforce-
ment learning framework for spectrum management in dynamic spectrum access.
IEEE Internet of Things Journal, 8:11208–11218, 2021.

[60] Hai xia Peng and Xuemin (Sherman) Shen. Deep reinforcement learning based
resource management for multi-access edge computing in vehicular networks. IEEE
Transactions on Network Science and Engineering, 7:2416–2428, 2020.

[61] Santiago Paternain, Luiz FO Chamon, Miguel Calvo-Fullana, and Alejandro
Ribeiro. Constrained reinforcement learning has zero duality gap. arXiv preprint
arXiv:1910.13393, 2019.

[62] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Padu-
raru, and Yuval Tassa. Safe exploration in continuous action spaces. arXiv preprint
arXiv:1801.08757, 2018.

[63] Jakob N Foerster, Yannis M Assael, Nando De Freitas, and Shimon Whiteson. Learn-
ing to communicate with deep multi-agent reinforcement learning. arXiv preprint
arXiv:1605.06676, 2016.

[64] V. Konda and J. Tsitsiklis. Actor-Critic algorithms. In NIPS, 1999.

[65] Scott Fujimoto, H. V. Hoof, and D. Meger. Addressing function approximation error
in Actor-Critic methods. ArXiv, abs/1802.09477, 2018.

[66] D. Silver, Guy Lever, N. Heess, T. Degris, Daan Wierstra, and Martin A. Riedmiller.
Deterministic policy gradient algorithms. In ICML, 2014.

[67] Juha Meinilä, Pekka Kyösti, Lassi Hentilä, Tommi Jämsä, Essi Suikkanen, Esa Kun-
nari, and Milan Narandžić. Wireless World Initiative New Radio - Winner+. Tech-
nical report, 2010.

[68] Yan Shao, Rongpeng Li, Zhifeng Zhao, and Honggang Zhang. Graph attention
network-based DRL for network slicing management in dense cellular networks. 2021
IEEE Wireless Communications and Networking Conference (WCNC), pages 1–6,
2021.

[69] Hongrui Nie, Shaosheng Li, and Yong Liu. Multi-agent deep reinforcement learning
for resource allocation in the multi-objective HetNet. 2021 International Wireless
Communications and Mobile Computing (IWCMC), pages 116–121, 2021.

[70] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions
on knowledge and data engineering, 22(10):1345–1359, 2009.

https://doi.org/10.1109/GLOBECOM42002.2020.9322106
https://doi.org/10.1109/GLOBECOM42002.2020.9322106

178 BIBLIOGRAPHY

[71] Cong T Nguyen, Nguyen Van Huynh, Nam H Chu, Yuris Mulya Saputra, Dinh Thai
Hoang, Diep N Nguyen, Quoc-Viet Pham, Dusit Niyato, Eryk Dutkiewicz, and Won-
Joo Hwang. Transfer learning for future wireless networks: A comprehensive survey.
arXiv preprint arXiv:2102.07572, 2021.

[72] Meiyu Wang, Yun Lin, Qiao Tian, and Guangzhen Si. Transfer learning promotes 6g
wireless communications: Recent advances and future challenges. IEEE Transactions
on Reliability, 2021.

[73] Claudia Parera, Qi Liao, Ilaria Malanchini, Cristian Tatino, Alessandro E. C. Re-
dondi, and Matteo Cesana. Transfer learning for tilt-dependent radio map prediction.
IEEE Transactions on Cognitive Communications and Networking, 6(2):829–843,
2020. doi:10.1109/TCCN.2020.2964761.

[74] Matthew E. Taylor, Peter Stone, and Yaxin Liu. Transfer learning via inter-task
mappings for temporal difference learning. J. Mach. Learn. Res., 8:2125–2167, 2007.

[75] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu,
Hui Xiong, and Qing He. A comprehensive survey on transfer learning. Proceedings
of the IEEE, 109(1):43–76, 2020.

[76] Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning
domains: A survey. J. Mach. Learn. Res., 10:1633–1685, 2009.

[77] Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. Transfer learning in deep reinforce-
ment learning: A survey. arXiv preprint arXiv:2009.07888, 2020.

[78] Ahmad M Nagib, Hatem Abou-Zeid, and Hossam S Hassanein. Transfer learning-
based accelerated deep reinforcement learning for 5G RAN slicing. In 2021 IEEE
46th Conference on Local Computer Networks (LCN), pages 249–256. IEEE, 2021.

[79] Tianle Mai, Haipeng Yao, Ni Zhang, Wenji He, Dong Guo, and Mohsen Guizani.
Transfer reinforcement learning aided distributed network slicing resource optimiza-
tion in industrial IoT. IEEE Transactions on Industrial Informatics, 2021.

[80] Hammad Zafar, Zoran Utkovski, Martin Kasparick, and S lawomir Stańczak. Trans-
fer learning in multi-agent reinforcement learning with double Q-networks for dis-
tributed resource sharing in V2X communication. ArXiv, abs/2107.06195, 2021.

[81] Renato Lúıs Garrido Cavalcante, Qi Liao, and S lawomir Stańczak. Connections
between spectral properties of asymptotic mappings and solutions to wireless network
problems. IEEE Transactions on Signal Processing, 67:2747–2760, 2019.

[82] Vincenzo Sciancalepore, Ilario Filippini, Vincenzo Mancuso, Antonio Capone, and
Albert Banchs. A multi-traffic inter-cell interference coordination scheme in dense
cellular networks. IEEE/ACM Transactions on Networking, 26:2361–2375, 2018.

[83] Zhiyuan Xu, Jian Tang, Jingsong Meng, Weiyi Zhang, Yanzhi Wang, C. Liu, and
Dejun Yang. Experience-driven networking: A deep reinforcement learning based
approach. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications,
pages 1871–1879, 2018.

[84] Dongsheng Xu, Peng Qiao, and Yong Dou. Aggregation transfer learning for multi-
agent reinforcement learning. 2021 2nd International Conference on Big Data &
Artificial Intelligence & Software Engineering (ICBASE), pages 547–551, 2021.

https://doi.org/10.1109/TCCN.2020.2964761

BIBLIOGRAPHY 179

[85] 3GPP, TS 28.530. Technical Specification Group Services and System Aspects; Man-
agement and orchestration; Concepts, use cases and requirements, V17.2.0, Decem-
ber 2021.

[86] Jeonghoon Mo and Jean Walrand. Fair end-to-end window-based congestion control.
IEEE/ACM Transactions on Networking, 8(5):556–567, 2000.

[87] Thomas Bonald, Laurent Massoulié, Alexandre Proutiere, and Jorma Virtamo. A
queueing analysis of max-min fairness, proportional fairness and balanced fairness.
Queueing systems, 53(1):65–84, 2006.

[88] John Ewing. Autonomic Performance Optimization with Application to Self-
Architecting Software Systems. PhD thesis, 04 2015.

[89] Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson.
Learning to communicate with deep multi-agent reinforcement learning. In NIPS,
2016.

[90] Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G Hauptmann. Contrastive
adaptation network for unsupervised domain adaptation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4893–
4902, 2019.

[91] Rongpeng Li, Zhifeng Zhao, Qi Sun, Chih-Lin I, Chenyang Yang, Xianfu Chen,
Minjian Zhao, and Honggang Zhang. Deep reinforcement learning for resource man-
agement in network slicing. IEEE Access, 6:74429–74441, 2018.

[92] Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. Transfer learning in deep reinforce-
ment learning: A survey. CoRR, abs/2009.07888, 2020. URL: https://arxiv.org/
abs/2009.07888, arXiv:2009.07888.

[93] Ahmad M. Nagib, Hatem Abou-zeid, and Hossam S. Hassanein. Transfer learning-
based accelerated deep reinforcement learning for 5G RAN slicing. IEEE 46th LCN,
pages 249–256, 2021.

[94] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output represen-
tation using deep conditional generative models. In NIPS, 2015.

[95] Mojdeh Karbalaee Motalleb, Vahid Shah-Mansouri, Saeedeh Parsaeefard, and Onel
Luis Alcaraz López. Resource allocation in an open RAN system using network
slicing. IEEE Transactions on Network and Service Management, 20:471–485, 2023.

[96] Mathieu Leconte and et al. A resource allocation framework for network slicing.
IEEE INFOCOM, pages 2177–2185, 2018.

[97] Liu Qiang, Choi Nakjung, and Han Tao. Constraint-aware deep reinforcement learn-
ing for end-to-end resource orchestration in mobile networks. In IEEE ICNP, pages
1–11, 2021.

[98] Liu Qiang, Choi Nakjung, and Han Tao. OnSlicing: Online end-to-end network
slicing with reinforcement learning. In ACM CoNEXT, pages 141–153, 2021.

[99] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in PyTorch. In NIPS Autodiff Workshop, 2017.

https://arxiv.org/abs/2009.07888
https://arxiv.org/abs/2009.07888
https://arxiv.org/abs/2009.07888

180 BIBLIOGRAPHY

[100] Tianlun Hu, Qi Liao, Qiang Liu, Dan Wellington, and Georg Carle. Inter-cell slicing
resource partitioning via coordinated multi-agent deep reinforcement learning. In
IEEE International Conference Communications (ICC), 2022.

[101] Yifei Shen, Yuanming Shi, Jun Zhang, and Khaled Ben Letaief. Transfer learning for
mixed-integer resource allocation problems in wireless networks. ICC 2019 - 2019
IEEE International Conference on Communications (ICC), pages 1–6, 2018. URL:
https://api.semanticscholar.org/CorpusID:70033937.

[102] Qingtian Zeng, Qiang Sun, Geng Chen, Hua Duan, Chao Li, and Ge Song. Traf-
fic prediction of wireless cellular networks based on deep transfer learning and
cross-domain data. IEEE Access, 8:172387–172397, 2020. URL: https://api.
semanticscholar.org/CorpusID:222095907.

[103] Nguyen Van Huynh and Geoffrey Y. Li. Transfer learning for signal detection in
wireless networks. IEEE Wireless Communications Letters, 11:2325–2329, 2022.
URL: https://api.semanticscholar.org/CorpusID:251879154.

[104] Wouter M. Kouw. An introduction to domain adaptation and transfer learning.
CoRR, abs/1812.11806, 2018. URL: http://arxiv.org/abs/1812.11806, arXiv:1812.
11806.

[105] Zhiqi Yu, Jingjing Li, Zhekai Du, Lei Zhu, and Heng Tao Shen. A comprehensive
survey on source-free domain adaptation, 2023. arXiv:2302.11803.

[106] Mohamed Akrout, Amal Feriani, Faouzi Bellili, Amine Mezghani, and Ekram Hos-
sain. Domain generalization in machine learning models for wireless communica-
tions: Concepts, state-of-the-art, and open issues. IEEE Communications Surveys
& Tutorials, 25:3014–3037, 2023. URL: https://api.semanticscholar.org/CorpusID:
257505534.

[107] Junyang Shi, Mo Sha, and Xi Peng. Adapting wireless mesh network config-
uration from simulation to reality via deep learning based domain adaptation.
In Symposium on Networked Systems Design and Implementation, 2021. URL:
https://api.semanticscholar.org/CorpusID:232127966.

[108] Quan Zhou, Ronghui Zhang, Zexuan Jing, and Xiaojun Jing. Semi-supervised-based
automatic modulation classification with domain adaptation for wireless iot spectrum
monitoring. In Frontiers of Physics, 2023. URL: https://api.semanticscholar.org/
CorpusID:257838140.

[109] Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottle-
neck method. ArXiv, physics/0004057, 2000. URL: https://api.semanticscholar.org/
CorpusID:8936496.

[110] Claude E. Shannon. Coding Theorems for a Discrete Source With a Fidelity Cri-
terionInstitute of Radio Engineers, International Convention Record, vol. 7, 1959.,
pages 325–350. 1993. doi:10.1109/9780470544242.ch21.

[111] Ziv Goldfeld and Yury Polyanskiy. The information bottleneck problem and its
applications in machine learning. IEEE Journal on Selected Areas in Information
Theory, 1(1):19–38, 2020. doi:10.1109/JSAIT.2020.2991561.

[112] Hyewon Yang, Jeongju Jee, Girim Kwon, and Hyuncheol Park. Deep transfer
learning-based adaptive beamforming for realistic communication channels. 2020 In-
ternational Conference on Information and Communication Technology Convergence

https://api.semanticscholar.org/CorpusID:70033937
https://api.semanticscholar.org/CorpusID:222095907
https://api.semanticscholar.org/CorpusID:222095907
https://api.semanticscholar.org/CorpusID:251879154
http://arxiv.org/abs/1812.11806
https://arxiv.org/abs/1812.11806
https://arxiv.org/abs/1812.11806
https://arxiv.org/abs/2302.11803
https://api.semanticscholar.org/CorpusID:257505534
https://api.semanticscholar.org/CorpusID:257505534
https://api.semanticscholar.org/CorpusID:232127966
https://api.semanticscholar.org/CorpusID:257838140
https://api.semanticscholar.org/CorpusID:257838140
https://api.semanticscholar.org/CorpusID:8936496
https://api.semanticscholar.org/CorpusID:8936496
https://doi.org/10.1109/9780470544242.ch21
https://doi.org/10.1109/JSAIT.2020.2991561

BIBLIOGRAPHY 181

(ICTC), pages 1373–1376, 2020. URL: https://api.semanticscholar.org/CorpusID:
229374594.

[113] Rahul Kumar Jaiswal, Mohamed Elnourani, Siddharth Deshmukh, and Baltasar
Beferull-Lozano. Deep transfer learning based radio map estimation for indoor
wireless communications. 2022 IEEE 23rd International Workshop on Signal Pro-
cessing Advances in Wireless Communication (SPAWC), pages 1–5, 2022. URL:
https://api.semanticscholar.org/CorpusID:251169549.

[114] Siavash Barqi Janiar and Ping Wang. A transfer learning approach based on in-
tegrated feature extractor for anti-jamming in wireless networks. 2023 IEEE 34th
Annual International Symposium on Personal, Indoor and Mobile Radio Communi-
cations (PIMRC), pages 1–6, 2023. URL: https://api.semanticscholar.org/CorpusID:
264883315.

[115] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando C Pereira,
and Jennifer Wortman Vaughan. A theory of learning from different domains. Ma-
chine Learning, 79:151–175, 2010. URL: https://api.semanticscholar.org/CorpusID:
8577357.

[116] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang
Chen, Wenjun Zeng, and Philip S. Yu. Generalizing to unseen domains: A survey
on domain generalization. IEEE Transactions on Knowledge and Data Engineering,
35(8):8052–8072, 2023. doi:10.1109/TKDE.2022.3178128.

[117] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain
generalization: A survey. CoRR, abs/2103.02503, 2021. URL: https://arxiv.org/
abs/2103.02503, arXiv:2103.02503.

[118] Dayan Guan, Jiaxing Huang, Aoran Xiao, Shijian Lu, and Yanpeng Cao.
Uncertainty-aware unsupervised domain adaptation in object detection. IEEE
Transactions on Multimedia, 24:2502–2514, 2022. doi:10.1109/TMM.2021.3082687.

[119] Justin Chen, Edward Gan, Kexin Rong, Sahaana Suri, and Peter Bailis. Crosstrainer:
Practical domain adaptation with loss reweighting. In Proceedings of the 3rd Inter-
national Workshop on Data Management for End-to-End Machine Learning, pages
1–10, 2019.

[120] Jayaram Raghuram, Yijing Zeng, Dolores Garćıa Mart́ı, Rafael Ruiz Ortiz, Somesh
Jha, Joerg Widmer, and Suman Banerjee. Few-shot domain adaptation for end-to-
end communication, 2023. arXiv:2108.00874.

[121] Jiawei Chen, Ziqi Zhang, Xinpeng Xie, Yuexiang Li, Tao Xu, Kai Ma, and Yefeng
Zheng. Beyond mutual information: Generative adversarial network for domain
adaptation using information bottleneck constraint. IEEE Transactions on Medical
Imaging, 41(3):595–607, 2022. doi:10.1109/TMI.2021.3117996.

[122] Junyang Shi, Aitian Ma, Xia Cheng, Mo Sha, and Xi Peng. Adapting wire-
less network configuration from simulation to reality via deep learning-based do-
main adaptation. IEEE/ACM Transactions on Networking, 2023. URL: https:
//api.semanticscholar.org/CorpusID:265433693.

[123] Alexander A. Alemi, Ian Fischer, and Joshua V. Dillon. Deep variational information
bottleneck. ArXiv, abs/1612.00410, 2017. URL: https://api.semanticscholar.org/
CorpusID:204922497.

https://api.semanticscholar.org/CorpusID:229374594
https://api.semanticscholar.org/CorpusID:229374594
https://api.semanticscholar.org/CorpusID:251169549
https://api.semanticscholar.org/CorpusID:264883315
https://api.semanticscholar.org/CorpusID:264883315
https://api.semanticscholar.org/CorpusID:8577357
https://api.semanticscholar.org/CorpusID:8577357
https://doi.org/10.1109/TKDE.2022.3178128
https://arxiv.org/abs/2103.02503
https://arxiv.org/abs/2103.02503
https://arxiv.org/abs/2103.02503
https://doi.org/10.1109/TMM.2021.3082687
https://arxiv.org/abs/2108.00874
https://doi.org/10.1109/TMI.2021.3117996
https://api.semanticscholar.org/CorpusID:265433693
https://api.semanticscholar.org/CorpusID:265433693
https://api.semanticscholar.org/CorpusID:204922497
https://api.semanticscholar.org/CorpusID:204922497

182 BIBLIOGRAPHY

[124] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022. arXiv:
1312.6114.

[125] Yuzhe Yang, Kaiwen Zha, Ying-Cong Chen, Hongya Wang, and Dina Katabi.
Delving into deep imbalanced regression. ArXiv, abs/2102.09554, 2021. URL:
https://api.semanticscholar.org/CorpusID:231951565.

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://api.semanticscholar.org/CorpusID:231951565

Acronyms 183

Acronyms

3GPP 3rd Generation Partnership Project.

5G 5th Generation Mobile Network.

AI Artificial Intelligence.

AR Augmented Reality.

BERT Bidirectional Encoder Representations from Transformers.

CDF Cumulative Distribution Function.

CNN Convolutional Neural Net.

CQI Channel Quality Indicator.

CSI Channel State Information.

CV Computer Vision.

DA Domain Adaptation.

DANN Domain Adversarial Neural Network.

DDPG Deep Deterministic Policy Gradient Algorithm.

DG Domain Generalization.

DIRP Distributed Inter-Cell Inter-Slice Resource Partition.

DL Deep Learning.

DNN Deep Neural Net.

DP Dynamic Programming.

DPG Deterministic Policy Gradient Algorithm.

DQN Deep Q-Network.

DRL Deep Reinforcement Learning.

eMBB Extreme Mobile Broadband.

GAN Generative Adversarial Net.

GD Gradient Descent.

gNB gNodeB.

Version: January 20, 2025 – 13:20:04

184 Acronyms

GPT Generative Pre-Trained Transformer.

i.i.d Independent and Identically Distributed.

IB Information Bottleneck.

IDLA Integrated Deep Learning and Lagrangian Method.

IoT Internet of Things.

KL Kullback-Leibler.

KL-divergence Kullback-Leibler Divergence.

KPI Key Performance Indicator.

LDS Label Distribution Smoothing.

LLM Large Language Model.

LTE Long-Term Evolution.

M2M Machine-to-Machine.

MAC Media Access Control.

MADRL Multi-Agent Deep Reinforcement Learning.

MAE Mean Absolute Error.

MARL Multi-Agent Reinforcement Learning.

MDP Markov Decision Process.

MILP Mixed Integer Linear Programming.

ML Machine Learning.

MLP Multi-Layer Perceptron.

MMD Maximum Mean Discrepancy.

mMTC Massive Machine-Type Communications.

NFV Network Function Virtualization.

NLP Natural Language Processing.

O-RAN Open Radio Access Network.

OAM Operation, Administration, and Maintenance.

OFDM Orthogonal Frequency-Division Multiplexing.

PCA Principal Component Analysis.

PG Policy Gradient.

PRB Physical Resource Block.

QoE Quality of Experience.

QoS Quality of Service.

Acronyms 185

RAN Radio Access Network.

RB Resource Block.

RE Resource Element.

RL Reinforcement Learning.

SARSA State–Action–Reward–State–Action.

SDN Software-Defined Networking.

SGD Stochastic Gradient Descent.

SINR Signal-to-Interference-plus-Noise Ratio.

SL Supervised Learning.

SLA Service Level Agreement.

SON Self-Organizing Networks.

TD Temporal Difference.

TD3 Twin Delayed Deep Deterministic Policy Gradient Algorithm.

TL Transfer Learning.

TTI Transmission Time Interval.

UE User Equipment.

URLLC Ultra-Reliable Low-Latency Communication.

V2X Vehicle-to-Everything.

VAE Variational Autoencoder.

VIB Variational Information Bottleneck.

VR Virtual Reality.

XR Extended Reality.

LIST OF FIGURES 187

List of Figures

1.1 Evolution of network services in 5G . 2

1.2 Services and slices with different requirements in 5G networks 3

1.3 Time-frequency grid of PRB in LTE . 8

1.4 Potential application of TL in the field of wireless communications 10

1.5 Generalization of network solutions . 11

1.6 Dynamic slicing resource allocation for multi-cell multi-slice network 12

1.7 Slicing resource allocation on different granularity levels 13

2.1 RL process . 22

2.2 RL example . 25

2.3 Value Function . 29

2.4 Value Function . 30

2.5 Update of Q-value in Q-learning algorithm 38

2.6 Update of Q networks in DQN . 40

2.7 Categories of modern RL algorithms . 41

2.8 Actor-critic structure of RL-based slice resource partitioning 43

2.9 Update of actor-critic networks in DDPG algorithm 46

2.10 The process of TD3 algorithm . 47

2.11 Exploration-Exploitation dilemma . 49

3.1 Generality of image classifiers . 51

3.2 Commonality of language models . 52

3.3 Three benefits of TL on training process . 53

3.4 Categories of domain discrepancies according to joint distributions 57

3.5 Overview of general representation learning process 60

4.1 Framework of RL-based solution for SON problem 66

4.2 Double network structure of DQN model . 69

4.3 RL-based slice resource allocation optimization for single cell scenario . . . 69

Version: January 20, 2025 – 13:20:04

188 LIST OF FIGURES

4.4 Graphic user interface and console of Season II 70

4.5 Sanity check for per-slice resource budget vs. per-slice throughput 73

4.6 Sanity check for per-slice resource budget vs. slice load 74

4.7 Change of slice budget combinations with resource efficiency as RL reward . 75

4.8 Comparison of actual load and allocated resource budgets with resource
efficiency reward . 76

4.9 Compare accumulated average resource efficiency between different resource
partition methods . 77

4.10 Change of slice budget combinations with average throughput as RL reward 77

4.11 Comparison of actual load and allocated resource partitions with average
throughput reward . 78

4.12 Compare accumulated average downlink throughput between different re-
source partition methods . 79

5.1 Actor output layer with decoupled softmax activation 86

5.2 Environment setup for experiments . 87

5.3 Comparison of reward among schemes . 88

5.4 Comparison of resource efficiency among schemes 89

5.5 Adaptive action to traffic mask after training 89

5.6 Comparing slice throughput from different approaches 90

5.7 Comparing slice delay from different approaches 90

5.8 Comparing solutions to DRL with resource constraints 91

6.1 Generalist-to-Specialist TL scheme . 102

6.2 Network environment setup with 12 cells . 106

6.3 The first two days of a three-week traffic mask 106

6.4 Comparison of reward among schemes . 108

6.5 Adaptive action to traffic mask after training 109

6.6 Comparing throughput QoS between TL-DIRP and BL-Heur 109

6.7 Comparing delay QoS between TL-DIRP and BL-Heur 110

6.8 Comparing throughput QoS between utilities 110

6.9 Comparing delay QoS between utilities . 111

6.10 Comparing of reward among TL schemes 112

6.11 Change of local reward during TL scheme 113

6.12 Comparison of CQI distribution between cells 114

6.13 Comparing of reward between DIRP and Spec-fine-tune 115

7.1 Specialist-to-Specialist TL scheme . 118

LIST OF FIGURES 189

7.2 Domain similarity analysis for source domain selection 122

7.3 Variational autoencoder . 122

7.4 Comparing reward during the training process 125

7.5 Comparing CDF of minimum slice throughput satisfaction 126

7.6 Comparing CDF of maximum slice delay . 126

7.7 Inter-agent distance measure . 127

7.8 TL performance gain depending on distance measure 128

8.1 IDLA framework - DNN-based estimator + non-linear optimization 132

8.2 Network QoS estimator MAE histogram . 136

8.3 Comparison of average user throughput among schemes 138

8.4 Comparison of network utility . 139

9.1 TL of network slicing resource allocation . 143

9.2 VIB-based slice QoS estimator . 147

9.3 Compare distributions of input between domains 152

9.4 Comparison of online slice throughput in dynamic slicing 154

9.5 Comparing CDF of network utility . 155

9.6 Compare MAE CDF on source and target domains 157

9.7 Compare MAE with involvement of target samples 159

10.1 Knowledge and data services for network automation 168

LIST OF TABLES 191

List of Tables

1.1 Research Questions . 15

4.1 Slice Configurations . 71

4.2 Elements of the RL agent with resource efficiency as reward 74

4.3 Elements of the RL agent with downlink average throughput as reward . . 76

5.1 Comparison of dimensions of DRL models used in simulation 87

5.2 Comparison of average performance metrics among different approaches . . 91

6.1 Table of notations . 96

6.2 Comparison of dimensions of DRL models used in simulation 107

6.3 Performance comparison among different schemes 112

6.4 Comparison of average performance metrics among different TL approaches 114

9.1 Table of Source-Target Domain Pairs . 155

9.2 Comparison of Estimator Performance as Slice QoS Estimation Error 161

Version: January 20, 2025 – 13:20:04

	Title
	Contents
	1 Introduction
	1.1 Network Slicing in Next-Generation Networks
	1.1.1 Network Slicing Technique
	1.1.2 Challenges
	1.1.3 Key Aspects of Solutions

	1.2 Methods of Slice Resource Allocation
	1.2.1 State-of-the-art
	1.2.2 Advantages of Reinforcement Learning
	1.2.3 Advances of Transfer Learning

	1.3 Research Objectives and Thesis Outline
	1.3.1 Research Objectives
	1.3.2 Thesis Outline
	1.3.3 Publications in the Context of this Thesis

	2 Reinforcement Learning
	2.1 Introdution to RL
	2.1.1 Concepts in RL
	2.1.2 Comparing with Conventional ML

	2.2 RL Basics
	2.2.1 Markov Decision Process (MDP)
	2.2.2 Value Function
	2.2.3 Bellman equation
	2.2.4 Policy-based Iteration
	2.2.5 Value-based Iteration

	2.3 Fundamental RL Approaches
	2.3.1 Monte Carlo Method
	2.3.2 Temporal Difference
	2.3.3 SARSA
	2.3.4 Q-Learning
	2.3.5 Deep Q-Learning Network

	2.4 Policy Gradient Algorithm
	2.4.1 Policy Gradient
	2.4.2 Actor-critic

	2.5 Advances of RL Algorithms
	2.5.1 DDPG
	2.5.2 TD3

	2.6 Challenges in Applications

	3 Transfer Learning
	3.1 Introduction to TL
	3.1.1 Overview of TL
	3.1.2 Importance and Applications
	3.1.2.1 Necessity of TL
	3.1.2.2 Applications

	3.2 Fundamentals of TL
	3.2.1 Basic Concepts
	3.2.2 Rationale of TL

	3.3 Selected TL Methods
	3.3.1 Pre-train and Fine-tuning
	3.3.2 Representation Learning
	3.3.3 Other TL Methods
	3.3.4 TL for RL

	4 RAN Slice Resource Allocation with RL
	4.1 Motivation
	4.2 System Model
	4.3 Optimization Problem Formulation
	4.4 RL-based Slice Resource Allocation Optimization
	4.4.1 RL Formulation
	4.4.2 DQN-based Solution
	4.4.3 Distributed DQN Approach

	4.5 Experiments
	4.5.1 Experiment Setup
	4.5.1.1 Season II Simulator
	4.5.1.2 Network Environment Setup
	4.5.1.3 Slice Resource Allocation Formulation

	4.5.2 Experiment I: Sanity Check
	4.5.3 Experiment II: DQN-based Approaches
	4.5.3.1 Resource Efficiency as RL Reward
	4.5.3.2 Downlink Average Throughput as RL Reward

	4.6 Insights to the Thesis

	5 Distributed DRL as Per-cell Scheme
	5.1 Motivation
	5.2 System Model
	5.3 Problem of Slice Resource Allocation
	5.4 Distributed DRL as Per-cell Scheme
	5.4.1 Multi-agent DRL with Coordination
	5.4.2 Actor-Critic Method
	5.4.3 Dealing with Resource Constraints
	5.4.3.1 Reward Reshaping
	5.4.3.2 Embedding Decoupled Softmax Layer

	5.5 Experiments
	5.5.1 Schemes for Comparison
	5.5.2 RL Training Setup
	5.5.3 Performance Evalutation

	5.6 Key Takeaways

	6 TL-aided DRL Approach I: Generalist-to-Specialist
	6.1 Introduction
	6.1.1 Motivation
	6.1.2 Related Works
	6.1.3 Outline

	6.2 System Model and Problem Formulation
	6.2.1 System Model
	6.2.2 Problem Formulation

	6.3 Distributed DRL Per-cell Scheme - DIRP Algorithm
	6.3.1 DIRP Algorithm
	6.3.2 Training Setup of DIRP
	6.3.3 Dealing with Resource Constraints

	6.4 TL-aided DIRP Algorithm
	6.4.1 TL Problem Formulation
	6.4.2 Generalist-to-Specialist TL

	6.5 Experiments
	6.5.1 Schemes for Comparison
	6.5.2 Hyperparameter Setup for Training
	6.5.3 Performance Evaluation
	6.5.3.1 Comparison of the Distributed MADRL Schemes
	6.5.3.2 Comparison of RL Reward Formulation
	6.5.3.3 Comparison of TL Schemes

	6.6 Key Takeaways

	7 TL-aided DRL Approach II: Specialist-to-Specialist
	7.1 Motivation
	7.2 System Model
	7.3 Problem Formulation
	7.4 TL with Domain Similarity Analysis
	7.4.1 Distributed MADRL with Coordination
	7.4.2 Domain Distance Measurement for Similarity Analysis
	7.4.3 Specialist-to-Specialist TL

	7.5 Experiments
	7.5.1 Network Environment Setup
	7.5.2 DRL Training Configuration
	7.5.3 Evalutation of TL-aided DRL
	7.5.4 Domain Similarity Analysis
	7.5.5 TL Evaluation based on Domain Distance Measurement

	7.6 Key Takeaways

	8 IDLA: Per-Slice Scheme for Resource Allocation
	8.1 Motivation
	8.2 System Model
	8.3 Problem Formulation
	8.4 Per-slice Scheme: IDLA Algorithm
	8.4.1 DNN-based Slice-wise Network QoS Estimator
	8.4.2 Lagrangian Method for Slicing Resource Partitioning
	8.4.3 Efficient Implementation of Lagrangian Method

	8.5 Experiments
	8.5.1 Network Environment Setup
	8.5.2 Per-Slice Resource Allocation with IDLA
	8.5.2.1 Network Sample Collection
	8.5.2.2 Training of Slice-wise QoS Estimator

	8.5.3 Performance Evaluation

	8.6 Key Takeaways

	9 TL-aided IDLA
	9.1 Motivation
	9.2 System Model and Problem Formulation
	9.2.1 System Model
	9.2.2 Problem Formulation

	9.3 TL-aided IDLA Algorithm
	9.3.1 DA Problem Formulation
	9.3.2 VIB-based Slice QoS Estimation
	9.3.3 IDLA with DA

	9.4 Experiments
	9.4.1 Network Environment Setup
	9.4.2 Deriving of VIB-based Slice QoS Estimator
	9.4.2.1 Domain Sample Collection
	9.4.2.2 Model Training

	9.4.3 Evaluation of Resource Allocation Performance
	9.4.4 Evaluation of VIB-based QoS Estimator
	9.4.4.1 Comparison of DG Ability
	9.4.4.2 Comparison of DA Ability

	9.5 Key Takeaways

	10 Conclusion and Outlook
	10.1 RL Application in Network Slicing
	10.2 Integration of TL
	10.3 Comparison of Solution Granularity
	10.3.1 Centralized vs. Distributed DRL Approaches
	10.3.2 Per-slice Resource Allocation with IDLA

	10.4 Answers to Research Questions
	10.5 Outlook to Future Research
	10.6 Conclusion

	Bibliography
	Acronyms
	List of Figures
	List of Tables

