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Abstract

In this publication-based dissertation, we study latent variable models in parametric settings. Since latent

variable models are families of marginal distributions, they generally feature a complicated geometry that

may lead to identifiability issues and failures of standard inference methods. For example, the models often

contain irregular points like algebraic singularities, where well-known methods such as the likelihood ratio

test or Wald test are no longer valid. One contribution of this thesis is to develop a testing methodology

that is valid even if the underlying model contains irregular points. The other focus of this thesis is the

investigation of geometry and identifiability in certain types of linear structural equation models with la-

tent variables. Many popular latent variable models are special types of linear structural equation models.

Examples are factor analysis models, linear causal models or models assumed in causal representation

learning and independent component analysis. Since structural equation models correspond to directed

graphs and feature polynomial or rational parameterizations, they allow for a combinatorial study using

algebraic methods. In particular, by adopting this algebraic point of view, we give conditions for struc-

ture identifiability of causal representations in a multi-domain setup, we provide a criterion for parameter

identifiability in linear causal models, and we investigate the geometry of sparse factor analysis models.
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Zusammenfassung

In dieser publikationsbasierten Dissertation untersuchen wir Modelle mit latenten Variablen in

parametrischen Settings. Da Modelle mit latenten Variablen Familien von Randverteilungen sind,

weisen sie im Allgemeinen eine komplizierte Geometrie auf, die zu Identifizierbarkeitsproblemen und zum

Versagen von Standard-Inferenzmethoden führt. Zum Beispiel können die Modelle irreguläre Punkte wie

algebraische Singularitäten enthalten, an denen bekannte Methoden wie der Likelihood-Ratio-Test oder

der Wald-Test nicht mehr gültig sind. Ein Beitrag dieser Arbeit ist die Entwicklung einer Testmethodik,

die auch dann gültig ist, wenn das zugrunde liegende Modell unregelmäßige Punkte enthält. Der andere

Schwerpunkt dieser Arbeit ist die Untersuchung der Geometrie und der Identifizierbarkeit in bestimmten

Typen von linearen Strukturgleichungsmodellen mit latenten Variablen. Viele gängige Modelle mit latenten

Variablen sind spezielle Typen von linearen Strukturgleichungsmodellen. Beispiele hierfür sind Modelle

in der Faktorenanalyse, lineare kausale Modelle oder Modelle, die beim kausalen Repräsentationslernen

und der Unabhängigkeitsanalyse angenommen werden. Da Strukturgleichungsmodelle durch gerichtete

Graphen dargestellt werden können und polynomiale oder rationale Parametrisierungen aufweisen,

ermöglichen sie eine kombinatorische Untersuchung mit algebraischen Methoden. Insbesondere geben

wir unter dieser algebraischen Sichweise Bedingungen für die Strukturidentifizierbarkeit von kausalen

Repräsentationen in einem Multi-domain Setup an, wir beweisen ein Kriterium für die Parameteriden-

tifizierbarkeit in linearen kausalen Modellen, und wir untersuchen die Geometrie von dünnbesetzten

Modellen in der Faktorenanalyse.
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1 Introduction

Investigating a system of random variables and inferring certain properties of the system is a main task

of data analysts and researchers. Usually, only finitely many observed data samples are available and

statistical models are employed to draw valid conclusions. However, a crucial challenge in real world

applications is the ubiquitous presence of latent (i.e., unobserved) variables. For example, in a medical

study, certain quantities like blood pressure or body weight are measured and therefore observed, but other

variables like genetic factors may remain unobserved. More generally, there are a number of reasons why

variables are unobserved. It may just be too expensive to carry out the measurements, or the variables

may be theoretically hypothesized to exist but impossible to measure directly. The following example is

from Drton (2018) and it is a good introduction to latent variable models and the challenges that can arise.

It is the simplest example of the types of models we consider in this thesis.

Example 1.1. Does smoking during pregnancy has an effect on the baby’s birth weight? To answer this

question, suppose that we record in a study the level of maternal smoking during pregnancy (X1) and an

infant’s birth weight (X2) from a sample of n mothers. Hypothesizing that there is a causal effect from the

level of smoking on the infant’s birth weight, we aim to quantify this effect. Assuming a linear model

X1 = λ01 + ε1,

X2 = λ02 + λ12X1 + ε2,

where ε1 and ε2 noise variables, this means that we are interested in statistical inference about the ef-

fect λ12. If ε1 and ε2 are independent with mean zero and finite variance, it holds that Cov(X1, X2) =
λ12Var(X1), and inference of λ12 may be based on the ratio Cov(X1, X2)/Var(X1). For example, we

obtain an estimator of λ12 by dividing the sample covariance of X1 and X2 by the sample variance of X1.

However, the equation Cov(X1, X2) = λ12Var(X1) only holds true if there is no latent variable that has

an effect on both X1 and X2. Cigarette companies might therefore argue that it is very likely that such a

latent variable exists. As an example, there may be genetic or socio-economic factors that have an influ-

ence on the smoking behaviour as well as on the baby’s birth weight. Then, inference based on the ratio

Cov(X1, X2)/Var(X1) is not valid anymore. In fact, it becomes impossible to uniquely recover the effect

λ12 from the observed data even if the number of participants of our study tends to infinity.

One way out of this dilemma is to add a so called “instrumental variable” that only has a direct effect on

the level of smoking but not on the birth weight, and that is not influenced by the latent variable (Bowden

and Turkington, 1984). As in Evans and Ringel (1999), we could record the tax rate on cigarettes (X3) of
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X4: Confounder

X1: Smoking X2: Baby’s WeightX3: Tax Rate

λ41 λ42

?
λ12λ31

Figure 1.1 Directed graph for the instrumental variable model with latent variable X4.

the state where each mother is living in as such an instrumental variable. The linear equations defining

the model with the latent variable X4 are then given as

X1 = λ01 + λ31X3 + λ41X4 + ε1,

X2 = λ02 + λ12X1 + λ42X4 + ε2,

X3 = λ03 + ε3,

X4 = λ04 + ε4,

(1.1)

where ε1, . . . , ε4 are pairwise independent; also see the graphical illustration in Figure 1.1. It follows that

the equation Cov(X2, X3) = λ12Cov(X1, X3) holds in this model, and as long as Cov(X1, X3) ̸= 0 we

can therefore infer properties of λ12 based on the ratio Cov(X2, X3)/Cov(X1, X3). We refer to Didelez

et al. (2010) for more background on instrumental variable models.

Example 1.1 shows that the inclusion of latent variables may be necessary to avoid false inference, but

also that new challenges may arise in statistical models after the inclusion of latent variables. The example

also illustrates a central problem in statistics, namely the identification and quantification of causal rela-

tionships. In an ideal world, we would set up a randomized controlled experiment to physically intervene

into the system and learn about the causal effects. In the context of Example 1.1, to learn about the causal

effect from the level of maternal smoking to the infant’s birth weight in the presence of latent confounding,

this would require us to force pregnant women to smoke. This shows that intervening in a system is often

infeasible due to ethical or technical constraints or costs. One of the main topics in causality research is to

investigate whether and how causal relationships can be inferred under latent confounding on the basis of

observational data only (Pearl, 2009; Peters et al., 2017).

In addition to models that allow for an investigation of causality, latent variable models are either explicitly

or implicitly assumed in many other areas of statistics. For example, in cluster analysis it is the goal to

group variables into subsets or “clusters”, such that those within each cluster are more similar (Hastie

et al., 2009). It is hence implicitly assumed that there exist one or multiple latent random variables that

determine the membership to a cluster. Moreover, in machine learning it is often the goal to learn a

so called “representation” of data, which is then used to tackle downstream tasks. A representation is

just another terminology for a set of latent variables that should explain the observed measurements and

their variation as well as possible (Bengio et al., 2013). Latent variables are also assumed if we aim to

reduce dimensionality by techniques such as principal component analysis or factor analysis. In the latter,

correlations among observed random variables are explained using a smaller number of latent variables,

also known as factors (Drton et al., 2007).
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X5: Intelligence

X1: Test 1 X2: Test 2 X3: Test 3 X4: Test 4

Figure 1.2 Spearman’s one-factor model with latent variable X5.

Example 1.2. Factor analysis first appeared in Spearman (1904). In his work, he studied the correla-

tions of data corresponding to a study where participants took several mental tests. By identifying the

results of the mental test i with a random variable Xi and denoting the covariance of Xi and Xj by

σij = Cov(Xi, Xj), Spearman observed that the fundamental equations, called “tetrads”,

σijσkl − σilσjk = 0

hold true for all sets of four different tests i, j, k, l. In other words, all off-diagonal 2 × 2 minors of the

covariance matrix vanish, which means that the off-diagonal entries of the covariance matrix have a rank-

one structure. Therefore, assuming a factor analysis model, Spearman argues that there must be a single

latent variable such as “intelligence” that explains the variability among the tests. See Figure 1.2 for an

illustration of the one-factor model.

The topic of this thesis are latent variable models in parametric settings, where the models are defined

as families of distribution P = {Pθ : θ ∈ Θ} with finite dimensional parameter space Θ. Latent variable

models are often complicated objects, where the parameter space is non-smooth and the models are not

identifiable, that is, the map θ 7→ Pθ is not injective. Hence, latent variable models may be irregular and

standard inferential methods become invalid. If the parameter space Θ is a semi-algebraic set, i.e. defined

by a set of polynomial equality and inequality constraints, it becomes useful to analyze statistical models

from an algebraic point of view and many basic statistical questions can be transformed into algebraic

problems.

The thesis is comprised of four articles. Three of the articles (including one of the core articles and both

additional articles) consider special types of linear structural equation models with latent variables. This

includes the previously mentioned factor analysis model, linear causal models such as the instrumental

variable model, and linear models in a causal representation learning setup. By taking an algebraic per-

spective, we investigate parameter and model identifiability and study fundamental questions regarding

the model geometry.

The focus of the second core article is on statistical inference. We consider testing the goodness-of-fit of

parametric models, where the parameter space is defined by a set of equality and inequalities constraints.

We propose a new method that leverages this implicit description and is, in particular, proved to be valid in

settings where the description involves a very large amount of constraints and where the model contains

irregular points, as it is typically the case in latent variable models.

Organization of the thesis. In Chapter 2, we introduce preliminaries such as the connection to algebraic

geometry and the concepts of parameter and model identifiability. We also introduce linear structural
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equation models with latent variables as an overarching model class for the models discussed in this

thesis. In Chapter 3, we discuss testing null hypotheses defined by equality and inequality constraints and

we highlight the contributions of the first core article (Sturma et al., 2024). In Chapter 4, we introduce the

problem of causal representation learning from unpaired multi-domain observations and we present our

contributions regarding model identifiability given in the second core article (Sturma et al., 2023). Chapter

5 is about the first additional article (Barber et al., 2022), where we study parameter identifiability in latent

factor models, a special kind of linear causal models. Finally, we discuss the contributions of the second

additional article (Drton et al., 2024) in Chapter 6, in which we investigate the model geometry of sparse

factor analysis models.

Notation. Let N be the set of nonnegative integers. For positive n ∈ N, we define [n] = {1, . . . , n}. For

a tuple x = (x1, . . . , xb) and a set B ⊆ [b], we denote by xB the tuple only containing the entries indexed

by B. Similarly, for a matrix M ∈ Ra×b, we denote by MA,B the submatrix containing the rows indexed

by A ⊆ [a] and the columns indexed by B ⊆ [b]. To simplify notation, we write M⊤
A,B as a short-hand

for (MA,B)⊤, i.e., we always first take the submatrix and then the transpose of the submatrix. For real

numbers x1, . . . , xa, we denote by diag(x1, . . . , xa) the a × a diagonal matrix with diagonal entries equal

to x1, . . . , xa. We denote by Np(µ,Σ) the p-variate normal distribution with mean µ ∈ Rp and positive

semidefinite covariance matrix Σ ∈ Rp, and we denote by χ2
k the central chi-square distribution with k

degrees of freedom. Finally, for a sequence of random variables X1, X2, . . . we write Xn →d X if the

sequence converges in distribution to another random variable X for n → ∞.
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2 Preliminaries

In this chapter, we formally define latent variable models and lay out the connection to algebraic geometry.

We define concepts such as model and parameter identifiability and we introduce linear structural equation

models with latent variables.

2.1 Latent Variable Models

A statistical model is given by a triple (S,F ,P), where S is a sample space, F is a suitable σ-algebra and

P is a family of probability measures on (S,F). In many cases, the sample space S is equal to Rp, the

σ-algebra F is the Borel σ-algebra, and each element P ∈ P is a joint probability distribution of p real-

valued random variables. We are then defining a statistical model by only stating the family of distributions

P and assuming the form of S and F implicitly, cf. Casella and Berger (1990).

Latent variable models P are now obtained if only subsets of these p variables are observed, that is,

the models are obtained as families of marginal distributions of other models P ′. Said differently, latent

variable models correspond to projections to lower dimensional subspaces. For some subset of indices

O ⊆ {1, . . . , p} that corresponds to the observed variables, define

πO : Rp −→ R|O|,

x 7−→ (xi)i∈O

to be the projection map onto the observed sample space. Moreover, denote by πO#P the push-forward

measure under the projection πO, that is, πO#P (A) = P (π−1
O (A)) for all Borel measurable sets A ⊆ R|O|.

Then, a latent variable model is given by the family of observed distributions P = {πO#P : P ∈ P ′}.

Example 2.1. Consider again the instrumental variable model from Example 1.1. Setting the mean vector

(λ01, . . . , λ04)⊤ to zero and rewriting equation system (1.1) in vector form, we have


X1

X2

X3

X4


︸ ︷︷ ︸

=: X

=

⊤
0 λ12 0 0
0 0 0 0
λ31 0 0 0
λ41 λ42 0 0


︸ ︷︷ ︸

=: Λ


X1

X2

X3

X4

+


ε1

ε2

ε3

ε4


︸ ︷︷ ︸

=: ε

.

Solving for X yields X = (I − Λ)−⊤ε. If the noise vector ε is normally distributed with ε ∼ N(0,Ω), where

Ω is a diagonal matrix, then X is also normally distributed with mean zero and covariance matrix

Cov(X) = (I − Λ)−⊤Ω(I − Λ)−1. (2.1)
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Now, the fully observed statistical model is the family of all multivariate normal distributionsN(0,Σ), where

the covariance matrix Σ is of the form (2.1). The instrumental variable model is thus the family of marginal

distributions over the observed random vector XO = (Xi)i∈O, where O = {1, 2, 3}. It consists of all

normal distributions with mean zero and covariance matrix given by the projection

Cov(XO) = Cov(X)O,O = [(I − Λ)−⊤Ω(I − Λ)−1]O,O

=


σ11 ω44λ41λ42 + λ12σ11 ω33λ31

· ω22 + ω44λ
2
42 + 2ω44λ41λ42λ12 + λ2

12σ11 ω33λ31λ12

· · ω33

 , (2.2)

where ω11, . . . , ω44 are the diagonal entries of the matrix Ω and σ11 = Var(X1) = ω11 + ω44λ
2
41 + ω33λ

2
31

is the variance of the variable X1.

2.2 Algebraic Approach to Parametric Models

Often, the distributions in a model are indexed by some parameter, so that P = {Pθ : θ ∈ Θ} for a

parameter space Θ ∈ Rk; compare e.g. (Lehmann and Casella, 1998, Chapter 1). More generally,

parametric models are defined as the image of a map from a finite dimensional parameter space Θ ⊆ Rk

to the space of probability distributions, i.e.,

Θ −→ ∆(Rp),

θ 7−→ Pθ,

where ∆(Rp) is the space of probability distributions on Rp. As we have seen in Example 2.1, the

instrumental variable model is a parametric latent variable model with k = 8 parameters given by

λ12, λ31, γ1, γ2 and ω11, . . . , ω44.

In many cases, the parametrization map is polynomial or rational. It is then possible to apply techniques

from algebraic geometry to shed light on statistical problems that would otherwise be difficult to address.

In order to define this well and to simplify the presentation, we assume in this section that the model

P = {Pθ : θ ∈ Θ} can be identified with a subset M ⊆ Rd. That is, every probability distribution P ∈ P is

assumed to be in one-to-one correspondence with a point p ∈ M. When we talk about a model, we hence

refer to a set M = Im(τ) defined as the image of the polynomial or rational map

τ : Θ −→ Rd, (2.3)

that is defined everywhere on Θ. We have already seen in Example 2.1 that instrumental variable models

can be identified with subsets of covariance matrices M ⊆ R3×3. More generally, any Gaussian model

with mean zero can be identified with a set of covariance matrices. In the following example, we denote

by PD(m) ⊆ Rm×m the cone of positive definite symmetric m × m matrices and by diag+
m ⊆ PD(m) the

subset of diagonal matrices with positive diagonal entries.
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Example 2.2. Recall the graph in Figure 1.2 that corresponds to a one-factor analysis model with four

observed variables. In general, we may have m observed variables indexed by O = {1, . . . ,m} and one

latent variable indexed by m+ 1. Factor analysis then assumes that the variables are linearly related as

XO = Λ⊤
m+1,OXm+1 + εO,

Xm+1 = εm+1,

where ε = (ε1, . . . , εm+1)⊤ is the vector of noise variables and Λ⊤
m+1,O = (λm+1,1, . . . , λm+1,m)⊤ is the

vector of parameters. As in Example 2.1, we assume that ε = (ε1, . . . , εm+1)⊤ is normally distributed with

ε ∼ N(0,Ω) and Ω = diag(ω11, . . . , ωm+1,m+1) diagonal. Hence, XO is also normally distributed and the

one-factor analysis model can be identified with the image of the polynomial map

τ1F : Rm × diag+
m+1 −→ PD(m),

(Λm+1,O,Ω) 7−→ ωm+1,m+1Λ⊤
m+1,OΛm+1,O + ΩO,O.

Besides Gaussian models corresponding to sets of covariance matrices, one might also study mod-

els defined as sets of higher-order moment tensors corresponding to non-Gaussian distributions, see

e.g. Ardiyansyah and Sodomaco (2023), Améndola et al. (2023) or Robeva and Seby (2021). Another

large class of models that can be identified with subsets M ⊆ Rd are discrete models with d possible

outcomes. In this case, a probability is assigned to each outcome and models are subsets of the d − 1
dimensional probability simplex ∆d = {x ∈ Rd : xi ≥ 0 for all i and x1 + · · · + xd = 1}. See Sullivant

(2018), Zwiernik (2016) and Drton et al. (2009) for background on discrete statistical models.

It is most useful to analyze statistical models from an algebraic point of view if, in addition to the

parametrization being polynomial or rational, the parameter space Θ is a semialgebraic set defined by

polynomial equality and inequality constraints.

Definition 2.3. Let R[x1, . . . , xk] be the ring of polynomials in the indeterminates x1, . . . xk with real coef-

ficients. A basic semi-algebraic set is a a subset of Rk that is of the form

Θ = {θ ∈ Rk : f(θ) = 0 for all f ∈ F, h(θ) < 0 for all h ∈ H},

where F,H ⊆ R[x1, . . . , xk] are finite (possibly empty) collections of polynomials. A semi-algebraic set is

a finite union of basic semi-algebraic sets.

We refer to Bochnak et al. (1998), Basu et al. (2006) and Benedetti and Risler (1990) for background on

semi-algebraic sets. Importantly, by the Tarski-Seidenberg theorem (Benedetti and Risler, 1990, Theorem

2.3.4), images of semi-algebraic sets are again semi-algebraic under polynomial and rational mappings.

That is, given a semi-algebraic set Θ ⊆ Rk and a polynomial or rational map τ : Rk → Rd defined

everywhere on Θ, the image τ(Θ) is again a semialgebraic set. Many statistical models are images of

semi-algebraic sets; see e.g. Sullivant (2018) and Drton et al. (2009).

Example 2.4. Consider again the instrumental variable model that is illustrated in Figure 1.1. As we have

seen in Example 2.1, the model is identified with the image of the polynomial map

τIV : R4 × diag+
4 −→ PD(3),
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that maps the parameter vector (λ12, λ31, γ1, γ2)⊤ and the diagonal matrix Ω = diag(ω11, . . . , ω44) to the

covariance matrix Σ as in (2.2). Note that the domain Γ = R4 × diag+
4 is semi-algebraic since diag+

4 is

isomorphic to the set {ω ∈ R4 : ωi > 0 for all i = 1, . . . , 4} and cartesian products of semi-algebraic

sets are semi-algebraic. Hence, the image Im(τIV) is also a semi-algebraic set since τIV is polynomial.

Similarly, the one-factor analysis model given as the image of the map τ1F defined in Example 2.2 is also

a semi-algebraic set.

Assuming that Θ is semi-algebraic and that τ is polynomial or rational, fundamental statistical questions

can be translated into algebraic problems. For different model classes that involve latent variables, this

thesis is concerned with the following topics:

(i) Model Geometry. The geometry of semi-algebraic sets can be studied using methods from algebraic

geometry. For statistical applications it is of interest to provide an implicit description of the model. That

is, we are interested in the polynomial equalities and inequalities that define the semi-algebraic model M.

This illustrated in the next example.

Example 2.5. We have claimed in Example 1.2 that the one-factor model is within the zero locus of all

tetrads, i.e., the tetrads are part of the implicit description. Indeed, recalling the parametrization map in

Example 2.2, we note that for any covariance matrix Σ ∈ Im(τ1F) the off-diagonal entries σij for i ̸= j are

given by λm+1,iλm+1,j . Hence, we have for four pairwise different indices i, j, k, l the identity

σijσkl − σilσjk = λm+1,iλm+1,jλm+1,kλm+1,l − λm+1,iλm+1,lλm+1,jλm+1,k = 0.

However, as shown in Bekker and de Leeuw (1987, Theorem 1), the full implicit description of the one-

factor analysis model not only involves equality constraints given by tetrads but also inequality constraints

given by different polynomials.

Implicit descriptions may be used for testing the goodness-of-fit of a model. For example, given an

estimator p̂ of a point p ∈ Rd, we can check whether or not p ∈ M by plugging p̂ into the polynomial

equalities and inequalities; we refer to Chapter 3 for a detailed discussion.

Another geometric feature that is interesting if one is interested in model selection is the dimension of

the model. As described, for example, in Drton (2009, Section 3.1), any semi-algebraic set can be written

as a disjoint union of finitely many smooth manifolds, and the dimension of the semi-algebraic set can

then be defined as the largest dimension of any of these manifolds. Knowing the dimension is crucial, for

example, if we want to test the goodness-of-fit of a model using the well known likelihood ratio test. The

test statistic is approximately chi-square distributed under certain regularity conditions, and the degrees of

freedom depend on the dimension of the model (Drton, 2009). Thus, to calibrate the test correctly and to

get asymptotically valid critical values, we need to know the dimension.

(ii) Parameter Identifiability. A parametric model is identifiable if for each p ∈ M we can uniquely

recover the parameter θ ∈ Θ that was mapped to p. This is a fundamental question if the parameters have

a special meaning and one is interested in statistical inference of the parameters. The following definition



2 Preliminaries

9

can be found, for example, in Lehmann and Casella (1998, Section 1.5) or in Sullivant (2018, Chapter 16),

but it is tailored to our setup.

Definition 2.6. Let τ : Θ → Rd be as in (2.3), with model M = Im(τ). Then M is said to be parameter

identifiable if the map τ is injective on Θ.

In practice, the true probability distribution, i.e. the true point p ∈ M, is never known, we only get to see

n samples from this distribution. However, knowing the true underlying probability distribution can be seen

as observing an infinite number of samples. Hence, if parameters are identifiable, it is theoretical possible

to learn the correct parameters in the infinite data limit.

Example 2.7. Parameter identifiability in the instrumental variable model holds if, given a covariance matrix

Σ ∈ Im(τIV ), we can uniquely recover the parameters that are mapped to Σ. That is, we study whether

we can solve the equations

Σ =


σ11 σ12 σ13

· σ22 σ23

· · σ33



=


ω11 + ω44λ

2
41 + ω33λ

2
31 ω44λ41λ42 + λ12σ11 ω33λ31

· ω22 + ω44λ
2
42 + 2ω44λ41λ42λ12 + λ2

12σ11 ω33λ31λ12

· · ω33


uniquely for the parameters (λ12, λ31, γ1, γ2)⊤ and ω11, . . . , ω44.

Requiring injectivity on the whole domain Θ is usually not necessary and there exists a variety of distinct

definitions for weaker forms of identifiability; see Sullivant (2018, Definition 16.1.1). For example, generic

identifiability refers to injectivity on the complement Θ \A of a set A that has Lebesgue measure zero; we

refer to Chapter 5 for a precise definition.

(iii) Model Identifiability. Often, we are not only interested in one specific model but we consider a

family of models, and it becomes of interest to select the correct parsimonious model, or rather, a model

most appropriate for a downstream task. A natural fundamental question that has to be solved beforehand

is whether it is possible to uniquely recover the true model if we are given the true underlying probability

distribution. The following definition is a modified version of Drton et al. (2023, Definition 2.3).

Definition 2.8. Let {Mi}p
i=1 be a family of models in Rd. Then the family is said to be model identifiable

if Mi ∩ Mj = ∅ for all pairs of distinct indices i, j ∈ {1, . . . , p}.

If a family is model identifiable and we are given a point p ∈ Rd that is assumed to lie in one of the

models, it is hence possible to uniquely recover the true model. Model identifiability is often also called

model distinguishability. Similarly, as with parameter identifiability, in practice we never get to now p ∈ Rd

exactly, but we approximate it as the number of observed samples n tends to infinity. Moreover, there also

exist weaker forms of model identifiability where the intersection Mi ∩ Mj is, for example, allowed to be
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a lower dimensional subset; see Drton et al. (2023).

In this thesis, we will study fundamental questions regarding the model geometry as well as parameter

and model identifiability for different types of latent variable models. The models we consider are all

special types of linear structural equation models that are introduced in full generality in the next section.

However, we are not only interested in solving fundamental theoretical questions, but also in leveraging

the semi-algebraic structure of models to derive new statistical methods. In particular, we study testing the

goodness-of-fit of models that feature an implicit description; see Chapter 3.

2.3 Linear Structural Equation Models with Latent Variables

In this section, we introduce linear structural equation models with latent variables in a very general way.

The presentation is an expanded and broader version of the introduction in the article by Barber et al.

(2022) that contributes to this thesis. Many models considered in statistics can be seen as a special type

of linear equation models with latent variables, examples are factor analysis models (Drton et al., 2007;

Anderson and Rubin, 1956), linear causal models (Spirtes et al., 2000; Pearl, 2009; Peters et al., 2017) or

linear independent component analysis models (Comon and Jutten, 2010; Hyvärinen, 2013; Eriksson and

Koivunen, 2004); we discuss them in Examples 2.9-2.11. Due to their tractability and easy interpretation,

linear structural equation models are popular in many different applied sciences; we refer to Bollen (1989)

for background.

LetX = (Xv)v∈V be a collection of random variables indexed by a finite set V . In our context, we simply

let V = [p] and we assume that the set V is a disjoint union V = O ⊔ L of a set O ⊆ [p] indexing the

observed variables and a set L ⊆ [p] indexing the latent variables. All variables are linearly related via

Xv = λ0v +
∑
w ̸=v

λwvXw + εv, v ∈ V,

where λwv are real-valued parameters. The εv are independent random variables that model noise. View-

ing X = (Xv)v∈V and ε = (εv)v∈V as vectors, the above equation system can be represented in the

form

X = λ0 + Λ⊤X + ε, (2.4)

where the parameters are given by a p-dimensional real-valued vector λ0 and a p × p matrix Λ = (λwv)
that has zeros on the diagonal. Now, specific models are derived from (2.4) by assuming specific sparsity

patterns in Λ. To make this precise, it is useful to adopt a graphical perspective. Consider a directed graph

G = (O ⊔ L, D) with nodes V = O ⊔ L equivalent to the indexing set of the observed and latent variables,

and directed edges D ⊆ V × V . We will denote edges (w, v) ∈ D more intuitively by w → v ∈ D and

we assume that the edge set is free of self-loops, so v → v ̸∈ D for all v ∈ D. Every directed graph

defines a different set of linear equations by requiring that the parameter λwv may be nonzero only if the

edge w → v is contained in the edge set D. We denote by RD the set of real p × p matrices Λ = (λwv)
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with support D, that is, λwv = 0 if w → v ̸∈ D. Then the structural equations corresponding to a graph

G = (O ⊔ L, D) are given by

X = λ0 + Λ⊤X + ε, Λ ∈ RD. (2.5)

Many well known latent variable models are now obtained by restricting the type of edges allowed in the

graph or by restricting the distributions of the noise ε. The model then consists of all distributions that the

observed random vector XO can obtain for a given graph and a given family of distributions of ε. In the

remainder of this chapter, we assume for simplicity that λ0 = 0.

Example 2.9. Consider a graph G = (O ⊔ L, D) such that D = L × O, that is, the graph exactly

contains all possible edges from the latent to the observed variables but no other edge. If we further

restrict the distributions of the noise variables ε to be Gaussian with ε ∼ N(0,Ω), where Ω is a positive

definite diagonal matrix, then the model is called a factor analysis model and Equation (2.5) reduces to

XO = Λ⊤
L,OXL + εO, where XL = εL. We have already seen the example of an one-factor analysis

model with |L| = 1, recall Figure 1.2. If the edge set D does not contain all possible edges L × O but

only a subset, then we obtain a sparse factor analysis model; see Chapter 6.

Example 2.10. If we have the same graphical structure as in sparse factor analysis, i.e., G = (O ⊔ L, D)
such that D ⊆ L × O, but we allow the distributions of the latent noise (εv)v∈L to be arbitrary, then the

setup is known as linear independent component analysis (Comon and Jutten, 2010; Hyvärinen, 2013;

Eriksson and Koivunen, 2004). The observed and latent random variables also satisfy the equations

XO = Λ⊤
L,OXL + εO and XL = εL. The case of non-Gaussian distributions of the variables (εv)v∈O⊔L is

interesting because it is then possible to identify the parameter matrix Λ⊤
L,O up to singed permutations of

the columns when the distribution of XO is given. If the observed random vector does not feature noise,

i.e. XO = Λ⊤
L,OXL, a proof and precise conditions for identifiability are given by Comon (1994). The

identifiability result follows from the Darmois-Skitovich theorem (Darmois, 1953; Skitovich, 1953), but it can

also be shown in a more algebraic way by considering higher-order moments and applying uniqueness

results from tensor decomposition; see (Comon and Jutten, 2010, Section 5). If the noise of the observed

vector is nonzero and XO = Λ⊤
L,OXL + εO, the problem of identifying Λ⊤

L,O is an instance of overcomplete

independent component analysis; see Wang and Seigal (2024) and Eriksson and Koivunen (2004).

Example 2.11. Linear structural equation models are equipped with an intuitive causal interpretation. The

parameters λwv are also known as direct causal effects of Xw on Xv. An interesting problem is the

question of causal effect identification, i.e., whether or not the causal effects λwv are identifiable. In this

context, linear structural equation models are also called linear causal models (Pearl, 2009). In our work in

Barber et al. (2022) that contributes to this thesis, we study identifiability in linear causal models assuming

that latent variables are independent and external. The graph G = (O ⊔ L, D) then only has edges

between observed variables and from latent variables to observed variables, i.e., D ⊆ (O × O) ∪ (L × O),
and Equation (2.5) reduces to XO = Λ⊤

O,OXO + Λ⊤
L,OXL + εO, where XL = εL. We call this model a

latent-factor model ; see Chapter 5.

If the noise vector ε in a linear structural equation model is restricted to be Gaussian, we obtain covari-

ance models. For the following definition, we only assume that each of the independent noise variables εv
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has finite variance ωvv > 0. Moreover, recall that diag+
p is defined as the set of p × p diagonal matrices

with positive diagonal entries. We also write RD
reg ⊆ RD for the subset of matrices Λ ∈ RD with I − Λ

invertible.

Definition 2.12. Let G = (V,D) be a directed graph with V = [p] = O ⊔ L. The covariance model given

by G is the image Im(τG) of the parametrization map

τG : RD
reg × diag+

p −→ PD(|O|),

(Λ,Ω) 7−→ [(I − Λ)−⊤Ω(I − Λ)−1]O,O.

Since the map τG is in the worst case rational and the set RD
reg × diag+

p is semi-algebraic, we can study

covariance models using algebraic tools, recall Section 2.2. If all variables are observed, i.e., L = ∅, and

the graph is acyclic, then many fundamental problems are essentially solved. The parametrization of φG

is injective on the whole domain RD
reg × diag+

p , and the image is a smooth manifold that admits an implicit

description in terms of conditional independence statements that can be read-off from the graph. Also,

it can be checked efficiently whether two implicit descriptions are the same, that is, it can be checked

efficiently whether models can be distinguished. These results are standard in graphical modeling; see for

example Lauritzen (1996) and Maathuis et al. (2019).

On the other hand, if L is nonempty, then we only observe the subvector XO and the covariance model

becomes a set of projections of “large” covariance matrices. All of the above properties might no longer

be true and many questions regarding model geometry and identifiability are still open. In particular, the

parametrization map needs not to be injective on the whole domain and the images are in general not

smooth.
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3 Goodness-of-fit Tests in Irregular Models

In this chapter, we discuss challenges that arise if we are interested in testing the goodness-of-fit of a

parametric model and how the first core article (Sturma et al., 2024) contributes towards solving these

challenges. Consider a parametric family {Pθ : θ ∈ Θ} with parameter space Θ ⊆ Rk. Given i.i.d. samples

X1, . . . , Xn from an unknown distribution Pθ with parameter θ ∈ Θ, we are interested in how well a model

with parameter space Θ0 ⊆ Θ fits to the observed samples. That is, we are interested in testing

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ \ Θ0. (3.1)

In our work in Sturma et al. (2024), we consider the situation where the null hypothesis Θ0 is defined by

constraints, that is,

Θ0 = {θ ∈ Θ : fj(θ) ≤ 0 for all j = 1, . . . , p},

where each constraint fj is a function fj : Rk → R. Even though the constraints considered can be arbi-

trary functions, our main motivations comes from models where the parameter space Θ is a semi-algebraic

set and hence the functions fj are polynomials. Note that the description of the null hypothesis also allows

for equality constraints since fj(θ) = 0 can be equivalently described by fj(θ) ≤ 0 and −fj(θ) ≤ 0.

Example 3.1. Consider the example of testing tetrad constraints that is of particular relevance in factor

analysis (Bollen and Ting, 2000; Spirtes et al., 2000; Hipp and Bollen, 2003; Drton and Xiao, 2016; Leung

et al., 2016). As we have seen in Example 2.5, tetrads are off-diagonal 2 × 2 sub-determinants of a

symmetric matrix Σ = (σuv), an example is fj(Σ) = σuvσwz − σuzσvw with four different indices u, v, w, z.

If a multivariate normal distribution N(0,Σ) follows a one-factor analysis model, then all tetrads that can

be formed from the covariance matrix Σ vanish. Thus, for given i.i.d. samples X1, . . . , Xn ∼ N(0,Σ), one

might be interested in testing whether all tetrads vanish simultaneously.

Apart from testing tetrads in the one-factor model, polynomial hypothesis are ubiquitous for example

in graphical modeling (Sullivant et al., 2010; Chen et al., 2014; Shiers et al., 2016; Chen et al., 2017),

testing of causal effects (Spirtes et al., 2000; Steyer, 2005; Pearl, 2009; Strieder et al., 2021), and in

constraint-based causal discovery algorithms (Pearl and Verma, 1995; Spirtes et al., 2000; Claassen and

Heskes, 2012).

A standard approach for testing hypotheses like in (3.1) is the likelihood ratio test that measures the

difference between the maximum of the likelihood function restricted to the subspace Θ0 compared to the

one of the unconstrained space Θ. If Pθ has density pθ, the test statistic is

λn = −2 log
(

supθ∈Θ0 Ln(θ)
supθ∈Θ Ln(θ)

)
,
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Figure 3.1 Histograms of 5000 simulated p-values for testing the one-factor model using the likelihood ratio test.

Setups (a) and (b) are with 15 observed variables, where the true covariance matrix is a regular point in (a) and

close to a singular point in (b). Setup (c) is regular but high-dimensional with k = 200 observed variables. The exact

parameter values are the same as for the simulations in Sturma et al. (2024, Section 5.2). Note that we used the

likelihood ratio test with a Bartlett correction for better asymptotic approximation.

where Ln(θ) =
∏n

i=1 pθ(Xi) is the likelihood function (Van der Vaart, 1998, Chapter 16). Let θ ∈ Θ0 be a

“true” parameter point in the null hypothesis, that is,X1, . . . , Xn ∼ Pθ. If Θ ⊆ Rk is an open set and certain

regularity conditions are satisfies, the distribution of λn converges to the distribution of the Mahalanobis

distance between a random draw from a multivariate normal distribution and the tangent cone of the set

Θ0 at the point θ; see Drton (2009, Theorem 2.6) and Van der Vaart (1998, Theorem 16.7). If the tangent

cone at θ is an ℓ-dimensional linear space, the limiting distribution becomes a chi-square distributions with

degrees of freedom equal to k − ℓ. However, the set Θ0 may contain algebraic singularities at which the

rank of the Jacobian of the constraints being tested drops. Then, the tangent cone may have a different

dimension or it is not a linear space. Calibrating the likelihood ratio test based on the χ2
k−ℓ distribution is

thus not valid anymore. We refer to Drton (2009) for a proof and precise definitions of the tangent cone

and singularities. Note that convergence of the likelihood ratio statistic to the chi-square distribution can

already be very slow even if the true parameter point θ is only close to a singularity.

A second challenging scenario for the application of the likelihood ratio test is when the dimension of the

parameter space is comparable to the number of samples n, as high dimensionality also has an impact on

the speed of convergence. Both issues are illustrated in Figure 3.1. If the likelihood ratio statistic is close

to a χ2
k−ℓ distribution, we expect uniformly distributed p-values. We see that the simulated p-values are far

from being uniformly distributed in the singular and high-dimensional setups.

Another frequently used approach to test hypotheses like in (3.1) are Wald-type test that make use of

the implicit description of the null hypothesis Θ0 (Lehmann and Romano, 2022, Chapter 14.4). To simplify

the discussion, consider the case where the null hypothesis is only defined by one equality constraint

f1 ∈ R[x1, . . . , xk]. Denoting by ∇f1 the gradient of f1, the Wald-type test statistic is given as

Tf1 = nf1(θ̂)2

(∇f1(θ̂))⊤V (θ̂)∇f1(θ̂)
,

where θ̂ is an asymptotically normal estimator such that
√
n(θ̂−θ) converges in distribution to N(0, V (θ)),

and V (θ̂) is an consistent estimator of V (θ). If the true parameter θ is regular, Tf1 converges to the χ2
1

distribution (Drton and Weihs, 2016). However, Drton and Xiao (2016) and Dufour et al. (2024) showed
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Figure 3.2 Histogram of 5000 simulated p-values for testing a single tetrad constraint using the Wald test. The

true covariance matrix Σ = (σvw) ∈ R4×4 is close to a singular point, where the covariances σvw are equivalently

generated as the covariances of the “leaves” L \ {1, 2} in setup (b) in Sturma et al. (2024, Section 5.2).

that the limiting distribution is not chi-square at singularities, where the gradient ∇f1(θ) becomes zero;

see Figure 3.2 for an illustration. The Wald statistic can also be defined for multiple constraints but the

number of constraints has to be smaller than the dimension of the ambient space k. Hence, the Wald test

suffers from similar problems as the likelihood ratio test: It may have a different asymptotic behaviour at

singularities and testing many constraints is infeasible.

In our article, we propose a testing strategy that aims to circumvent these difficulties. In particular,

the asymptotic approximation remains valid even if the (unknown) parameter θ is singular. One of our

key observation is that Wald statistics of polynomial constraints are related to U -statistics. We are now

explaining our intuition in the case of testing a single tetrad constraint in a Gaussian setup. In our work in

Leung and Sturma (2024) that is not part of this thesis, we discuss testing arbitrary polynomial constraints

in a Gaussian setup, whereas in the core article Sturma et al. (2024) we take a more general perspective

that also allows for non-polynomial constraints and non-Gaussian distributions.

As in Example 3.1, we consider i.i.d. samples X1, . . . , Xn from a multivariate normal distribution

N(0,Σ), and a tetrad f1(Σ) = σ13σ24 − σ23σ14. The sample covariance matrix Σ̂ = 1
n

∑n
i=1XiX

⊤
i is

an asymptotically normal estimator of the covariance matrix Σ; cf. Drton and Xiao (2016, Section 4). Now,

one may verify with an easy calculation that the scaled plug-in estimator of the tetrad f̂1 = n
n−1f1(Σ̂) can

be written as a U -statistic f̂1 = 1
(n

2)
∑

i<j h1(Xi, Xj) with kernel

h1(Xi, Xj) = 1
2{(Xi1Xi3Xj2Xj4 −Xi2Xi3Xj1Xj4) + (Xj1Xj3Xi2Xi4 −Xj2Xj3Xi1Xi4)}. (3.2)

Classical U -statistics theory (Koroljuk and Borovskich, 1994, Theorem 4.2.1) gives the Gaussian approxi-

mation
√
n(f̂1 − f1(Σ)) −→d N(0,m2σ2

g1), (3.3)

where m is the degree of the kernel, i.e. m = 2 for the kernel in (3.2), and σ2
g1 is the variance of the Hájek

projection given by

g1(Xi) = E[h1(Xi, Xj)|Xi] = 1
2 {(Xi1Xi3σ24 −Xi2Xi3σ14) + (σ13Xi2Xi4 − σ23Xi1Xi4)} .

It is easy to see that m2σ2
g1 = (∇f1(θ))⊤V (θ)∇f1(θ); we refer to Leung and Sturma (2024, Lemma

B.1) for a proof. Together with Slutsky’s theorem and the continuous mapping theorem, the Gaussian
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approximation in (3.3) thus explains the chi-square approximation of the Wald statistic of a single tetrad.

Crucially, the Gaussian approximation requires non-degeneracy of the kernel, that is, the variance σ2
g1 of

the Hájek projection has to be strictly larger than zero. If σ2
g1 = 0, the U -statistic is said to be degenerate

and the Gaussian approximation in (3.3) is not correct any more (Van der Vaart, 1998, Section 12.3). In the

case of tetrads, Σ is a singular point, i.e. ∇f1(Σ) = 0, if and only if σ2
g1 = 0. Said differently, the Gaussian

approximation of the U -statistic is invalid at singularities. We emphasize that close-to-singular singular

scenarios with σ2
g1 ≈ 0 are also problematic in practice since the approximation in (3.3) is very slow.

This can be seen by the classical Berry-Esseen bound for non-degenerate U -statistics that measures the

accuracy of the Gaussian approximation (Chen et al., 2011, Theorem 10.3). Since the bound depends on

σ−1
g1 , it blows up for small values of σ2

g1 and the approximation becomes inaccurate.

To accommodate singular settings, we observe that summing over less tuples from the set In,2 =
{(i1, i2) : 1 ≤ i1 < i2 ≤ n} than summing over all tuples as in the case of U -statistics may be bene-

ficial. In the extreme case, consider the average of independent sums

S⌊n/2⌋ = 1
⌊n/2⌋

⌊n/2⌋∑
i=1

h1(X2i−1, X2i),

where h1 is the same kernel as in (3.2). By the classical central limit theorem (Klenke, 2014, Theorem

15.37), we obtain that
√

⌊n/2⌋ S⌊n/2⌋ →d N(0, σ2
h1

), where σ2
h1

is the variance of the kernel h1. If the

covariance matrix Σ is positive definite, it must be that σ2
h1
> 0; see Lemma B.1 in Leung and Sturma

(2024). Hence, the Gaussian approximation should also be true if Σ is singular. However, despite being

well-suited in singular settings, the independent sum S⌊n/2⌋ pays the price of dividing down the sample

size bym = 2. For larger degree kernels withm > 2 this implies an even larger loss in statistical efficiency.

On the other hand, the complete U -statistic is aggressive in terms of power by summing over all the
(n

2
)

sample indices in In,2, but it is not suitable for singular settings as explained above.

To find a balance between guarding against singularities and statistical efficiency, we propose to use

randomized incomplete U -statistics instead of the complete U -statistic f̂1 = 1
(n

2)
∑

i<j h1(Xi, Xj). That

is, for a computational budget parameter N ≤
(n

2
)
, we randomly choose on average N indices from

In,2 = {(i1, i2) : 1 ≤ i1 < i2 ≤ n}. For i.i.d. Bernoulli random variables {Zι : ι ∈ In,2} with success

probability ρn = N/
(n

2
)
, the randomized incomplete U -statistic is defined by

U ′
n,N = 1

N̂

∑
ι∈In,2

Zιh1(Xι),

where N̂ =
∑

ι∈In,2 Zι is the number of successes and Xι = (Xi1 , Xi2) for ι = (i1, i2). Intuitively, one

should expect, by summing over only a random sample of indices in In,2 with an appropriately chosen

computational budget N , that Un,N finds a balanced middle ground between S⌊n/2⌋ and the complete U -

statistic. Indeed, our proposal is motivated by a weak convergence result in Janson (1984, Corollary 1).

Assuming that N and n tend to infinity such that the ratio αn := n/N converges to a positive constant, the

result implies that √
nU ′

n,N

σ1
−→d N(0, 1),

where σ2
1 = m2σ2

g1 + αnσ
2
h1

and m = 2 if the kernel is as in (3.2). Importantly, the standardizing factor σ1

is always positive since σ2
h1
> 0.
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Figure 3.3 Histogram of 5000 simulated p-values using our methodology based on incomplete U -statistics for si-

multaneously testing 2730 tetrads constraints implied by the one-factor model with 15 observed variables. The

computational budget parameter for the incomplete U -statistic is N = 2n and the true covariance matrix is close to

a singular point, for exact parameter values see Sturma et al. (2024, Section 5.2), setup (b).

This is our key motivation to propose a testing strategy based on incomplete U -statistics in Sturma et al.

(2024). It allows for equality and inequality constraints and it is valid in singular scenarios while still being

as efficient as possible. Moreover, our testing methodology allows for a potentially very large number of

constraints p. To define the test statistic, we assume that f(θ) = (f1(θ), . . . , fp(θ))⊤ is U -estimable. That

is, for some integer m ≥ 2 there exists a Rp-valued measurable symmetric function h(x1, . . . , xm) such

that Eθ[h(X1, . . . , Xm)] = f(θ) for all θ ∈ Θ, when X1, . . . , Xm are i.i.d. with distribution Pθ. Using the

same notation as above but replacing 2 with m ≥ 2 and the one-dimensional kernel h1(x1, x2) with a

p-dimensional kernel h(x1, . . . , xm), the randomized incomplete U -statistic based on Bernoulli sampling

is defined by

U ′
n,N = 1

N̂

∑
ι∈In,m

Zιh(Xι).

Due to the form of the null hypothesis Θ0, we define the test statistic as the maximum of the studentized

incomplete U -statistic, i.e.

T = max
1≤j≤p

√
nU ′

n,N,j/σ̂j ,

where σ̂2
j is an estimator of the variance σ2

j = m2σ2
g,j + αnσ

2
h,j of the j-th coordinate of the approx-

imating Gaussian distribution. Similar as above, σ2
h,j is the variance of the j-th coordinate of the ker-

nel h(X1, . . . , Xm) and σ2
g,j is the variance of the j-th coordinate of the Hájek projection g(X1) =

Eθ[h(X1, . . . , Xm)|X1]. In practice, a data driven estimator σ̂2
j can be formed with a “divide-and-conquer”

strategy and critical values are derived via a data-dependent Gaussian multiplier bootstrap; we refer to

Sturma et al. (2024) for the details.

The main theoretical contribution of our work is to show that the Gaussian approximation of high-

dimensional incomplete U -statistics is valid under mixed degeneracy when we choose the computational

budget parameter appropriately, typically of the same order as the sample size. In simple words, mixed

degeneracy implies that for each index j, the variance of the Hájek projection σ2
g,j is allowed to take more

or less arbitrary values, including zero. Based on the Gaussian approximation, we prove that our test

asymptotically controls type I error if N is chosen appropriately, even if the true parameter θ is singular or

almost singular. Since our results rely on the seminal work in high-dimensional Gaussian approximation
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of Chernozhukov et al. (2013) and Chernozhukov et al. (2017), the Gaussian approximation also remains

valid in settings where the number of constraints p can be much larger than the sample size n. Finally, we

emphasize that there is no need to maximize a possibly multi-modal function as one would do for a likeli-

hood ratio test. As an illustration, Figure 3.3 shows a histogram of p-values using our testing strategy in a

singular setting. We see that the distribution of the p-values is significantly closer to a uniform distribution

than when using the Wald or likelihood ratio test.
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4 Structure Identifiability in Causal Representation

Learning

In this chapter, we introduce the problem of causal representation learning and we lay out the setting and

the main contributions of the second core article (Sturma et al., 2023). In machine learning, the goal

of representation learning is to find a description of data that is interpretable, useful for reasoning, and

generalizable (Bengio et al., 2013; Schölkopf et al., 2021). Such a representation synthesizes available

measurements into latent variables that serve to tackle downstream tasks. Formally, this can be expressed

as follows. We assume that there is a collection of real-valued latent random variables (Xℓ)ℓ∈L that are

indexed by a finite set L and jointly distributed according to PL. The observed variables (Xv)v∈O, indexed

by a finite set O, are now generated via

XO = g(XL),

where g : R|L| → R|O| is an injective mixing function. In representation learning, one is interested in

estimating the function g as well as the distribution PL from observed samples of the variables XO. Tradi-

tionally, the latent variables are assumed to be “conceptually distinct” (Bengio et al., 2013; Squires et al.,

2023). For example, if the observations are images, the latent variables might be abstract objects like the

presence of clouds or the presence of trees. Conceptual distinctness of variables is often translated to

statistical independence, i.e., the latent variables Xℓ for ℓ ∈ L are assumed to be pairwise independent.

However, as argued in Schölkopf et al. (2021), the assumption of independence can be too stringent and

a poor match to reality. For example, the presence of clouds and the presence of wet roads in an image

may be dependent, since clouds may cause rain which may in turn cause wet roads. Thus, it is natural

to seek a causal representation, i.e., it is assumed that the distribution PL is determined by an unknown

structural causal model among the latent variables XL. General structural causal models are discussed

for example in Pearl (2009) and Peters et al. (2017). We will focus here on the case where the causal

model among the latent variables is linear and the mixing function g is also linear. In this setup, causal

representations are modeled by linear structural equation models corresponding to graphsG = (O⊔L, D)
that only have edges between the latent variables and from the observed to the latent variables, that is,

D ⊆ (L × L) ∪ (L × O). Hence, the linear structural equations are given by

XO = Λ⊤
L,OXL + εO,

XL = Λ⊤
L,LXL + εL,

where Λ ∈ RD is sparse with support corresponding to the edges of the graph G, recall Section 2.3. Since

XL = (I − ΛL,L)−⊤εL, the observed random vector satisfies in particular the equation

XO = Λ⊤
L,O(I − ΛL,L)−⊤εL + εO. (4.1)
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The main interest in causal representation learning is to learn the induced graph on the latent nodes

G[L] = (L, DL) with edges DL = D ∩ (L × L) from observed samples of the random vector XO.

Structure identifiability in causal representation learning thus refers to the question under which conditions

the recovery of the latent graph is possible in the case of infinite data, i.e., when the distribution of XO is

known. Note that this is a question of model identifiability, which we introduced in Section 2.2. Without

further assumptions, the problem is ill-posed and it is in general impossible to recover the latent graph

G[L]; we refer to Appendix C in Sturma et al. (2023) for a discussion. In the literature, there are mainly two

types of assumptions under which identifiability was shown to be possible. The first line of work studies

identifiability while assuming that interventional data is available, see e.g. Liu et al. (2023), Squires et al.

(2023) and Ahuja et al. (2023). This means that, in addition to the observed distribution, we also have

access to interventional distributions of XO. The interventional distributions are generated equivalently

as in (4.1), but the structural equations of one or more latent variables Xℓ are changed. For example, a

“perfect intervention” removes the dependency of Xℓ on its parents while still allowing for stochasticity; the

structural equation then becomes Xℓ = ε̃ℓ for a different noise variable ε̃ℓ. Another line of work shows

that the graph is identified under certain sparsity assumptions on the mixing matrices ΛL,O; we refer to Xie

et al. (2020), Chen et al. (2022), Xie et al. (2022) and Huang et al. (2022). Identifiability by assuming either

access to interventions or sparsity in the mixing function is also studied in nonlinear setups; see e.g. von

Kügelgen et al. (2023), Khemakhem et al. (2020) or Buchholz et al. (2022) for recent advances.

On the other hand, one may also leverage identifiability results from independent component analysis

to recover the graph G[L]. For simplicity, assume that the observed random vector XO does not feature

noise, that is, εO ≡ 0. This is to avoid the overcomplete setting, recall Example 2.10. If Λ⊤
L,O(I − ΛL,L)−⊤

has full column rank, at most one of the distributions of the noise variables εℓ for ℓ ∈ L is Gaussian, and

each distribution of εℓ is assumed to have unit variance, then the matrix Λ⊤
L,O(I − ΛL,L)−⊤ is identified up

to a signed permutation of its columns (Comon, 1994). That is, we obtain the matrix

Λ⊤
L,O(I − ΛL,L)−⊤Ψ, (4.2)

where Ψ is a |L| × |L| signed permutation matrix. Adams et al. (2021) derive a sufficient and necessary

condition with respect to the sparsity of ΛL,O under which it is possible to identify the graph G[L], i.e., to

identify the support of ΛL,L.

In Sturma et al. (2023), we study identifiability in multi-domain causal representation learning. In many

applications, researchers have access to unpaired data, possibly with different modalities such as image

data or text, and the researcher is interested in learning a shared causal representation. Our main mo-

tivation to study multi-domain causal representation learning comes from the analysis of single-cell gene

expression data in biology. Given a population of cells, different technologies such as imaging and se-

quencing provide different views on same the cell population. Crucially, since these technologies destroy

the cells, the observations are unpaired, i.e., a specific cell may either be used for imaging or sequencing

but not both; see e.g. Butler et al. (2018), Stuart et al. (2019), Liu et al. (2019) or Yang et al. (2021). The

aim of this work is to investigate conditions under which it is possible to integrate the different types of data

in each domain in order to understand the underlying common causal mechanisms that determine the
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Figure 4.1 Compact version of a 2-domain graph G = (L ⊔ V1 ⊔ V2) with five latent nodes L = {1, 2, 3, 4, 5} and

two domains V1 and V2. All observed nodes in each domain are represented by a single white node. We draw a

dashed red edge from latent node ℓ ∈ L to domain Ve ⊆ O if ℓ ∈ Se. The latent nodes H = {1, 2} are shared

and I1 = {3, 4} and I2 = {5} are domain-specific. Importantly, the random vectors XV1 , XV2 associated to the two

domains are uncoupled, that is, we do not observe their joint distribution.

observed features. Unpaired multi-domain data also appears in many applications other than single-cell

biology; see Sturma et al. (2023) for a discussion.

In a linear setting, we define unpaired multi-domain causal representation learning as follows. The

observed nodes O of the graph are a union of pairwise disjoint indexing sets V1, . . . , Vm, where each

indexing set corresponds to one observed domain. Importantly, the cardinality of the indexing sets may be

different to reflect possibly different data modalities. In each domain, the observed random vector XVe is

a linear function of a subset of the latent variables, that is, XVe is a linear function of XSe , where Se ⊆ L.

We assume that there is a shared latent set of nodes H ⊆ L such that in each domain e ∈ {1, . . . ,m},

the latent variables are given as a disjoint union Se = H ∪ Ie, and we say that Ie = Se \ H are the domain-

specific latent nodes. Recall that we are motivated by settings where the shared latent variables XH

capture the key causal relations and the different domains are able to give us combined information about

these relations. Likewise, we may think about the domain-specific latent variables XIe as “noise” in each

domain. A priori, we do not assume that we know the shared latent nodes H, we do not even assume

to know their cardinality |H|. Finally, we assume hat the observed data in each domain is unpaired,

that is, we assume to know only the marginal distributions of XVe in each domain, but none of the joint

distributions over pairsXVe , XVf
for e ̸= f . In our core article we rigorously introduce this setup by defining

m-domain graphs, such that each m-domain graph defines a multi-domain causal representation model

via the corresponding structural equations; see Figure 4.1 for an illustration. As argued in the introduction

of the article, our setup constitutes a generalization of the setups considers in previous works, for example

the works of Adams et al. (2021) and Zeng et al. (2021).

The main challenge in proving rigorous identifiability results in the multi-domain setup is that we cannot

apply existing results from the single-domain setup in each domain separately. Even if the causal structure

of the latent variables in a single domain is identifiable, it remains unclear how to combine multiple causal

structures, i.e., in which way latent variables are shared. We circumvent this problem via a two-step

approach: First, we extend the identifiability of linear independent component analysis to the multi-domain

setup, which allows us to identify the joint distribution and distinguish between shared and domain-specific

latent variables. Moreover, we identify an “overall mixing matrix”, similar to the one in Equation (4.2)

and, in a second step, exploit sparsity constraints in this matrix to identify the causal structure among the

shared latent variables. Hence, our main contributions are two-fold: First, we lay out sufficient conditions

under which we can identify the joint distribution of XV1 , . . . , XVe . Second, we give additional conditions
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under which we are able to identify the graph of the shared latent variables G[H] = (H, DH) with DH =
D∩(H×H). As discussed in detail in our paper, our conditions are mostly necessary. However, it remains

an open problem to find an “if and only if” condition in the linear multi-domain setup.
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5 Parameter Identifiability in Linear Causal Models

In this chapter, we discuss the problem of parameter identifiability in linear causal models and explain the

contributions in Barber et al. (2022), which are part of this thesis. As already mentioned in the introduction

of this thesis, the gold standard to draw causal conclusions would be to set up a controlled experiment to

physically intervene in a system of random variables and learn about the causal effects. If this is infeasible

due to costs or ethical and technical constraints, it may still be possible to hypothesize or determine the

direction of causal relationships. Since causal relationships in a collection of random variables are naturally

represented by directed graphs, this corresponds to setups where the graphical structure is assumed to

be known. It is then of interest to investigate whether causal effects are uniquely determined based on the

observed data only, i.e., when there is no data from controlled experiments available. This is the problem

of causal effect identifiability (Pearl, 2009) and is especially challenging in the presence of latent variables.

If the causal relations are assumed to be linear, we are hence interested in identifying the coefficients

in linear structural equation models with latent variables. In the context of causal effect identifiability, the

linear coefficients are also known as direct causal effects.

Example 5.1. Assume that we want to quantify the effect of smoking on the baby’s birth weight as in

Example 1.1. It is reasonable to hypothesize the causal relationships as in the instrumental variable model

given by the graph in Figure 1.1. Identifying the direct causal effect from smoking on the baby’s birth weight

then corresponds to identifying the coefficient λ12 appearing in the linear structural equations (1.1). Given

the covariance matrix Σ = (σvw) of the observed random variables, we aim to find a formula in the entries

σvw that identifies λ12. We have already seen in Example 1.1 that the equation σ23 = λ12σ13 holds in the

model. Hence, we obtain the identification formula λ12 = σ23/σ13 that is valid as long as σ13 is nonzero.

Since σ13 = ω33λ31, it is nonzero for ‘almost all’ choices of the parameters ω33 and λ31 (with respect to an

absolutely continuous distribution).

Identifying the direct causal effects from the observable covariance matrix has a long history in struc-

tural equation modeling. Most prior research focused on developing methods to decide identifiability of

direct effects in a latent projection framework, in which the confounding effects of the latent variables are

represented by correlation among noise terms.

Example 5.2. Consider again the instrumental variable model given by the graph in Figure 1.1. In the

latent projection framework, the latent variableX4 is not explicitly modeled, but the effect of the unobserved

confounder is absorbed in a possibly nonzero correlation between the noise terms ε1 and ε2. Now, the

linear structural equations become

X1 = λ01 + λ31X3 + ε1, X2 = λ02 + λ12X1 + ε2, X3 = ε3,
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X1: Smoking X2: Baby’s WeightX3: Tax Rate

ω12

λ12λ31

Figure 5.1 Mixed graph for the instrumental variable model.

where the error vector ε has mean zero and covariance matrix

Ω =


ω11 ω12 0
ω12 ω22 0
0 0 ω33

 .
The projected latent variable model corresponds to the graph displayed in Figure 5.1, where the bidi-

rected edge indicates the possibly nonzero correlation between the noise terms ε1 and ε2. Note that the

identifying formula λ12 = σ23/σ13 still holds in the projected model.

In the latent projection framework, models correspond to mixed graphs G = (O, D,B) that contain the

observed nodes O and additional bidirectional edges collected in the set B ⊆ O × O. We denote the

edges in B by v ↔ w, and they have no orientation, that is v ↔ w ∈ B if and only if w ↔ v ∈ B.

Moreover, we exclude self-loops, i.e., v ↔ v ̸∈ B for all v ∈ O. As before, the set D contains directed

edges and is also assumed to be free of self-loops.

Definition 5.3 (Foygel et al., 2012, Definition 1). Let G = (O, D,B) be a mixed graph with O = [m]. The

covariance model given by G is the image Im(τG) of the parametrization map

τG : RD
reg × PD(B) −→ PD(|O|),

(Λ,Ω) 7−→ (I − Λ)−⊤Ω(I − Λ)−1,

where PD(B) ⊆ PD(|O|) is the subcone of matrices with support B, that is, ωvw = 0 if v ̸= w and

v ↔ w ̸∈ B.

Identifiability of a model holds, if all possibly nonzero direct causal effects λvw can be uniquely recovered

from a given observable covariance matrix Σ ∈ Im(τG). That is, identifiability holds if the parametrization

map is injective. In practice, however, it is usually enough to require injectivity only on a suitably large

subset of the domain Θ := RD
reg × PD(B). This motivates the following definition.

Definition 5.4 (Foygel et al., 2012, Definition 3). The mixed graph G = (O, D,B) is said to be generically

identifiable if there exists a proper algebraic subset A ⊂ Θ such that τG is injective on Θ \A.

An algebraic set is a semi-algebraic set that is defined by equality constraints only; we refer to Cox

et al. (2015) or Shafarevich (2013) for background on algebraic geometry. The set Θ \ A is suitably large

in statistical applications since proper algebraic subsets A ⊂ Θ have Lebesgue measure zero; see, for

example, the lemma in Okamoto (1973). In all examples we know, the inverse mapping, also known as the

identification formula, is a rational map; see Foygel et al. (2012) and Barber et al. (2022) for a discussion.

Hence, we are interested in rational identifiability of mixed graphs, which is defined as follows.
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Figure 5.2 Left: Latent-factor graph with one latent node. Right: Corresponding mixed graph.

Definition 5.5 (Foygel et al., 2012, Definition 3). The mixed graph G = (O, D,B) is said to be ra-

tionally identifiable if there exists a proper algebraic subset A ⊂ Θ and a rational map ψ such that

ψ ◦ τG(Λ,Ω) = (Λ,Ω) for all (Λ,Ω) ∈ Θ \A.

In principle, the problem of deciding rational identifiability can be solved via Gröbner basis computations;

see Garcia-Puente et al. (2010) and Cox et al. (2015). But the complexity of these computations can, in the

worst case, be double exponential in the size of the graph (Bardet et al., 2015). Hence they are infeasible

even for relatively small graphs and it becomes of great value to develop criteria that can be efficiently

checked.

Examples of graphical criteria for mixed graphs include instrumental variables (Bowden and Turkington,

1984), conditional instruments (Brito and Pearl, 2002), the G-criterion (Brito and Pearl, 2006), the half-trek

criterion (Foygel et al., 2012), the generalized half-trek criterion (Weihs et al., 2017), auxiliary variables

(Chen et al., 2017) and auxiliary cutsets (Kumor et al., 2020); see Barber et al. (2022) for a more compre-

hensive list of references. Most of these criteria are sufficient conditions for rational identifiability, the only

necessary condition is given in Foygel et al. (2012). To our knowledge, it is still an open problem to find an

“if and only if” condition for rational identifiability of mixed graphs that can be verified in polynomial time, or

to prove fundamentally that such a criterion cannot exist.

In contrast, in our new work in Barber et al. (2022), we consider unprojected models where latent

variables are explicitly modeled. Our main observation is that the approach using mixed graphs in the latent

projection framework is only effective if the confounding is sparse, that is, if there are only few bidirected

edges. A mixed graph can not be rationally identifiable if the dimension of the domain Θ = RD
reg × PD(B)

is larger than the dimension of the ambient space PD(|O|). Hence, rational identifiability is impossible if

the total number of edges |D| + |B| is strictly larger than
(|O|

2
)
; see Foygel et al. (2012, Proposition 2). In

particular, if the number of bidirected edges is large, possibly even equal to
(|O|

2
)
, then a graph can never

be rationally identifiable even if it contains only a small number of directed edges.

Example 5.6. Consider the graph in the left of Figure 5.2. It entails that all pairs of observed variables

are confounded by a single latent variable. Hence, the corresponding mixed graph displayed on the right

contains all possible bidirected edges, i.e., |B| =
(5

2
)

= 10. Since there are also 3 directed edges, the

mixed graph is not rationally identifiable by our considerations above. However, the graph on the left is

rationally identifiable, that is, we can find a rational identifying formula for all directed edges. For example,

we have the formula λ23 = (σ13σ24 − σ14σ23)/(σ12σ24 − σ14σ22). Even though the latent confounding is

dense and effects all observed variables, identification is possible since the confounding is caused by only

one latent variable, i.e. there is structure in the confounding.
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In our work in Barber et al. (2022), we restrict ourselves to graphs where all latent variables are indepen-

dent “factors”, that is, there are only edges from latent variables to observed variables and not viceversa,

and there are also no edges between the latent variables. We say that a directed graph G = (O ⊔ L, D)
is a latent-factor graph if D ⊆ (O × O) ∪ (L × O). The covariance model of a latent-factor graph is then

given as the image of the parametrization map in Definition 2.12. In particular, each covariance matrix Σ
in the model is parametrized as

Σ = [(I − Λ)−⊤Ω(I − Λ)−1]O,O

= (I − ΛO,O)−⊤(ΩO,O + Λ⊤
L,OΩL,LΛL,O)(I − ΛO,O)−1,

where Λ ∈ RD
reg and Ω ∈ diag+

|V | with V = O ⊔ L. The second equality can easily be verified by taking into

account the restricted set of edges in latent-factor graphs. Rational identifiability of latent-factor graphs

then holds if we can find a rational identifying formula for all nonzero entries in ΛO,O; see Barber et al.

(2022, Definition 2.2) for a precise definition.

Our key idea is to exploit the low rank structure in the “latent covariance matrix” ΩO,O + Λ⊤
L,OΩL,LΛL,O

if the number of latent variables is locally small. That is, if the number of latent parents paL(U) = {ℓ ∈ L :
ℓ → u ∈ D for some u ∈ U} of a set of observed nodes U ⊆ O is small, say |paL(U)| = k, then the rank

of the matrix [Λ⊤
L,OΩL,LΛL,O]U,U is at most k. In our work in Barber et al. (2022) we leverage this low-rank

structure to derive a graphical criterion, the latent-factor half-trek criterion, that is an effective sufficient

condition for rational identifiability. To our knowledge, it is the first criterion that is applicable to general

latent-factor graphs. Previous works only consider restricted settings, for example only one latent variable

is considered (Stanghellini and Wermuth, 2005; Leung et al., 2016) or each latent variable is restricted to

have an effect on only a few observed variables (Van Der Zander et al., 2015). We refer to the introduction

in Barber et al. (2022) for a detailed discussion of related literature. Importantly, our graphical criterion

can be checked in polynomial time in the size of the graph using max-flow computations (Cormen et al.,

2009) if we search only over subsets of latent nodes of bounded size. Our algorithm is implemented in the

R-package SEMID as of version 0.4.0 (Drton et al., 2022), which is available on CRAN, the Comprehensive

R Archive Network.

In the discussion section in Barber et al. (2022), we propose various interesting research questions that

arise from our work. Besides improving the latent-factor half-trek criterion, it is also an open problem to find

a necessary condition for latent factor graphs. Moreover, it would be interesting to generalize our criterion

to graphs that do not restrict the edges, i.e., to allow edges between latent variables and from observed

to latent variables. Finally, note that the latent covariance matrix ΩO,O + Λ⊤
L,OΩL,LΛL,O corresponds to

a covariance matrix in a sparse factor analysis model. Since this is the key object that allows to derive

identifying formulas, it is important to better understand the geometry of sparse factor analysis models.

This is the topic of the next chapter.
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6 Geometry of Sparse Factor Analysis Models

In this chapter, we discuss the contributions in the last article (Drton et al., 2024), where we study the

model geometry in sparse factor analysis. Factor analysis is a statistical technique that explains correlation

among observed random variables with the help of a small number of latent factors, recall Examples 1.2

and 2.2, and the illustration of the one-factor analysis model in Figure 1.2. It is a popular tool in many

applied sciences, including psychology (Horn, 1965; Reise et al., 2000; Caprara et al., 1993), econometrics

(Fan et al., 2008; Aßmann et al., 2016), education (Schreiber et al., 2006; Beavers et al., 2013), and

epidemiology (Martínez et al., 1998).

Formally, factor analysis models are defined as the covariance models corresponding to graphs G =
(O ⊔ L, D) where only edges from latent to observed nodes are allowed, i.e., D ⊆ (L × O), recall

Definition 2.12. Without loss of generality we can fix the scale of the latent variables ωℓℓ = Var(εℓ) = 1 for

all ℓ ∈ L since this does not change the image of the parametrization map τG. The parametrization of a

covariance matrix Σ in a sparse factor model then takes the form

Σ = ΩO,O + Λ⊤
L,OΛL,O,

where Λ ∈ RD
reg and ΩO,O ∈ diag+

|O|. Traditionally, the term “factor analysis” refers to models that corre-

spond to graphs with all possible edges D = L × O, recall Example 2.9. The one-factor model was first

studied by Spearman (1904), and the geometry of more general models was first rigorously studied in the

work of Anderson and Rubin (1956). The paper by Drton et al. (2007), that can be seen as a predecessor

of our work in Drton et al. (2024), first studies the geometry under an algebraic perspective by realizing

that the entries of the covariance matrix are polynomial functions in the parameters.

In contrast, we are interested in sparse factor analysis models, where the edge set D ⊂ L × O is a

proper subset. As discussed in our article, sparse factor models naturally appear in many applications.

We have already seen in Section 5 that they are the building block for linear causal models with latent

variables. Examples of different research topics where sparse factor models appear include work on

correlation thresholding (Kim and Zhou, 2023), l1-penalization (Lan et al., 2014; Trendafilov et al., 2017),

and Bayesian approaches (Frühwirth-Schnatter et al., 2024; Ohn et al., 2023).

The main contribution of our work is twofold: First, we study the dimension of sparse factor models. We

give a general upper bound on the dimension which reveals that sparse factor models can be defective.

That is, they may not have expected dimension which is equal to counting the number of parameters. This

is a difference to full factor analysis models that are always of expected dimension after an orthogonal

transformation of the coefficient matrix ΛL,O; see Drton et al. (2007) for details. We also provide a lower

bound for the dimension of all models that satisfy a mild condition on the sparsity pattern. In many cases
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Figure 6.1 Graph corresponding to a sparse factor analysis model with 3 latent variables and 6 observed variables.

we show that the upper and lower bounds coincide, so that we obtain a combinatorial formula for the

dimension in these cases.

Example 6.1. Consider the graph in Figure 6.1. The expected dimension of the corresponding model is

equal to the number of parameters given by |O| + |D| = 16. However, as we verify in Drton et al. (2024,

Corollary 2.13), the dimension of the model is 15.

Second, we study implicit descriptions of sparse factor models, where we focus on equality constraints.

That is, for a given model M ⊆ PD(|O|), we are interested in the ideal of invariants

I(M) = {f ∈ R[σij , i ≤ j] : f(Σ) = 0 for all Σ ∈ M}

that contains the polynomials that vanish on all points in the model. Since, for a symmetric positive definite

matrix Σ ∈ R|O|×|O|, membership in a sparse factor analysis model M = Im(τG) only depends on the off-

diagonal entries of Σ, we can regard the ideal of invariants of Im(τG) as an ideal in the subring R[σij , i <

j]. Our main contribution is to give an explicit description for the generators of Gröbner bases with respect

to any circular term order for a subclass of sparse two-factor analysis models. We refer to Cox et al. (2015)

for background on Gröbner bases and to de Loera et al. (1995) for background on circular term orders. The

advantage of an explicit combinatorial description for the Gröbner basis is that we can avoid computing

generators of the ideal by using Buchberger’s Algorithm (Buchberger, 2006), which in the worst case has

a double exponential complexity in the number of variables (Bardet et al., 2015). Algebraically, the main

challenge in studying ideals of sparse factor models in comparison to studying ideals of full factor models

is that they corresponds to joins instead of secants; see Sturmfels and Sullivant (2006) for background of

join ideals.

Example 6.2. Consider the graph in Figure 6.2. We show in Drton et al. (2024, Theorem 3.13) that the

following collection of polynomials defines a Gröbner basis of the ideal of invariants of the corresponding

sparse factor analysis model with respect to a so-called circular term order.

• Degree one monomials: σ16, σ17, σ26, σ27, σ36, σ37.

• Degree two binomials (tetrads): σ47σ56 −σ57σ46, σ12σ34 −σ13σ24 σ14σ23 −σ13σ24, σ12σ35 −σ13σ25,

σ15σ23 − σ13σ25, σ15σ24 − σ14σ25, σ15σ34 − σ14σ35, σ25σ34 − σ24σ35.

• Degree three trinomials: σ67σ12σ45 − σ67σ24σ15 − σ12σ47σ56, σ67σ13σ45 − σ67σ34σ15 − σ13σ47σ56,

σ67σ23σ45 − σ67σ34σ25 − σ23σ47σ56.
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Figure 6.2 Graph corresponding to a sparse factor analysis model with 2 latent variables and 7 observed variables.

In Section 4 of Drton et al. (2024), we outline possible future research directions and open questions. In

particular, it remains an open question to find a Gröbner basis for sparse factor analysis models with more

than two latent factors. Beyond the discussion in our article, it would be interesting to study parameter

identifiability of sparse factor analysis models, recall Definition 5.4. The results on the dimension in our

article provide a necessary condition. That is, if the dimension is smaller than the number of parameters,

then the parameters are certainly not identifiable. Finding a sufficient condition for (generic) parameter

identifiability that can be efficiently checked remains an open problem. Parameter identifiability of full

factor analysis models was, among others, studied in Bekker and ten Berge (1997): If the number of

parameters is strictly smaller than the dimension of the ambient space after an orthogonal transformation,

then the parameters in full factor analysis models are always generically identifiable up to certain trivial

indeterminacies. However, this result does not translate to sparse models since they consist of non-generic

points in full-factor models.



30

7 Conclusion

Many applications require models with latent variables that can have a complicated parameterization and

geometry. Besides the advances in identifiability and inference of latent variable models presented in this

thesis, there are still many open problems. Even for linear structural equation models, parameter and

model identifiability are not completely understood as we discussed in the previous chapters. Moreover,

we consider the study of linear models as the basis for any subsequent study of nonlinear models.

When fundamental questions regarding geometry and identifiability are solved, a set of more statistical

questions arises. Besides hypotheses testing as discussed in this thesis, it is for example interesting to

study estimation if parameters are certified to be identifiable. Criteria for parameter identifiability directly

suggest a strategy for estimation by making use of the identification formula. Exploring different estimators

and finding an optimal one is an interesting future direction. Similarly, if the structure in causal repre-

sentation learning is identifiable, we still need to develop consistent and efficient methods to estimate the

structure if only finitely many samples are available.
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A.1 Testing Many Constraints in Possibly Irregular Models Using

Incomplete U-Statistics

Summary

In this article, we consider the problem of testing a null hypothesis defined by equality and inequality con-

straints on a statistical parameter. As explained in Chapter 3 of this thesis, testing such hypotheses can

be challenging because the number of relevant constraints may be on the same order or even larger than

the number of observed samples. Moreover, standard distributional approximations may be invalid due to

irregularities in the null hypothesis. We propose a general testing methodology that aims to circumvent

these difficulties. The constraints are estimated by incomplete U -statistics, and we derive critical values by

Gaussian multiplier bootstrap. The main result is a Berry-Esseen type bound on the Gaussian approxima-

tion of high-dimensional incomplete U -statistic under a mild conditions on the status of degeneracy of the

kernel that we call “mixed degeneracy”. Importantly, the bound implies that the bootstrap approximation of

incomplete U -statistics is valid when the computational budget parameter used to compute the incomplete

U -statistic is of the same order as the sample size. It follows that our test controls type I error even in

irregular settings. Since the bootstrap approximation covers high-dimensional settings, it also makes our

testing strategy suitable for problems with many constraints.

The article is structured as follows. In the introduction, we informally explain the intuition behind the

proposal of our test statistic. In Section 2, we first define the concept of mixed degeneracy. Then, we give

a non-asymptotic Berry–Esseen-type bound for the high-dimensional Gaussian approximation of incom-

plete U -statistics. Moreover, we show that the limiting Gaussian distribution can be further approximated

via a data-dependent Gaussian multiplier bootstrap, and we incorporate studentization of the incomplete

U -statistic. In Section 3, we formally propose our testing methodology by defining the test statistic and

showing how to derive critical values. Our results on incomplete U -statistics yield that the test is asymp-

totically valid and consistent even in irregular settings. In Section 4, we show that our methodology is

applicable, in particular, when the constraints to be tested are polynomials. We explain a general method

for constructing a suitable kernel such that the incomplete U -statistic becomes an unbiased estimator of

the polynomial constraints. In Section 5, we then apply our strategy for testing the goodness-of-fit of latent

tree models, which are of particular relevance in phylogenetics. In numerical experiments, we compare

our strategy for different computational budget parameters with the likelihood-ratio test in terms of size and

power.
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Individual contributions

As the lead author of this article, I formulated the necessary concepts, developed all proofs, wrote software

implementations, conducted simulation studies, and drafted the manuscript. Mathias Drton proposed to

investigate test statistics based on incomplete U -statistics. Dennis Leung proposed to use the kernel in

Example 1.1 of the article to test tetrad constraints with so-called “m-dependent sums” in a preliminary

conference paper (Leung et al., 2016). Importantly, the contents of this article are very different from those

of the preliminary conference paper. In particular, this article considers incomplete U -statistics instead of

m-dependent sums, generalizes the kernel to accommodate arbitrary constraints and provides an entirely

new theory. Both co-authors made helpful suggestions regarding both the content and presentation of the

article during regular discussions.

The article originated from my master thesis (Sturma, 2021). In the master thesis, I empirically compared

three approaches for testing many and possibly irregular polynomial constraints: Constructing the test

statistics via independent sums, via m-dependent sums, and via incomplete U -statistics. The theory part

in the master thesis is mainly about extending the known theory that allows for sub-Exponential kernels

to sub-Weibull kernels. In contrast, the new article is only about incomplete U -statistics, and it contains

rigorous proofs that mathematize the intuition that incomplete U -statistics allow for correctly calibrated

statistical decisions also at irregular points. The proofs and necessary concepts were developed after

completing the master thesis and were written specifically for this article. None of the proven theoretical

results in the main paper appear in the master thesis, and only Appendix C in the supplement on sub-

Weibull random variables exists similarly. The implementation of our testing method for the example of

Gaussian latent tree models was, however, already done during the master thesis. On the other hand, the

simulations were carried out specifically for this article. For my dissertation, to explicitly prevent double

counting, only those parts of this article that go beyond my master thesis are to be accredited.
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Abstract 
We consider the problem of testing a null hypothesis defined by equality and inequality constraints on a 
statistical parameter. Testing such hypotheses can be challenging because the number of relevant 
constraints may be on the same order or even larger than the number of observed samples. Moreover, 
standard distributional approximations may be invalid due to irregularities in the null hypothesis. We 
propose a general testing methodology that aims to circumvent these difficulties. The constraints are 
estimated by incomplete U-statistics, and we derive critical values by Gaussian multiplier bootstrap. We 
show that the bootstrap approximation of incomplete U-statistics is valid for kernels that we call mixed 
degenerate when the number of combinations used to compute the incomplete U-statistic is of the same 
order as the sample size. It follows that our test controls type I error even in irregular settings. 
Furthermore, the bootstrap approximation covers high-dimensional settings making our testing strategy 
applicable for problems with many constraints. The methodology is applicable, in particular, when the 
constraints to be tested are polynomials in U-estimable parameters. As an application, we consider 
goodness-of-fit tests of latent-tree models for multivariate data. 
Keywords: Gaussian approximation, high dimensions, incomplete U-statistics, latent-tree model, multiplier bootstrap, 
non-asymptotic bound 
JEL codes: 62F03, 62R01, 62E17 

1 Introduction 
Let {Pθ : θ ∈ Θ} be a statistical model with parameter space Θ ⊆ Rd. Given i.i.d. samples 
X1, . . . , Xn from an unknown distribution Pθ, we are interested in testing 

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ \ Θ0 (1.1) 

for a subset Θ0 ⊆ Θ. In this paper, we consider the situation where the null hypothesis Θ0 is defined 
by constraints, that is, 

Θ0 = {θ ∈ Θ : fj(θ) ≤ 0 for all j = 1, . . . , p}, (1.2) 

where each constraint fj is a function fj : Rd → R. The description of the null hypothesis also allows 
for equality constraints since fj(θ) = 0 can be equivalently described by fj(θ) ≤ 0 and −fj(θ) ≤ 0. 
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These types of hypotheses are an important and general class and appear in a variety of statistical 
problems. Our work is in particular motivated by polynomial hypotheses where each fj belongs to 
the ring R[θ1, . . . , θd] of polynomials in the indeterminates θ1, . . . , θd with real coefficients. 
Examples of polynomial hypotheses feature in graphical modelling (Chen et al., 2017, 2014;  
Shiers et al., 2016; Sullivant et al., 2010), testing causal effects (Pearl, 2009; Spirtes et al., 
2000; Steyer, 2005; Strieder et al., 2021), testing sub-determinants, tetrads, pentads and more 
in factor analysis models (Bollen & Ting, 2000; Drton et al., 2008, 2007; Drton & Xiao, 2016;  
Dufour et al., 2013; Gaffke et al., 2002; Leung & Drton, 2018; Silva et al., 2006), and in 
constraint-based causal discovery algorithms (Claassen & Heskes, 2012; Pearl & Verma, 1995;  
Spirtes et al., 2000). 

The standard method for dealing with testing problems like equation (1.1) is the likelihood ratio 
(LR) test. However, a likelihood function may be multi-modal and difficult to maximize. If the LR 
test is not suitable, then one might instead make use of the implicit characterization of Θ0 given by 
equation (1.2). In Wald-type tests, for example, the strategy is to form estimates of the involved 
functions f1, . . . , fp and aggregate them in a test statistic. Standard Wald tests require the number 
of restrictions p to be smaller than or equal to the dimension d. However, in many of the above 
examples, this might not be the case. 

Another challenge for the classical LR and Wald test is that the null hypothesis Θ0 may contain 
irregular points. For example, when the hypothesis is polynomial, it may contain singularities; a 
rigorous definition of singularities can be found in Drton (2009, Section 4.1) or Cox et al. 
(2015, Section 9). At singularities the rank of the Jacobian of the constraints being tested drops 
and the asymptotic behaviour of the LR test and the Wald-type test can be different than at regular 
points, resulting in an (also asymptotically) invalid test (Drton, 2009; Drton & Xiao, 2016;  
Dufour et al., 2013; Gaffke et al., 2002, 1999). In practice, it is unknown whether the true param-
eter θ is an irregular point, and it is therefore desirable to construct a test statistic for which one can 
give asymptotic approximations that accommodate and remain valid in irregular settings. 

In this work, we propose a testing strategy that aims to cover set-ups where the number of re-
strictions p can be much larger than the sample size n and where the true parameter may be an 
irregular point. A precise definition of regular and irregular points is given later. Our method in-
corporates estimating the constraints f1, . . . , fp by an incomplete U-statistic. By first considering 
the commonly used complete U-statistic, we now give intuition for how this allows for high dimen-
sionality and irregular points. Complete U-statistics provide an efficient method for unbiased es-
timation of f := (f1, . . . , fp). We assume that f (θ) is (U-)estimable, i.e. for some integer m there 
exists a Rp-valued measurable symmetric function h(x1, . . . , xm) such that 

Eθ[h(X1, . . . , Xm)] = f (θ) for all θ ∈ Θ, 

when X1, . . . , Xm are i.i.d. with distribution Pθ. The U-statistic with kernel h is the average of 
h(Xi1 , . . . , Xim ) over all distinct m-tuples (i1, . . . , im) from {1, . . . , n}, in formulas 

Un = 1
|In,m|



(i1,...,im)∈In,m

h(Xi1 , . . . , Xim ), (1.3) 

where In,m = {(i1, . . . , im) : 1 ≤ i1 < . . . < im ≤ n}. Due to the form of the null hypothesis Θ0, it is 
natural to define the test statistic as the maximum of the studentized U-statistic, i.e. 

max
1≤j≤p

��
n
√

Un,j/σ̂ j (1.4) 

and reject H0 for ‘large’ values of it. Here, Un,j refers to the jth coordinate of Un for all j = 1, . . . , p 
and σ̂2

j is a ‘good’ estimator of the asymptotic variance of Un,j. 

Example 1.1 As a leading example we consider testing of so-called ‘tetrad constraints’, a 
problem of particular relevance in factor analysis (Bollen & Ting, 2000;  
Drton & Xiao, 2016; Hipp & Bollen, 2003; Leung et al., 2016;   
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Spirtes et al., 2000) that can be traced back to Spearman (1904) and Wishart 
(1928). For a given symmetric matrix Σ = (σuv), a tetrad is an off-diagonal 
2 × 2 sub-determinant. An example is fj(Σ) = σuvσwz − σuzσvw with four dif-
ferent indices u, v, w, z. If an l-dimensional normal distribution Nl(0, Σ) fol-
lows a one-factor analysis model, where it is assumed that all variables are 
independent conditioned on one hidden factor, then all tetrads that can be 
formed from the covariance matrix Σ vanish. Thus, for given i.i.d. samples 
X1, . . . , Xn ∼ Nl(0, Σ), one might be interested in testing whether all tetrads 
vanish simultaneously. It is easy to see that a tetrad fj(Σ) = σuvσwz − σuzσvw is 
estimable by the kernel 

hj(X1, X2) = 1
2

{(X1uX1vX2wX2z − X1uX1zX2vX2w)

+ (X2uX2vX1wX1z − X2uX2zX1vX1w)}.

Interestingly, the resulting U-statistic corresponds to the ‘plug-in’ estimate, 
i.e. Un,j = n

n−1 fj(S), where S = 1
n

n
i=1 XiX⊤

i is the sample covariance. The 
plug-in estimate is considered in previous work on testing tetrads; see for ex-
ample Shiers et al. (2016). 

Critical values for the test statistic (1.4) can be derived by bootstrap methods that approximate 
the sampling distribution of Un. Crucial to the validity of the bootstrap is the approximation by a 
Gaussian distribution. Recent progress in high-dimensional central limit theory yields valid 
Gaussian approximation of U-statistics in settings where p ≫ n is allowed. In particular, Chen 
(2018) and Chen and Kato (2020) derive finite-sample Berry–Esseen-type bounds on the 
Gaussian approximation in a two-step procedure: In the first step, the centred U-statistic is ap-
proximated by the linear component in the Hoeffding decomposition (a.k.a. the Hájek projection) 

m
n

n

i=1

(g(Xi) − f (θ)), (1.5) 

where g(x) = Eθ[h(x, X2, . . . , Xm)] and the expectation is taken with respect to the unknown dis-
tribution Pθ. In the second step, the linear term (1.5) is further approximated by a Gaussian random 
vector using the ‘classical’ central limit theorem for high-dimensional independent sums 
(Chernozhukov et al., 2013, 2017a). Crucially, this procedure assumes that the U-statistic is non- 
degenerate, that is, the individual variances σ2

g,θ,j = Varθ[gj(X1)] of the linear component do not 
vanish. Hence, the Berry–Esseen-type bound on the approximation relies on the standard assump-
tion that the minimum σg,θ = min1≤j≤p σ2

g,θ,j is bounded away from zero. However, the minimum σg,θ 
depends on the unknown parameter θ, and there may be certain points in Θ0 where we have σg,θ = 0. 

Definition 1.2 We say that a point θ ∈ Θ is regular with respect to the kernel h if 
σg,θ = min1≤j≤p σ2

g,θ,j > 0. Otherwise, we say that θ is an irregular point. 

If θ is an irregular point, then the Gaussian approximation of the U-statistic is not valid any 
more. This is illustrated in Example 1.3. Even if the parameter θ is only ‘close’ to an irregular point, 
the minimum σg,θ can be very small. In this case, a very large sample size may be required for the 
Gaussian limiting distribution to provide a good approximation of the U-statistic since conver-
gence is not uniform and the rate depends on the minimum σg,θ. 

Example 1.3 Recall the kernel hj of the tetrad fj(Σ) = σuvσwz − σuzσvw from Example 1.1. 
The corresponding random variable gj(X1) in the Hájek projection (1.5) is 
given by 

gj(X1) = 1
2

(X1uX1vσwz − X1uX1zσvw) + (σuvX1wX1z − σuzX1vX1w)
 

. (1.6)  
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By inspecting equation (1.6), we see that gj(X1) is degenerate if σwz = σvw = 
σuv = σuz = 0 and, in general, non-degenerate if at least one of the covarian-
ces is non-zero. Thus, the covariance matrices Σ = (σuv) in the one-factor 
analysis model that have σwz = σvw = σuv = σuz = 0 correspond to irregular 
points. Moreover, when the covariance matrix is only close to irregular, 
then the variance σ2

g,θ,j might already be very small. 

To accommodate irregularity, we propose to use randomized incomplete U-statistics instead of 
the usual, complete U-statistic from equation (1.3). That is, for a computational budget parameter 
N ≤ |In,m|, we randomly choose on average N indices from In,m. Then the incomplete U-statistic is 
defined as the sample average of h(Xi1 , . . . , Xim ) taken only over the subset of chosen indices. The 
test statistic is then formed as in equation (1.4) by replacing Un with the incomplete counterpart. 

The main theoretical contribution of this work is to show that the high-dimensional Gaussian 
approximation of incomplete U-statistics remains valid under mixed degeneracy, that is, for each 
index j, the variance of the Hájek projection σ2

g,θ,j is allowed to take more or less arbitrary values, 
including zero. Therefore, our result covers testing hypotheses as in equation (1.2) when the under-
lying true parameter may be irregular or close to irregular. The setting of mixed degeneracy con-
stitutes a further development of prior results in the literature which prove validity of the Gaussian 
approximation of incomplete U-statistics in either the fully non-degenerate case or the fully degen-
erate case (Chen & Kato, 2019; Song et al., 2019). That is, either all variances σ2

g,θ,j are bounded 
away from zero or all of them are equal to zero. Our result is intermediate since we allow a differ-
ent status of degeneracy for each index j. The crucial fact we exploit is that the asymptotic variance 
in the Gaussian approximation of the incomplete U-statistic is a weighted sum of the variance of 
the Hájek projection and the variance of the kernel itself. Hence, vanishing of the variance of the 
Hájek projection need not cause degeneracy of the asymptotic distribution. Indeed, the approxi-
mation is valid when we choose the computational budget parameter appropriately, typically of 
the same order as the sample size, i.e. N =O(n). 

To derive critical values of our test statistic, we further approximate the limiting Gaussian dis-
tribution via a data-dependent Gaussian multiplier bootstrap as proposed in Chen and Kato 
(2019). We show that when choosing N appropriately, the bootstrap approximation remains 
trustworthy under mixed degeneracy and yields asymptotically valid critical values. The bootstrap 
is computationally feasible even for a large number of constraints p, as incomplete U-statistics also 
offer computational advantages over complete U-statistics. The computation of the complete 
U-statistic (1.3) requires O(nmp) operations, which can be challenging for m ≥ 3, while the incom-
plete U-statistic only requires O(Np) operations. We would like to highlight that these computa-
tional advantages were the main motivation for consideration of incomplete U-statistics in prior 
literature; in contrast, our work raises statistical advantages. 

Example 1.4 Figure 1 shows histograms of simulated p-values for testing a large number of 
tetrad constraints in the one-factor analysis model when the true parameter ma-
trix is close to an irregular point. In addition to our proposed strategy of using 
incomplete U-statistics, we include two other strategies: one that is based on 
complete U-statistics and another based on the LR test. The method using in-
complete U-statistics yields p-values that are only slightly conservative (nearing 
a uniform distribution), while the other two methods fail drastically. 

Our strategy can be applied for general hypotheses (1.2) as long as the functions fj(θ) are estim-
able using a kernel function h. This is an advancement of Leung and Drton (2018), where only tet-
rads are considered. Leung and Drton (2018) also used a kernel function to estimate the tetrads, but 
the test statistic is an m-dependent average over the kernels instead of an incomplete U-statistic. The 
randomized incomplete U-statistic proposed in this work is much more flexible, supports broad ap-
plication, and yields better results in simulations. Moreover, we show useful theoretical guarantees 
of incomplete U-statistics that yield an asymptotically valid test even at irregularities. 

Remark 1.5 (Non-parametric set-ups). The setting we consider is formulated as pertain-
ing to a parametric model with d-dimensional parameter space. However,  
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our testing methodology applies without change to settings where we test 
constraints on a d-dimensional parameter θ(P) of the distributions in a non- 
parametric model. For example, one could consider testing tetrad constraints 
in covariance matrices of non-Gaussian distributions. 

Remark 1.6 (Comparison to literature on shape restrictions). It is natural to compare our 
work to recent progress in the literature on shape restrictions that also con-
siders testing equality and inequality constraints; see Chetverikov et al. 
(2018) for a review. In this line of work, the restricted parameter space Θ0 ⊆ 
Θ is usually considered to be infinite dimensional, so that more general pa-
rameters such as entire function classes are covered. On the other hand, to 
the best of our knowledge, the methods do not explicitly focus on set-ups 
with a large amount of constrains and possibly irregular points. For example, 
in Chernozhukov et al. (2023b), the authors consider a test statistic that min-
imizes a generalized method of moments objective function over the re-
stricted and the whole parameter space and compares the difference. It is 
the main goal to study the behaviour of the test statistic in regions near the 
boundary of the restricted parameter space Θ0. The different focus is reflected 
in the conditions the authors of Chernozhukov et al. (2023b) assume for their 
theoretical analysis. In particular, they assume that the Jacobian matrix of 
the equality constraints has full row rank in a neighbourhood of the true par-
ameter. This implies that the maximal number of equality constraints is 
smaller than the dimension of the parameter space and that algebraic singu-
larities are excluded since the Jacobian is not allowed to drop rank. Thus, the 
conditions do not allow for many equality constraints and irregular points. 
Moreover, the test statistic requires an optimization over the restricted and 
the whole parameter space which requires extra assumptions such as 

Figure 1. Histograms of 5,000 simulated p-values for simultaneously testing 2,730 tetrad constraints implied by the 
one-factor model with l = 15 observed variables. The computational budget parameter for the incomplete U-statistic 
is N = 2n and the true covariance matrix is close to an irregular point; for exact parameter values, see Section 5, 
set-up (b).   
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convexity and compactness and can be difficult to implement in practice. In 
contrast, our method is optimization free and does not require any assump-
tions on the parameter space. 

1.1 Organization of the paper 
In Section 2, we give non-asymptotic Berry–Esseen-type bounds for high-dimensional Gaussian 
and bootstrap approximation of incomplete U-statistics. Importantly, the incomplete U-statistic 
is assumed to be of mixed degeneracy. In Section 3, we propose our testing methodology by for-
mally defining the test statistic and showing how to derive critical values. Our results on incom-
plete U-statistics yield that the test is asymptotically valid and consistent even in irregular 
settings. In Section 4, we show that our test is applicable to polynomial hypotheses by explaining 
a general method for constructing a kernel h. In Section 5, we then apply our strategy for testing 
the goodness-of-fit of latent tree models of which the one-factor analysis model is a special case. In 
numerical experiments we compare our strategy with the LR test. The online supplementary 
material contains additional material such as all technical proofs (Appendix A, online 
supplementary material), additional lemmas (Appendix B, online supplementary material), prop-
erties of sub-Weibull random variables (Appendix C, online supplementary material), and add-
itional simulation results for Gaussian latent-tree models (Appendix D, online supplementary 
material). Moreover, we provide a second application of our methodology in Appendix E, 
online supplementary material, where we test minors in two-factor analysis models. 

1.2 Notation 
Given β ∈ (0, ∞), we define the function ψβ(x) = exp (xβ) − 1 for x > 0. A real random variable Y is 
said to be sub-Weibull of order β if ‖Y‖ψβ

:= inf {t > 0 : E[ψβ(|Y|/t)] ≤ 1} is finite. We use the usual 
convention that inf {∅} = ∞. For β ≥ 1 we have that ‖Y‖ψβ 

is a norm, while for β ∈ (0, 1) it is only a 
quasi-norm. If ‖Y‖ψ1

< ∞, then Y is called a sub-Exponential random variable and if ‖Y‖ψ2
< ∞, 

then Y is called sub-Gaussian. For a random element Y, let P|Y(·) and E|Y[ · ] denote the condition-
al probability and expectation given Y. We denote a sequence of random variables Yi, . . . , Yi′ by 
Yi′

i for i ≤ i′ and for a tuple of indices ι = (i1, . . . , im) we write Yι = (Yi1 , . . . , Yim ). 
For a, b ∈ R, define a ∨ b = max {a, b} and a ∧ b = min {a, b}. For a, b ∈ Rp, we write a ≤ b if 

aj ≤ bj for all j = 1, . . . , p, and we write [a, b] for the hyper-rectangle 
p

j=1 [aj, bj]. If a ≤ b, 
then the hyper-rectangle [a, b] is non-empty but if there is at least one index j ∈ {1, . . . , p} such 
that aj > bj, then the hyper-rectangle is equal to the empty set. The class of hyper-rectangles in 
Rp is denoted by Rp

re = {
p

j=1 [aj, bj] : aj, bj ∈ R ∪ { − ∞, ∞}}. For a vector a ∈ Rp and r, t ∈ R, 
we write ra + t for the vector in Rp with jth component raj + t. Finally, for a vector a ∈ Rp and 
two integers p1, p2 such that p1 + p2 = p we write a = (a(1), a(2)), where a(1)

j = aj for all j = 
1, . . . , p1 and a(2)

j = ap1+j for all j = 1, . . . , p2. Let ‖A‖∞ = maxi,j |aij| be the element-wise max-
imum norm of a matrix A = (aij). 

2 Incomplete U-statistics under mixed degeneracy 
Suppose we are given i.i.d. samples X1, . . . , Xn from an unknown distribution P in a statistical 
model. For some integer m, let h(x1, . . . , xm) be a fixed Rp-valued measurable function that is sym-
metric in its arguments. In this section, we consider the general case of inference on the mean vec-
tor E[h(X1, . . . , Xm)] = (μ1, . . . , μp)⊤ = μ, where μ is an arbitrary estimable parameter of the 
underlying distribution P. In our set-up, where we want to test hypotheses characterized by con-
straints, the distribution P depends on θ and μ is given by the constraints f (θ) = (f1(θ), . . . , fp(θ)). 

We begin with the formal definition of randomized incomplete U-statistics using similar nota-

tion as in Chen and Kato (2019) and Song et al. (2019). Let N ≤ n
m

 

be a computational budget 

parameter and generate i.i.d. Bernoulli random variables {Zι : ι ∈ In,m} with success probability 

ρn = N
 n

m

 

. Then the incomplete U-statistics based on Bernoulli sampling is defined by 

U′n,N = 1

N̂



ι∈In,m

Zιh(Xι), (2.1)  
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where N̂ =ι∈In,m
Zι is the number of successes. The variable N̂ follows a Binomial distribution 

with parameters (|In,m|, ρn). Therefore, E(N̂) = |In,m|ρn = N, and the incomplete U-statistic is on 
average a sum over N objects. Thus, we may view the computational budget N as a sparsity par-
ameter for the incomplete U-statistic. We denote by σ2

h,j = E[(hj(Xm
1 ) − μj)

2] the variance of the jth 
coordinate of the kernel and by σ2

g,j = E[(gj(X1) − μj)
2] the variance of gj(X1); recall that the Hájek 

projection is given by g(x) = E[h(x, X2, . . . , Xm)]. Note that σ2
h,j and σ2

g,j depend on the underlying 
distribution P as emphasized in the introduction; however, in the rest of the paper, we omit the 
explicit dependence to simplify notation. 

2.1 Gaussian approximation 
We will derive non-asymptotic Gaussian approximation error bounds for the incomplete 
U-statistic U′n,N that allow for mixed degenerate kernels h when choosing the computational budg-
et parameter N appropriately. To state the formal approximation results, we assume 2 ≤ m ≤ ��

n
√

, 
n ≥ 4, p ≥ 3 and ρn = N/|In,m| < 1/2. We start by making assumptions on the moment structure of 
the kernel h before formally introducing mixed degeneracy. Let β ∈ (0, 1] and suppose there exists 
a constant Dn ≥ 1 such that: 

(C1) E[|hj(Xm
1 ) − μj|

2+l] ≤ σ2
h,jD

l
n for all j = 1, . . . , p and l = 1, 2. 

(C2) ‖hj(Xm
1 ) − μj‖ψβ

≤ Dn for all j = 1, . . . , p. 

(C3) There exists σ2
h > 0 such that σ2

h ≤ min1≤j≤p σ2
h,j. 

Assuming conditions similar to (C1)–(C3) is standard in high-dimensional Gaussian approxima-
tion theory. Condition (C2) assumes that the kernel h is sub-Weibull. In prior work on Gaussian 
approximation of high-dimensional U-statistics (Chen, 2018; Chen & Kato, 2019), the authors 
usually consider sub-Exponential kernels with β = 1. However, the kernel we propose in 
Section 4 for testing polynomial hypotheses will typically be sub-Weibull and not 
sub-Exponential, also see Example 4.2. We discuss important properties of sub-Weibull random 
variables in Appendix C, online supplementary material. Note that we allow the bound Dn to de-
pend on the sample size n since, in the high-dimensional setting, the distribution P may depend on 
n. Condition (C1) is of a more technical nature and serves for clear presentation. In principle, it 
would be possible to omit this assumption, but the resulting error bound would be more compli-
cated. Finally, Condition (C3) requires that the minimal variance of the individual kernels hj is 
bounded away from zero, even for large p. Put differently, we only considers kernels hj such 
that hj(Xm

1 ) is not almost surely constant. It remains to make assumptions with respect to the de-
generacy of the Hájek projection, i.e. we formally define mixed degeneracy. 

Definition 2.1 Let p1, p2 ∈ N≥0 such that p1 + p2 = p. We say that the kernel h, or also 
simply the incomplete U-statistic, is mixed degenerate for distribution P 
if the following two conditions are satisfied: 

(C4) There exists σ2
g(1) > 0 such that σ2

g(1) ≤ min1≤j≤p1 σ2
g,j. 

(C5) There exists k > 0 such that ‖gj(X1) − μj‖ψβ
≤ n−kDn for all 

j = p1 + 1, . . . , p. 
In other words, mixed degeneracy of a kernel requires that each index j = 1, . . . , p either satis-

fies condition (C4) or (C5). By rearranging the indices, we then find that the first p1 indices satisfy 
Condition (C4) and the remaining indices satisfy Condition (C5). Note that whether a kernel is 
mixed degenerate or not depends on the underlying distribution P from which the samples 
X1, . . . , Xn are drawn. 

Assuming mixed degenerate kernels is the main difference in comparison to the existing litera-
ture on Gaussian approximation of high-dimensional incomplete U-statistics (Chen & Kato, 
2019; Song et al., 2019). Usually, either the non-degenerate case where p2 = 0 or the fully degen-
erate case where p1 = 0 and σ2

g,j = 0 for all j = 1, . . . , p are treated. In contrast, we allow for a dif-
ferent status of degeneracy of the Hájek projection for each index j. In particular, Condition (C5) 
covers degenerate cases where σ2

g,j = 0 since zero variance implies that ‖gj(X1) − μj‖ψβ
= 0 almost  
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surely. But our assumptions even allow for more flexibility. For example, it may be the case that 
the variance σ2

g,j decreases with the sample size n. In this case, Condition (C5) is an assumption on 
the rate of convergence to degeneracy, i.e. the rate is polynomial in n. 

Remark 2.2 (Discussion on mixed degeneracy). The notion of mixed degeneracy is par-
ticularly interesting for kernels h, where we do not know whether the indi-
vidual components hj are degenerate or non-degenerate, for example when 
the underlying distribution is unknown. If the number of constraints p 
does not grow with the sample size, then mixed degeneracy holds for any dis-
tribution P. Indeed, by letting σ2

g(1) be the minimum of the non-zero variances 

σ2
g,j, we see that Condition (C4) is satisfied. All other indices j have σ2

g,j = 0 
which implies that Condition (C5) is also satisfied. However, we emphasize 
that mixed degeneracy is a more subtle condition if the number of constraints 
p is growing. 

Remark 2.3 (Parametric families and irregular points). In our testing problem (1.1), we 
are considering a parametric family of distributions {Pθ, θ ∈ Θ} but the true 
parameter θ is unknown. In this case, the variances σ2

g,j of the individual 
Hájek projections depend on θ as outlined in the introduction. If the number 
of constraints p does not grow with the sample size, then mixed degeneracy 
holds uniformly over the whole parameter space Θ, as we have seen in 
Remark 2.2. However, the rate of convergence of the incomplete U-statistic 
depends on the minimum σ2

g(1) . If σ2
g(1) is really small, the index corresponding 

to the minimum may already satisfy (C5) for large sample sizes n, so σ2
g(1) can in 

fact be chosen larger. Therefore, mixed degeneracy is also suitable for points 
θ ∈ Θ that are close to irregular, see Corollary 2.7 for a precise statement. 

In principle, it would be possible to extend our results on more general sequences γn converging 
to zero instead of n−k in Condition (C5), but this would result in more involved error bounds. For 
simplicity, we also assume p1, p2 ≥ 3, even though one could specify the bounds for arbitrary p1 

and p2. Our last technical assumption is similar to Condition (C1) and is also necessary for the 
sake of clear presentation: 

(C6) E[|gj(X1) − μj|
2+l] ≤ σ2

g,jD
l
n for all j = 1, . . . , p and l = 1, 2. 

Now, we state our main result that specifies a non-asymptotic error bound on the Gaussian ap-
proximation of incomplete U-statistics. We define αn = n/N, Γh = Cov[h(Xm

1 )] and 
Γg = Cov[g(X1)]. For notational convenience, we further define the quantities 

ωn,1 = m2/βD2
n log (pn)1+6/β

(σ2
g(1) ∧ σ2

h ∧ 1) (n ∧ N)

 1/6

, ωn,2 = N1/2m2Dn log (pn)1/2+2/β

σhnmin {1/2+k, 5/6}
,

ωn,3 = Nm2D2
n log (p)2

(σ2
h ∧ 1)nmin {1+k,m}

 1/3

.

Theorem 2.4 Assume Conditions (C1)–(C6) hold. Then there is a constant Cβ > 0 only 
depending on β such that 

sup
R∈R

p
re

|P(
��
n
√

(U′n,N − μ) ∈ R) − P(Y ∈ R)| ≤ Cβ{ωn,1 + ωn,2 + ωn,3}, 

where Y ∼ Np(0, m2Γg + αnΓh).  
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Theorem 2.4 shows that the distribution of 
��
n
√

(U′n,N − μ) can be approximated by the Gaussian 
distribution Y ∼ Np(0, m2Γg + αnΓh) under mixed degeneracy. Since the computational budget 
parameter N occurs in the numerator of the bound, one has to choose it in proportion to the sam-
ple size such that the bound vanishes. In particular, we note that under the regime N =O(n) the 
bound vanishes when treating other quantities as constants. 

Example 2.5 Let N be of the same order as the sample size. Then αn can be viewed as a 
constant and each coordinate of Y is asymptotically non-degenerate. In 
this case, when we assume k ≥ 1/3 and treat m, σg(1) , σh and Dn as fixed con-
stants, the bound Cβ{ωn,1 + ωn,2 + ωn,3} vanishes asymptotically under 
Conditions (C1)–(C6) if the dimension p satisfies log (pn)3/2+6/β =O(n). 
On the other hand, one can also choose N = n1+ɛ for small enough ɛ>0. 
Then, αn→0 as n→∞ and the distribution of Y may become asymptotically 
degenerate. Nevertheless, the bound still vanishes if we fix all other quan-

tities as before and if the dimension p satisfies log(pn)
3/2+6/β
1/3− ε/2

= O(n).

Remark 2.6 (Order of the kernel). The Berry–Esseen-type bound in Theorem 2.4 de-
pends explicitly on the order of the kernel h. In particular, the result 
also allows for kernels of diverging order, i.e. increasing m. However, lar-
ger m imply worse performance of the Gaussian approximation in terms 
of the required sample size. Also, if m is increasing with n one has to be 
careful in choosing the computational budget N; it has to be chosen small-
er to achieve convergence. 

The proof of Theorem 2.4 relies on the seminal papers of Chernozhukov et al. (2013) and  
Chernozhukov et al. (2017a) on Gaussian approximation of high-dimensional independent 
sums, and it extends the results of Chen and Kato (2019) and Song et al. (2019) on incomplete 
U-statistics to the mixed degenerate case. Obtaining sharper bounds for the high-dimensional ap-
proximation of independent sums than in the original papers is an ongoing area of research, see for 
example Fang and Koike (2021), Chernozhukov et al. (2022), Lopes (2022) and Chernozhukov 
et al. (2023a). 

The bound in Theorem 2.4 is stated as general as possible. Importantly, it entails that the 
incomplete U-statistic can be approximated by Np(0, m2Γg + αnΓh) even in irregular set-ups 
of our testing problem (1.1) as long as σ2

g(1) > 0. However, it might be difficult to read off pre-
cise rates for the speed of convergence in the close to irregular scenarios. For large n, it is 
possible that there are close to irregular points such that some indices j ∈ {1, . . . , p} only sat-
isfy mixed degeneracy if one chooses σ2

g(1) relatively small or k small. On the other hand, 
under further distributional assumptions, we manage to improve the bound in Theorem  
2.4 so that the speed of convergence is completely independent to the irregularity status of 
the hypothesis. 

Corollary 2.7 Assume that X1, . . . , Xn are i.i.d. samples of a Gaussian distribution and 
assume that each individual kernel h1, . . . , hp is a non-constant polyno-
mial of degree at most 2s. Suppose that μ = E[h(Xm

1 )] = 0 and that there ex-
ists σ2

h > 0 such that σ2
h ≤ min1≤j≤p σ2

h,j. Then there exist β ∈ (0, 1] and 
Dn ≥ 1 such that (C1), (C2) and (C6) are satisfied and the kernel h is mixed 
degenerate. If, additionally, n ≤ N ≤ Cn for some constant C > 0, then it 
holds that 

sup
R∈R

p
re

|P(
��
n
√

U′n,N ∈ R) − P(Y ∈ R)| ≤ Cs,m
(σ2

h ∨ 1) log (pn)1/2+2s

(σ2
h ∧ 1)n1/9

, 

where Y ∼ Np(0, m2Γg + αnΓh), σ2
h = max1≤j≤p σ2

h,j and Cs,m > 0 is a con-
stant only depending on s and m.  
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In the bound in Corollary 2.7, there is no σ2
g(1) and no k showing up anymore, so the convergent 

speed shows no dependence on how close to irregular the points in the null hypothesis really are. 
Even though the bound might not be optimal, it completely mathematizes our intuition why in-
complete U-statistics are a good choice for a test statistic to guard against irregular points. 

Example 2.8 Each coordinate hj of the proposed kernel in Example 1.1 is a polynomial of 
degree 4 in Gaussian variables, which implies that Corollary 2.7 is applicable 
with s = 2. See Section 4 for a general method to construct polynomial kernels. 

2.2 Bootstrap approximation 
Since the covariance matrix m2Γg + αnΓh of the approximating Gaussian distribution in Theorem  
2.4 is typically unknown in statistical applications, we apply a Gaussian multiplier bootstrap. The 
procedure is exactly the same as in Chen and Kato (2019) and Song et al. (2019) but their error 
bounds on the approximation require non-degeneracy, that is, there is a constant c > 0 such 
that min1≤j≤p σ2

g,j ≥ c. Under mixed degeneracy, this is no longer the case. However, when choosing 
the computational budget appropriately, we prove that the bootstrap approximation still holds. 

The bootstrap is based on the fact that the random vector Y ∼ Np(0, m2Γg + αnΓh) is a weighted 
sum of the two independent random vectors Yg ∼ Np(0, Γg) and Yh ∼ Np(0, Γh), i.e. 
Y = mYg + ���αn

√
Yh. Let Dn = {X1, . . . , Xn} ∪ {Zι : ι ∈ In,m} be the data involved in the definition 

of the incomplete U-statistic U′n,N. We will construct data-dependent random vectors U#
n1,g and 

U#
n,h such that, given the data Dn, both vectors are independent and approximate Yg and Yh. 
To approximate the distribution of Yh take a collection {ξ′ι : ι ∈ In,m} of independent N(0, 1) ran-

dom variables that are also independent of Dn. Define the multiplier bootstrap 

U#
n,h = 1

���
N




ι∈In,m

ξ′ι
���
Zι


(h(Xι) − U′n,N) (2.2) 

and observe that, conditioned on the data Dn, the distribution of U#
n,h is Gaussian with mean zero 

and covariance matrix N−1
ι∈In,m

Zι(h(Xι) − U′n,N)(h(Xι) − U′n,N)⊤. Intuitively, this covariance 
matrix should be a good estimator of the true covariance matrix Γh and therefore the distribution 
of U#

n,h should be ‘close’ to the distribution of Yh. 
Approximating Yg ∼ Np(0, Γg) is more involved since the Hájek projection (1.5) is in general 

unknown. Thus, we first construct estimates Gi1 of g(Xi1 ) for each i1 in a chosen subset S1 ⊆ 
{1, . . . , n} with cardinality n1 = |S1|. Then, we consider the multiplier bootstrap distribution 

U#
n1,g = 1

���
n1
√



i1∈S1

ξi1 (Gi1 − G), (2.3) 

where {ξi1 : i1 ∈ S1} is a collection of independent N(0, 1) random variables that is independent of 
Dn and {ξ′ι : ι ∈ In,m}. Here, G = n−1

i1


i1∈S1

Gi1 denotes the average of the constructed estimates. 
The exact form of the estimates Gi1 is specified later. Similar as above, the distribution of U#

n1,g giv-
en the data Dn should be ‘close’ to the distribution of Yg. Combining U#

n,h and U#
n1,g, we obtain the 

multiplier bootstrap U#
n,n1

= mU#
n1,g + ���αn

√
U#

n,h. It approximates the distribution of Y even under 

mixed degeneracy, as we verify in our next Lemma. The approximation of U#
n,n1 

will depend on 
the quality of the estimator Gi1 that we measure by the quantity 

Δg,1 = max
1≤j≤p

1
n1



i1∈S1

(Gi1,j − gj(Xi1 ))2. (2.4) 

Moreover, the approximation depends on conditions involving the quantity 

An := An(σh, m, β, N) = mmax {2/β,4}

σ4
h ∧ 1

max { N/n
( 2, 1},  
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which is required to be small. In particular, if m does not grow with n and the computational budg-
et N is chosen appropriately, then Assumption (C3) ensures that An does not inflate. 

Lemma 2.9 Assume the Conditions (C1)–(C3) hold. If 

AnD4
n log (pn)3+4/β

n1 ∧ N
≤ C1n−ζ1 (2.5) 

and 

P AnD2
n
Δg,1 log (p)4 > C1n−ζ2

 
≤ C1

n
(2.6) 

for some constants C1 > 0 and ζ1, ζ2 ∈ (0, 1), then there exists a constant C > 
0 depending only on β, ζ1 and C1 such that with probability at least 1 − C/n, 

sup
R∈R

p
re

P|Dn
(U#

n,n1
∈ R) − P(Y ∈ R)







 ≤ Cn−(ζ1∧ζ2)/6.

Note that Lemma 2.9 formally does not require mixed degeneracy, that is, it is completely in-
dependent of the status of degeneracy of the kernel. Now, we specify Gi1 to be a special case of 
the divide-and-conquer estimator ĝi1 from Chen and Kato (2019) and Song et al. (2019) that is 
defined as follows. For each index i1 ∈ S1, we partition the remaining indices, {1, . . . , n} \ {i1}, 
into disjoint subsets {S(i1)

2,k, k = 1, . . . , K}, each of size m − 1, where K = ⌊(n − 1)/(m − 1)⌋. Then, 
we define for each i1 ∈ S1 the estimator 

ĝi1 = 1
K

K

k=1

h(Xi1 , X
S

(i1)
2,k

). (2.7) 

Thus, from now on, we again refer by U#
n1,g to the statistics defined in equation (2.3) but with the 

specialized estimator Gi1 = ĝi1 as defined in equation (2.7). The next theorem builds on Lemma 2.9 
and verifies that the bootstrap approximation is valid for this specialized estimator. 

Theorem 2.10 Assume the Conditions (C1)–(C3) hold and 

AnD4
n log (pn)3+4/β

n1 ∧ N
≤ C1n−ζ (2.8) 

for some constants C1 > 0, ζ ∈ (0, 1). Then, for any ν ∈ 
( max {7/6, 1/ζ}, ∞), there exists a constant C > 0 depending only on β, 
ν, ζ and C1 such that with probability at least 1 − C/n, 

sup
R∈R

p
re

P|Dn
(U#

n,n1
∈ R) − P(Y ∈ R)







 ≤ Cn−(ζ−1/ν)/6.

Theorem 2.10 says that we can approximate the asymptotic Gaussian distribution on the hyper- 
rectangles via the multiplier bootstrap U#

n,n1
= mU#

n1,g + ���αn
√

U#
n,h. As long as the computational 

budget N is chosen appropriately, for example N =O(n), this holds independently of the status 
of degeneracy since we do not require Conditions (C4)–(C6). Crucially, we are able to simulate 
the distribution of U#

n,n1 
given the data by generating independent N(0, 1) random variables. 

The complexity of the bootstrap procedure, and therefore the complexity of our testing  
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methodology, is discussed in Remark 3.2. In a corollary, we combine the Gaussian approximation 
with the bootstrap approximation. 

Corollary 2.11 Assume the Conditions (C1)–(C6) hold. Further assume that for 
some constants C1 > 0, ζ ∈ (0, 1), Condition (2.8) holds and 
ωn,1 + ωn,2 + ωn,3 ≤ C1n−ζ/7. Then there exists a constant C > 0 depend-
ing only on β, ζ and C1 such that with probability at least 1 − C/n, 

sup
R∈R

p
re

P(
��
n
√

(U′n,N − μ) ∈ R) − P|Dn
(U#

n,n1
∈ R)







 ≤ Cn−ζ/7.

Proof. This follows from Theorems 2.4 and 2.10 with ν = 7/ζ .                                  □ 

2.3 Studentization 
Often, the approximate variances of the coordinates of U′n,N are heterogeneous, and it is therefore 
desirable to studentize the incomplete U-statistic. For j = 1, . . . , p, we denote by σ2

j = m2σ2
g,j + 

αnσ2
h,j the variance of the jth coordinate of the approximating Gaussian random vector Y, that 

is, σ2
j is equal to the diagonal element m2Γg,jj + αnΓh,jj of the approximating covariance matrix. 

In line with this, we define the empirical variances σ̂2
j = m2σ̂2

g,j + αnσ̂2
h,j to be the diagonal elements 

of the conditional covariance matrix of the bootstrap distribution U#
n,n1 

given the data. Therefore, 
σ̂2

g,j and σ̂2
h,j are given by 

σ̂2
g,j = 1

n1



i1∈S1

(ĝi1,j − gj)
2 and σ̂2

h,j = 1
N



ι∈In,m

Zι(hj(Xι) − U′n,N,j)
2.

Moreover, we define a p × p diagonal matrix Λ with diagonal elements Λ jj = m2σ̂2
g,j + αnσ̂2

h,j for all 
j = 1, . . . , p. 

Corollary 2.12 Assume the conditions in Corollary 2.11. Then there exists a constant C > 
0 depending only on β, ζ and C1 such that with probability at least 
1 − C/n, 

sup
R∈R

p
re

P(
��
n
√

Λ−1/2(U′n,N − μ) ∈ R) − P|Dn
(Λ−1/2U#

n,n1
∈ R)







 ≤ Cn−ζ/7.

Corollary 2.12 allows us to construct a test for hypotheses of the form (1.2) that asymptotically 
controls type I error and has power against alternatives outside a small neighbourhood of the null 
hypothesis. 

3 Testing methodology 
In this section, we propose our test based on incomplete U-statistics. Recall that X1, . . . , Xn are 
i.i.d. samples from a distribution Pθ with parameter θ ∈ Θ ⊆ Rd. 

3.1 Test statistic 
We want to test null hypotheses Θ0 ⊆ Θ defined by constraints f (θ) = (f1(θ), . . . , fp(θ)) as specified 
in equation (1.2). For now, we assume that an Rp-valued, measurable and symmetric function 
h(x1, . . . , xm) exists such that E[h(Xm

1 )] = f (θ). For the case of polynomial hypotheses we show 
a general construction of kernels in Section 4. We define the test statistic T to be the maximum  
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of a studentized incomplete U-statistic, that is, 

T = max
1≤j≤p

��
n
√

U′n,N,j/σ̂j, 

where σ̂2
j is the empirical approximate variance of the jth coordinate of the incomplete U-statistic; 

recall the definition in Section 2.3. Large values of T indicate that the null hypothesis is violated 
and thus it is natural to reject H0 when T exceeds a certain critical value. 
3.2 Critical value 
The idea for construction of a critical value relies on the observation 

T ≤ max
1≤j≤p

��
n
√

(U′n,N,j − fj(θ))/σ̂j, (3.1) 

whenever θ is a point in the null hypothesis Θ0. Hence, to make the test size less or equal than α, it is 
enough to choose the critical value as the (1 − α)-quantile of the distribution of 
max1≤j≤p

��
n
√

(U′n,N,j − fj(θ))/σ̂j, which is a centred version of our test statistic T . Since the distribu-
tion of max1≤j≤p

��
n
√

(U′n,N,j − fj(θ))/σ̂j is unknown, we approximate it using the Gaussian multiplier 
bootstrap introduced in Section 2. The distribution function P( max1≤j≤p

��
n
√

(U′n,N,j − fj(θ))/σ̂j ≤ t) 

for t ∈ R corresponds to the probabilities P(
��
n
√

Λ−1/2(U′n,N − f (θ)) ∈ Rt), where Rt = {x ∈ Rp : − 
∞ ≤ xj ≤ t for all j = 1, . . . , p} are t-dependent hyper-rectangles. Hence, by Corollary 2.12, the 
maximum max1≤j≤p

��
n
√

(U′n,N,j − fj(θ))/σ̂j can be approximated by the maximum of the studentized 

Gaussian multiplier statistic W := max1≤j≤p U#
n,n1,j/σ̂j. In particular, the quantiles of W approxi-

mate the quantiles of max1≤j≤p
��
n
√

(U′n,N,j − fj(θ))/σ̂j as we verify in the next corollary. For α ∈ 
(0, 1) we denote by cW(1 − α) the conditional (1 − α)-quantile of W given the data Dn. 

Corollary 3.1 Assume the conditions in Corollary 2.11. Then there exists a constant C > 0 
depending only on β, ζ and C1 such that 

sup
α∈(0,1)

P max
1≤j≤p

��
n
√

(U′n,N,j − fj(θ))/σ̂j > cW(1 − α)
 

− α








 ≤ Cn−ζ/7.

Corollary 3.1 says that, under mild regularity conditions involving mixed degeneracy, using 
cW(1 − α) as a critical value gives an asymptotically valid test, that is, it asymptotically controls 
type I error for the significance level α. When the null hypothesis is only defined by equality con-
straints fj(θ) = 0, then we have equality in equation (3.1) and Corollary 3.1 implies that our test has 
asymptotic type I error exactly equal to the chosen level α. When we have fj(θ) < 0 for certain in-
dices j = 1, . . . , p, then the type I error is smaller or equal to the chosen level. As discussed in 
Remark 2.3, mixed degeneracy also accommodates irregular settings. The computational budget 
parameter has to be chosen appropriately such that the conditions in Corollary 2.11 are satisfied, 
typically N =O(n) is a good choice as we elaborate in Remark 3.3. In practice, we use the empirical 
version of cW(1 − α) as a critical value. It is obtained in the following procedure:  

(i) Generate many, say A = 1,000, sets of standard normal random variables 
{ξ′ι : ι ∈ In,m} ∪ {ξi1 : i1 ∈ S1}.  

(ii) Evaluate W for each of these A sets.  
(iii) Take ĉW(1 − α) to be the (1 − α)-quantile of the resulting A numbers.  
(iv) Reject H0 if T > ĉW(1 − α).  

Remark 3.2 (Practical considerations and complexity). There is no need to generate 
|In,m| ≈ nm Bernoulli random variables to construct the incomplete 
U-statistic U′n,N, nor to generate the same amount of standard normal ran-
dom variables ξ′ι. As explained in Chen and Kato (2019, Section 2.1), one  
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can equivalently generate N̂ ∼ Bin(|In,m|, ρn) once and then choose indices 
ι1, . . . , ιN 

without replacement from In,m. Then we can compute the incom-
plete U-statistic as 

U′n,N = 1

N̂

N̂

i=1

h(Xιi ).

Similarly, one only needs to generate N versions of ξ′ι to construct U#
n,h. As 

another practical guidance, we suggest to compute n1 = |S1| = n 
divide-and-conquer estimators. Choosing n1 smaller only decreases the ac-
curacy of the bootstrap, which is only useful if the computational cost is 
otherwise too high. With n1 = n, the overall computational cost of the pro-
posed procedure is O(n2p + A(N + n)p) as the estimation step for g can be 
done outside the bootstrap. 

Remark 3.3 (Computational budget parameter N). If one is certain that the underlying 
parameter θ is regular and all random variables gj(X1), j = 1, . . . , p are 
asymptotically non-degenerate, then it may be appealing to choose the com-

putational budget 0 < N < n
m

 

arbitrarily since the bootstrap approxima-

tion still holds as shown in Chen and Kato (2019, Theorem 3.1) and further 
refined in Song et al. (2019, Theorem 2.4). However, the rate of convergence 
depends on σ2

g,θ = min1≤j≤p σ2
g,θ,j as outlined in the introduction. Thus, if θ is 

close to an irregular point, where σ2
g,θ is small, the rate of convergence can be 

very slow. In contrast, a lower computational budget parameter N may im-
ply convergence with a reasonable rate, even when the parameter θ is close to 
irregular. If mixed degeneracy is satisfied, the rate of convergence only de-
pends on σ2

g(1) , which is a fixed constant large enough to achieve fast conver-
gence; recall Remark 2.3 and Corollary 2.7. 

On the other hand, consider an underlying parameter θ such that all var-
iances σ2

g,θ,j of the Hájek projection are zero, which in particular means that 
θ is an irregular point. Then, the incomplete U-statistic is fully degenerate 
and a bootstrap approximation also holds true for larger N (Chen & 
Kato, 2019, Theorem 3.3). However, the limiting Gaussian distribution be-
comes Np(0, Γh) under a suitable scaling of the incomplete U-statistic. 
Choosing the computational budget N lower allows for computing the 
bootstrap based on the Gaussian approximation Np(0, m2Γg + αnΓh), re-
gardless of any potential degeneracy. In particular, we can compute valid 
critical values without knowing a priori whether or not a point is irregular. 
Moreover, the degenerate approximation to Np(0, Γh) only holds if all var-
iances σ2

g,θ,j are zero and not for more general irregular points where only 
some of them are zero. 

To summarize, our approximation results of Section 2 are very useful if it 
is unknown whether or not the true point is irregular or close to irregular. 
Mixed degeneracy allows for such set-ups when choosing the computational 
budget N appropriately. In particular, we recommend to choose the compu-
tational budget parameter N of the same order as the sample size n to guard 
against irregularities. However, this still allows some flexibility in practice. 
In Section 5, we compare test size and power for different choices of N in 
numerical experiments. 

Remark 3.4 (High dimensionality). We emphasize that bootstrap approximation holds 
in settings where the number of polynomials p may be much larger than 
the sample size n, i.e. p may be as large as exp (nc) for a constant c > 0.  
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Thus, we can test a very large number of polynomial restrictions simultan-
eously. Moreover, we do not require any restriction on the correlation struc-
ture among the polynomials. 

3.3 Power 
The following result pertains to the power of the proposed test. 

Proposition 3.5 Assume the conditions in Corollary 2.11, and let α ∈ (0, 1/2). Then there 
exists a constant C > 0 depending only on β, ζ and C1 such that for every 
ϵ > 0, whenever 

max
1≤j≤p

(fj(θ)/σj) ≥ (1 + ε) 1 + Cn−3ζ/7 log (p)−2
 

×
����������
2 log (p)

 + ������������
2 log (1/α)



��
n
√ , (3.2) 

we have 

P(T > cW(1 − α)) ≥ 1 − exp − 1
C

ε2 log (p/α)
 

− Cn−ζ/7.

Proposition 3.5 shows that our test is consistent against all alternatives where at least one con-
straint, normalized by its approximate variance, is violated by a small amount. In other words, the 
test is consistent against all alternatives excluding the ones in a small neighbourhood of the null set 
Θ0. The size of the neighbourhood shrinks with rate 

�����������
log (p)/n


as long as p→∞ as n→∞. A 

similar result on power is derived in Chernozhukov et al. (2019) for the special case on independ-
ent sums, and we refer to their discussion on the rate the neighbourhood converges to zero. 

4 Polynomial hypotheses 
In this section, we assume that the constraints defining the null hypothesis Θ0 in equation (1.2) are 
polynomial. That is, each constraint fj ∈ R[θ1, . . . , θd] is a polynomial in the indeterminates 
θ1, . . . , θd. We propose a general procedure to find a kernel h such that hj(Xm

1 ) is an unbiased es-
timator of fj(θ). For now, let f ∈ R[θ1, . . . , θd] be a single polynomial of total degree s and write 

f (θ) = a0 +
s

r=1



(i1,...,ir )
il∈{1,...,d}

a(i1,...,ir)θi1 · · · θir 

with a(i1,...,ir) ∈ R for all multi-indices (i1, . . . , ir). Note that this notation of multivariate polyno-
mials is somewhat inefficient in comparison to the usual multi-index notation since there may ap-
pear various indices repeatedly in (i1, . . . , ir). However, the representation is useful to define an 
estimator of the polynomial. We construct h(Xm

1 ) by the following three steps:  

1. For a fixed integer η ≥ 1, find R-valued functions θi such that θi(X
η
1) is an unbiased estimator 

of θi for all i = 1, . . . , d.  
2. Let m = ηs be the order of the kernel, and define the R-valued function h̆ via 

xm
1 7! a0 +

s

r=1



(i1,...,ir )
il∈{1,...,d}

a(i1,...,ir)
θi1 (xη

1)θi2 (x2η
η+1) · · ·θir (x

rη
(r−1)η+1), 

where xl
k = (xk, . . . , xl) for k < l. Note that h̆(Xm

1 ) is an unbiased estimator of f (θ) by the lin-
earity of the expectation and the independence of the samples X1, . . . , Xm.  
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3. To get a symmetric kernel h, average over all permutations π ∈ Sm of the set {1, . . . , m}, that is, 

h(x1, . . . , xm) = 1
m!



π∈Sm

h̆(xπ(1), . . . , xπ(m)).

The construction works for any polynomial as long as we can construct an unbiased estimator of 
the parameter θ that only involves a small number η of samples. In this case polynomial hypotheses 
are estimable and our proposed testing methodology is applicable. 

Example 4.1 The kernel for estimating the tetrad f (Σ) = σuvσwz − σuzσvw in Example 1.1 is 
also constructed by steps 1) to 3). The total degree of f is s = 2 and to esti-
mate an entry σuv in the covariance matrix Σ we only need η = 1 sample, 
i.e. an unbiased estimator of σuv is given by σuv(X1) = X1uX1v. Thus, the or-
der of the kernel is m = 2 and we obtain 

h̆(X1, X2) = X1uX1vX2wX2z − X1uX1zX2vX2w.

The symmetric kernel is given by 

h(X1, X2) = 1
2

{(X1uX1vX2wX2z − X1uX1zX2vX2w)

+ (X2uX2vX1wX1z − X2uX2zX1vX1w)}.

The bootstrap approximation established in Section 2 requires that the individual estimators 
hj(Xm

1 ) are sub-Weibull of order β > 0 for all j = 1, . . . , p; recall Condition (C2). If one is able 
to check that all estimators θi(X

η
1), i = 1, . . . , d are sub-Weibull of order γ, then we obtain by  

Lemma C.3, online supplementary material that the estimator hj(X1, . . . , Xm) is sub-Weibull of 
order β = γ/s, where s is the total degree of the polynomial fj(θ). For estimating tetrads, this is 
illustrated in the next example. 

Example 4.2 For a Gaussian random vector Xi ∼ Nl(0, Σ), it is easy to check that each 
component Xiu, u = 1, . . . , l is sub-Gaussian with ‖Xiu‖ψ2

≤ ��������
8σuu/3


. 

Therefore, σuv(X1) = X1uX1v is sub-exponential by Lemma C.2, online 
supplementary material and hence the kernel h(X1, X2) for estimating a tet-
rad in Example 4.1 is sub-Weibull of order β = 1/2. 

Recall our testing problem (1.2) where the null hypothesis Θ0 ⊆ Θ is defined by polynomial con-
straints. Suppose we have a kernel h such that every point θ ∈ Θ is regular with respect to h and 
σg,θ = min1≤j≤p σ2

g,θ,j is not too small, that is, every point is far away from irregular. Then it is fa-
vourable to consider critical values based on the Gaussian approximation for non-degenerate in-
complete U-statistics as discussed in Remark 3.3. On the other hand, if all points are irregular with 
every individual Hájek projection being degenerate, then one should consider critical values based 
on the limiting distribution of degenerate incomplete U-statistics. For the proposed kernel, we will 
show in our next result, that parameter spaces typically contain a measure zero subset of irregular 
points. 

Proposition 4.3 Let f ∈ R[θ1, . . . , θd] be a polynomial of total degree s ≥ 2 and define the 
set of indices D(f ) = {j ∈ [d] : θj appears in f }. Further, define θ̂i,l(x) = 
E[θ̂i(X1, . . . , Xl−1, x, Xl+1, . . . , Xη)] for all i = 1, . . . , d and l = 
1, . . . , η and denote the random vector 

θ̂f (X1) = η

l=1

θ̂i,l(X1)

 

i∈D(f )

.
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If the covariance matrix Cov[θ̂f (X1)] is positive definite, then the irregu-

lar points θ ∈ Θ ⊆ Rd with respect to the kernel h form a measure zero set 
with respect to the Lebesgue measure on Rd. 

Proposition 4.3 is a sufficient condition for checking that almost all points in the parameter 
space are regular. By inspecting the proof, we see that the set of irregular points is the zero set 
of a certain non-zero polynomial and thus has Lebesgue measure zero. However, it will typically 
be non-empty. As we emphasized in the introduction, the Gaussian approximation of complete 
U-statistics, or incomplete U-statistics with high computational budget, may already be very 
slow if the true parameter is close to an irregular point. Since the null hypothesis Θ0 can be defined 
by a very large amount of constraints p, the sets of irregular points is the union of irregular points 
given by p sets with Lebesgue measure zero. In other words, there might be many hyper-surfaces 
with irregular points, such that it is likely that the true parameter is close to an irregular point. 
Thus, assuming mixed degeneracy is crucial for considering kernels as constructed above. 

Example 4.4 Consider again a tetrad f (Σ) = σuvσwz − σuzσvw and the corresponding kernel 
h given in Example 4.2. Since σ̂uv(X1) = X1uX1v, we have that 
θ̂f (X1) = (X1uX1v, X1wX1z, X1uX1z, X1vX1w)⊤. For Gaussian X1 ∼ Nl(0, Σ), 
it is easy to see that Cov[θ̂f (X1)] is positive definite since no coordinate of 
θ̂f (X1) is a linear function of the remaining coordinates. It follows by 
Proposition 4.3 that almost all covariance matrices Σ are regular points in 
the parameter space given by the cone of positive definite matrices. 
Covariance matrices with some entries equal to zero correspond to irregular 
points as we have seen in Example 1.3. Thus, all covariance matrices with 
those entries having small absolute values are close to irregular points. 

5 Testing Gaussian latent-tree models 
In this section, we apply our test for assessing the goodness-of-fit of Gaussian latent-tree models. 
These models are of particular relevance in phylogenetics (Semple & Steel, 2003; Zwiernik, 
2016) and the problem of model selection is, for example, considered in Shiers et al. (2016) and  
Leung and Drton (2018); for a survey see Sung (2009) and Junker and Schreiber (2011). Our meth-
odology is applicable since a full semi-algebraic description of the model is known, that is, all poly-
nomial equalities and inequalities that fully describe the distributions corresponding to a given tree 
are known. The constraints include tetrads as well as higher order polynomial constraints. 
However, as we also point out in the introduction, it is challenging to test the large number of con-
straints simultaneously. For example, in Shiers et al. (2016) only small trees and a subset of con-
straints is tested. Typical approaches such as the Wald test can only handle p ≤ n constraints 
and the maximum likelihood function is difficult to optimize. For the latter, we implemented an 
expectation-maximization algorithm, but it is unclear whether it obtains the global maximum; 
see Section 5.2. Moreover, Drton (2009), Dufour et al. (2013), and Drton and Xiao (2016) 
show that irregular points lead to different limiting distributions in Wald and LR tests when testing 
tetrads. Hence, our testing strategy is an approach that targets both challenges in testing Gaussian 
latent-tree models: a large number of constraints and irregular points in the null hypothesis. 

5.1 Model and constraints 
We begin by briefly introducing Gaussian latent-tree models. Let T = (V, E) be an undirected tree 
where V is the set of nodes and E is the set of edges. For L ⊆ V denoting the set of leaves, we assume 
that every inner node in V \ L has minimal degree 3. By Zwiernik (2016, Chapter 8) we have the 
following parametric representation of Gaussian latent-tree models. Let PD(l) be the cone of sym-
metric positive definite l × l matrices. 

Proposition 5.1 The Gaussian latent-tree model of a tree T = (V, E) with leaves L = 
{1, . . . , l} ⊆ V is the family of Gaussian distributions Nl(0, Σ) such  
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that Σ is in the set 

M(T)= Σ= (σuv) ∈PD(l):σuv = ����
ωu
√ ���

ωv
√ 

e∈phT (u,v)

ρe for v ≠u, σvv =ωv

⎧
⎨

⎩

⎫
⎬

⎭
, 

where phT(u, v) denotes the set of edges on the unique path from u to v, 
the vector (ωv)v∈L ∈ Rl>0 contains the variances and (ρe)e∈E is an 
|E|-dimensional vector with |ρe| ∈ (0, 1). 

For details on how this parametrization arises from the paradigm of graphical modelling, see  
Zwiernik (2016) or Drton et al. (2017). We may identify a Gaussian latent tree model with its 
set of covariance matrices M(T) and we will simply refer to M(T) as the model. 

From a geometric point of view, the parameter space, i.e. the set of covariance matrices M(T), is 
fully understood. It is a semi-algebraic set described by polynomial equalities and inequalities in 
the entries of the covariance matrix. To state the polynomial constraints, we need the following 
notation borrowed from Leung and Drton (2018). Recall that in a tree any two nodes are con-
nected by precisely one path. For four distinct leaves {u, v, w, z} ⊆ L, there are three possible par-
titions into two subsets of equal size, namely {u, v}|{w, z}, {u, w}|{v, z}, and {u, z}|{v, w}. These 
three partitions correspond to the three intersection of path pairs 

phT(u, v) ∩ phT(w, z), phT(u, w) ∩ phT(v, z) and phT(u, z) ∩ phT(v, w). (5.1) 

By the structure of a tree, either all of the intersections give an empty set or exactly one is empty 
while the others are not; cf. Leung and Drton (2018). We let Q ⊆ {{u, v, w, z} ⊆ L} be the collec-
tions of subsets of size four such that {u, v, w, z} ∈ Q if exactly one of the intersections is empty. 
Given {u, v, w, z} ∈ Q, we write {u, v}|{w, z} ∈ Q to indicate that {u, v, w, z} belongs to Q and the 
paths phT(u, v) and phT(w, z) have empty intersection. 

Proposition 5.2 (Leung & Drton, 2018). Let Σ = (σuv) ∈ PD(l) be a covariance matrix 
with no zero entries. Then Σ ∈M(T) if and only if Σ satisfies the follow-
ing constraints:  

1. Inequality constraints:  
(a) For any {u, v, w} ⊆ L, −σuvσuwσvw ≤ 0.  
(b) For any {u, v, w} ⊆ L, σ2

uvσ2
vw − σ2

vvσ2
uw ≤ 0, σ2

uwσ2
vw − σ2

wwσ2
uv ≤ 0 

and σ2
uvσ2

uw − σ2
uuσ2

vw ≤ 0.  
(c) For any {u, v}|{w, z} ∈ Q, σ2

uwσ2
vz − σ2

uvσ2
wz ≤ 0.  

2. Equality constraints (tetrads):  
(a) For any {u, v}|{w, z} ∈ Q, σuwσvz − σuzσvw = 0.  
(b) For any {u, v, w, z} ∉ Q, σuzσvw − σuwσvz = σuvσwz − σuwσvz = 0. 

We want to test a Gaussian latent-tree model against the saturated alternative, that is, 

H0 : Σ ∈M(T) vs. H1 : Σ ∈ PD(l) \M(T) 

based on i.i.d. samples X1, . . . , Xn taken from a Gaussian distribution Nl(0, Σ). With our meth-
odology from Sections 3 and 4, we can simultaneously test all constraints defining M(T) given in 

Proposition 5.2. The number of constraints is p = 2
l
4

 

+ 4
l
3

 

which is of order O(l4). Even for 

moderate values of l, say l = 15, this is a large number of constraints since p = 4,550. 

5.2 Simulations 
We have published an implementation of our tests for Gaussian latent-tree models in the R package 
TestGGM, available at https://github.com/NilsSturma/TestGGM. In the implementation we use 
A = 1,000 sets of Gaussian multipliers to compute the critical value ĉW(1 − α). The kernel for  
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estimating the polynomials is constructed as demonstrated in Example 4.1, where we treated the 
special case of tetrads. The package TestGGM also provides a routine for determining the specific 
constraints for a given latent-tree input, i.e. for determining the set Q. For finding a path phT(u, v) 
we use the function shortest_paths in the igraph package (Csardi & Nepusz, 2006). 

We compare our test with the LR test. By Shiers et al. (2016) the dimension of a Gaussian latent- 
tree model is |E| + |L|. Thus, under regularity conditions, the LR test statistic approximates a chi- 

square distribution with 
l + 1

2

 

− (|E| + |L|) degrees of freedom for l ≥ 4 (Van der Vaart, 1998). 

For the one-factor model, the LR test is implemented by the function factanal in the base li-
brary of R (R Core Team, 2020). Note that it employs a Bartlett correction for better asymptotic 
approximation. For general trees the implementation shows some of the challenges of the likeli-
hood ratio test. Optimizing the likelihood function on the subspace M(T) is difficult using the 
common non-convex methods due to the large number of constraints defining the subspace and 
the required positive definiteness of the covariance matrices. Therefore we implement an expect-
ation maximization algorithm which was first proposed by Dempster et al. (1977) and is described 
in Friedman et al. (2002) and Mourad et al. (2013) for the special case of latent-tree models. A 
drawback of this method is that global optimization is not guaranteed. 

In our numerical experiments we consider two different tree structures. One is the star tree, 
where the model is equal to the one-factor analysis model. Second, we consider the binary cater-
pillar tree which is extreme in a sense that it has the longest paths possible between leaves. In  
Figure 2, both structures are illustrated. We fix dimension l = 15, sample size n = 500 and generate 
data from both tree structures in three experimental set-ups:  

(a) Star tree: All edge parameters ρe are equal to 
����
0.5
√

, while we take all variances ωv = 2.  
(b) Star tree: Let h be the unique, unobserved inner node. The parameters for the edges {h, 1} and 

{h, 2} are taken to be 0.998, while all other edge parameters ρe are independently generated 
from N(0, 0.1). The marginal variances are taken to be ωv = 100 for v = 1, 2 and ωv = 1 for 
all other leaves v ∈ L.  

(c) Caterpillar tree: The edge parameters ρe are taken to be 0.998 except for all edges incident to 
four selected inner nodes in V \ L, where the edge parameters are independently generated 
from N(0, 0.1). All variances ωv are taken to be 2. 

Set-up (a) is a regular problem where the LR test is the gold standard. In contrast, set-ups (b) and (c) 
are designed to be irregular problems with small covariances; compare with Example 1.3 in the 
introduction. In set-up (b), parameters are chosen such that the covariance matrix has exactly 
one off-diagonal entry which is far away from zero while all the remaining off-diagonal entries 
are close to zero. In this case, the parameters are also close to an algebraic singularity of the param-
eter space of the star tree (Drton et al., 2007, Proposition 32). The LR test should fail since the LR 
test statistic does not follow a chi-square distribution at singularities (Drton, 2009). Similarly, pa-
rameters in set-up (c) are close to an algebraic singularity since some of the edge parameters are al-
most zero (Drton et al., 2017) and thus we also expect the LR test to fail. Moreover, set-up (c) is 
considered to emphasize that the proposed methodology allows for testing arbitrary Gaussian la-
tent tree models. 

In Figures 3 and 4, we compare empirical test sizes of our test with the LR test for different, fixed 
significance levels α ∈ (0, 1) that we call the ‘nominal level’. In addition, we consider different 

(a) (b)

Figure 2. Graphical representation of (a) the star tree and (b) the binary caterpillar tree. Solid black dots correspond 
to leaves (observed variables).   

J R Stat Soc Series B: Statistical Methodology                                                                                         19 D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/advance-article/doi/10.1093/jrsssb/qkae022/7624096 by Tu M

unchen Klinikum
 R

 D
 ISAR

 - D
o not use user on 26 April 2024



computational budget parameters N to see its influence on the behaviour of our test. To better 
compare test sizes we only consider testing the equality constraints (tetrads) in Proposition 5.2. 
This simplifies our analysis since in this case we can expect that the test size is equal to the level 
α. A statistical test that controls type I error is expected to have empirical test sizes below the 
45 degree line in the plots. The lower the line, the more ‘conservative’ the test is. On the other 
hand, a test does not control type I error if the empirical sizes are above the 45 degree line. In 
this case the true null hypothesis is rejected too often. 

The irregular set-ups (b) and (c) show the advantage of the proposed testing method because the 
empirical test sizes of the LR test do not hold the nominal levels, that is, the empirical sizes are 
above the 45 degree line. In comparison, our testing method holds level for all choices of the com-
putational budget parameter N. However, there is an interesting difference in the behaviour of the 
empirical test sizes between the regular set-up (a) and set-ups (b) and (c) where parameters are 
close to an irregular point. In the regular set-up, a higher computational budget parameter N tends 
to yield empirical sizes closer to the nominal level α while in the irregular set-ups this is the other 
way round. The behaviour coincides with the theoretical guarantees discussed in Section 2 and 
Remark 3.3, suggesting that the bootstrap approximation holds under mixed degeneracy only 
when choosing the computational budget N appropriately, in this case N =O(n). 

Besides size, we also study the empirical power of our test. For Σ ∈M(T), we consider local al-
ternatives 

Σ = Σ + γγ⊤ h
��
n
√ , (5.2) 

where γ = (0, . . . , 0, 1, 1) ∈ Rl is fixed and h > 0 varies. According to Proposition 3.5, our test is 
consistent against alternatives outside of a neighbourhood of size 

�����������
log (p)/n


up to an unknown 

constant. Thus, it is natural to consider alternatives as in equation (5.2) that also depend on the 
sample size through 

��
n
√

. Moreover, all entries of the alternative covariance matrix Σ are equal 
to the entries of Σ except for four entries, which implies that only few constraints in 
Proposition 5.2 are violated. However, since our test statistic is the maximum of an incomplete 
U-statistic, we expect that our test is consistent even for such sparse signals. 

Figure 3. Empirical sizes vs. nominal levels for testing tetrads based on 500 experiments. The computational 
budget parameter N is varied as indicated and empirical sizes of the LR test are also shown. Data are generated from 
set-up (a) with (l, n) = (15, 500).   
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For the regular set-up (a), the values of h are plotted against the empirical power in Figure 5. This 
time we considered all constraints in Proposition 5.2, equalities and inequalities. The power in-
creases with h for all choices of the computational budget N. A higher budget empirically yields 

Figure 4. Empirical sizes vs. nominal levels for testing tetrads based on 500 experiments. The computational 
budget parameter N is varied as indicated and empirical sizes of the LR test are also shown. Data are generated from 
set-ups (b) and (c) with (l, n) = (15, 500).   
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better power which is reasonable due to more precise estimation of the individual polynomials. For 
large computational budgets the power on the local alternatives is comparable to the LR test. 
However, as discussed before, one should be sceptical about the bootstrap approximation for large 
computational budgets N when the underlying true parameter is close to singular. The above ex-
periments suggest that the choice N = 2n is a good trade-off between guarding against irregularities 
and statistical efficiency. A similar plot for the singular set-ups can be found in Appendix D, online 
supplementary material. Moreover, we provide another simulation study in Appendix E, online 
supplementary material, where we apply our methodology to test minors in the two-factor analysis 
model. 

5.3 Application to gene expression data 
In this section, we analyze data from Brawand et al. (2011), where they obtained gene expression 
levels from sequencing of polyadenylated RNA from the cerebellum across different species such 
as gorillas, opossums, or chickens. We focus on data of 20 individuals from different species, 
where we have 5,636 gene expression levels for each individual. Based on the assumption that spe-
cies evolved from a common ancestor, a phylogenetic tree describes the evolutionary history 
among a collection of species (Semple & Steel, 2003). In the work of Brawand et al. (2011), the 
authors reconstruct the phylogenetic tree in Figure 6 by neighbour-joining based on pair-wise 

Figure 6. Mammalian gene expression phylogenies for cerebellum.  

Figure 5. Empirical power for different local alternatives based on 500 experiments. The computational budget 
parameter N is varied as indicated and empirical power of the LR test is also shown. Local alternatives are generated 
as described in the text for set-up (a) with (l, n) = (15, 500) and level α = 0.05.   
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distance matrices. If we log-transform the original gene expression data, it is approximately nor-
mal distributed and it becomes a natural question to ask whether the data follows a Gaussian 
latent-tree model where the underlying tree structure is the same. 

In our analysis to check tree compatibility we remove rows containing a zero such that we are 
left with N = 4,615 observations. Since the tree has 20 leaves, we have to test p = 14250 con-
straints that define the null hypothesis; recall Proposition 5.2. We compute p-values using the 
LR test and our test strategy with computational budget N = 2n. Both tests indicate overwhelming 
evidence against the Gaussian latent-tree model since we obtain a p-value of zero in both cases. To 
check whether the assumption of a Gaussian latent-tree model might hold locally, we also run the 
same analysis on all substructures of the tree induced by 6 neighbouring leaves. This implies that 
p = 110. Again, we only observe p-values equal to zero, indicating that the Gaussian latent-tree 
assumption is also too strong for the considered subsets of variables. We summarize that our ap-
proach is able to reach the same conclusion as the LR test, but our strategy is optimization-free and 
safe with respect to possible irregularities. 

6 Discussion 
We proposed a general methodology to simultaneously test many constraints on a statistical par-
ameter. The test statistic is given by a studentized maximum of an incomplete U-statistic and crit-
ical values are approximated by Gaussian multiplier bootstrap. Our method is applicable to all 
hypotheses that can be defined by estimable equality and inequality constraints. If the constraints 
are polynomial, we presented a general procedure to construct kernels. In the suggested method-
ology, there is no need to maximize a possibly multi-modal function as one would do for a LR test. 
Moreover, our method allows for many constraints, that is, the number of constraints can be much 
larger than the sample size. If the computational budget N for constructing the incomplete 
U-statistic is appropriately chosen, typically of the same order as the sample size n, then the test 
asymptotically controls type I error even if the true parameter is irregular or close to irregular. 

The latter fact is due to non-asymptotic Berry–Esseen-type error bounds on the high- 
dimensional Gaussian and bootstrap approximation of incomplete U-statistics. Compared to pre-
vious work, we have shown that the approximation is also valid under mixed degeneracy if we 
choose a suitable computational budget N. This yields control of type I error as well as consistency 
of our testing methodology even in irregular settings. 

In practice, the requirement N =O(n) allows some flexibility in choosing the computational 
budget N. As illustrated in our simulations, a higher computational budget parameter yields 
more efficient estimates of the constraints and therefore a more powerful test. However, the com-
putations become more involved for higher order kernels and one should be sceptical about the 
theoretical guarantees of the bootstrap approximation if N is large and the underlying true param-
eter is close to an irregular point. Thus, there is a trade-off between efficiency and guarding against 
irregularities. In our simulations we found that choosing the computational budget parameter as 
N = 2n is a reasonable choice. 

If the inequality constraints defining the null hypothesis are strict, then there is a decrease in 
power. One may improve power by using a two-step approach for testing inequalities that was 
initially introduced in Romano et al. (2014) and then further developed by Bai et al. (2021) for 
the high-dimensional set-up. In the first step, a confidence region for the constraints of interest 
is constructed and in the second step, this set is used to provide information about which con-
straints are negative. In future work, it would be of interest to improve our strategy using the men-
tioned two-step approach. 
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TESTING MANY CONSTRAINTS IN POSSIBLY IRREGULAR MODELS 1

Supplement to “Testing Many Constraints in Possibly Irregular
Models Using Incomplete U-Statistics”

This supplement contains additional material such as all technical proofs (Appendix A),
additional lemmas (Appendix B), properties of sub-Weibull random variables (Appendix C),
additional simulation results for Gaussian latent tree models (Appendix D) and another appli-
cation of our methodology, where we test minors in two-factor analysis models (Appendix E).

Appendix A. Proofs

Since we only consider centered incomplete U -statistics, we assume without loss of generality
µ = 0 in all our proofs of the results in Section 2.

A.1. Proof of Theorem 2.4. In this section we prove the main theorem. Let R = [a, b] 2 Rp
re

be a hyperrectangle. For any partition p = p1 + p2 with p1, p2 � 0 , we write R = (R(1), R(2)),
where R(1) and R(2) are hyperrectangles in Rp1 and Rp2 . Moreover, for a given hyperrectangle
and t > 0, we denote the following t-dependent quantities

Rt = [a� t, b + t], R�t = [a + t, b� t] and Renv,t = Rt \ R�t = [a� t, a + t) [ (b� t, b + t].

We begin with stating an abstract bound on complete U -statistics; recall the definition Un =
1

|In,m|
P
◆2In,m

h(X◆). Let �
(1)
g = Cov[g(1)(X1)] be the covariance matrix of the first p1 indices

of g(X1) and denote the symmetric p⇥ p block matrix

�g =

✓
�

(1)
g 0
0 0

◆
.

Lemma A.1. Assume (C2) and (C4) - (C6) hold and let R 2 Rp
re. Then there is a constant

C� > 0 only depending on � such that

|P (
p

n(Un � µ) 2 R)� P (mY g 2 R)|  C�

 
m2D2

n log(p1n)1+6/�

(�
¯

2
g(1) ^ 1) n

!1/6

+ {02R
(2)
env,t}

with t = C�n
�min{k,1/3}m2Dn log(p2n)2/� and Y g ⇠ Np(0,�g).

The bound in Lemma A.1 is not uniform for all hyperrectangles and is therefore of limited
use on its own. However, it will be the main tool to prove Theorem 2.4.

Proof of Lemma A.1. Let C� be a constant that depends only on � and that varies its value
from place to place. For any other constant c > 0 we assume without loss of generality

(A.1)
m2 log(p2)

n
 c

since otherwise the statement from Lemma A.1 becomes trivial by choosing C� large enough.
First, we denote preliminary observations which we will use throughout the proof. Let X be a
random vector in Rp1 and c be a non-random vector in Rp2 .

(i) P ((X, c) 2 R) = P ({X 2 R(1)} \ {c 2 R(2)}) = P (X 2 R(1)) {c2R(2)}.
(ii) Let Y be another random vector in Rp1 . Then

|P ((Y, c) 2 R)� P ((X, c) 2 R)| = |P (Y 2 R(1))� P (X 2 R(1))| {c2R(2)}

 |P (Y 2 R(1))� P (X 2 R(1))|.
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(iii) Suppose we are given two hyperrectangles R = (R(1), R(2)) and R̃ = (R(1), R̃(2)) having
identical first part R(1). Then

|P ((X, c) 2 R̃)� P ((X, c) 2 R)| = |P (X 2 R(1)) {c2R̃(2)} � P (X 2 R(1)) {c2R(2)}|
= P (X 2 R(1))| {c2R̃(2)} � {c2R(2)}|
 | {c2R̃(2)} � {c2R(2)}|.

Now, let An =
p

n Un. Recall the notation of splitting the vector An = (A
(1)
n , A

(2)
n ) according

to the partition p = p1 + p2. Let R = [a, b] 2 Rp
re be a hyperrectangle and denote

!n =

 
m2D2

n log(p1n)1+6/�

(�
¯

2
g(1) ^ 1) n

!1/6

.

For any t > 0 we have

P (An 2 R)  P ({An 2 R} \ {kA(2)
n � 0k1  t}) + P (kA(2)

n � 0k1 > t)

 P ({A(1)
n 2 R(1)} \ {0 2 R

(2)
t }) + P (kA(2)

n � 0k1 > t)

 P ({mY (1)
g 2 R(1)} \ {0 2 R

(2)
t }) + C�!n + P (kA(2)

n k1 > t)

 P (m(Y (1)
g , 0) 2 R) + {02R

(2)
t \R(2)} + C�!n + P (kA(2)

n k1 > t),

where the second to last inequality follows from observation (ii) and Lemma B.2 that is ap-
plicable due to Conditions (C2), (C4) and (C6). The last inequality follows from observa-

tion (iii). Observe that (Y
(1)
g , 0) ⇠ Y g and {02R

(2)
t \R(2)}  {02R

(2)
env,t}

. Thus, it is left to bound

P (kA(2)
n k1 > t). We have

P (kA(2)
n k1 > t)  P

 �����A
(2)
n �

mp
n

nX

i=1

g(2)(Xi)

�����
1

+

�����
mp
n

nX

i=1

g(2)(Xi)

�����
1

> t

!

 P

 �����A
(2)
n �

mp
n

nX

i=1

g(2)(Xi)

�����
1

>
t

2

!
+ P

 �����
mp
n

nX

i=1

g(2)(Xi)

�����
1

>
t

2

!
.

Due to (A.1) we may apply Theorem 5.1 in Song et al. (2019) to bound the first summand.
Together with the Markov inequality we obtain

P

 �����A
(2)
n �

mp
n

nX

i=1

g(2)(Xi)

�����
1

>
t

2

!
= P

 �����
A

(2)
np
n
� m

n

nX

i=1

g(2)(Xi)

�����
1

>
t

2
p

n

!

 C�
m2Dn log(p2)

1+1/�

t
p

n
.(A.2)

To bound the second summand we apply Lemma A.2 in Song et al. (2019) which yields

P

 �����
nX

i=1

g(2)(Xi)

�����
1

> C�(
p

an log(p2n)1/2 + un log(p2n)2/�)

!
 4

n
,

where an = n maxp1+1jp kgj(X1)k22 and un = maxp1+1jp kgj(X)k �
. By Assumption (C5)

we have un  n�kDn and due to Lemma C.4 it holds an  C�nkgj(Xi)k2 �
 C�n

1�2kD2
n.

Hence,

P

 �����
mp
n

nX

i=1

g(2)(Xi)

�����
1

> C�

✓
mDn log(p2n)1/2

nk
+

mDn log(p2n)2/�

nk+1/2

◆!
 4

n
.
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Now, choosing t = C�n
�min{k,1/3}m2Dn log(p2n)2/� we get

P

 �����
mp
n

nX

i=1

g(2)(Xi)

�����
1

>
t

2

!
 4

n
 !n

and due to (A.2) we have

P

 �����A
(2)
n �

mp
n

nX

i=1

g(2)(Xi)

�����
1

>
t

2

!
 C�

nmin{k,1/3}

n1/2
 C�n

�1/6  C�!n.

Therefore, we conclude that P (kA(2)
n k1 > t)  C�!n and we have shown that

P (An 2 R)  P (mY g 2 R) + C�!n + {02R
(2)
env,t}

.

Likewise, for the other direction it holds

P (An 2 R) + P (kA(2)
n � 0k1 > t) = P ({A(1)

n 2 R(1)} \ {A(2)
n 2 R(2)}) + P (kA(2)

n � 0k1 > t)

� P ({A(1)
n 2 R(1)} \ [{A(2)

n 2 R(2)} [ {|A(2)
n � 0k1 > t}]) � P ({A(1)

n 2 R(1)} \ {0 2 R
(2)
�t }).

Thus, we have by Lemma B.2 and observations (ii) and (iii),

P (An 2 R) � P ({A(1)
n 2 R(1)} \ {0 2 R

(2)
�t })� P (kA(2)

n � 0k1 > t)

� P ({mY (1)
g 2 R(1)} \ {0 2 R

(2)
�t })� C�!n � P (kA(2)

n k1 > t)

� P (m(Y (1)
g , 0) 2 R)� {02R(2)\R

(2)
�t } � C�!n � P (kA(2)

n k1 > t).

Since {02R(2)\R
(2)
�t }  {02R

(2)
env,t}

and P (kA(2)
n k1 > t)  C�!n, the proof is complete. ⇤

If the bounds a(2), b(2) of the hyperrectangle R(2) = [a(2), b(2)] in Lemma A.1 depend
on a (Gaussian) random vector, then one may use anti-concentration inequalities to bound

E[ {02R
(2)
env,t}

] = P (0 2 R
(2)
env,t). We use this strategy to prove Theorem 2.4. The proof is

split into two further propositions, where we first prove the approximation
p

n(U 0
n,N ) � µ ⇡

Np(0, m2,�g + ↵n�h) and then n Np(0, m2,�g + ↵n�h) ⇡ Np(0, m2,�g + ↵n�h) on the hyper-
rectangles.

Proposition A.2. Assume (C1) - (C6) hold. Then there is a constant C� > 0 only depending
on � such that

sup
R2Rp

re

|P (
p

n(U 0
n,N � µ) 2 R)� P (Y 2 R)|  C�{!n,1 + !n,2 + !n,3}(A.3)

with Y ⇠ Np(0, m2�g + ↵n�h).

Proof of Proposition A.2. Let C� > 0 be a constant that depends only on � and that varies
its value from place to place. As in the proofs of Theorem 3.1 in Chen and Kato (2019) and

Theorem 2.4 in Song et al. (2019) we write U 0
n,N = (N/ bN)(Un +

p
1� ⇢nBn) with Bn =

1
N

P
◆2In,r

Z◆�⇢np
1�⇢n

h(X◆). For any hyperrectangle R = [a, b] 2 Rp
re we have

P (
p

n(Un +
p

1� ⇢nBn) 2 R)

= E

"
P |Xn

1

 
p

NBn 2
 

1p
↵n(1� ⇢n)

R�
s

N

1� ⇢n
Un

!!#

 E

"
P |Xn

1

 
Yh 2

 
1p

↵n(1� ⇢n)
R�

s
N

1� ⇢n
Un

!!#
+ C�!n,1
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= P (
p

nUn 2 [R�
p
↵n(1� ⇢n)Yh]) + C�!n,1

= E[P |Yh
(
p

nUn 2 [R�
p
↵n(1� ⇢n)Yh])] + C�!n,1

 E[P |Yh
(mY g 2 [R�

p
↵n(1� ⇢n)Yh]) + {02R̃

(2)
env,t}

] + C�!n,1

= P (mY g 2 [R�
p
↵n(1� ⇢n)Yh]) + E[ {02R̃

(2)
env,t}

] + C�!n,1,

where R̃ = R�
p
↵n(1� ⇢n)Yh and t = C�n

�min{k,1/3}m2Dn log(p2n)2/� . The first inequality
follows from Lemma B.1 since Bn is an independent sum given the samples X1, . . . , Xn and
Conditions (C1) - (C3) are satisfied; for a detailed proof see Song et al. (2019, Lemma A.14).
The second inequality follows from Lemma A.1. To bound the expectation appearing on the
right-hand side we use an anti-concentration inequality due to Nazarov. It is stated in Lemma
A.1 in Chernozhukov et al. (2017a) and a detailed proof is given in the note Chernozhukov et al.

(2017b). Let ã = a�
p
↵n(1� ⇢n)Yh and b̃ = b�

p
↵n(1� ⇢n)Yh be random vectors in Rp such

that the rectangle R̃ is given by R̃ = [ã, b̃]. Then we have

E[ {02R̃
(2)
env,t}

] = P (0 2 R̃
(2)
env,t) = P ({ã(2) � t  0 < ã(2) + t} [ {b̃(2) � t < 0  b̃(2) + t})

 P (ã(2) � t  0 < ã(2) + t) + P (b̃(2) � t < 0  b̃(2) + t)

= P (a(2) � t 
p
↵n(1� ⇢n)Y

(2)
h < a(2) + t) + P (b(2) � t <

p
↵n(1� ⇢n)Y

(2)
h  b(2) + t)

= P
⇣
(

a(2) � tp
↵n(1� ⇢n)

 Y
(2)
h <

a(2) + tp
↵n(1� ⇢n)

⌘
+ P

⇣ b(2) � tp
↵n(1� ⇢n)

< Y
(2)
h  b(2) + tp

↵n(1� ⇢n)

⌘

 C�
t

�
¯h

p
↵n(1� ⇢n)

p
log(p2)  C�

t

�
¯h

p
↵n

p
log(p2)

 C�
N1/2m2Dn log(p2n)1/2+2/�

�
¯hnmin{1/2+k, 5/6} = C�!n,2.

Importantly, Nazarov’s inequality is applicable because E[Y
(2)
h,j ] � �

¯h for all j = 1, . . . , p and

�
¯h > 0 due to Condition (C3). The second to last inequality follows from the fact that 1�⇢n �
1/2. We have

P (
p

n(Un +
p

1� ⇢nBn) 2 R)  P (mY g 2 [R�
p
↵n(1� ⇢n)Yh]) + C�{!n,1 + !n,2}

= P (mY g +
p
↵n(1� ⇢n)Yh 2 R) + C�{!n,1 + !n,2}

= P
⇣
↵�1/2

n ⇤
�1/2
h mY g +

p
1� ⇢n⇤

�1/2
h Yh 2 ↵�1/2

n ⇤
�1/2
h R

⌘
+ C�{!n,1 + !n,2}.

Observe that E[(
p

1� ⇢n�
�1
h,jYh,j)

2] = 1�⇢n � 1/2 for any 1  j  p and k⇤�1/2
h �h⇤

�1/2
h k1 = 1

by definition of ⇤h. Since ⇢n = N/
�

n
m

�
 C�N/nm we have by the Gaussian comparison

inequality (Chen and Kato, 2019, Lemma C.5)

P (
p

n(Un +
p

1� ⇢nBn) 2 R)

 P
⇣
↵�1/2

n ⇤
�1/2
h (mY g +

p
↵nYh) 2 ↵�1/2

n ⇤
�1/2
h R

⌘
+ C�{!n,1 + !n,2} + C�

✓
N log(p)2

nm

◆1/3

 P (mY g +
p
↵nYh 2 R) + C�{!n,1 + !n,2 + !n,3}

Likewise, we can show

P (
p

n(Un +
p

1� ⇢nBn) 2 R) � P (mY g +
p
↵nYh 2 R)� C�{!n,1 + !n,2 + !n,3}.

It is left to show that the latter two inequalities hold with
p

n(Un +
p

1� ⇢nBn) replaced byp
nU 0

n,N . This part of the proof is similar to step 5 in the proof of Theorem 3.1 in Chen and
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Kato (2019) and steps 2 and 3 in the proof of Theorem 2.4 in Song et al. (2019) and therefore
omitted. ⇤
Proposition A.3. Assume (C2), (C3) and (C5) hold. Then, for a constant C� > 0 only
depending on �, it holds sup

R2Rp
re

|P (Y 2 R)� P (Y 2 R)|  C�!n,3.

For the proof of Proposition A.3, we define a p⇥p diagonal matrix ⇤h such that ⇤h,jj = �2
h,j

for 1  j  p.

Proof of Proposition A.3. The proof is an application of the Gaussian comparison inequality
(Chen and Kato, 2019, Lemma C.5) with appropriate normalizing. Let C� > 0 be a con-
stant that depends only on � and that varies its value from place to place. Observe that

E[(↵
�1/2
n ��1

h,jY j)
2] � E[(��1

h,jYh,j)
2] = 1 for any 1  j  p due to independence of Y g and Yh

and Condition (C3). Moreover,

k↵�1
n ⇤

�1/2
h Cov[Y ]⇤

�1/2
h � ↵�1

n ⇤
�1/2
h Cov[Y ]⇤

�1/2
h k1 = k↵�1

n m2⇤
�1/2
h (�g � �g)⇤

�1/2
h k1

 Nm2

�
¯

2
hn
k�g � �gk1 

Nm2

�
¯

2
hn

max

⇢
max

p1+1jp
�2

g,j ,

✓
max

1jp1

�g,j

◆
·
✓

max
p1+1jp

�g,j

◆�

 C�
Nm2

�
¯

2
hn

max{n�2kD2
n, n�kD2

n}  C�
Nm2D2

n

�
¯

2
hn1+k

,

where we used that max1jp1
�g,j  max1jp1

�h,j  C�Dn and maxp1+1jp �g,j 
C�n

�kDn due to Conditions (C2) and (C5) and Lemma C.4. Note that Assumption (C2) also
implies kgj(X1)� µjk �

 Dn for all j = 1, . . . , p. Thus, we have by the Gaussian comparison
inequality for any R 2 Rp

re

P (Y 2 R) = P (↵�1/2
n ⇤

�1/2
h Y 2 ↵�1/2

n ⇤
�1/2
h R)

 P (↵�1/2
n ⇤

�1/2
h Y 2 ↵�1/2

n ⇤
�1/2
h R) + C�

✓
Nm2D2

n log(p)2

�
¯

2
hn1+k

◆1/3

 P (Y 2 R) + C�!n,3.

Similarly, we can show P (Y 2 R) � P (Y 2 R)� C�!n,3, which concludes the proof. ⇤
Proof of Theorem 2.4. The theorem follows from Proposition A.2 and Proposition A.3. ⇤
A.2. Other Proofs of Section 2.

Proof of Corollary 2.7. Let Cs,m > 0 be a constant that depends only on s and m and that may
change its value in di↵erent occurences. Since the polynomials hj are not constant, we have
that s � 1. Define � = 1/s 2 (0, 1] and Dn = Cs,m�h. Since �h � �h, it holds that Dn � 1 by
potentially increasing Cs,m. We will first prove that Assumptions (C1), (C2) and (C6) as well
as mixed degeneracy are satisfied, where we fix an arbitrary k 2 (0, 1). This implies that the
Berry-Esseen type bound of Theorem 2.4 holds. We then optimize this bound over all k 2 (0, 1)
to obtain the desired result.

To show that (C1) holds, it is enough to note that khj(X
m
1 )k2+l  Cs,m�h,j holds for l = 1, 2

due to the hypercontractivity property of polynomials in Gaussian random variables (Theo-
rem 3.2.10 in de la Peña and Giné, 1999 and Lemma 2.2 in Leung and Sturma, 2024). To
show (C6), observe that each gj is also a polynomial in Gaussian variables of degree at most 2s.
Hence, it also holds that kgj(X1)k2+l  Cs,m�g,j for l = 1, 2, which implies that (C6) is also
satisfied since �2

g,j  �2
h,j by Jensen’s inequality. Assumption (C2) follows from Lemma C.5.

It remains to show mixed degeneracy, that is, Assumptions (C4) and (C5). Fix an arbitrary
k 2 (0, 1) and define �2

g(1) = Cs,mn�2k �2
h. Since each gj is a polynomial in Gaussian variables of
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degree at most 2s, we have by Lemma C.5 that kgj(X1)k 1/s
 Cs,m�g,j . Hence, if �2

g,j < �2
g(1)

for some index j 2 {1, . . . , p}, then

kgj(X1)k 1/s
 Cs,m�g(1)  Cs,mn�k �h.

That is, if (C4) is not satisfied, then (C5) must be satisfied for this index j, and we conclude
that mixed degeneracy holds.

Now, Theorem 2.4 implies that

sup
R2Rp

re

|P (
p

nU 0
n,N 2 R)� P (Y 2 R)|  C�{!n,1 + !n,2 + !n,3}.

Since we have � = 1/s, Dn = Cs,m�h and �2
g(1) = Cs,mn�2k �2

h with k 2 (0, 1), we can further

bound !n,1, !n,2 and !n,3 as follows:

!n,1  Cs,m

✓
(�2

h _ 1) log(pn)1+6s

(�2
h ^ 1) n1�k

◆1/6

 Cs,m
(�2

h _ 1) log(pn)1/6+s

(�2
h ^ 1) n(1�k)/6

,

!n,2  Cs,m
(�2

h _ 1) log(pn)1/2+2s

(�2
h ^ 1) nmin{k,1/3} , and

!n,3  Cs,m
(�2

h _ 1) log(p)2/3

(�2
h ^ 1) nk/3

,

where we have also used that n  N  Cs,mn. Since k 2 (0, 1), this implies the overall bound

!n,1 + !n,2 + !n,3  Cs,m
(�2

h _ 1) log(p)1/2+2s

(�2
h ^ 1) nmin{(1�k)/6,k/3} .

It remains to choose k 2 (0, 1) such that min{(1 � k)/6, k/3} is maximal. This yields k = 1/3
and min{(1� k)/6, k/3} = 1/9. ⇤

Recall the definition of the diagonal matrix ⇤h, that is, ⇤h,jj = �2
h,j for 1  j  p. We

define the standardized kernel h̃(x1, . . . , xm) = ⇤
�1/2
h h(x1, . . . , xm). In accordance, let �h̃ =

Cov[h̃(Xm
1 )] be the covariance matrix of the standardized kernel and let Ũ 0

n,N = ⇤
�1/2
h U 0

n,N be
the standardized incomplete U -statistic.

Proof of Lemma 2.9. Throughout the proof let C > 0 be a constant only depending on �, ⇣1
and C1 and that varies its value from place to place. It will be useful to note that

max

⇢
m2/�

�
¯

4
h

,
N2m4

�
¯

4
hn2

,
Nm2

�
¯

2
hn

�
 An.

We start by observing E[(↵
�1/2
n ��1

h,jYj)
2] � E[(��1

h,jYh,j)
2] � 1 due to the independence of Yg and

Yh and Condition (C3). Thus, by the Gaussian comparison inequality (Chen and Kato, 2019,
Lemma C.5) we have

sup
R2Rp

re

��P |Dn
(U#

n,n1
2 R)� P (Y 2 R)

��

 sup
R2Rp

re

��P |Dn(U#
n,n1
2 R)� P |Dn(mU#

n1,g +
p
↵nYh 2 R)

��

+ sup
R2Rp

re

��P |Dn
(mU#

n1,g +
p
↵nYh 2 R)� P (Y 2 R)

��

= sup
R2Rp

re

���P |Dn(↵�1/2
n ⇤

�1/2
h U#

n,n1
2 R)� P |Dn

⇣
⇤
�1/2
h (↵�1/2

n mU#
n1,g + Yh) 2 R

⌘���

+ sup
R2Rp

re

���P |Dn

⇣
⇤
�1/2
h (↵�1/2

n mU#
n1,g + Yh) 2 R

⌘
� P (↵�1/2

n ⇤
�1/2
h Y 2 R)

���
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 C
⇣
b�h̃ log(p)2

⌘1/3

+ C

✓
Nm2

�
¯

2
hn

b�g log(p)2
◆1/3

,

where

b�h̃ =

������
1

bN
X

◆2In,m

Z◆(h̃(X◆)� Ũ 0
n,N )(h̃(X◆)� Ũ 0

n,N )> � �h̃

������
1

and

b�g =

�����
1

n1

X

i12S1

(Gi1 �G)(Gi1 �G)> � �g

�����
1

.

Now, it is enough to show for each of the two summands involving b�h̃ and b�g that the probability

of being greater than Cn�(⇣1^⇣2)/6 is at most C/n. We start with the first summand.

Step 1: Bounding b�h̃. This is similar to the proof of Theorem 4.1 in Chen and Kato (2019)

and to the proof of Theorem 3.1 in Song et al. (2019). However, we give a full proof for
completeness verifying that everything remains true under our assumptions even though some
parts will be identical. In particular, we track the constants �, m and �

¯
2
h. Observe that for any

integer l, there exists some constant C̃ that depends only on l and ⇣1 such that

(A.4)
log(n)l

n⇣1
 C̃

for all n � 1. Define

b�h̃,1 =

������
1

N

X

◆2In,m

(Z◆ � ⇢n)h̃(X◆)h̃(X◆)
>

������
1

, b�h̃,2 =
���b�h̃ � �h̃

���
1

,

b�h̃,3 = |N/ bN � 1|k�h̃k1 and b�h̃,4 =

������
1

N

X

◆2In,m

Z◆h̃(X◆)

������

2

1

,

where b�h̃ = |In,m|�1
P
◆2In,m

h̃(X◆)h̃(X◆)
> and observe that

b�h̃  |N/ bN |
⇣
b�h̃,1 + b�h̃,2

⌘
+ b�h̃,3 + |N/ bN |2 b�h̃,4.

First, we consider the quantity |N/ bN |. We can assume without loss of generality C1n
�⇣1  1/16

since otherwise we may always take C to be large enough and the statement of Lemma 2.9
becomes trivial. Hence, by Condition (2.5), we have

p
log(n)/N  (C1n

�⇣1)1/2  1/4 and

thus it follows by Lemma A.12 in Song et al. (2019) that P (|N/ bN � 1| > C)  2/n. Since

|N/ bN � 1| � |N/ bN |� 1 we also have P (|N/ bN | > C)  2/n. Therefore it su�ces to show

P
⇣
b�h̃,i log(p)2 > Cn�⇣1/2

⌘
 C

n

for all i = 1, . . . , 4, which we naturally divide into four sub-steps.

Step 1.1: Bounding b�h̃,1. Conditioned on {X1, . . . , Xn} we have by Lemma A.3 in Song et al.

(2019) the inequality

(A.5) P |Xn
1

⇣
N b�h̃,1 > C(

p
NVn log(pn) + M1 log(pn))

⌘
 C

n
,

where Vn = max1j,lp |In,m|�1
P
◆2In,m

h̃j(X◆)
2h̃l(X◆)

2 and M1 = max◆2In,m max1jp

h̃j(X◆)
2. Next we shall find bounds such that the probability for Vn and M1 being larger than
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the bounds is at most C/n. First, by Lemma C.6, Lemma C.2 and due to Assumption (C2),

kM1k �/2
 log(p|In,m|)2/� max

◆2In,m

max
1jp

kh̃j(X
m
1 )2k �/2

 C�
¯
�2
h log(pnm)2/� max

◆2In,m

max
1jp

khj(X
m
1 )k2 �

 C�
¯
�2
h m2/� log(pn)2/�D2

n.

Thus, by the definition of k · k �/2
together with the Markov inequality,

P (M1 > C�
¯
�2
h m2/�D2

n log(pn)2/� log(n)2/�)  2/n.

Second, we apply Lemma A.6 in Song et al. (2019) to bound Vn. Due to Assumption (C1) we
have

max
1j,lp

E[h̃j(X
m
1 )2h̃l(X

m
1 )2]  �

¯
�2
h D2

n

and due to Assumption (C2) and Lemma C.2 it holds

max
1j,lp

kh̃j(X
m
1 )2h̃l(X

m
1 )2k �/4

 �
¯
�4
h max

1jp
khj(X

m
1 )k4 �

 �
¯
�4
h D4

n.

By Condition (2.5) and Observation (A.4) we have

mD2
n log(pn)1+4/� log(n)4/��1

�
¯

2
h n

+
m2/�D2

n log(pn)1+8/� log(n)8/��1

�
¯

2
h n2

 C1n
�⇣1 log(n)4/��1 + C1n

�2⇣1 log(n)8/��1  C

and we obtain the bound P (Vn > C�
¯
�2
h D2

n)  8
n from Song et al. (2019, Lemma A.6). Here,

we used that |In,m|�1  Cn�2m�1/� ; cf. Song et al. (2019, Lemma A.9). Putting the results
together and recalling (A.5) we have by Fubini

P
⇣
b�h̃,1 > C(N�1/2�

¯
�1
h Dn log(pn)1/2 + N�1�

¯
�2
h m2/�D2

n log(pn)1+4/�)
⌘
 C

n

Now, we use again Condition (2.5) to observe

log(p)2 C

✓
Dn log(pn)1/2

�
¯h N1/2

+
m2/�D2

n log(pn)1+4/�

�
¯

2
h N

◆

 C

 ✓
D2

n log(pn)5

�
¯

2
h N

◆1/2

+
m2/�D2

n log(pn)3+4/�

�
¯

2
h N

!

 C
⇣
n�⇣1/2 + n�⇣1

⌘
 Cn�⇣1/2,

which implies

P
⇣
b�h̃,1 log(p)2 > Cn�⇣1/2

⌘
 C

n
.

Step 1.2: Bounding b�h̃,2. By Lemma A.5 in Song et al. (2019) we have

P
⇣
b�h̃,2 > C((n�1m2 log(pn))1/2 + n�1mzn log(pn)4/�)

⌘
 4

n
,

where

2 = max
1j,lp

E[{h̃j(X
m
1 )h̃l(X

m
1 )� �h̃,jl}2],

zn = max
1j,lp

kh̃j(X
m
1 )h̃l(X

m
1 )� �h̃,jlk �/2

.
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Due to Condition (C1) we have the bound 2  max1j,lp E[h̃j(X
m
1 )2h̃l(X

m
1 )2]  �

¯
�2
h D2

n and

due to Condition (C2) and Lemmas C.7 and C.2 we have zn  C�
¯
�2
h D2

n. Thus,

P

 
b�h̃,2 > C

 ✓
mD2

n log(pn)

�
¯

2
h n

◆1/2

+
mD2

n log(pn)4/�

�
¯

2
h n

!!
 4

n
.

Using Condition (2.5) we conclude by the same arguments as in Step 1.1,

P (b�h̃,2 log(p)2 > Cn�⇣1/2)  C/n.

Step 1.3: Bounding b�h̃,3. By Lemma A.12 in Song et al. (2019) we have

P
⇣
|N/ bN � 1| > C

p
log(n)/N

⌘
 2

n
.

Since k�h̃k1 = 1 this yields

P

 
b�h̃,3 log(p)2 > C

✓
log(n) log(p)4

N

◆1/2
!
 2

n
.

Observing log(n) log(p)4

N  C1n
�⇣1 by Condition (2.5) we conclude

P
⇣
b�h̃,3 log(p)2 > Cn�⇣1/2

⌘
 C

n
.

Step 1.4: Bounding b�h̃,4. Observe that b�h̃,4  2(b�2
h̃,5

+ b�2
h̃,6

), where

b�h̃,5 =

������
1

N

X

◆2In,m

(Z◆ � ⇢n)h̃(X◆)

������
1

and b�h̃,6 =

������
1

|In,m|
X

◆2In,m

h̃(X◆)

������
1

such that it is enough to bound the two terms b�2
h̃,5

and b�2
h̃,6

separately. But bounding b�h̃,5

is similar to bounding b�h̃,1 by applying Song et al. (2019, Lemma A.3). Moreover, bounding

b�h̃,6 is similar to bounding b�h̃,2, where we applied Song et al. (2019, Lemma A.5). Therefore,
we omit the details.

Step 2: Bounding b�g. By the same argument as in the proof of Theorem 4.2 in Chen and

Kato (2019) and using max1jp �g,j  CDn, which holds true due to Condition (C2) and
Lemma C.4, we have

b�g  C(Dn
b�1/2

g,1 + b�g,1 + b�g,2 + b�2
g,3),

where b�g,1 is defined in (2.4) and

b�g,2 =

�����
1

n1

X

i12S1

{g(Xi1)g(Xi1)
> � �g}

�����
1

, b�g,3 =

�����
1

n1

X

i12S1

g(Xi1)

�����
1

.

Thus, similar to Step 1, we divide the proof into three sub-steps.

Step 2.1: Bounding b�g,1. By Condition (2.6) we have

P

✓
Nm2

�
¯

2
hn

Dn
b�1/2

g,1 log(p)2 > C
1/2
1 n�⇣2/2

◆
 C

n

and

P

✓
Nm2

�
¯

2
hn

b�g,1 log(p)2 > C1n
�⇣2
◆
 C

n
,

where we used Dn � 1 and p � 3 for the second bound.
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Step 2.2: Bounding b�g,2. By Lemma A.2 in Song et al. (2019) we have

P
⇣
b�g,2 > C(n�1

1 ⌫ log(pn)1/2 + n�1
1 un log(pn)4/�)

⌘
 4

n
,

where

⌫2 = max
1j,lp

X

i12S1

E[{gj(Xi1)gl(Xi1)� �g,jl}2],

un = max
i12S1

max
1j,lp

kgj(Xi1)gl(Xi1)� �g,jlk �/2
.

Due to Condition (C2) and Lemmas C.2, C.4 and C.7 we have the bounds ⌫2  Cn1D
4
n and

un  CD2
n. Thus,

P
⇣
b�g,2 > C(n

�1/2
1 D2

n log(pn)1/2 + n�1
1 D2

n log(pn)4/�)
⌘
 4

n
.

Now, we use Condition (2.5) to observe

Nm2

�
¯

2
hn

log(p)2C

 
D2

n log(pn)1/2

n
1/2
1

+
D2

n log(pn)4/�

n1

!

 C

 ✓
N2m4D4

n log(pn)5

�
¯

4
h n2 n1

◆1/2

+
Nm2D2

n log(pn)2+4/�

�
¯

2
h n n1

!

 C
⇣
n�⇣1/2 + n�⇣1

⌘
 Cn�⇣1/2.

Thus we conclude

P

✓
Nm2

�
¯

2
hn

b�g,2 log(p)2 > Cn�⇣1/2

◆
 4

n
 C

n
.

Step 2.3: Bounding b�g,3. As in Step 2.2 we apply Lemma A.2 in Song et al. (2019) once

again and obtain

P
⇣
b�g,3 > C(n�1

1 ⌫̃ log(pn)1/2 + n�1
1 ũn log(pn)2/�)

⌘
 4

n
,

where ⌫̃2 = max1jp

P
i12S1

E[gj(Xi1)
2] and ũn = maxi12S1 max1jp kgj(Xi1)k �

. Due to

Assumption (C2) and Lemma C.4 and Lemma C.7, we have the bounds ⌫̃2  Cn1D
2
n and

ũn  CDn giving

P
⇣
b�2

g,3 > C(n
�1/2
1 Dn log(pn)1/2 + n�1

1 Dn log(pn)2/�)
⌘
 4

n
.

By the same arguments as in Step 2.2 we conclude

P

✓
Nm2

�
¯

2
hn

b�2
g,3 log(p)2 > Cn�⇣1/2

◆
 C

n
. ⇤

Proof of Theorem 2.10. Throughout the proof let C > 0 be a constant only depending on �, ⌫, ⇣
and C1 and that varies its value from place to place. Let ⇣1 = ⇣ and ⇣2 = ⇣ � 1/⌫. Then, due to
Lemma 2.9, it su�ces to show that (2.6) holds. By Step 2 of the proof of Theorem 3.3 in Song
et al. (2019) we have

E[b�⌫g,1]  C

✓
mD2

n log(p)1+2/�

n

◆⌫
.

Then we have by the Markov inequality

P (AnD2
n
b�g,1 log(p)4 > C1n

�(⇣�1/⌫))
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 CA⌫
nD2⌫

n log(p)4⌫n(⇣�1/⌫)⌫

✓
mD2

n log(p)1+2/�

n

◆⌫

= Cn�1

✓
n⇣AnD4

n log(p)5+2/�

n

◆⌫

 Cn�1
�
n⇣C1n

�⇣�⌫ =
C

n
,

where the last inequality follows from Condition (2.8). ⇤

Proof of Corollary 2.12. Throughout the proof let C > 0 be a constant only depending on �, ⇣
and C1 and that varies its value from place to place. We begin by bounding the quantity
max1jp |�̂2

j /�2
j � 1|. Note that

�����
�̂2

j

�2
j

� 1

����� =
�����
m2(�̂2

g,j � �2
g,j) + ↵n(�̂2

h,j � �2
h,j)

m2�2
g,j + ↵n�2

h,j

�����


m2|�̂2

g,j � �2
g,j |

m2�2
g,j + ↵n�2

h,j

+
↵n|�̂2

h,j � �2
h,j |

m2�2
g,j + ↵n�2

h,j

 m2

↵n�2
h,j

|�̂2
g,j � �2

g,j | +
1

�2
h,j

|�̂2
h,j � �2

h,j |.

Taking the maximum we get

max
1jp

�����
�̂2

j

�2
j

� 1

����� 
Nm2

�
¯

2
hn

max
1jp

|�̂2
g,j � �2

g,j | + max
1jp

1

�2
h,j

|�̂2
h,j � �2

h,j | 
Nm2

�
¯

2
hn

b�g + b�h̃,

where b�g and b�h̃ were defined in the proof of Lemma 2.9. We have shown in Step 1 in the
proof of Lemma 2.9 that

P
⇣
b�h̃ log(p)2 > Cn�⇣/2

⌘
 C

n
.

Moreover, if we take ⌫ = 7/⇣ and ⇣2 = ⇣�1/⌫, then in the proofs of Lemma 2.9 and Theorem 2.10
we have shown that

P

✓
Nm2

�
¯
�2
h n

b�g log(p)2 > Cn�3⇣/7

◆
 C

n
.

Hence, we have

(A.6) P

✓
max

1jp
|�̂2

j /�2
j � 1| log(p)2 > Cn�3⇣/7

◆
 C

n
.

The rest of the proof is the same as the proof for Corollary A.1 in Chen and Kato (2019) and
thus omitted. ⇤

A.3. Proofs of Section 3.

Proof of Corollary 3.1. Throughout the proof let C > 0 be a constant only depending on �, ⇣
and C1 and that varies its value from place to place. Moreover, we write µj = fj(✓) and for
t 2 R we consider hyperrectangles of the form Ht = {x 2 Rp : �1  xj  t for all j = 1, . . . , p}.
The last steps in the proof of Corollary 2.12 are equal to the last steps in the proof of Chen and
Kato (2019, Corollary A.1) and they show that we have the bound

(A.7) sup
t2R

����P
✓

max
1jp

p
n (U 0

n,N,j � µj)/�̂j  t

◆
� P ( max

1jp
Yj/�j  t)

����  Cn�⇣/7,
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where Y ⇠ Np(m
2�g + ↵n�h). Moreover, with probability at least 1� C/n we have

(A.8) sup
t2R

����P ( max
1jp

Yj/�j  t)� P |Dn(W  t)

����  Cn�⇣/7.

Now, let ↵ 2 (0, 1). To simplify notation we write T0 = max1jp
p

n (U 0
n,N,j � µj)/�̂j and

Y0 = max1jp Yj/�j . Moreover, we denote by cY0
(1� ↵) the (1� ↵)-quantile of Y0. To begin,

we use (A.8) to establish a relation between the quantiles of Y0 and W . With probability at
least 1� C/n we have

P |Dn
(W  cY0

(1� ↵� Cn�⇣/7))  P (Y0  cY0
(1� ↵� Cn�⇣/7)) + Cn�⇣/7

= 1� ↵� Cn�⇣/7 + Cn�⇣/7

= 1� ↵.

Thus, by definition of a quantile, we have the relation

(A.9) P (cW (1� ↵) � cY0
(1� ↵� Cn�⇣/7)) � 1� C/n.

Similarly, we can show P |Dn
(W  cY0

(1� ↵+ Cn�⇣/7)) � 1� ↵ and therefore we have

(A.10) P (cW (1� ↵)  cY0(1� ↵+ Cn�⇣/7)) � 1� C/n.

Now, we apply (A.9) and (A.7) to conclude

P (T0 > cW (1� ↵))  P (T0 > cY0(1� ↵� Cn�⇣/7)) + C/n

 P (Y0 > cY0
(1� ↵� Cn�⇣/7)) + Cn�⇣/7 + C/n

= ↵+ Cn�⇣/7 + Cn�⇣/7 + C/n

= ↵+ Cn�⇣/7,

where we used that Y0 is a continuous distribution with no point mass. The constant C may
have changed its value in the last step. Equivalently, by using the relation (A.10), we get the
other direction

P (T0 > cW (1� ↵)) � P (T0 > cY0
(1� ↵+ Cn�⇣/7))� C/n

� P (Y0 > cY0
(1� ↵+ Cn�⇣/7))� Cn�⇣/7 � C/n

= ↵� Cn�⇣/7 � Cn�⇣/7 � C/n

= ↵� Cn�⇣/7.

Noting that both inequalities hold uniformly over all ↵ 2 (0, 1) finishes the proof. ⇤

Proof of Proposition 3.5. Throughout the proof let C > 0 be a constant only depending on �, ⇣
and C1, that varies its value from place to place. Write µj = fj(✓) and let j⇤ 2 {1  j  p} be
any index such that µj⇤/�j⇤ = max1jp(µj/�j). To simplify notation, we also define p,↵ =p

2 log(p) +
p

2 log(1/↵) and � = Cn�3⇣/7 log(p)�2 such that Inequality (3.2) is equivalent to

µj⇤/�j⇤ � (1 + ") (1 + �)
p,↵p

n
.

We assume without loss of generality �  1/2, since otherwise the statement from Corollary 3.5
becomes trivial by choosing C large enough. Now, let A be the event such that |b�j⇤/�j⇤�1|  �.
Then, we have

P (T > cW (1� ↵))

= P
�p

n Un,N,j⇤/b�j⇤ > cW (1� ↵)
�

= P
�p

n µj⇤/b�j⇤ +
p

n (Un,N,j⇤ � µj⇤)/b�j⇤ > cW (1� ↵)
�
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= P
�
(�j⇤/b�j⇤)

p
n µj⇤/�j⇤ +

p
n (Un,N,j⇤ � µj⇤)/b�j⇤ > cW (1� ↵)

�

� P
�
(1/(1 + �))

p
n µj⇤/�j⇤ +

p
n (Un,N,j⇤ � µj⇤)/b�j⇤ > cW (1� ↵)

�
� P (Ac)

� P
�
(1 + ")p,↵ +

p
n (Un,N,j⇤ � µj⇤)/b�j⇤ > cW (1� ↵)

�
� P (Ac) ,

where we used that cW (1 � ↵) � 0, since ↵ 2 (0, 1/2). Furthermore, by Chernozhukov et al.
(2019, Lemma D.4) we have the bound cW (1� ↵)  p,↵. Hence, it follows that

P (T > cW (1� ↵)) � P
�p

n (Un,N,j⇤ � µj⇤)/b�j⇤ > �" p,↵

�
� P (Ac)

= P
�
(�j⇤/b�j⇤)

p
n (Un,N,j⇤ � µj⇤)/�j⇤ > �" p,↵

�
� P (Ac)

� P
�p

n (Un,N,j⇤ � µj⇤)/�j⇤ > �(1� �)" p,↵

�
� P (Ac)

= 1� P
�p

n (Un,N,j⇤ � µj⇤)/�j⇤  �(1� �)" p,↵

�
� P (Ac) .

By Theorem 2.4, we have

P
�p

n (Un,N,j⇤ � µj⇤)/�j⇤  �(1� �)" p,↵

�

 P (Yj⇤/�j⇤  �(1� �)" p,↵) + C{!n,1 + !n,2 + !n,3}
 P (Yj⇤/�j⇤  �(1� �)" p,↵) + Cn�⇣/7.

Moreover, by Equation A.6 in the proof of Corollary 2.12, we have

P (Ac) = P (|b�j⇤/�j⇤ � 1| > �)  C

n
 Cn�⇣/7.

This implies that

P (T > cW (1� ↵)) � 1� P (Yj⇤/�j⇤ � (1� �)" p,↵)� Cn�⇣/7.

Finally, by the Cherno↵ bound for univariate normal distributions, we have

P (Yj⇤/�j⇤ � (1� �)" p,↵)  exp

✓
�1

2
(1� �)2"2 2

p,↵

◆

 exp

✓
�1

2
(1� �)2"2 (2 log(p) + 2 log(1/↵))

◆

= exp
�
�(1� �)2"2 log(p/↵)

�

 exp

✓
� 1

C
"2 log(p/↵)

◆
,

where we used �  1/2 in the last step. ⇤

A.4. Proofs of Section 4.

Proof of Proposition 4.3. By Step 3) in the construction of the kernel h, we have that

h(Xm
1 ) =

1

m!

X

⇡2Sm

h̆(X⇡(1), . . . , X⇡(m))

=
1

m

mX

k=1

1

(m� 1)!

X

⇡⇤2S⇤
m�1

h̆(X⇡⇤(2), . . . , X⇡⇤(k�1), X1, X⇡⇤(k), . . . , X⇡⇤(m))

| {z }
=:h̆(k)(Xm

1 )

=
1

m

mX

k=1

h̆(k)(Xm
1 ),



14 N. STURMA, M. DRTON, AND D. LEUNG

where S⇤
m�1 denotes the group of all permutations of the set {2, . . . , m}. Now, let k  m be a

fixed integer and define K = dk/⌘e. Then we can write k = (K�1)⌘+ l for 1  l  ⌘. Applying

the definition of h̆ in step 2) of the construction, we see that

E[h̆(k)(Xm
1 )|X1] = a0 +

K�1X

r=1

X

(i1,...,ir)
ij2{1,...,d}

a(i1,...,ir)✓i1 · · · ✓ir

| {z }
=:R(K�1)(✓)

+
sX

r=K

X

(i1,...,ir)
ij2{1,...,d}

a(i1,...,ir)✓i1 · · · ✓iK�1
✓̂iK ,l(X1)✓iK+1

· · · ✓ir

= R(K�1)(✓) +
X

iK2D(f)

✓̂iK ,l(X1)g̃
(K)
iK

(✓),

where R(K�1) and g̃
(K)
iK

are polynomials in R[✓1, . . . , ✓d] and g̃
(K)
iK

is defined by

g̃
(K)
iK

(✓) =

sX

r=K

X

(i1,...,iK�1,iK+1,...,ir)
ij2{1,...,d}

a(i1,...,ir)✓i1 · · · ✓iK�1
✓iK+1

· · · ✓ir .

Now, recall that m = ⌘s and observe that we can write g(X1) as follows.

g(X1) = E[h(Xm
1 )|X1] =

1

m

mX

k=1

E[h̆(k)(Xm
1 )|X1]

=
1

m

sX

K=1

⌘X

l=1

0
@R(K�1)(✓) +

X

i2D(f)

✓̂i,l(X1)g̃
(K)
i (✓)

1
A

=
⌘

m

sX

K=1

R(K�1)(✓) +
1

m

sX

K=1

⌘X

l=1

X

i2D(f)

✓̂i,l(X1)g̃
(K)
i (✓)

=
⌘

m

sX

K=1

R(K�1)(✓)

| {z }
=:R(✓)

+
X

i2D(f)

⌘X

l=1

✓̂i,l(X1)

| {z }
=✓̂f (X1)i

 
1

m

sX

K=1

g̃
(K)
i (✓)

!

| {z }
=:g̃i(✓)

= R(✓) +
X

i2D(f)

✓̂f (X1)i g̃i(✓)

= R(✓) + g̃(✓)> ✓̂f (X1),

where g̃(✓) is the vector (g̃i(✓))i2D(f). We observe that the variance of g(X1) is given by

Var✓[g(X1)] = g̃(✓)>Cov[✓̂f (X1)] g̃(✓).

Note that this is a polynomial, i.e., Var✓[g(X1)] 2 R[✓1, . . . , ✓d]. We will now argue that
Var✓[g(X1)] is not the zero polynomial. It is easy to see by the above derivations that
E✓[h(Xm

1 )] = f(✓) = R(✓) if all components of g̃(✓) are identically to the zero polynomial.
But this is a contradiction since the degree of the polynomial R(✓) is at most s � 1. Hence,

there is at least one component in g̃(✓) that is not zero. Since Cov[✓̂f (X1)] is positive definite,
we conclude that Var✓[g(X1)] is also not identical to the zero polynomial. The proof is finished
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by recalling that the zero set of a real polynomial that is not the zero polynomial has Lebesgue
measure zero; see the lemma of Okamoto (1973). ⇤

Appendix B. Additional Lemmas

The following Lemma concerns Gaussian approximation for independent sums. It is a gen-
eralization of Proposition 2.1 in Chernozhukov et al. (2017a) and implicitly proved in the work
of Song et al. (2019). However, we state an explicit version here since our proofs rely on this
Lemma.

Lemma B.1. Let X1, . . . , Xn be i.i.d. centered Rp-valued random vectors. Let � 2 (0, 1] be an
absolute constant and assume there exists �

¯
2 > 0 and Dn � 1 such that, for all i = 1, . . . , n,

E[X2
ij ] � �¯

2, E[X2+l
ij ]  E[X2

ij ]D
l
n for j = 1, . . . , p, l = 1, 2,

kXijk �
 Dn for j = 1, . . . , p.

Then there is a constant C� > 0 only depending on � such that

sup
R2Rp

re

�����P
 

1p
n

nX

i=1

Xi 2 R

!
� P (Y 2 R)

�����  C�

✓
D2

n log(pn)1+6/�

�
¯

2 n

◆1/6

,

where Y ⇠ Np(0,⌃) with ⌃ = E[XiX
>
i ].

Proof. Essentially, this Lemma is obtained from the high dimensional central limit theorem
(Chernozhukov et al., 2017a, Proposition 2.1) with generalizing for � 2 (0, 1] and suitable
normalization such that the constant �

¯
2 is explicit in the bound. Generalizing for � 2 (0, 1]

is established in Song et al. (2019, Lemma A.8) and the proof with suitable normalization is
implicit in the proof of Corollary 2.2 in Song et al. (2019). ⇤

The next Lemma verifies Gaussian approximation of complete U -statistics. It is proved in
Song et al. (2019). Since the Lemma is essential for the proof of our main theorem, we state it
here.

Lemma B.2 (Song et al., 2019, Corollary 2.2). Assume the sub-Weibull condition (C2) is
satisfied. Moreover, assume (C4) holds with p1 = p and (C6) holds. Then there is a constant
C� > 0 only depending on � such that

sup
R2Rp

re

��P
�p

n(Un � µ) 2 R
�
� P (mYg 2 R)

��  C�

✓
m2D2

n log(pn)1+6/�

(�
¯

2
g ^ 1) n

◆1/6

,

where Yg ⇠ Np(0,�g).

Appendix C. Sub-Weibull Random Variables

In this section we collect important properties of sub-Weibull random variables. For 0 < � < 1
we only have that k ·k �

is a quasinorm, i.e. the triangle inequality does not hold. Nevertheless,
we have the following result which is a substitute.

Lemma C.1. For any 0 < � < 1 and any random variables X1, . . . , Xn, we have
�����

nX

i=1

Xi

�����
 �

 n
1
�

nX

i=1

kXik �
.
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Proof. For n = 2 the claim is equal to Lemma A.3 in Götze et al. (2021). We generalize
the statement for arbitrary n 2 N using similar arguments. Let Li = kXik �

and define

t ..= n
1
�
Pn

i=1 Li. We have

E

"
exp

 
|Pn

i=1 Xi|�
t�

!#

 E

"
exp

 
(
Pn

i=1 |Xi|)�
t�

!#
(1)

 E

"
exp

 Pn
i=1 |Xi|�

n (
Pn

i=1 Li)
�

!#

= E

"
nY

i=1

exp

 
|Xi|�

n (
Pn

i=1 Li)
�

!#

 E

"
nY

i=1

exp

 
|Xi|�
nL�i

!#
= E

2
4

nY

i=1

exp

 
|Xi|�
L�i

! 1
n

3
5

(2)

 E

"
1

n

nX

i=1

exp

 
|Xi|�
L�i

!#
=

1

n

nX

i=1

E

"
exp

 
|Xi|�
L�i

!#

| {z }
2 for all i

 2.

Here, (1) follows from the inequality (
Pn

i=1 xi)
�  Pn

i=1 x�i valid for all x1, . . . , xn � 0 and

� 2 [0, 1], and (2) from
Qn

i=1 a
1
n
i  1

n

Pn
i=1 ai for all a1, . . . , an � 0. The latter inequality

is known as the inequality of geometric and arithmetic means. By the calculation and the
definition of the sub-Weibull norm we have�����

nX

i=1

Xi

�����
 �

 t = n
1
�

nX

i=1

kXik �
.

⇤

For products of sub-Weibull random variables we recall the following useful result from
Kuchibhotla and Chakrabortty (2022).

Lemma C.2. Let X1, . . . , Xn be random variables satisfying kXik �i
< 1 for some �i > 0,

i = 1, . . . , n. Then �����
nY

i=1

Xi

�����
 �


nY

i=1

kXik �i
where

1

�
=

nX

i=1

1

�i
.

Proof. See Kuchibhotla and Chakrabortty (2022, Proposition D.2). ⇤

Combining Lemma C.1 and Lemma C.2 we get a bound on polynomial functions in random
variables. This is especially useful for showing that the estimators hj(X

m
1 ), j = 1, . . . , p are

sub-Weibull.

Lemma C.3. Let � > 0 and let X1, . . . , Xn be (possibly dependent) random variables satisfying
kXik �

 C for some constant C > 0. Let f : Rn ! R be a polynomial of total degree s with t
terms. Then we have

kf(X1, . . . , Xn)k �
s

 A

(
t Cs �

s � 1

t
s
� +1 Cs �

s < 1,

where A is the maximum over all absolute values of the coe�cients in the polynomial f .
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Proof. For random variables X1, . . . , Xs we have by Lemma C.2
�����

sY

i=1

Xi

�����
 �

s

 kXiks �
.

Hence, for f(X1, . . . , Xn) being a monomial of degree s, it follows the inequality

kf(X1, . . . , Xn)k �
s

 A Cs.

To prove the general case where f(X1, . . . , Xn) is a polynomial with t terms we make a case

distinction. For �
s � 1 we have that k · k �

s

is a norm and the triangle inequality holds. For

�
s < 1 the claim follows immediately from Lemma C.1. ⇤

The next well-known Lemma states that sub-Weibull random variables satisfy a stronger
moment condition than the existence of all finite q-th moments.

Lemma C.4. For any � > 0 and any random variable X we have

d� sup
q�1

kXkq
q

1
�

 kXk �
 D� sup

q�1

kXkq
q

1
�

,

where d� =

(
1
2 � � 1
(�e)1/�

2 � < 1
and D� =

(
2e � � 1

2e1/� � < 1.

Proof. See for example Götze et al. (2021, Lemma A.2). ⇤

According to Lemma C.4, the parameter � measures how fast kXkq increases with q. For small
�, the norms kXkq are allowed to increase fast and viceversa. In particular, Lemma C.4 implies
that for all q � 1 there is a constant C� > 0 only depending on � such that kXkq  C�kXk �

.
In the special case of polynomials in Gaussian variables, the sub-Weibull norm is always bounded
by the standard deviation. This follows from the hypercontractivity property of polynomials in
Gaussian random variables.

Lemma C.5. Let X = (X1, . . . , Xr) ⇠ Nr(0,⌃) be an r-variate centered Gaussian random
vector, and let f : Rr ! R be a polynomial of total degree s. If 0 < �  2/s, then

kf(X)]k �
 C�,s kf(X)k2,

where C�,s is a constant depending only on � and s.

Proof. By Lemma C.4, we have the inequality

(C.1) kf(X)k �
 C� sup

q�1

kf(X)kq
q1/�

.

Now, for all q � 2, by the hypercontractivity property of polynomials in Gaussian random
variables (Theorem 3.2.10 in de la Peña and Giné, 1999 and Lemma 2.2 in Leung and Sturma,
2024),

(C.2) kf(X)kq  Cs qs/2 kf(X)k2.
Since kf(X)k1  kf(X)k2, we obtain by combining (C.1) and (C.2) that

kf(X)k �
 C�,s kf(X)k2 sup

q�2
q

s
2� 1

� .

To conclude the proof, we note that s/2  1/� holds due to our assumptions, which implies
that the supremum is achieved for q = 2. ⇤
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Next, we cite a result from Chen and Kato (2019) that gives a sub-Weibull bound on the
maximum of multiple random variables in relation to the bound on the individual variables.

Lemma C.6. Let � > 0 and let X1, . . . , Xn be (possibly dependent) random variables such that
kXik �

<1 for all i = 1, . . . , n. Then for n � 2
���� max

1in
|Xi|

����
 �

 C� log(n)
1
� max

1in
kXik �

,

where C� is a constant depending only on �.

Proof. See Chen and Kato (2019, Lemma C.1). ⇤
The important conclusion of Lemma C.6 is that the bound on the individual variables kXik �

yields a bound on the rate of growth on kmax1in |Xi|k �
. It is determined by the slowly

growing function log(n)1/� , i.e. at most logarithmic in n. The last Lemma is a result considering
centered random variables.

Lemma C.7. For any � > 0 and any random variable X with E[X] <1 we have

kX � E[X]k �
 C�kXk �

,

where C� is a constant depending only on �.

Proof. The proof is similar to the proof of Vershynin (2018, Lemma 2.6.8) which treats the
special case � = 2. Let C� be a constant only depending on � but the value can change from
place to place. For � � 1 recall that k · k �

is a norm. Thus we can use the triangle inequality
and get

kX � E[X]k �
 kXk �

+ kE[X]k �
.

If 0 < � < 1 we use Lemma C.1 with n = 2 and get

kX � E[X]k �
 2

1
�
�
kXk �

+ kE[X]k �

�
.

We only have to bound the second term of both inequalities. Note that, for any constant a, we
trivially have kak �

 C� |a| by the Definition of k · k �
. Using this for a = E[X], we get

kE[X]k �
 C� |E[X]|
 C�E[|X|] (by Jensen’s inequality)

= C�kXk1
 C�kXk �

(by Lemma C.4 with q = 1).

⇤
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Appendix D. Additional Simulation Results for Gaussian Latent Tree Models
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Figure 7. Empirical power for di↵erent local alternatives based on 500 exper-
iments. The computational budget parameters N is varied as indicated. Local
alternatives are generated as described in Section 5 for setups (b) and (c) with
(l, n) = (15, 500) and level ↵ = 0.05.
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Appendix E. Testing Minors in Two-Factor Analysis Models

In this section, we consider testing model invariants of two-factor analysis models as another
application of our testing methodology. By Drton et al. (2007) we have the following parametric
representation of two-factor analysis models.

Proposition E.1. The two-factor analysis model is the family of Gaussian distributions
Nl(µ,⌃) on Rl whose mean vector µ is an arbitrary vector in Rl and whose covariance ma-
trix ⌃ is in the set

Fl,2 = {⇤+ 2 Rl⇥l : ⇤ > 0 diagonal,  � 0 symmetric, rank( )  2}.

Here the notation B > 0 means that B is a positive definite matrix, and B � 0 means that B
is positive semidefinite. Given a covariance matrix ⌃ 2 Fl,2 in the two-factor analysis model, all
o↵-diagonal 3⇥ 3 minors are vanishing (Drton et al., 2007). We are interested in testing all of
these model invariants simultaneously based on i.i.d. samples X1, . . . , Xn ⇠ N(0,⌃), where the

covariance matrix ⌃ in unknown. Up to sign, there are p = 10
�

l
6

�
o↵-diagonal (3 ⇥ 3)-minors,

that is, the number of minors grows very fast with the dimension l. Since minors of ⌃ = (�uv)
are polynomials in the entries �uv, we can apply the kernel proposed in Section 4. We consider
two experimental setups:

(Reg)  = ��> with � 2 Rl⇥2 and all entries of � are independently generated based on a
standard normal distribution. All diagonal entries ⇤vv are taken to be 1.

(Irreg)  = �1�
>
1 +�2�

>
2 with �1,�2 2 Rl. All entries of �1 are equal to 1. The first two entries

of �2, i.e., �21 and �22, are taken to be 10 while all other entries of �2 are independently
generated based on a normal distribution with mean 0 and variance 0.2. All diagonal
entries ⇤vv are taken to be 1/3.

Setup Reg is designed to be a regular setup while setup Irreg is irregular. Moreover, the pa-
rameters in the irregular setup are close to an algebraic singularity (Drton et al., 2007, Example
33) such that we expect that the likelihood ratio test fails to control test size.

In the implementation we use A = 1000 sets of Gaussian multipliers to compute the crit-
ical value cW (1 � ↵). We apply a more general version of the divide-and-conquer bootstrap
discussed in Section 2.2, where we use a block-diagonal sampling scheme with a block size of
L = 25; see Chen and Kato (2019). However, the theoretical bound for the asymptotic approx-
imation remains the same. As before, we compare our methodology with the likelihood ratio
test implemented by the factanal function in R (R Core Team, 2020).

In Figure 8 we compare empirical test sizes for di↵erent, fixed nominal levels ↵ 2 (0, 1). Once
again, we see the advantage of our test methodology in the irregular setup. While the likelihood
ratio test fails to control test size, our test has lower empirical size than nominal level for all
computational budgets N , i.e., our test controls type I error, albeit conservatively. Moreover, we
compare the empirical power in Figure 9, where we construct the local alternatives equivalently
to the alternatives considered in Section 5. That is, for ⌃ 2 Fl,2, the alternatives are of the form
e⌃ = ⌃+ ��>h/

p
n, where � = (0, . . . , 0, 1, 1) 2 Rl and h > 0 varies. As before, we observe that

the empirical power is better for larger computational budgets N .
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Figure 8. Empirical sizes vs. nominal levels for testing (3⇥3)-minors based on
500 experiments. The computational budget parameter N is varied as indicated
and empirical sizes of the LR test are also shown. Data is generated from regular
and singular setups with (l, n) = (10, 500).
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Figure 9. Empirical power in testing (3 ⇥ 3)-minors for di↵erent local alter-
natives based on 300 experiments. The computational budget parameters N is
varied as indicated. Local alternatives are generated as described in the text
for regular and irregular setups with (l, n) = (10, 500) and level ↵ = 0.05.
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A.2 Unpaired Multi-Domain Causal Representation Learning

Summary

In this article, we introduce the problem of causal representation learning from multi-domain observations.

We assume that multiple domains provide complementary information about a set of shared latent vari-

ables that are the causal quantities of primary interest, recall our discussion in Chapter 4 of this thesis.

Crucially, observations in different domains are assumed to be unpaired, that is, we only observe the

marginal distribution in each domain but not their joint distribution. For this problem, we lay out a setting

in which we can provably identify the causal relations among the shared latent variables. Our main results

are sufficient conditions for identifiability of the joint distribution and the shared causal graph in a linear

setup. Identifiability holds if we can uniquely recover the joint distribution and the shared causal graph

from the marginal distributions in each domain.

The article is structured as follows. In the introduction, we motivate and introduce the setup, and we

extensively discuss related work. In Section 2, we provide precise definitions for the linear model by

taking a graphical perspective. Then, we proceed in a two-step approach to identify the desired causal

structure: In Section 3, we first give a sufficient condition for identifiability of the joint distribution. We

extend identifiability results of linear ICA to the unpaired multi-domain setup by applying it in each domain

separately and matching the recovered error distributions. In particular, this allows to identify the shared

latent nodes and an “overall mixing matrix”, which together imply identifiability of the joint distribution

of the domains. Our conditions are also mostly necessary as we discuss in Appendix C. In a second

step, we prove a sufficient condition for identifiability of the shared latent causal graph in Section 4. Our

condition requires that the joint distribution was already certified to be identifiable and we make use of rank

deficiencies in the overall mixing matrix. The rank deficiencies are translated into a graphical condition that

involves a certain type of “pure children” of the latent nodes.

Although we emphasize that our focus in this article is on identifiability, our proofs also suggest methods

to learn the joint distribution as well as the shared causal graph from finite samples. We provide algorithms

for the noisy setting and, moreover, we analyze how the number of domains reduce uncertainty with

respect to the learned representation. Due to space constraints, the detailed discussion of the finite

sample setting is deferred to the Appendix. In the main text of the article, we deduct a small simulation

study as a proof of concept for the finite sample setting in Section 5.

Individual contributions

I am the main author of this article. I formulated the specific research problem, developed all proofs,

wrote software implementations, conducted simulation studies, and drafted the manuscript. The idea of

investigating identifiability for causal representation learning in multiple domains was proposed by Caroline

Uhler when I visited her research group. All co-authors made helpful suggestions regarding both content
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Abstract

The goal of causal representation learning is to find a representation of data that
consists of causally related latent variables. We consider a setup where one has
access to data from multiple domains that potentially share a causal representation.
Crucially, observations in different domains are assumed to be unpaired, that is, we
only observe the marginal distribution in each domain but not their joint distribution.
In this paper, we give sufficient conditions for identifiability of the joint distribution
and the shared causal graph in a linear setup. Identifiability holds if we can uniquely
recover the joint distribution and the shared causal representation from the marginal
distributions in each domain. We transform our results into a practical method to
recover the shared latent causal graph.

1 Introduction

An important challenge in machine learning is the integration and translation of data across multiple
domains (Zhu et al., 2017; Zhuang et al., 2021). Researchers often have access to large amounts of un-
paired data from several domains, e.g., images and text. It is then desirable to learn a probabilistic cou-
pling between the observed marginal distributions that captures the relationship between the domains.
One approach to tackle this problem is to assume that there is a latent representation that is invariant
across the different domains (Bengio et al., 2013; Ericsson et al., 2022). Finding a probabilistic cou-
pling then boils down to learning such a latent representation, that is, learning high-level, latent vari-
ables that explain the variation of the data within each domain as well as similarities across domains.

In traditional representation learning, the latent variables are assumed to be statistically independent,
see for example the literature on independent component analysis (Hyvärinen and Oja, 2000; Comon
and Jutten, 2010; Khemakhem et al., 2020). However, the assumption of independence can be too
stringent and a poor match to reality. For example, the presence of clouds and the presence of wet
roads in an image may be dependent, since clouds may cause rain which may in turn cause wet roads.
Thus, it is natural to seek a causal representation, that is, a set of high-level causal variables and
relations among them (Schölkopf et al., 2021; Yang et al., 2021b). Figure 1 illustrates the setup of
multi-domain causal representation learning, where multiple domains provide different views on
a shared causal representation.

Our motivation to study multi-domain causal representations comes, in particular, from single-cell
data in biology. Given a population of cells, different technologies such as imaging and sequencing
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provide different views on the population. Crucially, since these technologies destroy the cells, the
observations are uncoupled, i.e., a specific cell may either be used for imaging or sequencing but not
both. The aim is to integrate the different views on the population to study the underlying causal
mechanisms determining the observed features in various domains (Butler et al., 2018; Stuart et al.,
2019; Liu et al., 2019; Yang et al., 2021a; Lopez et al., 2022; Gossi et al., 2023; Cao et al., 2022).
Unpaired multi-domain data also appears in many applications other than single-cell biology. For
example, images of similar objects are captured in different environments (Beery et al., 2018), large
biomedical and neuroimaging data sets are collected in different domains (Miller et al., 2016; Essen
et al., 2013; Shafto et al., 2014; Wang et al., 2003), or stocks are traded in different markets.

In this paper, we study identifiability of the shared causal representation, that is, its uniqueness in
the infinite data limit. Taking on the same perspective as, for example, in Schölkopf et al. (2021)
and Squires et al. (2023), we assume that observed data is generated in two steps. First, the latent
variables Z = (Zi)i∈H are sampled from a distribution PZ , where PZ is determined by an unknown
structural causal model among the latent variables. Then, in each domain e ∈ {1, . . . ,m}, the
observed vector Xe ∈ Rde is the image of a subset of the latent variables under a domain-specific,
injective mixing function ge. That is,

Xe = ge(ZSe),

where Se ⊆ H is a subset of indices. A priori, it is unknown whether a latent variable Zi with
i ∈ Se is shared across domains or domain-specific. Even the number of latent variables which are
shared across domains is unknown. Moreover, we only observe the marginal distribution of each
random vector Xe, but none of the joint distributions over pairs Xe, Xf for e ̸= f . Said differently,
observations across domains are unpaired. Assuming that the structural causal model among the
latent variables as well as the mixing functions are linear, our main contributions are:

1. We lay out conditions under which we can identify the joint distribution of X1, . . . , Xm.
2. We give additional conditions under which we are able to identify the causal structure among

the shared latent variables.

In particular, identifiability of the joint distribution across domains enables data translation. That
is, given observation x in domain e, translation to domain f can be achieved by computing
E[Xf |Xe = x]. Furthermore, identifying the causal structure among the shared latent variables lets
us study the effect of interventions on the different domains.

The main challenge in proving rigorous identifiability results for multi-domain data is that we cannot
apply existing results for single-domain data in each domain separately. Even if the causal structure
of the latent variables in a single domain is identifiable, it remains unclear how to combine multiple
causal structures, i.e., in which way latent variables are shared. We circumvent this problem via
a two-step approach: First, we extend the identifiability of linear independent component analysis
(Comon, 1994; Hyvärinen and Oja, 2000; Eriksson and Koivunen, 2004; Mesters and Zwiernik, 2022)
to the multi-domain setup, which allows us to identify the joint distribution and distinguish between
shared and domain-specific latent variables. Moreover, we identify an “overall mixing matrix” and,
in a second step, exploit sparsity constraints in this matrix to identify the causal structure among the
shared latent variables. This leverages recent results on causal discovery under measurement error in
single domains that also exploit sparsity (Xie et al., 2020; Chen et al., 2022; Xie et al., 2022; Huang
et al., 2022). Although we emphasize that our focus in this paper is on identifiability, our proofs
also suggest methods to learn the joint distribution as well as the shared causal graph from finite
samples. We provide algorithms for the noisy setting and, moreover, we analyze how the number
of domains reduce uncertainty with respect to the learned representation.

The paper is organized as follows. In the next paragraphs we discuss further related work. Section
2 provides a precise definition of the considered setup. In Section 3 we consider identifiability of
the joint distribution. Using these results, we study identifiability of the causal graph in Section
4. We conclude with a small simulation study as a proof of concept for the finite sample setting in
Section 5. Due to space constraints, the detailed discussion of the finite sample setting is deferred
to the Appendix. Moreover, the Appendix contains all proofs, discussions on the necessity of our
assumptions, and additional examples and simulation results.

Multi-domain Integration. Motivated by technological developments for measuring different
modalities at single-cell resolution, several methods have been proposed recently for domain
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Figure 1: Setup. A latent causal representation where multiple domains Xe provide different “views”
on subsets of the latent variables Zi. The domains may correspond to different data modalities such
as images, text or numerical data. Crucially, the observations across domains are unpaired, i.e., they
arise from different states of the latent causal model.

translation between unpaired data. The proposed methods rely on a variety of techniques, including
manifold alignment (Welch et al., 2017; Amodio and Krishnaswamy, 2018; Liu et al., 2019), matrix
factorization (Duren et al., 2018), correlation analysis (Barkas et al., 2019; Stuart et al., 2019),
coupled autoencoders (Yang and Uhler, 2019), optimal transport (Cao et al., 2022), regression
analysis (Yuan and Duren, 2022), and semisupervised learning (Lin et al., 2022). Implicitly, these
methods presume the existence of a shared latent space where the different modalities either
completely align or at least overlap. However, to the best of our knowledge, none of these methods
have rigorous identifiability guarantees, i.e., the methods are not guaranteed to recover a correct
domain translation mapping even for infinite data. Our work advances the theoretical understanding of
multi-domain integration by providing identifiability guarantees on recovering the shared latent space.

Group Independent Component Analysis. The primary tool that we use for identifiability is
linear independent component analysis (ICA) (Comon, 1994; Eriksson and Koivunen, 2004). Many
works extend ICA to the multi-domain setting. These methods primarily come from computational
neuroscience, where different domains correspond to different subjects or studies. However, to the best
of our knowledge, all prior works require pairing between samples. These works can be categorized
based on whether the samples are assumed to be voxels (Calhoun et al., 2001; Esposito et al., 2005),
time points (Svensén et al., 2002; Varoquaux et al., 2009; Hyvärinen and Ramkumar, 2013), or either
(Beckmann and Smith, 2005; Sui et al., 2009). For reviews, see Calhoun et al. (2009) and Chabriel et al.
(2014). Related are methods for independent vector analysis (Kim et al., 2006; Anderson et al., 2014;
Bhinge et al., 2019) and multiset canonical correlation analysis (Nielsen, 2002; Li et al., 2011; Klami
et al., 2014), which allow the latent variables to take on different values in each domain but still require
sample pairing. Most of the mentioned methods lack identifiability guarantees, only newer work
(Richard et al., 2021) provides sufficient conditions for identifiability. Furthermore, all mentioned
methods assume that every latent variable is shared across all domains, while our setup allows for
shared and domain-specific latent variables. Some methods, e.g., Lukic et al. (2002), Maneshi et al.
(2016), and Pandeva and Forré (2023), permit both shared and domain-specific components, but only
consider the paired setting. In this paper, we extend these results to the unpaired setting.

Latent Structure Discovery. Learning causal structure between latent variables has a long history,
e.g., in measurement models (Silva et al., 2006). One recent line of work studies the problem under
the assumption of access to interventional data (e.g., Liu et al., 2022; Squires et al., 2023). In
particular, Squires et al. (2023) show that the latent graph is identifiable if the interventions are
sufficiently diverse. Another line of work, closer to ours and not based on interventional data, shows
that the graph is identified under certain sparsity assumptions on the mixing functions (Xie et al.,
2020; Chen et al., 2022; Xie et al., 2022; Huang et al., 2022). However, these methods are not
suitable in our setup since they require paired data in a single domain. One cannot apply them in each
domain separately since it would be unclear how to combine the multiple latent causal graphs, that is,
which of the latent variables are shared. In this work, we lay out sparsity assumptions on the mixing

3



functions that are tailored to the unpaired multi-domain setup. The works of Adams et al. (2021) and
Zeng et al. (2021) may be considered closest to ours as they also treat a setting with multiple domains
and unpaired data. However, our setup and results are more general. Adams et al. (2021) assume
that the number of observed variables are the same in each domain, whereas we consider domains
of different dimensions corresponding to the fact that observations may be of very different nature.
Further, we allow for shared and domain-specific latent variables, where the number of shared latent
variables is unknown, while in Adams et al. (2021) it is assumed that all latent variables are shared.
Compared to Zeng et al. (2021), we consider a general but fixed number of observed variables, while
Zeng et al. (2021) only show identifiability of the full model in a setup where the number of observed
variables in each domain increases to infinity. On a more technical level, the conditions in Zeng et al.
(2021) require two pure children to identify the shared latent graph, while we prove identifiability
under the weaker assumption of two partial pure children; see Section 4 for precise definitions.

Notation. Let N be the set of nonnegative integers. For positive n ∈ N, we define [n] = {1, . . . , n}.
For a matrix M ∈ Ra×b, we denote by MA,B the submatrix containing the rows indexed by A ⊆ [a]
and the columns indexed by B ⊆ [b]. Moreover, we write MB for the submatrix containing all
rows but only the subset of columns indexed by B. Similarly, for a tuple x = (x1, . . . , xb), we
denote by xB the tuple only containing the entries indexed by B. A matrix Q = Qσ ∈ Rp×p is a
signed permutation matrix if it can be written as the product of a diagonal matrix D with entries
Dii ∈ {±1} and a permutation matrix Q̃σ with entries (Q̃σ)ij = 1j=σ(i), where σ is a permutation
on p elements. Let P be a p-dimensional joint probability measure of a collection of random variables
Y1, . . . , Yp. Then we denote by Pi the marginal probability measure such that Yi ∼ Pi. We say that
P has independent marginals if the random variables Yi are mutually independent. Moreover, we
denote byM#P the d-dimensional push-forward measure under the linear map defined by the matrix
M ∈ Rd×p. If Q is a signed permutation matrix and the probability measure P has independent
marginals, then Q#P also has independent marginals. For univariate probability measures we use
the shorthand (−1)#P = −P .

2 Setup

Let H = [h] for h ≥ 1, and let Z = (Z1, . . . , Zh) be latent random variables that follow a linear
structural equation model. That is, the variables are related by a linear equation

Z = AZ + ε, (1)
with h × h parameter matrix A = (aij) and zero-mean, independent random variables ε =
(ε1, . . . , εh) that represent stochastic errors. Assume that we have observed random vectorsXe ∈ Rde

in multiple domains of interest e ∈ [m], where the dimension de may vary across domains. Each
random vector is the image under a linear function of a subset of the latent variables. In particular,
we assume that there is a subset L ⊆ H representing the shared latent space such that each Xe is
generated via the mechanism

Xe = Ge ·
(
ZL
ZIe

)
, (2)

where Ie ⊆ H \ L. We say that the latent variable ZIe are domain-specific for domain e ∈ [m] while
the latent variables ZL are shared across all domains. As already noted, we are motivated by settings
where the shared latent variables ZL capture the key causal relations and the different domains are
able to give us combined information about these relations. Likewise, we may think about the domain-
specific latent variablesZIe as “noise” in each domain, independent of the shared latent variables. Spe-
cific models are now derived from (1)-(2) by assuming specific (but unknown) sparsity patterns in A
andGe. Each model is given by a “large” directed acyclic graph (DAG) that encodes the multi-domain
setup. To formalize this, we introduce pairwise disjoint index sets V1, . . . , Vm, where Ve indexes the
coordinates of Xe, i.e., Xe = (Xv : v ∈ Ve) and |Ve| = de. Then V = V1 ∪ · · · ∪ Vm indexes all
observed random variables. We define an m-domain graph such that the latent nodes are the only
parents of observed nodes and there are no edges between shared and domain-specific latent nodes.
Definition 2.1. Let G be a DAG whose node set is the disjoint unionH ∪ V = H ∪ V1 ∪ · · · ∪ Vm.
Let D be the edge set of G. Then G is an m-domain graph with shared latent nodes L = [ℓ] ⊆ H if
the following is satisfied:

1. All parent sets contain only latent variables, i.e., pa(v) = {w : w → v ∈ D} ⊆ H for all
v ∈ H ∪ V .
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V1 V2

Figure 2: Compact version of a 2-domain graph G2 with five latent nodes and two domains V1 and
V2. All observed nodes in each domain are represented by a single grey node. We draw a dashed blue
edge from latent node h ∈ H to domain Ve ⊆ V if h ∈ Se = pa(Ve). The random vectors associated
to the two domains are uncoupled, that is, we do not observe their joint distribution.

2. The set L consists of the common parents of variables in all different domains, i.e., u ∈ L if
and only if u ∈ pa(v) ∩ pa(w) for v ∈ Ve, w ∈ Vf with e ̸= f .

3. Let Ie = Se \ L be the domain-specific latent nodes, where Se := pa(Ve) = ∪v∈Ve
pa(v) ⊆

H. Then there are no edges in D that connect a node in L and a node ∪me=1Ie or that connect
a node in Ie and a node in If for any e ̸= f .

To emphasize that a given DAG is an m-domain graph we write Gm instead of G. We also say that
Se is the set of latent parents in domain e and denote its cardinality by se = |Se|. Note that the
third condition in Definition 2.1 does not exclude causal relations between the domain-specific latent
variables, that is, there may be edges v → w for v, w ∈ Ie. Since the sets Ie satisfy Ie ∩ If = ∅
for e ̸= f , we specify w.l.o.g. the indexing convention Ie = {ℓ+ 1+

∑e−1
i=1 |Ii|, . . . , ℓ+

∑e
i=1 |Ii|}

and h = ℓ+
∑m

e=1 |Ie|.
Example 2.2. Consider the compact version of a 2-domain graph in Figure 2. There are h = 5
latent nodes where L = {1, 2} are shared and I1 = {3, 4} and I2 = {5} are domain-specific. A full
m-domain graph is given in Appendix B.

Each m-domain graph postulates a statistical model that corresponds to the structural equation model
in (1) and the mechanisms in (2), with potentially sparse matrices A and Ge. For two sets of nodes
W,Y ⊆ H ∪ V , we denote by DWY the subset of edges DWY = {y → w ∈ D : w ∈ W, y ∈ Y }.
Moreover, let RDWY be the set of real |W | × |Y | matrices M = (mwy) with rows indexed by W and
columns indexed by Y , such that the support is given by DWY , that is, mwy = 0 if y → w ̸∈ DWY .

Definition 2.3. Let Gm = (H ∪ V,D) be an m-domain graph. Define the map

ϕGm : RDV H × RDHH −→ R|V |×|H|

(G,A) 7−→ G · (I −A)−1.

Then the multi-domain causal representation (MDCR) modelM(Gm) is given by the set of probability
measures PX = B#P , where B ∈ Im(ϕGm) and P is an h-dimensional probability measure with
independent, mean-zero marginals Pi, i ∈ H. We say that the pair (B,P ) is a representation of
PX ∈M(Gm).

Definition 2.3 corresponds to the model defined in Equations (1) and (2). If PX ∈ M(Gm) with
representation (B,P ), then PX is the joint distribution of the observed domains X = (X1, . . . , Xm).
The distribution of the random variables εi in Equation (1) is given by the marginals Pi. Moreover,
for any matrix G ∈ RDV H , we denote the submatrix Ge = GVe,Se ∈ Rde×se which coincides with
the matrix Ge from Equation (2). For the graph in Figure 2, we compute a concrete example of the
matrix B in Example B.1 in the Appendix. Importantly, in the rest of the paper we assume to only
observe the marginal distribution PXe in each domain but not the joint distribution PX .

Ultimately, we are interested in recovering the graph GL = (L, DLL) among the shared latent nodes.
We proceed by a two-step approach: In Section 3 we recover the representation (B,P ) of the joint
distribution PX . To be precise, we recover a matrix B̂ that is equal to B up to certain permutations
of the columns. Then we use the matrix B̂ to recover the shared latent graph GL in Section 4 and
show that recovery is possible up to trivial relabeling of latent nodes that appear in the same position
of the causal order.
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3 Joint Distribution

To identify the joint distribution PX , we apply identifiability results from linear ICA in each domain
separately and match the recovered probability measures Pi for identifying which of them are shared,
that is, whether or not i ∈ L. Let Gm be an m-domain graph with shared latent nodes L, and let
PX ∈ M(Gm) with representation (B,P ). Recall that B = G(I − A)−1 with G ∈ RDV H and
A ∈ RDHH . We make the following technical assumptions.

(C1) (Different error distributions.) The marginal distributions Pi, i ∈ H are non-degenerate,
non-symmetric and have unit variance. Moreover, the measures are pairwise different to
each other and to the flipped versions, that is, Pi ̸= Pj and Pi ̸= −Pj for all i, j ∈ H
with i ̸= j. Subsequently, we let d be a distance on the set of univariate Borel probability
measures such that d(Pi, Pj) ̸= 0 and d(Pi,−Pj) ̸= 0 for i ̸= j.

(C2) (Full rank of mixing.) For each e ∈ [m], the matrix Ge = GVe,Se ∈ Rde×se is of full
column rank.

By not allowing symmetric distributions in Condition (C1), we assume in particular that the
distributions of the errors are non-Gaussian. Non-Gaussianity together with the assumptions
of pairwise different and non-symmetric error distributions allow us to extend the results on
identifiability of linear ICA to the unpaired multi-domain setup and to identify the joint distribution.
In particular, the assumption of pairwise different error distributions allows for “matching”
the distributions across domains to identify the ones corresponding to the shared latent space.
Non-symmetry accounts for the sign-indeterminacy of linear ICA when matching the distributions.
We discuss the necessity of these assumptions in Remark 3.2 and, in more detail, in Appendix C.
Note that Condition (C1) is always satisfied in a generic sense, that is, randomly chosen probability
distributions on the real line are pairwise different and non-symmetric with probability one. Finally,
Condition (C2) requires in particular that for each shared latent node k ∈ L there is at least one node
v ∈ Ve in every domain e ∈ [m] such that k ∈ pa(v).

Under Conditions (C1) and (C2) we are able to derive a sufficient condition for identifiability of the
joint distribution. Let SP (p) be the set of p× p signed permutation matrices. We define the set of
signed permutation block matrices:

Π = {diag(ΨL,ΨI1 , . . . ,ΨIm) : ΨL ∈ SP (ℓ) and ΨIe ∈ SP (|Ie|)} .
Our main result is the following.
Theorem 3.1. Let Gm be anm-domain graph with shared latent nodesL = [ℓ], and let PX ∈M(Gm)
with representation (B,P ). Suppose that m ≥ 2 and that Conditions (C1) and (C2) are satisfied. Let
(ℓ̂, B̂, P̂ ) be the output of Algorithm 1. Then ℓ̂ = ℓ and

B̂ = B ·Ψ and P̂ = Ψ⊤#P,

for a signed permutation block matrix Ψ ∈ Π.

Theorem 3.1 says that the matrix B is identifiable up to signed block permutations of the columns.
Under the assumptions of Theorem 3.1 it holds that B̂#P̂ is equal to PX . That is, the joint distribution
of the domains is identifiable.
Remark 3.2. While Theorem 3.1 is a sufficient condition for identifiability of the joint distribution,
we emphasize that pairwise different error distributions are in most cases also necessary; we state
the exact necessary condition in Proposition C.1 in the Appendix. Said differently, if one is willing
to assume that conceptually different latent variables also follow a different distribution, then
identification of these variables is possible, and otherwise (in most cases) not. Apart from pairwise
different error distributions, non-symmetry is then required to fully identify the joint distribution
whose dependency structure is determined by the shared latent variables. If the additional assumption
on non-symmetry is not satisfied, then it is still possible to identify the shared, conceptually different
latent variables, which becomes clear by inspecting the proofs of Theorem 3.1 and Proposition
C.1. The non-identifiability of the joint distribution would only result in sign indeterminacy, that
is, entries of the matrix B̂ could have a flipped sign.
Remark 3.3. By checking the proof of Theorem 3.1, the careful reader may notice that the statement
of the theorem still holds true when we relax the third condition in the definition of an m-domain
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Algorithm 1 IdentifyJointDistribution
1: Input: Probability measures PXe for all e ∈ [m].
2: Output: Number of shared latent variables ℓ̂, matrix B̂ and probability measure P̂ with indepen-

dent marginals.
3: for e ∈ [m] do
4: Linear ICA: Find the smallest value ŝe such that PXe = B̂e#P e for a matrix B̂e ∈ Rde×ŝe

and an ŝe-dimensional probability measure P e with independent, mean-zero and unit-variance
marginals P e

i .
5: end for
6: Matching: Let ℓ̂ be the maximal number such that there are signed permutation matrices
{Qe}e∈[m] satisfying

d([(Qe)⊤#P e]i, [(Q
f )⊤#P f ]i) = 0

for all i = 1, . . . , ℓ̂ and for all f ̸= e. Let L̂ = {1, . . . , ℓ̂}.
7: Construct the matrix B̂ and the tuple of probability measures P̂ given by

B̂ =




[B̂1Q1]L̂ [B̂1Q1][ŝ1]\L̂
...

. . .
[B̂mQm]L̂ [B̂mQm][ŝm]\L̂


 and P̂ =




[(Q1)⊤#P 1]L̂
[(Q1)⊤#P 1][ŝ1]\L̂

...
[(Qm)⊤#Pm][ŝm]\L̂


 .

8: return (ℓ̂, B̂, P̂ ).

graph. That is, one may allow directed paths from shared to domain-specific latent nodes but not vice
versa. For example, an additional edge 1→ 4 between the latent nodes 1 and 4 would be allowed in
the graph in Figure 2. In this case, the dependency structure of the domains is still determined by the
shared latent space. However, the structural assumption that there are no edges between shared and
domain-specific latent nodes is made for identifiability of the shared latent graph in Section 4.
Remark 3.4. The computational complexity of Algorithm 1 depends on the complexity of the chosen
linear ICA algorithm, to which we make m calls. Otherwise, the dominant part is the matching in
Line 6 with worst case complexity O(m ·maxe∈[m] d

2
e), where we recall that m is the number of

domains and de is the dimension of domain e.

In Appendix D we state a complete version of Algorithm 1 for the finite sample setting. In particular,
we provide a method for the matching in Line 6 based on the two-sample Kolmogorov-Smirnov test.
For finite samples, there might occur false discoveries, that is, distributions are matched that are
actually not the same. With our method, we show that the probability of falsely discovering shared
nodes shrinks exponentially with the number of domains.

4 Identifiability of the Causal Graph

We return to our goal of identifying the causal graph GL = (L, DLL) among the shared latent nodes.
By Theorem 3.1, we can identify the representation (B,P ) of PX ∈ M(Gm) from the marginal
distributions. In particular, we recover the matrix B̂ = BΨ for a signed permutation block matrix
Ψ ∈ Π. Moreover, we know which columns correspond to the shared latent nodes. That is, we know
that the submatrix B̂L obtained by only considering the columns indexed by L = L̂ = [ℓ] is equal to
BLΨL, where ΨL ∈ SP (ℓ).
Problem 4.1. Let B ∈ Im(ϕGm) for an m-domain graph Gm with shared latent nodes L. Given
B̂L = BLΨL with ΨL a signed permutation matrix, when is it possible to identify the graph GL?

Recently, Xie et al. (2022) and Dai et al. (2022) show that, in the one-domain setting with independent
additive noise, the latent graph can be identified if each latent variable has at least two pure children.
We obtain a comparable result tailored to the multi-domain setup.
Definition 4.2. Let Gm = (H ∪ V,D) be an m-domain graph with shared latent nodes L ⊆ H. For
k ∈ L, we say that an observed node v ∈ V is a partial pure child of k if pa(v) ∩ L = {k}.
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Algorithm 2 IdentifySharedGraph

1: Input: Matrix B∗ ∈ R|V |×ℓ.
2: Output: Parameter matrix Â ∈ Rℓ×ℓ.
3: Remove rows B∗

i,L from the matrix B∗ that are completely zero.
4: Find tuples (ik, jk)k∈L with ik ̸= jk such that

(i) rank(B∗
{ik,jk},L) = 1 for all k ∈ L and

(ii) rank(B∗
{ik,iq},L) = 2 for all k, q ∈ L with k ̸= q.

5: Let I = {i1, . . . , iℓ} and consider B∗
I,L ∈ Rℓ×ℓ.

6: Find two permutation matrices R1 and R2 such that W = R1B
∗
I,LR2 is lower triangular.

7: Multiply each column of W by the sign of its corresponding diagonal element. This yields a new
matrix W̃ with all diagonal elements positive.

8: Divide each row of W̃ by its corresponding diagonal element. This yields a new matrix W̃ ′ with
all diagonal elements equal to one.

9: Compute Â = I − (W̃ ′)−1.
10: return Â.

For a partial pure child v ∈ V , there may still be domain-specific latent nodes that are parents of v.
Definition 4.2 only requires that there is exactly one parent that is in the set L. This explains the
name partial pure child; see Example B.2 in the Appendix for further elaboration.

W.l.o.g. we assume in this section that the shared latent nodes are topologically ordered such that
i→ j ∈ DLL implies i < j for all i, j ∈ L. We further assume:

(C3) (Two partial pure children across domains.) For each shared latent node k ∈ L, there exist
two partial pure children.

(C4) (Rank faithfulness.) For any two subsets Y ⊆ V and W ⊆ L, we assume that

rank(BY,W ) = max
B′∈Im(ϕGm )

rank(B′
Y,W ).

The two partial pure children required in Condition (C3) may either be in distinct domains or in a single
domain. This is a sparsity condition on the large mixing matrix G. In Appendix C we discuss that the
identification of the joint latent graph is impossible without any sparsity assumptions. We conjecture
that two partial pure children are not necessary, but we leave it open for future work to find a non-trivial
necessary condition. Roughly speaking, we assume in Condition (C4) that no configuration of edge pa-
rameters coincidentally yields low rank. The set of matrices B ∈ Im(ϕGm

) that violates (C4) is a sub-
set of measure zero of Im(ϕGm) with respect to the Lebesgue measure. Note that our conditions do not
impose constraints on the graph GL. Our main tool to tackle Problem 4.1 will be the following lemma.

Lemma 4.3. Let B ∈ Im(ϕGm
) for an m-domain graph Gm. Suppose that Condition (C4) is satisfied

and that there are no zero-rows in BL. Let v, w ∈ V . Then rank(B{v,w},L) = 1 if and only if there
is a node k ∈ L such that both v and w are partial pure children of k.

The condition on no zero-rows in Lemma 4.3 is needed since we always have rank(B{v,w},L) ≤ 1
if one of the two rows is zero. However, this is no additional structural assumption since we allow
zero-rows when identifying the latent graph; c.f. Algorithm 2. The lemma allows us to find partial
pure children by testing ranks on the matrix B̂L. If (i1, j1) and (i2, j2) are partial pure children of two
nodes in L, we make sure that these two nodes are different by checking that rank(B{i1,i2},L) = 2.

For a DAG G = (V,D), we define S(G) to be the set of permutations on |V | elements that are
consistent with the DAG, i.e., σ ∈ S(G) if and only if σ(i) < σ(j) for all edges i → j ∈ D. The
following result is the main result of this section.

Theorem 4.4. Let B̂ = BΨ with B ∈ Im(ϕGm
) and Ψ ∈ Π, and define B∗ = B̂L to be the input

of Algorithm 2. Assume that Conditions (C3) and (C4) are satisfied, and let Â be the output of
Algorithm 2. Then Â = Q⊤

σAL,LQσ for a signed permutation matrix Qσ with σ ∈ S(GL). Moreover,
if Gvk > 0 for G ∈ RDV H whenever v is a pure child of k, then Qσ is a permutation matrix.
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Theorem 4.4 says that the graph GL can be recovered up to a permutation of the nodes that preserves
the property that i→ j implies i < j; see Remark 4.5. Since the columns of the matrix B̂ are not
only permuted but also of different signs, we solve the sign indeterminacy column-wise in Line 7
before removing the scaling indeterminacy row-wise in Line 8. In case the coefficients of partial pure
children are positive, this ensures that Qσ is a permutation matrix and we have no sign indeterminacy.
In Appendix D we adapt Algorithm 2 for the empirical data setting, where we only have B̂L ≈ BLψL.
Remark 4.5. Let Â be the output of Alg. 2. Then we construct the graph ĜL = (L, D̂LL) as the graph
with edges j → i ∈ D̂LL if and only if Âij ̸= 0. Condition (C4) ensures that ĜL is equivalent to GL
in the sense that there is a permutation σ ∈ S(GL) such that D̂LL = {σ(i)→ σ(j) : i→ j ∈ DLL}.
Example 4.6. As highlighted in the introduction, the unpaired multi-domain setup is motivated
by applications from single-cell biology. For example, consider the domains of (i) gene expression
and (ii) high-level phenotypic features extracted from imaging assays (e.g. McQuin et al., 2018).
We argue that the requirement of two partial pure children is justifiable on such data as follows. The
condition requires, for example, that for each shared latent variable, (i) the expression of some gene
depends only upon that shared latent variable plus domain-specific latent variables, and (ii) one of
the high-level phenotypic features depends only on the same latent feature plus domain-specific
latent variables. Many genes have highly specialized functions, so (i) is realistic, and similarly many
phenotypic features are primarily controlled by specific pathways, so (ii) is justified.
Remark 4.7. In Algorithm 2, we determine the rank of a matrix by Singular Value Decomposition,
which has worst case complexity O(mnmin{n,m}) for an m × n matrix. Since Line 4 is the
dominant part, we conclude that the worst case complexity of Algorithm 2 is O(|V |2 · ℓ).

5 Simulations

In this section we report on a small simulation study to illustrate the validity of our adapted algorithms
for finite samples (detailed in Appendix D). We emphasize that this should only serve as a proof
of concept as the focus of our work lies on identifiability. In future work one may develop more
sophisticated methods; c.f. Appendix G. The adapted algorithms have a hyperparameter γ, which is a
threshold on singular values to determine the rank of a matrix. In our simulations we use γ = 0.2.

Data Generation. In each experiment we generate 1000 random models with ℓ = 3 shared latent
nodes. We consider different numbers of domains m ∈ {2, 3} and assume that there are |Ie| = 2
domain-specific latent nodes for each domain. The dimensions are given by de = d/m for all e ∈ [m]
and d = 30. We sample the m-domain graph Gm on the shared latent nodes as follows. First, we
sample the graph GL from an Erdős-Rényi model with edge probability 0.75 and assume that there are
no edges between other latent nodes, that is, between L andH\L and withinH\L. Then we fix two
partial pure children for each shared latent node k ∈ L and collect them in the set W . The remaining
edges fromL to V \W and fromH to V are sampled from an Erdős-Rényi model with edge probability
0.9. Finally, the (nonzero) entries of G and A are sampled from Unif(±[0.25, 1]). The distributions
of the error variables are specified in Appendix E. For simplicity, we assume that the sample sizes
coincide, that is, ne = n for all e ∈ [m], and consider n ∈ {1000, 2500, 5000, 10000, 25000}.
Results. First, we plot the average number of shared nodes ℓ̂ in our experiments in Figure 3 (a).
Especially for low sample sizes, we see that fewer shared nodes are detected with more domains.
However, by inspecting the error bars we also see that the probability of detecting too many nodes
ℓ̂ > ℓ decreases drastically when considering 3 instead of 2 domains. This suggests that the number
of falsely detected shared nodes is very low, as expected by Theorem D.3. Our findings show that
more domains lead to a more conservative discovery of shared nodes, but whenever a shared node
is determined this is more certain. Moreover, we measure the error in estimating B̂L̂ in Figure 3
(b), that is, the error in the “shared” columns. We take

scoreB(B̂L̂) =





min
Ψ∈SP (ℓ)

β
−1/2

ℓ,ℓ̂
∥B̂L̂−[BLΨ]L̂∥F if ℓ̂ ≤ ℓ,

min
Ψ∈SP (ℓ̂)

β
−1/2

ℓ,ℓ̂
∥[B̂L̂Ψ]L−BL∥F if ℓ̂ > ℓ,

where ∥ · ∥F denotes the Frobenius norm and βℓ,ℓ̂ = min{ℓ, ℓ̂} ·∑m
e=1 de denotes the number

of entries of the matrix over which the norm is taken. In the cases ℓ = ℓ̂, we also measure the
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(a) (b) (c)
Figure 3: Results. Logarithmic scale on the x-axis. Error bars in (a) are one standard deviation of the
mean and in (b) and (c) they are the interquartile range.

performance of recovering the shared latent graph GL in Figure 3 (c) by taking

scoreA(Â) = min
Qσ∈SP (ℓ) s.t. σ∈S(GL)

1

ℓ
∥Q⊤

σ ÂQσ −AL,L∥F .

As expected, the median estimation errors for BL and AL,L decrease with increasing sample size. In
Appendix F we provide additional simulations with larger ℓ. Moreover, we consider setups where we
violate specific assumptions, such as pairwise different distributions (C1) and two partial pure children
(C3). The results emphasize that the conditions are necessary for the algorithms provided. The com-
putations were performed on a single thread of an Intel Xeon Gold 6242R processor (3.1 GHz), with
a total computation time of 12 hours for all simulations presented in this paper (including Appendix).

6 Discussion

This work introduces the problem of causal representation learning from unpaired multi-domain
observations, in which multiple domains provide complementary information about a set of shared
latent nodes that are the causal quantities of primary interest. For this problem, we laid out a setting
in which we can provably identify the causal relations among the shared latent nodes. To identify
the desired causal structure, we proposed a two-step approach where we first make use of linear
ICA in each domain separately and match the recovered error distributions to identify shared nodes
and the joint distribution of the domains. In the second step, we identify the causal structure among
the shared latent variables by testing rank deficiencies in the “overall mixing matrix” B. To the
best of our knowledge, our guarantees are the first principled identifiability results for shared causal
representations in a general, unpaired multi-domain setting.

We proposed algorithms for recovering the joint distribution and the shared latent space making our
proofs constructive. While our focus is on identifiability guarantees, we show in Appendix D how
our proofs give rise to algorithms for the finite sample setting. Moreover, we propose a method to
match approximate error distributions and show that the probability of falsely discovering shared
nodes decreases exponentially in the number of domains. Our work opens up numerous directions
for future work as we discuss in Appendix G.
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A Proofs

Proof of Theorem 3.1. Let PX ∈ M(Gm) for an m-domain graph Gm = (H ∪ V,D) with shared
latent nodes L = [ℓ] and representation (B,P ). By Condition (C1) the measure P has independent,
non-degenerate, non-symmetric marginals Pi, i ∈ H with mean zero and variance one. Moreover,
since B ∈ Im(ϕGm

), we have B = G(I −A)−1 for matrices G ∈ RDV H and A ∈ RDHH .

Fix one domain e ∈ [m]. Recall that we denote by Se = pa(Ve) = L ∪ Ie the set of latent parents in
domain e. Define the matrix

Be := GVe,Se
[(I −A)−1]Se,Se

= Ge[(I −A)−1]Se,Se
,

and observe that we can write PXe = BVe,H#P = Be#PSe
. This is due to the fact thatGVe,H\Se

=

0 and [(I −A)−1]Se,H\Se
= 0 by the definition of an m-domain graph.

In particular, the equality PXe = Be#PSe shows that the representation in Line 4 of Algorithm 1
exists. Now, we show that it is unique up to signed permutation by applying results on identifiability
of linear ICA. SinceGe has full column rank by Condition (C2) and [(I−A)−1]Se,Se

is invertible, the
matrix Be also has full column rank. Let PXe = B̂e#P e be any representation, where B̂e ∈ Rde×ŝe

and P e is an ŝe-dimensional probability measure with independent, non-degenerate marginals P e
i .

Due to Condition (C1), all probability measures Pi are non-Gaussian and non-degenerate and
therefore we have by Eriksson and Koivunen (2004, Theorem 3 and 4) the identities

B̂e = BeReΛe and P e = Λe(Re)⊤#PSe
, (3)

where Λe is an se× se diagonal matrix with nonzero entries and Re is an se× se permutation matrix.
In particular, we have ŝe = se, which means that B̂e ∈ Rde×se and that P e is an se-dimensional
probability measure. Line 4 also requires that each marginal P e

i has unit variance. This removes the
scaling indeterminacy in (3) and we have

B̂e = BeReDe and P e = De(Re)⊤#PSe
,

whereDe is a diagonal matrix with entriesDe
ii ∈ {±1}. In particular, this means that the distributions

P e and PSe
coincide up to permutation and sign of the marginals.

The matching in Line 6 identifies which components of P e are shared. By Condition (C1), two
components of different domains P e

i and P f
j are shared if and only if they coincide up to sign, that

is, if and only if d(P e
i , P

f
j ) = 0 or d(P e

i ,−P f
j ) = 0. If their distribution coincide up to sign, than

either d(P e
i , P

f
j ) = 0 or d(P e

i ,−P f
j ) = 0 but not both since Condition (C1) requires the distribution

of the error variables to be non-symmetric. We conclude that in each domain e ∈ [m] there exists an
se × se signed permutation matrix Qe such that

d([(Qe)⊤#P e]i, [(Q
f )⊤#P f ]i) = 0 (4)

for all i = 1, . . . , ℓ̂ and for all f ̸= e. In particular, ℓ̂ = ℓ and L̂ = L.

It remains to show that B̂ = BΨ and P̂ = Ψ⊤#P for a signed permutation block matrix Ψ ∈ Π. By
Equation (4), the distributions [(Qe)⊤#P e]L and [(Qe)⊤#P e]L coincide, which means that

(Qe)⊤#P e = (Qe)⊤De(Re)⊤#PSe =

(
Ψ⊤

L 0
0 Ψ⊤

Ie

)
#

(
PL
PIe

)
, (5)

where ΨL is an ℓ × ℓ signed permutation matrix and ΨIe is an |Ie| × |Ie| signed permutation
matrix. Importantly, the matrix Ψ⊤

L does not depend on the domain e ∈ [m]. Hence, the matrix
Φe := ReDeQe is a signed permutation matrix with block structure as in Equation (5). Moreover,
we have

B̂eQe = BeReDeQe = BeΦe =
(
Be

LΨL Be
[se]\LΨIe

)
,
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which means that the matrix B̂ can be factorized as

B̂ =




[B̂1Q1]L̂ [B̂1Q1][ŝ1]\L̂
...

. . .
[B̂mQm]L̂ [B̂mQm][ŝm]\L̂




=



B1

LΨL B1
[s1]\LΨI1

...
. . .

Bm
L ΨL Bm

[sm]\LΨIm




=



B1

L B1
[s1]\L

...
. . .

Bm
L Bm

[sm]\L


 ·




ΨL
ΨI1

. . .
ΨIm


 = B ·Ψ,

where Ψ ∈ Π. Similarly, we have for all e ∈ [m],

(Qe)⊤#P e = (Φe)⊤#PSe
=

(
(ΨL)⊤#PL
(ΨIe)

⊤#PIe

)
.

We conclude that

P̂ =




[(Q1)⊤#P 1]L̂
[(Q1)⊤#P 1][ŝ1]\L̂

...
[(Qm)⊤#Pm][ŝm]\L̂


 =




(ΨL)⊤#PL
(ΨI1)

⊤#PI1
...

(ΨIm)⊤#PIm




=




ΨL
ΨI1

. . .
ΨIm




⊤

#




PL
PI1

...
PIm


 = Ψ⊤#P.

Before proving Lemma 4.3 and Theorem 4.4 we fix some notation. Let Gm = (V ∪ H, D) be an
m-domain graph. We denote by anc(v) = {k ∈ H : there is a directed path k → · · · → v in Gm}
the ancestors of a node v ∈ V . For subsets W ⊆ V , we denote anc(W ) =

⋃
v∈W anc(w). Moreover,

for L ⊆ H and v ∈ V , we write shortly paL(v) = pa(v) ∩ L.

Proof of Lemma 4.3. Let B ∈ Im(ϕGm). Then we can write B = G · (I −A)−1 with

G =




GV1,L GV1,I1
...

. . .
GVm,L GVm,Im


.

Moreover, observe that, by the definition of an m-domain-graph, the matrix BV,L factorizes as

BV,L = GV,L[(I −A)−1]L,L.

Now, suppose that i and j are partial pure children of a fixed node k ∈ L. Then paL(i) = {k} =
paL(j). In particular, the only entry that may be nonzero in the row Gi,L is given by Gik and the
only entry that may be nonzero in the row Gj,L is given by Gjk. Thus, we have

Bi,L =
∑

q∈L
Giq[(I −A)−1]q,L = Gik[(I −A)−1]k,L.

Similarly, it follows that Bj,L = Gjk[(I − A)−1]k,L. This means that the row Bj,L is a multiple
of the row Bi,L and we conclude that rank(B{i,j},L) ≤ 1. Equality holds due to the faithfulness
condition (C4) which implies that Bik ̸= 0 and Bjk ̸= 0, i.e., B{i,j},L is not the null matrix.
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For the other direction suppose that rank(B{i,j},L) = 1. By applying the Lindström-Gessel-Viennot
Lemma (Gessel and Viennot, 1985; Lindström, 1973) equivalently as in Dai et al. (2022, Theorem 1
and 2), it can be seen that

rank(B{i,j},L) ≤ min {|S| : S is a vertex cut from anc(L) to {i, j}} , (6)

where S is a vertex cut from anc(L) to {i, j} if and only if there exists no directed path in Gm from
anc(L) to {i, j} without passing through S. Moreover, equality holds in (6) for generic (almost all)
choices of parameters. Since we assumed rank faithfulness in Condition (C4) we exclude cases where
the inequality is strict and therefore have equality. By the definition of an m-domain graph we have
that anc(L) = L. Thus, if rank(B{i,j},L) = 1, there must be a single node k ∈ L such that {k} is a
vertex cut from L to {i, j}. But then it follows that i and j have to be partial pure children of k by the
definition of an m-domain graph and by using the assumption that there are no zero-rows in BL.

To prove Theorem 4.4 we need the following auxiliary lemma.
Lemma A.1. Let G = (V,D) be a DAG with topologically ordered nodes V = [p] and let M be a
lower triangular matrix with entries Mii ̸= 0 for all i = 1, . . . , p and Mij ̸= 0 if and only if there
is a directed path j → · · · → i in G. Let Qσ1

and Qσ2
be permutation matrices. Then the matrix

Qσ1
MQσ2

is lower triangular if and only if σ2 = σ−1
1 and σ2 ∈ S(G).

Proof of Lemma A.1. By the definition of a permutation matrix, we have

[Qσ1MQσ2 ]ij =Mσ1(i)σ
−1
2 (j) or, equivalently, [Qσ1MQσ2 ]σ−1

1 (i)σ2(j)
=Mij . (7)

First, suppose that σ2 = σ−1
1 and σ2 ∈ S(G), and let i, j ∈ [p] such that σ2(i) < σ2(j). Then, by

the definition of S(G), there is no directed path j → · · · → i in the graph G and therefore we have
Mij = 0. But this means that [Qσ1

MQσ2
]σ2(i)σ2(j) = 0 and we conclude that the matrix Qσ1

MQσ2

is lower triangular.

Now, assume that Qσ1MQσ2 is lower triangular, where σ1 and σ2 are arbitrary permutations on
the set [p]. Since M has no zeros on the diagonal, we have Mii = [Qσ1MQσ2 ]σ−1

1 (i)σ2(i)
̸= 0

for all i = 1, . . . , p. It follows that σ−1
1 (i) ≥ σ2(i) for all i = 1, . . . , p because Qσ1MQσ2 is

lower triangular. But this is only possible if the permutations coincide on all elements, i.e., we have
σ2 = σ−1

1 . It remains to show that σ2 = σ−1
1 ∈ S(G). For any edge j → i ∈ D we have that

Mij ̸= 0. Recalling Equation (7) this means that [Qσ1
MQσ2

]σ2(i)σ2(j) ̸= 0. But since Qσ1
MQσ2

is
lower triangular this can only be the case if σ2(j) < σ2(i) which proves that σ2 ∈ S(G).

Proof of Theorem 4.4. Each latent node in L has two partial pure children by Condition (C3). After
removing zero-rows in Line 3 of Algorithm 2 it holds by Lemma 4.3 that rank(B∗

{i,j},L) = 1 if
and only if there is a latent node in L such that i and j are both partial pure children of that latent
node. Hence, each tuple (ik, jk)k∈L in Line 4 of Algorithm 2 consists of two partial pure children of
a certain latent node. The requirement rank(B∗

{ik,iq},L) = 2 ensures that each pair of partial pure
children has a different parent.

By the definition of an m-domain-graph and the fact that B∗ = B̂L, for I = {i1, . . . , iℓ}, we have
the factorization

B∗
I,L = BI,LΨL = GI,L(I −A)−1

L,LΨL = GI,L(I −AL,L)
−1ΨL, (8)

whereG ∈ RDV H ,A ∈ RDHH and ΨL is a signed permutation matrix. LetQ1 andQ2 be permutation
matrices and let Λ be a diagonal matrix with non-zero diagonal elements and let D be a diagonal
matrix with entries in {±1}. Then we can rewrite Equation (8) as

B∗
I,L = Q1 Λ(I −AL,L)

−1D︸ ︷︷ ︸
=:M

Q2.

Now, we apply Lemma A.1. Since we assume throughout Section 4 that the nodes L are topologically
ordered, the matrix M is lower triangular with no zeros on the diagonal. Moreover, by Condition
(C4) we have Mij ̸= 0 if and only if there is a directed path j → · · · → i in GL. In Line 6 we find
other permutation matrices R1 and R2 such that

W = R1B
∗
I,LR2 = (R1Q1)M(Q2R2)
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is lower triangular. Now, define the permutation matrices Qσ1 = R1Q1 and Qσ2 = Q2R2. Then we
have by Lemma A.1 that Qσ1

= Q⊤
σ2

and that σ2 ∈ S(GL). Hence, the matrix W factorizes as

W = Q⊤
σ2
MQσ2

= Q⊤
σ2
Λ(I −AL,L)

−1DQσ2
= Λ̃Q⊤

σ2
(I −AL,L)

−1Qσ2
D̃,

where Λ̃ and D̃ are diagonal matrices with the entries given by permutations of the entries of Λ
and D. Lines 7 and 8 address the scaling and sign matrices Λ̃ and D̃. In particular, we have that
W̃ ′ = D′Q⊤

σ2
(I −AL,L)−1Qσ2D

′ for another diagonal matrix D′ with entries in {±1}, since each
entry on the diagonal of W̃ ′ is equal to 1. Thus, we have

Â = I − (W̃ ′)−1

= I − (D′Q⊤
σ2
(I −AL,L)

−1Qσ2
D′)−1

= I −D′Q⊤
σ2
(I −AL,L)Qσ2D′

= D′Q⊤
σ2
AL,LQσ2D

′.

Since Qσ2
D′ is a signed permutation matrix with σ2 ∈ S(GL), the first part of the theorem is proved.

If Gvk > 0 whenever v is a pure child of k, the matrix Λ̃ only has positive entries which means that
D′ is equal to the identity matrix. This proves the second part.

B Additional Examples

The graph in Figure 4 is an m-domain graph corresponding to the compact version in Figure 2 in the
main paper.
Example B.1. Consider the m-domain graph in Figure 4. The linear structural equation model
among the latent variables is determined by lower triangular matrices of the form

A =




0 0 0 0 0
a21 0 0 0 0
0 0 0 0 0
0 0 a43 0 0
0 0 0 0 0


 .

Moreover, the domain-specific mixing matrices Ge are of the form

G1 =



g111 g112 g113 0
g121 0 g123 0
0 g132 g133 g134
g141 g142 g143 g144


 and G2 =




g211 0 g213
g221 g222 g223
0 g232 0
g241 g242 g243
g251 g252 0


 .

Since the shared latent nodes are given by L = {1, 2}, we have

G =




g111 g112 g113 0 0
g121 0 g123 0 0
0 g132 g133 g134 0
g141 g142 g143 g144 0
g211 0 0 0 g213
g221 g222 0 0 g223
0 g232 0 0 0
g241 g242 0 0 g243
g251 g252 0 0 0




and

B = G · (I −A)−1 =




a21g
1
12 + g111 g112 g113 0 0
g121 0 g123 0 0

a21g
1
32 g132 a43g

1
34 + g133 g134 0

a21g
1
42 + g141 g142 a43g

1
44 + g143 g144 0

g211 0 0 0 g213
a21g

2
22 + g221 g222 0 0 g223
a21g

2
32 g232 0 0 0

a21g
2
42 + g241 g242 0 0 g243

a21g
2
52 + g251 g252 0 0 0




.
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3 4 1 2 5

v11 v12 v13 v14

v21 v22 v23 v24 v25

Figure 4: A 2-domain graph with 5 latent nodes and dimensions of the observed domains given by
|V1| = d1 = 4 and |V2| = d2 = 5. We denote Ve = {ve1, . . . , vede

}, that is, the superscript indicates
the domain a node belongs to.

Example B.2. Consider the m-domain graph in Figure 4. The partial pure children of node 1 ∈ L
are given by {v12 , v21} and the partial pure children of 2 ∈ L are given by {v13 , v23}. Moreover, by
continuing Example B.1, we have that the matrix BL is given by

BL =




a21g
1
12 + g111 g112
g121 0

a21g
1
32 g132

a21g
1
42 + g141 g142
g211 0

a21g
2
22 + g221 g222
a21g

2
32 g232

a21g
2
42 + g241 g242

a21g
2
52 + g251 g252




It is easy to see that the two submatrices
(
g121 0
g211 0

)
and

(
a21g

1
32 g132

a21g
2
32 g232

)

have rank one. The first matrix corresponds to the partial pure children {v12 , v21} in the graph in
Figure 4 while the second matrix correspond to the partial pure children {v13 , v23}. Note that the rank
of any other 2× 2 submatrix is generically (i.e., almost surely) equal to 2.

C Discussion of the Assumptions

In this section, we discuss aspects of Conditions (C1)-(C3) that allow for identifiability. In particular,
we discuss the necessity of pairwise different and non-Gaussian error distributions if one is not
willing to make further assumptions. Moreover, we elaborate on the sparsity conditions on the mixing
matrix and explain why some sparsity assumption is necessary.

Pairwise Different Error Distributions. Given any two potentially different m-domain graphs
Gm = (H ∪ V,D) and G̃m = (H̃ ∪ V, D̃), identifiability of the joint distribution in multi-domain
causal representation models means that

BVe,Se#PSe = B̃Ve,S̃e
#P̃S̃e

for all e ∈ [m] =⇒ B#P = B̃#P̃ (9)

for any representation (B,P ) of a distribution in M(Gm) and any representation (B̃, P̃ ) of a
distribution inM(G̃m), where the matrices BVe,Se

and B̃Ve,S̃e
have full column rank for all e ∈ [m].

The left-hand side says that the marginal distributions in each domain are equal, while the right-hand
side says that the joint distributions are equal. If there are m-domain graphs, such that the left-hand
sides holds but the right-hand side is violated, then we say that the joint distribution is not identifiable.

We assume in this section that the marginal error distributions Pi, i ∈ H are non-Gaussian and have
unit variance, but are not necessarily pairwise different or non-symmetric. Then the right-hand side
holds if and only if the number of shared latent nodes in each graph is equal, i.e., ℓ = ℓ̃, and there
is a signed permutation matrix Ψ such that B = B̃Ψ and P = Ψ⊤#P̃ . Here, the matrix Ψ does
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not necessarily have a block structure. The equivalence is implied by the identifiability of the usual,
one-domain linear ICA ( see, e.g., Buchholz et al. (2022)) together with the fact that for ℓ ̸= ℓ̃,
we have |H| ̸= |H̃| and, therefore, the distributions on the right-hand have support over different
dimensional subspaces.

Theorem 3.1 shows that assumptions (C1) and (C2) are sufficient for identifiability of the joint
distribution. In particular, we show that they imply identifiability in a stronger sense, namely, that it
follows from the left-hand side that ℓ = ℓ̃ and B = B̃Ψ and P = Ψ⊤#P̃ for a signed permutation
Ψ ∈ Π with block structure. The next proposition reveals necessary conditions for identifiability.
Proposition C.1. Let Gm be an m-domain graph with shared latent nodes L = [ℓ], and let PX ∈
M(Gm) with representation (B,P ). Suppose that m ≥ 2 and that everything except the assumption
about pairwise different error distributions in Conditions (C1) and (C2) is satisfied. Then, the joint
distribution is not identifiable if one of the following holds:

(i) There is i, j ∈ L such that Pi = Pj or Pi = −Pj .

(ii) There is i ∈ L and j ∈ Ie for some e ∈ [m] such that Pi = Pj or Pi = −Pj .

(iii) For all e ∈ [m] there is ie ∈ Ie such that Pie = Pjf or Pie = −Pif for all e ̸= f .

Proof. For each of the three cases, we will construct another m-domain graph Gm = (H ∪ V,D)

such that for suitable representations (B̃, P̃ ) of distributions inM(G̃m), the left-hand side of (9)
holds, but the right-hand side is violated.

To prove the statement for case (i), let i, j ∈ L and assume that Pi = Pj . We define the m-domain
graph G̃m = (H̃ ∪V, D̃) to be the almost same graph as Gm = (H∪V,D), we only “swap” the roles
of the latent nodes i and j on an arbitrary domain e ∈ [m]. That is, for each v ∈ Ve, if there was
an edge i→ v in D, we remove that edge from D̃ and add the edge j → v instead, and vice versa.
Otherwise, the graph G̃m has the same structure as Gm. Now, let P̃ = P and define a the matrix B̃ to
be the same matrix as B, except for the subcolumns B̃Ve,i := BVe,j and B̃Ve,j := BVe,i, that is, we
swapped BVe,i and BVe,j . Then the pair (B̃, P̃ ) is a representation of some distribution inM(G̃m).
Recall from the proof of Theorem 3.1 that Condition (C2) implies that the matrix BVe,Se

has full
column rank. Since we only swapped columns in B̃Ve,S̃e

, it still has full column rank. Moreover,
observe that the left hand side of (9) is satisfied since Pi = Pj , that is, the marginal distributions on
the single domains coincide.

However, now consider another domain f ∈ [m] and the submatrices

BVe∪Vf ,{i,j} =

(
BVe,i BVe,j

BVf ,i BVf ,j

)
and B̃Ve∪Vf ,{i,j} =

(
BVe,j BVe,i

BVf ,i BVf ,j

)
.

Since all of the four subcolumns are nonzero and neither BVe,j is equal to BVe,i nor BVf ,j is equal
to BVf ,i, there is no signed permutation matrix Ω such that BVe∪Vf ,{i,j} = B̃Ve∪Vf ,{i,j}Ω. Hence,
there is also no larger signed permutation matrix Ψ such that B = B̃Ψ. We conclude that the
right-hand side of (9) is violated and the joint distribution is not identifiable. Finally, note that the
above arguments also hold if Pi = −Pj by adding “−” signs in appropriate places.

The proof for case (ii) works with exactly the same construction. That is, for i ∈ L and j ∈ Ie
we swap the roles of i and j on the domain e. Then, for any other domain f ∈ [m], we obtain the
submatrices

BVe∪Vf ,{i,j} =

(
BVe,i BVe,j

BVf ,i 0

)
and B̃Ve∪Vf ,{i,j} =

(
BVe,j BVe,i

BVf ,i 0

)
.

By the same arguments as before, this shows that there is no signed permutation matrix Ψ such that
B = B̃Ψ and, hence, the joint distribution is not identifiable.

To prove case (iii), we consider a slightly different construction. However, we also assume that
Pie = Pif for all e ̸= f , since for Pie = −Pif we only have to add some “−” signs in the following.
We define the m-domain graph G̃m = (H̃ ∪ V, D̃) by identifying the nodes ie, e ∈ [m] with a new
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node k. That is, L̃ = L ∪ {k} and H̃ = (
⋃

e∈[m] Ie \ {ie}) ∪ L̃. For i ∈ H̃ \ {k} and v ∈ V , the

edge set D̃ contains an edge i→ v if and only if the edge i→ v is in D. For the node k ∈ H̃ and
v ∈ V , we put an edge k → v in D̃ if and only if there is an edge ie → v in D for some e ∈ [m].

Now, define the matrix B̃ such that B̃V,H̃\{k} := BV,H̃\{k} and B̃Ve,k := BVe,ie for all e ∈ [m].

Then the pair (B̃, P̃ ) is a representation of some distribution inM(G̃m). Moreover, each submatrix
B̃Ve,S̃e

is equal to BVe,Se
up to relabeling of the columns. That is, the column that is labeled by ie

in BVe,Se
is now labeled by k in B̃Ve,S̃e

. We define the measure P̃ such that P̃H̃\{k} = PH̃\{k} and

P̃k = Pie for all e ∈ [m]. Then the pair (B̃, P̃ ) is a representation of some distribution inM(G̃m)
and, in particular, the left hand side of (9) is satisfied. That is, the marginal distributions coincide on
each domain. However, the number of shared latent variables in both m-domain graphs is different
since we have ℓ̃ = ℓ+ 1. We conclude that the joint distribution is not identifiable.

The proposition states that it is in most cases necessary that error distributions are pairwise different.
However, in two cases the same error distributions still lead to identifiability. First, if i, j ∈ Ie, then
the corresponding error distributions may be the same and the joint distribution is still identifiable.
Similarly, if there are latent nodes ie in a few domains e ∈ [m] such that the corresponding error
distributions coincide, but there is at least one domain f ∈ [m] where there is no latent node with the
same error distribution, then the joint distribution is also identifiable. Both can be seen by taking the
the proofs of Theorem 3.1 and Proposition C.1 together.

Gaussian Errors. Without additional assumptions to those in Section 3, it is impossible to recover
the joint distribution if the distributions of the errors εi of the latent structural equation model in
Equation (1) are Gaussian. In this case, the distribution of Z as well as the distribution of each
observed random vector Xe is determined by the covariance matrix only. The observed covariance
matrix in domain e ∈ [m] is given by Σe = GeCov[ZL∪Ie ](G

e)⊤. However, knowing Σe gives no
information about ZL∪Ie other than rank(Σe) = |L|+ |Ie|, that is, we cannot distinguish which latent
variables are shared and which ones are domain-specific. This is formalized in the following lemma.

Lemma C.2. Let Σ be any d×d symmetric positive semidefinite matrix of rank p and let Ξ be another
arbitrary p× p symmetric positive definite matrix. Then there is G ∈ Rd×p such that Σ = GΞG⊤.

Proof. Let Σ be a d×d symmetric positive semidefinite matrix of rank p. Then, Σ has a decomposition
similar to the Cholesky decomposition; see e.g. Gentle (1998, Section 3.2.2). That is, there exists a
unique matrix T , such that A = TT⊤, where T is a lower triangular matrix with p positive diagonal
elements and d− p columns containing all zeros. Define T̃ to be the d× p matrix containing only
the non-zero columns of T .

On the other hand, let Ξ be a symmetric positive definite p × p matrix. By the usual Cholesky
decomposition (Lyche, 2020, Section 4.2.1), there exists a unique p× p lower triangular matrix L
with positive diagonal elements such that Ξ = LL⊤. Now, define G := T̃L−1 ∈ Rd×p. Then,

Σ = T̃ T̃⊤ = T̃L−1LL⊤L−⊤T̃⊤ = GΞG⊤.

Due to Lemma C.2 it is necessary to consider non-Gaussian distributions to obtain identifiability of
the joint distribution.

Example C.3. In the Gaussian case we cannot distinguish whether the two observed domains in
Figure 5 share a latent variable or not. Said differently, the observed marginal distributions may either
be generated by the mechanism defined by graph (a) or graph (b) and there is no way to distinguish
from observational distributions only.

Sparsity Assumptions. Let B ∈ Im(ϕGm
) for an m-domain graph Gm = (H ∪ V,D) and suppose

that we are given the matrix BL = GV,L(I − AL,L)−1, that is, we are given the submatrix with
columns indexed by the shared latent nodes. Now, assume that the graph does not impose any sparsity
restrictions on GV,L, which means that the set RDV L of possible matrices GV,L is equal to R|V |×|L|.
Then, the set of possible matrices BL is also unrestricted, that is, BL can be any matrix in R|V |×|L|

no matter the form of the matrix AL,L ∈ RDLL . In other words, for arbitrary shared latent graphs
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1 2 3

V1 V2

(a)

1 2 3 4

V1 V2

(b)
Figure 5: Compact versions of two 2-domain graphs. In both graphs, both domains have two latent
parents. In setup (a) there is a shared latent parent while in setup (b) there is not.

GL = (L, DLL) and arbitrary corresponding parameter matrices AL,L ∈ RDLL , we don’t get any
restrictions on the matrix BL. Therefore, it is impossible to infer AL,L from BL.

Condition (C3) requires that there are two partial pure children for every shared latent node k ∈ L,
which implies that there are 2|L| rows in GV,L in which only one entry may be nonzero. While we
show in Theorem 4.4 that this condition is sufficient for identifiability of AL,L, we leave it open for
future work to find a necessary condition.

D Algorithms for Finite Samples

We adjust Algorithm 1 such that it is applicable in the empirical data setting. That is, rather
than the exact distribution PXe , we have a matrix of observations Xe ∈ Rde×ne in each domain
e ∈ [m]. The sample size ne might be different across domains. We denote nmin = mine∈[m] ne
and nmax = maxe∈[m] ne. For implementing linear ICA on finite samples, multiple well developed
algorithms are available, e.g., FastICA (Hyvärinen, 1999; Hyvärinen and Oja, 2000), Kernel ICA
(Bach and Jordan, 2003) or JADE (Cardoso and Souloumiac, 1993). Applying them, we obtain a
measure P̂ e

i which is an estimator of the true measure P e
i in Algorithm 1, Line 4.

The remaining challenge is the matching in Line 6 of Algorithm 1. For finite samples, the distance
between empirical distributions is almost surely not zero although the true underlying distributions
might be equal. In this section, we provide a matching strategy based on the two-sample Kolmogorov-
Smirnov test (van der Vaart and Wellner, 1996, Section 3.7). We match two distributions if they
are not significantly different. During this process, there might occur false discoveries, that is,
distributions are matched that are actually not the same. We show that the probability of falsely
discovering shared nodes shrinks exponentially with the number of domains.

For two univariate Borel probability measures Pi, Pj , with corresponding cumulative distribution
functions Fi, Fj , the Kolmogorov-Smirnov distance is given by the L∞-distance

dKS(Pi, Pj) = ∥Fi − Fj∥∞ = sup
x∈R
|Fi(x)− Fj(x)|.

The two-sample Kolmogorov-Smirnov test statistic for the null hypothesis H0 : dKS(P
e
i , P

f
j ) = 0 is

given by

T (P̂ e
i , P̂

f
j ) =

√
nenf
ne + nf

dKS(P̂
e
i , P̂

f
j ). (10)

It is important to note that P̂ e
i is not an empirical measure in the classical sense since it is not

obtained from data sampled directly from the true distribution P e
i . In addition to the sampling error

there is the uncertainty of the ICA algorithm. However, in the analysis we present here, we will
neglect this error and treat P̂ e

i as an empirical measure. In this case, under H0, the test statistic
T (P̂ e

i , P̂
f
j ) converges in distribution to ∥B∥∞, where B is a Brownian bridge from 0 to 1 (van der

Vaart and Wellner, 1996, Section 2.1). For a given level α ∈ (0, 1), we choose the critical value as
cα = inf{t : P (∥B∥∞ > t) ≤ α} and reject H0 if T (P̂ e

i , P̂
f
j ) > cα.

Definition D.1. Let α ∈ (0, 1) and suppose the distributions {P̂ e
1 , . . . , P̂

e
ŝe
} and {P̂ f

1 , . . . , P̂
f
ŝf
} are

given for two domains e, f ∈ [m]. Define

Ωα(P̂
e
i , P̂

f
j ) =

{
1 if T ef

ij ≤ cα and T ef
ij = min{mink∈[ŝf ] T

ef
ik ,mink∈[ŝe] T

ef
kj },

0 else,
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where T ef
ij = min{T (P̂ e

i , P̂
f
j ), T (P̂

e
i ,−P̂ f

j )}. We say that P̂ e
i , P̂

f
j are matched if Ωα(P̂

e
i , P̂

f
j ) = 1.

Definition D.1 essentially states that two measures are matched if the test statistic (10) is not
significantly large and the null hypothesis cannot be rejected. Taking the minimum of T (P̂ e

i , P̂
f
j ) and

T (P̂ e
i ,−P̂ f

j ) accounts for the sign indeterminacy of linear ICA. For two fixed domains e, f ∈ [m], if
it happens that the statistic T ef

ij for multiple pairs (i, j) is small enough, then the pair with the minimal
value of the statistic is matched. Note that one may use any other test than the Kolmogorov-Smirnov
test to define a matching as in Definition D.1. We discover a shared latent node if it is matched
consistently across domains.
Definition D.2. Let C = (i1, . . . , im) be a tuple with m elements such that ie ∈ [ŝe]. Then we say
that C determines a shared node if Ωα(P̂

e
ie
, P̂ f

if
) = 1 for all ie, if ∈ C.

Inferring the existence of a shared node which does not actually exist may be considered a more
serious error than inferring a shared node determined by a set C, where only some components of C
are wrongly matched. In the following theorem we show that the probability of falsely discovering
shared nodes shrinks exponentially with the number of wrongly matched components.
Theorem D.3. Let C = (i1, . . . , im) be a tuple with m elements such that ie ∈ [ŝe]. Let g :
N× R≥0 → R≥0 be a function that is monotonically decreasing in n ∈ N and assume the following:

(i) P (dKS(P̂
e
ie
, P e

ie
) > x) ≤ g(ne, x) for all e ∈ [m] and for all x ≥ 0.

(ii) There is E ⊆ [m] with |E| ≥ 2 and a constant κ > 0 such that dKS(P
e
ie
, P f

if
) ≥ κ and

dKS(P
e
ie
,−P f

if
) ≥ κ for all e ∈ E, f ∈ [m] with e ̸= f .

Then

P (C determines a shared node) ≤ g
(
nmin, max

{
κ

2
−
√
nmax√
2 nmin

cα, 0

})|E|−1

.

Proof of Theorem D.3. Let C = (i1, . . . , im) and g be as in the statement of the theorem. W.l.o.g.
we assume that E = {1, . . . , |E|} and that T (P̂ e

ie
, P̂ f

if
) ≤ T (P̂ e

ie
,−P̂ f

if
). Observe that C determines

a shared node if and only if
∑

e<f

Ωα(P̂
e
ie , P̂

f
if
) =

(
m

2

)
.

Now, we have

P

(∑

e<f

Ωα(P̂
e
ie , P̂

f
if
) =

(
m

2

))
=P

(⋂

e<f

{
Ωα(P̂

e
ie , P̂

f
if
) = 1

})

≤P
(⋂

e<f

{
T ef
ij ≤ cα

})

=P

(⋂

e<f

{
T (P̂ e

ie , P̂
f
if
) ≤ cα

}
∪
{
T (P̂ e

ie ,−P̂
f
if
) ≤ cα

})

=P

(⋂

e<f

{
T (P̂ e

ie , P̂
f
if
) ≤ cα

})

≤P
( ⋂

e∈E,f∈[m]
e<f

{
T (P̂ e

ie , P̂
f
if
) ≤ cα

})
. (11)

By the triangle inequality we have

dKS(P
e
ie , P

f
if
) ≤ dKS(P

e
ie , P̂

e
ie) + dKS(P̂

e
ie , P̂

f
if
) + dKS(P̂

f
if
, P f

if
). (12)
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Moreover, if e ∈ E and f ∈ [m], then we have by Condition (ii)

dKS(P
e
ie , P

f
if
) ≥ κ. (13)

Using (12) and (13) together with the fact
√

nenf

ne+nf
≥ nmin√

2nmax
, we obtain the following chain of

implications for e ∈ E and f ∈ [m]:

T (P̂ e
ie , P̂

f
if
) ≤ cα

⇐⇒
√

nenf
ne + nf

dKS(P̂
e
ie , P̂

f
if
) ≤ cα

=⇒ nmin√
2nmax

(
dKS(P

e
ie , P

f
if
)− dKS(P̂

e
ie , P

e
ie)− dKS(P̂

f
if
, P f

if
)
)
≤ cα

=⇒ nmin√
2nmax

(
κ− dKS(P̂

e
ie , P

e
ie)− dKS(P̂

f
if
, P f

if
)
)
≤ cα

⇐⇒ dKS(P̂
e
ie , P

e
ie) + dKS(P̂

f
if
, P f

if
) ≥ κ−

√
2nmax

nmin
cα

=⇒
{
dKS(P̂

e
ie , P

e
ie) ≥

κ

2
−
√
nmax√
2 nmin

cα

}
or
{
dKS(P̂

f
if
, P f

if
) ≥ κ

2
−
√
nmax√
2 nmin

cα

}
.

Now, consider the event
⋂

e∈E,f∈[m]
e<f

{T (P̂ e
ie
, P̂ f

if
) ≤ cα}. On this event, there cannot be two elements

e, f ∈ E such that both
{
dKS(P̂

e
ie , P

e
ie) <

κ

2
−
√
nmax√
2 nmin

cα

}
and

{
dKS(P̂

f
if
, P f

if
) <

κ

2
−
√
nmax√
2 nmin

cα

}
.

To see this recall that E ⊆ [m]. We conclude that it must hold {dKS(P̂
e
ie
, P e

ie
) ≥ κ

2 −
√
nmax√
2 nmin

cα} for
all but at most one element of E. We denote this exceptional element by e∗ ∈ E. Taking up (11), we
get the following:

P

(∑

e<f

Ωα(P̂
e
ie , P̂

f
if
) =

(
m

2

))

≤ P
( ⋂

e∈E,f∈[m]
e<f

{
T (P̂ e

ie , P̂
f
if
) ≤ cα

})

≤ P
( ⋂

e∈E\{e∗}

{
dKS(P̂

e
ie , P

e
ie) ≥

κ

2
−
√
nmax√
2 nmin

cα

})

=
∏

e∈E\{e∗}
P

(
dKS(P̂

e
ie , P

e
ie) ≥

κ

2
−
√
nmax√
2 nmin

cα

)
(14)

=
∏

e∈E\{e∗}
P

(
dKS(P̂

e
ie , P

e
ie) ≥ max

{
κ

2
−
√
nmax√
2 nmin

cα, 0

})
(15)

≤ g
(
nmin, max

{
κ

2
−
√
nmax√
2 nmin

cα, 0

})|E|−1

. (16)

The last three steps need more explanation: Equality (14) follows from the fact that domains are
unpaired. That is, the distances dKS(P̂

e
ie
, P e

ie
) and dKS(P̂

f
if
, P f

if
) are pairwise independent for different

domains e, f ∈ [m]. Equality (15) is trivial since dKS(P̂
e
ie
, P e

ie
) ≥ 0. Finally, Inequality (16) follows

from Condition (i) and that the function g is monotonically decreasing in n. We also used the fact
that |E \ {e∗}| = |E| − 1.

If P̂ e
i were an empirical measure in the classical sense, then Condition (i) in Theorem D.3 translates to

the well-known Dvoretzky–Kiefer–Wolfowitz inequality, that is, the function g is given by g(n, x) =
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Algorithm 3 IdentifyJointDistributionEmpirical
1: Hyperparameters: γ > 0, α ∈ (0, 1).
2: Input: Matrix of observations Xe ∈ Rde×ne for all e ∈ [m].
3: Output: Number of shared latent variables ℓ̂, matrix B̂ and probability measure P̂ .
4: for e ∈ [m] do
5: Linear ICA: Use any linear ICA algorithm to obtain a mixing matrix B̃e ∈ Rde×ŝe , where

ŝe = rankγ(Xe(Xe)⊤). Compute the matrix η̃e = (B̃e)†Xe ∈ Rŝe×ne , where (B̃e)† is the
Moore-Penrose pseudoinverse of B̃e.

6: Scaling: Let ∆e be a ŝe × ŝe diagonal matrix with entries ∆e
ii = 1

ne
[η̃e(η̃e)⊤]ii. Define

B̂e = B̃e(∆e)−1/2 and ηe = (∆e)−1/2η̃e.
7: Let P̂ e be the estimated probability measure with independent marginals such that P̂ e

i is the
empirical measure of the row ηe

i,∗.
8: end for
9: Matching: Let ℓ̂ be the maximal number such that there is a signed permutation matrix Qe in

each domain e ∈ [m] such that

Ωαt
([(Qe)⊤#P̂ e]i, [(Q

f )⊤#P̂ f ]i) = 1

for all i = 1, . . . , ℓ̂ and all f ̸= e, where αt = α/t with t = 2
∑

e<f ŝeŝf . Let L̂ = {1, . . . , ℓ̂}.

10: Construct the matrix B̂ and the tuple of probability measures P̂ given by

B̂ =




[B̂1Q1]L̂ [B̂1Q1][ŝ1]\L̂
...

. . .
[B̂mQm]L̂ [B̂mQm][ŝm]\L̂


 and P̂ =




[(Q1)⊤#P̂ 1]L̂
[(Q1)⊤#P̂ 1][ŝ1]\L̂

...
[(Qm)⊤#P̂m][ŝm]\L̂



.

11: return (ℓ̂, B̂, P̂ ).

Algorithm 4 IdentifySharedGraphEmpirical
1: Hyperparameters: γ > 0.
2: Input: Matrix B∗ ∈ R|V |×ℓ.
3: Output: Parameter matrix Â ∈ Rℓ×ℓ.
4: Remove rows B∗

i,L with ∥B∗
i,L∥2 ≤ γ from the matrix B∗.

5: Find tuples (ik, jk)k∈L with the smallest possible scores σmin(B
∗
{ik,jk},L) such that

(i) ik ̸= jk for all k ∈ L and {ik, jk} ∩ {iq, jq} = ∅ for all k, q ∈ L such that k ̸= q and
(ii) σmin(B

∗
{ik,iq},L)| > γ for all k, q ∈ L such that k ̸= q.

6: Let I = {i1, . . . , iℓ} and consider the matrix B∗
I,L ∈ Rℓ×ℓ.

7: Find two permutation matrices R1 and R2 such that W = R1B
∗
I,LR2 is as close as possible to

lower triangular. This can be measured, for example, by using
∑

i<j W
2
ij .

8: Multiply each column of W by the sign of its corresponding diagonal element. This yields a new
matrix W̃ with all diagonal elements positive.

9: Divide each row of W̃ by its corresponding diagonal element. This yields a new matrix W̃ ′ with
all diagonal elements equal to one.

10: Compute Â = I − (W̃ ′)−1.
11: return Â.
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2 exp(−2nx2). Given a tuple C = (i1, . . . , im) that defines a shared node, Condition (ii) is an
assumption on the number of wrongly matched components. The most extreme case is when the
shared node does not actually exist and all components are wrongly matched. That is, the measures P̂ e

ie

and P̂ f
if

are matched even though dKS(P
e
ie
, P f

if
) ̸= 0 and dKS(P

e
ie
,−P f

if
) ̸= 0 for all e, f ∈ [m]. On

the other hand, if |E| ≪ m, then C determines a shared node where the majority of the components
are correctly matched.

If g(n, x) → 0 for n → ∞ and x > 0, the statement of the theorem becomes meaningful under
the constraint

√
nmax/nmin → 0. In this case, the probability that a given tuple C with wrong

components E determines a shared node goes to zero for large sample sizes nmin. As noted, the
probability of falsely discovering a shared node decreases exponentially with the number of wrongly
matched components |E|. In the extreme case, this means that the probability of falsely discovering
shared nodes with all components wrongly matched, i.e., E = [m], decreases exponentially with the
number of domains m.

Theorem D.3 also tells us that the probability of falsely matching two measures P̂ e
i and P̂ f

j becomes
zero if the sample size grows to infinity and the linear ICA algorithm is consistent. However, with
finite samples we might fail to match two measures where the underlying true measures are actually
the same, i.e., we falsely reject the true null hypothesis H0. Thus, we might be overly conservative in
detecting shared nodes due to a high family-wise error rate caused by multiple testing. We suggest
to correct the level α to account for the amount of tests carried out. One possibility is to apply a
Bonferroni-type correction. The total number of tests is given by t = 2

∑
e<f ŝeŝf . This means that

an adjusted level is given by αt = α/t and instead of the critical value cα we consider the adjusted
critical value cαt

.

Algorithm 3 is the finite sample version of Algorithm 1 with the matching Ωα defined in Definition
D.1. To determine the number of independent components for the linear ICA step in each domain,
we need to check the rank(Xe(Xe)⊤). We specify the rank of a matrix M as number of singular
values which are larger than a certain threshold γ and denote it by rankγ(M).

In Algorithm 4 we also provide a finite sample version of Algorithm 2 where we only have the
approximation B⋆ = B̂L ≈ BLΨL for a signed permutation matrix ΨL. For a matrix M , we denote
by σmin(M) the smallest singular value.

E Error Distributions in Simulations

We specify L = {1, 2, 3}, I1 = {4, 5}, I2 = {6, 7} and I3 = {8, 9}. Note that the set I3 does not
exist if the number of domains is m = 2. The error distributions in all simulations are specified as
follows if not stated otherwise.

L: ε1 ∼ Beta(2, 3), ε2 ∼ Beta(2, 5), ε3 ∼ χ2
4,

I1: ε4 ∼ Gumbel(0, 1), ε5 ∼ LogNormal(0, 1),

I2: ε6 ∼Weibull(1, 2), ε7 ∼ Exp(0.1),

I3: ε8 ∼ SkewNormal(6), ε9 ∼ SkewNormal(12),

where the overline means that each distribution is standardized to have mean 0 and variance 1.
Figure 6 shows histograms of the empirical distributions.

F Additional Simulation Results

In this section, we make additional experiments. First, we consider another setup where all our
assumptions are satisfied but we have more domains and more shared latent variables. Then, we also
consider two setups where some of our assumptions are not satisfied.

Different Setup. We make additional experiments on a similar scale as in Section 5, but with more
shared nodes and less domain specific nodes. This time, we consider ℓ = 5 shared latent nodes and
|Ie| = 1 domain-specific latent node in each domain. Moreover, we also consider m = 4 domains.
The dimensions are given by de = d/m for all e ∈ [m] and d = 48. The graphs and edge weights
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Figure 6: Histograms showing the frequency of 25000 values sampled from the random variables εi
with distribution as specified in Appendix E. Each distribution has mean zero and variance one. The
first row shows the empirical distributions from ε1 to ε5 and the second row from ε6 to ε9.

(a) (b) (c)
Figure 7: Simulation results for ℓ = 5 shared latent nodes. Logarithmic scale on the x-axis. Error
bars in (a) are one standard deviation of the mean and in (b) and (c) they are the interquartile range.

are sampled equivalently as in Section 5 in the main paper. We also consider the same distribution
of the error variables as specified in Appendix E, where we specify L = {1, 2, 3, 4, 5}, I1 = {6},
I2 = {7}, I3 = {8} and I4 = {9}.
Figure 7 shows the results where the scores are equivalent as in the main paper. Once again, we see
that the estimation error for the matrices BL and AL,L decreases with increasing sample size. This
supports our proof of concept and shows that the adapted algorithms are consistent for recovering BL
and AL,L from finite samples.

Violated Assumptions. We consider the same setup as in the main paper in Section 5 with l = 3
shared latent nodes, but we fix the number of domains to m = 3. In this experiment, we compare the
results where data was generated such that all our assumptions are satisfied with two setups where we
violate some of the assumptions. In the first setup, we violate Condition (C1) that requires pairwise
different error distributions. We specify the error distributions as follows.

L: ε1 ∼ Beta(2, 3), ε2 ∼ Beta(2, 5), ε3 ∼ χ2
4,

I1: ε4 ∼ Beta(2, 3), ε5 ∼ LogNormal(0, 1),

I2: ε6 ∼ Beta(2, 5), ε7 ∼ LogNormal(0, 1),

I3: ε8 ∼ χ2
4, ε9 ∼ LogNormal(0, 1),

where, as before, the overline means that each distribution is standardized to have mean 0 and variance
1. In the second setup, we do not change the error distributions but we violate Condition (C3) that
requires two partial pure children per shared latent node. In this experiment, we do not make any
sparsity assumptions on the mixing matrix GV,L.

Figure 8 shows the results of our experiments. As expected, we see in (a) and (b) that identifyability
of the joint distribution fails if we do not require pairwise different error distributions. Recovering
the joint distribution still works well in the second setup where we violate the partial pure children
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(a) (b) (c)
Figure 8: Simulation results where assumptions are not satisfied. Logarithmic scale on the x-axis.
Error bars in (a) are one standard deviation of the mean and in (b) and (c) they are the interquartile
range.

conditions. However, identifying the shared latent graph is impossible in this setup, as we explained
in Appendix C. This is supported by the experimental results displayed in Figure 8 (c), where we can
see that recovery of the shared latent graph does not work when the partial pure children assumption
is not satisfied.

G Future Work

We see many directions for future work, which include the following.

• Our work and algorithms rely on linear ICA. It would be interesting to study a more direct
approach to recover the joint distribution and the causal graph. This might potentially be
done by testing certain constraints implied by the model similar as the developments in the
LiNGAM literature; see e.g. Shimizu et al. (2011) and Wang and Drton (2020).

• Our results require non-Gaussianity and that both the latent structural equation model and the
mixing functions are linear. We consider the linear setup as a basis for any subsequent study
of nonlinear cases. For example, recent advances in non-linear ICA allow identifiability of
up to linear transformations, see e.g. Khemakhem et al. (2020), Buchholz et al. (2022) and
Roeder et al. (2021). Identifiability of a causal representation might then be obtained from
identifiability results for the linear model.

• Our sufficient condition for identifiability of the shared latent graph requires two partial
pure children per shared latent node. In this regard, it would also be interesting to study
necessary conditions; c.f. our discussion in Appendix C.

• This work focused purely on the observational case. However, considering interventional
data can be expected to permit relaxing some conditions in both of the key steps, i.e.,
recovering the joint distribution and the shared latent graph. For example, recent work
shows that interventional data allow for identification of the latent graph without sparsity
constraints in a single-domain setup (Squires et al., 2023; Ahuja et al., 2023). Extending
this to the multi-domain setup is an interesting problem for future work.

• It would be interesting to study the statistical properties of our setup such as theoretical
bounds on the accuracy of recovering the matrices B and AL,L as well as developing
algorithms that meet these bounds. Currently, our adapted algorithms for finite samples
determine the rank of a matrix by using a threshold for singular values. The algorithms
depend on the choice of this parameter and it would be worth studying optimal choices.
Moreover, one might consider different methods for determining the rank of a matrix.

• There might be different matching strategies of the estimated error distributions in the finite
sample setting. For example, instead of matching pairwise consistently across all domains as
we propose in Appendix D, one might find an optimal matching by solving a linear program.
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B Further Articles

B.1 Half-Trek Criterion for Identifiability of Latent Variable Models

Summary

In this article, we consider linear structural equation models with latent variables and develop a criterion

to certify whether the direct causal effects between the observable variables are identifiable based on

the observed covariance matrix. As discussed in Chapter 5 of this thesis, prior research has developed

a variety of methods to decide identifiability of direct effects in a latent projection framework, in which

the confounding effects of the latent variables are represented by correlation among noise terms. This

approach is effective when the confounding is sparse and effects only small subsets of the observed vari-

ables. In contrast, the new latent-factor half-trek criterion (LF-HTC) we develop in this article operates on

the original unprojected latent variable model, where the corresponding directed graph explicitly includes

latent nodes. The LF-HTC is a graphical criterion that is able to certify identifiability in settings, where

some latent variables may also have dense effects on many or even all of the observables. Moreover, the

graph is allowed to be cyclic, the only restriction that we make in this work is that all latent variables are

source nodes in the graph. The new criterion can be checked in time that is polynomial in the size of the

graph if we restrict the search steps in LF-HTC to only consider subsets of latent nodes of bounded size.

The restriction of the search space is necessary since checking the criterion without any restriction is in

general NP-hard.

The article is structured as follows. In Section 2, we provide a precise definition of linear structural

equation models given by directed graphs and rigorously introduce the concept of rational identifiability for

unprojected latent variable models. Moreover, we derive basic necessary conditions for rational identifiabil-

ity based on dimension arguments. In Section 3, we present our main result, the LF-HTC. In Section 4, we

discuss the latent projection framework considered in previous research and compare the new LF-HTC to

existing criteria. In particular, we compare the LF-HTC to the original half-trek criterion (Foygel et al., 2012)

that is applicable in the latent projection framework. In Section 5, we present an algorithm to check the

LF-HTC efficiently. Using this algorithm we systematically check identifiability of certain classes of small

latent-factor graphs in Section 6. The restriction to small graphs allows for these checks to be validated

using suitably designed Gröbner basis computations. Finally, the proof of the main result is given in Sec-

tion 7. The supplementary material contains further elements of proofs, the hardness result for checking

the LF-HTC without a bound on the cardinality of searched sets of latent variables and an explanation on

how to effectively deploy techniques from computational algebraic geometry.
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We consider linear structural equation models with latent variables and
develop a criterion to certify whether the direct causal effects between the ob-
servable variables are identifiable based on the observed covariance matrix.
Linear structural equation models assume that both observed and latent vari-
ables solve a linear equation system featuring stochastic noise terms. Each
model corresponds to a directed graph whose edges represent the direct ef-
fects that appear as coefficients in the equation system. Prior research has
developed a variety of methods to decide identifiability of direct effects in a
latent projection framework, in which the confounding effects of the latent
variables are represented by correlation among noise terms. This approach
is effective when the confounding is sparse and effects only small subsets
of the observed variables. In contrast, the new latent-factor half-trek crite-
rion (LF-HTC) we develop in this paper operates on the original unprojected
latent variable model and is able to certify identifiability in settings, where
some latent variables may also have dense effects on many or even all of
the observables. Our LF-HTC is an effective sufficient criterion for rational
identifiability, under which the direct effects can be uniquely recovered as
rational functions of the joint covariance matrix of the observed random vari-
ables. When restricting the search steps in LF-HTC to consider subsets of
latent variables of bounded size, the criterion can be verified in time that is
polynomial in the size of the graph.

1. Introduction. Equipped with an intuitive causal interpretation, structural equation
models are very popular tools in a broad range of applied sciences (Spirtes, Glymour and
Scheines (2000); Pearl (2009); Peters, Janzing and Schölkopf (2017)). Often, structural equa-
tion models involve latent variables, and it becomes a key problem to clarify whether param-
eters of interest are identifiable from the joint distribution of the observable variables. Many
different criteria have been developed to decide such identifiability. The dominant approach
in state-of-the-art methods is to project away latent variables, that is, their effects are absorbed
into correlations among error terms in the structural equations. In contrast, we here consider
models with explicit latent variables and show how the latent dependence structure may be
used to certify identifiability even in cases with dense latent confounding, where projection
approaches remain inconclusive.

Concretely, we study linear structural equation models with explicit latent variables. The
precise setting of interest may be described as follows. Let X = (Xv)v∈V be a collection of
d = |V | observed variables, and let L = (Lh)h∈L be � = |L| latent (unobserved) variables.

Received January 2022; revised June 2022.
MSC2020 subject classifications. 62H22, 62J05, 62R01.
Key words and phrases. Covariance matrix, factor analysis, graphical model, hidden variables, latent variables,

parameter identification, structural equation model.
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Suppose all variables are related by linear equations as

Xv = ∑
w �=v

λwvXw + ∑
h∈L

γhvLh + εv, v ∈ V,

where λwv and γhv are real-valued parameters that are also known as direct causal effects of
Xw on Xv and Lh on Xv , respectively. The εv are independent mean zero random variables
that model noise. We assume that each εv has finite variance ωv > 0. The latent variables
(Lh)h∈L are assumed to be independent, and also independent of the noise terms ε = (εv)v∈V .
Since we are primarily interested in identification of direct causal effects λvw , we may fix,
without loss of generality, the latent scale such that each Lh has mean zero and variance 1.
Viewing X, L, and ε as vectors, the above equation system can be presented in the form

(1.1) X = ��X + ��L + ε

with d ×d parameter matrix � = (λwv) and �×d parameter matrix � = (γhv). The matrix �

has zeros along the diagonal. Specific models are now derived from (1.1) by assuming specific
sparsity patterns in � and �. The resulting models assume that all unobserved confounding is
caused only by the explicitly modeled, independent latent variables. Thus, the latent structure
corresponds to factor analysis models, and we will refer to the latent variables also as latent
factors.

The models belong to the general framework of structural equation models with latent vari-
ables as they are considered, for example, in Bollen (1989). However, where many of the ex-
amples in Bollen’s book are concerned with measurement models, that is, latent variables are
measured through observations and these observations are conditionally independent given
the latent variables, our interest here is the setting where we have direct causal effects λwv

between observed variables and the latent variables constitute confounders.
The focus of this paper will be on the covariance structure posited by models derived from

(1.1). In particular, we will be interested in determining when sparsity in the matrices � and
� allows one to identify (i.e., uniquely recover) the direct effects λwv from the covariance
matrix of the observable random vector X. Solving (1.1), we find

X = (Id − �)−�(
��L + ε

)
.

The vector ��L + ε follows a latent factor model and has covariance matrix

(1.2) 	 = Var[ε] + �� Var[L]� = 	diag + ��� = 	diag + ∑
h∈L

��
h �h,

where 	diag is diagonal with entries 	diag,vv = ωv and �h is the hth row of � such that the
entries of �h correspond to the causal effects associated to the latent factor Lh. We term the
matrix 	 the latent covariance matrix. It follows that X has covariance matrix


 = (Id − �)−�	(Id − �)−1.

In order to study structural equation models it is useful to adopt a graphical perspective.
To this end, the zero patterns in � and � are associated to a directed graph G = (V ∪ L,D),
where D ⊂ (V ∪ L) × (V ∪ L) is a collection of directed edges w → v. For two observed
nodes v,w ∈ V , the effect λwv may be nonzero only if the edge w → v is contained in the set
D. Similarly, for a latent node h ∈ L and an observed node v ∈ V , the effect γhv is possibly
nonzero if h → v ∈ D. In figures, we draw latent nodes h in gray, and we draw edges h → v

dashed for better distinction. This is illustrated in the next example.

EXAMPLE 1.1. We consider an augmented version of an example from Stanghellini and
Wermuth ((2005), Section 7), which pertains to the effects of sequential treatments in ran-
domized clinical trials. Suppose that the patients receive two treatment doses in sequence, T1
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FIG. 1. Graph corresponding to a randomized clinical trial for sequential administered treatments with a latent
factor L.

and T2, and at both times the treatment dose is assigned at random. The randomization distri-
bution of the second treatment dose T2 depends on the previous treatment dose T1 and on two
intermediate outcome measures O1 and O2. The intermediate outcome measures are deemed
potentially related, that is, O2 may causally depend on O1. After the second treatment a fi-
nal outcome measure O3 is recorded. Assume now that there is a latent factor L, such as a
specific characteristic of a patient, that has effects on all outcomes O1, O2, O3. Finally, as in
Stanghellini and Wermuth (2005), we assume that there exists an auxiliary observed variable
Z that provides a noisy measurement of L. The direct effects in this setup are depicted in the
graph shown in Figure 1.

We aim to characterize those models of the form (1.1) that are rationally identifiable, that
is, all possibly nonzero direct causal effects λwv can be uniquely recovered as rational func-
tions of the entries of the observable covariance matrix 
. This kind of identifiability has
been examined in previous research in the context of latent projections where latent variables
are not explicitly modeled. Models then correspond to mixed graphs that contain only the
observed nodes V , but bidirectional edges in addition to the directed edges. Each bidirected
edge represents a possibly nonzero entry in the latent covariance matrix 	, that is, it im-
plicitly indicates the presence of a confounding latent factor. The starting point for deriving
sufficient criteria for rational identifiability are then the equations

(1.3)
[
(Id − �)�
(Id − �)

]
vw = 	vw = 0,

which hold whenever no confounding latent factor affects both, Xv and Xw with v �= w. The
equations (1.3) are then solved to obtain the nonzero effects in �. This strategy has been
leveraged to formulate graphical criteria applicable to mixed graph representations of latent
variable models.

An example of a graphical criterion leveraging the latent projection approach is the half-
trek criterion of Foygel, Draisma and Drton (2012), which can be considered as a predecessor
and special case of the new results in this paper. But there are also various other graphical
criteria on mixed graphs such as instrumental variables (Bowden and Turkington (1984)),
conditional instruments (Brito and Pearl (2002)), the G-criterion (Brito and Pearl (2006)),
auxiliary variables (Chen, Pearl and Bareinboim (2016)) and Chen, Kumor and Bareinboim
(2017)), decomposition techniques (Tian (2005)) and several generalizations and further de-
velopments; cf. Tian (2009), Drton and Weihs (2016), Weihs et al. (2018), Kumor, Chen and
Bareinboim (2019) and Kumor, Cinelli and Bareinboim (2020).

In contrast, in this work we consider the original, unprojected latent variable model as
defined in (1.1), and we allow the latent covariance matrix 	 to be dense with only few or
no zero entries. Then the usual approach of exploiting the zero structure in 	 that was high-
lighted in (1.3) is no longer effective. However, dense confounding of the observed variables
may be caused by only a small number of latent factors, in which case the latent covariance
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matrix 	 exhibits exploitable structure. Our key observation is that 	 may contain rank-
deficient submatrices. For example, let Y,Z ⊆ V be two disjoint sets of observed nodes.
Then by (1.2) the submatrix 	Y,Z equals

	Y,Z = (	diag)Y,Z + ∑
h∈L

(
��

h �h

)
Y,Z = ∑

h∈H

(
��

h �h

)
Y,Z,

where the subset H ⊆ L over which we sum on the right-hand side contains exactly those
latent factors that have an effect on a node in Y and at the same time also an effect on a node
in Z. Since the matrix ��

h �h has rank one for each latent node h, the submatrix 	Y,Z is not
of full column rank if |H | < |Z|. Exploiting this low rank structure of the latent covariance
matrix 	 yields our main result, which is a sufficient criterion for rational identifiability of
the direct causal effects λwv . We show how to convert the criterion into a graphical condition
that can be checked using efficient algorithms under a bound on the considered rank. The
graphical criterion is directly applicable to directed graphs G = (V ∪ L,D) that explicitly
contain the latent nodes L, that is, the criterion operates on the unprojected latent variable
model and allows to explore specific confounding. We refer to it as the latent-factor half-trek
criterion (LF-HTC).

EXAMPLE 1.2. We take up the earlier example of a randomized clinical trial with se-
quential treatments, which we summarized in the graph in Figure 1. It is natural to investigate
the direct causal effects between the observed variables T1, O1, O2, T2 and O3. These direct
causal effects correspond to the blue (non-dashed) edges in the figure. Our new latent-factor
half-trek criterion will be able to certify that the whole parameter matrix � is rationally iden-
tifiable and all nonzero effects λvw can be written as rational formulas in the entries of the
observable covariance matrix 
. For example, the direct effect from the first treatment dose
T1 on the intermediate outcome O1 is given by 
T1,O1/
T1,T1 ; a standard regression coeffi-
cient. But remarkably, we can even identify effects corresponding to the edges T1 → O2 and
O1 → O2 by the latent-factor half-trek criterion. We verified that it is impossible to identify
the latter two effects in the latent projection framework (cf. Section 4).

While most of the general identification criteria have been developed in the setting of latent
projections, some existing work also considers unprojected latent factor models as defined in
(1.1). However, this work addresses special types of latent confounding only. For example,
Stanghellini and Wermuth (2005) and Leung, Drton and Hara (2016) examine linear latent
variable models with one latent variable, and the conditional instrument approach in Van Der
Zander, Textor and Liskiewicz (2015) covers scenarios in which no confounding factor has
an effect on all observed variables. Another approach requires that latent factors are measured
through observed proxy variables and relies on identifying the causal effect between the latent
factor and the proxy; see, for example, Kuroki and Pearl (2014), Miao, Geng and Tchetgen
Tchetgen (2018) and Lee and Bareinboim (2021), the latter of which deals with the discrete
case.

It should be noted that, in principle, rational identifiability is always decidable by com-
putational algebraic geometry (Garcia-Puente, Spielvogel and Sullivant (2010)) involving
Gröbner basis computations (Cox, Little and O’Shea (2007)). However, in the worst case, the
complexity of these methods can be double exponential in the size of the graph. Thus, they
may be infeasible even for relatively small graphs, and more efficient graphical criteria are of
great value. To check the new latent-factor half-trek criterion we propose an algorithm based
on max-flow computations (Cormen et al. (2009)) that runs in polynomial time in the size
of the graph if we confine ourselves to search only over subsets of latent factors of bounded
size. We show that the restriction of the search space is necessary since the task of checking
the latent-factor half-trek criterion without restrictions is in general NP-complete.
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The organization of the paper is as follows. In Section 2, we provide a precise definition
of linear structural equation models given by directed graphs and rigorously introduce the
concept of rational identifiability. Moreover, we derive basic necessary conditions for rational
identifiability based on dimension arguments. In Section 3, we present our main result, the
LF-HTC. In Section 4, we discuss the latent projection framework considered in previous
research and compare the new LF-HTC to existing criteria. In particular, we compare the
LF-HTC to the original half-trek criterion. In Section 5 we present an algorithm to check the
LF-HTC efficiently. Using this algorithm we systematically check identifiability of certain
classes of small latent-factor graphs in Section 6. The restriction to small graphs allows for
these checks to be validated using suitably designed Gröbner basis computations. Finally, the
proof of the main result is given in Section 7. Further elements of proofs, a hardness result for
checking the LF-HTC without a bound on the cardinality of searched sets of latent variables
and an explanation on how to effectively deploy techniques from computational algebraic
geometry are deferred to the Supplementary Material (Barber et al. (2022)).

2. Graphical representation and identifiability. Let G = (V ∪ L,D) be a directed
graph where V and L are finite disjoint sets of observed and latent nodes, respectively. We
emphasize that G is allowed to contain directed cycles. Let d = |V | and � = |L|. The edge set
D ⊂ (V ∪ L) × (V ∪ L) is assumed to be free of self-loops, so v → v /∈ D for all v ∈ V ∪ L.
For each vertex v ∈ V ∪ L, define its set of parents as pa(v) = {w ∈ V ∪ L : w → v ∈ D}.
Throughout the paper, we require pa(h) = ∅ for all h ∈ L, so that all latent nodes are source
nodes and the outgoing edges of latent nodes only point to observed nodes. If this condition
is satisfied, we call G a latent-factor graph and, to emphasize the set of latent variables, write
GL instead of G.

The edge set of a latent-factor graph may be partitioned as D = DV ∪ DLV , where DV =
D ∩ (V ×V ) is the set of directed edges between observed nodes and DLV = D ∩ (L×V ) is
the set of directed edges that point from latent to observed nodes. Let RDV be the set of real
d × d matrices � = (λwv) with support DV , that is, λwv = 0 if w → v /∈ DV . Write RDV

reg for
the subset of matrices � ∈ RDV with Id − � invertible; recall that we allow GL to contain
directed cycles. Similarly, let RDLV be the set of real � × d matrices � = (γhv) with support
DLV , that is, γhv = 0 if h → v /∈ DLV . Additionally, we write diag+

d for the set of all d × d

diagonal matrices with a positive diagonal indexed by the elements of V .
Each latent-factor graph postulates a covariance model that corresponds to a linear struc-

tural equation model specified via (1.1).

DEFINITION 2.1. The covariance model given by a latent-factor graph GL = (V ∪L,D)

with |V | = d and |L| = � is the family of covariance matrices

(2.1) 
 = (Id − �)−�	(Id − �)−1

obtained from choices of � ∈ RDV
reg and 	 in the image of the map

τ : RDLV × diag+
d −→ PD(d),

(�,	diag) 
−→ 	diag + ���,

where PD(d) is the cone of positive definite symmetric d × d matrices. We term the image
Im(τ ) ⊆ PD(d) the cone of latent covariance matrices.

We are interested in the question of identifiability, that is, whether the matrix � can be
uniquely recovered from a given covariance matrix 
 of the form (2.1). If it is possible to
recover the whole matrix � uniquely, we can determine 	 uniquely by the equation

(2.2) (Id − �)�
(Id − �) = 	,
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since the matrix Id − � is assumed to be invertible. Thus, for � = RDV
reg × Im(τ ), identifia-

bility holds if the parametrization map

ϕGL : � −→ PD(d),

(�,	) 
−→ (Id − �)−�	(Id − �)−1
(2.3)

is injective on �, or a suitably large subset. Since identifiability will usually not hold on
the whole set �, we need to clarify what we mean by a “suitably large” subset. We use
terminology from algebraic geometry, background can be found in Cox, Little and O’Shea
(2007), Shafarevich (2013) or Hartshorne (1977).

A property on an irreducible algebraic set W is said to be generically true if the property
holds on the complement W \ A of a proper algebraic subset A ⊆ W . Due to irreducibility,
the complement W \ A is dense in W with respect to the Zariski topology and therefore con-
sidered as a “suitably large” subset. When W is an irreducible algebraic set defined over the
real numbers, a proper algebraic subset of W has Lebesgue measure zero; see, for example,
the lemma in Okamoto (1973).

To connect this terminology to our setup, we observe that the Zariski closure �, that is,
the smallest algebraic subset that contains the domain �, is irreducible. This is true because
� is the polynomial image of an open set. Hence, we say that a property on � is generically
true if there exists a proper algebraic subset A ⊂ � such that the property holds on the com-
plement � \ A. Our interest is now in generically identifying the direct causal effects λwv .
Since the parametrization ϕGL is rational, the identification formula, in the worst case, is an
algebraic function (Garcia-Puente, Spielvogel and Sullivant (2010)). However, in all exam-
ples we know, if generic identifiability is possible, then by rational formulas. This motivates
the following definition.

DEFINITION 2.2 (Rational identifiability).

(a) The latent-factor graph GL is said to be rationally identifiable if there exists a
proper algebraic subset A ⊂ � and a rational map ψ : PD(d) → RDV

reg × PD(d) such that
ψ ◦ ϕGL(�,	) = (�,	) for all (�,	) ∈ � \ A.

(b) The direct causal effect λvw , or also simply the edge v → w ∈ DV , is rationally
identifiable if there exists a proper algebraic subset A ⊂ � and a rational map ψ : PD(d) → R
such that ψ ◦ ϕGL(�,	) = λvw for all (�,	) ∈ � \ A.

Rational identifiability of GL is equivalent to rational identifiability of all edges in DV ;
recall (2.2). If GL is rationally identifiable, then a (absolutely continuous) random choice of
the effects in (�,�) and the error variances in 	diag will almost surely yield a covariance
matrix for the observable vector X from which � can be recovered uniquely by rational for-
mulas. If GL is not generically identifiable, its parametrization ϕGL may be either generically
finite-to-one or generically infinite-to-one.

DEFINITION 2.3. Let f : S → Rn be a map defined on a subset S ⊆ Rm such that the
Zariski closure S is irreducible. Then f is generically finite-to-one if there exists a proper
algebraic subset A ⊆ S such that the fiber Ff (s) = f −1(f (s)) is finite for all s ∈ S \ A.
Otherwise, f is said to be generically infinite-to-one.

DEFINITION 2.4. A latent-factor graph GL is generically finite-to-one if its parametriza-
tion ϕGL is generically finite-to-one. In this case, we will also say that GL is finitely identi-
fiable. Otherwise, GL is said to be generically infinite-to-one.
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Note that if a latent-factor graph GL is rationally identifiable, then the fiber Fϕ
GL (�,	) =

{(�,	)} for all parameter choices outside of a proper algebraic subset. In particular, a graph
that is rationally identifiable is generically finite-to-one. The following lemma is an important
tool to check if a rational map is generically finite-to-one. For completeness, we provide a
proof in Appendix A in the Supplementary Material (Barber et al. (2022)). Here, we rely
on the notion of semialgebraic sets, which are finite unions of sets defined by finitely many
polynomial equations and inequalities. For background on semialgebraic sets, we refer to
Bochnak, Coste and Roy (1998), Basu, Pollack and Roy (2006) and Benedetti and Risler
(1990).

LEMMA 2.5. Let S ⊆ Rm be a semialgebraic set such that the Zariski closure S is ir-
reducible. Then a rational mapping f : S → Rn is generically finite-to-one if and only if
dim(f (S)) = dim(S). In particular, if dim(S) > n then f must be generically infinite-to-one.

REMARK 2.6. If the rational mapping in Lemma 2.5 is infinite-to-one, then it holds that
the fiber is infinite for almost all s ∈ S. This can be seen, in particular, by inspecting the proof
of Lemma 2.5.

In our context, the rational mapping of interest is the parametrization map ϕGL , which
maps into the positive definite cone PD(d). We observe that a latent-factor graph GL cannot
be finite-to-one if the dimension of the domain � = RDV

reg × Im(τ ) is larger than the dimension
of PD(d). This gives a basic necessary condition.

COROLLARY 2.7. A latent-factor graph GL = (V ∪ L,D) is generically infinite-to-one
if |DV | + dim(Im(τ )) >

(
d+1

2

)
.

PROOF. To apply Lemma 2.5, we have to show that � = RDV
reg × Im(τ ) is semialgebraic,

its closure is irreducible and that the parametrization map ϕGL is rational. The first two claims
are true since � is the polynomial image of an open semialgebraic set. Moreover, the map
ϕGL is rational due to Cramér’s rule.

Now, we study the dimensions of � and the image ϕGL(�). The dimension of � is equal
to |DV |+dim(Im(τ )) since the dimension of the product of two semialgebraic sets is the sum
of their individual dimensions (Bochnak, Coste and Roy (1998), Proposition 2.8.5). Since the
image of ϕGL lies in the positive definite cone PD(d), we have

dim
(
ϕGL(�)

) ≤ dim
(
PD(d)

) =
(
d + 1

2

)
.

Thus, if |DV | + dim(Im(τ )) >
(
d+1

2

)
, then dim(�) > dim(ϕGL(�)) and by Lemma 2.5 we

conclude that ϕGL is generically infinite-to-one. �

EXAMPLE 2.8. Consider the graph in Figure 2 where the latent structure is that of
a one-factor model. By Theorem 2 in Drton, Sturmfels and Sullivant (2007), we have

FIG. 2. Latent-factor graph that is (trivially) generically infinite-to-one.



IDENTIFIABILITY IN LATENT VARIABLE MODELS 3181

FIG. 3. Latent-factor graphs with one latent-factor. (a) Rationally identifiable. (b) Generically finite-to-one but
not rationally identifiable. (c) Generically infinite-to-one.

dim(Im(τ )) = 10; with only one factor the dimension is equal to the number of edges from
the latent node to the observed nodes, |DLV | = 5, plus the 5 parameters appearing on the di-
agonal of the matrix 	diag. But since the number of observed edges is |DV | = 6, we have that
16 = |DV |+ dim(Im(τ )) >

( 6
2

) = 15 and therefore the graph is generically infinite-to-one by
Corollary 2.7.

If a latent-factor graph is not trivially infinite-to-one by dimension comparison, then it
becomes more difficult to decide whether it is generically infinite-to-one, generically finite-
to-one or rationally identifiable. Figure 3 shows latent-factor graphs that only have subtle
differences in their structures but each of them has a different status of identifiability.

3. Main identifiability result. The main idea underlying our sufficient condition for
rational identifiability is to exploit the low rank structure of the latent covariance matrix

	 = 	diag + ∑
h∈L

��
h �h.

Recall that 	diag ∈ diag+
d is diagonal and �h is the hth row of � ∈ RDLV . For a node v ∈ V ,

denote by paV (v) = {w ∈ V : w → v ∈ DV } the set of observed parents and by paL(v) =
{w ∈ L : w → v ∈ DLV } the set of latent parents. So, pa(v) = paV (v)∪paL(v). Focusing on a
fixed node v ∈ V , it is our goal to find linear equations that determine the direct causal effects
corresponding to the observed parents, that is, we aim to determine the vector �paV (v),v .
Our approach is to find suitable sets of observed nodes Y,Z ⊆ V \ {v} and a set of latent
nodes H ⊆ L with |H | = |Z| such that the latent covariance matrix contains a submatrix that
satisfies

(3.1) 	Y,Z∪{v} = ∑
h∈H

(
��

h �h

)
Y,Z∪{v}

and fails to have full column rank. The drop in rank means that the entries of the subma-
trix exhibit algebraic relations, which we may then use to identify the targeted direct causal
effects.

The equality in (3.1) holds if (i) Y ∩ (Z ∪ {v}) = ∅ and (ii) paL(Y ) ∩ paL(Z ∪ {v}) ⊆ H .
Indeed, (i) ensures that (	diag)Y,Z∪{v} = 0 because the considered submatrix does not involve
any diagonal elements. And by (ii), the set H contains all latent factors that have an effect on
a node in Y and at the same time an effect on a node in Z ∪ {v}. Assume there exists a triple
of sets (Y,Z,H) with |H | = |Z| and satisfying (i) and (ii) above. Then

rank(	Y,Z∪{v}) = rank
( ∑

h∈H

(
��

h �h

)
Y,Z∪{v}

)
≤ |H | = |Z|,
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since the matrix ��
h �h has rank one for each h ∈ L. Hence, the matrix 	Y,Z∪{v} does not have

full column rank. Moreover, suppose that we are able to ensure that the smaller submatrix
	Y,Z is of full column rank |Z|. Then, since the column ranks of 	Y,Z∪{v} and 	Y,Z are
equal, the vector 	Y,v must be a linear combination of the columns of 	Y,Z , that is, there
exists ψ ∈ R|Z| such that 	Y,Z · ψ = 	Y,v . Using the identity (Id − �)�
(Id − �) = 	

from (2.2), this is equivalent to[
(Id − �)�
(Id − �)

]
Y,v − [

(Id − �)�
(Id − �)
]
Y,Z · ψ = 0.

Rewriting the matrix on the left, we get the system of equations([
(Id − �)�


]
Y,paV (v)

[
(Id − �)�
(Id − �)

]
Y,Z

)
·
(
�paV (v),v

ψ

)
= [

(Id − �)�

]
Y,v.

(3.2)

Now, if we make sure the matrix on the left-hand side in (3.2) is square and invertible, we
can solve the system for the unknown parameters �paV (v),v . However, for this to be useful
for parameter identification, suitable entries of � must already be known from earlier similar
calculations in order to determine the coefficient matrix and the vector on the right-hand side
of (3.2).

EXAMPLE 3.1. Consider the graph in Figure 3(a). Since there is one latent factor having
dense effect on all observed variables, the parameter matrix � is given by the row vector
(γ11, . . . , γ15). Now focus on node v = 3 which only has a single observed parent. We aim to
recover the effect �paV (3),3 = λ23 and we claim that the triple (Y,Z,H) = ({2,4}, {1}, {h1})
satisfies the properties discussed above. Clearly, it holds that |H | = |Z|, we have empty in-
tersection Y ∩ (Z ∪ {v}), and the only common latent parent of Y and Z ∪ {v} is h1, that is,
paL(Y ) ∩ paL(Z ∪ {v}) ⊆ H . By inspecting the rank one submatrix

	Y,Z∪{v} =
(
γ12
γ14

)
· (

γ11 γ13
) =

(
γ12γ11 γ12γ13
γ14γ11 γ14γ13

)
we can easily deduce the relation

	Y,Z · γ13

γ11
= 	Y,v

which holds true for generic choices of γ11, that is, for γ11 �= 0. In other words, the parameter
ψ is equal to γ13/γ11 and the equation system (3.2) is given by(

σ22 σ12
−λ34σ23 + σ24 −λ34σ13 + σ14

)(
λ23
ψ

)
=

(
σ23

−λ34σ33 + σ34

)
,

where σij is the ij th entry of the covariance matrix 
. If we already knew that the effect λ34
is given by a rational function in 
, then we could also recover the effect λ23 by a rational
function of 
 since the matrix on the left-hand side is quadratic and generically invertible.

Our main result shows that the above story can be made practical and yields a criterion to
recursively identify columns in �. Importantly, the imposed conditions can all be translated
into combinatorial conditions on the considered latent-factor graph. The resulting method is
proven correct in Theorem 3.7 below. Before stating the theorem we define the necessary
graphical concepts, which involve special types of paths that we term latent-factor half-treks.
Recall that a path from node v to w in a latent-factor graph GL = (V ∪L,D) is a sequence of
edges that connects the consecutive nodes in a sequence of nodes beginning in v and ending
in w.
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DEFINITION 3.2 (Latent-factor half-trek). A path π in the latent-factor graph GL is a
latent-factor half-trek from source v to target w if it is a path from v ∈ V to w ∈ V in GL and
is of the form

v → x1 → ·· · → xn → w

or of the form

v ← h → x1 → ·· · → xn → w

for x1, . . . , xn ∈ V and for some h ∈ L.

The name latent-factor half-trek is inspired by the customary notion of a trek, which is a
pair of directed paths (π1, π2) that share the same source node. If a latent-factor half-trek is
of the first form in Definition 3.2, we say that the left-hand side of π , written Left(π), is the
node v and the right-hand side, written Right(π), is the set of nodes {v, x1, . . . , xn,w}. In
the second case Left(π) = {v,h} and Right(π) = {h,x1, . . . , xn,w}. A latent-factor half-trek
from v to v may have no edges, in this case Left(π) = Right(π) = {v} and the half-trek is
called trivial. For a set of n latent-factor half-treks, � = {π1, . . . , πn}, let vi and wi be the
source and the target of πi . If the sources are all distinct and the targets are all distinct, then we
say that � is a system of latent-factor half-treks from A = {v1, . . . , vn} to B = {w1, . . . ,wn}.
A set of latent-factor half-treks � = {π1, . . . , πn} has no sided intersection if

Left(πi) ∩ Left(πj ) = ∅ = Right(πi) ∩ Right(πj ) for all i �= j.

EXAMPLE 3.3. Consider the graph in Figure 3(a). Then the system of latent-factor half-
treks

{π1 : 5 ← h1 → 3, π2 : 4 → 5}
has no sided intersection. On the other hand, the system

{π̃1 : 2 ← h1 → 3, π̃2 : 3 → 4 → 5}
has sided intersection since Right(π̃1) ∩ Right(π̃2) = {3}.

DEFINITION 3.4 (Latent-factor half-trek reachability). Let v,w ∈ V be two distinct ob-
served nodes in a latent-factor graph GL. Let H ⊆ L be a set of latent factors. If there exists
a latent-factor half-trek from v to w through the latent-factor graph GL, which does not pass
through any node in H , then we say that w is half-trek reachable from v while avoiding H ,
and write w ∈ htrH(v). For a set U ⊆ V , we write w ∈ htrH(U) if w ∈ htrH (u) for some
u ∈ U .

EXAMPLE 3.5. Consider the graph in Figure 3(a), and let H = ∅. Then 2 ∈ htrH(1)

since there is the latent-factor half-trek 1 ← h1 → 2 and h1 /∈ H . But if H = {h1}, then
htrH (1) = ∅ since there is no latent-factor half-trek from node 1 to any other node in the
graph while avoiding the node h1.

DEFINITION 3.6 (Latent-factor half-trek criterion). Given a node v ∈ V , the triple
(Y,Z,H) ∈ 2V \{v} × 2V \{v} × 2L satisfies the latent-factor half-trek criterion (LF-HTC) with
respect to v if:

(i) |Y | = |paV (v)| + |H | and |Z| = |H | with Z ∩ paV (v) = ∅,
(ii) Y ∩ (Z ∪ {v}) = ∅ and paL(Y ) ∩ paL(Z ∪ {v}) ⊆ H , and
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(iii) there exists a system of latent-factor half-treks with no sided intersection from Y to
Z ∪ paV (v) in GL, such that for each z ∈ Z, the half-trek terminating at z takes the form
y ← h → z for some y ∈ Y and some h ∈ H .

If a triple (Y,Z,H) satisfies the LF-HTC with respect to a node v, then condition (ii)
ensures that the submatrix 	Y,Z∪{v} of the latent covariance matrix can be written as in (3.1)
and, since |Z| = |H |, the submatrix does not have full column rank. Moreover, condition (iii)
ensures that the matrix on the left-hand side of (3.2) is invertible. The latter claim will be
established by means of an application of the Gessel–Viennot–Lindström lemma (Gessel and
Viennot (1985); Lindström (1973)). We now state our main result; its proof is deferred to
Section 7. For a directed edge u → y ∈ D, we say that y is the head of the edge.

THEOREM 3.7 (LF-HTC-identifiability). Suppose triple (Y,Z,H) ∈ 2V \{v} × 2V \{v} ×
2L satisfies the LF-HTC with respect to v ∈ V . If all directed edges u → y ∈ DV with head
y ∈ Z ∪ (Y ∩ htrH (Z ∪ {v})) are rationally identifiable, then all directed edges in DV with v

as a head are rationally identifiable.

This theorem yields the basis for an efficient algorithm that recursively solves for all direct
causal effects corresponding to the edges DV in a latent-factor graph. That is, we recover the
matrix � column-by-column. The corresponding algorithm is detailed in Section 5. We refer
to a latent-factor graph GL as LF-HTC-identifiable if all columns of � may be recovered
recursively by Theorem 3.7.

EXAMPLE 3.8. The latent-factor graph in Figure 3(a) is LF-HTC-identifiable. To see
this, we recursively check all nodes v ∈ V = {1,2,3,4,5}. That is, for each v ∈ V we find
a triple (Y,Z,H) that satisfies the LF-HTC such that all nodes in Z ∪ (Y ∩ htrH (Z ∪ {v}))
were already checked successfully to satisfy the LF-HTC in the steps before.

v = 1,2: The triple (Y,Z,H) = (∅,∅,∅) trivially satisfies the LF-HTC since
paV (v) = ∅.

v = 4: Let (Y,Z,H) = ({2,3}, {1}, {h1}). Conditions (i) and (ii) are easily checked and
for condition (iii) consider the system of latent-factor half-treks {3,2 ← h1 → 1} where 3
corresponds to the trivial trek from 3 to 3. Finally, note that we have Y ∩ htrH (Z ∪ {v}) =
{2,3} ∩ {4,5} = ∅ and that the node 1 ∈ Z was already checked successfully in the last step.

v = 3: Let (Y,Z,H) = ({2,4}, {1}, {h1}). Then the system of latent-factor half-treks
{2,4 ← h1 → 1} satisfies (iii) and Z ∪ (Y ∩ htrH(Z ∪ {v})) = {1,4}.

v = 5: Let (Y,Z,H) = ({2,3,4}, {1}, {h1}). Then the system of latent-factor half-treks
{3,4,2 ← h1 → 1} satisfies (iii) and Z ∪ (Y ∩ htrH(Z ∪ {v})) = {1}.

If the observed part (V ,DV ) of a latent-factor graph does not contain directed cycles,
then the latent-factor graph is said to be acyclic. Moreover, we say that a latent-factor graph
is bow-free if it does not contain any two observed vertices v,w ∈ V such that there is a
directed edge between v and w and, in addition, there is a latent factor h ∈ L that has directed
edges pointing to both v and w. As a special case of Theorem 3.7, we have the following
straightforward observation.

COROLLARY 3.9. Bow-free acyclic latent-factor graphs are rationally identifiable.

PROOF. Let GL = (V ∪ L,D) be a latent-factor graph. It is easy to see that for every
node v ∈ V the triple (Y,Z,H) = (paV (v),∅,∅) satisfies the LF-HTC with respect to v

since v and paV (v) do not have a common latent parent (i.e., paL(paV (v)) ∩ paL(v) = ∅).
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The observed part (V ,DV ) is a directed aycylic graph (DAG) and therefore induces at least
one topological ordering ≺ on V , that is, an ordering such that v → w ∈ DV only if v ≺
w. Importantly, all parents w ∈ paV (v) are predecessors of v with respect to ≺. Thus, by
Theorem 3.7, we can determine rational identifiability of all edges in DV in a step-wise
manner according to the ordering ≺ and using the triple (paV (v),∅,∅) for each v ∈ V . We
conclude that GL is LF-HTC-identifiable and hence, in particular, rationally identifiable. �

4. Latent projections. As mentioned in the introduction, previous criteria for rational
identifiability of direct causal effects operate on mixed graphs obtained by a projection. These
projections can be defined for general directed graphs with hidden variables (Maathuis et al.
(2019), Chapter 2 and Pearl (2009), Chapter 2), but we treat the special case of latent-factor
graphs:

DEFINITION 4.1 (Maathuis et al. (2019), Chapter 2). Let GL = (V ∪ L,D) be a latent-
factor graph. Define a new graph starting with the induced subgraph G′ = (V ,DV ) and add
edges as follows:

Whenever v ← h → w in GL for h ∈ L and v,w ∈ V, add v ↔ w to G′.

The mixed graph G′ = (V ,DV ,B) is the latent projection of GL, where B is the collection
of bidirected edges v ↔ w. They have no orientation, that is, v ↔ w ∈ B if and only if
w ↔ v ∈ B .

Every mixed graph defines a covariance model. Denote PD(B) ⊆ PD(d) the subcone of
matrices with support B , that is, for 	 = (ωvw) ∈ PD(B) we have ωvw = 0 if v �= w and
v ↔ w /∈ B .

DEFINITION 4.2. The covariance model given by a mixed graph G′ = (V ,DV ,B) with
V = |d| is the family of covariance matrices


 = (Id − �)−�	(Id − �)−1

obtained from choices of � ∈ RDV
reg and 	 ∈ PD(B).

For any latent-factor graph, the cone of latent covariance matrices Im(τ ) is clearly a subset
of PD(B), the cone of latent covariance matrices of the latent projection. Thus, a covariance
model given by a latent-factor graph is a submodel of the covariance model given by its latent
projection. More details on the at times subtle differences between Im(τ ) and PD(B) can be
found in Drton and Yu (2010).

In the remainder of this section, we focus on the predecessor of the LF-HTC that operates
on mixed graphs, namely the original half-trek criterion (HTC) of Foygel, Draisma and Drton
(2012). We say that a mixed graph is HTC-identifiable if it is rationally identifiable by this
criterion.

At first sight, it appears as if the HTC coincides with the version of the LF-HTC obtained
by only allowing H = Z = ∅; compare Def. 4 in Foygel, Draisma and Drton (2012) with
Definition 3.6 here. However, as we will show below there is a subtle difference in the way
systems of half-treks with no sided intersection are defined. Indeed, in the setting of the
LF-HTC two half-treks may also intersect at latent nodes, whereas in the HTC intersections
are only possible at observed nodes. Intuitively, each bidirected edge in a latent projection
can amount to confounding induced by a separate latent variable. Before highlighting this
subtlety, we first exemplify an application of HTC.
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FIG. 4. Latent-factor graphs and their latent projection.

EXAMPLE 4.3. Figure 4 shows two latent-factor graphs and their latent projection. Both
latent-factor graphs are LF-HTC-identifiable; cf. Example 3.8. But only the latent projection
in the upper panel (a) is HTC-identifiable while the latent projection in panel (b) is generically
infinite-to-one. The latter is easily seen since the number of model parameters corresponding
to the mixed graph is larger than the dimension

(
d+1

2

)
of the space PD(d); see, for example,

Proposition 2 in Foygel, Draisma and Drton (2012).

Comparing the graphs in Figure 4, the latent-factor graphs on the left-hand side assume
that all unobserved confounding is caused by a single latent factor. In contrast, for the latent
projections on the right-hand side, there may be multiple latent factors that are the sources
of confounding represented by bidirected edges. This leads to rational identifiability of the
latent-factor graphs while the projection on the mixed graphs may be generically infinite-to-
one.

Surprisingly, a mixed graph G′ being rationally identifiable does not imply that all latent-
factor graphs GL having G′ as their latent projection are rationally identifiable. Recall that
in the case of rational identifiability of the latent projection there may be a proper algebraic
subset A of the Zariski closure of RDV

reg × PD(B) such that identification is not possible on
A. If the dimensionality of the cone of latent covariance matrices Im(τ ) is strictly smaller
than the dimension of PD(B), it can therefore happen that � = RDV

reg × Im(τ ) ⊆ A and the
latent-factor graph is generically infinite-to-one. As an example, the latent projection in Fig-
ure 5 is HTC-identifiable while the latent-factor graph itself is generically infinite-to-one. In
this example, dim(Im(τ )) = 11 while dim(PD(B)) = 13. Hence, although the model given
by the graph to the left is still a submodel of the one given by the graph to the right, the
relevant notion of genericity is different, referring to proper subsets of PD(B) and of Im(τ ),
respectively.

FIG. 5. Latent-factor graph that is generically infinite-to-one but its latent projection is HTC-identifiable.
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In the experiments in Section 6, we systematically compare LF-HTC-identifiability of
latent-factor graphs with HTC-identifiability applied to the corresponding latent projection.

5. Computation. In this section, we propose an efficient algorithm for deciding whether
a latent-factor graph is LF-HTC-identifiable. It is similar to the algorithm of the original half-
trek criterion in Foygel, Draisma and Drton (2012) and makes use of maximum flows in a
special flow graph Gflow = (Vf ,Df ) from a designated source node s ⊆ Vf to a target node
t ⊆ Vf . The standard maximum-flow framework is introduced in Cormen et al. (2009). We
highlight that the maximum flow can be computed in polynomial time and the complexity is
O((|Vf | + r)3) where r ≤ |Df |/2 is the number of reciprocal edge pairs in Df . A reciprocal
edge pair is a pair v → w and w → v for distinct nodes v �= w ∈ Vf .

Let GL be a latent-factor graph, and fix a node v ∈ V . Then we denote by LF-HTC(GL, v)

the decision problem whether there exists a triple (Y,Z,H) ∈ 2V \{v} × 2V \{v} × 2L satisfy-
ing the LF-HTC for v ∈ V in GL. To solve this problem, we first address a subproblem by
assuming that we are given a fixed set H ⊆ L and a fixed set Z ⊆ ch(H) \ ({v} ∪ paV (v))

such that |Z| = |H |. Since the second part of condition (ii) of the LF-HTC is equivalent to
Y ∩ ch(paL(Z ∪ {v}) \ H) = ∅, the set A = V \ (Z ∪ {v} ∪ ch(paL(Z ∪ {v}) \ H)) is the set
of “allowed” nodes that may contain a set Y ⊆ A such that (Y,Z,H) satisfies the LF-HTC
with respect to v. We are able to prove the existence or inexistence of such a set Y efficiently
by one maximum flow computation on a suitable flow graph Gflow(v,A,Z) = (Vf ,Df ).

The flow graph is defined as follows: Let V ′ and L′ be copies of the sets V and L. Then
the graph contains the nodes Vf = (A ∪ L) ∪ (V ′ ∪ L′) ∪ {s, t}, where s is a source node and
t is a sink node. The set of edges Df contains:

(a) s → a for all a ∈ A,
(b) a → w if a ∈ A and w → a ∈ DLV ,
(c) w → w′ for all w ∈ A ∪ L,
(d) u′ → w′ for all u → w ∈ DLV and for all u → w ∈ DV such that w /∈ Z,
(e) w′ → t for all w ∈ paV (v) ∪ Z.

We assign to all edges capacity ∞. The source node s and the target node t have capacity ∞
while all other nodes have capacity 1. Note that, by construction, no flow in Gflow(v,A,Z)

can exceed |paV (v)| + |Z| in size, therefore one may replace the infinite capacities with
|paV (v)| + |Z| in practice. An example of a flow graph is shown in Figure 6(b).

Let MaxFlow(Gflow(v,A,Z)) be the maximum flow from s to t in Gflow(v,A,Z). The
following theorem is proven in Appendix A in the Supplementary Material (Barber et al.
(2022)).

FIG. 6. Using maximum-flow to find a set Y ⊆ A such that the triple (Y,Z,H) with fixed sets H = {h1} and
Z = {1} satisfies the LF-HTC with respect to v = 4. The set of allowed nodes is A = {2,3,5}. (a) The concerned
latent-factor graph. (b) The corresponding flow graph Gflow(v,A,Z).
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THEOREM 5.1. Let GL = (V ∪ L,D) be a latent-factor graph, and fix a node v ∈ V , a
set H ⊆ L and a set Z ⊆ ch(H) \ ({v} ∪ paV (v)) such that |Z| = |H |. For the set of allowed
nodes A = V \ (Z ∪ {v} ∪ ch(paL(Z ∪ {v}) \H)), we have that MaxFlow(Gflow(v,A,Z)) =
|paV (v)| + |Z| if and only if there exists Y ⊆ A such that the triple (Y,Z,H) satisfies the
LF-HTC for v ∈ V .

For solving the decision problem LF-HTC(GL, v) we iterate over all suitable sets H ⊆ L
and Z ⊆ ch(H) \ ({v} ∪ paV (v)) such that |Z| = |H | and check for each pair (Z,H) if there
is a corresponding set Y ⊆ A. In each iteration, we have to compute one maximum flow by
Theorem 5.1. It is enough to iterate over subsets H ⊆ L≥4 where L≥4 = {h ∈ L : |ch(h)| ≥ 4}
contains only those latent nodes with more than four children. Recall that the children of a
node v ∈ V ∪ L are formally defined as ch(v) = {w ∈ V ∪ L : v → w ∈ D}. We prove the
following fact in Appendix A in the Supplementary Material.

PROPOSITION 5.2. Let GL = (V ∪L,D) be a latent-factor graph, and fix a node v ∈ V .
If the triple (Y,Z,H) satisfies the LF-HTC for v ∈ V and there is a node h ∈ H such that
| ch(h)| ≤ 3, then there are subsets Ỹ ⊆ Y and Z̃ ⊆ Z such that the triple (Ỹ , Z̃, H̃ ) with
H̃ = H \ {h} satisfies the LF-HTC for v ∈ V as well.

Next, we give an algorithm to determine whether a graph GL is LF-HTC-identifiable by
iterating over all nodes v ∈ V and solving LF-HTC(GL, v) in each step. Moreover, when
solving LF-HTC(GL, v) for a specific node v ∈ V , we have to make sure that, for a pos-
sible solution (Y,Z,H), each node w ∈ Z ∪ (Y ∩ htrH(Z ∪ {v})) was solved before. This
intuition is formalized in Algorithm 1. In Theorem 5.3, we prove that the algorithm correctly
determines LF-HTC-identifiability. Our implementation of Algorithm 1 is included in the R
package SEMID as of version 0.4.0 (R Core Team (2020); Foygel Barber et al. (2022)), which
is available on CRAN, the Comprehensive R Archive Network.

Algorithm 1 Testing LF-HTC-identifiability of a latent-factor graph

Require: Latent-factor graph GL = (V ∪ L,D).
Ensure: Solved nodes S ← {v ∈ V : paV (v) = ∅}.

1: repeat
2: for v ∈ V \ S do
3: for H ∈ L≥4 do
4: Za ← (S ∩ ch(H)) \ ({v} ∪ paV (v)).
5: for Z ⊆ Za such that |Z| = |H | do
6: A ← V \ (Z ∪ {v} ∪ ch(paL(Z ∪ {v}) \ H) ∪ (htrH(Z ∪ {v}) \ S)).
7: if MaxFlow(Gflow(v,A,Z)) = |paV (v)| + |Z| then
8: S ← S ∪ {v}
9: break

10: end if
11: end for
12: if v ∈ S then
13: break
14: end if
15: end for
16: end for
17: until S = V or no change has occurred in the last iteration.
18: return “yes” if S = V , “no” otherwise.
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FIG. 7. Latent structure of unlabeled latent-factor graph with one global latent factor.

THEOREM 5.3. A latent-factor graph GL = (V ∪ L,D) is LF-HTC-identifiable if and
only if Algorithm 1 returns “yes.” If we only allow sets H with |H | ≤ k in line 3, then the
algorithm has complexity at most O(|V |2+k|L|k(|V | + |L| + r)3) where r ≤ |DV |/2 is the
number of reciprocal edge pairs in DV .

In Algorithm 1, we iterate over subsets of the power sets of L and V , and we put effort into
iterating over a small subset. Nevertheless, if we allow the cardinality of |H | to be unbounded
in line three, then we search over an exponentially large space and, thus, our algorithm will
in general take exponential time O(2|L|+|V |). In fact, there is a fundamental barrier in finding
a polynomial time algorithm as we are able to show that LF-HTC(GL, v) is an NP-complete
problem.

To see that LF-HTC(GL, v) is NP-complete, first note that LF-HTC(GL, v) is in
the NP-complexity class due to Theorem 5.1. Every candidate triple (Y,Z,H) to solve
LF-HTC(GL, v) can be checked to be a solution in polynomial time by first check-
ing if (Y,Z,H) satisfies conditions (i) and (ii) of the LF-HTC and then checking if
MaxFlow(Gflow(v,Y,Z)) = |paV (v)| + |Z|. Moreover, we are able to show NP-hardness
of LF-HTC(GL, v) by a reduction from the Boolean satisfiability problem in conjunctive
normal form; this result is developed in Appendix B in the Supplementary Material (Barber
et al. (2022)).

6. Numerical experiments. This section reports on the results of experiments with
small latent-factor graphs, for which the identification problem can be fully solved by tech-
niques from computational algebraic geometry, as we discuss in Appendix C in the Supple-
mentary Material (Barber et al. (2022)). We study acyclic latent-factor graphs with |V | = 6
observed nodes.

In the first experimental setup we consider one global latent factor that has an effect on all
observed variables, as illustrated in Figure 7. All possible DAGs on 6 nodes are considered
for the observed part (V ,DV ). Table 1 lists the counts when there are |DV | ≤ 9 edges in

TABLE 1
Counts of unlabeled DAGs with |V | = 6 observed nodes and one latent node as in Figure 7

No. of obs. edges |DV | Total Generically finite-to-one Rationally identifiable LF-HTC-identifiable

0 1 1 1 1
1 1 1 1 1
2 4 4 4 4
3 13 13 13 13
4 51 51 51 50
5 163 160 159 134
6 407 401 398 250
7 796 770 747 234
8 1169 1047 956 64
9 1291 896 631 4

Total 3896 3344 2961 755
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FIG. 8. Latent structure of unlabeled latent-factor graphs with two latent factors.

the observed part of the graph. Graphs with |DV | > 9 are trivially generically infinite-to-
one by Corollary 2.7. In the counts in Table 1, we treat graphs as unlabeled, that is, we
count isomorphism classes of graphs. Formally, two latent-factor graphs G = (V ∪ L,D)

and G′ = (V ∪ L,D′) with the same set of nodes are isomorphic if there is a permutation π

of the observed nodes V such that for two nodes h ∈ L and v ∈ V the edge h → v ∈ D if
and only if h → π(v) ∈ D′ and for two nodes v,w ∈ V the edge v → w ∈ D if and only if
π(v) → π(w) ∈ D′.

In the second setup, we consider two latent factors, each of them only having influ-
ence on some of the observed variables. The precise latent structure is illustrated in Fig-
ure 8. Since the number of isomorphism classes is much larger in this case, for com-
putational reasons we only consider graphs with at most |DV | = 6 edges between ob-
served nodes. Up to this constraint, the observed part may be any DAG. Table 2 lists
the counts for these graphs, again up to isomorphism. In this setup it is possible that
the latent projection is rationally identifiable. Thus, we compare the LF-HTC with the
original HTC applied to the projection and the results are counted in an additional col-
umn.

In the considered setups, we see that the latent factor-criterion is very successful in certi-
fying the graphs to be rationally identifiable as long as the number of observed edges |DV |
is not too large. It misses more graphs the larger the number of observed edges is. More-
over, in the second setup, the latent-factor half-trek criterion declares about four times more
graphs to be rationally identifiable than the original half-trek criterion applied to the latent
projection.

7. Proof of main result. In this section, we prove the main theorem.

PROOF OF THEOREM 3.7. Let paV (v) = {p1, . . . , pn}, H ⊆ L with |H | = r , Y =
{y1, . . . , yn+r}, and Z = {z1, . . . , zr} be as in the statement of the theorem. Define matrices

TABLE 2
Counts of unlabeled DAGs with |V | = 6 observed nodes and two latent nodes as in Figure 8

No. of obs.
edges |DV |

Total Generically
finite-to-one

Rationally
identifiable

LF-HTC-identifiable HTC-identifiable

0 1 1 1 1 1
1 8 6 6 6 4
2 63 45 45 43 24
3 391 255 255 236 104
4 1983 1171 1171 1018 384
5 7570 3907 3898 3028 900
6 21,029 9080 8960 5861 1157

Total 31,045 14,465 14,336 10,193 2574
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A ∈ R(n+r)×n, B ∈ R(n+r)×r and a vector c ∈ Rn+r as follows:

Aij =
{[

(Id − �)�

]
yipj

if yi ∈ htrH
(
Z ∪ {v}),


yipj
if yi /∈ htrH

(
Z ∪ {v}),

and

Bij =
⎧⎨⎩

[
(Id − �)�
(Id − �)

]
yizj

if yi ∈ htrH
(
Z ∪ {v}),[


(Id − �)
]
yizj

if yi /∈ htrH
(
Z ∪ {v}),

and

ci =
{[

(Id − �)�

]
yiv

if yi ∈ htrH
(
Z ∪ {v}),


yiv if yi /∈ htrH
(
Z ∪ {v}).

CLAIM 1. The matrices A and B and the vector c are all rationally identifiable.

By assumption, all columns of � indexed by a vertex in Z ∪ (Y ∩ htrH (Z ∪ {v})) are
rationally identifiable (i.e., rational functions of 
). Inspecting the above expressions, we
observe that only entries from these columns of � appear in the definition of A, B , and c.
Hence, A, B , and c are rationally identifiable, as claimed.

Next, note that there is a set YZ ⊆ Y such that there is a system of latent-factor half-
treks with no sided intersection from YZ to Z. In this system each half-trek takes the form
y ← h → z for y ∈ Y , z ∈ Z and h ∈ H . Since the system has no sided intersection, it
follows from Proposition 3.4 in Sullivant, Talaska and Draisma (2010) that det(	YZ,Z) �= 0,
generically. Thus, the matrix 	Y,Z has full column rank r because 	YZ,Z is a submatrix.
Using this fact we prove our next claim.

CLAIM 2. There exists some ψ ∈ Rr such that

(
A B

) ·
(
�paV (v),v

ψ

)
= c.

To show this, we implicitly construct ψ . Let 	h = ��
h �h for each h ∈ L, and observe that

	Y,Z∪{v} = (	diag)Y,Z∪{v} + ∑
h∈H

(	h)Y,Z∪{v} + ∑
h∈L\H

(	h)Y,Z∪{v}.

Since Y ∩ (Z ∪ {v}) = ∅ by definition of the latent-factor half-trek criterion, we have that
(	diag)Y,Z∪{v} = 0. The definition of the latent-factor half-trek criterion further yields that for
any h ∈ L \ H , either Y ∩ ch(h) = ∅ or (Z ∪ {v}) ∩ ch(h) = ∅. Hence, (	h)Y,Z∪{v} = 0. We
obtain that

	Y,Z∪{v} = ∑
h∈H

(	h)Y,Z∪{v} = (	H )Y,Z∪{v},

where 	H := ∑
h∈H 	h. Note that rank(	H ) ≤ |H | = r . Moreover, (	H )V,Z has full col-

umn rank r by assumption (since 	Y,Z is a submatrix of this matrix), which proves that

(7.1) (	H )V,Z · ψ = (	H )V,v

for some ψ ∈ Rr .
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Next, consider any index i such that yi ∈ htrH(Z ∪ {v}). Then[(
A B

) ·
(
�paV (v),v

ψ

)]
i

= [
(Id − �)�


]
yi ,paV (v) · �paV (v),v + [

(Id − �)�
(Id − �)
]
yi ,Z

· ψ
= [

(Id − �)�
 · �]
yiv

+ [	Y,Z · ψ]i(7.2)

because �wv = 0 unless w ∈ paV (v) and (Id − �)�
(Id − �) = 	. Since 	Y,Z∪{v} =
(	H )Y,Z∪{v}, it follows from (7.1) that

[	Y,Z · ψ]i = [	Y,v]i = 	yiv.

Hence, we may rewrite (7.2) as[(
A B

) ·
(
�paV (v),v

ψ

)]
i

= [
(Id − �)�


]
yiv

− [
(Id − �)�
(Id − �)

]
yiv

+ 	yiv

= [
(Id − �)�


]
yiv

− 	yiv + 	yiv

= ci,

by the definition of c.
To conclude the proof of Claim 2, consider any index i such that yi /∈ htrH (Z ∪ {v}). For

any such i, any latent-factor half-trek from a node w ∈ Z ∪ {v} to yi must be of the form

w ← h → x1 → ·· · → xm → yi

for some h ∈ H . This implies that

(7.3)
[
	(Id − �)−1]

wyi
= [

	H(Id − �)−1]
wyi

for all w ∈ Z ∪ {v}. Consequently,[(
A B

) ·
(
�paV (v),v

ψ

)]
i

= 
yi,pa(v) · �paV (v),v + [

(Id − �)

]
yi ,Z

· ψ

= [
�]yiv + [

(Id − �)

]
yi ,Z

· ψ
= 
yiv − [


(Id − �)
]
yiv

+ [

(Id − �)

]
yi ,Z

· ψ
= 
yiv − [

(Id − �)−�	
]
yiv

+ [
(Id − �)−�	

]
yi ,Z

· ψ,(7.4)

because 	 = (Id − �)�
(Id − �). Applying first (7.3) and then (7.1), we find that

− [
(Id − �)−�	

]
yiv

+ [
(Id − �)−�	

]
yi ,Z

· ψ
= −[

(Id − �)−�	H

]
yiv

+ [
(Id − �)−�	H

]
yi ,Z

· ψ
= −[

(Id − �)−�	H

]
yiv

+ [
(Id − �)−�	H

]
yiv

= 0.

Taking up (7.4) and recalling the definition of c, we conclude that[(
A B

) ·
(
�paV (v),v

ψ

)]
i

= 
yiv = ci .

The theorem is now proven if the equation system exhibited in Claim 2 has a unique
solution generically. This is addressed by our last claim.

CLAIM 3. The matrix (A B) is generically invertible.
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To prove Claim 3, we will show that if we set some parameters equal to zero, then the
considered matrix is invertible for generic choices of the remaining free parameters, which is
sufficient to show that the matrix will be generically invertible with respect to choices of all
parameters.

By assumption, the latent-factor graph GL contains a system of latent-factor half-treks
from Y to Z ∪ paV (v), where half-treks terminating at any z ∈ Z are of the form yi ← h → z

for some h ∈ H . For every z ∈ Z, set �paV (z),z = 0. Furthermore, every node h ∈ H appears
in at most one of the latent-factor half-treks in the system. Suppose it appears as yi ← h → w.
Then we will define 	h to have value ωyiw at entries {yi,w} × {yi,w}, and zeros elsewhere.

Consider now a mixed graph Ĝ constructed as follows. Starting with the induced subgraph
Ĝ = (V ,DV ), first remove all edges with head in Z. Next, looking at the selected system of
latent-factor half-treks from Y to Z ∪ paV (v) in the latent-factor graph GL, any time we see
a half-trek beginning with yi ← h → w, add a bidirected edge yi ↔ w to Ĝ.

By definition of the new graph Ĝ, the selected system of latent-factor half-treks from Y

to Z ∪ paV (v) in GL has a corresponding system of half-treks in Ĝ. Here, any latent-factor
half-trek that begins with edges yi ← h → w has these two initial two edges replaced by the
bidirected edge yi ↔ w. The resulting system of half-treks in Ĝ has no sided intersection.
Let �̂ and 	̂ be the parameter matrices for this graph. Note that (I − �̂)∗,Z = I∗,Z because
�̂∗,Z = 0 by construction. Therefore, we can write

Bij =
{[

(Id − �)�

]
yizj

if yi ∈ htrH
(
Z ∪ {v}),


yizj
if yi /∈ htrH

(
Z ∪ {v}).

We now apply Lemma 2 in the original half-trek paper (Foygel, Draisma and Drton (2012))
to conclude that (A B) is generically invertible. �

8. Discussion. In this work, we proposed a graphical criterion that provides an effec-
tive sufficient condition for rational identifiability in linear structural equation models where
latent variables are not projected to correlation among noise terms. To the best of our knowl-
edge, it is the most general graphical criterion to decide identifiability for graphs explicitly
including latent nodes. The new criterion can be checked in time that is polynomial in the size
of the graph if we search only over subsets of latent nodes of bounded size. The restriction of
the search space is necessary since checking the criterion without any restriction is in general
NP-hard.

The criterion applies to a wide range of models and allows for presence of multiple latent
factors that may even have an effect on many or all of the observed variables. The correspond-
ing directed graph is allowed to be cyclic, the only restriction that we made in this work is
that all latent factors are source nodes in the graph.

It is noteworthy that even if a model is not LF-HTC-identifiable, the latent-factor half-
trek method can still prove certain columns of � to be identifiable. This is the case if the
recursive procedure of Algorithm 1 stops early declaring some but not all nodes to satisfy the
LF-HTC. In this case, the status of identifiability of the whole graph remains inconclusive
but for the nodes v that the method successfully visits, the parameters �paV (v),v are proven
to be rationally identifiable.

Methods for identifiability of latent-factor graphs are useful also as a refinement of meth-
ods that operate on mixed graphs in the latent projection framework: Imagine a model that
is generically infinite-to-one in the latent projection framework. The main reason for this is
often denser confounding, that is, there is confounding between many of the observed vari-
ables. There is then the natural question whether the model would be (rationally) identifiable
if the confounding originated from a simpler structure, that is, is caused by only a few latent
factors. Then the LF-HTC may be applicable and may prove a model rationally identifiable.
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On the other hand, if a model is rationally identifiable in the latent projection framework,
then the identifiability may be due to the assumption that confounding is caused by multiple
different latent factors. As shown in Figure 5, there may be settings where rational identifi-
ability no longer holds when the confounding is in fact caused by fewer factors. Using our
method it is possible to check for such identifiability failures.

We would like to emphasize that the LF-HTC is useful also if the goal is model selection.
One may then be interested in testing the goodness-of-fit of a particular model, a problem for
which it is crucial to know the dimension of the model. The LF-HTC asserting identifiability
also means that the model has expected dimension.

An interesting research program emerges from the work presented here. Indeed, one may
strive to improve and extend the efficiency of the LF-HTC along similar lines as those that
have been applied in previous work that has led to improvements of the original half-trek
criterion for mixed graphs. In particular, it would be useful to find a latent-factor modification
of the criterion for edgewise identifiability that allows for identification of a subset or even
single direct causal effects λwv instead of only targeting whole columns �paV (v),v; compare to
Weihs et al. (2018) and references therein. This extension is of interest when effects between
particular variables are the primary targets of investigation, but it may also make the criterion
more powerful as a whole. Another way to extend the scope of the LF-HTC would be to
apply graph decomposition techniques as proposed by Tian (2005); see also Foygel, Draisma
and Drton (2012) and Drton (2018), Section 6.

Furthermore, it would be interesting to generalize the LF-HTC to a version in which we
relax the condition that all latent factors are source nodes in the graph. For example, one may
consider models where latent nodes are only required to be upstream, that is, there may be
direct causal effects between latent variables but no effects from observed variables to latent
variables. Put differently, in addition to the equation system (1.1) that defines the model, the
vector of latent variables (Lh)h∈L is required to satisfy the equation

L = BT L + δ,

where B is an �× � matrix with zeros along the diagonal and the noise terms δ = (δh)h∈L are
independent with mean zero and variance 1. The latent covariance matrix is now of the form

	 = 	diag + ��(I� − B)−�(I� − B)−1�.

Thus the parametrization τ of the cone of latent covariance matrices is rational and depends
on the three parameter matrices (B,�,	diag). The question is how to identify effects between
observed variables in this case, or, even more, what can be said in terms of identifying causal
effects between latent variables. Note that such a setting cannot be handled by a mixed graph
approach which marginalizes out the effects of interest. Hence, our work sets the scene for
future developments of identifiability between latent variables.

In Lemma 2.5, we gave a simple necessary condition for the parametrization map to be
generically finite-to-one. In future work, we hope to obtain more powerful necessary condi-
tions for generic identifiability in the form of efficient graphical criteria. This will amount to
studying the Jacobian matrix of the parametrization ϕGL , taking into account the algebraic
geometry of the cone of latent covariance matrices.
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This supplement contains additional material such as further elements of
proofs (Appendix A), a hardness result for checking the LF-HTC without a
bound on the cardinality of searched sets of latent variables (Appendix B),
and an explanation on how to effectively deploy techniques from computa-
tional algebraic geometry (Appendix C).

APPENDIX A: PROOFS

PROOF OF LEMMA 2.5. Throughout the proof we let p= dim(S). Since f is rational, it
is a semialgebraic mapping according to Definition 2.2.5 in Bochnak, Coste and Roy (1998).
Images and preimages of semialgebraic sets under semialgebraic mappings are again semial-
gebraic. Hence, the image f(S) is a semialgebraic set. The rest of the proof is an application
of Hardt’s triviality theorem (Basu, Pollack and Roy, 2006, Theorem 5.45) which states that
there exists a finite partition of f(S) into semialgebraic sets f(S) =

⋃r
i=1 Ti such that for

each i and for each y ∈ Ti the product Ti × f−1(y) is semialgebraically homeomorphic to
f−1(Ti). In particular, we have for all y ∈ Ti the equality

(A.1) dim(f−1(y)) = dim(f−1(Ti))− dim(Ti).

Now suppose that k = dim(f(S))< p. Observe that S =
⋃r

i=1 f
−1(Ti) is a finite union of

semi-algebraic sets. We write C for the union of all preimages f−1(Ti) of dimension strictly
less than p. Then for all x ∈ S \C we have by Equation (A.1)

dim(f−1(f(x)))≥ dim(S)− dim(f(S)) = p− k > 0,

which means that for all x ∈ S \C the fiber f−1(f(x)) is a semialgebraic subset of S with
positive dimension, i.e., it contains infinitely many elements (cf. Theorem 5.19 in Basu, Pol-
lack and Roy (2006)). Moreover, the Zariski closure S is equal to the union of Zariski clo-
sures S \C ∪ C . By Proposition 2.8.5 in Bochnak, Coste and Roy (1998) the dimension of
C is strictly less than p, i.e., S 6= C . Since S is irreducible, it must be the case S = S \C .
Thus there is no proper algebraic subset of S that contains S \C and we conclude that f is
generically infinite-to-one.

For the other direction, suppose that k = dim(f(S)) = p. Let I = {i ∈ {1, . . . , r} :
dim(Ti) < p} and B =

⋃
i∈I Ti. Then the Zariski closure B in Rn has dimension strictly

smaller than p. Applying Equation (A.1) we get for all y ∈ f(S) \B that

dim(f−1(y))≤ dim(S)− p= p− p= 0.

MSC2020 subject classifications: 62H22, 62J05, 62R01.
Keywords and phrases: Covariance matrix, factor analysis, graphical model, hidden variables, latent variables,

parameter identification, structural equation model.
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Therefore, for all x ∈ S \ f−1(B) the fiber f−1(f(x)) is a zero-dimensional and thus finite
semialgebraic set (compare Theorem 5.19 in Basu, Pollack and Roy (2006) again). To finish
the proof it remains to show that the Zariski closure of f−1(B) is a proper subset of S. As
S is assumed to be irreducible, it suffices to argue that S contains a point outside the Zariski
closure of f−1(B). Using that f is rational, we see that the preimage f−1(B) is an algebraic
subset of S. Since dim(B) < p, the set f(S) \B is nonempty and therefore S \ f−1(B) is
nonempty as well. Now observe that the points in S \f−1(B) are not contained in the Zariski
closure of f−1(B). We conclude that f is generically finite-to-one.

PROOF OF THEOREM 5.1. The proof is similar to the proof of Theorem 6 in Foygel,
Draisma and Drton (2012a). If (Y,Z,H) ∈ 2V \{v} × 2V \{v} × 2L satisfies the LF-HTC with
respect to v, then we have a system Π of latent-factor half-treks from Y to paV (v)∪Z with
no sided intersection such that for each z ∈ Z , the half-trek terminating at z takes the form
y← h→ z for some y ∈ Y and some h ∈H .

For each latent-factor half-trek πk ∈Π of the form

πk : yk← hk→wk→ · · · → k, k ∈ paV (v)∪Z,
add a flow of size 1 along the path

π̃k : s→ yk→ hk→ h′k→w′k→ · · · → k′→ t

in the flow graph Gflow. Similarly, for each latent-factor half-trek πk ∈Π of the form

πk : yk→wk→ · · · → k, k ∈ paV (v)∪Z,
add a flow of size 1 along the path

π̃k : s→ yk→ y′k→w′k→ · · · → k′→ t

in the flow graph Gflow. Let Π̃ = {π̃k : k ∈ paV (v) ∪Z} be the system of directed paths that
we obtain in the flow graph Gflow. Clearly, the total flow size from s to t in the flow graph is
|paV (v)|+ |Z|. It is left to check that no capacity constraint is exceeded. This is trivial for the
infinite edge capacities as well as for the infinite capacities of the nodes s and t. For all other
nodes that appear in some of the paths of the system Π̃, note that they appear exactly once in
the system since the original system of latent-factor half-treks Π has no sided intersection.

Now suppose MaxFlow(Gflow(v,A,Z)) = |paV (v)|+ |Z|. By the properties of the max-
flow problem with integer-valued capacities (Ford and Fulkerson, 1962), this means that there
are |paV (v)|+ |Z| directed paths from s to t with flow size 1 along each path. We denote
the collection of these paths by Π̃ = {π̃k : k ∈ paV (v) ∪ Z}, recall that by assumption Z ∩
paV (v) = ∅. Since all nodes in the flow graph that are not equal to s or t have capacity 1,
each node different from s and t can appear at most once in the system of paths Π̃. Consider
a specific path π̃k ∈ Π̃. By construction of the graph Gflow, it has one of two forms. First, we
may have

π̃k : s→ yk→ hk→ h′k→w′k→ · · · → k′→ t

with yk ∈A, k ∈ paV (v)∪Z and hk ∈ L. This defines the latent-factor half-trek

πk : yk← hk→wk→ · · · → k

in GL. The other possibility is that the path has the form

π̃k : s→ yk→ y′k→w′k→ · · · → k′→ t

with yk ∈A and k ∈ paV (v)∪Z . This defines the latent-factor half-trek

πk : yk→wk→ · · · → k
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in GL. In this way, we obtain a system of latent-factor half-treks Π = {πk : k ∈ paV (v)∪Z}
in GL. Because each node other than s or t appears at most once in the system Π̃ in Gflow,
the constructed system Π has no sided intersection. Furthermore, if k ∈ Z , we have that
wk = k in the latent-factor half-trek πk since by construction the flow graph Gflow(v,A,Z)
does not contain the edge w′ → z′ if w ∈ Z . Moreover, if k ∈ Z , it must be the case that
hk ∈H . Indeed, if we have hk /∈H , then yk ∈ ch(paL(Z ∪ {v}) \H) which is impossible
by assumption since yk ∈ A. Thus, Π is a system of latent-factor half-treks with no sided
intersection from Y = {yk : k ∈ paV (v)∪Z} to Z ∪paV (v) in GL, such that for each z ∈ Z ,
the half-trek terminating at z takes the form y← h→ z for some y ∈ Y and some h ∈H .
Finally, note that for the triple (Y,Z,H) conditions (i) and (ii) of the LF-HTC are trivially
satisfied by construction and the fact that Y ⊆A.

PROOF OF PROPOSITION 5.2. Suppose the triple (Y,Z,H) satisfies the LF-HTC for
v ∈ V in GL. Recall that there exists a system of latent-factor half-treks Π with no sided
intersection from Y to paV (v) ∪ Z such that, for each z ∈ Z , the half-trek terminating at z
takes the form y← h→ z for some y ∈ Y and some h ∈H . Since |Z|= |H|, it is clearly not
possible that there is a node h ∈H such that |ch(h)|= 1.

Now let h ∈ H such that |ch(h)| ∈ {2,3}. Then there is a unique latent-factor half-trek
in Π that has the form y← h→ z for some y ∈ Y and some z ∈ Z . Let Ỹ = Y \ {y} and
Z̃ = Z \ {z}. It is clear that the triple (Ỹ , Z̃, H̃) satisfies conditions (i) and (iii) of the LF-
HTC and Ỹ ∩ (Z̃ ∪ {v}) = ∅. Thus it is left to show that h 6∈ paL(Ỹ )∩ paL(Z̃ ∪ {v}).

If |ch(h)|= 2, there are no more children of h other than y and z. Thus, we directly see
that h 6∈ paL(Ỹ )∩paL(Z̃ ∪{v}). If |ch(h)|= 3, there might be one child w ∈ ch(h)\{y, z}.
But then due to Ỹ ∩ (Z̃ ∪ {v}) = ∅, this node w cannot be in both sets Ỹ and Z̃ ∪ {v} at
the same time. Thus h 6∈ paL(Ỹ ) ∩ paL(Z̃ ∪ {v}) as well. We conclude that condition (ii)
of the LF-HTC is satisfied by the triple (Ỹ , Z̃, H̃) and therefore it satisfies the LF-HTC for
v ∈ V .

PROOF OF THEOREM 5.3. The proof works in the same way as the proof of Theorem 7 in
Foygel, Draisma and Drton (2012a). We start by analyzing the complexity of the algorithm.

Observe that we run the “inner” algorithm (line 3 to 15) at most |V |2 times. This can be
seen by counting the maximal number of repetitions in line 1. Another repetition is only done
if a node was added to S in the repetition before, otherwise the algorithm terminates. Thus
after |V | repetitions of line 1 either all nodes were added to S or the algorithm terminated
before. By investigating line 2 we see that in every pass we also iterate over at most |V | nodes
which yields the maximal number of |V |2 runs of the inner algorithm.

In the inner algorithm itself we iterate first through all sets H ⊆L≥4 ⊆L with cardinality
at most k. The number of subsets of L with cardinality at most k is

k∑

i=0

(|L≥4|
i

)
=O(|L|k).

In line 5 we then iterate over all Z ⊆ Za ⊆ V with |Z|= |H|. Similarly as before, we see that
in the worst case these are O(|V |k) iterations. Hence, we compute at most O(|V |2|L|k|V |k)
maximum flows on a graph with at most 2(|V |+ |L|) + 2 nodes and 4|V |+ |L|+ |D| edges
and the same number r of reciprocal edge pairs as in DV . By Cormen et al. (2009, Section
26) each maximum flow computation has complexity at most O((|V |+ |L|+ r)3). Finally,
note that the sets htrH(U) for a subset U ⊆ V can be found using breadth first search which
has complexity O(|V |+ |L|+ |D|) by Cormen et al. (2009, Section 22.2). Finding parents
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and children of nodes is not of higher complexity. Since |D| ≤ |V |2, we conclude that the
total complexity is O(|V |2+k|L|k(|V |+ |L|+ r)3).

Next we show that the algorithm indeed determines LF-HTC-identifiability. Suppose that
GL is LF-HTC-identifiable. Then by Theorem 3.7 there is a total ordering ≺ on V such that
w ≺ v whenever w ∈ Zv ∪ (Yv ∩ htrHv

(Zv ∪{v})) where (Yv,Zv,Hv) ∈ 2V \{v}× 2V \{v}×
2L is a triple satisfying the LF-HTC with respect to v. Hence, if GL is LF-HTC-identifiable,
we might label the elements {v1, . . . , vd}= V such that v1 ≺ v2 ≺ · · · ≺ vd.

Now we claim that after at most k + 1 passes through the for loop in line 2, all nodes vi,
i≺ k, have already been added to the solved nodes S. We prove this by induction. Suppose
that all nodes v1, . . . , vk−1 ∈ S and we are now testing the k-th node vk. Let (Yvk

,Zvk
,Hvk

)
be the triple satisfying the LF-HTC with respect to vk. At one point, we will visit the correct
set Hvk

∈ L≥4 in line 3 due to Proposition 5.2. If z ∈ Zvk
, then z ≺ vk and therefore z ∈ S

already. Additionally, z ∈ ch(Hvk
) and z 6∈ {vk} ∪ paV (vk) by definition of the LF-HTC.

Thus, we will visit the correct set Zvk
⊆ Za in line 5. Now take any y ∈ Yvk

. By definition
of the LF-HTC, we have that y 6∈ Zvk

∪ {vk} ∪ ch(pa(Zzk ∪ {vk}) \ Hvk
). Moreover, if

y ∈ htrHvk
(Zvk

∪ {vk}), then y ≺ vk and thus y ∈ S, which means y ∈ A. If instead y 6∈
htrHvk

(Zvk
∪ {vk}), then y ∈A by definition of A. Therefore, Yvk

⊆A and by Theorem 5.1
we will add vk to S. By induction, we obtain that S = V after at most |V | repetitions of line
2 to 16.

Conversely, suppose the algorithm finds S = V , and fix a node v ∈ V . It remains to show
that there is a triple (Yv,Zv,Hv) ∈ 2V \{v}× 2V \{v}× 2L such that all nodes w ∈ Zv ∪ (Yv ∩
htrHv

(Zv ∪ {v})) were added to S in the steps before. When v was added to S, there must
have been sets Hv ⊆ L≥4 and Zv ⊆ (S ∩ ch(Hv)) \ ({v} ∪ paV (v)) with |Z| = |H| such
that MaxFlow(Gflow(v,A,Zv)) = |paV (v)| + |Zv|. By Theorem 5.1, this means that there
is a set Yv ⊆ A such that the triple (Yv,Zv,Hv) satisfies the LF-HTC with respect to v. By
construction, Zv ⊆ S at this stage of the algorithm. Moreover, we have for all w ∈ A that
either w ∈ S already or w 6∈ htrHv

(Zv ∪ {v}). Thus, we have as well that Yv ∩ htrHv
(Zv ∪

{v})⊆ S at this stage of the algorithm. Applying this reasoning to all v ∈ V , we see that GL

is LF-HTC-identifiable.

APPENDIX B: NP-HARDNESS OF THE LF-HTC

In this section we show that the task of deciding LF-HTC(GL, v) for unrestricted graphs
is NP-hard. That is, it is at least as hard as the hardest problems in the NP-complexity class.
Formally, we have to show that every problem in NP is reducible to LF-HTC(GL, v) in
polynomial time. Fortunately, it is enough to show that one arbitrary problem that is known to
be NP-hard is reducible to LF-HTC(GL, v) in polynomial time. For this purpose, we choose
the Boolean satisfiability problem in conjunctive normal form (CNFSAT). This is the problem
of determining whether a Boolean expression in conjunctive normal form is satisfiable. That
is, suppose we have Boolean variables {x1, . . . , xn}, and let

C =C1 ∧ · · · ∧CM = (`11 ∨ · · · ∨ l1m1
)∧ · · · ∧ (`M1 ∨ · · · ∨ lMmM

)

where `ij ∈ {x1, . . . , xn,¬x1, . . . ,¬xn} for all 1 ≤ i ≤ M and 1 ≤ j ≤ mi. We call
the elements of {x1, . . . , xn,¬x1, . . . ,¬xn} literals and ¬xi the negation of xi. Then
CNFSAT({x1, . . . , xn},C) is the problem of determining if there exist assignments of True
and False to each xi such that, under this assignment, C is True, i.e., satisfied.

THEOREM B.1. There exists a polynomial time reduction from CNFSAT to
LF-HTC(GL, v) so that LF-HTC(GL, v) is NP-hard.
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FIG 1. The graph GL corresponding to the CNFSAT problem with Boolean expression C = (x1 ∨¬x1)∧ (x1 ∨
x2) ∧ (¬x1 ∨ x2). To not clutter the graph, a red bidirected edge (dashed) corresponds to a latent factor that
has only arrows pointing to the two endpoints of the edge, e.g. the red bidirected edge w1↔ v corresponds to
w1← hw1v→ v.

PROOF. To see that there is a polynomial time reduction from CNFSAT to
LF-HTC(GL, v), let X = {x1, . . . , xn} and let C be as above. We now construct a latent-
factor graph GL and show that solving LF-HTC(GL, v) in GL solves CNFSAT(X,C). Our
construction initializes GL = (V ∪L,D) to be empty. In the following when we add nodes to
GL they will implicitly be added to V unless they are labeled h∗ for some index ∗, in which
case they are to be added to L.

Begin by adding to the graph the nodes v,w1, . . . ,wM , hw1v, . . . , hwmv , the edges wi→ v,
and the edges wi← hwiv→ v for all 1≤ i≤M . The wi will correspond to theM disjunctive
clauses in C . Now for the ith Boolean variable xi, let Ai be the number of times xi (in non-
negated form) appears in C , and let Bi be the number of times ¬xi appears in C . Then add
to the graph

(i) the nodes ui1, . . . , uiAi
, ui1, . . . , uiBi

, ui, ui, hi, hi, and qi,
(ii) uij → wk if the j-th appearance, from the left, of xi (in non-negated form) in C occurs

in the k-th disjunctive clause of C ,
(iii) uij→wk if the j-th appearance, from the left, of ¬xi in C occurs in the k-th disjunctive

clause of C ,
(iv) hi→ a for each a ∈ {ui1, . . . , uiAi

, ui, qi, v},
(v) hi→ a for each a ∈ {ui1, . . . , uiBi

, ui, qi, v},
(vi) a node hab = hba and edges a ← hab → b for each pair of variables a, b ∈
{ui, ui1, . . . , uiAi

}, and
(vii) a node hab = hba and edges a ← hab → b for each pair of variables a, b ∈
{ui, ui1, . . . , uiBi

}.
An example of a graph GL corresponding to a Boolean expression can be found in Figure

1. Now that we have constructed GL we claim that every triple (Y,Z,H) satisfying the
LF-HTC for v ∈ V in GL corresponds to an assignment to X such that C is satisfied under
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this assignment and vice versa.

We will now start with the more complicated direction. Suppose that there is a triple
(Y,Z,H) satisfying the LF-HTC for v in GL. That is, there exists a latent-factor half-trek
system Π from Y to Z ∪ paV (v) satisfying the appropriate LF-HTC conditions.

Claim 1: No wi is an element of Y .

Suppose for contradiction that some wi ∈ Y . Since there exists a node hwiv whose only
edges are wi ← hwiv → v, condition (ii) of the LF-HTC implies that hwiv must be in H .
But then condition (iii) implies that there must be some z ∈ ch(hwiv) ∩ Z for which the
latent-factor half-trek y← hwiv→ z is in Π. By ch(hwiv) = {wi, v} we have a contradiction
since if z = v we would have v ∈ Z , and if z = wi we have that wi ∈ Y ∩ Z so that
Y ∩Z 6= ∅. Hence there is no wi ∈ Y .

Claim 2: If Y ∩ {ui, ui1, . . . , uiAi
} 6= ∅, then Y ∩ {ui, ui1, . . . , uiBi

}= ∅.

Suppose that u ∈ Y ∩ {ui, ui1, . . . , uiAi
}. Since ch(hi) = {v,ui, qi, ui1, . . . , uiAi

}, it fol-
lows from condition (ii) of the LF-HTC that hi ∈H . Hence, by condition (iii), it must be the
case that there is some y, z ∈ {qi, ui, ui1, . . . , uiAi

} with y 6= z such y ∈ Y and z ∈ Z and the
latent-factor half-trek y← hi→ z ∈Π. There are two cases.

Case 1: z 6= qi. We must have that z ∈ {ui, ui1, . . . , uiAi
} \ {u}. Recall, in this case, that

there exists huz whose only children are u and z. By a similar argument as in claim 1, it
follows that u← huz → z must also be in Π which contradicts the fact that Π must have
no sided intersection (since z is already in the right-hand side of the latent-factor half-trek
u← hi→ z).

Case 2: z = qi. In this case we must have that the latent-factor half-trek y← hi→ qi ∈Π
for some y ∈ {ui, ui1, . . . , uiAi

}. Now, for essentially identical reasons as above, if we have
u ∈ Y ∩{ui, ui1, . . . , uiBi

}, there is some y ∈ {ui, ui1, . . . , uiBi
}\{u} such that y← hyqi→

qi is in Π. This contradicts the fact that Π has no sided intersection (since qi is in the right
part of two latent-factor half-treks) and thus we must have that Y ∩ {ui, ui1, . . . , uiBi

}= ∅.
Since the first case results in a contradiction we must be in the second case with

Y ∩ {ui, ui1, . . . , uiBi
}= ∅.

Claim 3: If Y ∩ {ui, ui1, . . . , uiBi
} 6= ∅, then Y ∩ {ui, ui1, . . . , uiAi

}= ∅.

The claim follows by symmetry from claim 2.

We can now show that our given triple (Y,Z,H) satisfying the LF-HTC for v ∈ V in GL

corresponds to an assignment to X such that C is satisfied under this assignment. For each
1 ≤ i ≤M , assign xi to be True if Y ∩ {ui, ui1, . . . , uiAi

} 6= ∅ and False otherwise.
To see that this satisfies C consider the i-th disjunctive clause Ci = (`i1 ∨ · · · ∨ limi

) of
C . Since (Y,Z,H) satisfies the LF-HTC for v, there must exist some y ∈ Y such that
there is a latent-factor half-trek from y to wi in Π. By claim 1 and the proof of claim
2, we must have that y ∈ {uj , uj1, . . . , ujAj

} or y ∈ {uj , uj1, . . . , ujBj
} for some j.

Suppose that y ∈ {uj , uj1, . . . , ujAj
}. Then, since there must be a half-trek from y to wi,

we have, by the construction of GL that xj appears (in non-negated form) in Ci. Since
{uj , uj1, . . . , ujAj

} ∩ Y 6= ∅, we must have set xj to be True and thus Ci is satisfied. If
instead y ∈ {uj , uj1, . . . , ujBj

}, it follows, by the same logic, that ¬xj must appear in Ci

and that we set xj to be False, so again Cj is satisfied. As j was arbitrary, C is satisfied by
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the assignment.

Now we wish to show the opposite direction, namely, that if there is an assignment to
X such that C is satisfied under this assignment, then there must also be a set (Y,Z,H)
satisfying the LF-HTC for v. Suppose we have assigned True and False to the xi, so that
C is satisfied. Let 1≤ i≤M . For the ith disjunctive clause Ci in C , let lk be the first literal in
the clause, which evaluates to True (there must be at least one such literal since C = True
implies Ci = True). Now lk must equal xj or ¬xj for some j. Suppose that lk = xj . Then
there exists a unique 1 ≤ ` ≤ Aj such that edge uj`→ wi is in the graph. If lk = ¬xj then,
similarly, there exists a unique 1 ≤ ` ≤ Bj such that there exists an edge uj` → wi in the
graph. In either case, denote uj` or uj` as yi.

Now for M + 1 ≤ i ≤M + n, let yi = ui if xi is True, and yu = ui otherwise. Let
Z = {q1, . . . , qn}, L = {h̃1, . . . , h̃n} where h̃i = hi if xi = True and h̃i = hi if otherwise,
and Y = {y1, . . . , yM+n}. By our construction, it holds that

(i) |Y |= |paV (v)|+ |H|,
(ii) Y ∩ (Z ∪ {v}) = ∅ and if y ∈ Y and v (or z ∈ Z) are children of the same latent factor,

then that latent factor is some hi for which xi = True or some hi for which xi = False,
and

(iii) the set of latent-factor half-treks Π with elements

yi→wi for 1≤ i≤M,

yM+i← hi→ zi = qi for 1≤ i≤ n if xi is True, and

yM+i← hi→ zi = qi for 1≤ i≤ n if xi is False

forms a latent-factor half-trek system from Y to paV (v) ∪ Z for which the half-trek to
each zi is of the form yM+i ← h̃i → zi and if yi has a common latent parent with v
(or z ∈ Z) then the latent parent must correspond to some h̃j ∈ H and we have that
yM+j← hj→ qj ∈Π.

Note that the above three conditions immediately imply that (Y,Z,H) satisfies the LF-
HTC for v. We have thus shown that CNFSAT reduces to LF-HTC(GL, v) in polynomial
time.

APPENDIX C: ALGEBRAIC TECHNIQUES FOR DETERMINING IDENTIFIABILITY

As discussed in Garcia-Puente, Spielvogel and Sullivant (2010), rational identifiability
may be decided by techniques from computational algebraic geometry. For the original half-
trek criterion, Foygel, Draisma and Drton (2012a) provide an effective algorithm to perform
the necessary computations. In this section we show how their approach may be generalized
to cover the latent-factor setup from this paper. Our implementation and the code to com-
pute the numerical experiments in Section 6 are available at https://github.com/
NilsSturma/lfhtc.

Consider a slightly more general setting than before, i.e., let S ⊆ Rm be an open semial-
gebraic set, and let

τ : S −→ PD(d)

∆ 7−→ τ(∆)

be a polynomial map that parametrizes the cone of latent covariance matrices Im(τ). Together
with a directed graph on the observed nodes GV = (V,DV ) with V = |d|, the cone of latent
covariance matrices Im(τ) postulates a covariance model.
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DEFINITION C.1. The covariance model given by a tuple (GV , Im(τ)), consisting of a
directed graph GV = (V,DV ) with V = |d| and a cone of latent covariance matrices Im(τ),
is given by the family of all covariance matrices

Σ = (Id −Λ)−>Ω(Id −Λ)−1

for Λ ∈RDV
reg and Ω ∈ Im(τ).

A covariance matrix Σ ∈ PD(d) is in the covariance model given by a tuple (GV , Im(τ))
if and only if Σ = ϕ(Λ, τ(∆)) for Λ ∈ RDV

reg and ∆ ∈ S where the parametrization map ϕ is
given by

ϕ : RDV
reg × PD(d)−→ PD(d)

(Λ,Ω) 7−→ (Id −Λ)−>Ω(Id −Λ)−1.

If we let S = RDLV × diag+d and τ : (Γ,Ωdiag) 7→Ωdiag + Γ>Γ, then Definition C.1 coin-
cides with Definition 2.1 of a covariance model given by a latent-factor graph.

In what follows, let λ= {λij : i→ j ∈DV } be variables representing the non-zero entries
of Λ ∈ RDV

reg , and let ω = {ωij : 1 ≤ i ≤ j ≤ d} be variables representing the entries of Ω ∈
PD(d). Let d(λ) ∈R[λ] be the polynomial defined by det(Id−Λ) for Λ ∈RDV . Now observe
that, for (Λ,Ω) ∈ RDV

reg × PD(d), we may write the ij-th entry of the matrix ϕ(Λ,Ω) as a
rational function

ϕij(Λ,Ω) =
ϕ̃ij(λ,ω)

d(λ)2

with ϕ̃ij(λ,ω) ∈ R[λ,ω] due to Cramer’s rule. Furthermore, we write σ = {σij : 1 ≤ i ≤
j ≤ d} and δ = {δi : i = 1, . . . ,m} for variables representing the entries of Σ ∈ PD(d) and
∆ ∈ S, respectively. Consider the polynomial ring R[λ,σ, δ, ξ] with one additional variable
ξ. Then the vanishing ideal of the graph of the parametrization in Definition C.1 is given by

J = 〈{σijd(λ)2 − ϕ̃ij(λ, τ(δ)),1≤ i≤ j ≤ d} ∪ {ξd(λ)− 1}〉 ⊆R[λ,σ, δ, ξ].

The additional variable ξ and the polynomial ξd(λ)− 1 are needed to ensure that d(λ) never
vanishes. Eliminating the variables λ, δ and ξ, we get the vanishing ideal of the image of
Θ = RDV

reg × Im(τ) under the parametrization ϕ, in formulas,

I(ϕ(Θ)) = J ∩R[σ].

Nevertheless, for the purpose of identifying direct causal effects, we are interested in an ideal
where λ is not eliminated, i.e., we are interested in

I = J ∩R[λ,σ].

By definition, this ideal consists exactly of those polynomials f(λ,σ) ∈ R[λ,σ] such that
f(Λ,ϕ(Λ,Ω)) = 0 for all (Λ,Ω) ∈Θ.

PROPOSITION C.2. The parameter λij is rationally identifiable if and only if I contains
an element of the form a(σ)λij − b(σ) with a, b ∈R[σ] and a 6∈ I(ϕ(Θ)).

PROOF. The proof is similar to the proofs of Lemma 7 in Foygel, Draisma and Drton
(2012b) and Proposition 3 in Garcia-Puente, Spielvogel and Sullivant (2010). For complete-
ness, we give the full proof in our notation. Suppose that the parameter λij is rationally
identifiable. By definition, there is a rational function b(σ)/a(σ) ∈R(σ) such that

b(ϕ(Λ,Ω))

a(ϕ(Λ,Ω))
= λij .
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for all (Λ,Ω) ∈Θ \A, where A is a proper algebraic subset of the Zariski closure of Θ. In
particular, outside A we must have that a(ϕ(Λ,Ω)) 6= 0 and therefore it must be the case that
a 6∈ I(ϕ(Θ)). On the other hand, it is clear that the polynomial a(σ)λij − b(σ) is a member
of I since this polynomial vanishes if we substitute σ by ϕ(Λ,Ω) for any (Λ,Ω) ∈Θ \A.

Conversely, suppose that a and b satisfy the given conditions. Since a 6∈ I(ϕ(Θ)), we have
a(ϕ(Λ,Ω)) 6= 0 for all (Λ,Ω) ∈ Θ \ A, where A is a proper algebraic subset of the Zariski
closure of Θ. But then b/a is a rational function identifying λij from σ outside the proper
algebraic subset A.

For checking rational identifiability one has to check the membership of polynomials of
the form a(σ)λij − b(σ) in the ideal I . This can be achieved by computation of a Gröbner
basis of I with eliminating term order using Buchberger’s algorithm; see Garcia-Puente,
Spielvogel and Sullivant (2010). The Gröbner basis computation can be very challenging in
terms of running times, even for small graphs. One reason is that the input polynomials to
the computation ϕ̃ij(λ, τ(δ)),1 ≤ i ≤ j ≤ n, may already have large degree. As mentioned
in Foygel, Draisma and Drton (2012b), it is easy to construct graphs where the bit-size of
those polynomials is already exponential in the size of the graphs. By Definition C.1, we
have the equation Σ = (Id−Λ)−>τ(∆)(Id−Λ)−1. Since the matrix (Id−Λ) is required to
be invertible, this is equivalent to the equation

(C.1) (Id −Λ)>Σ(Id −Λ) = τ(∆).

Clearly, the entries of the matrix on the left-hand side are cubic, i.e., the maximal degree of
the involved polynomials in σ and λ is 3. We suggest to exploit this fact instead of computing
the Gröbner basis for I directly. The idea is to compute a generating set of the vanishing ideal
of the cone of latent covariance matrices Im(τ) and then to plug-in the polynomials from the
left-hand side. The resulting polynomials then indeed define the same ideal I and may be
much smaller in size. Therefore, the Gröbner basis computation may be faster. This is proved
in Proposition C.3 below, but we need to introduce some more notation beforehand.

As usual, we denote I(Im(τ)) = {f ∈ R[ω] : f(Ω) = 0 for all Ω ∈ Im(τ)} for the vanish-
ing ideal of Im(τ). We will also need the map corresponding to Equation (C.1), i.e.,

ψ : RDV
reg × PD(d)−→ PD(d)

(Λ,Σ) 7−→ (Id −Λ)>Σ(Id −Λ).

Note that ψ may be interpreted as an “inverse” of ϕ in the sense that ψ(Λ,ϕ(Λ,Ω)) = Ω and
ϕ(Λ,ψ(Λ,Σ)) = Σ. Since ψ and τ are polynomial functions by definition, we write under
abuse of notation ψ(λ,σ) and τ(δ) for the collection of polynomials they define. Similarly,
we write ϕ̃(λ,ω) for the collection of polynomial functions ϕ̃ij(λ,ω) for 1≤ i≤ j ≤ d.

PROPOSITION C.3. Let AS = {h ◦ψ ∈R[λ,σ] : h ∈ I(Im(τ))}. Then

I = 〈AS , ξd(λ)− 1〉 ∩R[λ,σ].

PROOF. We begin by showing AS ⊆ I . Thus let f(λ,σ) ∈AS . By definition of AS , there
is h ∈ I(Im(τ)) such that f = h ◦ψ. Hence, for any point (Λ,Ω) ∈Θ, we have

f(Λ,ϕ(Λ,Ω)) = h(ψ(Λ,ϕ(Λ,Ω))) = h(Ω) = 0

since Ω ∈ Im(τ). This means that f ∈ I and therefore AS ⊆ I . But this yields that
〈AS , ξd(λ)−1〉 ⊆ J , and by the definition of I we conclude that 〈AS , ξd(λ)−1〉∩R[λ,σ]⊆
I .
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For the other inclusion, let I(Im(τ)) = 〈h1, . . . , hr〉 ⊆ R[ω] and f(λ,σ) ∈ I . Define
the polynomial g(λ,ω, ξ) = f(λ, ξ2ϕ̃(λ,ω)), which is an element of the polynomial ring
R[λ,ω, ξ]. By the definition of I , the polynomial g becomes zero if we plug in (λ,ω, ξ) =
(Λ,Ω, d(Λ)−1) for any (Λ,Ω) ∈Θ. Therefore, g lies in the ideal 〈h1(ω), . . . , hr(ω), ξd(λ)−
1〉 interpreted in the ring R[λ,ω, ξ]. Hence, we can write

g(λ,ω, ξ) =

r∑

i=1

gi(λ,ω, ξ)hi(ω) + gr+1(λ,ω, ξ)(ξd(λ)− 1)

for suitable coefficient polynomials gi(λ,ω, ξ) ∈ R[λ,ω, ξ]. Plugging in ψ(λ,σ) for ω, we
see that

g(λ,ψ(λ,σ), ξ) =

r∑

i=1

gi(λ,ψ(λ,σ), ξ)hi(ψ(λ,σ))

+ gr+1(λ,ψ(λ,σ), ξ)(ξd(λ)− 1)

is an element of 〈AS , ξd(λ) − 1〉 since each polynomial hi(ψ(λ,σ)) ∈ AS . Moreover, we
have the equality

g(λ,ψ(λ,σ), ξ) = f(λ, ξ2ϕ̃(λ,ψ(λ,σ))) = f(λ, ξ2d(λ)2σ)

and thus f(λ, ξ2d(λ)2σ) ∈ 〈AS , ξd(λ)−1〉. But by the fact that ξd(λ)−1 ∈ 〈AS , ξd(λ)−1〉,
it holds that the difference

f(λ, ξ2d(λ)2σ)− f(λ,σ) ∈ 〈AS , ξd(λ)− 1〉
and therefore it must be the case that the polynomial f(λ,σ) itself is in the ideal 〈AS , ξd(λ)−
1〉 since every ideal is an additive group. We conclude the proof by noting that f(λ,σ) does
not depend on ξ which means that f(λ,σ) ∈R[λ,σ] as well.

Propositions C.2 and C.3 yield Algorithm 1 for checking rational identifiability of a covari-
ance model given by (GV , Im(τ)). The proof of the correctness of the algorithm is identical
to the proof of Algorithm 1 in Foygel, Draisma and Drton (2012b) and therefore omitted.

With the reduced Gröbner basis obtained in step 3 of Algorithm 1, it is not just possible to
determine rational identifiability, but it is straightforward to modify the algorithm to check if
a graph is generically finite-to-one (Garcia-Puente, Spielvogel and Sullivant, 2010).

Note that the computation of the ideal I requires the polynomials ψ(λ,σ). To speed-up
the algorithm for large-scale computational experiments as in Section 6, it is advantageous to
replace the variables σ by numerical values obtained from the entries of a randomly chosen
matrix Σ in the model. Put differently, we randomly generate parameters Λ0 ∈RDV

reg and ∆0 ∈
S and then use the polynomials ψ(λ,ϕ(Λ0, τ(∆0))) instead of ψ(λ,σ). The Gröbner basis
then readily yields the dimension and cardinality of the solution set. In practice, we generate
(Λ0,∆0) from prime numbers and we repeat the randomized calculation several times for
each graph to avoid false conclusions from random draws yielding parameters (Λ0, τ(∆0))
in special constellations.

Algorithm 1 Algebraically checking rational identifiability
1: Compute a Gröbner basis 〈h1, . . . , hr〉 ⊆R[ω] of the vanishing ideal I(Im(τ)) using elimination theory.
2: Choose a block-monomial order ≥ on the monomials in the variables λ,σ with λ > σ.
3: Let I = 〈h1(ψ(λ,σ)), . . . , hr(ψ(λ,σ)), ξd(λ) − 1〉 ∩ R[λ,σ] and compute the reduced Gröbner basis T

with respect to ≥ of the ideal I .
4: The covariance model given by (GV , Im(τ)) is rationally identifiable if and only if for each i→ j ∈DV the

basis T contains an element whose leading monomial equals a monomial in σ times λij .
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1 2 3 4 5 6

FIG 2. LF-HTC-identifiable and therefore rationally identifiable.

EXAMPLE C.4. Consider the latent-factor graph in Figure 2. In this case, the parameter
space S is given by S = RDLV × diag+d and we have τ : (Γ,Ωdiag) 7→ Ωdiag + Γ>Γ. By
implicitization, we find that the Gröbner basis of I(Im(τ)) is given by the following list of
polynomials:

ω12ω34 − ω14ω23, ω13ω24 − ω14ω23, ω15, ω16, ω25, ω26, ω35, ω36.

Now, we plug in the relevant polynomials ψ(λ,σ), which for this graph are given by

ψ12(λ,σ) =−λ12σ11 + σ12,

ψ13(λ,σ) =−λ23σ12 + σ13,

ψ14(λ,σ) = σ14,

ψ15(λ,σ) =−λ45σ14 + σ15,

ψ16(λ,σ) =−λ46σ14 + σ16,

ψ23(λ,σ) = λ12λ23σ12 − λ12σ13 − λ23σ22 + σ23,

ψ24(λ,σ) =−λ12σ14 + σ24,

ψ25(λ,σ) = λ12λ45σ14 − λ12σ15 − λ45σ24 + σ25,

ψ26(λ,σ) = λ12λ46σ14 − λ12σ16 − λ46σ24 + σ26,

ψ34(λ,σ) =−λ23σ24 + σ34,

ψ35(λ,σ) = λ23λ45σ24 − λ23σ25 − λ45σ34 + σ35,

ψ36(λ,σ) = λ23λ46σ24 − λ23σ26 − λ46σ34 + σ36.

As in step 3 of Algorithm 1, we compute the reduced Gröbner basis T of the ideal I . Since
T contains the four polynomials

λ12σ11σ12σ24σ34 − λ12σ11σ13σ224 − λ12σ11σ14σ22σ34
+ λ12σ11σ14σ23σ24 − λ12σ12σ214σ23 + λ12σ13σ

2
14σ22

− σ212σ24σ34 + σ12σ13σ
2
24 + σ12σ14σ22σ34 − σ13σ14σ22σ24,

λ23σ12σ24 − λ23σ14σ22 − σ13σ24 + σ14σ23,

λ45σ14 − σ15 and

λ46σ14 − σ16,
we conclude that the latent-factor graph in Figure 2 is rationally identifiable. It is in fact even
LF-HTC-identifiable.
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B.2 Algebraic Sparse Factor Analysis

Summary

In this article, we derive novel results on algebro-geometric aspects of sparse factor analysis models by

adopting a graphical perspective. We prove upper and lower bounds for the dimension of the models.

While the upper bound holds for arbitrary sparse factor analysis models, the lower bound holds for models

that satisfy a minimal level of sparsity, which we formalize in the “ZUTA condition”. In many cases, upper

and lower bounds coincide and one obtains a formula for the dimension. In particular, our study reveals

that sparse factor analysis models, unlike full factor analysis models, may not have expected dimension

obtained from counting parameters. Moreover, we study the ideal of invariants of sparse factor models

with two latent nodes. We present an ideal that cuts out the model and, moreover, we derive a Gröbner

basis for models with overlap at most two, i.e., models where at most two observed nodes have more than

one latent parent. On a technical level, we extended the “delightful strategy”, which was previously applied

to secants, to joins of ideals.

The article is structured as follows. In the introduction, we motivate sparsity in factor analysis models by

discussing related work, and we formally introduce the setup. In Section 2, we study the dimension of factor

analysis models. First, we recall why full factor analysis models are always of expected dimension. Then,

we define the necessary combinatorial concepts and prove our upper and lower bounds on the dimension

of sparse factor analysis models. Finally, we provide conditions on the sparsity so that the lower and

upper bounds match and, moreover, we derive conditions so that sparse factor analysis models have the

expected dimension. In Section 3, we study the ideal of invariants of sparse two-factor analysis models.

We characterize the Zariski closure of the model, and we give an explicit description for the generators of

Gröbner bases with respect to any circular term order for models with overlap at most two. It turns out

that the associated initial ideal is the join of the initial edge ideals of complete graphs with isolated vertices

and can therefore be realized as the monomial edge ideal of a hypergraph. We conclude the article with

Section 4, where we discuss several open questions that arise from our results.

Individual contributions

I am a co-author of this article, which has the authors listed in alphabetical order. I drafted the abstract, the

introduction, and the entire Section 2. In particular, I developed the theoretical concepts and the proofs for

Theorem 2.9 and Theorem 2.12. Moreover, I developed and drafted the proof of Theorem 3.4. The other

results in Section 3 and the writing of Section 3 were carried out by Irem Portakal. Alexandros Grosdos

drafted Section 4. Mathias Drton suggested studying algebro-geometric properties of sparse factor models

by taking his work on full factor models as a starting point (Drton et al., 2007). All co-authors made helpful

suggestions regarding both the content and presentation of the parts for which I am responsible during

regular discussions.



ALGEBRAIC SPARSE FACTOR ANALYSIS

MATHIAS DRTON, ALEXANDROS GROSDOS, IREM PORTAKAL, AND NILS STURMA

Abstract. Factor analysis is a statistical technique that explains correlations among observed ran-

dom variables with the help of a smaller number of unobserved factors. In traditional full factor

analysis, each observed variable is influenced by every factor. However, many applications exhibit
interesting sparsity patterns, that is, each observed variable only depends on a subset of the factors.

In this paper, we study such sparse factor analysis models from an algebro-geometric perspective.

Under mild conditions on the sparsity pattern, we examine the dimension of the set of covariance
matrices that corresponds to a given model. Moreover, we study algebraic relations among the co-

variances in sparse two-factor models. In particular, we identify cases in which a Gröbner basis for
these relations can be derived via a 2-delightful term order and joins of toric edge ideals.

1. Introduction

Factor analysis provides powerful statistical tools to analyze complex data by representing a possibly
large number of dependent random variables as linear functions of a smaller number of underlying
source variables, the factors. Techniques from factor analysis have found widespread application in
a variety of fields, including psychology [Hor65, RWC00, CBBP93], econometrics [FFL08, ABHP16],
education [SNS+06, BLR+13], and epidemiology [MMS98, dOSGdC+19].

Factor analysis models may be defined as follows. Consider an observed random vectorX = (Xv)v∈V

that is indexed by a finite set V and a vector Y = (Yh)h∈H of unobserved random variables, called
factors, that is indexed by a finite set H. In applications, the number of factors |H| is usually smaller
than the number of observed variables |V |. The factor analysis model postulates that the observed
variables are linear functions of the factors and noise, i.e.,

X = ΛY + ε,

where Λ = (λvh) ∈ R|V |×|H| is an unknown coefficient matrix, known as factor loading matrix. The
noise ε = (εv)v∈V is comprised of independent random variables with mean zero and positive variance;
so E[εv] = 0 and Var[εv] =: ωvv ∈ (0,∞). The latent (unobserved) factors (Yh)h∈H are assumed to
be mutually independent, and also independent of the noise ε. Without loss of generality, we fix the
scale of the latent factors such that each Yh has mean zero and variance one. The main object of
study is now the covariance matrix Σ of the observed random vector X, which is given by

(1) Σ := Cov[X] = ΛΛ⊤ +Ω,

where Ω is a diagonal matrix with entries ωvv = Cov[εv]. In traditional full factor analysis, all
coefficients λvh are nonzero [AR56]. Full factor analysis models were studied from a computational
algebraic geometry point of view in [DSS07], where Gröbner bases were used to investigate the ideal
of invariants that vanish on the space of covariance matrices. The generators emerge from rank
conditions on the symmetric covariance matrix under elimination of the diagonal entries.

The journey of this paper extends beyond [DSS07], prompting a study of sparse factor analysis
models under an algebro-geometric perspective. Recently, there has been considerable interest in
sparse factor analysis models, which posit that some (or often many) of the coefficients λvh are
equal to zero. Examples of recent research on sparsity include work on correlation thresholding
[KZ22], l1-penalization [LWSB14, TFA17], and Bayesian approaches [FSL18, OLK23]. Moreover,

2020 Mathematics Subject Classification. 62H25, 62R01, 13F65, 14M25, 14N07.

Key words and phrases. factor analysis model, dimension, join of ideals, Gröbner basis, toric, edge ideal, hypergraph.
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h1

h2

Pop School Employ Service House

Figure 1. Graph corresponding to a sparse factor analysis model for a study on
metropolitan districts. Gray nodes correspond to latent nodes.

sparse factor analysis models are the building block for many directed graphical models with latent
variables [Bol89, BDSW22] that have applications in causality [Pea00, PJS17]. In this context, the
coefficients (or factor loadings) λvh can be interpreted as causal effects of the latent variables Yh on the
observed variables Xv. To represent sparsity assumptions, it is useful to adopt a graphical perspective
and encode a zero pattern in Λ by a directed graph with nodes V ∪ H [MDLW19]. For an observed
node v ∈ V and a latent node h ∈ H, the coefficient λvh is allowed to be nonzero only if the edge
h→ v is in the graph.

Example 1.1. We revisit a study from [Har76, p. 14] that pertains to five socio-economic variables
that are observed in twelve districts in the greater Los Angeles area: Total population, median school
years, total employment, miscellaneous professional services, and median house value. Applying l1-
penalization techniques to the data, a model corresponding to the graph G in Figure 1 is found by
[TFA17, Table 1, Column 3]. The model imposes, for example, that total population is independent
of total employment given only the first latent variable. In this model, the factor loading matrix has
the zero pattern

Λ =

(
λ11 0 λ31 λ41 λ51

0 λ22 0 λ42 λ52

)⊤
,

and gives rise to the covariance matrix Σ ∈ F (G) of the form

Σ = (σuv) =




ω11 + λ2
11 0 λ11λ31 λ11λ41 λ11λ51

0 ω22 + λ2
22 0 λ22λ42 λ22λ52

λ11λ31 0 ω33 + λ2
31 λ31λ41 λ31λ51

λ11λ41 λ22λ42 λ31λ41 ω44 + λ2
41 + λ2

52 λ41λ51 + λ42λ52

λ11λ51 λ22λ52 λ31λ51 λ41λ51 + λ42λ52 ω55 + λ2
51 + λ2

52


 .

The factor analysis model F (G) is 12-dimensional which is equal to the expected dimension obtained
from counting parameters. However, we will show in this paper that the dimension of sparse factor
models is not always equal to the number of parameters. The (toric) ideal of variants I(G) is generated
by two monomials and one binomial:

⟨σ12, σ23, σ15σ34 − σ14σ35⟩.
The binomials of this form are known as tetrads in statistics which reflects the fact that the poly-

nomial arises with four observed random variables. They also arise as generators of the ideal of
invariants for one-factor analysis models or, equivalently, as the toric edge ideals of complete graphs
[Sul09]; compare also [Sul08, Cor. 6.5]. Harman [Har76, p.77] highlighted the absence of knowledge
regarding the ideal of invariants for models involving two or more factors. This was subsequently
addressed in the context of full factor analysis models in [DSS07]. The ideal of invariants can enhance
useful statistics for testing goodness-of-fit; see, e.g., [BT00, SSGS06, DSS07, DX16, SDL22]. In this
paper, we address this gap of knowledge for sparse factor analysis models.
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The organization and the main results of the paper are as follows: In Section 2, we study the
dimension of factor analysis models. First, we give a general upper bound on the dimension in Theo-
rem 2.9, which reveals that sparse factor models can be defective, that is, they may not have expected
dimension. This is a difference to full factor analysis models that are always of expected dimension.
For models that exhibit a minimal level of sparsity, which we call the zero upper triangular assumption
(ZUTA), we also provide a lower bound on the dimension in Theorem 2.12. The assumption ensures
that the rows and columns of the matrix Λ can be permuted such that the upper triangle of the matrix
is zero. In many cases, the upper and lower bounds coincide, and we obtain a combinatorial formula
for the dimension.

In Section 3, we study the ideal of invariants of sparse two-factor analysis models. First, we
characterize the Zariski closure of the model in Theorem 3.4. Second, we give an explicit description
for the generators of Gröbner bases with respect to any circular term order for a subclass of sparse
two-factor analysis models in Theorem 3.13. It turns out that the associated initial ideal can be
realized as the monomial edge ideal of a hypergraph. The study of this Gröbner basis uses the 2-
delightful strategy that was introduced in [SS05] for secant varieties. We generalize this strategy to
joins of sparse one-factor analysis models, i.e., we study joins of toric edge ideals of complete graphs
with isolated vertices. Supplementary code for our results can be found on the MathRepo page:

https://mathrepo.mis.mpg.de/sparse-factor-analysis

2. Dimension

Let G = (V ∪ H, D) be a directed graph, where V and H are finite disjoint sets of observed and
latent nodes. We assume that the graph G only contains edges that point from latent to observed
nodes, that is, D ⊆ H × V ; see Figure 2 for an example with H = {h1, h2} and V = {v1, . . . , v7}.
We refer to such bipartite graphs as factor analysis graphs. If (h, v) ∈ D, which we also denote by
h→ v ∈ D, then h ∈ H is a parent of its child v ∈ V . The respective sets of all parents and children
are denoted by pa(v) = {h ∈ H : h→ v ∈ D} and ch(h) = {v ∈ V : h→ v ∈ D}.

Every factor analysis graph determines a factor analysis model that for our purposes may conve-
niently be identified with the set of its covariance matrices. For a definition, we let RD denote the
set of real |V | × |H| matrices Λ = (λvh) with support D, that is, λvh = 0 if h→ v ̸∈ D. Furthermore,
we write PD(p) for the cone of positive definite p × p matrices, and Rp

>0 ⊂ PD(p) for the subset of
diagonal positive definite matrices.

Definition 2.1. Let G = (V ∪H, D) be a factor analysis graph with |V | = p and |H| = m. As a model
of the covariance matrix, the factor analysis model determined by G is the image F (G) = Im(τG) of
the parametrization map

τG : Rp
>0 × RD −→ PD(p)

(Ω,Λ) 7−→ Ω+ ΛΛ⊤.
(2)

The covariance model F (G) is a parameterized subset of the
(
p+1
2

)
-dimensional space of symmetric

p × p matrices, and its dimension is the maximal rank of the Jacobian matrix of the map τG in

Definition 2.1. Naturally, the expected dimension of F (G) is equal to min{|V | + |D|,
(|V |+1

2

)
}, the

minimum of the number of parameters in (Ω,Λ) and the dimension of the ambient space.

Example 2.2. The graph in Figure 2 corresponds to a sparse model with |V | = 7 nodes and |D| = 9
edges. To simplify notation, we identify v1, . . . , v7 with the integers 1, . . . , 7, and h1, h2 with the
integers 1, 2. Then, the sparse factor loading matrix is

(3) Λ =

(
λ11 λ21 λ31 λ41 λ51 0 0
0 0 0 λ42 λ52 λ62 λ72

)⊤
,
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h1

h2

v1 v2 v3 v4 v5 v6 v7

Figure 2. Factor analysis graph with 2 latent factors and 7 observed variables.

which gives rise to the covariance matrix Σ ∈ F (G) of the form

Σ =




ω11 + λ2
11 λ11λ21 λ11λ31 λ11λ41 λ11λ51 0 0

λ11λ21 ω22 + λ2
21 λ21λ31 λ21λ41 λ21λ51 0 0

λ11λ31 λ21λ31 ω33 + λ2
31 λ31λ41 λ31λ51 0 0

λ11λ41 λ21λ41 λ31λ41 ω44 + λ2
41 + λ2

42 λ41λ51 + λ42λ52 λ42λ62 λ42λ72

λ11λ51 λ21λ51 λ31λ51 λ41λ51 + λ42λ52 ω55 + λ2
51 + λ2

52 λ52λ62 λ52λ72

0 0 0 λ42λ62 λ52λ62 ω66 + λ2
62 λ62λ72

0 0 0 λ42λ72 λ52λ72 λ62λ72 ω77 + λ2
72



.

The expected dimension of the corresponding model is equal to |V | + |D| = 15, and as we verify in
Theorem 2.9, this is indeed the dimension of the model.

If G = (V ∪ H, D) is a factor analysis graph with all possible edges, so D = H × V , then the
corresponding covariance model recovers the full factor analysis model [DSS07, AR56]. However,
using orthogonal transformations as in the QR decomposition, any covariance matrix Σ in a full
factor analysis model can be written as Σ = Ω + ΛΛ⊤ such that the upper triangle of Λ = (λvh)
is zero. Hence, any full factor model is equivalent to a sparse factor analysis model where only the
edges corresponding to the upper triangle in Λ are removed from the complete bipartite graph. Said
differently, we obtain a graph that belongs to the set of factor analysis graphs satisfying the following
assumption.

Assumption (ZUTA). A factor analysis graph and its associated model satisfy the Zero Upper Tri-
angular Assumption (ZUTA) if there exists a relabeling of the latent nodes H = {h1, . . . , hm} such
that ch(hi) is not contained in

⋃
j>i ch(hj) for all i = 1, . . . ,m. In this case, there is then a relabeling

of the observed nodes V = {v1, . . . , vp} such that vi ∈ ch(hi) and vi ̸∈
⋃

j>i ch(hj) for all i = 1, . . . ,m.

ZUTA ensures that the rows and columns of the factor loading matrix Λ can be permuted such
that the upper triangle of the matrix is zero.

Example 2.3. The graph in Figure 2 satisfies ZUTA. The latent nodes h1 and h2 are already ordered
as desired. A ZUTA labeling of V is obtained if we permute, for example, the labelings of v2 and v4.
This corresponds to permuting rows 2 and 4 of the parameter matrix Λ in Equation (3).

Note that ZUTA requires that p ≥ m and that each latent node has at least one observed child.
However, isolated latent nodes need not be considered as they only add a zero column in Λ.

Remark 2.4. In the special case where a factor analysis graph contains an observed node v ∈ V
such that pa(v) = ∅, the dimension of the model is by one larger than the dimension of the model
corresponding to the smaller graph where this node is removed.

Remark 2.5. ZUTA is more general than the “k-pure-children” condition that is often employed
in previous work on structure identifiability of sparse factor analysis models [AGM12, BBNW20,
MSWB22, MLAS23]. The k-pure-children condition requires that each latent node h ∈ H has at least
k (pure) children that have no other parents than h. In particular, the 1-pure child condition implies
that there is an upper m×m matrix inside Λ which is diagonal. Hence, any k-pure children condition
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h1

h2

v1 v2 v3 v4 v5

Figure 3. A graph whose associated model is equal to the full two-factor analysis
model with 5 observed nodes.

with k ≥ 1 implies ZUTA. Note that ZUTA also requires that each latent node h ∈ H has at least
1 child, but the children are allowed to have more parents. For example, after relabeling such that
ZUTA is satisfied, node v3 needs to be a child of h3, but it could also have h1 and h2 as parents. Only
the first node v1 has to be a pure child of h1. Conversely, a factor analysis graph in which there is no
latent node that has a pure child does not satisfy ZUTA.

It is proved in [DSS07] that the dimension of full factor analysis models is always equal to the
expected dimension obtained by counting parameters. Since full factor models are equivalent to
models satisfying ZUTA, the number of edges is equal to |D| = pm −

(
m
2

)
, which implies that the

expected dimension is given by min{p(m+ 1)−
(
m
2

)
,
(
p+1
2

)
}.

Example 2.6. Consider the full factor analysis model with m = 2 latent nodes and p = 5 observed
nodes. The model is equivalent to the model F (G) corresponding to the graph in Figure 3, and the
dimension is equal to the number of parameters, that is, dim(F (G)) = 14.

In Example 2.2, we saw a sparse model that is also of expected dimensions. However, sparse factor
analysis models differ fundamentally from full factor analysis models in the sense that their dimension
is not always equal to the expected dimension. The next example shows models where the dimension
drops, that is, the dimension is strictly smaller than the expected dimension.

Example 2.7. Consider the three graphs in Figure 4. The expected dimension of the model F (G)
corresponding to graph (a) is |V |+ |D| = 14. On the other hand, the model is a subset of the space of
symmetric matrices that has dimension

(
p+1
2

)
= 15, and every covariance matrix Σ = (σvw) ∈ F (G)

has three zeros, σv1v4 = σv1v5 = σv2v5 = 0. Thus, we obtain 15− 3 = 12 as a trivial upper bound for
the dimension. It turns out that we have indeed dim(F (G)) = 12. However, the model corresponding
to graph (b), obtained by adding one more node, shows that counting zeros in the covariance matrix
is not enough. In this case, we have

(
p+1
2

)
= 21 and there are five zeros in every covariance matrix

in the model, namely σv1v4 = σv1v5
= σv1v6 = σv2v5 = σv2v6 = 0. Thus we obtain an upper bound of

16 for the dimension that is also equal to the expected dimension |V | + |D|. Nevertheless, the true
dimension is given by dim(F (G)) = 15. The model corresponding to graph (c) has a similar drop of
dimension. In this case there are no zeros in the covariance matrix and the expected dimension is
|V |+ |D| = 18, but the true dimension is dim(F (G)) = 17.

To study the dimension of sparse factor analysis models, we first introduce necessary terminol-
ogy. Let C(V, 2) := {{v, w} : v, w ∈ V, v ̸= w} be the set of 2-pairs of V , i.e., the set of all subsets
consisting of 2 distinct nodes of V . We write jpa({u, v}) = {h ∈ H : h ∈ pa(u) ∩ pa(v)} for the
set of joint parents of a pair {u, v} ∈ C(V, 2). For any latent node h ∈ H, we let C(V, 2)h =
{{v, w} ∈ C(V, 2) : h ∈ jpa({v, w})} be the collection of pairs of nodes that have h as a joint parent.
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(a)

h1

h2

h3

v1 v2 v3 v4 v5

(b)

h1

h2

h3

v1 v2 v3 v4 v5 v6

(c)

h1

h2

h3

v1 v2 v3 v4 v5 v6

Figure 4. Graphs with lower model dimension than number of parameters.

For a matrix Σ ∈ F (G), the parametrization of the entries σuv depends on the joint parents of the
pair {u, v}. In particular, for Ω = diag(ωvv) ∈ Rp

>0 and Λ = (λvh) ∈ RD, we have

σuv =

{∑
h∈jpa({u,v}) λuhλvh if u ̸= v,

ωuu +
∑

h∈pa(u) λ
2
uh if u = v,

where we use the convention that the empty sum is zero. Recall that the dimension of F (G) = Im(τG)
is equal to the maximal rank of the Jacobian of τG. Hence, we need to study the Jacobian matrix
that has the form

J =

(ω λ
u Ip C

{u, v} 0 B

)
,

where the rows in the upper part correspond to the derivatives of σuu and the rows in the lower part
correspond to the derivatives of σuv for u ̸= v. In particular, the entries in the unit matrix Ip on the
upper left are given by

∂σuu
∂ωvv

=

{
1 if u = v,

0 else.

Thus, the rank of the Jacobian is equal to p+ rank(B); recall that p = |V |. The entries of the matrix
B are given by

(4)
∂σuv
∂λzh

=





λvh if z = u and h ∈ jpa({u, v}),
λuh if z = v and h ∈ jpa({u, v}),
0 else.

Note that the rows of B are indexed by 2-pairs {u, v} ∈ C(V, 2). A necessary condition for a model
to have expected dimension is the crucial observation that, for each latent node h, there has to be
a different set of 2-pairs of children of h that has same cardinality as the number of children of h.
Otherwise, the dimension drops accordingly. We formalize the concept of different 2-pairs, a.k.a rows
of B, by considering pairwise disjoint collections.

Definition 2.8. Let G = (V ∪ H) be a factor analysis graph and let A = (Ah)h∈H be a collection of
observed 2-pairs, that is, Ah ⊆ C(V, 2). We say that the collection A is valid if

(i) Ah ⊆ C(V, 2)h with cardinality |Ah| ≤ | ch(h)| for all h ∈ H, and
(ii) the collection is pairwise disjoint, i.e., Ah ∩Aℓ = ∅ for h ̸= ℓ.

Moreover, we say that
∑

h∈H |Ah| is the sum of cardinalities of a valid collection.
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The next theorem gives an upper bound on the dimension. It is obtained by choosing a valid
collection A = (Ah)h∈H such that the sum of cardinalities

∑
h∈H |Ah| is maximal. The upper bound

holds for all sparse factor models, even if ZUTA is not satisfied.

Theorem 2.9. Let G = (V ∪H, D) be a factor analysis graph. Let A = (Ah)h∈H be a valid collection
of 2-pairs such that the sum of cardinalities

∑
h∈H |Ah| is maximal among all valid collections. Then

dim(F (G)) ≤ |V |+
∑

h∈H
|Ah|.

Proof. It is enough to show that rank(B) ≤ ∑h∈H |Ah|. Define λi := (λch(hi),hi
) ∈ R| ch(hi)| and

A∁ := C(V, 2) \
(⋃

h∈HAh

)
. Then the matrix B can be written as

B =




λ1 · · · λm
Ah1

B1,1 · · · B1,m

...
...

Ahm
Bm,1 · · · Bm,m

A∁ BA∁,1 · · · BA∁,m


.

The proof is structured as follows. We first show in Claim 1 and Claim 3 that some submatrices of B
are equal to zero. Claim 2 is an intermediate result we need to prove for Claim 3. Then, we restructure
the matrix B and show in Claim 4 that the rank of the matrix B can not be larger than

∑
h∈H |Ah|. Let

[m] := {1, . . . ,m} and define the index sets I(=) = {i ∈ [m] : |Ahi | = | ch(hi)|} and I(<) = [m] \ I(=).

Claim 1: If i ∈ I(<), then BA∁,i = 0.

Consider an index i ∈ I(<) and a row indexed by {u, z} ∈ A∁. Observe that we must have hi ̸∈
pa(u)∩pa(z). Otherwise we could have chosen Ãhi

= Ahi
∪{{u, z}} that has empty intersection with

any Ahj
for j ̸= i. But this defines another valid collection Ã = (Ah1

, . . . , Ahi−1
, Ãhi

, Ahi+1
, . . . , Ahm

)
such that the sum of cardinalities is greater by one, which contradicts the assumption on the max-
imality of A. We conclude that the row in BA∁,i that is indexed by {u, z} is equal to zero; re-

call (4). Since this holds for all rows {u, z} ∈ A∁, we have that BA∁,i = 0, which proves the
claim.

To state Claim 2 we define

J0 = {i ∈ I(=) : BA∁,i ̸= 0} = {i ∈ I(=) : hi ∈ jpa(R) for some R ∈ A∁},
and, for all k ≥ 1, we define

Jk = {j ∈ I(=) : there is i ∈ Jk−1 such that hj ∈ jpa(R) for some R ∈ Ahi
}.

Since hj ∈ jpa(R) for all R ∈ Ahj
, we clearly have that Jk ⊆ Jk+1 for all k ≥ 0.

Claim 2: Let R ∈ Ahj for some j ∈ Jk, k ≥ 0. Then {i ∈ [m] : hi ∈ jpa(R)} ⊆ I(=).

We first assume k = 0. Let j ∈ J0 and R ∈ Ahj
, and suppose there is hl ∈ jpa(R) such that

l ∈ I(<). On the one hand, this means that |Ahl
| < | ch(hl)|. On the other hand, since j ∈ J0, there

has to be a pair S ∈ A∁ such that hj ∈ jpa(S). Therefore, we can define a collection Ã = (Ãh)h∈H
such that Ãhj

= (Ahj
\ {R}) ∪ {S}, Ãhl

= Ahl
∪ {R} and Ãh = Ah for all h ̸∈ {hj , hl}. Note that

the collection Ã is valid but
∑

h∈H |Ãh| = 1 +
∑

h∈H |Ah|. This is a contradiction to the maximality

assumption on the collection A and we conclude that we must have l ∈ I(=).
Now, let k ≥ 1 and assume that j ∈ Jk and R ∈ Ahj . If j ∈ J0, we are done. If j ∈ Jk \ J0,

suppose there is hl ∈ jpa(R) such that l ∈ I(<). Once again, this means that |Ahl
| < ch(hl). Now,
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we recursively choose integers j1, . . . , jn and corresponding subsets Sji ∈ Ahji
as follows. First, since

j ∈ Jk, there has to be a minimal integer k1 < k such that there is j1 ∈ Jk1 and hj ∈ jpa(Sj1)

for some Sj1 ∈ Ahj1
. Note that j ̸∈ Jk1 , since otherwise there would exist j̃1 ∈ Jk1−1 such that

hj ∈ jpa(S̃) for some S̃ ∈ Ahj̃1
, which is a contradiction on the minimality assumption on k1. Further,

define ki+1 as the minimal integer ki+1 < ki such that there is ji+1 ∈ Jki+1 and hji ∈ jpa(Sji+1)
for some Sji+1

∈ Ahji+1
. We stop this procedure as soon as we arrived at some n ≥ 1 such that

kn = 0. It can be seen as before that ji ̸∈ Jki+1 for all i = 1, . . . , n. Hence, the integers j, j1, . . . , jn
are pairwise different by construction, which also implies that the pairs R,Sj1 , . . . , Sjn are pairwise

different. Moreover, since jn ∈ J0, there has to be a pair S ∈ A∁ such that hjn ∈ jpa(S). Now, we

define a collection Ã = (Ãh)h∈H as follows:

Ãhjn
= (Ahjn

\ {Sjn}) ∪ {S}, Ãhji
= (Ahji

\ {Sji}) ∪ {Sji+1
} for i = 1, . . . n− 1,

Ãhj = (Ahj \ {R}) ∪ {Sj1}, Ãhl
= Ahl

∪ {R},
and Ãh = Ah for all h ∈ H that do not appear above. Since the pairs R,Sj1 , . . . , Sjn and S are

pairwise different, the collection is valid. However, we have that
∑

h∈H |Ãh| = 1 +
∑

h∈H |Ah|, which
is a contradiction to the maximality assumption on the collection A. We conclude that we must have
l ∈ I(=), which proves the claim.

Now, observe that there must exist a k∗ ≥ 0 such that the sequence J0 ⊆ J1 ⊆ . . . stabilizes, that
is, Jk∗

= Jk∗+1 = . . .. This is true since Jk−1 ⊆ Jk and Jk ⊆ I(=) for all k ≥ 1. Define J := Jk∗
.

Claim 3: Bj,i = 0 for all j ∈ J, i ∈ [m] \ J .

Consider indices j ∈ J and let R ∈ Ahj
. It is enough to show that {i ∈ [m] : hi ∈ jpa(R)} ⊆ J .

By Claim 2, we have that {i ∈ [m] : hi ∈ jpa(R)} ⊆ I(=). Now, assume that there is hl ∈ jpa(R) such
that l ̸∈ J . By definition, this means that l ∈ Jk∗+1. But this is a contradiction since J = Jk∗+1. We
conclude that we must have l ∈ J.

Claim 4: The rank of the matrix B cannot exceed
∑

h∈H |Ah|.

Without loss of generality, J = [k] for some positive integer k ≤ m. Then, by Claims 1-3, the
matrix B has the form

B =




λ1 · · · λk λk+1 · · · λm
Ah1 B1,1 · · · B1,k 0 · · · 0

...
...

...
...

Ahk
Bk,1 · · · Bk,k

A∁ BA∁,1 · · · BA∁,k 0 · · · 0

Ahk+1
Bk+1,1 · · · Bk+1,k Bk+1,k+1 · · · Bk+1,m

...
...

...
...

Ahm
Bm,1 · · · Bm,k Bm,k+1 · · · Bm,m




.

The rank of this matrix is smaller or equal to the sum of the minimum of the number of rows
and columns of the upper left block plus the minimum of the number of rows and columns of the
lower right block. The minimum of the number of rows and columns of the upper left block is given
by min{∑h∈J |Ah| + |A∁|,∑h∈J | ch(h)|}. Since

∑
h∈J | ch(h)| =

∑
h∈J |Ah|, this minimum is equal

to
∑

h∈J |Ah|. On the other hand, the minimum of the number of rows and columns of the lower
right block is given by min{∑

h∈J
∁ |Ah|,

∑
h∈J

∁ | ch(h)|}. Since
∑

h∈J
∁ |Ah| ≤

∑
h∈J

∁ | ch(h)|, this
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minimum is given by
∑

h∈J
∁ |Ah|. Thus, the rank of the matrix B cannot be larger than

∑

h∈J

|Ah|+
∑

h∈J
∁

|Ah| =
∑

h∈H
|Ah|. □

Example 2.10. Consider the graph in Figure 4 (b). Then we have

C(V, 2)h1
= {{v1, v2}, {v1, v3}, {v2, v3}},

C(V, 2)h2
= {{v2, v3}, {v2, v4}, {v3, v4}},

C(V, 2)h3 = {{v3, v4}, {v3, v5}, {v3, v6}, {v4, v5}, {v4, v6}, {v5, v6}}.
To obtain an upper bound for the dimension, we want to choose the subsets Ahi

⊆ C(V, 2)hi
with

cardinality as large as possible but not larger than the number of children. However, to obtain
a valid, i.e. pairwise disjoint, collection we have to choose either |Ah1

| = 2 or |Ah2
| = 2. If

both |Ah1 | = 3 and |Ah2 | = 3, then we must have that {v2, v3} ∈ Ah1 ∩ Ah2 , i.e., the collec-
tion is not pairwise disjoint. On the other hand, we can choose Ah3 with cardinality at most 4,
e.g. {{v3, v5}, {v3, v6}, {v4, v6}, {v5, v6}} that does not intersect with any of Ah1

and Ah2
. Thus,

any pairwise disjoint collection A = (Ah1
, Ah2

, Ah3
) with |Ahi

| ≤ | ch(hi)| has a maximal sum of
cardinalities equal to 2 + 3 + 4 = 9. Applying the upper bound in Theorem 2.9, we obtain that
dim(F (G))) ≤ 6 + 9 = 15 which is strictly less than the expected dimension 16.

While Theorem 2.9 holds for any sparse factor analysis graph, also for graphs that do not satisfy
ZUTA, to obtain a lower bound on the dimension, we consider more refined collections of 2-pairs that
require ZUTA to be satisfied. If ZUTA is satisfied, we can assume that the latent nodes are labeled
as H = {h1, . . . , hm} and the observed nodes are labeled as V = {v1, . . . , vp} such that vi ∈ ch(hi)
and vi ̸∈

⋃
j>i ch(hj) for all i = 1, . . . ,m.

Definition 2.11. Suppose that ZUTA is satisfied. A valid collection A = (Ah)h∈H of 2-pairs is
ZUTA-conform if {vi, w} ∈ Ahi

for all w ∈ ch(hi) \ {vi} and for all i ∈ [m].

Note that a valid, ZUTA-conform collection always exists for a factor analysis graph that satisfies
ZUTA. Indeed, one may just choose Ahi

= {{vi, w} : w ∈ ch(hi) \ {vi}}. In this collection, the
cardinality of each set of 2-pairs Ahi

is equal to | ch(hi)| − 1. However, there might exist other valid,
ZUTA-conform collections where the components Ahi

potentially contain one more 2-pair, that is, Ahi

might be chosen such that its cardinality is equal to | ch(hi)|. Each of these ZUTA-conform collections
gives a lower bound on the dimension as we prove in the next theorem.

Theorem 2.12. Let G = (V ∪H, D) be a factor analysis graph. Suppose that ZUTA is satisfied and
let A = (Ah)h∈H be a valid collection that is ZUTA-conform. Then,

(5) dim(F (G)) ≥ |V |+
∑

h∈H
|Ah|.

Proof. It suffices to show that, for generic parameter choices, the rank of B is larger or equal to
r =

∑
h∈H |Ah|. Let [m] := {1, . . . ,m} and define the index sets I(=) = {i ∈ [m] : |Ahi

| = | ch(hi)|}
and I(<) = [m] \ I(=) as in the proof of Theorem 2.9. Consider the sets Ci := {{vi, w} : w ∈
ch(hi)\ {vi}} ⊆ C(V, 2)hi

that have a cardinality of at most | ch(hi)|−1 and are pairwise disjoint. By
definition, the collection A is given by

(6) Ahi =

{
Ci ∪ {Si} if i ∈ I(=),

Ci if i ∈ I(<),

where Si ∈ C(V, 2)h \ Ci. Now, let ch(hi)
− = ch(hi) \ {vi} and λ−i = λch(hi)−,hi

∈ R| ch(hi)|−1.

Moreover, we write S = {Si : i ∈ I(=)} and A∁ = C(V, 2) \
(⋃

h∈HAh

)
. To see that the matrix B has
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generically has at least rank r, we arrange it as

B =




λv1,h1 · · · λvm,hm λ−1 · · · λ−m
C1 λ−1 B1,1

. . .
...

. . .

Cm λ−m Bm,1 · · · Bm,m

S BS,1 · · · BS,m

A∁ BA∁,1 · · · BA∁,m



,

where void entries are zero; recall ZUTA. Now, we choose a specific matrix Λ0 = (λ0vi,hj
) ∈ RD such

that the rank of B0 = B(Λ0) is at least r =
∑

h∈H |Ah| =
∑

i∈[m] |Ci| + |S|. The existence of such

a matrix implies that the rank of B is at least r for a generic choice of Λ. We choose the entries of
Λ0 as follows. For all i ∈ [m], we set λ0vi,hi

= 1. Since the submatrices Bi,i = λvi,hiI| ch(hi)|−1 are

diagonal, this implies that the upper right block of B is of full rank
∑

h∈H(| ch(h)|−1) =
∑

i∈[m] |Ci|.
The remaining non-zero entries of Λ0 are determined as follows. For any row Si = {ui, wi} ∈ S, we
set exactly two entries equal to one, namely λ0ui,hi

and λ0wi,hi
. All other entries of Λ0 remain zero.

Since the matrix Λ0 has entries in {0, 1}, the same holds for the matrix B0.
Consider a block B0

i,j with j < i of the upper right block of B0. Fix any row of this block indexed
by {vi, z} and assume that hj ∈ jpa({vi, z}). Since vi does not appear in any pair in S, the entry
λ0vi,hj

must be zero. If λz,hj
= 1, we can eliminate this entry by subtracting the row indexed by

{vj , vi} ∈ Cj . The relevant submatrix of B0 is given by

( λvj ,hj
λvi,hj

{vj , vi} λ0vi,hj
λ0vj ,hj

{vi, z} 0 λ0z,hj

)
=

( λvj ,hj
λvi,hj

{vj , vi} 0 1
{vi, z} 0 1

)
.

No fill-in occurs in the entry indexed by {vi, z} and λvj ,hj since this would only happen if both λ0vi,hj

and λ0z,hj
are equal to one. Hence, no fill-in occurs in the upper left block of B0. We conclude that

the upper right block of B0 can be transformed into a diagonal matrix of size
∑

i∈[m] |Ci|, while no

fill-in occurs in the upper left block of B0.
Next, we eliminate the rows in the lower right block indexed by S by subtraction of rows from the

upper half. Fix any row indexed {y, z} ∈ S and assume that hj ∈ jpa({y, z}). Both λ0y,hj
and λ0z,hj

are equal to one if and only if {y, z} = Sj . In this case, eliminating these two entries creates fill-in
in the left-hand side of the row indexed by {y, z}. It occurs at the entry indexed by column λvj ,hj

and is equal to −2. However, this is the only fill-in that occurs. If there is another joint latent parent
hi ∈ jpa({y, z}) but {y, z} ≠ Si, then at least one of λ0y,hi

and λ0z,hi
is zero, in which case no fill-in

occurs in the left-hand side of the row indexed by {y, z}. This can be seen similarly to the above.
It follows that, after elimination, the submatrix of B0 that is indexed by the rows in S and the

columns of the left-half is of full row rank |S|. We conclude that the rank of the matrix B0 is at least∑
i∈[m] |Ci|+ |S| = r as we have claimed. □

There might be several relabelings of observed and latent nodes such that ZUTA is satisfied. For
each of these relabelings, one might potentially obtain a different lower bound in Theorem 2.12. Thus
the best lower bound is obtained by maximizing the sum of cardinalities over all ZUTA-conform, valid
collections and over all relabelings such that ZUTA is satisfied. If the maximized lower bound from
Theorem 2.12 coincides with the upper bound in Theorem 2.9, we obtain a formula for the dimension.

Corollary 2.13. Let G = (V ∪H, D) be a factor analysis graph and suppose that ZUTA is satisfied.
If there is a ZUTA-conform, valid collection A = (Ah)h∈H that has maximal sum of cardinalities∑

h∈H |Ah| among all valid collections (which are not necessarily ZUTA-conform), then

dim(F (G)) = |V |+
∑

h∈H
|Ah|.
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h1

h2

v1 v3 v4 v2

Figure 5. A graph where each latent nodes has exactly one pure child.

Example 2.14. Consider the graph in Figure 4 (b). In Example 2.10 we have seen that dim(F (G))) ≤
6 + 9 = 15 by considering the valid collection

Ah1
= {{v1, v2}, {v1, v3}, {v2, v3}},

Ah2
= {{v2, v4}, {v3, v4}},

Ah3 = {{v3, v5}, {v3, v6}, {v4, v6}, {v5, v6}}.
that is of maximal sum of cardinalities. Observe that after swapping the labels of v3 and v6, the
chosen collection is also ZUTA-conform. Hence, we obtain equality and it holds dim(F (G)) = 15.

If there is one pure child per latent node, the dimension formula from Corollary 2.13 always holds.

Corollary 2.15. Let G = (V ∪ H, D) be a factor analysis graph. Suppose that for every latent node
h ∈ H, there is an observed node v ∈ V such that pa(v) = {h}. Let A = (Ah)h∈H be a valid collection
that has maximal sum of cardinalities

∑
h∈H |Ah| among all valid collections. Then

dim(F (G)) = |V |+
∑

h∈H
|Ah|.

Proof. Let H = {h1, . . . , hm} and relabel the observed nodes V = {v1, . . . , vp} such that vi is a
pure child of hi, i.e., pa(vi) = {hi}. To show the claim, it is enough by Corollary 2.13 to define

another collection Ã = (Ãh)h∈H that is also valid and has the same sum of cardinalities as A, but is
additionally ZUTA-conform.

As in the proof of Theorem 2.12, define the index sets I(=) = {i ∈ [m] : |Ahi
| = | ch(hi)|} and

I(<) = [m] \ I(=). Consider the sets Ci := {{vi, w} : w ∈ ch(hi) \ {vi}} ⊆ C(V, 2)hi
that have a

cardinality of at most | ch(hi)| − 1. Moreover, they are pairwise disjoint since hi is the only parent of
vi with the given labeling. If i ∈ I(=), observe that the intersection {{u,w} : u,w ∈ ch(hi)\{vi}}∩Ahi

has to be nonempty. For any pair {u,w} in this intersection, it must hold that neither u nor w is equal
to vj for all j ∈ [m] \ {i}, since vj is a pure child of hj . Hence, the pair {u,w} is not contained in any
Cj . Now, we choose a pair Si = {ui, wi} from the intersection {{u,w} : u,w ∈ ch(hi) \ {vi}} ∩ Ahi

for all i ∈ I(=), and we define Ã = (Ãh)h∈H to be the collection given by

Ãhi =

{
Ci ∪ {Si} if i ∈ I(=),

Ci if i ∈ I(<).

By construction, this collection is valid and ZUTA-conform. In particular, it is pairwise disjoint.

Moreover, the sum of cardinalities is unchanged, that is,
∑

h∈H |Ãh| =
∑

h∈H |Ah|. □

Example 2.16. Consider the graph in Figure 5, where both latent nodes have exactly one pure child.
We have

C(V, 2)h1 = {{v1, v3}, {v1, v4}, {v3, v4}},
C(V, 2)h2

= {{v2, v3}, {v2, v4}, {v3, v4}},
and both latent variables have three children. It is easy to see that in any valid collection with
maximal sum of cardinalities it must be that either |Ah1

| = 2 or |Ah2
| = 2. If both Ah1

and Ah2
have
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cardinality equal to 3 = | ch(hi)|, then we must have that {v3, v4} ∈ Ah1
∩Ah2

, that is, the collection
is not pairwise disjoint. By Corollary 2.15, the dimension is therefore given by

dim(F (G)) = |V |+
(∑

h∈H
| ch(h)|

)
− 1 = 4 + 6− 1 = 9,

which is one less than the expected dimension.

The next example considers a graph, where our upper and lower bound do not coincide, even after
potential relabeling of the nodes.

Example 2.17. Computations using our code on MathRepo show that the dimension of the model
corresponding to the graph in Figure 6 is 35, which coincides with the expected dimension from
counting parameters. It is easy to find a valid collection A = (Ah)h∈H that has sum of cardinalities∑

h∈H |Ah| equal to the total number of children
∑

h∈H | ch(h)| = 26. However, there are no relabelings
of the latent and observed nodes such that ZUTA is satisfied and there is a ZUTA-conform valid
collection that also has the sum of cardinalities equal to the total number of children. Hence, the
lower bound from Theorem 2.12 is different than the upper bound from Theorem 2.9. For example,
with the labeling as displayed in Figure 6, any valid, ZUTA-conform collection has sum of cardinalities
at most 23. If we permute the labels of the nodes v5 and v6 to the end, that is, the nodes v5 and v6
become v8 and v9, then it is possible to construct a ZUTA-conform collection of cardinalities at most
24, but this is still less than the total number of children.

By Theorem 2.12, a model has expected dimension |V | + |D| if is satisfies ZUTA and there is a
ZUTA-conform, valid collection A = (Ah)h∈H such that Ah ⊆ C(V, 2)h has cardinality |ch(h)| for all
h ∈ H. Hence, a trivial necessary condition for expected dimension is that each latent node has at least
three children. If a latent node h ∈ ch(h) has at most two children, we have that |C(V, 2)h| < | ch(h)|
and thus we must have that the cardinality of Ah is strictly smaller than the number of children. For
a class of factor analysis graphs that satisfy stronger sparsity conditions than ZUTA, we obtain that
the dimension is always equal to the expected dimension. Providing a lower bound that also holds
for graphs violating ZUTA appears to be challenging, and we have not found a feasible approach that
goes beyond case-by-case studies for each graph.

Corollary 2.18. Let G = (V ∪ H, D) be a factor analysis graph such that | ch(h)| ≥ 3 for all
h ∈ H. Moreover, assume that there exist relabelings of the latent and observed nodes such that H =
{h1, . . . , hm} and V = {v1, . . . , vp} and it holds that v2i−1, v2i ∈ ch(hi) and v2i−1, v2i ̸∈

⋃
j>i ch(hj)

for all i = 1, . . . ,m. Then, we have

dim(F (G)) = |V |+ |D|.
Proof. For every latent node hi there are at least three children. Two of them are given by v2i−1 and
v2i and we denote an arbitrary third child by wi. Note that the children v2i−1 and v2i are different for
every i ∈ [m], that is {v2i−1, v2i} ∩ {v2j−1, v2j} = ∅ for i ̸= j, while the third child wi might also be
a child of some other latent node hj . In particular, it might be that wi = wj . We define a collection
A = (Ah)h∈H by

Ahi
= {{v2i−1, w} : w ∈ ch(hi) \ {v2i−1}} ∪ {{v2i, wi}} ⊆ C(V, 2)hi

.

Clearly, the collection A is valid. It is also ZUTA-conform if we relabel the nodes v2i−1 to be vi for
all i ∈ [m]. Since |Ah| = | ch(h)|, the sum of cardinalities

∑
h∈H |Ah| is maximal and it is equal to∑

h∈H | ch(h)| = |D|. □
Note that none of the graphs in Figure 4 satisfies the condition in Corollary 2.18. But the graph

in Figure 2 satisfies the condition if we swap, for example, the label of nodes v3 and v6.
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h1

h2

h3

h4

h5

v1 v2 v3 v4 v5 v6 v7 v8 v9

Figure 6. A graph where lower and upper bound on the dimension do not coincide.

Remark 2.19. One might be tempted to compare the condition in Corollary 2.18 to the often
employed “2-pure-children” condition, recall Remark 2.19. The 2-pure children condition requires
that each latent node h ∈ H has at least 2 children that have no other parents than h. Similarly,
the condition in Corollary 2.18 also requires that each latent node has at least 2 children. However,
children are generally allowed to have more than one parent. For example, after relabeling, nodes v5
and v6 need to be children of h3, but h1 and h2 could also be parents of v5 or v6. The condition only
requires that all hj with j > 3 are not parents of v5 and v6. Said differently, only v1 and v2 are pure
children of h1 in the classical sense. Conversely, if there is no latent node that has two pure children
in the classical sense, then the factor analysis graph does not satisfy the condition in Corollary 2.18.

3. Algebraic Invariants of the Sparse Two-Factor Model

We are interested in polynomial invariants that hold on a covariance matrix Σ ∈ F (G), where G is
a sparse factor analysis graph. For any subset F ⊆ PD(p), the ideal of invariants is defined as

I(F ) = {f ∈ R[σij , i ≤ j] : f(Σ) = 0 for all Σ ∈ F}.
Our object of interest is the ideal of invariants of sparse factor analysis models. Since, for a symmetric
positive definite matrix Σ ∈ Rp×p, membership in F (G) only depends on the off-diagonal entries of
Σ, we can regard the ideal of invariants of F (G), i.e., I(G) := I(F (G)) as an ideal in the subring
R[σij , i < j]. It is our goal to find a finite set of polynomials that generate I(G). If a factor analysis
graph has an edge to every observed node, the model is equivalent to a full factor analysis model. In
the case of one or two latent nodes, the ideal of invariants is then completely understood, see [DSS07,
Theorem 16] and [Sul09]. However, finding a minimal set of generators or a Gröbner basis for the
full factor analysis model with three latent nodes is, to the best of our knowledge, still an open problem.

First, we consider the special case where the children sets ch(hi) of a factor analysis graph G =
(V ∪ H, D) only intersect in at most one node. Our next proposition reveals that in this case the
ideal of invariants is a sum of ideals obtained from induced subgraphs corresponding to full one-factor
analysis models. Note that the ideal of the full one-factor analysis model is toric, that is, it is prime
and binomial; see Theorem 3.6. In particular, it is the toric edge ideal of the complete graph on the
observable node set V . Thus, we obtain that I(G) is also toric.

Proposition 3.1. Let G = (V ∪ H, D) be a factor analysis graph such that for any disjoint pair
(hi, hj) ∈ H×H\{(h1, hm)} of latent nodes, we have that |ch(hi)∩ch(hj)| ≤ 1 and |ch(h1)∩ch(hm)| =
0. Let Gi be the induced subgraph G[{hi} ∪ ch(hi)] ⊆ G on the vertex set {hi} ∪ ch(hi), for i ∈ [m].
Then we obtain that I(G) = I(G1) + · · ·+ I(Gm) + ⟨σij : pa(i) ∩ pa(j) = ∅⟩ and it is toric.

Proof. The off-diagonal entries of the parametrization τG given in (2) are monomial and σij = 0, if
pa(i) ∩ pa(j) = ∅ for i ̸= j. Moreover, the ideals of invariants of submatrices of Σ that correspond
to the covariance models of induced subgraphs G[{hi} ∪ ch(hi)] ⊆ G are toric [DSS07, Theorem 16].
Finally, since G is a polytree or a union of polytrees, the ideal is toric [ADG+23, Proposition 5.4]. □

In what follows, we focus on |H| = 2, that is, factor analysis graphs G with two latent nodes.
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3.1. Variety. In this section, we propose generators of an ideal such that the variety corresponding to
the ideal is the smallest variety that contains the model. Recall that for any ideal I ⊆ R[x1, . . . , xn], the
corresponding variety (over the complex numbers) is defined as V(I) = {x ∈ Cn : f(x) = 0 for all f ∈
I}. We say that a set of latent nodes H ⊆ H separates two sets of observed nodes A,B ⊆ V if
pa(A) ∩ pa(B) ⊆ H, where we use the notation pa(A) =

⋃
a∈A pa(a). Importantly, the set H might

also be empty, that is, A and B are separated given the empty set if they do not have a joint parent.
We denote the submatrix of Σ given by the rows A and columns B by ΣA,B .

Definition 3.2. Let G = (V ∪ H, D) be a factor analysis graph. The ideal M≤1(G) ⊆ R[σij , i ≤ j]
is generated by all minors det(ΣA,B), where A,B ⊆ V are two sets of observed nodes with cardinality
|A| = |B| ≤ 2 and there is H ⊆ H with |H| < |A| such that H separates A and B.

In other words, the idealM≤1(G) is generated by minors det(ΣA,B) such that A and B are separated
by at most one latent factor. Note that A and B are not necessarily disjoint.

Example 3.3. Consider the graph from Figure 2. Let A = {1}, B = {7} and H = ∅. Since the
nodes 1 and 7 are separated by the empty set, i.e., pa(1)∩ pa(7) = ∅, we have that the monomial σ17
is in the generating set of the ideal M≤1(G). The sets A = {1, 2} and B = {4, 5} are separated by
H = {h1} since pa(A) ∩ pa(B) = {h1}. Thus, the minor σ14σ25 − σ24σ15 is a generator of M≤1(G).
On the other hand, the sets A = {1, 4} and B = {2, 5} can only be separated by H = {h1, h2}, that
is, we need at least two latent factors for separation. This yields that the minor σ12σ45 − σ24σ15 is
not in the generating set of M≤1(G).

Let Mp,m ⊆ R[σij , i ≤ j] be the ideal that is generated by all (m + 1) × (m + 1)-minors of a
symmetric matrix Σ ∈ Rp×p.

Theorem 3.4. Let G = (V ∪H, D) be a factor analysis graph with |H| = 2 latent factors. Then

V(I(G)) = V((Mp,2 +M≤1(G)) ∩ R[σij , i < j]),

where the varieties V(·) are understood over the field C of complex numbers.

Proof. Let L = {ΛΛ⊤ ∈ Rp×p : Λ ∈ RD}. We first prove that V(Mp,2 +M≤1(G)) is equal to the

Zariski closure L in Cp×p. For the inclusion L ⊆ V(Mp,2 +M≤1(G)), consider a matrix Σ ∈ L. Then
Σ is symmetric and Σ ∈ V(Mp,2). Moreover one can check that Σ ∈ V(M≤1(G)) by applying trek
separation [STD10]. Thus, L ⊆ V(Mp,2+M≤1(G)) and since the variety V(Mp,2+M≤1(G)) is Zariski

closed, we obtain that L ⊆ V(Mp,2 +M≤1(G)).
For the other direction, assume that Σ ∈ V(Mp,2 +M≤1(G)). We explicitly construct a matrix

Λ ∈ CD such that Σ = ΛΛ⊤. We assume that there is no node v ∈ V such that pa(v) = ∅, since this
case is trivial where the row of Λ that is indexed by v is zero. LetH = {h1, h2} and V = V1∪̇V2∪̇V3 be a
partition of the observed nodes V into three subsets such that V1 = ch(h1)\ch(h2), V3 = ch(h2)\ch(h1)
and V2 = V \ (V1 ∪ V3). Without loss of generality we assume that there exists a node v ∈ V1 such
that σvv ̸= 0. We fix this node v and define the matrices

Λ1 =

( )
x 0
y I|V2|+|V3| ∈ Cp×(1+|V2|+|V3|) and Σ1 =

( )
1 0
0 A ∈ C(1+|V2|+|V3|)×(1+|V2|+|V3|).

The vector x ∈ CV1 is defined by xw = σvw/
√
σvv for w ̸= v and by xv =

√
σvv for the node v. The

vector y ∈ CV2∪V3 is defined by yw = σvw/
√
σvv if w ∈ V2 and by yw = 0 else. Finally, the symmetric

matrix A = (auw) ∈ CV2∪V3,V2∪V3 is defined as A = ΣV2∪V3,V2∪V3
− yy⊤.

We prove next that Λ1Σ1Λ
⊤
1 = Σ. The essential step is to exploit that Σ ∈M≤1(G), which implies

the three properties:

(7) ΣV1,V3
= 0, rank(ΣV1,V1∪V2

) ≤ 1, and rank(ΣV2∪V3,V3
) ≤ 1.

It holds that [Λ1Σ1Λ
⊤
1 ]V1,V3

= ΣV1,V3
, since [Λ1Σ1Λ

⊤
1 ]V1,V3

= xy⊤
V3

= 0. Next, we show that

[Λ1Σ1Λ
⊤
1 ]V1,V1∪V2

= ΣV1,V1∪V2
. For any node w ∈ V1 \ {v}, we have that [Λ1Σ1Λ

⊤
1 ]vw = xwxv =
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(σvw/
√
σvv)
√
σvv = σvw. Let k,w ∈ V1 \ {v}. By (7), it holds that det(Σ{v,k},{v,w}) = 0, i.e.

σvvσkw = σvkσvw. Hence,

[Λ1Σ1Λ
⊤
1 ]kw = xkxw =

σvkσvw
σvv

= σkw.

If w is an element of V2 instead of V1, the conclusion follows similarly by replacing xw with yw.
We finally observe that the equality [Λ1Σ1Λ

⊤
1 ]V2∪V3,V2∪V3 = ΣV2∪V3,V2∪V3 follows directly from the

definitions of Λ1 and Σ1.
Now, we return to proving that Σ = Λ1Σ1Λ

⊤
1 ∈ L. The matrix Λ1 has full rank equal to 1+|V2|+|V3|

and the rank of Σ is at most 2. By Sylvester’s rank inequality, this implies rank(Σ1) ≤ 2. In particular,
we have that rank(A) ≤ 1. Without loss of generality we may assume that there is a node u ∈ V2 ∪V3
such that that auu ̸= 0. We fix this node u and define the matrix

Λ2 =

( )
1 0
0 z ,

where z ∈ CV2∪V3 is defined by zw = awu/
√
auu for w ̸= u and by zu =

√
auu for the node u. Using

similar arguments as above, it is easy to see that Σ1 = Λ2Λ
⊤
2 . Finally, define Λ = Λ1Λ2 and observe

that

Λ =

( )x 0
yV2 zV2

0 zV3

∈ CD.

This shows that Σ ∈ L since ΛΛ⊤ = Λ1Λ2Λ
⊤
2 Λ

⊤
1 = Λ1Σ1Λ

⊤
1 = Σ.

We now prove the statement of the theorem. Consider the projection π of the space of symmetric
p× p matrices onto the space of the off-diagonal entries. We have that

I(G) = I(F (G)) = I(π(F (G))) = I(π(F (G))) = I(π(L)),
where the second equality follows from the fact that membership in I(F (G)) only depends on the off-
diagonal entries, also see [BD11]. Since the Zariski closure of the projection of an arbitrary set is equal

to the Zariski closure of the projection of the Zariski closure of the set, it follows that V(I(G)) = π(L).
Consequently, we have that π(L) = π(V(Mp,2 +M≤1(G))) and by [CLO08, §4.4, Theorem 4], the
Zariski closure of the projection π(V(Mp,2 +M≤1(G))) is V((Mp,2 +M≤1(G)) ∩ R[σij , i < j]). □

It was shown in [BD11] that the ideal Mp,2 ∩R[σij , i < j] is generated by two types of generators:
off-diagonal 3 × 3-minors and certain polynomials of degree 5 known as pentads [Kel35]. Thus, it
is natural to conjecture that the ideal (Mp,2 +M≤1(G)) ∩ R[σij , i < j] is generated by off-diagonal
3× 3-minors, pentads, and the off-diagonal 1× 1 and 2× 2-minors in M≤1(G); see Conjecture 4.1.

Theorem 3.4 implies that the ideal (Mp,2 +M≤1(G)) ∩ R[σij , i < j] is included in the ideal of
invariants I(G) we are interested in. In the next section, we combinatorially find a Gröbner basis of
I(G) for the special case where the two-factor analysis model has overlap two, that is, there are at most
two observed nodes that have two latent parents and all other observed nodes have at most one latent
parent. We obtain as Corollary 3.14 that we have indeed I(G) = (Mp,2 +M≤1(G)) ∩ R[σij , i < j],
and that this ideal is generated by the concerned polynomials that vanish on the model.

Our readers are encouraged to use our code on MathRepo to experiment with Gröbner basis com-
putations of I(G). Gröbner bases for the full factor analysis model with one and two latent nodes are
given in [DLST95] and [Sul09].

3.2. Gröbner Basis. We study the join of sparse one-factor models and provide a technique to
construct a Gröbner basis for its ideal of invariants with a “2-delightful” approach from [Sul09]. To
give a Gröbner basis for sparse one-factor analysis models, we recall the definition for toric edge ideals.
Let G be a simple undirected graph on p vertices and consider the following ring homomorphism:
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h1

v1 v2 v3 v4 v5 v6 v7 h2

v1 v2 v3 v4 v5 v6 v7

Figure 7. Two sparse one-factor analysis graphs where {4, 5} is the only pair of
vertices such that its joint parents are the set of latent nodes H = {h1, h2}.

Identifying these two graphs via the observed nodes V = {v1, . . . , v7} concludes the
two-factor sparse analysis graph from Figure 2.

ΦG : C[σij |1 ≤ i < j ≤ p] −→ C[ti|1 ≤ i ≤ p]
σij 7→ titj , whenever ij ∈ E(G).

The kernel of ΦG is called the toric edge ideal of G. If G = Kp is the complete graph on p vertices,
then ker(ΦG) is the ideal Ip,1 of the full one-factor analysis model. This immediately follows by the
parametrization (2). This ideal is also called the ideal for the second hypersimplex.

For a Gröbner basis of Ip,1, we consider a circular embedding of the complete graph Kp where
vertices are presented as the p-th roots of unity in the complex plane. The edges of Kp belong to ⌊p2⌋
the orbits under the action of dihedral group Dp on the roots of unity. The kth class of edges is those
that are equivalent to the edge 1k, for k ∈ {2, . . . , ⌈p2⌉}. In other words, the edges that are closer to
the boundary of the circular embedding correspond to larger variables in the block ordering.

Definition 3.5. A circular term order is any block term order such that σi1j1 ≻ σi2j2 whenever the
edge i1j1 is in a smaller class than the edge i2j2.

The Gröbner basis for the ideal for the second hypersimplex, or equivalently for Ip,1, with respect
to any circular order is studied by De Loera, Sturmfels, and Thomas.

Theorem 3.6 ([DLST95, Theorem 2.1]). The set of square-free quadratic binomials

(8) {σijσkl − σikσjl, σilσjk − σikσjl | 1 ≤ i < j < k < l ≤ n}
is a reduced Gröbner basis for the one-factor analysis model Ip,1 with respect to any circular term
order.

These square-free quadratic binomials are known as tetrads in the statistics literature. We first
adapt this result to sparse one-factor analysis models. Let us consider a sparse one-factor analysis
graph where A ⊆ V is the set of children of the latent node and B = [p]\A, i.e., the set of isolated
vertices. We denote the ideal of invariants of a sparse one-factor analysis model as IA,B,1. The ideal
IA,B,1 is the toric edge ideal of the complete graph K|A| on the vertex set A with the set B of isolated

vertices. Thus, one needs to add |A||B| +
(|B|

2

)
degree-one monomials to the set in Theorem 3.6 to

form a reduced Gröbner basis for IA,B,1. To simplify the next statement, we relabel the vertices of A
as 1, . . . , |A| and the vertices of B as |A|+ 1, . . . , p.

Proposition 3.7. The set of degree-one monomials and tetrads

{σij | i ∈ B or j ∈ B} ∪ {σijσkl − σikσjl, σilσjk − σikσjl | 1 ≤ i < j < k < l ≤ |A|}.
is a reduced Gröbner basis for the sparse one-factor analysis model IA,B,1 with respect to any circular
term order.

Example 3.8. For the left model in Figure 7 with A = {1, 2, 3, 4, 5} and B = {6, 7}, the ideal IA,B,1

is the toric edge ideal of the graph depicted on the left of Figure 8. There are 11 degree-one monomials

{σ16, σ17, σ26, σ27, σ36, σ37, σ46, σ47, σ56, σ57, σ67}.
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Figure 8. The ideal of the sparse one-factor analysis model associated to the left
graph in Figure 7 is the toric edge ideal of the graph on the left-hand side consisting

of the complete graph K|A| and |B| = 2 isolated vertices. The right-hand side
pictures the corresponding initial ideal graph GA,B with 11 isolated vertices, where

A = {1, 2, 3, 4, 5} and B = {6, 7}.

and 2
(|A|

4

)
= 10 tetrads which form a reduced Gröbner basis for IA,B,1 with respect to any circular

term order. An easy way to construct these tetrads is by looking at the subgraph induced by the
vertex set {i, j, k, l}. We say that a pair of edges ij, kl cross if the line segments in the circular
drawing intersect (also at the endpoints) in the circular embedding. The noncrossing pairs (blue
and green) of edges correspond to the leading terms of the tetrad generators and the crossing edges
(orange) correspond to the remaining monomial of the tetrad. For {1, 2, 4, 5}, we obtain the tetrads
σ12σ45 − σ14σ25 and σ24σ15 − σ14σ25.

In the case of full-factor analysis, the ideal of invariants is the m-th secant ideal of Ip,1. However, in
the case of sparse-factor analysis models, we need to consider the join of the ideals of sparse one-factor
analysis models; see, e.g. [SS05, MS05] for a rigorous definition of secants and joins. We consider
a sparse k-factor analysis graph as k sparse one-factor analysis graphs that are identified at their
observed nodes V . Alternatively, these sparse one-factor analysis graphs can be seen as the induced
subgraphs G[{hi} ∪ V ], where hi ∈ H for i ∈ [m]; see Figure 7.

To construct a Gröbner basis for a sparse two-factor analysis model with respect to any circular
term order, we follow an analogous “2-delightful” strategy which was used for the full two-factor
analysis models in [Sul09]. For this, we first need to describe the join of the initial ideals of sparse
one-factor analysis models. The initial ideal in≺(I{A,B},1) is generated by all noncrossing pairs in the
circular embedding of the complete graph K|A| on the vertex set A and the degree-one monomials
from Proposition 3.7. Thus it is the monomial edge ideal of a certain graph with isolated vertices.

Definition 3.9. We define the simple graph called the initial ideal graph GA,B whose vertices are
labeled as ij where {i, j} ∈ A⊔B = [p] and {ij, kl} ∈ E(GA,B) whenever (ij, kl) is a noncrossing pair
in the circular embedding of the complete graph K|A|.

To avoid confusion, the edges of the initial ideal graph are denoted by { , }, different from the edges

of the complete graph K| ch(ji)| with isolated vertices ch(hi)
∁. The following definition describes how

identifying two sparse one-factor analysis graphs via the observed nodes corresponds to identifying
the two associated initial ideal graphs. We focus on the case where the “overlap” is two, that is,
|A1 ∩A2| = 2.

Definition 3.10. Let GA1,B1 and GA2,B2 be two initial ideal graphs with A1⊔B1 = A2⊔B2 = V and
A1 ∩ A2 = {j1, j2}. We construct a glued hypergraph identified via V denoted by GA1,B1

×V GA2,B2

as follows:

• The vertex set is V (GA1,B1
) ∪ V (GA2,B2

)\{isolated vertices of V (GA1,∅) ∪ V (GA2,∅)}.
• The hyperedges of size 2 are all those of GA1,B1 and GA2,B2 which do not contain vertex j1j2.
• The hyperedges of size 3 are those {i, j1j2, k}, where i ∈ V (GA1,∅) and and k ∈ V (GA2,∅).



18 MATHIAS DRTON, ALEXANDROS GROSDOS, IREM PORTAKAL, AND NILS STURMA

Note that the glued hypergraph GA1,B1
×V GA2,B2

has |A1\{j1, j2}||A2\{j1, j2}| isolated vertices
xy where x ∈ A1\{j1, j2} and y ∈ A2\{j1, j2}. In particular, these correspond to the degree-one
monomials M≤1(G) from Theorem 3.4.

Example 3.11. The initial ideal graph for the sparse one-factor analysis model withA1 = {1, 2, 3, 4, 5}
and B1 = {6, 7} is depicted on the right of Figure 8. Identifying two sparse one-factor analysis
graphs from Figure 7 gives rise to the sparse two-factor analysis graph from Figure 2. Here we have
A2 = {4, 5, 6, 7} and B2 = {1, 2, 3}. This corresponds to identifying the initial ideal graphs GA1,B1

and GA2,B2
via the vertex 45 as in Figure 9. {12, 45, 67}, {23, 45, 67}, {13, 45, 67} are the hyperedges

of size 3 and the rest are the hyperedges of size 2 of two initial ideal graphs which do not contain
the vertex 45. Since 46 and 57 are crossing edges in the complete graph on 4 vertices, they are not
vertices of the glued hypergraph.
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Figure 9. Glued hypergraph identified via 7 observable nodes.

Let I1 and I2 be two ideals in a polynomial ring R[x] := R[x1, . . . , xn]. We now recall the definition
of join of I1 and I2 from [SS05]. Introduce 2n new unknowns, grouped in 2 vectors yj = (yj1, . . . , yjn),
j ∈ {1, 2} and consider the polynomial ring R[x,y] in 2n + n variables. Moreover, let Ij(yj) be the
image of the ideal Ij in R[x,y] under the map x 7→ yj . Then the join I1 ∗ I2 is the elimination ideal

(I1(y1) + I2(y2) + ⟨y1i + y2i − xi | 1 ≤ i ≤ n⟩) ∩ R[x].
Given a factor analysis graph G = (V ∪H, D) with |H| = 2 latent nodes, we can identify it with two
one-factor analysis graphs. By definition, we have that the ideal of invariants of the two-factor analysis
model is equal to the join of the ideals of the one-factor models, that is, I(G) = IA1,B1,1 ∗ IA2,B2,1. In
this section, we find a Gröbner basis of this join ideal if |ch(h1)∩ ch(h2)| = |A1 ∩A2| = 2. We assume
that p ≥ 4, since the ideal of invariants is otherwise empty.

By [SU00, Theorem 2.3], for any term order ≺, and any two ideals I1, I2, we have that in≺(I1∗I2) ⊆
in≺(I1) ∗ in≺(I2). Thus, if we find a collection of polynomials G ⊂ I1 ∗ I2 such that ⟨in≺(g) | g ∈
G⟩ = in≺(I1) ∗ in≺(I2), then we can deduce that G is a Gröbner basis with respect to the term
order ≺ for I1 ∗ I2. A term order ≺ is called 2-delightful for two ideals I2 and I2, when the equality
in≺(I1 ∗ I2) = in≺(I1) ∗ in≺(I2) holds. We next describe the join of the initial ideals of two sparse
one-factor analysis models with overlap two with respect to any circular term order.

Lemma 3.12. Let IA1,B1,1 and IA2,B2,1 be the toric ideals of invariants of two sparse one-factor
models with |A1 ∩A2| = 2 and ≺ be any circular term order. Then in≺(IA1,B1,1) ∗ in≺(IA2,B2,1) is the
monomial edge ideal of the glued hypergraph GA1,B2

×V GA2,B2
.

Proof. Let I = in≺(IA1,B1,1) and J = in≺(IA2,B2,1). We use the Alexander duality formula for the
join of monomial ideals from [SS05, Theorem 2.6]. Consider the irreducible component decomposition
of I =

⋂
Iν and J =

⋂
Jµ. Since I and J are monomial edge ideals, the irreducible components are
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the minimal vertex covers of GA1,B1
and GA2,B2

, including the isolated vertices ([VT13, Corollary
1.35]). By [SS05, Lemma 2.3], we obtain that the indices of the square-free irreducible monomial
ideals Iν ∗ Jµ can be in two forms:

(i) a minimal vertex cover of GA1,B1
, a minimal vertex cover of GA2,B2

, V (GV \(A1∩A2),∅),
(ii) a minimal vertex cover of GA1,B1 , a minimal vertex cover of GA2,B2 , both containing a vertex

ij ∈ V (GA1∩A2,∅), V (GV \(A1∩A2),∅).

Note that this collection of vertices covers all minimal vertex covers of the glued hypergraph GA1,B2
×V

GA2,B2
. By setting up the facets of the associated simplicial complex to be the maximal independent

sets of the glued hypergraph, by [HH11, Lemma 1.5.4], we conclude that
⋂

ν,µ(Iν ∗Jµ) is the monomial
edge ideal of the glued hypergraph. □

We next construct a Gröbner basis for two factor models with overlap two, that is, |A1∩A2| = 2. We
find a collection of polynomials G such that their initial terms with respect to any circular term order
are the generators of the monomial edge ideal of the glued hypergraph, and thus this collection forms
a Gröbner basis. We discuss the application of the “2-delightful” strategy to cases where |A1∩A2| ≥ 3
in Section 4.1. We refer to the degree 3 generators below as hexads because they are polynomials
obtained from six observed random variables, analogous to tetrads, which are degree 2 generators
obtained from four observed random variables.

Theorem 3.13. The generators of a Gröbner basis for IA1,B1,1 ∗ IA2,B2,1 with respect to any circular
term order for sparse two-factor analysis models where A1 ∩A2 = {j1, j2} comes in three types:

(1) Degree-one monomial: σik is a generator, where pa(i) ∩ pa(j) = ∅.
(2) Tetrads: The binomial generators of the Gröbner basis of IA1,B1,1 and IA2,B2,1 with respect to

any circular order that do not contain σj1j2 .
(3) Hexads: Consider i1, i2 ∈ A1\{j1, j2} and k1, k2 ∈ A2\{j1, j2}. Then

σk1k2
σi1i2σj1j2 − σk1k2

σj1i2σj2i1 − σi1i2σj1k2
σj2k1

,

is a degree three generator, where {i1, i2}, {j1, j2} and {j1, j2}, {k1, k2} are non-crossing edges
of the complete graphs on the vertices A1\{j1, j2} and A2\{j1, j2} respectively.

Proof. This set of polynomials is in the join by the combinatorial definition of join of ideals. And by
the previous lemma, their initials are exactly those [SU00, Theorem 2.3]. This concludes the proof. □

The theorem implies that if the set of children of one latent node is strictly contained in the other,
then the generators consist of degree-one monomials and tetrads, and thus it is a toric ideal. This
means equivalently that the (two) children of exactly one latent node are non-pure.

Corollary 3.14. Let |A1 ∩ A2| = 2 for a sparse two-factor analysis model graph. Then the ideal
(Mp,2 +M≤1(G)) ∩ R[σij , i < j] is equal to the join I(G) = IA1,B1,1 ∗ IA2,B2,1, and thus prime. In
particular, I(G) is generated by all off-diagonal minors of size at most 3 in Mp,2 and off-diagonal
minors of size at most 2 in M≤1(G).

Proof. Let J = (Mp,2 +M≤1(G)) ∩ R[σij , i < j]. By Theorem 3.4, J ⊆ IA1,B1,1 ∗ IA2,B2,1. Thus
it is enough to show I := IA1,B1,1 ∗ IA2,B2,1 ⊆ J . The degree-one and degree-two generators of
IA1,B1,1 ∗ IA2,B2,1 are in M≤1(G). The degree three generators can be described as a 3×3 off-diagonal
minor. Since I1 and I2 are both prime ideals, I is also prime [SU00, Proposition 1.2]. □

Example 3.15. Consider the sparse two-factor analysis graph G with A1∩A2 = {4, 5} from Figure 2.
The degree-one monomials of the generators of the Gröbner basis constructed in Theorem 3.13 are
σ16, σ17, σ26, σ27, σ36, σ37. These are the same as the set M≤1(G). The tetrads are all the ones in
form (8) that do not contain the σ45. For example, σ12σ45 − σ14σ25 from Example 3.8 is not a tetrad
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generator of the Gröbner basis for the ideal of the sparse two-factor analysis. Finally, we obtain the
following three hexads to form the Gröbner basis:

σ67σ12σ45 − σ67σ24σ15 − σ12σ47σ56,
σ67σ13σ45 − σ67σ34σ15 − σ13σ47σ56,
σ67σ23σ45 − σ67σ34σ25 − σ23σ47σ56.

4. Conclusion and Open Questions

In this paper, we derived novel results on the algebro-geometric aspects of sparse factor analysis
models. We first proved upper and lower bounds for the dimension. While the upper bound holds for
arbitrary models, the lower bound holds for models that satisfy a minimal level of sparsity, which we
formalize in the ZUTA condition. In many cases, upper and lower bounds coincide and one obtains a
formula for the dimension. In particular, our study reveals that sparse factor analysis models, unlike
full factor analysis models, may not have expected dimension. Then, we studied the ideal of invariants
of sparse factor models with two latent nodes. We presented an ideal that cuts out the model and,
moreover, we derived a Gröbner basis for models with at most overlap two, i.e., models where at most
two observed nodes have more than one latent parent. On a technical level, we extended the delightful
strategy, which was previously applied to secants, to joins of ideals.

In what follows, we outline some possible future directions and open questions that arose from our
paper. All the examples below can be reproduced by our code on MathRepo.

intersection size degree # indeterminates # monomials

3 3 8 4
(p=7) 5 9 6
4 5 11 6

(p=8) 5 11 8
5 12 10
5 12 12

Table 1. Polynomials in Gröbner bases for sparse two-factor models with children
sets of overlap 3 or 4. Each line reports the degrees, number of indeterminates, and

number of monomials of one type of polynomial in the Gröbner basis.

4.1. Sparse factor models with larger overlaps. The circular term order is not always 2-delightful
for the ideal of invariants of sparse two-factor analysis models for examples where | ch(h1)∩ ch(h2)| =
|A1 ∩ A2| ≥ 3. Consider the sparse two-factor analysis graph from Figure 2 with the additional edge
h2 → v3. The generators of a Gröbner basis with respect to any circular term order of the join has
degrees one, two, three (degree-one monomials, tetrads, and non-hexads) and five, whereas the join
of initial ideals is generated by at most degree three generators. In particular, one of the generators
has the form

σ45σ67σ57σ14σ36 − σ45σ67σ15σ36σ47 + σ56σ67σ35σ14σ47

−σ56σ57σ14σ36σ47 − σ67σ35σ46σ57σ14 + σ46σ57σ15σ36σ47.

This is a polynomial of degree 5 in 9 indeterminates involving 6 monomial terms. The monomial
terms coincide with monomial terms in a pentad [Kel35, DSS07] although the pentad has twelve
terms. The missing monomials of the pentad are reduced by the elements in M≤1(G). We list the
types of homogeneous polynomials when we compute Gröbner bases for larger intersections among
the children sets of the latent variables in Table 1. Our computations support the following conjecture
for factor analysis models with two latent variables.
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Conjecture 4.1. The ideal of the sparse two-factor analysis model corresponding to graph G is
generated by off-diagonal 3× 3-minors, pentads, and the polynomials in M≤1(G).

Although the “delightful strategy” with circular term orders is helpful for Gröbner basis, we ob-
served that it fails for sparse two-factor analysis models with | ch(h1) ∩ ch(h2)| ≥ 3. However, since
by [SS05, Prop. 2.4], the join of monomial ideals is monomial, one may consider constructing the join
in≺(IA1,B1,1)∗ in≺(IA2,B2,1) as the monomial edge ideal of another hypergraph with respect to another
term order.

Question 1. Is there a 2-delightful term order for sparse two-factor analysis models? In other words,
is there a term order ≺ such that in≺(IA1,B1,1 ∗ IA2,B2,1) = in≺(IA1,B1,1) ∗ in≺(IA2,B2,1)?

4.2. Sparse factor models with more than two latent factors. The generators introduced in
Theorem 3.13 can be partially used for sparse factor analysis models with more than two latent
nodes where we have non-empty intersections only for consecutive intersections | ch(hi) ∩ ch(hi+1)| =
|Ai ∩ Ai+1| = 2 with i ∈ [m− 1]. Consider for instance the graph G in Figure 10. Since the induced
subgraph G[{h3} ∩ V ] ⊂ G gives rise to the toric edge ideal of K3 and isolated vertices [5], we obtain
the generators of a Gröbner basis with respect to any circular term order in three types as follows:

(1) 11 degree-one monomials σij , where pa(i) ∩ pa(j) = ∅:
σ15, σ16, σ17, σ18, σ25, σ26, σ27, σ28, σ38, σ48, σ58,

(2) 6 tetrads that do not contain σ34 or σ67:

σ47σ56 − σ46σ57, σ37σ56 − σ36σ57, σ37σ46 − σ36σ47,
σ37σ45 − σ35σ47, σ36σ45 − σ35σ46, σ14σ23 − σ13σ24,

(3) and 2 hexads:

σ12σ34σ57 − σ12σ35σ47 − σ13σ24σ57, σ12σ34σ56 − σ12σ35σ46 − σ13σ24σ56.
If we add one more observable node v9 and the edge h3 → v9, we obtain degree-one monomials,
tetrads, hexads, and a degree four generator in ten indeterminates which seems to have a combinatorial
structure as in the hexad case, e.g.,

σ12σ34σ67σ89 − σ12σ34σ68σ79 − σ12σ89σ36σ47 − σ67σ89σ13σ24 + σ13σ24σ68σ79.

Moreover, we obtain that the circular term order is 3-delightful, i.e.,

in≺(IA1,B1,1 ∗ IA2,B2,1 ∗ IA3,B3,1) = in≺(IA1,B1,1) ∗ in≺(IA2,B2,1) ∗ in≺(IA3,B3,1).

Adding a fourth latent variable h4 while keeping the cardinality of intersections 2 will also give rise
to polynomials of degree 5 in 13 indeterminates with 8 summands, like

σ12σ34σ67σ910σ1112 − σ12σ34σ67σ911σ1012 − σ12σ34σ1112σ69σ710 − σ12σ910σ1112σ36σ47+
σ12σ911σ1012σ36σ47 − σ67σ910σ1112σ13s24 + σ67σ13σ24σ911σ1012 + σ1112σ13σ24σ69σ710.

We summarize the findings for the maximal degree polynomials we have computed based on the
number of latent nodes in Table 2.

h1

h2

h3

v1 v2 v3 v4 v5 v6 v7 v8

Figure 10. A factor analysis graph with 3 latent factors and two overlaps.
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# latent nodes degree # indeterminates # monomials

0 1 1 1
1 2 4 2
2 3 7 3
3 4 10 5
4 5 13 8

Table 2. Degrees, number of variables and number of terms for different latent
nodes when there are at most 2 intersections.

Question 2. Can we show that this behavior generalizes for more hidden variables with intersection
two? That is, in the presence of k latent nodes, is the polynomial of maximal degree a degree k + 1
polynomial in 3k + 1 variables which has (k + 2) Fibonacci number of terms? In fact, using the
delightful strategy, can we find a Gröbner basis with respect to any circular term order for sparse k-
factor analysis models with more than two latent nodes where | ch(hi)∩ ch(hi+1)| = 2 for i ∈ [m− 1]?

Describing a Gröbner basis for this case would require a generalization of the glued hypergraph
(Definition 3.9) and of the construction of the polynomials as in Theorem 3.13.
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[Sul09] Seth Sullivant. A Gröbner basis for the secant ideal of the second hypersimplex. Journal of Commutative

Algebra, 1(2):327 – 338, 2009.



24 MATHIAS DRTON, ALEXANDROS GROSDOS, IREM PORTAKAL, AND NILS STURMA

[TFA17] Nickolay T. Trendafilov, Sara Fontanella, and Kohei Adachi. Sparse exploratory factor analysis. Psy-

chometrika, 82(3):778–794, 2017.

[VT13] Adam Van Tuyl. A beginner’s guide to edge and cover ideals. Monomial ideals, computations and
applications, pages 63–94, 2013.

Munich Center for Machine Learning (MCML) and Department of Mathematics, School of Computation,

Information and Technology, Technical University of Munich

Email address: mathias.drton@tum.de

Institute of Mathematics, University of Augsburg

Email address: alexandros.grosdos@uni-a.de

Max Planck Institute for Mathematics in the Sciences, Leipzig

Email address: mail@irem-portakal.de

Munich Center for Machine Learning (MCML) and Department of Mathematics, School of Computation,

Information and Technology, Technical University of Munich

Email address: nils.sturma@tum.de



arXiv.org - Non-exclusive license to distribute
The URI http://arxiv.org/licenses/nonexclusive-distrib/1.0/ is used to record the fact that the submitter granted the following
license to arXiv.org on submission of an article:

I grant arXiv.org a perpetual, non-exclusive license to distribute this article.
I certify that I have the right to grant this license.
I understand that submissions cannot be completely removed once accepted.
I understand that arXiv.org reserves the right to reclassify or reject any submission.

Revision history

2004-01-16 - License above introduced as part of arXiv submission process
2007-06-21 - This HTML page created

Contact

B Further Articles

188

Permission to include the article



We gratefully acknowledge support from the Simons Foundation,
member institutions, and all contributors.

Reuse Requests

This FAQ is an attempt to collect answers to your common questions surrounding reusing content from arXiv

in your materials.

Can I reuse �gures from an arXiv paper?

Do I need arXiv's permission to repost the full text?

How can I determine what license the version was assigned?

I want to include a paper of mine from arXiv in my thesis, do I need speci�c permission?

I want to include a paper of mine from arXiv in an institutional repository, do I need permission?

Can I harvest the full text of works?

Can I reuse �gures from an arXiv paper?

The short answer is "it depends". More speci�cally: - If the license applied to the work allows for remixing or

reuse with citation, then yes. - If not, then the version is assigned one of the arXiv perpetual non-exclusive

licenses, and you will need to contact the submitter or copyright holder (if published) to determine

applicable permissions.

Do I need arXiv's permission to repost the full text?

Note: All e-prints submitted to arXiv are subject to copyright protections. arXiv is not the copyright holder

on any of the e-prints in our corpus.

In some cases, submitters have provided permission in advance by submitting their e-print under a

permissive Creative Commons license. The overwhelming majority of e-prints are submitted using the arXiv

perpetual non-exclusive license, which does not grant further reuse permissions directly. In these cases you

will need to contact the author directly with your request.

How can I determine what license the version was assigned?

All arXiv abstract pages indicate an assigned license underneath the "Download:" options.

The link may appear as just the text (license) , such as at arXiv:2201.14176. Articles between 1991 and 2003

have an assumed license. These are functionally equivalent to the arXiv non-exclusive license.

If the license applied by the submitter is one of the Creative Commons licenses, then a "CC" logo will appear,

such as at arXiv:2201.04182.

B Further Articles

189



I want to include a paper of mine from arXiv in my thesis, do I need
speci�c permission?

If you are the copyright holder of the work, you do not need arXiv's permission to reuse the full text.

I want to include a paper of mine from arXiv in an institutional repository,
do I need permission?

You do not need arXiv's permission to deposit arXiv's version of your work into an institutional repository. For

all other institutional repository cases, see our help page on institutional repositories.

Can I harvest the full text of works?

Plase see our bulk data help page, and the API Terms of Use for speci�c options. Note that the license for the

full text is not a part of the current search API schema. The license is, however, provided within arXiv's output

from the OAI-PMH in either arXiv  or arXivRaw  formats.

About

Help

Copyright

Privacy Policy

 Contact

 Subscribe

 Report a documentation issue

Web Accessibility Assistance

arXiv Operational Status 

Get status noti�cations via email or slack

B Further Articles

190


	1 Introduction
	2 Preliminaries
	2.1 Latent Variable Models
	2.2 Algebraic Approach to Parametric Models
	2.3 Linear Structural Equation Models with Latent Variables

	3 Goodness-of-fit Tests in Irregular Models
	4 Structure Identifiability in Causal Representation Learning
	5 Parameter Identifiability in Linear Causal Models
	6 Geometry of Sparse Factor Analysis Models
	7 Conclusion
	Bibliography
	A Core Publications
	A.1 Testing Many Constraints in Possibly Irregular Models Using Incomplete U-Statistics
	A.2 Unpaired Multi-Domain Causal Representation Learning

	B Further Articles
	B.1 Half-Trek Criterion for Identifiability of Latent Variable Models
	B.2 Algebraic Sparse Factor Analysis


