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Abstract

Face Recognition (FR) technology has rapidly evolved into a critical tool in various sectors, utilizing
sophisticated algorithms to identify or verify a person from a digital image or video frame against
a database, thereby enhancing robustness, explainability, and security is crucial. This dissertation
delves into the intricacies of FR systems, mainly focusing on the Face Verification (FV) task with
cross-resolution images.

The impact of image resolution on Face Verification (FV) is meticulously analyzed and extended
to examine facial feature distances within FV models, revealing that the resolution of facial images
profoundly affects the performance of state-of-the-art models. Several strategies to bolster the
robustness of FR systems against resolution variations are developed, marking a pivotal advancement:
Resolution Augmentation Training (RAT), Contrastive Loss Training (CLT), Multi-Branch Contrastive
Loss Training (MB-CLT), and Octuplet Loss Training (OLT). These methods significantly enhanced FR
models’ performance across various benchmark datasets through their unique mechanisms. Notably,
the OLT method emerged as the most effective, demonstrating its adaptability to different network
architectures. Furthermore, creating a new benchmark dataset, Cross-Quality Labeled Faces in the
Wild (XQLFW), addresses the need for a more accurate and standardized evaluation of FV with
images of different resolutions. By synthetically deteriorating images from the Labeled Faces in the
Wild (LFW) dataset, XQLFW provides a comprehensive evaluation platform for FV models, enabling
a more in-depth analysis of their performance on cross-resolution images. In addition to technical
advancements, exploring explainability within FR systems yields the development of model-agnostic
methods, namely the Confidence Score (C-Score) and the Explanation Map (X-Map). These methods
provide meaningful insights into the decision-making processes of FV models, facilitating a more
interpretable and transparent evaluation. Lastly, investigating human performance in challenging
edge cases for FR systems highlights the potential to synergize human intuition with algorithmic
precision. By employing a fusion strategy based on confidence scores, the overall accuracy of FR
systems is improved on several benchmarks, emphasizing the value of human-machine collaboration
in enhancing FV tasks.

In conclusion, this body of work substantially contributes to the comprehension and enhancement
of FR technology, particularly on cross-resolution images. It introduces innovative insights and
methodologies that extend the limits of possibility in the field of biometric authentication.
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Chapter 1.

Introduction

Face Recognition (FR) (or Facial Recognition) is considered the most natural occurrence in the world for
humans; it is engaged every time an individual encounters another person or another face. Regardless
of whether the setting is real or virtual, the human brain attempts to immediately recognize the
identity behind the face. However, the question arises: What does ‘recognizing identity’ really mean,
and what are the underlying brain mechanisms facilitating this process? The computer vision engineer
might ask: How can this ability be transferred to machines?

Let us consider the human brain first. Newborns begin to learn FR from the first days after birth.
It is believed that in the first few weeks of life, despite having a significantly limited field of vision,
particularly in focus and range, infants begin to develop the ability to recognize other humans [13].
Through the repeated observation of both familiar and unfamiliar faces, a rapid development in FR is
observed in infants, particularly starting from 4 months of age. At this age, they begin to develop a
face ‘schema’, viewing faces as a special class of stimuli, and their ability to distinguish faces, including
by gender and emotional expression, becomes more robust. [14] This capability progressively matures
during childhood, reaching near-full development by the age of 10, with minimal further enhancement
thereafter [15].

In the field of computer vision, which pertains to machine perception, the objective is to impart
the ability to ‘see’ to machines, transferring and potentially exceeding human capabilities to these
devices. With the progress and developments in deep learning, the principle of learning has, in many
cases, been successfully transferred to machines. With social media and the growing amount of
labeled face data available in the field of FR, this has led to the development of Convolutional Neural
Network (CNN) architectures that can be trained to recognize faces.

The first attempts to use CNNs for FR and face detection were made in the late 1990s [16, 17].
However, it was in the 2010s that the first CNN architectures were developed that could be trained
on a large scale to recognize faces with sufficient accuracy. Early approaches like DeepFace [18]
or [19] were able to achieve promising accuracies due to raising available computation power and
data available. Consequently, more and more models have been developed and trained, which have
advanced to a level where they can identify faces, often outperforming humans in FR tasks [5†, 20,
21].

The fact that faces can nowadays be identified automatically with sufficiently good accuracy has
led to enormous technical developments. The range of use cases for such systems has increased
tremendously in recent years. To mention just the most prominent examples: FR in smartphones,
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Chapter 1. Introduction

which is now used by almost all manufacturers, or the application of FR in social networks to
automatically tag people in photos. However, utilizing FR is not limited to these areas. The “global
adoption of AI surveillance is increasing rapidly around the world” [22] and is often equipped with
FR systems.

As the technology matures, the business of large-scale FR is taking shape. This is exemplified by
companies like Clearview AI Inc., which have amassed enormous data collections — approximately
3 billion photos by 2020 — by scraping the internet. These developments enable governments and
companies to search for individual faces within a vast array of digital images. This capability potentially
facilitates identity verification or surveillance activities on a global scale [23].

As Smith and Miller said “The expanding use of biometrical FR raises a number of pressing ethical
concerns for liberal democracies that need to be considered” [24] — The fundamental and growing
influence of these systems on society cannot be understated, highlighting the necessity for their
reliable functioning and resistance to simple manipulations. Given these significant ethical concerns,
examining the technical challenges inherent in FR technology becomes crucial. Understanding these
technical obstacles is key to assessing the feasibility and reliability of these systems in practical
applications.

1.1. Motivation

Human faces are recognized as unique biometric characteristics. Despite being subject to alterations
through makeup, jewelry, and hairstyles, their distinctiveness remains intrinsic to each individual. This
sets them apart from other established biometrics like iris patterns and fingerprints. The increasing
popularity of FR, exemplified by technologies such as Apple’s FaceID to unlock mobile devices, is
highlighted by its ease of use in various applications. Furthermore, faces are not only encoded with
identity but also convey additional biometric information such as gender, race, and age, along with
insights into head pose, gaze direction, and emotional states.

This dissertation focuses on the encoded identity information in facial images. Nowadays, FR
systems can identify people from facial images with high accuracy, and thus, automatic systems are
widely used. However, the performance, robustness, evaluability, and explainability of these systems
are still not sufficient for many applications, and the following paragraphs will elaborate more on
that:

The performance of FR systems can be seen two-fold: In terms of accuracy and computation, i.e.,
speed and memory usage. The accuracy of systems plays a vital role in their usage in probably all
real-world applications and is, therefore, a key aspect to consider FR systems. Additionally, speed and,
to some extent, storage capacity are critical, as systems are increasingly expected to operate on mobile
devices. For instance, automated border control systems, progressively implemented in numerous
airports, utilize FR technology for identifying individuals. These systems must be both rapid and
reliable to avoid extended waiting times at border controls. Their efficiency and dependability are
essential for surpassing the effectiveness of manual checks, a fundamental criterion for their adoption
to ever more airports.
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Closely related to accuracy is the robustness against deviations from the straightforward case.
Depending on the application domain, robustness can be a limiting factor. For instance, in dynamic
scenarios where a camera moves towards a person or vice versa, early recognition is desirable for a
timely and reasonable response. If recognition only occurs when the face is directly in front of the
camera, the response options become severely limited. In this case, the system should be robust to
the distance the individual is from the camera.

The measurability of this robustness is a pivotal aspect in the characterization of FR algorithms, pro-
viding a crucial basis for assessing and enhancing the resilience of these systems. Such measurability
is necessary to compare and evaluate the robustness of systems, thereby hindering their deployment
in security-relevant applications. For instance, in the context of automatic identity tagging in movies,
knowing the limits and robustness of such a system is essential to deciding whether to spend the
money to use the system on a vast amount of data.

The interaction between humans and machines is increasingly becoming critical, particularly
regarding sensitive decisions (such as in law enforcement). In such scenarios, it remains imperative
that humans make the final decision in borderline cases. However, the challenge lies in reliably
identifying these borderline cases and assessing human proficiency in this context. Because of their
exceptional ability to identify individuals even in complex situations, Super-recognizers play a vital
role here [25]. As surveillance expands, leading to a surge in image data, the frequency of borderline
cases also increases. This situation necessitates not only more precise and reliable systems but also a
more detailed analysis of borderline cases and enhanced explanations or descriptions of why a case is
identified as borderline by the system.

In a nutshell, the aspects above are crucial for the acceptance of FR systems and their widespread
adoption. More robust systems can unlock new opportunities here, notably in law enforcement, such
as mobile FR with drones, which typically operate at greater distances from subjects. Or also in the
widespread search for missing or dementia-affected individuals.

This study primarily concentrates on the technical dimensions of FR systems, endeavoring to
augment their robustness, evaluability, and explainability. While the ethical aspects are not the
central focus of this research, it is imperative to recognize their significance in the realm of FR. The
rapid advancement and increasingly pervasive deployment of FR technologies necessitate thoroughly
considering the associated ethical challenges. These challenges encompass issues like bias, data
collection, transparency, protection of vulnerable populations, security, and accountability [26]. Recent
scholarly discussions have extensively addressed these ethical concerns in FR systems [27, 28, 29].
Furthermore, Fisher et al. [26] and Ketley et al. [30] have proposed a specific code of ethics aimed
at tackling these critical issues, highlighting the growing acknowledgment of ethical considerations
in the development and application of FR technologies. Consequently, considering ethical aspects
in research and deployment of FR technology is essential to ensure that these systems are used
responsibly and do not infringe upon fundamental human rights.

3
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1.2. Challenges

The significance and broader implications of FR technology having been established, the focus is
now shifted to the technical challenges inherent in this field. Its expanding applications in real-world
scenarios present not only technical hurdles but also highlight critical legal and ethical considerations.
Given that FR technology plays a crucial role in individual identification, its implications for data
protection and privacy are profound. Moreover, its use in law enforcement and expanded surveillance
intensifies concerns regarding potential misuse and abuse.

Nevertheless, beyond these societal and ethical dimensions, FR confronts various technical chal-
lenges that are pivotal in its development and have recently attracted substantial research interest.
To facilitate a better understanding, this section draws a comparison between humans and machines
in the context of FR abilities, highlighting their differences and similarities. A critical distinction
is that humans, during their FR developmental phase, encounter only a limited number of people
and thus faces. In contrast, with advancing technological capabilities and the massive amount of
collected data, machines have access to significantly more data, including up to billions of identities.
Notably, one must also consider the current research on artificially generated faces, which opens up
the possibility of generating an infinite number of identities—however, not just the quantity but also
the quality of data matters during the learning process. While machines can access more data, the
variety differs significantly from the variety a human being sees in its early FR development phase.

Having initially examined the overall data landscape, the focus is now on the image level. Starting
with a straightforward problem that is easy to solve for machines, human proficiency in FR can be
quickly challenged by simple manipulations, such as rotating an image 180 degrees, which significantly
diminishes the recognition ability of most people. This likely stems from our usual experience of
seeing faces in a specific orientation. Through basic detection of eyes, nose, and mouth, images can
be normalized to present a consistent orientation to the machine, thus overcoming this challenge.
However, more complex obstacles remain and can be categorized into four fundamental challenges
in FR: Pose, age, occlusion, and quality. These challenges are illustrated in Figure 1.1 and briefly
described below.

Pose. E.g., consider the angle of view on faces. The third column of Figure 1.1 illustrates this by
comparing a profile picture to a frontal shot. It is evident that humans constantly encounter faces
from a variety of angles. However, large labeled image databases do not always encompass this
range of variability. E.g., official documents like passports and driver’s licenses typically feature faces
captured frontally. Similarly, profile pictures on social media are predominantly frontal shots.

Age. In comparison, age disparity presents itself as a significant challenge. For instance, during
the first ten years, crucial to developing FR skills, a human is exposed to a maximum age difference
corresponding to this time span. However, machines can be presented with a much broader range
of age differences. As time progresses, an increasing number of images capturing longer spans of a
person’s life are digitally documented. This is exemplified in the first column of Figure 1.1, illustrating
the complexities machines face in adapting to the wide spectrum of age variations. This factor
significantly influences the effectiveness of FR technology.
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QualityPoseOcclusionAge

Figure 1.1.: Four example cases depicted to illustrate challenges in face recognition.

Occlusion. The recent pandemic has brought a significant issue: the increased difficulty in recognizing
individuals wearing masks. This situation exemplifies the challenges of partial occlusion in FR systems,
as seen in the second column of Figure 1.1. A threshold exists in human and machine perception
where, once a face is no longer discernible, FR ceases to function effectively. From the outset, humans
have encountered various occlusions, such as glasses, hats, and, more recently, masks covering the
mouth and nose. These obstructions are often visible in the digital realm and can be synthetically
generated with relative ease. This highlights the complexities in ensuring accurate FR in partial face
coverings, both in human experience and machine processing.

Quality. Distance to the face emerges as a critical factor complicating identification processes for
both humans and machines. For humans, there is an inherent limitation to recognizing individuals
beyond a certain range. This constraint is mirrored in machine-based systems, where the resolution of
an image inherently limits the amount of detail and information it can convey. An example is given in
the last column of Figure 1.1. It is pertinent to acknowledge that the range of digitally available data,
particularly concerning facial distance, is quite restricted. The majority of these data, predominantly
sourced from the internet, fail to include images captured from extensive distances. This absence is
attributed to the reduced facial clarity in such images, which subsequently hinders the recognition
of individual identities. Consequently, a notable dearth of digital images taken from long distances
exists. When evaluating digital images in the context of distance, considerations generally pivot
toward image resolution or overall quality. The term ‘quality’ in this context extends to include
aspects such as lighting, noise levels, contrast, and other relevant variables. Another challenge in the
digital domain is the emergence of transferable adversarial attacks [i]. These sophisticated attacks
target machine learning systems and are uniquely designed to be undetectable by human observers.

The foundational step naturally involves measuring performance and analyzing robustness to
subsequently demonstrate improvements. This means initially addressing the foundation, which is
the efficient measurement of image resolution robustness in FR systems. Subsequently, efforts can be

[i]Adversarial attacks are deliberate manipulations of input images with subtle changes to fool the system into incorrect
face identification or recognition failure.
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directed towards enhancing robustness, ideally without compromising performance in other domains.
A significant challenge in this domain is the scarcity of labeled data that specifically reflects this issue,
as typically, there are only a few labeled images with low resolution. Consequently, the synthetic
generation or modification of data must be considered.

Particularly in relation to deep learning algorithms, understanding the explainability and traceability
of decisions is crucial. Typically, these systems are akin to ‘black boxes’ initially yielding only a
numerical output. A decision for verification or rejection is then made based on a certain threshold
value. However, the underlying question remains: How is this decision arrived at? Which parts of
the image are especially pivotal? Finally, it is important to identify the weaknesses of a system and
thereby filter out cases where automatic systems fail and are not reliable. This raises the question of
the system’s certainty: How confident is it in its decision-making, and would a human possibly be
more certain in the same scenario?

In summary, this chapter has outlined the key challenges that FR technology currently faces. The
subsequent chapter will build upon this foundation, outlining specific objectives and methodologies
designed to enhance the accuracy and reliability of FR systems in the face of these complexities.

1.3. Scope and Research Questions

The overarching aim of this dissertation is to delve into various aspects of FR, with a particular
emphasis on the influence of different resolutions on the images being compared, i.e., Cross Resolution
(CR). This exploration is crucial for understanding and enhancing the efficacy of FR systems in diverse
conditions. To achieve this, this work sets forth several key research objectives, each addressing a
distinct facet of the broader topic. These objectives have been crystallized into five research questions,
which will guide the investigative process and methodology of this study:

Research Question 1: How does image resolution impact the performance of face recognition systems?

A fine-grained analysis of the impact of image quality on FR performance is described in Chapter 3
and in [1†]. Several benchmarks of state-of-the-art FR systems are presented and their degrading
performance on images with varying resolutions is thoroughly analyzed. Additionally, a closer look
on the feature distances is conducted and discussed.

Research Question 2: What strategies can be developed to enhance the robustness of face recog-
nition systems against variations in image resolution?

Chapter 4 presents three training strategies published in [1†, 2†] to enhance robustness to im-
age resolution. The first strategy is based on a simple data augmentation technique, i.e., the training
data is augmented with images of lower resolution. The second strategy is based on a siamese network
architecture, whereas each branch is trained with images of different resolutions. The latter strategy
is based on data augmentation in combination with a specific loss function which penalizes the
distances of genuine and imposter image pairs at the same time during training. Each strategy is
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evaluated on several benchmarks and compared to the state-of-the-art FR systems.

Research Question 3: How can a new benchmark be designed to measure the performance of face
recognition systems on images with different resolutions more accurately and precisely than current
methods?

A novel benchmark dataset is presented in Chapter 5 and in [3†]. The dataset originates from
the Labeled Faces in the Wild (LFW) dataset [31] and was modified to include image pairs with differ-
ence in image quality. The chapter presents the dataset and the benchmark protocol. Furthermore, it
evaluates multiple state-of-the-art FR systems on the dataset and compares the results to the default
Labeled Faces in the Wild (LFW) benchmark.

Research Question 4: What methods can be established to provide clearer explanations for the decisions
made by face recognition systems?

Chapter 6 and [4†] describe two methods to make the predictions of Face Verification (FV) sys-
tems more explainable. The chapter explains an algorithm for calculating a Confidence Score (C-Score)
for the output of an arbitrary FR model. Furthermore, it presents the derivation of model-agnostic
similarity maps, which visualize regions in the images that are important for the decision of an FR
system. Finally, a web platform is introduced, which includes the implementation of those explanation
methods and allows to interactively explore the maps and scores calculated for several FV benchmark
datasets.

Research Question 5: How do humans perform in borderline cases of face recognition, and can
an algorithm be developed to effectively fuse human and machine decisions to improve overall accuracy
in face recognition tasks?

The last contribution of this dissertation shifts the focus to human capabilities in FR and explores
how humans make different decisions compared to state-of-the-art FR systems and is described in
Chapter 7 and [5†]. Special attention is given to borderline cases, which are analyzed in detail. The
chapter concludes by presenting a simple algorithm that fuses the decisions of humans and machines,
demonstrating that this fusion can lead to an overall improvement in results.

Aside from the above listed main contributions of this dissertation, the foundational context for
image processing, particularly w.r.t. resolution and quality is established in Chapter 2. Furthermore,
the fundamental processes and characteristics of state-of-the-art FR systems are introduced, which
serve as the basis for the main body of this work. After presenting the fivefold contributions, Chapter 8
concludes the findings of this work and draws the main implications w.r.t. the research objectives
stated above. Finally, it draws an outlook to interesting directions for future work. The graphical
overall structure of this dissertation is also illustrated in Figure 1.2.
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Figure 1.2.: Graphical structure of the dissertation.
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Chapter 2.

Background and Fundamentals

In this chapter, an exploration of the fundamentals of image resolution in the context of digital image
processing is introduced. Then, the basics of supervised Deep Learning (DL) are explained. Finally,
the field of Face Verification (FV) is introduced, covering a typical state-of-the-art Face Recognition
(FR) pipeline for training and evaluation of an FR system. Morover, popular datasets used for training
and testing are presented. The mathematical notation utilized throughout this work is based on
International Organization for Standardization (ISO) 80000–2 [32] and is summarized in Appendix A.

2.1. Digital Images

A digital image can be described as a scan of the real world, projecting a 3D scene onto a 2D image
plane with a grid of pixels. Each pixel represents color and luminance, offering a snapshot of reality,
albeit with the inherent loss of depth information. The 2D discrete, digital image I(𝑥, 𝑦) represents the
response of a capturing sensor at a series of fixed positions in 2D Cartesian coordinates 𝑥 ∈ {1, 2,… , 𝑀},
𝑦 ∈ {1, 2,… , 𝑁 }, and is derived from the 2D continuous spatial signal through a sampling process
frequently referred to as discretization. The discretization process takes place in imaging sensors,
typically performing a localized averaging of the continuous signal (world) across a small, often square-
shaped area, in the receiving domain (image). The discrete image I can be described as a function of
two variables, which are the spatial coordinates 𝑥 and 𝑦. The image size is consequently defined by
the number of pixels in the horizontal and vertical directions, which are 𝑀 and 𝑁 , respectively. Figure
Figure 2.1 illustrates the layout of a digital grayscale image. The spatial resolution of the image is
described then 𝑀 ×𝑁 px, whereas the total number of pixels is calculated as 𝑀 ⋅ 𝑁 . Note that in this
work, the term ‘pixel’ is abbreviated as px.

The value of the function at any point (𝑥, 𝑦) is the intensity of light captured in the image at that
point. In a grayscale image, the intensity is a single value, whereas in a color image, the intensity
is typically a vector of three values, representing the red, green, and blue channels. There also exist
other color models, such as the HSV model, which is based on hue, saturation, and value or the CYMK
model, which is based on cyan, yellow, magenta, and black. Common values for the intensity are
in the range of [0, 255], where 0 represents black and 255 represents white. The values in between
are then shades of gray. This range is also called 8-bit grayscale, due to the fact that each pixel is
represented by 8 bits. In mathematical notations of images I ∈ ℝ

𝑀 ×𝑁 ×𝐾 , the numbers of channels 𝐾 ,
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I (0, 0) I (M, 0)

I (0, N) I (M, N)

Image pixel location at (x,y), denoted as I (x,y)

y

x

Zoom

Figure 2.1.: Layout of a digital grayscale 𝑀 ×𝑁 px image, with a zoomed-in section displaying indi-
vidual pixels. Image generated with DALL·E 3[i] in 2024.

to encode the color information is often omitted, since it is not relevant for the operations discussed
in this dissertation.

2.1.1. Resolution

The general concept of the word ‘resolution’ related to digital images can be specified in terms of
four quantities:

Spatial Resolution is the number of pixels in the horizontal and vertical directions, which are 𝑀

and 𝑁 , respectively. In this work, the spatial resolution is also called image size and is measured in
pixels. The higher the spatial resolution, the more pixels are used to represent the image, resulting in
a larger file size.

Bit Resolution or Color Depth is the number of bits used to represent the intensity of a pixel. This
corresponds to a bit resolution of 8 bits and the full continuos spectrum is represented by 2

8
= 256

discrete values. Higher bit resolutions allow for the representation of more values (information),
which in turn increases the file size of the image.

Color Resolution means the number of channels in the image. This can be considered as the third
dimension of an image. A grayscale image has one value for each pixel, whereas a Red Green Blue
(RGB) color image has three values, representing the red, green, and blue channels. All experiments
covered by this work use exclusively RGB color images and a bit resolution of 8 bits per channel. For
the sake of simplicity, the number of channels is typically omitted in this work when denoting the
image dimension.

[i]DALL·E is an artificial intelligence program developed by OpenAI that can generate digital images from textual descrip-
tions.
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Raw-resolution describes the original image resolution as captured by a camera. Hence, it is
independent of posterior up-scaling to a larger spatial resolution. This does naturally not increase the
information content of the image although the image contains a high (spatial) resolution. E.g., a low
raw-resolution image describes an image necessarily upscaled from a lower original spatial resolution
image (see Section 2.1.3). Since all FR processing in this work deals with 112 × 112 px images and to
avoid clutter, the shorter term ‘resolution’ is used to denote the raw-resolution of an image in the
remaining chapters. It is important to mention that this work does not consider motion or lense
blur in images. Additionally, the depth of field effect created by the camera’s aperture setting is
overlooked. The focus is strictly on the face.

2.1.2. Scaling

The term scaling is used to describe the process of changing the spatial resolution of an image. The
process of increasing the spatial resolution of an image I is described as upscaling or sometimes
called up-sampling. In contrast, the process of decreasing the spatial resolution of an image is called
downscaling or sometimes called down-sampling. In the following, both processes are described in
more detail.

Downscaling decreases the image size and therefore reduces the amount of information in the
image. For an image I ∈ ℝ

𝑀 ×𝑁 , the process of downscaling ℝ
𝑀 ×𝑁

→ ℝ
⌊
𝑀

𝑠
⌋ × ⌊

𝑁

𝑠
⌋ can be formulated

as a function ↓𝑠(⋅):
I∗

=↓𝑠(I), (2.1)

with I∗ being the downscaled image and the scaling factor 𝑠 ∈ ℕ>0. To obtain a downscaled image,
the pixel values of the input are mapped to the output. If those pixel coordinates are not an integer,
interpolation is required to estimate the actual pixel value. The simplest way to downscale an image
is to throw pixels away, which is called nearest-neighbor interpolation. Other methods like bilinear,
bicubic, or Lanczos [33] interpolation are also used. But aliasing artifacts (or Moire patterns) are
present independent of the chosen methods. They occur when the sampling frequency is too low to
represent the signal accurately. To avoid aliasing effects, typically a low-pass filter, e.g., a Gaussian
filter, is applied before downscaling. Figure 2.2 shows an example of downscaling an 6 × 6 px image I1
by a factor of 3 using nearest-neighbor interpolation on the left side, resulting in an 2 × 2 px image I∗

1
.

Upscaling increases the image size by adding pixels, but this does not increase the amount of
information in the image. For a square-sized image I ∈ ℝ

𝑀 ×𝑁 with an arbitrary spatial resolution
of 𝑀 ×𝑁 px, the process of upscaling ℝ

𝑀 ×𝑁
→ ℝ

𝑀 ⋅𝑠 ×𝑁 ⋅𝑠 can be formulated as a function ↑𝑠 ( ⋅ ) with
𝑠 ∈ ℕ>0 being the scaling factor:

I∗
=↑𝑠 (I), (2.2)

with I∗ being the upscaled image. To obtain an upscaled image, the pixel values of the input are
mapped to the output. Nearest-neighbor interpolation is the simplest way to upscale an image. Here,
the output pixel values are filled with the nearest input pixel value. Figure 2.2 shows in the right an
example of upscaling an 2 × 2 px image I by a factor of 3 using nearest-neighbor interpolation. The
resulting image is then a 6 × 6 px image I∗. Other methods incorporate more information around
the pixel. E.g., bicubic interpolation uses a weighted average of the 16 nearest pixels and the bilinear
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Figure 2.2.: Illustration of nearest-neighbor interpolation of an image.

approach uses a weighted average of the four nearest pixels. In today’s digital image processing,
additional methods such as Lanczos, Mitchell-Cubic, Gaussian, or Area interpolation exist, but are not
covered in this work. The term upscaling without any further clarification, refers to bilinear upscaling
in this work.

Besides interpolation, there exist also DL techniques and are referred to as Super Resolution (SR).
The goal of SR is to recover a High Resolution (HR) image from an Low Resolution (LR) image. If only
one image is available, this is called Single Image Super Resolution, whereas if multiple images are
available, this is called Multi Image Super Resolution. The interested reader is referred to the work of
Lepcha et al. [34] or Li et al. [35] for a more detailed overview of SR.

2.1.3. Raw Resolution

It is important to understand that spatial resolution is not directly a metric for informational content
or quality of an image. To address this issue and describe the informational content of an image or in
other words the quality, the term raw-resolution was introduced (see Section 2.1.1). This characteristic
is illustrated in Figure 2.3 using the well-known camera obscura [i] model and capturing two image
shots I1 and I2 of a person standing at different distances 𝑑1 and 𝑑2 to the camera.

According to the pinhole camera model, the distance 𝑑 of the face to the camera with a focal length
of 𝑓 is inversely proportional to the height ℎ∗ of the face in the captured image:

ℎ
∗

𝑓

=

ℎ

𝑑

. (2.3)

A larger distance between face and camera results in a smaller face in the image. In Figure 2.3, the
face of the person standing closer to the camera (𝑑1) fills an area of about 56 × 56 px in the captured
image I1. The face of the person standing further away from the camera (𝑑2) occupies an area of
only 14 × 14 px in I2. Assuming that an FR system requires a fixed input image size of 112 × 112 px,
the facial images must be upscaled to meet this requirement. Here, they need to be upscaled by a

[i]From Latin: camera obscura ‘dark chamber’
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Image Plane
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Figure 2.3.: Illustration with the pinhole model of captured images of two people with different
distances to a camera.

factor of 2 and 8, respectively. Figure 2.4 visualizes the upscaling results by leveraging two different
interpolation methods, nearest-neighbor and bicubic interpolation. Although all images share the
same spatial resolution of 112 × 112 px, the upscaled images contain different levels of information.
The upscaled variants I∗

1
of I1 contains significantly more information, since it was only upscaled by

a factor of 2, or in other words, the raw-resolution of the original image is 56 × 56 px. In contrast, the
upscaled variants I∗

2
of I2 contain less information, since the original image was upscaled by a factor

of 8, i.e., the raw-resolution of the original image is 14 × 14 px. This example highlights the necessity
of considering the raw-resolution of an image to describe the quality of an image.

An HR image denotes an image with arbitrary spatial resolution but necessarily captured by a
camera with the same or higher resolution. In contrast an LR image denotes an image with arbitrary
spatial resolution but necessarily upscaled from a lower resolution image, in other words being
characterized by a lower raw-resolution.

Nearest Neighbor Bilinear Nearest Neighbor Bilinear

112 x 112 px 112 x 112 px 112 x 112 px 112 x 112 px

I₁* (Upscaled with s = 2) I₂* (Upscaled with s = 8)

Figure 2.4.: Illustration of the raw-resolution in two upscaled images. Both images are upscaled with
nearest-neighbor and bilinear interpolation.
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In general, the term image quality is comprising of several types of image quality degradation and
besides the raw-resolution also includes sharpness, noise, artifacts, and other types.

2.1.4. Raw Resolution Assessment

If the raw-resolution of an image is known, it can be used to describe the degree of degradation,
e.g., with the scaling factor obtained to the desired spatial resolution. A higher scaling factor means
a higher degradation. This is typically the case for synthetically degraded images or when the
information about the original raw image resolution is present. However, there exist also images,
where it is unknown, whether and how much the image was upscaled. In this case, the raw-resolution
can only be estimated. Dependent on the upscaling technique, the image could be very blurry, as it is
the case for bicubic or bilinear upscaling. In contrast, the image could be very sharp, as it is the case
for upscaling with nearest-neighbor interpolation (see Figure 2.3). The following two approaches are
used in this work:

The Blind Referenceless Image Spatial Quality Evaluator (BRISQUE) score introduced by Mittal et
al. [36] is a no-reference image quality assessment metric. It quantifies the ‘naturalness’ of images,
which is affected by distortions. BRISQUE uses scene statistics of locally normalized luminance
coefficients without a distortion-specific model. The method evaluates the empirical distribution of
these normalized luminances and their products in the spatial domain. BRISQUE is distinct from other
approaches (see [37] for an overview), as it does not require transformation to another coordinate
frame like discrete cosine transform or wavelet, operating purely in the spatial domain.

Stochastic Embedding Robustness Face Image Quality (SER-FIQ) is a DL-based unsupervised approach
to estimate face image quality based on the robustness of stochastic embeddings introduced by
Terhörst et al. [38]. It operates without explicit quality labels. The methodology involves generating
multiple stochastic embeddings from random sub-networks of an FR model and then measuring
the variations in these embeddings. High robustness (low variation in embeddings) indicates higher
image quality, while lower robustness (high variation) suggests lower quality.

2.2. Supervised Deep Learning

Artificial Neural Networks (ANNs) aim to emulate human cognitive processes by applying logical rules.
Initially, an ANN consisted of just one processing unit, or neuron, which could only predict binary
outcomes from multiple binary inputs [39]. However, modern ANNs, with their millions of neurons,
have long outperformed humans in various tasks. In particular, ANNs have been the driving force
behind the recent advances in computer vision. In the field of FR, 2014 was the year of breakthroughs,
with the introduction of DeepFace [18] and DeepID [40]. Research from then on has shifted to
DL-based approaches.

Very roughly speaking, DL can be divided into three subfields, deep supervised learning, deep
unsupervised learning, and deep reinforcement learning. To follow the remaining part of this dissertation
this section aims to give a brief overview of supervised learning in the context of DL.
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2.2.1. Artificial Neural Networks

An ANN is a computational model inspired by the human brain. It consists of multiple layers of
interconnected nodes, which are called neurons. Each neuron is a simple computational unit that
takes multiple inputs, processes them, and produces an output. The output of a neuron is typically a
non-linear function of the weighted sum of its inputs. The weights are the learnable parameters of
the network. The output of a neuron is then passed to the next layer of neurons. In the following,
specific ANN architectures, typically applied in the realm of FR are discussed. A typical architecture
for supervised DL FR models is two-fold, consisting of a feature extraction network and a classification
network. The feature extraction network is responsible for extracting features from a given image,
whereas the classification network is responsible for classifying the extracted features. Considering
the size of these networks, the feature extraction network is typically larger than the classification
network. The following paragraphs elaborate the mathematical description of both networks:

Feature Extraction Networks. A feature extractor network maps a facial image I ∈ ℝ
𝑀 ×𝑁 ×𝐾 to a

feature vector representation f ∈ ℝ
𝐹 . This can be simplified as a parametrized differentiable function

f𝜃 utilizing a set of learnable parameters 𝜃:

f𝜃 ∶ ℝ
𝑀 ×𝑁 ×𝐾

→ ℝ
𝐹

, I ↦ f𝜃(I) = f . (2.4)

This network f𝜃 is typically composed of multiple layers, where the 𝑖-th layer g(𝑖)

𝜃
(𝑖)

consumes the
output of the previous 𝑖 − 1-th layer, i.e.,

f𝜃 = g(𝑁 )

𝜃
𝑁
◦ g(𝑁−1)

𝜃
𝑁−1

◦… ◦ g(1)

𝜃
1
, (2.5)

with 𝜃 being the set of all parameters of the underlying layers in the network. In the field of FR
feature extraction is typically done via Convolutional Neural Network (CNN) or Vision Transformer
(ViT) [41] architectures, which will be described in more detail in Section 2.3.2.1. The purpose of these
architectures is to obtain a meaningful representation of facial identity in a lower-dimensional space.

Classification Networks. The purpose of a classifier networks in the context of FR is to classify
facial features to a specific class, i.e., an identity. This means to map a feature vector f ∈ ℝ

𝐹 to a
class label 𝑙, which is represented by a vector y ∈ ℝ

𝐿 containing posterior-probabilities for 𝐿 different
classes. More simply explained, a parametrized differentiable function c𝜃 is utilizing a set of learnable
parameters 𝜃:

f𝜃 ∶ ℝ
𝐹
→ ℝ

𝐿
, f ↦ c𝜃(f) = y . (2.6)

Instead of directly outputting a class decision, the network outputs class posterior-probabilities
and in the context of multi-class classification, the last layer typically employs a softmax activation
function on the 𝑖-th element of y:

SOFTMAX(y𝑖) =

𝑒
y𝑖

∑
𝐿

𝑙=1
𝑒
y𝑙

, (2.7)
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2.2. Supervised Deep Learning

which ensures that the output of the network contains a valid probability distribution, i.e., the
elements of y ∈ [0, 1] sum up to 1. For any input feature f , the function f𝜃 generates an output vector
y containing posterior-probabilities p, leading to the following decision rule:

ℝ
𝐿
→ 𝑙 ∈ {1, 2,… , 𝐿} , I ↦ argmax

p
p(𝑙 | I) . (2.8)

This section outlined the fundamental principle of ANN structures, that are used to solve supervised
learning tasks. Moving on to loss functions in the next sections, it is crucial to to grasp how they have
been instrumental in extending the boundaries of accuracy in FR technologies over recent years.

This outlined the fundamental principle of ANN structures, that are used to solve supervised
learning tasks.

2.2.2. Loss Functions

It is crucial to grasp how loss functions have been instrumental in extending the boundaries of
accuracy in FR technologies over recent years. This sections aims to provide a brief overview of loss
functions in the context of DL and FR.

Let 𝐷 be the number of available known input-output data pairs, a dataset can be described as
X ∶=

{

(I1, ŷ1) ,… , (I𝐷, ŷ𝐷)

}

containing 𝐷 images I with associated one-hot encoded ground truth
class labels ŷ, i.e., 1 for the correct class and 0 for all other classes. In the context of FR, the objective
then is to approximately compute the output of the (𝐷 + 1)-th input data I𝐷+1 without leveraging
explicit knowledge of the network function but instead by using the knowledge of the 𝐷 input-output
data pairs. This is done by minimizing a differentiable loss function L (also known as training
criterion, objective function, or cost function) to find the optimal parameters 𝜃∗ of a model containing
the parameters 𝜃:

𝜃
∗
= argmin

𝜃

L (X; 𝜃) , (2.9)

such that the difference between the predicted output y and the ground truth ŷ is minimized. In the
following sections, the general principle of loss functions for classification and deep metric learning
are introduced.

2.2.2.1. Deep Metric Learning

In general, deep metric learning or similarity learning maximizes discriminability of feature vectors, i.e.,
reducing the distance between feature vectors corresponding to the same class and increasing the
distance between the feature vectors corresponding to different classes. Commonly utilized distance
metrics are the euclidean distance and the cosine distance. Considering two 𝑛-dimensional vectors
v1,v2 ∈ ℝ

𝑛 the euclidean distance dEUC is calculated as follows:

dEUC(v1,v2) =

√

𝑛

∑

𝑖=1

(𝑣
(𝑖)

1
− 𝑣

(𝑖)

2 )

2

, (2.10)
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where 𝑣
(𝑖)

1
and 𝑣

(𝑖)

2
are the 𝑖-th elements of the vectors v1 and v2, respectively. The cosine distance

dCOS ∈ [0, 2], on the other hand measures the angular distance in feature space and is calculated as:

dCOS(v1,v2) = 1 −

v1 ⋅ v2
‖v1‖ ⋅ ‖v2‖

. (2.11)

Deep metric learning distinguishes itself by utilizing distances rather than directly employing class
labels from the dataset. Instead, it depends on the binary information indicating whether pairs of
images share the same or different identities.

The primary loss functions facilitating this approach are contrastive loss and triplet loss. They are
explained in the subsequent paragraphs:

Contrastive Loss. The contrastive loss function was initially formulated by Chopra et al. [42] and
first employed in the field of FR by Sun et al. [40, 43]. The contrastive loss function aims to minimize
the feature distance between two faces of the same identity and maximize the feature distance
between faces of different identities. Considering a set of 𝐷 facial images X ∶= {I1, I2,… , I𝐷} with
corresponding class labels, a set of all possible triplets T can be defined according to the following
rule:

T ∶=

{

(𝑌 ,f1,f2) ∶ f = f𝜃(I), I ∈ X, I1 ≠ I2, 𝑌 = 0 if id(I1) = id(I2) else 𝑌 = 1

}

. (2.12)

𝑌 is a then a binary label indicating whether the two images I1 and I2 belong to the same identity
or not. The contrastive loss function LCO( ⋅ ; 𝜃) is then defined as:

LCO (T; 𝜃) =
1

|T|
∑

(𝑌 ,f1,f2) ∈T

(1 − 𝑌 )

1

2

d(f1,f2) + 𝑌

1

2
[
0, 𝛼 − d(f1,f2)]

+

, (2.13)

with d ( ⋅ , ⋅ ) being an arbitrary distance function and 𝛼 a margin. The role of the margin, 𝛼, is to
establish a hypersphere with radius 𝛼 around each point, f , in the embedding space. The algorithm
aims to ensure that no points from a different class fall within this hypersphere. It effectively sets a
target separation distance between dissimilar pairs. If the distance between a pair of dissimilar items
is greater than 𝛼, the loss for that pair is 0, i.e., the model is not penalized, as it has achieved the
desired outcome.

This approach, which concentrates on pairs of images, yields absolute feature distances. How-
ever, this method leads to complications arising from varying intra-class variances among different
identities. Therefore the loss function was extended to the triplet loss function.

Triplet Loss. Schroff et al. [44] opted for the triplet loss in the field of FR. This method works by
simultaneously minimizing the distance between the features of an anchor face IA and a positive face
IP (belonging to the same identity) while maximizing the distance between IA and a negative face
IN (from a different identity), effectively considering triplets of the images (IA, IP, IN). Figure 2.5
visually explains the repelling and attracting mechanism of the loss function to the features in the
feature space. Considering a set of facial images X with corresponding class labels, a set of all possible
triplets T within a dataset X can be defined according to the following rule:

T ∶=

{

(fA, fP, fN) ∶ f = f𝜃(I), I ∈ X, id(IA) = id(IP), id(IA) ≠ id(IN), IA ≠ IP

}

. (2.14)
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Figure 2.5.: Illustration of the triplet loss mechanism on the features of an anchor, positive, and
negative image.

The equation for the triplet loss function LTRI( ⋅ ; 𝜃) is then defined as:

LTRI(T ; 𝜃) =

1

|T|
∑

(fA,fP,fN) ∈T
[
0, d(fA, fP) − d(fA, fN) + 𝛼

]
+

, (2.15)

where d ( ⋅ , ⋅ ) is the distance function and 𝛼 is a margin. Triplet loss incorporates the margin 𝛼

to significantly enhance the learning of discriminative features, playing a vital role in deep metric
learning scenarios. The margin serves as a buffer zone, establishing a necessary gap between positive
and negative pairwise feature distances in the feature space. It ensures that the model goes beyond
simply distinguishing between similar and dissimilar samples; it encourages the model to maintain a
clear and robust distinction. This clear separation is crucial for the model’s ability to generalize well
to unseen data, thereby improving its overall performance and reliability. Without a margin, there
is a risk of the model collapsing into trivial solutions, where it might map diverse inputs to similar
feature vectors, leading to poor differentiation. The margin forces the model to learn more complex
and representative features, avoiding such trivial mappings. Additionally, this margin is a powerful
tool in preventing overfitting, as it requires the model to focus on learning meaningful patterns in the
data, rather than fitting to noise or minor, irrelevant variations.

A significant challenge in training with such loss functions lies in the selection of suitable pairs, as
highly dissimilar images contribute minimally to the training process. To address this issue, several
approaches have been proposed, e.g., the work of Shrivastava et al. [45] introduced an online hard
mining algorithm for object detection. Hermans et al. [46] then adapted this approach to the domain
of FR.

2.2.2.2. Classification

In contrast to deep metric learning, the classification task aims to assign a class label 𝑦 to a given input
image. The most common loss function for multi-classification training of ANNs is the cross-entropy
loss function. After connecting the feature extraction network f𝜃 with the classification network c𝜃
(see Figure 2.6) in series, the cross-entropy loss function is used to train the whole network end-to-end.
Considering a set of facial images X with 𝐿 corresponding one-hot encoded class label vectors ŷ,
according to the maximum likelihood estimation, the output probability vector by the classifier ANN
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for a specific class is then maximized by minimizing the negative log-likelihood, which results in the
cross-entropy loss or log loss:

LCE(X; 𝜃) = −

1

|X|

|X|

∑

𝑖=1

𝐿

∑

𝑙=1

ŷ(𝑙)

𝑖
log c𝜃

(
f𝜃 (I

(𝑙)

𝑖 ))
, (2.16)

where ŷ(𝑙)

𝑖
denotes the ground truth class label of the 𝑖-th image from the 𝑙-th class and y(𝑙)

𝑖
is the

posterior-probabilities of the 𝑖-th image for the 𝑙-th class.

Training a network with the cross-entropy loss function is a common practice in the field of FR
and has been successfully applied in various works [40, 43, 44, 47]. The cross-entropy loss function is
moreover a powerful tool for training the feature extraction network, as it allows the network to learn
discriminative features for the classification task. In contrast relative comparison of features in deep
metric learning, the cross-entropy loss function aims for a common feature representation. Hence, it
can also be used for direct classification tasks, where the network is trained to predict the class label
of an input image.

2.2.3. Optimization

Training a ANN involves a non-convex optimization problem where finding the minimum of the
loss function cannot be analytically determined. The state-of-the-art method for training ANNs,
which utilizes specific loss functions, is through the technique of backpropagation. Although the
foundational concepts of backpropagation were initially developed by Henry Kelley and Arthur Bryson
in the early 1960s [48, 49], it was not until the 1980s that this algorithm was widely applied to ANNs
in their current form [50]. The predominant algorithm incorporated today for optimizing ANNs is
Stochastic Gradient Descent (SGD). In practical scenarios, computing gradients for the entire dataset
simultaneously is generally impractical for large datasets due to the extensive memory requirements.
Consequently, the gradients for a network function f𝜃 are computed using randomly selected subsets
of the dataset (mini-batches) B ⊂ X:

∇𝜃L (B; 𝜃) =

1

|B|

|B|

∑

𝑖=1

∇𝜃L (B
(𝑖)

; 𝜃) , (2.17)

where B(𝑖) denotes the 𝑖-th sample in the mini-batch B. In each iteration, the parameters 𝜃 are
updated accordingly:

𝜃 ← 𝜃 − 𝜂∇𝜃L (B; 𝜃) , (2.18)

where 𝜂 denotes the learning rate, which controls the step size of the gradient descent. A small
learning rate 𝜂 results in gradual parameters updates, often leading to slow convergence towards
the minimum of the loss function. Conversely, a large learning rate 𝜂 may cause the updates to
overshoot minima, resulting in oscillations around the minimum. Exposing the network to the same
data repeatedly across multiple epochs is beneficial for navigating the complex loss landscape inherent
to high-dimensional optimization problems. This iterative learning process helps the network avoid
becoming trapped in local minima or saddle points, thereby enhancing its ability to find more globally
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optimal solutions. Nowadays, optimization approaches utilize more sophisticated techniques, such
as SGD with momentum, which uses the exponential moving average over all previous gradients to
enhance the effective learning rate, 𝜂, when all gradients align in the same direction, and to reduce
𝜂 in the presence of oscillating gradients. Another widely used technique is the Adaptive Moment
Estimation (ADAM) [51] optimizer. It is an algorithm for gradient-based optimization that adaptively
estimates lower-order moments to improve convergence and is used for training networks in the scope
of this dissertation. However, this work does not provide detailed coverage of several other proposed
extensions such as Adaptive Gradient Algorithm (ADAGRAD) [52] or Root Mean Square Propagation
(RMSProp) [53]. These methods have been shown to improve the convergence speed and stability of
the optimization process, particularly in the context of DL.

2.3. Face Verification

FV is a subfield of FR. Typically, FR encompasses more than just the stages of verification or identifi-
cation; it also includes the detection and preprocessing of faces. When examining the phase centered
on identity, it is essential to distinguish between two primary tasks. Face identification is the task
of assigning an identity label to an image of person, not necessarily known, whereas FV is the task
of deciding whether two facial images belong to the same person or not. In other words, FV is a
binary classification task. In the following, first, the general approach of FV is described, then the
most prominent training and testing datasets in the context of FV are introduced. Finally, the most
common evaluation metrics are presented.

2.3.1. Cross-Resolution

In general, w.r.t. image resolution one can differentiate between two types of FV tasks: Equal Resolution
(ER) and Cross Resolution (CR) FV.

The term ER describes the task of FV with images of the same raw-resolution. HR images provide a
wealth of details, making it easier to extract fine-grained facial features, which are crucial for accurate
FV. While HR FV is ideal, in real-world scenarios, obtaining HR images is not always be possible, e.g.,
in surveillance or mobile environments. LR images are common in surveillance footage, where many
cameras do not capture high-quality images due to large distances to the face. A primary challenge
in using LR FV is the difficulty in extracting reliable facial features, stemming from the inherent lack
of detail. This limitation can significantly impair the accuracy of the verification process.

The term CR is then introduced to describe the task of FV with images of different raw-resolutions,
e.g., one image of high raw-resolution and one image of low raw-resolution. CR FV is highly relevant in
real-world applications, offering a more flexible approach to FV across varied conditions and sources.

2.3.2. General Approach

Nowadays, state-of-the-art FV approaches are based on DL. This section aims to give a brief overview
of the general approach of FV using DL. First, the most recent and widely used DL architectures
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for FV are introduced. Then, the preprocessing steps, including face detection, and alignment are
introduced. Finally, the training and testing phase are described.

2.3.2.1. Deep Learning Architectures

Nowadays, deep learning methods in the field of FR are based on two main architectures, CNNs and
ViTs, which are explained in the following:

Convolutional Neural Network (CNN) architectures include a variety of different network archi-
tectures. Early works [19, 40] used deep CNN architectures to learn discriminative features from
facial images. These architectures are typically composed of multiple convolutional layers, which
are then stacked on top of each other. A convolutional layer is a special form of ANN that processes
data through a grid-like topology, primarily designed to recognize patterns in images by applying
filters that capture spatial hierarchies and features. Further development of CNN-based approaches
lead to the introduction of residual networks, such as Residual Layer Network (ResNet) [54] and
ResNet-V2 [55], which are still widely used in FR. These architectures introduce a novel approach
to mitigating the vanishing gradient problem encountered in the training of deep neural networks,
facilitating the construction and effective training of networks with substantially increased depth.
Through the incorporation of residual blocks that implement shortcut connections, ResNet allows the
direct propagation of gradients from deeper to shallower layers by enabling the addition of the input
to a block directly to its output. This design principle aids in preserving the strength of the gradient
throughout the network, thereby enhancing the learnability of deep architectures. Additionally, it
empirically demonstrates significant performance enhancements across a variety of complex computer
vision tasks. This evidences the capacity of deeper networks to achieve superior learning outcomes
when equipped with mechanisms to effectively bypass the challenges of depth. Prominent works
utilizing the ResNet approach include [40, 43, 44, 47, 56, 57] and are still considered state-of-the-art.
Although, CNN-based approaches have led to remarkable performance in FR, they still suffer a critical
limitation when capturing long range relations among facial regions.

Vision Transformer (ViT), introduced by Dosovitskiy et al. [41] addresses this issue. They applied
the principles of transformers, originally designed for natural language processing tasks, to computer
vision by treating images as sequences of patches. These patches are linearly embedded, alongside
positional encodings, to maintain spatial information, and then processed through a series of trans-
former blocks that leverage self-attention mechanisms to capture global dependencies within the
image. This architecture allows the network to dynamically adjust the focus on different parts of
the image, facilitating a more flexible and comprehensive understanding of visual data compared
to traditional convolutional approaches, and has demonstrated remarkable performance on various
image recognition tasks. Recent works [58, 59, 60, 61] show promising results in the field of FR using
ViT architectures.

Both main architectures, CNNs and ViTs, are employed in the feature extraction part of the FR
pipeline. These features represent an intermediate state in a bigger network, which is then used to
classify the identity of a person from the given image. In general, an FR model can be divided into
two parts: The feature extraction and classification as shown in Figure 2.6.
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Figure 2.6.: General Approach of face recognition. The process of typical training illustrated on the
left. The testing/application of the trained model shown on the right. Sample images from
MS1M-V2 dataset [47, 62].

2.3.2.2. Preprocessing

Facial images are often taken in uncontrolled settings and are loosely cropped, i.e., they may include
backgrounds or other faces. While joint face detection and recognition has been suggested in various
studies e.g., [63, 64, 65], its effectiveness is not yet at an ideal level. To reduce the impact of background
distractions, most FR algorithms first detect faces to help the FR system to concentrate solely on
recognizing the face. Furthermore, the alignment or spatial normalization of the detected faces,
enhances training speed and overall performance. This alignment is feasible because all human faces
have roughly similar proportions and the position of facial features like eyes, nose, and mouth is
consistent. By standardizing image resolution, there is no need for algorithms to handle varying
input resolutions. As facial sizes and distances are relatively uniform, the network can avoid learning
a multitude of filter combinations for different scales. This reduces redundancy in the network and
allows it to focus on more critical features for identity recognition. The whole process of aligning an
image I to an aligned image I∗ is illustrated in Figure 2.7.

This work follows recent work [47, 57, 66, 67] and use the most prominent face detection algorithm
Multi-Task Cascaded Convolutional Networks (MTCNN) introduced by Zhang et al. [68]. The MTCNN
is a cascaded CNN, which is able to detect faces and facial landmarks in an image. The MTCNN is
composed of three stages. The first stage is a proposal network, which is trained to propose regions
of interest. The second stage is a refinement network, which is trained to refine the regions of
interest. The third stage is a output network, which is trained to output the bounding boxes and
facial landmarks.

After facial landmark detection, the face is aligned. There are two main approaches to align a face,
i.e., mapping the retrieved facial landmarks to the landmarks of a face template: Affine and rigid
transformation. The difference between the two is that affine transformation includes translation,
scaling, shearing, and rotation, whereas rigid transformation only includes scaling, rotation and
translation. The aligned face is then cropped and resized to a fixed spatial resolution. All methods
in this work use a spatial input image size of 112 × 112 px and to avoid clutter in the following, all
facial images I in this work are assumed to be cropped and aligned. Note that the facial landmark
detection and alignment is applied in both training and testing scenarios.
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Figure 2.7.: Flowchart of a typical face recognition pre-processing pipeline including face detection
and alignment.

Additionally, data augmentation techniques are commonly applied in the field of FR to increase
the variance of the training samples. These techniques include, e.g., horizontal flipping, adjusting
brightness, saturation, and contrast, as well as applying Gaussian blur, motion blur, noise injection,
and compression, which further enhance the robustness of the network.

2.3.2.3. Training

The primary objective when training an FR network is to cultivate a distinctive feature representation
for each identity, as illustrated in Figure 2.6. To facilitate this, a classifier, typically a fully connected
layer within an ANN, is integrated following the feature extractor network. This classifier is trained
end-to-end with a dataset comprising images and their corresponding class labels. During this process,
the feature extractor network indirectly learns to map the input images into a designated feature
space, which is often 512-dimensional. Within this space, the representations of identical identities are
engineered to converge, whereas those of dissimilar identities are positioned distantly. This division
of the network into distinct segments i.e., the feature extractor and the classifier, is strategically
advantageous. The feature extractor, in particular, offers versatile applicability across various FR tasks
beyond mere identity classification, e.g., emotion or attribute classification. However, it is pertinent
to note that while the entire system is trained at classifying known identities, i.e., those included
within the training dataset, it lacks the capability to recognize unknown identities. This limitation
underscores the critical role of the feature extraction, which is foundational for any extension of the
model to accommodate new, previously unseen identities.

A key aspect of this architecture is a bottleneck between feature extraction and classification. The
dimension is typically much smaller than the amount of classes, forcing a dense feature representation
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of identities. This bottleneck is crucial for the network to learn a compact representation of the input
data, which is essential for the network to generalize well to unseen data.

In the last years, promising approaches such as ArcFace [47], CosFace [56], GroupFace [57] have
emerged, which continue to be considered state-of-the-art and are widely used. For a comprehensive
overview of these approaches, the interested reader may refer to the work of Hörmann [69].

2.3.2.4. Testing/Application

Through end-to-end training of the entire system, the feature extractor learns to identify and encode
features specific to different identities, transforming unknown identities into unique feature vectors.
By comparing these vectors, it is possible to determine their similarity and whether they represent
the same or different identities.

During testing or application/deployment, the model is used to decide whether two faces belong
to the same person or not. This is a binary classification task and typically utilized by taking the
features of the feature extraction part of the network and compare them using a distance metric (see
Section 2.2.2.1).

The model is trained using augmented, aligned images, while only aligned faces are used during
testing to guarantee a deterministic evaluation. Nevertheless, some FR approaches [56, 70] perform
horizontal flipping and concatenate the feature vectors of the flipped and original image to slightly
improve the performance. However, in this work, no data augmentation is employed at test time.

2.3.3. Datasets

In this section, a brief overview of the most common datasets used in the field of FR is given. As
introduced in Section 2.2.1, supervised learning is based on optimizing a correspondence between input
images and labels. In the context of FR, this involves images of faces along with their corresponding
identity labels. It should be noted that the term ‘dataset’ is also referred to as ‘database’ and is
used interchangeably throughout this work. Using a dataset for testing is also termed ‘benchmark’.
In training datasets, identity labels are leveraged to train the network, whereas in testing datasets,
these labels are used to form image pairs that either belong to the same person or to different
individuals. These datasets can be categorized into two types based on their usage: Training datasets
and benchmark datasets.

2.3.3.1. Training

Training datasets are used solely to train the network and can be quantitatively characterized by the
size, the deepness or shallowness, and the balance of the dataset. Size in this context refers to the total
amount of images in the dataset, and can be further distinguished into the number of identities and
the number of images per identity. Deep means that the dataset contains a lot of images per identity,
whereas shallow means that the dataset contains only a few images per identity. Together with the
balance, which refers to the distribution of the number of images per identity, these characteristics are
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Table 2.1.: Overview and key statistics of widely used training datasets in the field of face recognition.

# Images / ID

Dataset Year # Identities # Images Availability[ii] Min Avg Max

WebFace260M [74] 2021 4 M 260 M Public − 65 −

WebFace42M (cleaned) [74] 2021 2 M 42 M Public − 21 −

CelebFaces+ [19] 2014 10 k 203 k Public 1 20 35
CASIA-WebFace [75] 2014 10 k 494 k Public 2 47 804
UMDFaces [76] 2017 8 k 368 k Public − 45 −

VGGFace [77] 2015 2 k 2.6 M Public 1 000 1 000 1 000
VGGFace2 [78] 2018 9 k 3.3 M Public 87 364 843
MS1M [62] 2016 100 k 10 M Public − 100 −

MS1M-V2 [47] 2019 86 k 5.8 M Public 2 68 602
MS1M-IBUG [79] 2017 85 k 3.8 M Public − 45 −

MS1M-Glint [80] 2018 87 k 3.9 M Public − 44 −

Asian-Celeb [80] 2018 94 k 2.8 M Public − 30 −

MegaFace2 [81] 2017 600 k 4.7 M Public − 7 −

Glint360k [82] 2021 360 k 17.1 M Public − 47 −

IMDB-Face [83] 2018 59 k 1.7 M Public − 29 −

Facebook [18] 2014 4 k 4.4 M Private − 1.1 k −

Facebook [84] 2015 10 M 500 M Private − 50 −

Google [44] 2015 8 M 200 M Private − 25 −

MillionCelebs [85] 2020 600 k 18.8 M Private − 30 −

important to ensure that an FR system is robust and generalizes well. Bansal et al. [71] investigated
the impact of deep and wide datasets on the performance of FR systems. They found that it is better
to use deeper datasets for deeper networks, while wider datasets are preferred for shallower networks.

Additionally, the analysis from Zhou et al. [72] shows that adding more identities to a given dataset
boosts performance, but only if the added identities contain a certain number of images. Zhang and
Deng [73] demonstrated that a dataset with a uniform distribution performs better than datasets
with imbalanced samples, where some identities have few samples and others have many. Therefore,
it is crucial for a dataset to have a sufficient number of images for each identity and to maintain
a uniform distribution of images per identity. Table 2.1 provides an overview of the most common
training datasets used in the field of FR and there quantitative characteristics.

To ensure the effectiveness of FV systems, it is important to also consider qualitative characteristics
of the dataset. Noisy data, such as images with occlusions, LR, or poor lighting, can significantly
impact the performance of the system. Additionally, it is important to address bias and ensure that
the distribution of the training dataset aligns with the distribution of the test dataset. E.g., when
evaluating the recognition of children, the training dataset should include images of juvenile faces.
Other qualitative characteristics include the racial and gender diversity of the dataset.

While the gender distribution is relatively balanced in VGGFace2 (59.3% male versus 40.7% fe-
male [86])[iii], the ethnicity distribution is substantially biased towards Caucasians (74.2%) with
Asians (6.0%) Indians (4.0%) and Africans (15.8%) being underrepresented [87]. This imbalance is even

[ii]As of writing in February 2024
[iii]Assuming binary genders
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2.3. Face Verification

more pronounced in the Microsoft 1 Million (MS1M) [47, 62] dataset. This should be kept in mind
when evaluating the performance of an FR system.

While the gender distribution in VGGFace2 is relatively balanced, with 59.3% male and 40.7%

female [86][iv], the ethnicity distribution shows a substantial bias towards Caucasians (74.2%), leaving
Asians (6.0%), Indians (4.0%), and Africans (15.8%) underrepresented [87]. This imbalance is even more
pronounced in the MS1M dataset [47, 62]. Such disparities should be considered when evaluating the
performance of an FR system.

Another important aspect of the dataset is the retrieval of the images and thus the quality or
correctness of the labels. Due to large scale automatic web scraping techniques to collect the images,
the quality of the images and the correctness of the labels is not always guaranteed. This is especially
true for the MS1M dataset, which is a large scale dataset with 5.8 million images of 85 thousand
identities. The dataset is collected from the web and thus contains a lot of noisy data. The dataset is
also known for containing many duplicate images. This is a common problem in large scale datasets,
as the same image can be found on different websites. Celebrities often exemplify this phenomenon,
as they are frequently photographed by different individuals and their images subsequently appear
on various websites.

Wang et al. [83] demonstrated that large datasets are very susceptible to label noise. They estimated
that the MS1M dataset contains ∼ 50% label noise, making it challenging to train an FR system on this
dataset. Furthermore, Bansal et al. [71] and Wang et al. [83] have both confirmed that the presence
of noise in a dataset negatively impacts the performance of FV systems. This finding highlights
the importance of developing robust training strategies to mitigate the effects of noise. The MS1M
dataset, although acknowledged for its high level of noise, presents an opportunity to address this
challenge.

Jin et al. [88] and Wang et al. [83] have shown that cleaning datasets, particularly MS1M, leads to
better outcomes. Furthermore, Deng et al. [47] enhanced the label quality of challenging samples in
MS1M by using annotators familiar with the ethnicity, resulting in the Microsoft 1 Million Version 2
(MS1M-V2) dataset. This dataset has remained the most popular training dataset for FR in recent
years, as evidenced by its use in several studies [57, 66, 67, 89, 90, 91] and is utilized in this dissertation
for a fair comparison.

Recently, very large datasets such as Glint360k [82] from Beijing Geling Shentong Information
Technology Co., WebFace260M [74], and WebFace42M (cleaned) [74] are introduced aiming to close
the gap between academia and industry. However, their analysis is out of scope for this work.

Several non-public datasets from companies like Facebook, Google, and Microsoft are also used
for training and listed in the bottom section of Table 2.1. However, these datasets are not publicly
available and are not further discussed in this work.

[iv]Assuming binary genders
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Chapter 2. Background and Fundamentals

2.3.3.2. Testing

Benchmark datasets are used to evaluate the performance of an FR system. The task of FV (see
Section 2.3) is a binary classification task, and thus the testing datasets contain defined pairs of
images belonging to the same (genuine) or different (imposter) identities. Typically, every benchmark
dataset was created to investigate a particular task. Table 2.2 gives an overview of the most common
benchmark datasets used in the field of FR and their characteristics.

The Labeled Faces in the Wild (LFW) dataset [31], initially released in 2007, was the first dataset to
include images taken in uncontrolled (in the wild) environments and was widely used to measure
FV performance. However, the hight accuracy (99.83%) of FV systems on this dataset has reached
saturation and is now considered relatively easy to achieve. One contributing factor to this high
accuracy is that imposter pairs often have different gender and ethnicity, while genuine pairs have
the same gender and ethnicity. Additionally, the age gap between faces in genuine pairs is usually
smaller than the age gap between faces in imposter pairs. The overall quality and image resolution of
the dataset is also very high and the faces show only little variation in pose.

In response to this, new datasets were created to address these limitations. E.g., Cross-Pose Labeled
Faces in the Wild (CPLFW) [92] and Celebrities in Frontal-Profile — Frontal-Profile (CFP-FP) [93],
evaluate FV performance under varying head poses. Sengupta et al. [93] also released the Celebrities
in Frontal-Profile — Frontal-Frontal (CFP-FF) dataset, which does not contain any pose variations. The
Cross-Age Labeled Faces in the Wild (CALFW) [94] and Age Database (AgeDB) [95][v] focus on ensuring
a similar age gap among genuine and imposter pairs. AgeDB addresses a huge variety of age from 1

to 101 years. To measure the robustness of FV approaches against variation of image raw-resolution
and quality, QMUL-SurvFace [96] dataset was introduced by the Queen Mary University of London.

In Chapter 5 the Cross-Quality Labeled Faces in the Wild (XQLFW) dataset is introduced, which is
based on the LFW dataset and designed to address the image quality and raw-resolution limitations
of the LFW dataset. Deng et al. [97] introduces the Similar-Looking Labeled Faces in the Wild (SLLFW)
dataset, which contains images of similar looking people as imposter pairs, making the task of FV
more challenging. Considering adversarial attacks, the Transferable Adversarial Labeled Faces in
the Wild (TALFW) dataset [98] was introduced to evaluate the robustness of FV systems against
adversarial attacks. To address the issue of racial bias in FR systems, the Racial Faces in the Wild
(RFW) dataset [87] was introduced, which contains images of people from different racial groups.
Very recently, more and more people wearing face masks due to the COVID-19 pandemic and the
Masked Labeled Faces in the Wild (MLFW) dataset [99] was introduced to evaluate the robustness of
FV systems against face masks.

While these datasets serve their purpose and are widely used, their relatively low number of pairs
restricts the performance analysis. To mitigate this, larger datasets, such as MegaFace [100] and
TrillionPairs [80] have been introduced, which are used to evaluate the performance of FR systems.
However, the analysis of FV performance on the latter datasets is out of scope for this work. Other
benchmark datasets, such as the Intelligence Advanced Research Projects Activity Janus Benchmark

[v]In this work the AgeDB-30 protocol is used, i.e., an age gap of 30 years
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2.3. Face Verification

Table 2.2.: Overview and statistics of popular face verification benchmark datasets.

Dataset Year # Identities # Images # Pairs Description

LFW [31] 2007 4 281 7 701 6 000 −

CALFW [94] 2017 2 997 7 167 6 000 Age Gap
CPLFW [92] 2018 2 296 5 984 6 000 Pose Variation
XQLFW [3†] 2021 3 743 7 263 6 000 Quality
SLLFW [97] 2017 2 810 6 091 6 000 Similar Looking
MLFW [99] 2022 2 997 12 000 6 000 Masked Faces
RFW [87] 2019 11 430 40 607 24 000 Racial Diversity
AgeDB [95] 2017 568 12 000 6 000 Age Gap
CFP-FP [93] 2016 500 7 000 7 000 Frontal-Pose
CFP-FF [93] 2016 500 7 000 7 000 −

YTF [104] 2011 1 447 3 226 5 000 Faces from Youtube Videos
QMUL-SurvFace [96] 2018 5 319 10 051 10 638 Surveillance Uncontrolled

(IJB) datasets IJB-A [101], IJB-B [102], and IJB-C [103] are focusing on the face identification task,
thus not being further discussed in this dissertation.

2.3.4. Evaluation

In general, an FR system can be evaluated with a left-out subset of the training dataset, i.e., using the
same identities, but strictly assuring the network has not seen those images during training. This
then evaluates the whole system including the classification part. However, the main goal of FR is to
be able to compare unknown identities. Therefore only the feature extractor network is evaluated.

As briefly mentioned in the beginning of this chapter, the evaluation of FR systems is typically
done using the FV task and unknown identities.

After extracting the features of two images the distance between the two feature vectors is calculated
(see Section 2.2.2.1). Besides the cosine distance (see Equation (2.11)), the Euclidean (L2) distance is
also widely used. Independently from the metric, the distance is then compared to a certain threshold.
If the distance is below the threshold, both images are classified as the same person, otherwise as
different persons. Since the labels of the image pairs in the testing data are known, using the optimal
threshold would be somewhat unfair. Thus, a 10-fold cross validation is usually applied, i.e., the
testing data is split into 10 equally distributed folds, and the threshold is optimized for each fold,
user the data of the other nine folds. This results in 10 folds of testing data, with each fold having a
different threshold. The metrics are then averaged over the 10 folds.

To measure the performance of FV approaches, the following metrics are commonly used:

Accuracy is the ratio of the number of correct predictions to the total number of predictions. It is
defined as:

ACCURACY =

TP + TN
TP + TN + FP + FN

, (2.19)

where TP is the number of true positives, TN is the number of true negatives, FP is the number of
false positives, and FN is the number of false negatives.
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Chapter 2. Background and Fundamentals

False Acceptance Rate (FAR) is the ratio of the number of false positives to the total number of
negative samples. It is defined as:

FAR =

FP
FP + TN

. (2.20)

False Rejection Rate (FRR) is the ratio of the number of false negatives FN to the total number of
positive samples. It is defined as:

FRR =

FN
FN + TP

. (2.21)

True Acceptance Rate (TAR) is the ratio of the number of true positives TP to the total number of
positive samples. It is defined as:

TAR =

TP
TP + FN

. (2.22)

Receiver Operating Characteristic (ROC) is a curve plot of the TAR (sensitivity) against the FAR
(specificity) for different threshold values, providing a tool to assess the trade-offs between benefiting
from TPs and suffering from FPs. It is utilized for comparing the diagnostic ability of classifiers under
varying thresholds, facilitating the identification of an optimal balance between detecting TPs and
avoiding FPs.

Equal Error Rate (EER) is the point on the ROC curve, where the FAR is equal to the FRR. It serves
as a valuable indicator of the overall accuracy of a biometric system, providing a single measure to
compare the performance of different systems. An EER is particularly useful for evaluating systems
where the cost of FPs is comparable to that of FNs, as it offers a balanced metric for assessing system
reliability.

2.3.5. Performance Overview

To conclude this chapter, Table 2.3 presents a brief overview of the performance of the most prominent
FV approaches. This also serves to classify the methods presented in this work [1†, 2†, 5†] within
the state-of-the-art. The performance is measured in terms of accuracy (see Equation (2.19)) and is
reported on the most common benchmark datasets.

It is evident, that the algorithms’ capabilities have surpassed humans on LFW by a substantial
margin for many years [31]. In addition to their superior efficiency in processing images, algorithms
have demonstrated clear advantages over human labeling in FR datasets. These results highlight the
need to employ alternative approaches, such as using ethnicity-specific annotators [47] or super-
recognizers [25], to minimize label noise and improve dataset quality.

In the recent years, research shifted towards ViT architectures and more and more methods such
as [2†, 59, 60, 91, 108, 109, 111] are based on ViT architectures.

The table clearly shows, why dataset LFW is saturated and provides no more insights, and the
need for other more challenging dataset is there. On datasets besides LFW, the differences between
methods and the substantial improvements in the last years become apparent. And also the strength
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Table 2.3.: Face verification accuracy of state-of-the-art face recognition methods on various bench-
mark datasets. Numbers marked with * are calculated using (re)-implementations.

Verification Accuracy [%]

Method Year LFW [31] CALFW [94] CPLFW [92] XQLFW [3†] CFP-FP [93] AgeDB [95]

CurricularFace [66] 2020 99.80 96.05 93.13 − 98.36 98.37
BroadFace [67] 2020 99.85 96.20 93.17 − 98.63 98.38
CosFace [56] 2018 99.73 95.76 92.28 − 98.12 98.11
GroupFace [57] 2020 99.85 96.20 93.17 − 98.63 98.28
CenterLoss [70] 2016 99.28 85.48 77.48 − − 90.72
SphereFace [105] 2017 99.42 90.30 81.40 − − −

VGGFace2 [78] 2018 99.43 90.57 84.00 − − −

ArcFace VPL [106] 2021 99.83 96.12 93.45 − 99.11 98.60
ArcFace + OLT [2†] 2023 99.55* 96.03* 92.75* 93.27* 93.19* 93.42*
MagFace [89] 2021 99.83 / 99.63* 96.15 92.87 76.95* 96.19 97.82
ArcFace [47] 2019 99.83 / 99.50* 95.45 / 93.85* 92.08 / 88.37* 74.22* 98.27 / 92.27* 98.15 /95.10*
ArcFace BTM [1†] (RAT) 2019 99.30* 94.10* 86.70* 83.60* 91.82* 90.90*
ProdPoly [107] 2020 99.83 96.23 / 96.03* 93.32 / 92.75* 86.90* 98.99 98.47
ArcFace ST-M1 [1†] (CLT) 2019 97.30* 83.85* 82.60* 90.97* 90.37* 81.43*
ArcFace ST-M2 [1†] (MB-CLT) 2019 95.87* 83.85* 82.60* 90.82* 90.37* 81.43*

FaceTransformer [91] 2021 99.80 / 99.70* 94.93* 91.58* 87.88* − −

Part fViT-B [59] 2022 99.83 − − − 99.21 98.29
CFormerFaceNet [60] 2023 99.75 95.73 90.20 − − 97.12
SwinFace [108] 2023 99.87 96.10 93.42 − 98.60 98.15
TransFace-L [109] 2023 99.85 − − − 99.32 98.62
FaceTransformer + OLT [2†] 2023 99.73* 94.65* 91.38* 95.12* 97.21* 96.05*

x (Reported in [110]) 2009 97.53 − − − − −

x + FaceTransformer + OLT [5†] 2023 − 94.93* 91.73* 95.28* − −

and weaknesses of those methods. With a focus on CR FR it is evident, that there are huge differences
in performance between the methods on the XQLFW dataset.

The analysis further reveals that the ArcFace + Resolution Augmentation Training (RAT), ArcFace
+ Contrastive Loss Training (CLT), and ArcFace + Multi-Branch Contrastive Loss Training (MB-CLT)
methods show significant decrease in performance on all other datasets than XQLFW. However, their
improvement compared to their baseline model (ArcFace) is substantial. The ArcFace + Octuplet Loss
Training (OLT) approach is then putting a step on top and improves drastically XQLFW performance,
while yielding considerably accuracy on all other datasets.
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Chapter 3.

Preliminary Analysis: Image Resolution
Susceptibility in Face Verification

The majority of Face Recognition (FR) systems are trained and tested on High Resolution (HR) images.
However, in practical applications, the image resolution can vary significantly due to different image
capture mechanisms or sources. This chapter first investigates the differences of reduced and HR
images on the image pixels itself. Then, it analyzes the impact of image resolution on the verification
performance of a state-of-the-art FR model on various synthetically downscaled datasets. Note, that
the analysis is done with post-preprocessing, i.e., the images are already aligned and cropped before
being synthetically deteriorated. Here the Equal Resolution (ER) and Cross Resolution (CR) scenarios
are considered. Furthermore, the feature distances for every 2-image test pair are analyzed. The
chapter concludes with limitations and a short discussion of the implications of the results. Note that
the experiments and key findings in this chapter are based on the publication of Knoche et al. [1†].

3.1. Related Work

Early works [112] investigated the impact of image resolution on classical FR (non-Deep Learning
(DL)) systems. Their findings are considered limited, due to the fact that the classical systems are
very different from state-of-the-art DL approaches and therefore the results may not be directly
transferable. Li et al. [113] did a comprehensive analysis on Low Resolution (LR) FR for the ER scenario.
However, they do not provide a detailed analysis the behavior of FR models on decreasing image
resolution. In [114] the authors also focused on an analysis of LR FR and proposed a Single Image
Super Resolution method to mitigate the effect of LR. However, they did not consider the CR scenario.
Marciniak et al. [115] illustrate the influence of image resolution on the False Acceptance Rate (FAR)
and False Rejection Rate (FRR) of FR systems. However they do not provide results on the accuracy
(accuracy) of the system. Moreover, they analyzed the effect of different light emission angles and
pose variations.

3.2. Pixel-Level Differences

To get a better insight of what exactly happens to the content of a facial image when performing the
synthetical reduction of image resolution, this section presents an experiment from [1†] to analyze the
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Chapter 3. Image Resolution Susceptibility

pixel-level differences between HR and LR images. Therefore, synthetic downscaling is applied to all
images of the Labeled Faces in the Wild (LFW) [31], Cross-Age Labeled Faces in the Wild (CALFW) [94],
Celebrities in Frontal-Profile — Frontal-Profile (CFP-FP) [93], Cross-Pose Labeled Faces in the Wild
(CPLFW) [92], and Age Database (AgeDB) [95]. Afterwards, the average image I for each dataset X
is calculated as follows:

I =

1

|X|
∑

I ∈X

I . (3.1)

Additionally the mean pixel differences between the HR and LR images are computed. The raw-
resolution reduction is performed using downscaling ↓𝑠( ⋅ ) to four different image dimensions with
𝑠 ∈ {16, 8, 4, 2}, followed by upscaling ↑𝑠 ( ⋅ ) them back to their original resolution of 112 × 112 px using
bicubic interpolation, to retain the spatial image resolution but alter the raw-resolution. The overall
process can be formulated per dataset X as follows:

D𝑟 =

1

|X|
∑

I ∈X
(

|
|
↑𝑠 (↓𝑠(I)) − I𝑖||) , (3.2)

with 𝑟 denoting the used raw-resolution to calculate the difference image D𝑟 .

Figure 3.1 visualizes the results after calculating the mean difference images. The mean original HR
images I are quite different across all datasets. One can clearly see that pose variations in CPLFW
dataset result in more blurred areas in the image. In contrast, the CALFW and LFW dataset images
seem to be very accurately aligned and show a almost clear and detailed average face. Interestingly,
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Figure 3.1.: Left: A sample image and it’s downscaled variants, taken from Microsoft 1 Million Version
2 (MS1M-V2) [47, 62]. Right: Illustration of the average mean pixel differences after the
resolution-reduction process in comparison to the mean original resolution images for
several datasets. Adapted from [1†].
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the background in the CFP-FP dataset is very dark compared to other datasets. This is probably due
to alignment of faces which are not entirely captured by the camera and thus lead to black image
regions after aligning the faces to the target landmarks (see also Section 2.3.2.2). The mean face of
the AgeDB dataset is clearly more bright than the other datasets. This is probably due to the fact
that the dataset contains more old photos, which are captured in grayscale and thus have a brighter
appearance. Also, the pose variation can be seen in the average face of CPLFW, as the outer areas of
the face got blurred out.

In the mean difference images, as expected, eye, nose, and mouth regions are heavily affected by
the resolution reduction process in all datasets. High detail information in those regions is lost. This
is valuable information for FR. The effect is consistent across all datasets. The variation increases for
lower resolutions. The maximum deviation of a single LR image pixel concerning its counterpart pixel
in the HR image is about 50%. There are slightly visible artifacts in a grid style manner occurring
in all pixel-difference images. These might be some aliasing artifacts, which could not entirely be
removed by the anti-aliasing method of the applied bicubic interpolation algorithm.

3.3. Face Verification Accuracy

To investigate the effect of image resolution on Face Verification (FV) accuracy (see Section 2.3.4), the
ArcFace [47] approach was re-implemented with Tensorflow [116] and trained on the MS1M-V2 [47,
62] dataset.

Figure 3.2 visualizes the accuracy for five datasets across different image resolutions (using the
same protocol as introduced in Section 3.2) in CR (solid lines) and ER (dashed lines) scenario. CR
means that each input pair of images consists of one HR and one LR image. ER indicates that both
images in a pair have the same resolution.

Focusing on the accuracy for the maximum resolution of 112 px, the performance on LFW dataset
is best with 99.50% accuracy. The CPLFW dataset shows the worst performance with about 88.37%
accuracy. The CALFW, AgeDB, and CFP-FP datasets are in between with 93.85%, 95.10%, and 92.27%

accuracy, respectively.

Looking at lower resolutions, the accuracy decreases significantly for all datasets. The accuracy is
quite consistent across all datasets until about 56 × 56 px. Then the accuracy drops significantly until
it reaches a plateau at about 7 × 7 px and lower. Note that an accuracy of 50% is the random guess level.
It is not straightforward to set a distinct threshold at when the performance exactly starts dropping,
since it is a continuous process. However, the European Norm (EN) (DIN EN 62676–4:2016 [117]) sets
the minimum required pixel resolution for face identification in surveillance applications to one pixel
per 4mm of the face. Assuming an average inter-ocular distance of 63mm [118] this would then
be a raw-resolution of about 48 × 48 px considering aligned faces used in this work. For detecting a
human face in a scene, the minimum required size is given as 40mm per pixel, which would be a
raw-resolution of about 5 × 5 px. But this in fact is too low to perform any facial landmark detection
and thus an alignment at this resolution will not be possible. This should be kept in mind, when
considering the image resolution effects as they might be even more significant when considering
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Figure 3.2.: The figure captures the face verification performance of an ArcFace model re-
implementation, as adapted from [1†], which has been trained on the MS1M-V2. The
model’s accuracy is evaluated across a series of synthetically downscaled images from
five renowned benchmark datasets, under both cross-resolution and equal-resolution
synthetic down-scaling protocols. The datasets included in this analysis are LFW [31],
CALFW [94], CFP-FP [93], CPLFW [92], and AgeDB [95]

the complete pipeline including face detection and alignment. Considering the gap between CR and
ER accuracy, the LFW dataset has the largest difference, whereas all other datasets show opposite
behavior. For a better understanding, what reasons may cause this large decrease of accuracy, a closer
look at the extracted features from the ArcFace model is conducted in the next section.

3.4. Feature Distances

As described in Section 2.3.4, the distance between two feature vectors is crucial for the verification
accuracy. To analyze the feature distances more in detail, the average cosine distance between
the feature vectors of all genuine and imposter image pairs in the LFW dataset is calculated for
various raw-resolutionsṪhe results are visualized in Figure 3.3. Here also the CR and ER scenarios are
considered.

One can divide the behavior roughly into three sections: 1) For resolutions larger than about 𝑟 = 16

pixels, feature distances between genuine and imposter image pairs seem to be independent of the
image resolution. The average distance between genuine pairs is quite low about 0.3 and the distance
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Figure 3.3.: The graphic presents the average cosine distances calculated between the feature vectors
of individual images within all genuine and all imposter pairs from the LFW dataset [31],
under the protocols of cross-resolution and equal-resolution synthetic down-scaling. These
feature were generated using a re-implementation of the ArcFace model, adapted from [1†],
trained on the MS1M-V2 dataset.

for imposter pairs is about 1.0. 2) Between resolutions of about 𝑟 = 60 pixels and 𝑟 = 20 pixels,
which can be considered as mid-range resolutions, in both CR and ER scenarios, the distance between
genuine image pairs tends to increase. However, the distance for imposter image pairs stays roughly
at the same level. 3) The last section can be considered as LRs with 𝑟 ≤ 20 pixels. Interestingly,
distances for both scenarios show a contrary behavior. On the one hand, the mean feature distance
for CR genuine pairs is increasing towards 1. This is consistent with the accuracy decreasing towards
50%, which is, in terms of verification, merely guessing. On the other hand, in the ER case, genuine
and imposter feature distances decrease towards 0.1. This also coincides with low accuracy scores in
that resolution range.

For the CR scenario, the model is not able to extract more meaningful features for the very LR
images. Hence, this results in a large distance between features because the HR image features are
still very distinctive. However, in the ER scenario both images are somehow unfamiliar to the network
and the extracted features are pretty similar. To underline this statement and analyze the distribution
of features more fine-grained, the distributions of genuine and imposter feature distances for five
specific image resolutions are visualized in a violin plot for the LFW dataset (see Figure 3.4).

The center violin plots represent the feature distance distribution for HR image pairs. Distances for
genuine and imposter image pairs are clearly distinguishable. The genuine distances are mainly in a
range between 0.1 and 0.6, whereas imposter distances are mostly in the field of 0.6 and 1.4. Both
classes can be separated effectively with a threshold of about 0.6, and thus, the accuracy for only HR
images is best (see Figure 3.2). To the left side, distributions for the CR scenario are shown. On the
right side, ER feature distributions are plotted. In both procedures, for a image resolution of 56 × 56 px
no significant difference can be noticed. Interestingly, the peak feature distance for genuine image
pairs even exceeds the maximum distance for imposter pairs in the CR scenario at very LR 5 × 5 px. In
other words, the resolution has more impact on the distance than the identity itself. The gap between
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Figure 3.4.: The cosine feature distances, divided into genuine and imposter pairs, for a re-
implementation of the ArcFace model adapted from [1†], are calculated for various
synthetically downscaled images of the LFW dataset [31]. The analysis includes cross-
resolution image pairs (left) and both image pairs of the same resolution (right). The
model was trained on the MS1M-V2 dataset.

CR and ER accuracy for very LRs is therefore reasonable. This behavior explains a higher accuracy
for very LRs in the ER scenario compared to CR scenario. Further experiments with CFP-FP, AgeDB,
CALFW, and CPLFW datasets show the same trend.

3.5. Conclusion

This chapter recapitulates the analysis in [1†] and reveals that the image resolution has a significant
impact on the performance of a state-of-the-art FR model. Especially for image resolutions below
28 × 28 px the effect is severe. However, this effect is measured after preprocessing, i.e., that the images
are already aligned and cropped. In a real-world scenario, the effect might be even more significant,
due to the limitations of face detection at very LRs. A comprehensive analysis of face detection on LR
images is out of the scope of this work. The interested reader may refer to the work of Hayashi and
Hasegawa [119].

A closer look to the feature distances shows that the model is not able to extract discriminative
features for very LR images. This results in a large distance between features because the HR image
features are still very distinctive. However, in the ER scenario both images are unfamiliar to the
network and the extracted features are pretty similar. This is also reflected in the accuracy scores.
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3.5. Conclusion

The results of this chapter lay the basis for the following chapter which covers the development of
training strategies to mitigate the effect of the image resolution on the performance of FR models,
especially for the CR scenario.
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Chapter 4.

Strategies to Enhance Face Verification
Robustness

This chapter is divided into four parts. The first part presents work related to the field of resolution-
robust Face Verification (FV). Then, three approaches for robustness-aware training are introduced,
which were published in the Leibnitz Transactions on Embedded Systems — Special Issue on Embedded
Systems for Computer Vision (2021) [1†]. Furthermore, a fine-tuning method for robustness-enhancing
of existing models is presented, which has been published at the IEEE conference series on Automatic
Face and Gesture Recognition (2023) [2†]. In the last part of this chapter, the discussions and findings
of both publications are summarized and extended.

4.1. Related Work

In general, Face Recognition (FR) approaches for Cross Resolution (CR) scenarios can be categorized into
two groups: 1) Transformation-based approaches, which transform images before feature extraction. 2)
Non-transformation-based methods, which directly use the original images for feature extraction [120].
In the following two subsections, an overview of the most relevant related work is given. The interested
reader is referred to the work of Wang et al. [121] for a more comprehensive review of Low Resolution
(LR) and CR FR.

4.1.1. Transformation-Based Approaches

Transformation-based methods aim to focus on either first mapping the input images into a common
space before processing with FR models or projecting the extracted features into a common space.
The left side of Figure 4.1 illustrates common approaches with an example image pair.

The upper left flowchart of Figure 4.1 shows the feature extraction into an High Resolution (HR)
feature space, which requires the LR image to be transformed into an HR image, before fed through a
feature extraction network (typically a Convolutional Neural Network (CNN) or Vision Transformer
(ViT)), prior trained on HR images. The upscaling can be performed with classical methods, such
as bicubic interpolation, or with Deep Learning (DL)-based methods, such as Super Resolution (SR)
approaches. The latter approaches have gained significant attention in the last years, as they are able
to generate more high-quality HR images from LR images. Jiang et al. [122] provided an exhaustive
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review of face SR in general. With a focus on FR, prior guided [123, 124, 125, 126, 127] and attribute
constrained [128, 129, 130, 131] face SR approaches were proposed. However, they aim for a visually
pleasant reconstruction ignoring identity-related information. Therefore, numerous works [132, 133,
134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144] leveraged FR networks to ensure face feature
similarity and optimized the SR to preserve identity information. Zangeneh et al. [145] proposed
a two branch deep CNN. While the LR branch consists of a SR network combined with a feature
extraction network, the HR branch is only a feature-extraction network. Both branches are trained
in three different training phases. For testing, images are fed through the branches depending on
their resolution. A similar approach was used in [146], in which they trained a U-Net [147] with a
combination of reconstruction and identity preserving loss in order to super-resolve multi-scale LR
images. For feature extraction, they utilized a pre-trained Inception-Residual-Network (iResNet) [148].
To cope with weakly labeled datasets, Hsu et al. [149] apply an identity-preserving contrastive loss,
whereas Kazemi et al. [150] utilize an adversarial FV loss. Very recently, Ghosh et al. [151] presented
an end-to-end supervised resolution enhancement and recognition network using a heterogeneous
quadruplet loss metric to train a Generative Adversarial Network (GAN), which super-resolves images
without corrupting the discriminative information of the LR images.
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Figure 4.1.: Transformation-based approaches (left) either project the images into a common space
before feature extraction (top/bottom left), or transform the extracted features after-
wards into common space via a Artificial Neural Network (ANN) (center left). Non-
transformation-based (right) approaches aim to learn directly scale-invariant image fea-
tures. Images taken from Microsoft 1 Million Version 2 (MS1M-V2) [47, 62].
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The center flowchart of Figure 4.1 shows the feature extraction through either two separate feature
extraction networks, which focus on HR and LR images independently, or through a single feature
extraction network, which is trained with both HR and LR images. Consequently, the extracted
features are then transformed via another network into a common feature space. Lu et al. [152]
presented, e.g., a deep coupled Residual Layer Network (ResNet) [54] model, containing one trunk
network and a two branch network. The trunk network extracts features and the two branches
networks transform HR and the corresponding LR features to a space where their difference is
minimized.

The lower flowchart of Figure 4.1 illustrates the straightforward method. The HR images are simply
transformed into an LR image, before fed through a feature extraction network, prior trained on LR
images.

4.1.2. Non-Transformation-Based Approaches

Non-transformation-based methods try to directly project features from arbitrary image resolutions
into a common feature space. The right side of Figure 4.1 illustrates those approaches with an example
image pair. Here, the left image is considered an HR image and the right image an LR image. Both
images are then extracted from a single network and directly projected into a unified feature space.
In [153], Zeng et al. presented a resolution-invariant deep network and trained it directly with unified
LR and HR images. However, they used only resolutions in the range of 24 to 60 pixels. Massoli et
al. [154] proposed a student-teacher network approach and showed that their approach can be more
effective concerning to preprocessing images with SR techniques. In [145], this was accomplished
by a non-linear coupled mapping architecture using two deep CNNs. [154] approached the problem
differently with a student-teacher method. In [155], Talreja et al. proposed an attribute-guided
CR FR model utilizing a coupled GAN and multiple loss functions. Ge et al. [156] focused on low
computational costs and introduced a new learning approach via selective knowledge distillation. A
two-stream technique, comprising a large teacher model and a lightweight student model, is employed
to transfer selected knowledge from the teacher model to the student model. Sun et al. [157] proposed
a shared classifier between HR and LR images to further narrow the domain gap. To fully exploit
intermediate features and loss constraints, they embed a multi-hierarchy loss into intermediate
layers, reducing the distance of intermediate features after the max-pooling layer and avoiding an
over-utilization of intermediate features.

Zeng et al. [153] presented a resolution-invariant deep network and trained it directly with unified
LR and HR images. In [158], the authors applied a CR contrastive loss on higher-level features of
two separate network branches, with each branch focusing precisely on one resolution (high and
low). The following two methods go one step further: [159] tackled the problem with a deep siamese
network structure and combined a classification loss with a CR triplet loss. Zha and Chao [160] also
applied CR triplet loss, but in contrast to [159], they used a two-branch network similar to [158].
In the recent past, [161] proposed a multi-scale parallel deep CNN feature fusion architecture. In
contrast to most other FR systems, they provide an end-to-end approach and directly predict the
similarity score of two input images. However, they do not report performance on CR datasets such
as Cross-Quality Labeled Faces in the Wild (XQLFW) [3†] or Labeled Faces in the Wild (LFW) [31], nor
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do they provide any code or models. Very recently, Li et al. [162] proposed a novel deep rival penalized
competitive learning strategy for LR FR. However, they did not test their approach on CR images. The
work of Terhörst et al. [163] pursued a distinct goal. They focused on a more general quality-aware
FR, i.e., they do not concentrate solely on the physical image quality but also consider pose and
age variations. Their approach combines a quality-aware comparison score, utilizing model-specific
face image qualities, with an FR model based on a magnitude-aware angular margin loss. A rather
unusual method in this field of research but still relevant is the work of Zhao [164], which shows a
new technique for correlation feature-based FR. However, his approach relies on video streams and
does not provide any quantitative results.

4.2. Robustness-Aware Training

This section covers three training strategies for image resolution robust FV models. First, the method-
ologies of three approaches are introduced. Then, the experimental settings are described for two
training scenarios: 1) A two-resolution scenario, which incorporates only one specific LR during
training and 2) A multiple-resolution scenario, where LR images with multiple resolutions are used
during training. Afterwards, the results are presented and compared with other relevant works.
Although this section is mainly based on [1†], the structure is rearranged and the namings of the
approaches are slightly adapted to fit the context of this dissertation.

4.2.1. Methodology

In the rapidly evolving field of FR, the robustness of algorithms against variations in image resolution
remains a critical challenge. The methodologies described in the subsequent sections are designed to
address this challenge by introducing innovative training strategies that enhance the model’s ability
to accurately recognize faces across a wide range of image resolutions. These strategies leverage the
principles of Resolution Augmentation Training (RAT) (named BT in [1†]), Contrastive Loss Training
(CLT) (named ST / ST-M1 in [1†]), and Multi-Branch Contrastive Loss Training (MB-CLT) (named
ST-M2 in [1†]), each of which contributes uniquely to a model’s resilience against resolution variability.

4.2.1.1. Resolution Augmentation Training

Motivated by [153, 154], the straightforward CR RAT approach to tackle the varying image resolutions
is introduced. The left part of Figure 4.2 illustrates this approach. The architecture consists of a single
branch, containing a feature extraction CNN network followed by a modified fully connected layer
utilizing Additive Angular Margin Loss (ArcFace) [47]. Instead of applying only HR images, as holds for
a baseline training, in this approach half of the images per batch B are synthetically reduced in their
resolution, to make the network more robust about image resolution. This results in B containing HR
and LR at the same time.
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4.2.1.2. Contrastive Loss Training

Inspired by Tang et al. [165], a siamese network structure is build with a simplified version of the
contrastive loss LCO function (see Section 2.2.2.1). Given that in this scenario, only the resolution of
the images is varied, the contrastive loss is solely calculated for positive pairs, i.e., 𝑌 in Equation (2.13)
is always 0. The right part of Figure 4.2 illustrates the proposed architecture. The approach consists of
two branches, one for HR images and one for LR images. The branches share their weights, i.e., only
one CNN network and a classification layer is utilized. The amount of weights is thus equal to the RAT
approach. The input batch B is duplicated and images are downscaled online during training. The
batches are then denoted as BHR and BLR. Both batches are fed through the network for each training
step and the losses L [HR]

CE and L [LR]
CE are calculated, respectively. Additionally, a contrastive loss LCO

is calculated between the extracted features fHR and fLR of the HR and LR branches, enforcing the
network to learn features that are invariant to image resolution. As distance measure the cosine
distance (see Section 2.2.2.1) is used for the contrastive loss function. Choosing the cosine distance is
reasonable, since evaluation is also done by calculating the cosine distance between image pairs. The
total loss L is then the sum of the cross-entropy losses L [HR]

CE , L [LR]
CE and the contrastive loss LCO:

L = L [HR]
CE + L [LR]

CE + 25 ⋅ LCO . (4.1)

Due to the cosine distance ranging from [0, 2], a factor of 25 is applied to balance the contrastive
loss with the classification losses approximately. In this scenario, the computational effort doubles, as
the network must process both HR and LR images.
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4.2.1.3. Multi-Branch Contrastive Loss Training

Extending the CLT approach with the addition of more branches for specific image resolutions
culminates in the MB-CLT method. The architecture of this method is depicted on the right side of
Figure 4.3. The integration of multiple branches allows for concurrent training across various LRs.
Similar to the CLT, the cross-entropy loss LCE is computed for each branch. Additionally, a cosine
distance contrastive loss LCO is calculated between the features of all LR branches f𝑟 and the HR
branch fHR. All branches are unified by sharing weights, thus employing a single CNN network and a
classification layer. Consequently, the total amount of weights remains equivalent to those in the
RAT and CLT methods. The overall loss L is then computed as follows:

L = ∑

𝑟 ∈R

L [𝑟]

CE + 25 ⋅ ∑

𝑟 ∈R

L [𝑟]

CO , (4.2)

with R ∶= {7, 14, 28, 56} being the raw-resolutions for the LR images. The computational cost is about
five times larger than the RAT training method, since the network needs to infer additionally all LR
images.

4.2.2. Experimental Settings

In this section, first the baseline feature extraction network for the trainings is described in more
detail. Secondly, the downscaling method is described. Finally, two scenarios for the experiments are
introduced.
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4.2.2.1. Network and Training Details

The in [47] used 50-layer deep ResNet-50 [54] architecture is utilized as the feature extraction network.
The weights of this network are pre-trained on ImageNet [166]. This backbone network consists of four
blocks, which are repeated several times and containing in total 50 convolutional layers. The image
dimension within the layers is decreasing, and the image depth is increasing from 112 × 112 × 3 px
input to 4 × 4 × 2 048 px at the end. After flattening this output from the backbone network, a dropout
layer is added. Finally, following [56, 70, 105] a bottleneck layer (512-dimensional fully connected
layer) outputs the feature vectors. The classifier consists of a the fully connected classification layer
as utilized in the ArcFace [47] approach with the dimension of the number of identities in the training
set (87k).

For training, the MS1M-V2 [47, 62] dataset is used, containing about 5.8M images from about
87k identities. Online data augmentation is performed as described in Section 2.3.2.2 using random
brightness and saturation variations combined with left-right flipping. All training parameters are set
according to [47] except for a smaller batch-size of 128 due to hardware limitations. The learning rate
is set to 0.01 and is decreased by a factor of 10 after epoch 9 and epoch 13. In total, all approaches are
trained similar to [47] for 16 epochs with momentum Stochastic Gradient Descent (SGD) optimizer.
The dropout rate and weight decay are set to 0.5 and 5 ⋅ 10

−4, respectively.

Training the RAT architecture with solely HR images is referred to as the baseline network in this
context.

4.2.2.2. Reduction of Image Resolution

Following [54], the ResNet-50 architecture requires an input image size of 112 × 112 px. As proposed in
Section 4.2.1, a downscaling ↓𝑠( ⋅ ) method is utilized to reduce the image resolution (see Section 2.1.2).
To retain the required input image size, the downscaled images are then upscaled ↑𝑠 ( ⋅ ) subsequently
using bicubic interpolation. This process can be formulated as:

I∗

𝑟
=↑𝑠

(
↓𝑠(IHR))

, (4.3)

where 𝑟 denotes the resulting reduced raw-resolution (see also Section 2.1.3).

The resulting low raw-resolution images I∗

𝑟
then have the same resolution as the original images,

but depending on 𝑟 the high frequency information is removed, thus simulating LR images. For both
scaling processes, bicubic interpolation is applied. To reduce unwanted artifacts, typically stemming
from the downscaling process, standard anti-aliasing techniques are also utilized. Figure 4.4 visualizes
the process of resolution reduction for an example image. The left image I [112]

HR is a sample from the
MS1M-V2 dataset with a original resolution 112 × 112 px. The center image I∗ is the downscaled
(𝑟 = 14) LR image with the dimension 14 × 14 px. The right image I [14]

LR is the upscaled low raw-
resolution image with the dimension 112 × 112 px, but contains a raw-resolution of 𝑟 = 14, i.e.,
14 × 14 px.
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Figure 4.4.: Illustration of the synthetic image resolution reduction via bicubic down- and upscaling.
Sample image taken from the MS1M-V2 dataset.

4.2.2.3. Training and Testing Scenarios

Two training scenarios are conducted. The first scenario utilizes the RAT and CLT method, which
are trained with one specific raw-resolution 𝑟 during the whole training process. These are referred
to as RAT-𝑟 and CLT-𝑟 accordingly. To develop a model that can handle arbitrary resolutions more
effectively, a second scenario involving simultaneous training with multiple resolutions is conducted.
In this scenario the RAT, CLT and additionally, the MB-CLT methods are trained with five different
raw-resolutions 𝑟 ∈ {7, 14, 28, 56, 112} simultaneously. This is referred to as RAT-M, CLT-M, and
MB-CLT-M, respectively. In RAT each batch contains randomly picked downscaled images of equally
distributed resolutions 𝑟 . In CLT the LR batch BLR contains downscaled images of randomly but
equally distributed resolutions 𝑟 and in MB-CLT each LR branch B𝑟 contains images of a specific
raw-resolution 𝑟 .

With networks capable of handling arbitrary image resolutions at once, there is a need for a
more meaningful evaluation considering multiple resolutions. To make the evaluation reproducible,
three evaluation protocols for the utilized benchmark datasets are introduced and published as lists
with the specific image resolution for each single image pair: 1) Low Resolutions Protocol, which is
derived by randomly picking resolutions in the range of 5 px to 10 px for the synthetic downscaling 2)
Intermediate Resolutions Protocol, which is derived by randomly picking resolutions in the range of
10 px to 40 px and 3) High Resolutions Protocol, which is derived by randomly picking resolutions in
the range of 40 px to 112 px.

Additionally, an All Resolutions Protocol that takes every single resolution in the range of 5 px to
112 px into account is introduced.

For the evaluation, image pairs from the benchmark datasets including LFW [31], CALFW [94],
CPLFW [92], CFP-FP [93], and AgeDB [95] undergo synthetic degradation, mirroring the treatment
applied to the training data. In these experiments, two variations of the benchmark protocols are
crafted for specific image resolutions: One where the first image in each pair experiences resolution
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reduction, and the other where the second image in each pair is similarly downgraded. The overall
accuracy is then calculated as the average of both versions.

Notably, the inference time and number of parameters is equal for all approaches, making the
comparison fair.

4.2.3. Results

In this section, the CR evaluation results for both training scenarios are presented. Similar to Chapter 3
the feature distances are analyzed in more detail. Finally, the results are compared with other relevant
works and computational efforts are discussed.

4.2.3.1. Two-Resolution Scenario

Face Verification Accuracy. As introduced in Section 2.3.4, accuracy is a common metric to measure
the performance of an FV model. Figure 4.5 depicts the average FV accuracy of the RAT and CLT
approach compared to the baseline model across five common datasets: LFW [31], Cross-Age Labeled
Faces in the Wild (CALFW) [94], Cross-Pose Labeled Faces in the Wild (CPLFW) [92], Celebrities in
Frontal-Profile — Frontal-Profile (CFP-FP) [93], and Age Database (AgeDB) [95]. Note that each data
point of RAT and CLT represent a distinctive model (RAT-𝑟 , CLT-𝑟), which was specifically trained
for the resolution 𝑟 . Due to hardware limitations, models are trained only for depicted resolutions.
Both approaches clearly outperform the baseline on lower image resolutions. For very LRs, i.e., 5 px to
8 px, the performance can be increased from about 50% (random guess) up to 70%. That is equivalent
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Figure 4.5.: Face verification accuracy of RAT-𝑟 and CLT-𝑟 models, benchmarked against the baseline
performance of an ResNet-50 (ArcFace) model re-implementation adapted from [1†], all
trained on the MS1M-V2 dataset. Each data point corresponds to a distinct model, specif-
ically trained and tested on images with identical synthetically downscaled resolutions 𝑟 ,
adhering to the cross-resolution protocol.
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Table 4.1.: Face verification accuracy on downscaled cross-resolution LFW benchmark [31] protocols
of the proposed approaches, trained on MS1M-V2 compared to other works.

Accuracy [%] for LFW [31]

Model 16 × 16 px 32 × 32 px 32 × 32 px

RAT-16 [1†] 98.17 − −

CLT-16 [1†] 97.88 − −

S-16-sc [156] 85.87 − −

RAT-32 [1†] − 99.08 −

CLT-32 [1†] − 98.82 −

S-32-sc [156] − 89.72 −

RAT-64 [1†] − − 99.38
CLT-64 [1†] − − 99.35
S-64-sc [156] − − 92.83

Talreja et al. [155] − 91.08 94.92

to a relative improvement of 40%. Above about 40 px image resolution, no significant difference
between all approaches is present, which affirms the expectations since the LR images are visually
hardly distinguishable from the original images and the absolute pixel difference is very small (see
Section 3.2).

Generally, the performance improvement is increasing with decreasing resolutions. The RAT
method performs slightly better than the CLT method, which leads to the conclusion that the siamese
approach might concentrate too much on projecting the features of the same image in different
resolution to the same space than on classifying the correct identity regardless of the resolution.

Moreover, the FV accuracy of the RAT and CLT approach is also compared to the work of Ge et
al. [156] and Talreja et al. [155] on the LFW dataset for three distinct image resolutions 𝑟 ∈ {16, 32, 64}.
Table 4.1 reveals that the proposed approaches outperform both competitors significantly. However,
the comparison to Ge et al.’s approach might not be fair, their baseline model (teacher model) only
reaches an accuracy of 97.15%, which is not comparable to our baseline and the state-of-the-art.
Moreover, the model’s number of parameters also differs in the comparison. As obvious in Figure 4.5
the strength of the proposed approaches is the ability to handle very LRs and it would be interesting
to see how the other approaches perform on such very LRs. However, they do not provide any results.

Feature Analysis. To get a deeper understanding of the accuracy results, a closer look to the feature
distances for the LFW benchmark is conducted. Figure 4.6 compares the cosine distance distributions
for the RAT-𝑟 and CLT-𝑟 approach trained and tested with specific image resolutions 𝑟 . In line with
the improvements of accuracy (see Figure 4.5), cosine distances of genuine and imposter pairs are
much better separable for LRs 𝑟 ∈ {14, 28, 56} than the baseline model (see Figure 3.4). However, there
is a remarkable shift of distances in the very LR scenario (7 × 7 px). Although the distance values are
very small, still distances for imposters are larger than distances for genuines and the distributions are
separable, which is consistent with improvement of accuracy (see Figure 4.5). Overall, both methods
show only slight differences in the distributions, which is also in line with the accuracy values.
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Figure 4.6.: The cosine feature distances, divided into genuine and imposter pairs, for the RAT-𝑟
and CLT-𝑟 methods adapted from [1†], trained on MS1M-V2, are calculated for various
synthetically downscaled cross-resolution image pairs of the LFW dataset.

A more fine-grained analysis on the best threshold on the LFW dataset is depicted in Figure 4.7.
The best threshold is calculated for the accuracy values of RAT-𝑟 and CLT-𝑟 models with a 10-fold
cross-validation technique (see Section 2.3.4). All models show a slight increase of the threshold value
the lower the resolutions. This is in line with the increasing cosine distances for all image pairs in
Figure 4.6. The RAT method is then dropping at a resolution of 10 × 10 px, whereas the CLT method
is dropping at a resolution of 14 × 14 px. Both methods are plateauing from then on. Looking at the
accuracy values in Table 4.1, there is a slight kink in the line of the RAT method at a resolution of
10 × 10 px, which could be connected with the drop in the threshold. However, this is not the case for
the CLT method, but could be due to the lack of model data points in both plots.
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Figure 4.7.: Best face verification evaluation thresholds adapted from [1†] for the LFW dataset derived
via 10-fold cross-validation. Models were trained on the MS1M-V2 dataset.
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4.2.3.2. Multiple-Resolution Scenario

Face Verification Accuracy. In Figure 4.8, the mean FV accuracy of the proposed methods in
the multiple-resolution scenario on five benchmark datasets (LFW, CALFW, CPLFW, CFP-FP, and
AgeDB) are presented. Note, that compared to the single-resolution scenario, in this scenario, only
one model is used for all testing image resolutions. All approaches show a performance decrease for
testing resolutions above 28 × 28 px. This is the trade-off for the ability to handle arbitrary resolutions
at once. However, the RAT-M model performs best for this rather HRs. Below 28 × 28 px testing image
resolution, the RAT-M model’s performance is decreasing, but outperforming the baseline except for
15 × 15 px. The same effect is present for CLT-M and MB-CLT-M, but they only start to fully exploit
their potential from a resolution of about 18 × 18 px, or 16 × 16 px, respectively.

Focusing on very LRs (𝑟 < 7), the baseline approach holds an accuracy of approx. 50%, which is
equivalent to random guessing and all proposed approaches significantly increase the performance
up to 75%. The RAT-M model shows a significant peak at a testing resolution of 14 × 14 px, which
might reason in the included training resolution. However, this effect is not present for the other two
methods.

In general, the RAT-M approach outperforms the other two methods for 𝑟 > 16, but vice-versa for
𝑟 < 16. This might be due incorporation of the contrastive loss, which forces the feature distances
between HR and LR images to be minimized, and thus the network might concentrate too much on
projecting the features of the same image in different resolution to the same space than on classifying
the correct identity regardless of the resolution.

Comparing the CLT to the MB-CLT architecture, the CLT method performs better across all tested
resolutions. This leads to the conclusion, that the multi-branch approach with largely increased
computational effort does not provide any significant benefit in the multiple-resolution scenario.
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Figure 4.8.: Face verification accuracy of RAT-M and CLT-M models, benchmarked against the baseline
performance of an ResNet-50 (ArcFace) model re-implementation adapted from [1†], all
trained with multiple-resolutions simultaneously on the MS1M-V2 dataset.
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Feature Analysis. Similar to the two-resolution scenario, a closer look to the feature distances for the
LFW benchmark is taken. Figure 4.9 shows the cosine distance distributions for the RAT-M model on
the left, and the CLT-M and MB-CLT-M approach on the right. The training with multiple resolutions
simultaneously does not lead to shrinking feature distances for the RAT approach. In contrast, the
feature distances for the CLT and MB-CLT approach are shrinking down to a maximum of 0.1 for
all resolutions. Notably, on the very low testing resolution of 7 × 7 px, the feature distances for the
RAT-M model are even larger than for all other resolutions. Interestingly, the genuine and imposter
feature distance distributions show a deviation in terms of the Gaussian shaped distributions of
distances. Here, the imposter pair distances seem to be a cumulation of three Gaussian distributions
and the genuine pair distances seem to be a cumulation of two Gaussian distributions.

Upon a closer examination of the distribution, especially the maximum and minimum values of
the three methods, it is observable that for the RAT method, the minimal distances for the imposter
pairs do not significantly overlap with the distribution of the genuine pairs. This indicates that if
one desires a very low False Positive Rate (FPR), or even aims for it to be zero, the RAT-M model is
more suitable than the two contrastive loss methods, as the latter exhibit very small distances for
the imposter pairs. Similarly, concerning the maximum genuine distances, the RAT-M model also
proves to be more appropriate than the other two methods, although the effect is less pronounced.
This subtlety could be attributed to the utilization of only a fraction of the 512-dimensional space for
the features, which might also explain why the distances do not vary significantly. This also provides
an explanation for why the accuracy values for the RAT-M model are superior to those of the other
two methods, suggesting that there is inherently more potential within it.
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Figure 4.9.: The cosine feature distances, divided into genuine and imposter pairs, for the RAT-M,
CLT-M, and MB-CLT-M methods adapted from [1†], trained on MS1M-V2, are calculated
for various synthetically downscaled cross-resolution image pairs of the LFW dataset.
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4.2.3.3. Comparison of the proposed Methods

This sections draws a comparison of the three proposed methods under both training scenarios.
Figure 4.10 shows the accuracy values for the LFW dataset in testing image resolutions the region
𝑟 ∈ [5, 9] on the left and in the region 𝑟 ∈ [10, 18] on the right. This analysis aims to reveal the
strength and weaknesses of the proposed methods in LRs regions and also the effect of neighboring
resolutions of the specific resolution trained models (in this case at 7 × 7 px and 14 × 14 px).

Looking at the trend of the RAT-14 and CLT-14 models, there is a slight peak visible at 𝑟 = 14

resolution, which is reasonable due to this exact resolution being utilized during training. However,
the performance on the neighboring resolutions is not significantly worse. The same effect is visible
in the left chart of Figure 4.10 for the RAT-7 and CLT-7 models. This demonstrates that the levels
chosen in these experiments are sufficient to represent the resolution spectrum for training, and a
finer gradation is not necessarily required. A similar effect is also visible for the multiple-resolution
scenarios for the RAT-M and CLT-M model. Another interesting observation is that the accuracy for
the RAT-M model is even worse than the baseline for a resolution of 13 × 13 px. All other methods are
clearly outperforming the baseline on the tested image resolutions.

Moreover, the FV accuracy development during training of the baseline, RAT, and CLT (𝑟 ∈ {7, 56}) is
depicted in Figure 4.11. The baseline model achieves about 98% accuracy after the first epoch, followed
by almost peak accuracy already after the second epoch. After the third epoch, the performance
saturates and no significant changes in accuracy are visible. The RAT-56 starts with equal accuracy
after the first epoch and then takes another two epochs to reach almost peak accuracy. The CLT-56
gets only after epoch 4 approximately peak performance. This model needs significantly more training
samples than both previously mentioned models to achieve similar accuracy. One reason for that
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Figure 4.10.: Comparison of face verification accuracy for the proposed models adapted from [1†].
MS1M-V2 is used for training the models and downscaled cross-resolution image pairs
for testing are taken from the LFW dataset.
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Figure 4.11.: Emergence of face verification accuracy of the proposed models adapted from [1†] on
the LFW dataset during training of the proposed models with MS1M-V2.

could be the additional feature distance loss, which forces the network to additionally concentrate on
minimizing feature distances and not only classification.

The peak performance for RAT-7 and CLT-7 is significantly lower compared to the other approaches.
This is reasonable due to less information in the very low LR images. Moreover, these methods need
at least 10 epochs to reach their maximum capability.

Lastly, the training time and FV accuracy on the LFW dataset for different resolution protocols (see
Section 4.2.2.3) are depicted in Table 4.2. The resolution protocols confirm that the RAT-M model is
the most robust model for arbitrary resolutions including the HR scenario (112 × 112 px) and also very
efficient in terms of training time. However, it lacks in performance for very LR images. The CLT-M
model is the most robust model for LR images. It also yields the best performance on specifically
5 × 5 px CR image pairs. However, it is more time-consuming in training than the RAT-5, RAT-7, and
RAT-M approaches. The MB-CLT-M model is the most time-consuming model, which is reasonable
due to the additional inference of all LR images in the LR branches. It’s performance is worse on all
resolution protocols, which is in line with the findings in Section 4.2.3.1. The integration of contrastive

Table 4.2.: Training time and face verification accuracy adapted from [1†] for different cross-resolution
protocols of the LFW dataset. The training of the models is conducted using the MS1M-V2
dataset.

Accuracy [%] for LFW [31]

Resolution Protocols

Model Training Time [h] 112 × 112 px All High Intermediate Low 5 × 5 px

ArcFace [47] 2 99.23 96.86 99.2 95.89 77.57 54.65
RAT-5 [1†] 2 − − − − − 69.66
RAT-M [1†] 2 99.3 97.72 99.33 97.78 87.17 71.53
RAT-7 [1†] 2 − − − − − 67.86
CLT-M [1†] 4 97.4 96.76 97.35 96.98 91.5 76.78
MB-CLT-M [1†] 20 95.62 95.07 95.62 95.51 88.72 71.84
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loss, while yielding a performance increase of approximately 14% in the LR protocol for very LR
images, necessitates a compromise with a reduction of about 2% in performance for HR scenarios.

In conclusion, the strategy of augmenting images during the training phase yields significant
advantages in enhancing the resolution robustness of FV models. However, this method encounters
limitations at extremely LR images. The application of contrastive loss, designed to compel the
network towards minimizing feature distances across varying resolutions, emerges as a promising
methodology. This revelation lays the foundational groundwork for the formulation of an advanced
loss function, the details of which will be elucidated in the subsequent section.

4.3. Robustness-Enhancing Fine-Tuning

Elaborating on the findings of the previous section, this section introduces an enhancement of the
contrastive loss addition. The key idea is to force also different images of the same identity to be
projected close to each other, regardless of the resolution. Moreover, images of different identities shall
be far apart from each other. In contrast to the previous section, this approach is a fine-tuning strategy
and thus requires pre-trained models. The following section primarily integrates the publication [2†]
into this work and adapts it to the context, while largely drawing upon it. After introducing the
methodology, the experimental settings are described and results are discussed. Finally, this work
discusses several ablation studies.

4.3.1. Methodology

Central in this section is the Octuplet Loss Training (OLT) method, a fine-tuning approach designed
to build upon the foundational principles of triplet loss. By formulating a sophisticated loss function
that integrates both HR and LR images within the same framework, the aim is to refine the ability of
FR models to maintain performance consistency across a spectrum of image qualities. This method
not only facilitates a direct learning pathway between HR and LR images but also ensures that the
network’s proficiency with HR images remains uncompromised.

The primary purpose of this approach constitutes improving the robustness of existing FR models
by exploiting the triplet loss. Inspired by [159, 167], four different triplet loss terms to combine HR
and LR images are formulated. Contrary to the methodology presented in [159], the concept of
fine-tuning, rather than beginning training from scratch with a classification loss, is adopted. The
introduction of the OLT aims to enable networks to directly understand the connection between HR
and LR images while maintaining performance on HR images. The idea of applying triplet loss to
features from different image resolutions was also proposed in [160]. However, in their approach,
features are computed via two separate branches of the network, thus increasing computational costs.
The goal is to project embeddings from images of arbitrary resolutions 𝑟 into a common feature space
directly without modifying existing network architectures. The left part of Figure 4.12 illustrates the
OLT strategy and the right part visually explains the concept of octuplet loss.

FV benchmarks and applications typically utilize the distance between facial feature embeddings
to distinguish between genuine and imposter identities. Therefore, similar to the CLT approach
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Figure 4.12.: Illustration of the octuplet loss training strategy on the left. Visual description of the
octuplet loss function leveraging eight high- and low-resolution images simultaneously
on the right. Adapted from [2†].

(see Section 4.2.1) it is reasonable to employ the feature distances directly in the training phase.
Due to the lack of sufficiently large FR training datasets containing both LR and HR images, LR
images are synthetically deteriorated. They are downscaled to three particular image dimensions
(7 × 8 px, 14 × 14 px, and 28 × 28 px) and subsequently upscaled to 112 × 112 px using scale factors 𝑠 ∈
{8, 4, 2}. The scaling process is similar to the one used in the CLT approach (see Section 4.2.2.2), except
for bilinear interpolation including anti-aliasing, and can be formulated for a single mini-batch B

containing 𝐵 images I as:

BLR ∶=

{

↑𝑠 (↓𝑠(I)) ∶ I ∈ B
}

. (4.4)

With this image degradation method, an LR mini-batch BLR containing the same images as the
HR mini-batch B is created, but with different image resolutions. This mini-batch then acts as an
additional source for selecting the triplets. Triplets are defined as the combination of an anchor image
A, a positive image P , and a negative image N (see also Section 2.2.2.1). To avoid cluttering with
subscripting, in contrast to Section 2.2.2.1, the notation of these three distinct image types slightly
differs. In this case, anchor, positive, and negative images can be also picked from BLR, which are then
denoted accordingly as A[LR], P [LR], N [LR]. The anchor and positive images are of the same identity,
while the negative image is of a different identity. For the triplet loss LTRI the feature distances
between the anchor and positive images are minimized, while the feature distances between the
anchor and negative images are maximized. The feature distances are calculated by a distance function
d( ⋅ , ⋅ ), which utilizes extracted features f from an arbitrary feature extractor. Feature for the anchor,
positive, and negative images are denoted as fA, fP, and fN, respectively.
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Given the constraint that, a mini-batch strictly contains two randomly selected images of the same
identity, the number of identities within each mini-batch is 𝐵/2. For each anchor image A, one can
find exactly one positive image P and 𝐵 − 2 negative images N . Hence, the cardinality of the set
is calculated as |T| = 𝐵

2
− 2𝐵 (see Equation (2.14) in Section 2.2.2.1). With this set of triplets T, the

maximum information within each mini-batch is exploited by the triplet loss. However, the majority
of triplets within T, according to Equation (2.14), do not contribute towards LTRI as they are already
correctly classified and thus fulfill d(fA,fP) + 𝛼 < d(fA,fN) (see also Equation (2.15)). According to
Hermans et al. [46] the training procedure is accelerated by selecting only the most relevant hard
negative sample ̃N , which is obtained for a given anchor image A by:

̃N = argmin

N
d(fA,fN) . (4.5)

This additional constraint leads to a more meaningful set T and hence a less costly minor cardinality
|T| = 𝐵. However, selecting the most challenging sample is prone to include outliers, e.g., incorrectly
labeled data, and thus hinders the feature extractor in learning meaningful associations. Nevertheless,
in line with [46], a large number of triplets mitigates this effect within each mini-batch. Thus, the hard
sample mining strategy is considered as a valid method for the proposed fine-tuning. The interested
reader is referred to the work of Kaya and Bilge [168] for a more detailed overview of sampling
selection processes. Together with this hard sample mining strategy, the following four sets of triplets
are then defined:

THHH ∶=

{

(A,P ,
̃N1) ∈ T(B,B,B) ∶

̃N1 = argmin

N
d(fA,fN)

}

, (4.6)

which exclusively picks HR images from the original mini-batch B. Then,

THLL ∶=

{

(A,P [LR]
,
̃N [LR]

2 ) ∈ T(B,BLR,BLR) ∶
̃N [LR]

2
= argmin

N [LR]
d(fA,f

[LR]
N )

}

(4.7)

and

TLHH ∶=

{

(A
[LR]

,P ,
̃N3) ∈ T(BLR,B,B) ∶

̃N3 = argmin

N
d(f

[LR]
A ,fN)

}

, (4.8)

which utilize a mix of LR and HR images from the B and BLR mini-batches. Lastly,

TLLL ∶=

{

(A
[LR]

,P [LR]
,
̃N [LR]

4 ) ∈ T(BLR,BLR,BLR) ∶
̃N [LR]

4
= argmin

N [LR]
d(f

[LR]
A ,f [LR]

N )

}

, (4.9)

which comprises solely LR images from BLR.

Calculating the triplet loss LTRI (see Section 2.2.2.1) simultaneously for each set, involves assessing
the feature distances among up to eight distinct images for eachA ∈ B. Consequently, the aggregation
of all four triplet losses relies on the octuplet (A,A[LR]

,P ,P [LR]
,
̃N1,

̃N [LR]
2

,
̃N3,

̃N [LR]
4

). Therefore, the
combined loss is referred to as the octuplet loss LOCT, which is computed as follows:

LOCT = LTRI(THHH) + LTRI(THLL) + LTRI(TLHH) + LTRI(TLLL) . (4.10)
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This way, Equation (4.10) encompasses all three cases: LR face pairs LTRI(TLLL), CR face pairs
LTRI(THLL) and LTRI(TLHH), and HR face pairs LTRI(THHH). Consequently, the robustness against low-
and CR face pairs can be increased and moreover the network is still forced to handle HR face pairs.

4.3.2. Experimental Settings

The experimental settings are designed to evaluate the effectiveness of the proposed OLT method on
various pre-trained FR models. Recent state-of-the-art approaches such as MagFace [89], FaceTrans-
former [91], and Improved Residual Layer Network (iResNet)-50 [169] are fine-tuned with the OLT
method. Additionally, the MobileNetV2 [170] architecture is included to demonstrate the benefit
of the OLT method on lightweight networks. Furthermore, the in the previous section introduced
approaches RAT, CLT, and MB-CLT from [1†] are also included in the experiments.

All experiments use the MS1M-V2 [47, 62] database for training and validation, comprising 5.7M
images of 87 k identities. The vast majority (∼ 99.9%) is used for the fine-tuning strategy, and only
∼ 1h is retained for validation. From the latter subset, 3 000 genuine and 3 000 imposter image pairs
are generated to validate the FV performance during training. Due to the condition that each identity
within a mini-batch must appear exactly twice (see Section 4.3.1), a specific algorithm that creates
the mini-batches is employed. Images are picked from the entire dataset according to the number of
unpicked images per identity. By updating the underlying probability distribution after every batch,
diverse batches at the end of every epoch are ensured.

For training the MagFace [89] model, stochastic gradient descent with a learning rate of 0.001
for one epoch is utilized. The FaceTransformer [91] is fine-tuned one epoch employing the Adaptive
Moment Estimation with Weight Decay (ADAMW) [171] algorithm (𝜖 = 10

−8), with a learning rate
of 0.0005. Both networks converge already within the first epoch and are not fine-tuned further.
The remaining architectures in the experiments are fine-tuned for six epochs with Adaptive Gradient
Algorithm (ADAGRAD) [52] optimizer (𝜖 = 1.0) using a learning rate of 0.01, which is divided by 10

after epochs 2, 4, and 5. Due to hardware restrictions, a mini-batch size 𝐵 = 64 for the FaceTransformer
and MagFace is applied, whereas 𝐵 = 256 for the remaining architectures. If not stated otherwise, the
Euclidean distance metric is utilized in the triplet loss, while setting the margin 𝛼 to 25, and using
non-normalized features.

Fine-tuning on an NVIDIA RTX 3090 (24GB) takes approximately 18 hours for the ArcFace approach
with ResNet-50 [54] (3 hours per epoch), which is more time-consuming by a factor of two (1.5 hours
per epoch) than pre-training with cross-entropy loss. Fine-tuning on MagFace with an iResNet-
50 [169] takes 16 hours, 34 hours for FaceTransformer [91], and 2 hours for the MobileNetV2 [170]
architecture.

Following [47] in data preprocessing, aligned face crops (112 × 112 px) with five facial landmarks
are extracted with the Multi-Task Cascaded Convolutional Networks (MTCNN) [68] for all experiments
(see also Section 2.3.2.2). Additionally, besides horizontal flipping, random brightness and saturation
variation are applied as data augmentation.
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For the evaluation the following datasets are utilized: LFW [31], CALFW [94], CPLFW [92],
CFP-FP [93], Celebrities in Frontal-Profile — Frontal-Frontal (CFP-FF) [93], AgeDB [95], XQLFW [3†],
and Similar-Looking Labeled Faces in the Wild (SLLFW) [97]. The image pairs from the benchmark
datasets undergo synthetic degradation, mirroring the treatment applied to the training data. In these
experiments, the first image in each pair experiences resolution reduction. The cosine distance is
employed as the distance metric for all evaluations and similar to Section 4.2.3 10-fold cross-validation
is applied to derive the accuracy values.

4.3.3. Results

This section first compares the CR FV accuracy of several state-of-the-art FR models before and after
fine-tuning with the OLT method. Then, the performance on specific image resolutions leveraging
the fine-tuned models is compared to other works in the field of CR FV. Finally, some ablations on
the OLT method, including the triplets utilized in the octuplet loss function, margins, mini-batch size,
feature normalization, and distance metrics are discussed.

4.3.3.1. Performance Improvements

To evaluate the effectiveness of the OLT method, the FV accuracy of several state-of-the-art FR models
is compared before and after fine-tuning. The results are summarized in Table 4.3. The accuracy
values are reported for the LFW dataset [31] and the XQLFW dataset [3†] (see Chapter 5). The
XQLFW dataset is particularly suitable for this investigation, as the pairs in the evaluation protocol
show a difference in resolution. Moreover, accuracy values are reported for various datasets with
synthetically downscaled images for CR evaluation.

Without OLT, the models RAT-M, CLT-M, and MB-CLT-M from [1†] are already trained to be
resolution invariant and perform best on XQLFW [3†] and very LR images (7 × 7 px) of the other
datasets. All remaining models are very susceptible to image resolution and show a decrease in
accuracy for LR images. However, although the FaceTransformer [91] network tends to be more
robust than structures solely based on CNNs, its performance is still worse for very LR images.

After applying OLT, all models perform significantly better on the majority of evaluation scenarios
with LR images while maintaining their performance on HR images. Only a few minor deteriorations
can be observed for the FaceTransformer [91] and MagFace [89] architecture. The most considerable
improvement holds for the ArcFace [47] method (baseline). OLT boosts the accuracy from 74.22%

to 93.27% on the most realistic CR dataset XQLFW [3†] while even slightly surpassing the baseline
accuracy on LFW [31] with 99.55%. The proposed fine-tuning method further improves the accuracy for
RAT-M [1†], CLT-M [1†], and MB-CLT-M [1†] on HR images, i.e., it recovers the prior drop in accuracy
reported in Section 4.2.3.2. This behavior shows that the OLT method better exploits the available
network capabilities and makes them more robust. With the exception of the 7 × 7 px resolution,
the best overall performance after fine-tuning with OLT is accomplished by the FaceTransformer
network. The vast increase in accuracy, which is observed on four different architectures and four
unique pre-training loss functions, demonstrates that the OLT approach is universally applicable and
works on various network architectures.
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Table 4.3.: Improvement of cross-resolution face verification accuracy by applying the OLT strategy.
MS1M-V2 is utilized for fine-tuning and evaluation is performed on LFW and XQLFW. The
average accuracy is reported for various datasets with synthetical downscaled images for
cross-resolution evaluation.

Accuracy [%] for Datasets

mean (LFW, CALFW, CPLFW, SLLFW, CFP-FF, CFP-FP, AgeDB)

Model LFW 7 × 7 px 14 × 14 px 28 × 28 px 56 × 56 px 112 × 112 px Mean XQLFW

ArcFace [47] 99.50 50.82 69.83 91.49 94.67 95.01 80.36 74.22
+ OLT [2†] 99.55 (+0.05) 83.07 (+32.25) 90.72 (+20.89) 93.65 (+2.16) 94.46 (-0.21) 94.65 (-0.36) 91.31 (+10.95) 93.27 (+19.05)

RAT-M [1†] 99.30 69.93 84.46 92.69 93.89 93.83 86.96 83.60
+ OLT [2†] 99.38 (+0.08) 84.54 (+14.61) 91.59 (+7.13) 93.91 (+1.22) 94.47 (+0.58) 94.56 (+0.73) 91.81 (+4.85) 94.20 (+10.60)

CLT-M [1†] 97.30 74.93 84.46 87.10 87.84 87.97 84.46 90.97
+ OLT [2†] 98.90 (+1.60) 84.17 (+9.24) 90.34 (+5.88) 92.21 (+5.11) 92.86 (+5.02) 92.74 (+4.77) 90.46 (+6.00) 93.47 (+2.50)

MB-CLT-M [1†] 95.87 72.44 82.40 83.89 84.05 83.82 81.32 90.82
+ OLT [2†] 98.80 (+2.93) 81.72 (+9.28) 88.41 (+6.01) 90.55 (+6.66) 90.80 (+6.75) 90.71 (+6.89) 88.44 (+7.12) 92.93 (+2.11)

ArcFace [47] (MobileNetV2) 98.85 54.38 70.18 87.57 91.19 91.55 78.97 72.73
+ OLT [2†] 98.78 (-0.07) 79.41 (+25.03) 87.03 (+16.85) 90.30 (+2.73) 91.44 (+0.25) 91.35 (-0.20) 87.91 (+8.94) 91.70 (+18.97)

FaceTransformer [91] 99.70 60.53 84.82 96.03 97.21 97.28 87.17 87.88
+ OLT [2†] 99.73 (+0.03) 82.96 (+22.43) 91.72 (+6.90) 95.13 (-0.90) 96.35 (-0.86) 96.52 (-0.76) 92.54 (+5.37) 95.12 (+7.24)

MagFace[89] 99.63 52.82 73.71 94.32 96.71 96.87 82.89 76.95
+ OLT [2†] 99.63 (0.00) 81.69 (+28.87) 90.22 (+16.51) 93.84 (-0.48) 94.61 (-2.10) 94.72 (-2.15) 91.01 (+8.12) 92.92 (+15.97)

Additionally to the CR evaluation, Table 4.4 reports FV accuracy for pairs of images with the same
image resolution. The accuracy values are averaged across several datasets for each image resolution.
The results indicate that the baseline model is slightly worse in Equal Resolution (ER) FV than in
the CR scenario (see Table 4.3). This discrepancy is understandable due to the reduced information
content of both LR images. However, the OLT approach substantially increases the performance from
77.57% to 89.74% on average across all image resolutions. These outcomes show that the proposed
OLT technique is not limited to CR scenarios and can also be applied in ER scenarios.

To get more insights across the different evaluation benchmarks and resolutions, the FV results are
visualized in Figure 4.13. The chart shows the accuracy for the ResNet-50 [54] architecture pre-trained

Table 4.4.: Comparison of ResNet-50 architecture pre-trained with the ArcFace on MS1M-V2 and
a fine-tuning with the OLT [2†] strategy. Equal-resolution face verification accuracy is
reported on average over several synthetically downscaled datasets for specific image
resolutions.

Accuracy [%] for mean (LFW, CALFW, CPLFW, SLLFW, CFP-FF, CFP-FP, AgeDB)

Model 7 × 7 px 14 × 14 px 28 × 28 px 56 × 56 px 112 × 112 px Mean

ArcFace [47] 51.08 57.74 89.43 94.59 95.01 77.57
+ OLT [2†] 78.20 (+27.12) 88.31 (+30.57) 92.97 (+3.54) 94.56 (-0.03) 94.65 (-0.36) 89.74 (+12.17)
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Figure 4.13.: Cross-resolution face verification accuracy comparison of ResNet-50 architecture pre-
trained with the ArcFace utilizing the MS1M-V2 dataset and the fine-tuning with the
OLT strategy as in [2†]. Results are reported on various datasets with synthetically
downscaled image resolutions.

with the ArcFace [47] (dashed line) and the accuracy after fine-tuning with the OLT method (solid
line). Improvements are visualized with green areas while deterioration is shown in red.

In general, a significant performance decrease of the baseline model on challenging datasets like
AgeDB, CALFW, CPLFW, and CFP-FP that focus on age, pose, or person similarity is observed. The
proposed OLT method accomplishes the best accuracy for LFW and CFP-FF with over 90% at all
resolutions, which are the easiest benchmarks. In contrast, CPLFW seems to be the most challenging
dataset, with a performance below 90% at all scales.

The chart also reveals that for large pose variations datasets such as CPLFW and CFP-FP, there is
still a moderate increase of accuracy at 28 × 28 px image resolution, whereas the boost at that scale is
marginal for all other datasets. Only on data with a large age gap (AgeDB and CALFW) and similar
faces (SLLFW), the OLT approach marginally reduces the accuracy on 56 × 56 px and 112 × 112 px
image resolution.

For a deeper analysis, Figure 4.14 analyzes the Receiver Operating Characteristic (ROC) (see also
Section 2.3.4) of the baseline model and the OLT approach on the XQLFW dataset and specific CR
scenarios of the LFW benchmark. Primarily at very low False Acceptance Rates (FARs), the performance
gain utilizing OLT is tremendous. While the baseline model fails for challenging situations, the fine-
tuned version achieves superior results. On the XQLFW dataset, OLT increases the True Acceptance
Rate (TAR) for very low FARs from 0% to over 65%. This improvement is similar to the behavior on
the LFW dataset at 7 × 7 px. The effect vanishes the higher the resolution until, at 112 × 112 px the
rates remain nearly equal. Overall, this improvement shows the benefit of OLT, especially in security
applications, e.g., manhunts via surveillance cameras, which require very low FARs.
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Figure 4.14.: Cross-resolution receiver operating characteristic curve comparison of the baseline model
(dashed) with the OLT fine-tuning approach (solid) on the XQLFW dataset and LFW
dataset with selected downscale image resolutions as in [2†]. The equal error rate is
indicated by a dotted line.

Furthermore, the exact values for the TAR at specific FARs for the baseline model and the OLT
approach are reported in Table 4.5. The TAR increases on the XQLFW benchmark and LR images
(7 × 7 px and 14 × 14 px), while still improving in all other configurations. An improvement of up to
69.47% is achieved in the most realistic CR scenario simulated with the XQLFW database for a FAR
or 0.001, i.e., accepting only one False Positive (FP) in 1 000 attempts. This underlines the robustness
of the OLT method in challenging CR scenarios and shows that the method is particularly beneficial
for various real-world applications which require a high robustness against CR face pairs.

In conclusion, this analysis uncovers that OLT improves the robustness of various FR models in CR
scenarios while maintaining their performance on HR images. The method is not limited to relatively
simple datasets like LFW but also offers benefits to more challenging datasets, which involve, e.g.,
large age gaps or head pose variances.

Table 4.5.: Comparison of the TAR at specific FARs for the baseline and the OLT approach on the
XQLFW dataset and specific synthetically downscaled CR scenarios of the LFW benchmark.

TAR@FAR [%] for Datasets

LFW [31]

Model FAR 7 × 7 px 14 × 14 px 28 × 28 px 56 × 56 px 112 × 112 px XQLFW

ArcFace [47]
0.001

0.07 30.63 95.67 98.70 98.97 0.03
+ OLT [2†] 53.33 (+53.26) 90.70 (+60.07) 97.70 (+2.03) 99.00 (+0.30) 99.03 (+0.06) 69.50 (+69.47)

ArcFace [47]
0.01

0.80 41.77 98.30 99.47 99.53 0.27
+ OLT [2†] 82.80 (+82.00) 97.90 (+56.13) 99.40 (+1.10) 99.53 (+0.06) 99.57 (+0.04) 83.10 (+82.83)

ArcFace [47]
0.1

9.37 64.43 99.60 99.73 99.73 57.40
+ OLT [2†] 97.10 (+87.73) 99.67 (+35.24) 99.73 (+0.13) 99.77 (+0.04) 99.77 (+0.04) 95.07 (+37.67)
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Table 4.6.: Cross-resolution face verification accuracy evaluated on the LFW dataset for particular
image resolutions. The OLT fine-tuning is performed with MS1M-V2 dataset.

Accuracy [%]

LFW

Model 8 × 8 px 12 × 12 px 16 × 16 px 32 × 32 px High Resolution

Lai and Lam [159] 94.8 97.6 98.2 − 99.10 (128 × 128 px)

Sun et al. [157] 90.0 94.9 97.2 − 99.10 (112 × 96 px)

DCR [152] 93.6 95.3 96.6 − 98.70 (112 × 96 px)

TCN [160] 90.5 94.7 97.2 − 98.80 (112 × 96 px)

Ge et al. [156] − − 85.87 89.72 97.15 (224 × 224 px)

ArcFace [47] + OLT [2†] 90.38 96.88 98.28 99.48 94.59 (112 × 112 px)

FaceTransformer [91] + OLT [2†] 94.02 98.17 99.08 99.57 99.63 (112 × 112 px)

4.3.3.2. Comparison with other Approaches

After demonstrating that the OLT improves the robustness of various FR models in CR scenarios,
a comparison with other state-of-the-art CR methods is drawn. For this purpose, the two best
performing approaches (FaceTransformer + OLT and MagFace + OLT) on LFW are evaluated with
particular resolutions to match the evaluation conditions of other approaches and enable a direct
comparison.

The results are reported in Table 4.6 and show that the proposed approaches outperform all other
methods except for 8 × 8 px image resolution, where Lai and Lam [159] achieve a higher accuracy.
However, a notable drawback of their approach is the weak performance for HR images. We must
interpret the results of Ge et al. [156] carefully as their approach is based on a teacher model that
performs worse on HR images (only 97.15%) and they report numbers of specific models for each
image resolution. Moreover, the training resolution is inconsistent across the compared methods and
can lead to slight deviations. Concluding, these results provide a reasonable classification of OLT as
the state-of-the-art and underline its advantages.

In addition, the OLT fine-tuning strategy is compared to the approach of Terhörst et al. [163]. While
they perform worse on XQLFW (83.95%), they report a slightly higher accuracy on LFW (99.83%) and
much better results on AgeDB (98.50%) and CFP-FP (98.7%). However, they aim at general quality-
robust FR encompassing resolution, age, and pose. In contrast, this work focuses exclusively on the
images’ resolution; hence, this is not a fair comparison and should be considered with caution.

4.3.3.3. Ablation Studies

In the following, multiple ablations are conducted to understand the influence of the loss terms,
distance metric, feature normalization, margins, and mini-batch size in the OLT approach.

Loss Terms. As described in Section 4.3.1 the octuplet loss function consists of four different triplet
loss functions. Each term affects the overall performance, and hence, experiments are conducted to
obtain the contribution of each term. In this study, the Euclidean distance and no feature normalization
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Table 4.7.: Cross-resolution face verification accuracy for different configurations of the triplet loss
terms in the octuplet loss function. The pre-trained baseline model with OLT fine-tuning
(both utilizing MS1M-V2) is evaluated on several datasets and different image resolutions.

Accuracy [%] for Datasets

Triplets utilized in Octuplet Loss mean (LFW, CALFW, CPLFW, SLLFW, CFP-FF, CFP-FP, AgeDB)

THHH THLL TLHH TLLL LFW 7 × 7 px 14 × 14 px 28 × 28 px 56 × 56 px 112 × 112 px Mean XQLFW

✔ ✔ ✔ ✔ 99.55 83.07 90.72 93.65 94.46 94.65 91.31 93.27

✔ 99.42 61.17 78.77 92.21 94.77 95.11 84.40 80.98
✔ 99.52 79.93 89.39 93.57 94.57 94.64 90.42 92.15

✔ 99.48 80.10 89.48 93.53 94.56 94.62 90.46 92.32
✔ 98.95 82.49 88.80 91.40 92.21 92.06 89.39 93.20

✔ ✔ 99.57 79.60 89.50 93.93 95.19 95.18 90.68 91.93
✔ ✔ 99.58 79.42 89.75 93.97 95.11 95.14 90.68 92.18
✔ ✔ 99.57 81.66 90.05 93.66 94.65 94.84 90.97 92.77

✔ ✔ 99.45 80.51 89.90 93.52 94.48 94.54 90.59 92.55

✔ ✔ ✔ 99.58 80.60 90.11 93.94 94.97 94.94 90.91 92.55
✔ ✔ ✔ 99.50 82.92 90.72 93.70 94.52 94.60 91.29 93.30
✔ ✔ ✔ 99.37 82.49 90.35 93.58 94.47 94.56 91.09 93.48

✔ ✔ ✔ 99.20 83.09 90.62 93.18 93.93 93.95 90.96 93.42

is used. As depicted in Table 4.7 the reference point is the best mean accuracy across all datasets
and image resolutions, which is obtained by including all triplet loss terms: LTRI(THHH), LTRI(THLL),
LTRI(TLHH), and LTRI(TLLL).

As expected, utilizing only LTRI(THHH) leads to the worst results on the XQLFW dataset and images
at image resolutions (7 × 7 px, 14 × 14 px, and 28 × 28 px), which is reasonable since no LR images are
included in the loss. Interestingly, this configuration does not improve the accuracy on the LFW
dataset, which can be considered as an HR benchmark, whereas it does improve the accuracy on
average across all datasets. Two plausible explanations could be: 1) The performance is already
saturating for LFW. 2) There might be a few LR images in the LFW dataset, although exclusively
HR are expected in that database. However, not utilizing LTRI(THHH) leads in all cases to a decrease
in performance on the LFW dataset. Consequently, this term is essential to constrain the network
and not focus entirely on LR. In contrast, utilizing solely the LTRI(TLLL) significantly improves the
performance on LR images. But this comes with a decrease of the accuracy on HR images and thus is
either not considered preferable.

Considering exclusively the LTRI(THLL) and LTRI(TLHH), or the inclusion of both terms, leads to a
moderate increase of robustness to image resolution but also comes with the trade-off of reducing
the accuracy on HR images. A similar effect occurs for the combination of LTRI(THHH) and LTRI(TLLL).
Interestingly, the LTRI(THHH) + LTRI(THLL) or LTRI(THHH) + LTRI(TLHH) configuration yields the best
performance on intermediate image resolutions (28 × 28 px and 56 × 56 px). Furthermore, experiments
with three triplet loss terms reveal that removing LTRI(THHH) or LTRI(TLLL) leads to a marginal decline
in performance.
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Figure 4.15.: Face verification accuracy utilizing particular margins for different distance metric con-
figurations in the octuplet loss function as in [2†]. The pre-trained baseline model with
OLT fine-tuning (both utilizing MS1M-V2) is evaluated.

This analysis of individual loss terms demonstrates that each term is crucial to the overall perfor-
mance. The advantage of incorporating both LTRI(THLL) and LTRI(TLHH) is modest, as they both link
HR images with LR images. Nevertheless, this benefit should not be underestimated; including both
terms is essential for achieving total improvement.

Distance Metric and Feature Normalization As described in Section 4.3.1, the OLT approach
follows the work of Hermans et al. [46] and utilizes the Euclidean distance metric dEUC without
feature normalization for the octuplet loss function. However, as proposed in other works [44, 77,
172, 173], experiments with a cosine dCOS and Euclidean-squared distance metric dEUC2 are conducted.
Additionally, feature normalization ‖ ⋅ ‖

2
is applied to the extracted features f before calculating the

distance. The results are reported in Table 4.8.

Utilizing dEUC with no feature normalization turns out to be superior on the average across all
datasets and image resolutions, and also on very LRs (7 × 7 px and 14 × 14 px), which is the reference
point for this study. However, utilizing dEUC2 together with feature normalization leads to the best
performance on the LFW and XQLFW dataset and also for intermediate and HRs (28 × 28 px, 56 × 56 px,
and 112 × 112 px) at mean across several datasets. Depending on the application, this configuration

Table 4.8.: Cross-resolution face verification accuracy for different distances metrics and with or
without feature normalization. The pre-trained baseline model with OLT fine-tuning (both
utilizing MS1M-V2) is evaluated on several datasets and different image resolutions.

Accuracy [%] for Datasets

Distance Metric and Normalization mean (LFW, CALFW, CPLFW, SLLFW, CFP-FF, CFP-FP, AgeDB)

dEUC dEUC2 dCOS ‖f ‖
2

LFW 7 × 7 px 14 × 14 px 28 × 28 px 56 × 56 px 112 × 112 px Mean XQLFW

✔ 99.55 83.07 90.72 93.65 94.46 94.65 91.31 93.27

✔ ✔ 99.60 79.53 88.64 93.59 94.80 94.95 90.30 93.27

✔ ✔ 99.63 80.08 89.63 93.83 95.11 95.24 90.78 93.58
✔ 99.53 81.36 89.75 93.55 94.61 94.71 90.80 93.23

✔ ✔ 99.58 79.57 88.85 93.70 94.92 95.03 90.41 93.27
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might be preferred. Due to the utilization of dCOS in our evaluation protocols, one would expect that
utilizing this metric in our octuplet loss fine-tuning strategy leads to the best results. However, this is
not the case, as seen in the bottom row of Table 4.8. The performance on LFW and XQLFW is similar,
but for lower image resolutions, fine-tuning with dCOS leads to minor accuracy improvements.

Since the configurations in Table 4.8 highly affect the magnitude of the margin, the best margins
are empirically determined for each configuration. The achieved accuracy dependent on the margin
is reported in Figure 4.15. Note that all axes of the charts are scaled differently. To be precise, the
best margin for the dEUC and ‖f ‖

2
configuration is 0.2, for the dEUC2 and ‖f ‖

2
configuration 0.175, and

0.2 for the dCOS with ‖f ‖
2

configuration. For the dEUC2 and no feature normalization configuration, the
margin is due to the square term very high and 600 turned out to be the best value.

Margin and Mini-Batch Size As a final ablation study, the influence of the mini-batch size 𝐵 for
different margins 𝛼 in the range between 1 and 500 is investigated to understand the impact of the
hard sample mining algorithm. The results are reported in Figure 4.16.

The best accuracy is achieved for a margin of 25 across all tested mini-batch sizes, which indicates
that the margin is independent of the mini-batch size. The performance decreases for smaller mini-
batch sizes and lower or larger margins. This effect is unsurprising since a larger mini-batch size
increases the probability of the hard sample mining algorithm finding even more challenging samples.
Batches containing less than 64 samples lead to even worse accuracy, and hence, they are not further
investigated in this work. Due to hardware limitations, experiments with larger mini-batch size than
256 could not be conducted. Nevertheless, one would expect this trend to continue, with an increasing
computational cost for the mining algorithm.

The ablation studies conducted on the OLT approach highlight the intricate balance between
loss terms, distance metrics, feature normalization, margins, and mini-batch size in optimizing FV

Margin α

A
cc
ur
ac
y 
[%
]

97.0

96.8

96.6

96.4

96.2
100 101 102

256

128

64

Batch Size B

Figure 4.16.: Average face verification accuracy utilizing the OLT method on synthetically downscaled
images from the LFW dataset at resolutions 𝑟 ∈ {7, 14, 28, 56, 112}, tested on the validation
subset of MS1M-V2. Adapted from [2†]
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accuracy across different resolutions. Each parameter plays a critical role in the performance of the
system, indicating a complex interplay that requires careful adjustment to achieve optimal results.
Specifically, the experimentation reveals that while some configurations excel in LR scenarios, others
are more suited for higher resolutions, underscoring the necessity for a nuanced approach in tuning
these parameters. Ultimately, these findings underscore the importance of a holistic understanding of
the OLT approach’s components in enhancing CR FV accuracy, offering valuable insights for future
research and application in biometric security systems.

4.4. Conclusion

The exploration of the impact of varying image resolutions on FV performance, as delineated in this
study, underscores a critical challenge within the domain of classical FR networks: The lack of scale
invariance. It has been elucidated that a deviation from the image resolution, as encountered in
the corresponding training dataset of a network, precipitates a notable decrement in performance,
especially at lower image resolutions. This revelation posits a significant impediment to the efficacy
of conventional FR methodologies, thereby necessitating the inception of novel strategies aimed at
ameliorating this deficiency.

In response to this exigency, the investigation introduces three innovative training strategies,
published in [1†], designed to engender the direct learning of scale-invariant features. The first
method, RAT, involves the incorporation of both LR and HR images within training mini-batches in
equivalent proportions. The second method, CLT, employs a siamese network architecture derived
from other state-of-the-art networks, further augmented by an additional contrastive loss function
targeting the minimization of feature distances between LR and HR variants of identical images. The
third method MB-CLT extends the CLT approach for multiple-resolutions by adding specific branches
for distinct image resolutions, and respectively adding several contrastive loss functions to the total
loss. These approaches collectively manifest a significant uplift in CR FV accuracy across a spectrum
of standard datasets, thereby illuminating the potential for a single model to adeptly navigate images
across arbitrary scales.

Moreover, the study proposes a fine-tuning strategy leveraging the octuplet loss function (OLT),
published in [2†], aimed at bolstering the robustness of existing models to fluctuations in image
resolution. This strategy, through the simultaneous application of four distinct triplet loss terms
to both LR and HR images, exploits the nuanced relationships both within and across identities
and resolutions. It emerges that this approach not only circumvents the necessity for exhaustive
re-training but also exhibits a marked enhancement in robustness against resolution variance without
compromising the accuracy on HR images. As of writing, the OLT approach is the state-of-the-art for
CR FV on the XQLFW dataset, achieving an accuracy of 95.12%.

The ablations reveal, however, that the performance of the OLT approach is highly dependent on
the choice of triplet loss terms, distance metrics, feature normalization, margins, and mini-batch size,
underscoring the necessity for a nuanced understanding of these parameters to optimize FV accuracy
across different resolutions.
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The culmination of these efforts portends a significant advancement towards the development
of universal, resolution-independent FR systems. The findings from this study not only contribute
valuable insights into the mechanisms underpinning scale variance in FR networks but also lay the
groundwork for future explorations into the domain of masked FR, amongst others. Through the
dissemination of the methodologies and findings under an open license, the study fosters a foundation
for the broader community to build upon, thereby facilitating the evolution of more robust FR systems
capable of navigating the complexities presented by varying image resolutions.
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“I think it’s much more interesting to live not knowing than to have answers which might be wrong.”
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Chapter 5.

Cross-Resolution Face Verification Benchmark
Dataset

This chapter introduces a Face Verification (FV) benchmark protocol constructed from the well-known
Labeled Faces in the Wild (LFW) database: Cross-Quality Labeled Faces in the Wild (XQLFW), which
was published at the IEEE conference series on Automatic Face and Gesture Recognition (2021) [3†].
This dataset focuses on significant image quality variations and thus, evaluates Face Recognition
(FR) systems on their robustness against image quality. After discussing relevant related work, the
methodology of the construction of the XQLFW dataset and verification protocol is presented. The
results section compares the new dataset to the original LFW and benchmarks several state-of-the-art
approaches on the new dataset. The chapter concludes with a discussion of the results and the
implications of the new dataset.

5.1. Related Work

A majority of works related to Cross Resolution (CR) FV [1†, 145, 146, 154, 155, 156, 158, 174, 175]
focus on a simulation of Low Resolution (LR) images for the evaluation of their approaches. They
simulate a lower image resolution by down- and up-scaling with bicubic or bilinear kernels. However,
several studies [176, 177, 178, 179] on image Super Resolution (SR) showed that native LR images
differ from synthetically generated images. Moreover, scaling kernels, used for synthetic downscaling
vary across software packages and make a fair comparison impossible.

The SCFace [180] and the COX-S2V [181] databases are the most relevant databases for CR FV
evaluations. The SCFace database contains 4 160 images from 130 unique identities, and the images
are captured with different cameras, resolutions and at different distances. They also include infra-red
images, which are taken under low lighting conditions. Moreover they provide images with different
poses. The COX-S2V database contains LR videos in an uncontrolled environment from 1 000 unique
identities and High Resolution (HR) still images in a controlled environments. The images are captured
with a surveillance camera and contain a variety of poses, expressions, and occlusions. However,
they aim on the still-to-video problem and do not provide any FV protocol. The ChokePoint [182]
database consists of 48 video sequences and 64 204 of 54 persons walking through a portal. Faces
have variations in terms of illumination conditions, pose, and sharpness. However, the small amount
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of identities and the controlled scenario make it unsuitable for a general evaluation of the robustness
of FV models towards images resolution.

Considering LR FV in general, there are few databases which contain solely LR images. The Tiny-
Face [183] database includes 169 403 native LR images of 5 139 subjects and contains an identification
evaluation protocol designed to test FR approaches on LR images. The Unconstrained College Students
(UCCS) [184] database contains more than 70 k images of 1 732 students and staff members from the
University of Colorado at Colorado Springs. The images are captured with a surveillance camera at
the campus and contain a variety of poses, expressions, and occlusions. However, this database has
been discussed controversial due to privacy concerns and has been removed from the public domain
in 2019.

In connection to the LFW database, exhaustive work was done by Deng et al., which released
five datasets based on the LFW database: Similar-Looking Labeled Faces in the Wild (SLLFW) [97],
Cross-Age Labeled Faces in the Wild (CALFW) [94], Cross-Pose Labeled Faces in the Wild (CPLFW) [92],
Masked Labeled Faces in the Wild (MLFW) [99], and Transferable Adversarial Labeled Faces in the
Wild (TALFW) [98] (see also Section 2.3.3). These datasets focus on specific properties like age, pose,
or transferable adversarial attacks and enhance the difficulty of the original LFW database. Those
datasets are frequently used to evaluate FR systems in more challenging scenarios and re-use the
original evaluation protocol of LFW. However, they do not lay a focus on CR evaluations. Another
work based on the LFW database is the work of Hörmann et al. [10†], which modified LFW to contain
occlusions and evaluate FR systems on their robustness against occlusions.

5.2. Methodology

Since the inherent quality or raw-resolution difference within the pairs of the LFW database is tiny,
the idea is to synthetically degrade images and create a modified XQLFW database to enlarge the
raw-resolution variance and thus being able to test the robustness of FR systems against cross-image
resolution. In the publication of XQLFW [3†], the term quality is used to describe the raw-resolution
of an image. However, this work introduced the term ‘raw-resolution’ to describe the difference of
image quality in terms of their original image resolution and avoid confusion with the more general
term ‘image quality’ which is used in the context of image quality assessment and includes a variety
of factors like sharpness, contrast, and noise. Hence, in the following sections, the term low raw-
resolution or LR is used instead of ‘low quality’ to be more precise. The following sections describe
the assessment of image raw-resolution the synthetic image quality degradation, and the evaluation
protocol for the construction of the XQLFW dataset.

5.2.1. Image Quality Assessment

Besides a variety of existing approaches for referenceless image quality assessment and specific facial
image quality assessment methods, this work utilizes the Blind Referenceless Image Spatial Quality
Evaluator (BRISQUE) [36] and Stochastic Embedding Robustness Face Image Quality (SER-FIQ) [38]
metrics to assess the quality of the images. The interested reader is referred to review of Kamble and
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Bhurchandi [37] for a comprehensive overview of no-reference image quality assessment methods in
general and specifically on faces to the work of Khryashchev et al. [185] and Yang et al. [186].

First, the BRISQUE and SER-FIQ scores for every single image of the LFW database are calculated.
To mitigate effects from the background around the face, the scores are calculated after pre-processing,
i.e., cropping and aligning images with Multi-Task Cascaded Convolutional Networks (MTCNN) [68] as
in [47] (see also Section 2.3.2.2). While BRISQUE measures the visual quality of an image, SER-FIQ
evaluates the quality of the face itself via facial feature assessment (i.e., occlusions or extreme head
poses) which result in a meaningless identity feature and thus also reflect poor quality. A calculated
correlation coefficient close to 0 (−0.021) between both metrics in the entire LFW database proves
the independence of both metrics and makes a combination reasonable. To allow a meaningful
combination of both scores, each score is normalized to the same value range [0, 1].

The normalized BRISQUE score 𝑄B( ⋅ ) for a given image I is calculated as follows:

𝑄B(I) =
[[
0, �̃�B(I)

]
+

, 100
]
−

100

, (5.1)

where �̃�B( ⋅ ) is the original BRISQUE score. According to [36] the lowest possible value of BRISQUE
is 0, and the highest possible value is 100.

Following the same procedure, the normalized SER-FIQ score 𝑄S( ⋅ ) for a given image I is calculated
as follows:

𝑄S(I) =
[[
0.78, �̃�S(I)

]
+

, 0.91
]
−

0.13

, (5.2)

where �̃�S( ⋅ ) is the original SER-FIQ score. Experiments show that the lowest possible value of
SER-FIQ is 0.78, and the highest possible value is 0.91 in the LFW dataset.

The normalized combined image quality score �̃�( ⋅ ) for a given image I is then calculated using
both normalized scores as follows:

𝑄(I) =
1 − 𝑄B(I) + 𝑄S(I)

2

. (5.3)

5.2.2. Synthetic Image Quality Degradation

Several works [176, 177, 178, 179] argue that simple downscaling images with, e.g., bicubic or bilinear
kernels, is not sufficiently reflecting native low image resolution. In contrast to previous works, this
work applies the proposed method from Bell et al. [179]. They first blur images with random variations
of 21 × 21 px an-isotropic Gaussian kernels and then downscale the images with Nearest Neighbor
downscaling. Scaling factors are randomly chosen from a list of {3, 4, 5, 6, 7, 8, 10, 12, 14, 16}.

To generate the XQLFW pool of images with various quality scores 𝑄, this synthetic image degra-
dation is only applied to images with a quality score 𝑄 already below a certain threshold of 0.85, to
assure that only images with a rather low quality are degraded further. Additionally, the number of
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degraded images within an identity does not exceed half the number of images of that identity. This
procedure assures that a certain amount of high quality images remains in the pool for each identity.

This generated pool of images is then further utilized to construct the XQLFW evaluation protocol.

5.2.3. Construction of Evaluation Protocols

To make the benchmark easy-integrable, the characteristics of the original LFW evaluation protocol by
Huang et al. [31] are maintained, i.e., the same protocol is used. A Semi Cross-Quality Labeled Faces in
the Wild (SXQLFW) evaluation protocol is constructed from the original images of the LFW whereas
the XQLFW protocol is constructed utilizing the synthetically degraded images (see Section 5.2.2).
The image pairs for testing FV is described in the following:

Genuine Pairs. 3 000 pairs are formed by iteratively picking randomly an identity which has at least
two images in the database and then randomly selecting a second image from the given identity.
During this process, the criterion of Δ𝑄 > 0.15 is assured by using the quality scores 𝑄 for each
image calculated in Section 5.2.1. Additionally, if the same image pair is selected again, the process is
repeated until a unique pair is found.

Imposter Pairs. 3 000 pairs are formed by iteratively picking randomly two different identities out
of all identities and then randomly selecting one image from each identity. During this process, it
is assured that every pair is unique and meets the criterion of Δ𝑄 > 0.15. Moreover, similar to [92]
and [94], gender and race are forced to be equal by using the attributes provided in LFW.

Since the LFW database contains 13 233 images from 5 749 unique identities and the number of
images per identity varies from 1 up to 530, this process results in a considerable number of unique

SXQLFW-Protocol

XQLFW

Q < 0.85

Deterioration
Algorithm

LFW

Image Pair
Generator

ΔQ < 0.15
=! Gender

=! Race

Image Pair
Generator

XQLFW-Protocol

ΔQ < 0.15
=! Gender

=! Race

Figure 5.1.: Flowchart for constructing the XQLFW pool and the proposed XQLFW and SXQLFW
evaluation protocols as in [3†].
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identities and images for the XQLFW evaluation protocol. The overall pipeline for the construction is
depicted in Figure 5.1.

5.3. Results

This section first analyzes the quality scores 𝑄 of the LFW image pool and the synthetically degraded
XQLFW image pool. It further compares the intra-pair quality score differences Δ𝑄 of the various
datasets. The section then benchmarks several state-of-the-art FR approaches on the XQLFW and
SXQLFW evaluation protocols and compares the results to the original LFW database.

5.3.1. Quality Scores

The first experiment in this section aims to analyze the correlation between the quality scores 𝑄

and the applied downscaling factor for the synthetic degradation of images. Therefore, the entire
LFW dataset is synthetically degraded with the method described in Section 5.2.2. The quality score
distributions at each downscaling factor are then analyzed in Figure 5.2. 𝑄 is constantly decreasing
with the downscaling factor, which underlines the effectiveness of the synthetic degradation.

First, the quality scores 𝑄 of the LFW image pool and the synthetically degraded XQLFW image
pool are considered. Figure 5.3 depicts the distributions of the quality scores calculated for each
image in the pool. The LFW database mainly contains images with scores 𝑄 in the range of 0.7 to
0.9. In contrast, XQLFW principally consists of two groups of images with 𝑄 in the range of 0.7 to 0.9

corresponding to the non-degraded images and additionally another group between 0.25 and 0.65,

Im
ag

e 
Q

ua
lit

y 
Sc

or
e 
Q

0.8

0.6

0.4

0.2

0.0

Deterioration Resolution [px]
112 84 56 42 28 21 14 10 7 5

LFW Dataset

Figure 5.2.: Quality score distribution of the image from LFW dataset degraded to particular image
resolutions. Adapted from supplementary material of [3†].
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Figure 5.3.: Quality score distributions of the images in LFW on the left, and the images in the
degraded XQLFW dataset on the right. Adapted from [3†].

necessarily synthetically degraded images. This pool enables the formation of imposter and genuine
image pairs with a more extensive quality score difference.

The average quality score 𝑄 of the LFW image pool is 0.85, and 0.75 for the XQLFW image pool.
This significant difference underlines that the degradation of the images was successful in terms of
the quality score.

After employing the evaluation protocol construction, i.e., defining the genuine and imposter pairs,
the average quality score difference Δ𝑄 can be calculated for the SXQLFW and XQLFW evaluation
protocols. Table 5.1 compares the new evaluation protocols to the original LFW and various other
datasets that focus on specific properties like age, pose, or similarity. The original LFW database
holds a relatively low average Δ𝑄 of 0.056. In contrast, SXQLFW and XQLFW contain a significantly
larger average Δ𝑄 of 0.177 and 0.327, respectively. Interestingly, Δ𝑄 of CPLFW is slightly larger than
the one of LFW, which underlines the susceptibility of the SER-FIQ metric against extreme head pose
variations. CALFW and SLLFW contain a relatively low average Δ𝑄 of 0.078 and 0.056, respectively.

Moreover, the number of unique identities and images for the resulting evaluation protocols are
compared to LFW, CALFW, CPLFW, and SLLFW (see Table 5.1). Due to the relatively small image
quality variations within the LFW database, the construction of SXQLFW leads to excessive use of
particular identities and images. E.g., mainly the rare identities with large quality variation within
the images are preferably chosen for genuine pairs. Consequently, the SXQLFW evaluation protocol
contains only 2 450 identities and 4 395 unique images, thus lacking generality. CALFW, CPLFW, and

Table 5.1.: Number of unique identities, images, and intra-pair quality score differences across various
datasets.

Accuracy [%] for Datasets

Metric LFW [31] CPLFW [92] CALFW [94] SLLFW [97] SXQLFW [3†] XQLFW [3†]

#Identities 4 281 2 296 2 997 2 810 2 450 3 743
#Images 7 701 5 984 7 167 6 091 4 395 7 263
Δ𝑄 0.056 0.078 0.046 0.054 0.177 0.327
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Figure 5.4.: Intra-pair quality score distribution 𝑄 for LFW and XQLFW database as in [3†]. The lower
score per pair is highlighted in orange and the higher score in cyan.

SLLFW similarly have fewer unique identities and images compared to LFW. However, our proposed
evaluation protocol (XQLFW), derived from the degraded database, contains 3 743 individual identities
and 7 263 images, topmost among other LFW derivatives mentioned in Table 5.1.

To get a deeper insight into the quality score differences, Figure 5.4 depicts the image quality
distribution for LFW and XQLFW again, but calculated for each image in the evaluation protocol, i.e.,
the score for each image in the defined genuine and imposter pairs. In contrast to LFW, one can see
the widening gap of scores in XQLFW, which implicates a significantly larger quality score difference.
From the left histogram, one can see that image pairs existent in the LFW protocol, which both have
a relatively low or high-quality score. By not strictly picking non-degraded images from the XQLFW
image pool to form a pair, it is also guaranteed that a certain amount of CR pairs with both images
having relatively low quality are included. But still, a minimum quality score difference of 0.15 is
assured.

Another view of the quality score differences is given in Figure 5.5, which shows the distribution
of the absolute difference in image quality per pair. The left histogram depicts the distribution of
the absolute difference in image quality for the LFW database, and the right histogram depicts
the distribution for the XQLFW database. The right histogram shows a significantly larger number
of pairs with a larger quality score difference, which underlines the effectiveness of the synthetic
degradation. Moreover, two example pairs for each database are depicted, which show the difference
in image quality and the corresponding quality scores 𝑄 of the images.

5.3.2. Face Verification Benchmark

This section employs the XQLFW and SXQLFW evaluation protocols to benchmark a range of state-
of-the-art FV approaches. The analysis aims to highlight the distinctions between these protocols
and the performance metrics obtained using the LFW database. Table 5.2 reveals that although most
of the tested models show a high accuracy on the LFW database, they significantly differ in their
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Figure 5.5.: Two example image pairs of the LFW and XQLFW database with corresponding quality
scores on the top. The bottom section shows the intra-pair quality score differences of
both databases. Adapted from [3†]

performance on the XQLFW and SXQLFW evaluation protocols. The small decrease in performance for
SXQLFW underlines the requirement of further degradation of images to measure the susceptibility
of FR systems to image quality.

While the performance on XQLFW drops substantially for ArcFace [47] and MagFace [89], the
decrease of accuracy for Resolution Augmentation Training (RAT)-M, Contrastive Loss Training (CLT)-M,
and Multi-Branch Contrastive Loss Training (MB-CLT)-M from [1†] is moderate. This is reasonable,

Table 5.2.: Face verification accuracy for several state-of-the-art approaches on LFW and the proposed
SXQLFW and XQLFW evaluation protocols. All models are trained with MS1M-V2 [47, 62].
The absolute decrease in relation to the LFW database is denoted in parentheses.

Accuracy [%] for Datasets

Model LFW [31] SXQLFW [3†] XQLFW [3†]

ArcFace [47] 99.50 99.13 (-0.37) 74.22 (-25.28)

MagFace [89] 99.63 99.35 (-0.28) 76.95 (-22.68)

FaceTransformer [91] 99.70 99.35 (-0.35) 87.90 (-11.80)

ProdPoly [107] 99.80 − 86.90 (-12.90)

RAT-M [1†] 99.30 99.10 (-0.20) 83.60 (-15.70)

CLT-M [1†] 97.30 96.50 (-0.80) 90.97 (-6.33)

MB-CLT-M [1†] 95.87 94.77 (-1.10) 90.82 (-5.05)

ArcFace + OLT [2†] 99.55 − 93.27 (-2.28)

FaceTransformer + OLT [2†] 99.73 − 95.12 (-4.61)
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due to the fact, that those models are specifically designed to be robust against varying image
resolutions in the testing set. However, their performance on the LFW database is considerably low,
which underlines the need of further improvements in designing resolution-robust models, while
maintaining high accuracy on HR images. As introduced in Section 4.3, the Octuplet Loss Training
(OLT) approach [2†] is able to achieve a high accuracy on the XQLFW database, and still is performing
competitively on the LFW database as can be seen in the bottom two lines in Table 5.2. Interestingly,
the performances of the FaceTransformer approach [91] and ProdPoly [107] model with no fine-
tuning are remarkably high on the challenging XQLFW protocol. This could reveal, that the concept
of Transformer [187] architectures, introduced in the speech recognition domain, is less susceptible
to image resolution or quality than classical Convolutional Neural Network (CNN) architectures.

These observations support the conclusion that models exhibit varying levels of robustness to image
quality variations. Consequently, the proposed datasets serve as a valuable resource for assessing the
CR performance of FV systems.

Finally, to analyze the accuracy more in detail, Figure 5.6 shows the Receiver Operating Characteristic
(ROC) curve for several state-of-the-art models on LFW and the proposed XQLFW evaluation protocol.
The chart reveals that superior FR performance on standard datasets like LFW is not necessarily
correlated to the challenging and more realistic XQLFW. The FaceTransformer approach outperforms
all other models, which are not specifically designed to be robust against varying image resolutions,
on XQLFW. Focusing on the RAT-M model, the horizontal line behavior at a True Acceptance Rate
(TAR) of approximately 0.7 on the XQLFW dataset is remarkable. To interpret this behavior, the
results in Section 4.2.3.2 are considered, which show that the feature distances of both genuine and
imposter CR image pairs from the RAT-M model are significantly larger for very low image resolutions,
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compared to higher resolution image pairs (see Figure 4.9). This jump in feature distances for very LR
genuine image pairs leads to a higher False Acceptance Rate (FAR) but almost no change in TAR, which
results in the horizontal line behavior. When the thresholds reaches again the feature distances of
the very LR imposter image pairs, the TAR starts to rise back again, while the FAR is still increasing.

In conclusion, the analysis of the ROC curve further helps to understand the behavior of the models
in CR scenarios and underlines the importance of the proposed XQLFW evaluation protocol.

5.4. Conclusion

In summary, this chapter introduced the generation and evaluation of the XQLFW dataset published
in [3†], which focuses on significant image quality variations and thus, evaluates FV systems on their
robustness against image quality or resolution. By utilizing two independent image quality metrics,
the quality scores of the images in the well-known LFW database are calculated. The synthetical
degradation of rather low-quality images not only leads to a significant increase in the quality score
variance, but also to a larger number of unique identities and images in the resulting evaluation
protocol, in contrast to simply forming new image pairs with larger quality variations from the
original LFW database. The XQLFW dataset still contains a competitively large number of identities
and images, making it more suitable for a general evaluation. By maintaining the original LFW
evaluation protocol, the XQLFW dataset is easy-integrable into existing frameworks and encourages
the comparison of new methodologies with established ones.

The presented results showcased the susceptibility of several FV systems to image quality variations
and hence the importance of the proposed XQLFW dataset.

In general, the creation of the XQLFW dataset, subjected to a singular application of more realistic
synthetic downscaling addresses the issue of diverse downscaling kernels and methods, employed
across numerous studies by establishing a common baseline. This approach markedly enhances
the comparability of outcomes, providing a more uniform framework for evaluating the efficacy of
different methodologies in the field of FV.
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Chapter 6.

Enhancing Explainability in Face Verification

This chapter ventures slightly beyond the principal focus of this dissertation, which centers on Cross
Resolution (CR) Face Verification (FV), to explore Explainable Artificial Intelligence (XAI) within a
broader context. The methodologies presented here, though originally proposed for FV in a broader
sense, are also applicable to CR contexts and can be used to further understand the models behavior in
CR scenarios. This chapter details two techniques for enhancing the transparency and interpretability
of FV systems, as well as an interactive web platform, all of which have been published at the 3rd
Workshop on Explainable & Interpretable Artificial Intelligence for Biometrics (xAI4 Biometrics)
at the Winter Conference on Applications of Computer Vision (WACV) in 2023 [4†]. First, the
Confidence Score (C-Score) is introduced, quantifying the reliability of a model’s prediction. Second,
a visualization approach is established, which generates Explanation Maps (X-Maps), to obtain more
meaningful predictions from an FV system. After discussing the most relevant related work in the
field of explainable FV, the methodology of both techniques is presented. Then, the experimental
results are shown, and the interactive web platform is presented. Finally, the chapter concludes with
a short discussion.

6.1. Related Work

Research on interpretable and explainable Face Recognition (FR) can be categorized into two groups:
1) Explanation maps, which include the visualization of the influence of different areas of an image
on the prediction of an FV model. 2) Confidence scores that aim to quantify the reliability of an FV
model’s prediction. In the following two subsections, an overview of the most relevant related work is
given.

6.1.1. Explanation Maps

One of the earliest approaches for explaining the decisions in a classification problem is the Local
Interpretable Model-Agnostic Explanations (LIME) technique introduced by Ribeiro et al. [188]. In their
work, they proposed a method for faithfully explaining any classifier’s predictions by learning an
interpretable model locally around the prediction.

One can generally distinguish between model-agnostic and model-specific XAI techniques:
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Model-agnostic techniques do not require any knowledge of the model’s internal structure and can
be applied to any model. Mery and Morris [189] introduced six different heat maps that can be used
to explain any FV algorithm without manipulating the model. The key idea of their method is to
define a matching score of two facial images, which changes when one image is perturbed. In addition,
they experimented with XAI saliency maps based on contours. In [190], Mery introduced an XAI
method based on how the probability of recognition of a given image alters when it is perturbed. His
algorithm removes and aggregates different parts of the image and then measures the contributions
of those parts individually and in-collaboration as well. The generated saliency maps highlight the
most relevant areas for the recognition process. The work from Lin et al. [191] provided a learnable
module that can be integrated into most FV models. The module generates meaningful explanations
with the help of a patched cosine and an attention map. These maps represent similarities instead of
saliency.

Model-specific techniques require knowledge of the model’s internal structure to observe or manip-
ulate the outputs of hidden model layers. Early approaches include the work of Cao et al. [192] who
modified networks with a feedback loop to infer the activations of hidden layers according to the
corresponding targets. The most popular approach is the Gradient-weighted Class Activation Mapping
(Grad-CAM) algorithm [193] that utilizes the gradient of the class signal with respect to the input
image. Recently, many other XAI techniques based on Grad-CAM, like Grad-CAM++ [194], HiRes-
CAM [195], Ablation-CAM [196], Score-CAM [197], or XGrad-CAM [198], have been introduced.
In [199] and [200], the authors trained separate models to predict saliency explanation maps. Pruning
a neural network for a given single input to keep only neurons that highly contribute to the prediction
was introduced in the work of Khakzar et al. [201].

6.1.2. Confidence Scores

The first work that included uncertainty information in the FR process was done by Shi and Jain [202].
They proposed Probabilistic Face Embeddings (PFEs), which estimate the uncertainty information of a
single face image by a stage-wise learning process on top of a pre-trained FR model to incorporate the
uncertainty of the facial features into the embedding. Chang et al. [203] extended the idea of PFEs
and proposed a method to learn the feature and the uncertainty of the facial features simultaneously.
Another approach, described by Schlett et al. [204], estimates the quality of face images for FR
purposes, termed Face Image Quality (FIQ). They also presents an exhaustive review of works on FIQ
in computer vision. However, these works do not directly provide a confidence score for the decision
of the FV system and rather use the confidence or quality estimation of the input images to improve
the general performance of a model.

Huber et al. [205] introduced a more closely related approach. They exploited the approximation of
model uncertainty through dropout and proposed an uncertainty score for the comparison of two
images. The score is utilized to additionally calculate a decision confidence to make the decisions for
FV more transparent without any training effort.
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A similar approach is presented by Neto et al. [206]. Their Probabilistic Interpretable Comparison
(PIC)-Score is derived by learning probability density functions of the distances between genuine and
imposter pairs using kernel density estimation.

6.2. Methodology

This chapter introduces two techniques from [4†] to make FV systems more transparent and inter-
pretable: 1) The C-Score is a confidence score that quantifies the reliability of a model’s prediction. 2)
The X-Maps are visualizations of the influence of different areas of an image on the prediction of an
FV model. The following two sections describe the methodologies more in detail.

6.2.1. Confidence Score

Typical FV systems use feature extractors and make their predictions based on the distance between
two feature vectors (see also Section 2.3.2.4). Those feature vectors are derived from an FR f𝜃( ⋅ ), which
extracts facial features f𝜃(I) = f from an aligned facial image I ∈ ℝ

112 × 112 × 3. Many approaches [1†,
2†, 47, 56, 57, 89, 91, 105, 107] utilize the cosine distance metric dCOS (see Equation (2.11)) during
testing for calculating the distance between two facial feature vectors f1,f2 from given images I1, I2.
The cosine distance is derived by calculating the cosine similarity, measuring the angle between two
features in a high dimensional space (see also Section 2.2.2.1). A cosine distance of 0 indicates that
the two feature vectors are identical in terms of direction. A distance of 1 indicates that the two
feature vectors are orthogonal and a distance of 2 indicates that the two feature vectors are opposite.
The decision whether two given features belong to the same identity is typically driven by setting a
threshold 𝑡 for the cosine distance. For common FV benchmark datasets (e.g., Labeled Faces in the
Wild (LFW) [31], Cross-Age Labeled Faces in the Wild (CALFW) [94], Cross-Pose Labeled Faces in the
Wild (CPLFW) [92], Similar-Looking Labeled Faces in the Wild (SLLFW) [97], Cross-Quality Labeled
Faces in the Wild (XQLFW) [3†]), the threshold 𝑡 is derived by applying 10-fold cross-validation on
the test set. A certain threshold is found for each fold by maximizing the verification accuracy on
the remaining folds. A prediction from an FV model with a distance 𝑑 close to the threshold 𝑡 can be
interpreted as uncertain. In contrast, a large distance close to 2 or a small distance close to 0 indicates
high confidence in the model’s prediction. However, there is no clear rule on interpreting the absolute
distance to the threshold 𝑡 in terms of prediction confidence. For instance the feature distance can be
in various ranges for different models, as can be seen in the feature analysis of Section 4.2.

Therefore, this chapter introduces the Confidence Score (C-Score), a more expressive metric, which
takes not only the imbalance of the feature distance distribution into account, but also exploits
information from the distribution of correct and wrong predictions of the model for each dataset.
The calculation of the C-Score is described step-by-step in the following:

Step-1 Histogram: Given the cosine distance distribution derived from an arbitrary FV model for
genuine and imposter image pairs, a histogram with 400 bins is constructed for both, the genuine
and imposter pairs. The histogram illustrates the cosine distances for the first fold of the LFW [31]
dataset on the left of Figure 6.1.
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Figure 6.1.: Histogram of cosine distances for the first fold of the LFW dataset and the bin-wise ratio
between genuine and imposter distance counts. The distances are derived from an ArcFace
model fine-tuned with OLT [2†].

Step-2: Bin-wise Ratios: For each bin, the number of genuine pairs is divided by the total number
of distances within that bin. If a bin contains no pair distances, to prevent division by zero, the ratio
is set to 1 for bins less than the threshold 𝑡, and 0 for bins greater than 𝑡. This approach allows for
the calculation of the ratio between genuine and imposter pairs for each distance bin. A ratio of 1
indicates that only distances from genuine pairs are present in the bin, suggesting a high confidence
level in predictions of genuineness as no low-distance imposter pairs are observed. Conversely, a
ratio of 0 implies only distances from imposter pairs in the bin, indicating a high confidence level
in predictions of imposters, due to the absence of high-distance genuine pairs. As the distance bins
approach the threshold 𝑡, there is an increased likelihood of encountering genuine pairs that are
distantly placed and erroneously classified as imposters. Similarly, closer imposter pairs might be
incorrectly classified as genuine. In the right chart of Figure 6.1, the LFW dataset displays these
bin-wise ratios: The ratio for genuine pairs begins at 1 and declines towards the threshold 𝑡, while
the ratio for imposter pairs starts at 0 and rises towards 𝑡.

Step-3: Sigmoid Fitting: Next, the calculated bin-wise ratios are utilized to fit a logistic sigmoid
curve SIGMOID(𝑑) to the distribution of ratio values. The sigmoid curve, dependent on the feature
distance 𝑑 is defined as:

SIGMOID(𝑑) =

𝑣

1 + 𝑒
−𝑘⋅(𝑑−𝑒)

+ 𝑏 , (6.1)

with 𝑣 as the curve’s maximum value, 𝑘 as the steepness of the curve, 𝑒 as the x-value of the sigmoid’s
midpoint, and 𝑏 as the curve’s minimum value. These parameters of the sigmoid curve are derived
using the dogbox [207] algorithm and characterize the distribution based on the data. In a final step,
the fitted sigmoid curve is clipped to a range [0, 1]. The right chart of Figure 6.1 shows the fitted
sigmoid curve for the LFW dataset.
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Step-4: Inversion: Finally, to enhance the interpretability of the score, values beyond the threshold
𝑡 are modified by applying an inversion formula:

𝐶(𝑑, 𝑡) =

{

SIGMOID(𝑑) ∀ 𝑑 ≤ 𝑡

1 − SIGMOID(𝑑) ∀ 𝑑 > 𝑡 .

(6.2)

As a result, the final C-Score 𝐶 is introduced, where the values are located in the range of [0.5, 1] for
either genuine or imposter predictions. These values represent an intuitive measurement of confidence
for correctness. A confidence of 0.5 indicates that the model is uncertain about the prediction and
can be treated as random guessing. On the other hand, a confidence of 1 indicates that the model is
very confident about the prediction. With 𝐶, an additional value is established to the binary output
prediction of an FV system and thus makes the prediction more meaningful. However, it is important
to note that for calculating the 𝐶, the ground-truth information of a dataset is required. Hence, for the
application of the C-Score to field data, the parameters for the sigmoid function need to be derived
from other data, e.g., a validation dataset.

6.2.2. Model-Agnostic Explanation Maps

The fundamental principle of this method is to visualize the extent of change in feature distance
between the two input facial images when at least one of the images is modified with occlusions. This
variation in distance is subsequently utilized to assign weights to the mask that was employed for the
image’s occlusion. By adopting a systematic occluding, i.e., methodically applying occlusions across
all parts of the image, it becomes possible to illustrate the distance deviation across all regions of the
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Figure 6.2.: Flowchart of generating two independent X-Maps as proposed in [4†] for both images of
a given example input image pair from LFW database. After systematic image occlusion
and combinatorial distance calculation, the masks are weighted by the distances and
averaged to form Similarity Maps (S-Maps) and then blend to the final X-Maps
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entire image through these weighted masks. Additionally, various patch sizes are used to ensure that
the distance deviation is visualized not just for smaller areas but also for larger sections of the image.

The overall approach presented in Figure 6.2 takes in an 2-tuple of facial images (I1, I2) as input.
Both images are opposed to be verified by an FV model f𝜃 generating a 2-tuple of X-Maps (X [m]

1
,X [m]

2
)

given the input images, where 𝑚 ∈ {𝐴, 𝐵, 𝐶} denotes the applied method for the combinatorial feature
distance calculation. The X-Maps are then used as an explanation for the prediction of the FV model.

In general, the method can be divided into five steps: 1) Systematic Image Occluding, 2) Inference,
3) Combinatorial Feature Distance Calculation, 4) Generation of the S-Map, and 5) Blending to an
X-Map.

Step-1: Systematic Image Occluding: First, each input image I ∈ ℝ
112 × 112 × 3 is systematically

occluded with different patch sizes 𝛾 and strides 𝛽 which generate a set of occluded images O ∶=
{

O1,O2,… ,O𝑁

}

|O ∈ ℝ
112 × 112 × 3 and a set of masksM ∶=

{

M1,M2,… ,M𝑁

}

, withM ∈ ℝ
112 × 112.

This is achieved with Algorithm 1 as:

occlude (I) ∶ I ↦ O,M . (6.3)

The generated masks M are sparsely populated; only the occluded areas contain the values 1. The
generated occluded images O contain the original pixel information from the input image, except
for the occluded areas, which are simply filled with a constant value of 0, if not stated otherwise.
Applying this process to the 2-tuple of input images (I1, I2) results in a 2-tuple of occluded images
(O1,O2) and masks (M1,M2), respectively. Note that the generated masks are actually the same for
both input images as the occlusions are applied in the same manner. The number 𝑊 of generated
occluded images O and masks M by Algorithm 1 is dependent on the patch size 𝛾 and the stride 𝛽,
and can be calculated as:

𝑊 =
⌊(

112 − 𝛾

𝛽 )⌋

2

. (6.4)

Note, that if not stated otherwise, a stride of 𝛾 = 5 is applied in the experiments and three different
patch sizes are used, 𝛾 ∈ P ∶= {7, 14, 28}. The following three steps refer to a specific patch size 𝛾 .

Algorithm 1: Systematic Image Occluding occlude ( ⋅ )

Input: image I
𝛽 ⟵ stride
𝛾 ⟵ size of patch
Start at top left corner of I
while within I do move right 𝛽 pixels

while within I do move down 𝛽 pixels
M ⟵ draw a patch with size 𝛾 at that location
O ⟵ occlude I with patch of size 𝛾 at that location

end
end
Output: occluded images O, masks M
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Chapter 6. Enhancing Explainability

Step-2 Feature Extraction: To explain the decisions of an FV model f𝜃, this model is also used to
extract features f ∈ ℝ

512 in the inference step of the proposed approach. Inferring the original image
I and occluded set of images O can written as:

f = f𝜃(I) ,

F ∶=

{

f𝜃(O
(𝑖)

) ∶ ∀ 𝑖 ∈ [1, 2,… ,𝑊 ]

}

,

(6.5)

with O(𝑖) denoting the 𝑖-th occluded image in O. Applying inference to the 2-tuple of input images
(I1, I2) and their corresponding 2-tuple of occluded images (O1,O2) consequently results in a 2-tuple
of feature vectors (f1,f2) and a 2-tuple of feature vector sets (F1,F2), respectively.

Step-3: Combinatorial Feature Distance Calculation: The cosine distance dCOS between the
feature vectors of the original images (I1, I2) is calculated and acts as a reference feature distance
𝑑orig. Then, the cosine distances D1,D2 are calculated based on the feature vectors of the original
images (f1,f2) and the set of feature vectors of the occluded images (F1,F2). The combinatorial
feature distance calculation is applied using three different rules A, B, and C, which are described in
the following:

Method-A selects the cosine distances for D1 and D2 such that the average distance from each
individual occluded image feature F (𝑖)

1
corresponding to I1, to all occluded images features F2 cor-

responding from I2, and vice-versa is calculated. The selection can be formulated mathematically
as:

D1 ∶=

{

1

𝑊

𝑊

∑

𝑗=1

dCOS (F
(𝑖)

1
,F (𝑗)

2 ) ∶ ∀ 𝑖 ∈ [1, 2,… ,𝑊 ]

}

,

D2 ∶=

{

1

𝑊

𝑊

∑

𝑗=1

dCOS (F
(𝑖)

2
,F (𝑗)

1 ) ∶ ∀ 𝑖 ∈ [1, 2,… ,𝑊 ]

}

.

(6.6)

Method-B selects the cosine distances for D1 and D2 such that the cosine distance between the
feature vector f1 of the original image I1 and the occluded versions feature vectors F2 of the other
original image and vice-versa is calculated. By occluding only one of the input images, this method
measures the effect on the feature distance for the occlusions specifically for the image which is then
occluded. This distance sets are defined as:

D1 ∶=

{

dCOS(F
(𝑖)

1
,f2) ∶ ∀ 𝑖 ∈ [1, 2,… ,𝑊 ]

}

,

D2 ∶=

{

dCOS(F
(𝑖)

2
,f1) ∶ ∀ 𝑖 ∈ [1, 2,… ,𝑊 ]

}

.

(6.7)

Method-C selects the cosine distances D1 and D2 according to the mathematical expression:

D1 = D2 ∶=

{

dCOS(F
(𝑖)

1
,F (𝑖)

2 )
∶ ∀ 𝑖 ∈ [1, 2,… ,𝑊 ]

}

. (6.8)

In this method, the cosine distances between the feature vectors of the occluded images are
calculated, with the constraint that the occlusions are at the same position in both input images.
Hence, the similarity maps for Method-C are identical.
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Algorithm 2: Color Blending blend ( ⋅ , ⋅ )

Input: image I , S-Map S
𝑙 ⟵ get luminance from: RGBtoHLS(I)
ℎ ⟵ get hue from: RGBtoHLS(S)
𝑠 ⟵ get saturation from: RGBtoHSV(S)
B ⟵ HLStoRGB(ℎ, 𝑙, 𝑠)
Output: blended image B

Step-4: Generation of the S-Map: To visualize this change in distance for every part of an image, the
deviation of the given distance set D is compared with the original distance 𝑑orig of both non-occluded
input images I1 and I2. Therefore, the set of masks M, which is related to the distances in D, is
weighted by the difference in distance compared with 𝑑orig. These weighted masks are then averaged
to visualize the deviation caused by the occlusion on the entire image. The process can be formulated
as:

S𝛾 =

1

𝑁

𝑁

∑

𝑖=1

(D(𝑖)

− 𝑑orig) ⋅M
(𝑖)

. (6.9)

Given that occlusions are applied using a patch size of 𝛾 , the resulting S-Map for the input image
I is denoted as S𝛾 . Note that this procedure is performed separately for every particular occlusion
patch size 𝛾 ∈ P and the final S-Maps are averaged based on the size of the patch area according to:

S =

|P|

∑

𝑖=1

S𝛾

𝛾
2

𝑖
⋅ |P|

. (6.10)

Performing this procedure on the 2-tuple of input images (I1, I2) and their corresponding 2-tuple
of distance sets (D1,D2) results in a 2-tuple of S-Maps (S

[m]

1
,S[m]

2 ) for the input images, where
𝑚 ∈ {𝐴, 𝐵, 𝐶} denotes the applied method for the combinatorial feature distance calculation.

If the feature distance between those two images is decreasing, the occluded area is interpreted
as dissimilar and vice-versa similar for a greater distance. A Gaussian-Blur algorithm is applied to
highlight the resulting effect and compensate the raster artifacts, caused by using a stride 𝛽 instead
of shifting the occlusion patch pixel by pixel. The algorithm is parametrized with an 𝛽 × 𝛽 kernel
and 𝜎 = 𝛽 is applied to each resulting S-Map S followed by normalization to the range [−1, 1].
Furthermore, the values of each S-Map are mapped to a (red-to-white-to-green) color map to further
enhance the visualization.

Step-5: Generation of the final X-Map: Finally, the X-Map X is generated by color blending
the original image I with the S-Map S using the algorithm Algorithm 2. The algorithm utilizes a
color-space transformation and separation to combine the original image and with the S-Map in a
meaningful way. The procedure is done for both S-Maps S[m]

1
and S[m]

2
and results in the final X-Maps

X [m]

1
and X [m]

2
for the input images I1 and I2, respectively. Note that 𝑚 ∈ {A,B,C} is denoting the

applied method for the combinatorial feature distance calculation.
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The proposed approach is able to generate an image-specific X-Map for both input images. The
X-Map is a visualization of the influence of different parts of an image on the prediction of a model.
It is important to note that the X-Map is generated without any knowledge of the model’s internal
structure and can be applied to any FV model, assuming the extracted facial feature can be accessed.

6.3. Results

The result section can be divided into two categories: 1) Quantitative results evaluate the C-Scores
generated for several datasets. 2) Qualitative results visually evaluate the effectiveness of the proposed
X-Maps method.

6.3.1. Quantitative Results

The proposed C-Score is calculated for various datasets utilizing two FV models (FaceTransformer [91]
and ArcFace [47]) fine-tuned with the Octuplet Loss Training (OLT) method (see Section 4.3). Table 6.1
presents the C-Score and accuracy for several datasets and highlights the differences between genuine
and imposter pairs for both metrics. Overall, it can be observed that deviations for LFW are minimal
in comparison to CPLFW, where deviations are significant. This effect could be attributed to the
complexity of the image pairs being classified where deviations are less significant, with the relatively
simpler pairs from LFW compared to CPLFW.

It is noteworthy that the accuracy for pairs classified as imposters is consistently higher across
all datasets than that for genuine pairs. This suggests that FV models more effectively identify
imposter pairs than genuine pairs, indicating a lower error rate in the classification of imposter pairs.
Consequently, the decision threshold has been adjusted to favor the correct identification of imposter
pairs, albeit at the expense of reducing accuracy for genuine pairs. Conversely, the C-Score presents
a different scenario except for the LFW benchmark: Confidence levels for pairs classified as genuine
are higher than those for pairs classified as imposters, as setting a lower threshold leads to more
accurate classification of imposter pairs despite a lower confidence rating. However, such thresholds

Table 6.1.: Mean accuracy and C-Score for all pairs of various datasets, alongside columns detailing
the deviation between all pairs and only genuine ones, as well as the deviation for imposter
pairs. Two models which are trained on the MS1M-V2 database [47, 62] are compared.

FaceTransformer + OLT [2†] ArcFace + OLT [2†]

C-Score [%] Accuracy [%] C-Score [%] Accuracy [%]

Dataset Genuine All Imposter Genuine All Imposter Genuine All Imposter Genuine All Imposter

LFW -0.32 99.58 +0.32 -0.13 99.73 +0.13 -0.23 99.20 +0.23 -0.18 99.55 +0.18
CALFW +0.64 95.72 -0.64 -2.53 94.93 +2.53 +0.61 94.92 -0.61 -2.88 93.85 +2.88
CPLFW +1.49 92.82 -1.49 -4.72 91.58 +4.72 +1.56 89.87 -1.56 -7.10 88.37 +7.10
SLLFW +0.45 98.52 -0.45 -2.62 96.78 +2.62 +1.64 95.51 -1.64 -2.73 94.90 +2.73
XQLFW +0.34 95.19 -0.34 -0.55 95.12 +0.55 +0.96 93.32 -0.96 -1.33 93.27 +1.33
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also result in a higher rate of genuine pairs being mistakenly classified as imposter. An exception is
achieved for the LFW due to the fitting of the sigmoid function, which merely approximates the data
without perfect replication.

6.3.2. Qualitative Results

To qualitatively evaluate the efficacy of the generated X-Maps, this section first presents a selection of
example pairs from the LFW [31] dataset. Then, the different techniques, applied for the combinatorial
feature distance calculation, are compared. Followed by experiments with meticulous splicing of
facial features from one image and their subsequent integration into another image. Finally, the
sensitivity of the patch size, shape, fill, and edge quality is analyzed.

6.3.2.1. Visual Evaluation

To visually evaluate the effectiveness of the proposed X-Map method, a selection of images pairs from
the LFW [31] dataset is shown in Figure 6.3. The X-Maps are generated utilizing a FaceTransformer [91]
model fine-tuned with OLT [2†] (see also Chapter 4). The X-Maps are generated using the Method-C
(see also Equation (6.8)) for the combinatorial feature distance calculation. Three genuine and three
imposter example pairs are shown. As depicted in Figure 6.3, the X-Maps are able to highlight the facial
regions that are most influential for the model’s decision. The green-colored facial regions indicate
similarity, while the red-colored facial regions indicate dissimilarity. In all images the deviation is
only pronounced in the facial area, as the background shall not influence the model’s decision.

The X-Maps of the genuine pairs are dominated areas highlighted as similar. The X-Map of the
left example pair reveals that the eyes and mouth of the person seem to not play an essential role
in the model’s decision. The cosine distance will get even slightly smaller for occlusions on those
parts of the face. Similarly, in the center pair, the nose also seems to be less critical for the model’s

X-Maps X    for Genuine Pairs X-Maps X    for Imposter Pairs
[C] [c]

Figure 6.3.: X-Maps of Method-C for three genuine and three imposter example pairs from the LFW
dataset. Green colors indicate similar facial regions and red highlights dissimilar regions.
All X-Maps are generated utilizing the FaceTransformer model fine-tuned with OLT on
the MS1M-V2 database. Adopted from [4†].
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prediction. In contrast, the X-Map of the right example pair indicates that the eyes, nose, and mouth
are highlighted, i.e., those regions push the distance closer to 0.

The X-Maps of the imposter pairs indicate more dissimilar facial regions than the genuine pairs’
X-Maps. In all three pairs, the forehead region is highlighted rather as similar compared to the more
distinctive facial parts such as the eyes, nose, and mouth. The most dissimilar facial region in the
imposter pairs seems to be the eyes of the center example pair. Furthermore, the nose region of the
right example pair is also highlighted as dissimilar. In contrast, the nose of the left example pair is
specified as a very similar facial region. Interestingly, the glasses of one subject in the right example
does not seem to affect the models decision, as these area is not highlighted in the X-Map at all.

However, the interpretation of the X-Maps is not always obvious and should be seen as further
contribution towards a more comprehensive understanding of the model’s decision or makes it
challenging to interpret them in a proper way.

6.3.2.2. Method Analsysis

As mentioned in Section 6.2.2, Method-A and Method-B focus on image specific deviations of cosine
distances between the features of the image pair. In contrast Method-C solely considers co-located
occlusions in both images, resulting in identical X-Maps for both images. The aforementioned method
is thus best suited for image pairs where the facial features are located at the same positions. While the
alignment process (see Section 2.3.2.2) ensures that faces are aligned — projecting landmarks of the
eyes, nose, and mouth corners to a normalized position — this is not always achievable with significant
changes in pose, as observed in real world scenarios or in datasets like CPLFW and Celebrities in
Frontal-Profile — Frontal-Profile (CFP-FP). Therefore, it is advisable to consider Method-A or Method-B
in such instances.

Figure 6.4 illustrates the different effects of applying Method-A, Method-B, and Method-C for
the combinatorial feature distance calculation in the X-Maps generation process for a genuine and
imposter sample image pair. Additionally to the observations in Figure 6.3, the Method-A and Method-
B also highlight only the facial regions, hence the background is not influencing the model’s decision.
The fact that the X-Maps are unique for each image complicates their interpretation, as the previous
interpretation of distinguishing between similar and dissimilar areas no longer applies, at least not
in terms of co-located similarity. It’s more accurate to assume that certain parts of one image are
similar in terms of it’s identity compared to different areas of another image. For instance, in the
imposter pair using Method-B, only the left eye in the top image is markedly reddish, whereas in the
bottom image, it’s the eyes and the nose. This could suggest that the left eye more likely belongs to a
different identity than the right eye. Conversely, covering the nose in the top image increases the
distance, indicating that the nose could originate from the person in the lower image, yet it is not
similar to the nose in the lower image.

In the genuine case, the right cheek appears to play a minimal role in the decision-making process
during the co-located comparison (Method-C), unlike in Method-A and Method-B, where it is colored
green. This result suggests that the cheek does not look very similar in the two images compared.
However, if it is covered in just one of the images, it plays a significant role in the model’s decision.
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Method A Method B Method CImposter

Genuine

S-Maps S₁, S₂[C] [C]Inputs I₁, I₂

Inputs I₁, I₂ X-Map X₁, X₂[C] [C]

X-Map X₁, X₂[C] [C]

Method A Method B Method C

S-Maps S₁, S₂[C] [C]

S-Maps S₁, S₂[B] [B] X-Map X₁, X₂[B] [B]

S-Maps S₁, S₂[B] [B] X-Map X₁, X₂[B] [B]

S-Maps S₁, S₂[A] [A] X-Map X₁, X₂[A] [A]

S-Maps S₁, S₂[A] [A] X-Map X₁, X₂[A] [A]

Figure 6.4.: Comparison of Method-A, Method-B, and Method-C for the combinatorial feature distance
calculation in the X-Maps generation process. One genuine and one imposter sample
pair is taken from LFW. All X-Maps are generated utilizing a FaceTransformer model,
fine-tuned with OLT. Adapted from [4†].

These examples illustrate the challenge to derive a clear interpretation and diminish the conclusive-
ness of Method-A and Method-B. Nevertheless, they provide a form of explanation and offer another
way to interpret the model’s decision.

6.3.2.3. Facial Feature Splicing Test

To validate the efficacy of the explanation generation method — specifically, its capability to accurately
classify regions of similarity and dissimilarity within images — another experimental approach was
adopted. It involved the meticulous splicing of facial features from one image and their subsequent
integration into another image. This process was designed to rigorously test the method’s capability
in distinguishing between similar and dissimilar facial regions. In Figure 6.5 three examples of facial
replacements are depicted. In the left example, the eye region of the lower image is replaced by the eye
region of the upper image. The with Method-C generated X-Map highlights the replaced eye region
as very similar and the remaining facial area as dissimilar, which understates the interpretation of
the X-Map as a kind of similarities and dissimilarities. In the center example, the half side of the face
of the lower image is replaced by the half side of the face of the upper image. The X-Map generated
by the proposed method highlights the replaced half side of the face as similar and the remaining
facial area as dissimilar. In the right example, the eye and mouth of the lower image are replaced by
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Inputs I₁, I₂ Inputs I₁, I₂ Inputs I₁, I₂ X-Map X₁, X₂[C] [C]X-Map X₁, X₂[C] [C]X-Map X₁, X₂[C] [C]

Figure 6.5.: Three example pairs from LFW containing facial replacements and the corresponding
X-Map generated by a FaceTransformer model fine-tuned on MS1M-V2, with the proposed
process. Adapted from [4†].

the eye and mouth of the upper image. The generated X-Map reveals the strong similarity of the left
eye and mouth in contrast to the remaining facial parts, which are categorized as dissimilar. However,
this effect is weakly pronounced in the right example.

6.3.2.4. Sensitivity Studies

To get a better understanding of the influence of the shape used for the systematic image occluding,
the foundation of the X-Map generation process, multiple sensitivity studies are conducted. The
shape, size, edge quality, and coloring of the patches used in the systematic image occlusion algorithm
Algorithm 1 are varied and the S-Map are generated with Method-C for the combinatorial feature
distance calculation. The results of these sensitivity studies are depicted in Figure 6.6. As a reference,
the S-Maps with the default settings, i.e., all patches are black colored, square shaped and the edges
are sharp, are shown in the top center of Figure 6.6.

First, three different patch sizes 7 × 7 px, 14 × 14 px, and 28 × 28 px are used for the systematic image
occlusion algorithm and shown in the bottom left of Figure 6.6. The smallest patch generates a
the most fine-grained S-Map and highlights small areas differently compared to using the largest
patch. The behavior is linear between the patch sizes. In order to obtain one generalized S-Map with
information from different levels of granularity, the maps for all three patch sizes are merged and
weighted based on the area of the patches (see Equation (6.10)).

Second, the coloring of the patches is varied and displayed in Figure 6.6 at the bottom center. In
contrast to the reference X-Map, the gray, white, and noisy occlusions generate X-Maps with higher
intensities. However, the difference between the coloring is only marginal.

Third, in the reference method, the occlusions are sharp, i.e., the masks only contain the values 0
and 1. To analyze the effect of the edge quality, the occlusions are Gaussian blurred with different
kernel sizes and sigmas ({7, 14, 56}). Similar to the patch size itself, this heavily affects the S-Maps
regarding visual granularity observable in bottom right of Figure 6.6. The larger the kernel size and
sigma, the more blurred the S-Map becomes. Interestingly, using a large kernel size and sigma, the
dissimilar areas are getting more prominent in the S-Maps. The gradual transition from white to black
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Mask Size

X-Map 
Generator

Mask Coloring Mask Edge

Mask Shape S-Map S₁[C]

Inputs I₁, I₂ S-Maps S₁, S₂[C] [C]

S-Map S₁[C]S-Map S₁[C]S-Map S₁[C]

Figure 6.6.: Sensitivity studies on different patch size, edge quality, coloring, and shape of the occluded
areas. A sample image pair from LFW is taken as the sample and reference S-Map. All S-
Maps are generated utilizing a FaceTransformer model fine-tuned with OLT on MS1M-V2.
Adapted from [4†].

inside the occlusion masks is likely causing certain facial features to be altered in such a way that
they are no longer correctly recognized, leading to a change of the identity. Since there are naturally
no sharp transitions from one facial region to another in a human face, this interpretation is quite
reasonable.

Lastly, the S-Map generation process is done with circle-shaped patches instead of square shape.
As obvious in top right of Figure 6.6 the shape does not have a significant influence on the resulting
S-Map.

In conclusion, these sensitivity studies reveal, that the S-Map content depends controversy on the
patch characteristics. Whereas the patch size and edge quality have the most significant impact,
the coloring and shape have only a marginal effect. Therefore, some patch characteristics should be
adjusted carefully to the purpose of the X-Map.
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6.4. Web Platform

This section briefly explains the eXplainable Face Verification platform[i], developed besides the X-Map
and C-Score algorithms. The platform is designed to present the qualitative results of the approach
and to help the community familiarizing with several test datasets and different model behaviors.
Therefore, X-Maps and C-Scores are calculated for two FV models and several popular datasets. The
datasets include LFW [31], CALFW [94], CPLFW [92], SLLFW [97], and XQLFW [3†]. The models
are the FaceTransformer [91] and the ArcFace [47], each fine-tuned with the OLT [2†] method. The
interactive platform has two main functionalities as illustrated in Figure 6.7:

The “Explorer” page, which contains an interactive table where users can filter and sort the data
containing the image pairs, the corresponding metadata, the C-Score values, cosine distance, decision
threshold, label, and image quality score as proposed in [3†].

The “Viewer” page, which presents the generated X-Maps in an interactive, adjustable way for every
image pair of the datasets. This includes the possibility to select different models, methods, and maps
for each pair of images. Additionally, the image quality scores, labels, predictions and C-Scores are
displayed for each pair. In total, the platform includes 30 k image pairs from five different datasets
and the results of two different models.

The platform is hosted entirely on the Google Cloud Platform and runs a flask [208] framework
inside an App Engine and the image data is stored in a Cloud Storage Bucket. To be able to interact
with the data, a SQLite[ii] database stores the metadata of the image pairs. The backend does all the
sorting, filtering, and accessing to improve the user experience.

[i]Available at https://explainable-face-verification.ey.r.appspot.com/ (accessed on March 20, 2024).
[ii]SQLite is a C-language library that implements a small, fast, self-contained, high-reliability, full-featured, SQL database

engine. Source: https://www.sqlite.org (accessed on March 20, 2024).

Screenshot of the „Explorer“-Module Screenshot of the „Viewer“-Module

Figure 6.7.: Screenshots of the “Explorer” and “Viewer” module on the eXplainable Face Verification
web platform. Sample images are taken from LFW database. Both screenshots were taken
on March 20, 2024.
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6.5. Conclusion

Although the platform is designed to be user-friendly, it is important to note that the platform is
not optimized for mobile devices and the user experience may be limited on smaller screens. Moreover,
the platform contains insights for only two FV models, thus make it difficult to generalize the results.

6.5. Conclusion

This chapter presented the in [4†] introduced methods to further explain the decision-making process
of FV models. The C-Score is a confidence score for an FV model’s prediction and C-Score is a
measurement of the model’s confidence in its prediction. It utilizes the distribution of other cosine
distances produced from the model to get a level of confidence for a particular prediction. The
proposed X-Map algorithm generates a visualization of the influence of different parts of an image
on the prediction of a model, based on systematic occluding the input images and measure the
change in cosine distance. The experimental results revealed that the interpretation of X-Maps is
not as straightforward as it seems and is only able to highlight locally appearing similarities. Hence,
more global identity features, e.g., skin color or face shape, are not revealed. Both methods share
a model-agnostic characteristic, i.e., the C-Score and X-Map can be applied to any FV model (if
the extracted facial features can be accessed). Moreover, a web platform is developed to present
the qualitative results of the approach and to further enlighten the characteristics of various FV
benchmarks and models. Although the focus of the proposed algorithm is explicitly on faces, the
approach is not limited to the domain of faces and can potentially be applied to other binary decision
problems.
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“One never notices what has been done; one can only see what remains to be done.”

− Marie Curie



Chapter 7.

Human Performance and Fusion Strategies in Face
Verification

This chapter slightly expands beyond the main focus of the dissertation, which is primarily on Cross
Resolution (CR) Face Verification (FV), to examine the combination of machine and human operators
in the FV task. The study presented here, including its methods and results, does not solely focus on
the CR domain but also involves experiments with various other challenging datasets. This chapter
primarily encompasses the contributions published in [5†] at the 18th International Conference on
Machine Vision Applications (MVA) in 2023. The study investigates the effect of a combination of
machine and human operators in the FV task. After a brief review of the related work, a look closer at
the edge cases for several state-of-the-art models to discover common datasets’ challenging settings
is presented. Then, the study design is outlined, and a fusion strategy to combine human and machine
prediction for the FV task is introduced. The result section thoroughly analyses the human tasks
and finally demonstrates that combining machine and human decisions can further improve the
performance of state-of-the-art FV systems on various benchmark datasets. The chapter concludes
with a discussion of the results and limitations of the study.

7.1. Related Work

Human performance in FV or face matching has been extensively studied. However, only a few works
investigated human FV accuracy on popular datasets commonly used to evaluate automatic Face
Recognition (FR) systems, hence drawing a comparison is not straightforward here. In [110], the
authors conducted a study using Amazon Mechanical Turk[i] workers and evaluated the accuracy on
the Labeled Faces in the Wild (LFW) [31] database, achieving 99.2%. To the best of our knowledge,
no studies have yet been conducted on measuring human FV accuracy for other significantly large
benchmark datasets.

From a psychological perspective, the characteristic of the study design to measure FV ability of
humans has attracted several researchers. Howard et al. [209] investigated the influence of prior face
identity decisions on subsequent human judgments about face similarity, e.g., users get feedback of
their performance on the latest task. Their study revealed that prior identity decision labels alter

[i]A crowdsourcing platform from Amazon, where humans perform tasks that computers are currently unable to do
efficiently.
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volunteers’ internal criteria for judging face pairs. Fysh and Bindemann [210] examined the impact
of onscreen trial labels with consistent, inconsistent, or unresolved information on face-matching
accuracy. Their experiments demonstrated that human face-matching decisions are influenced by
onscreen identifications, leading to increased accuracy when information is correct and increased
errors when information is misleading. In [211], the authors explored the potential improvement in
accuracy resulting from using multiple-image arrays in unfamiliar face-matching tasks. The study
found that simultaneous viewing of multiple images of the same person improved matching accuracy.

Other works have focused on developing standardized tests for human analysis in face-matching
tasks. E.g., [212] introduced the Glasgow Face Matching Test (GFMT), which presents two images
(genuine or imposter) taken in the same pose, minutes apart, with high-quality cameras to the
subjects. Despite these apparently optimal conditions, the authors state that this task is not trivially
easy, and they have demonstrated that there is large inter-individual variation in FV performance.
After more then a decade, White et al. [213] improved the GFMT and introduced the GFMT-2, an
enhanced version of a widely used measure for unfamiliar face matching ability, featuring four
key improvements. These improvements include increased variation in test items for more realistic
face identification challenges, equal difficulty in short and long test versions for repeated testing,
elimination of repeating face identities, and separate short versions for exceptionally high or low
performers. In the same year, the Oxford Face Matching Test (OFMT) [214] was published. It is a test
designed to identify individual differences in face processing abilities across the full spectrum, from
prosopagnosia[ii] to super recognizers. By using FR algorithms to obtain unbiased face pair similarity
ratings, the test addresses the challenge of establishing difficulty for atypical groups who may use
different strategies for face processing. Across five studies, the OFMT demonstrated sensitivity to
individual differences in various populations, with test-retest reliability comparable to the Cambridge
Face Memory Test [215] and the GFMT.

More closely related to the use of deep Convolutional Neural Network (CNN) for FV, Abudarham et
al. [216] investigated the representation of face identity in deep CNNs and whether these networks
rely on the same facial features used by humans for FR. The findings reveal that deep CNNs optimized
for face identification are tuned to the same facial features as humans, with sensitivity to these
features and view-invariant face representation emerging at higher layers in deep CNNs optimized
for FR. The results validate human perceptual models of FR, support the use of deep CNNs for testing
predictions about human face and object recognition, and contribute to the interpretability of deep
CNNs.

7.2. Preliminary Analysis of Edge Cases

To better understand the challenges faced by state-of-the-art FV models on various benchmarks, a pre-
liminary analysis with the in Chapter 6 proposed Confidence Score (C-Score) method was conducted.
Therefore, three predictions and corresponding C-Scores of ArcFace [47], FaceTransformer [91], both

[ii]Prosopagnosia: Also known as face blindness, is a cognitive disorder of face perception in which the ability to recognize
familiar faces, including one’s own face (self-recognition), is impaired, while other aspects of visual processing (e.g.,
object discrimination) and intellectual functioning (e.g., decision-making) remain intact.
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Figure 7.1.: C-Score [4†] distributions of three state-of-the-art face verification models trained on
MS1M-V2 [47, 62] on several face verification benchmark datasets as in [5†].

fine-tuned with the Octuplet Loss Training (OLT) [2†] method (see also Chapter 5) as well as the
ProdPoly network [107] are analyzed. The following datasets are utilized in the experiment: Cross-Age
Labeled Faces in the Wild (CALFW) [94], Cross-Pose Labeled Faces in the Wild (CPLFW) [92], Masked
Labeled Faces in the Wild (MLFW) [99], and Cross-Quality Labeled Faces in the Wild (XQLFW) [3†].
The C-Score distributions are presented in Figure 7.1. The colors represent the amount of classified
FV image pairs within the respective C-Score range. In general, there is no clear pattern recognizable
across the datasets or models. However, the most challenging dataset for the models appears to be
the masked dataset MLFW, which is in line with the low accuracy (see also Table 7.3). Interestingly,
the ProdPoly model takes it’s decisions on the CALFW database with significantly higher C-Score
than other models. Moreover, the ArcFace + OLT model is significantly less confident in it’s decisions
on the MLFW database. This preliminary analysis motivates further investigation into what are these
edge cases where the model show low C-Score and potentially wrong predictions, and could human
operators potentially perform better in these cases.

7.3. Methodology

Inspired by the recent work of Zheng et al. [217], which introduced a fusion of an Artificial Neural
Network (ANN) with pathologists for predicting EBVaGC[iii] from histopathology, the aim of the
work in this chapter is to propose and analyze a similar fusion of state-of-the-art Deep Learning (DL)
networks with human decisions for FV. In contrast to the work of Carragher et al. [218] human
operators are used to evaluate only machine predictions with low confidence. This section first

[iii]Epstein-Barr Virus (EBV)-associated Gastric Cancer
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outlines the survey construction, followed by the user interface design. Finally, the algorithm to fuse
human operator’s and machine’s decisions is introduced.

7.3.1. Survey Construction

Due to the large number of image pairs (6 000) per dataset (4), it’s not feasible to use all pairs for each
participant in the survey as this would overwhelm the users. The survey was divided into five parts,
with specific image pairs from various datasets (see Section 7.2) being selected to manage this issue
effectively.

The aim for Survey 1 is to first construct a reference dataset, which is identical for all participants
and includes image pairs of different modalities and difficulty. Therefore, based on the mean C-Scores
across the three FV models (see Section 7.2) the image pairs are divided into four bins for each
database. From each bin, one genuine and one imposter image pair are randomly selected, resulting in
a total of 40 image pairs. This dataset is denoted as the BASE benchmark and serves as the reference
for the subsequent surveys.

Following up, Survey 2–5 are constructed to investigate the performance of human operators in
comparison to the FV models on the different modalities, i.e., masked, low-quality, cross-pose and
cross-age images. Each of the survey is constructed according to the following procedure: First, the
image pairs are divided into ten equally sized bins based on the mean C-Score of all models. From
each bin, 30 image pairs are randomly selected. This is done to represent the whole range of C-Score
levels of the models. Additionally, all image pairs where the minimum C-Score of all three models
falls below a threshold of 50% are included in the pool, to ensure that all low confident predictions
are evaluated by human operators. This procedure results in four image pair pools containing in
total 7 445 tasks. Table 7.1 summarizes the image pair statistics for all constructed surveys. The
number of image pairs for the CALFW dataset is significantly lower than for the other datasets, as
the mean C-Score of the models is much higher on this dataset. In contrast, the most workload for
the participants in terms of the number of tasks is required for the MLFW dataset, as the models have
the lowest mean C-Score on this dataset. The ratio between genuine and imposter pairs is slightly
imbalanced, with more imposter pairs than genuine pairs. This is due to the fact that the models are

Table 7.1.: Statistics for the five conducted surveys (Survey 1–5) constructed from various face verifi-
cation benchmark datasets.

Datasets

BASE CALFW [94] CPLFW [92] MLFW [99] XQLFW [3†]

Survey 1 2 3 4 5

# Pairs in Pool 40 684 1 385 3 561 1 815
# Pairs per User 40 12 24 60 31
% of Total Pairs − 5.37 10.28 28.58 13.58
% Genuine 50.00 47.08 44.55 48.16 44.90
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generally more confident in their predictions for genuine pairs, resulting in less confident predictions
for imposter pairs.

In contrast to Survey 1, the image pairs for Survey 2–5 are unique for each participant, i.e., no image
pair is displayed twice. The ratio of genuine and imposter pairs varies for each user. The survey was
constructed to target 60 participants, which results in a total of exactly 167 tasks per participant, with
the exception of the last three participants that receive fewer image pairs as the respective image pair
pools were depleted. This amount of tasks was chosen, based on the findings of a prior user study,
which is not covered in this work, to ensure that the participants are not overwhelmed by the workload
and can complete the survey in a reasonable amount of time. Overall, 9 845 tasks are displayed to
the participants. The tasks of Survey 1 are displayed in a random order to the participants, to avoid
unintended information exchange between users. For Survey 2–5, the image pairs are randomly
selected from the corresponding pool of images for each participant.

7.3.2. Survey Design

The survey is distributed with a web-link to the participants. To participate, users must first register
on the survey website, where they are asked to voluntarily provide their age, ethnicity, and gender.
After registration, general information about FV and the survey procedure is displayed. Participants
can complete the surveys at their convenience and the surveys are designed to be completed in
multiple sessions, with the progress saved for each participant.

When the user starts a survey, the tasks are displayed one after the other. For each image pair,
the user must decide whether the two images show the same or different identities and rate their
C-Score regarding the answer (see left part of Figure 7.2). The user can adjust a slider, which ranges
from “uncertain” to “certain” without any numerical indicators or additional information. The default
position of the slider is at the midpoint, corresponding to a value of 0.5, with the internal range of
values extending from 0 (uncertain) to 1 (certain). Note that internally the human operator’s certainty
𝐶
∗ is converted to the C-Score range of [0.5, 1], which is done via the formula 𝐶 = 0.5 + 0.5 ⋅ 𝐶

∗. The
duration of each task is also recorded in the background, by measuring the time elapsing from the
page load until the user clicks the “next” button. It is important to note that this approach may not be
entirely accurate, as some users might load the question, leave their computer for an extended period,
and then return to answer the question. To account for this, outliers ≥ 60 s from the evaluation of the
survey duration are mapped to a fixed value of 60 s. To force the user to make a decision, the “next”
button is disabled until the user has moved the slider. After completing at least one question in the
survey, participants can leave the survey by clicking on the exit button and review the accuracies of
their answers thus far, along with the corresponding FV model’s performance in a dashboard (see
right part of Figure 7.2). When the user returns to the survey, they are redirected to the last question
they answered. To show the user’s progress, the number of completed tasks is shown at each task
and in the dashboard including additionally the status of all survey.

Participants are not informed of the ratio of genuine and imposter pairs or the labels of the image
pairs. To prevent any influence on the participants’ performance, the models’ predictions are not
displayed to the participants as proposed in [210]. Moreover, there is not feedback on the correctness
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A Single Question of the Survey User Dashboard

Figure 7.2.: Left: The design of the face verification task with an example image pair from CPLFW [92]
database. Right: The dashboard for the users to see their results and survey completion
status.

of the answers, as this could influence the participants’ decisions on subsequent questions, particularly
by revealing whether the previous answer was correct or incorrect [209].

More technically speaking, the survey was hosted on the Google Cloud Platform and running inside
an App Engine connected to an SQL database, which allows to complete the survey in multiple parallel
sessions. The code for the survey platform is written in Python using the Flask [208] framework.

The survey was advertised to colleagues, undergraduates, friends, and family to encourage partici-
pation. To motivate the research community to follow up on this survey, the code and data for the
developed survey tool was published on GitHub[iv].

Data for this study was gathered online over a 14-day period in March/April 2023.

7.3.3. Human-Machine Fusion

To examine the potential of combining human and machine decisions in the FV task, a simple fusion
algorithm is proposed. This algorithm is designed to decide based on the C-Score of human operators
and machine models whether to accept the human decision or the machine decision. The algorithm is
illustrated in Figure 7.3 can be outlined as follows: First, a minimum C-Score threshold 𝑡M of 68.5 % is
set for machine decisions to be directly accepted. Any machine decisions falling below this threshold
are considered for comparison with the human confidence. If the human C-Score for a particular
question exceeds a specified threshold 𝑡H of 55.5 % and surpasses the machine C-Score by at least

[iv]A widely-used platform that facilitates version control and collaboration, allowing developers to host and review code,
manage projects, and build software together.
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Figure 7.3.: Flowchart of the proposed human-machine fusion algorithm as introduced in [5†].

2.5 %, the human decision preferred over the machine. After collecting the human feedback in the
surveys on the pool of image pairs for all datasets, the proposed fusion algorithm is applied to all
6 000 pairs in each dataset.

7.4. Results

First, a few challenging edge case scenarios are presented. Then, the characteristics of the participants
in the survey are discussed, followed by a detailed analysis of Survey 1. After reviewing the results of
the remaining Survey 2–5, the human-machine fusion strategy is evaluated.

7.4.1. Edge Cases in Face Verification

As depicted in Figure 7.1 of Section 7.2, there are many image pairs in the datasets where the machine
models have a very low C-Score in their predictions.

After conducting the surveys, there exists a subset of these image pairs where the human operators
perform significantly better than the machine models. Figure 7.4 presents four genuine and four

ImposterGenuine

Figure 7.4.: Example image pairs from CALFW, CPLFW, MLFW, and XQLFW where human decisions
are correct and with higher C-Score than face verification models.
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imposter image pairs holding this characteristics. The upper left row shows genuine examples from
the CALFW and CPLFW datasets, which are of a good image quality with no occlusions. Hence,
they seem to be easy for humans to solve. The lower left row displays genuine examples from the
MLFW and XQLFW database. These examples are more challenging due to the low image quality
and occlusions, but still solvable for humans. On the right side, imposter examples from the CALFW,
XQLFW, and MLFW datasets are shown and although they are more challenging, they are still solvable
for humans. This variance showcases humans’ ability to outperform machines in FV, particularly
in conditions that are traditionally challenging for machine models, thus highlighting the nuanced
capabilities of human perception over current machine models in specific scenarios.

7.4.2. Characteristics of Study Participants

In the registration process, participants were asked to provide their age, ethnic background and
gender on a voluntary basis. The distribution of these characteristics is shown in Figure 7.5. The
mean age of the participants is 37.22 (±17.41) years within a range from 20 to 72. The majority of the
participants being male (60.00 %), followed by 33.33 % female and 6.67 % preferring not to state their
gender or marked other. Considering the ethnic background, 53 participants stated as ‘Caucasian’, one
participant as ‘Mixed’, one as ‘Other’, two as Middle Easter and three provided no ethnic background
information. In conclusion the participants are predominantly Caucasian, which is somewhat closely
related to the identities inside the datasets used in this study as reported by [219]. The results of the
following surveys are hence to be interpreted with caution, as the results may not be generalizable to
the entire population.

7.4.3. Survey 1

The first survey Survey 1 was conducted to establish a reference dataset for the subsequent surveys.
The results of this survey are presented in this section. First the overall feedback collected from the
60 participants on the 40 image pairs in the BASE dataset is illustrated in the left of Figure 7.6. The
answers are horizontally categorized depending on the ground truth label of the image pairs and the

Male Female Others or no Response

A
ge

20

40

60

-

Caucasian

No Response

East Asian

Middle Eastern

Mixed

Other

Figure 7.5.: Characteristics of the participants regarding age, gender and ethnicity on a voluntary
basis.
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color indicated a wrong (red) or false (green) classification of the task. Note that the ratio between
genuine and imposter pairs is equal in this BASE dataset. On the vertical axis, the recorded C-Score
values from the participants is displayed. In both distributions it is visible that the minimum and
maximum possible C-Score values are very frequent, i.e., the human operator puts the slider entirely
to the left (uncertain) or right (certain). In between this range, the distribution is more sparse, with
a slight tendency towards higher C-Score values. The C-Score levels of the human operators are
distributed according to two approximately Gaussian curves, ranging from 50 to 75, and from 75 to
100, respectively. There is a noticeable dip in C-Score levels around the 75 mark, likely a consequence
of the slider’s design characteristics (see Section 7.3.2). The C-Score value distribution for the genuine
pairs show higher density of wrong classified tasks compared to the imposter pairs.

A histogram for the duration, which each participant took to answer a task, is shown in the right
of Figure 7.6. The overall mean duration per task is 10.71 s (±8.38 s). When analyzed individually
between the participants, i.e., taking the mean on all tasks per human operator, the mean duration is
10.84 s (±5.25 s), and when considered in between the task, i.e., taking the mean on all operator for
each specific task, it is 10.73 s (±2.50 s). This indicates that there is a bigger variation in between the
human operators, than in between the different questions. In other words, the difficulty is relatively
consistent across all tasks, but some participants are consequently faster in answering the questions
than others. Differentiating between the time taken for the genuine and imposter image pairs, it is
visible that participants took on average 11.44 s (±8.72 s) for genuine image pairs and 9.98 s (±7.96 s)
for imposter image pairs. From this, one can interpret, that if there are two different identities
displayed to a human operator, this impacts the decision making process and takes shorter than if the
same identity is displayed. In other words, human operators think longer about their decision if the
same identity is displayed. This finding is in line with the results on the mean durations depending
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Figure 7.6.: On the left, distribution of participant’s answers with respect to their rated C-Score on
genuine and imposter image pair tasks of the BASE dataset used in Survey 1, adapted
from [5†]. On the right, histogram of the durations for the tasks in Survey 1.
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on the answer, where the participants took on average 11.66 s (±8.78 s) for giving a “same” answer
and 10.22 s (±8.12 s) for giving a “different” answer.

Although no correlation could be detected between age and accuracy or confidence, in terms of
duration, older participants took longer to answer the questions.

On the left in Figure 7.7 the FV accuracy is put into relation with the C-Scores of the participants.
Each data point pair corresponds to all responses from a unique participant in the survey. The
responses are divided into genuine (green) and imposter (red), with the mean C-Score and mean
accuracy of the responses compared. On average, both the C-Score and accuracy of participants were
lower for genuine pairs than for imposter pairs. This can also be partially identified by the trend of
the connections between data points, which mostly run from bottom left to top right. Looking at
the absolute values, one can determine that the accuracy for genuine pairs often falls below 50 %

percent, which is worse than random guessing. In general, participants much more frequently gave
the prediction “different” (1 586) than “same” (814). Since both pairs occurred equally often in the
survey, higher accuracy for imposter pairs is also expected. Considering all tasks to be answered,
the average accuracy among the participants is 67.25 % (±8.53 %) and the average C-Score is 79.83 %
(±7.31 %). The correlation coefficient between accuracy and C-Score is 0.44 (𝑝 < 0.001), indicating a
moderate correlation.

The right chart in Figure 7.7 now relates the answers of the participants to the ‘machine’ predictions
on the same task. In only one task out of the 40 tasks in the BASE dataset human C-Score is higher
than the machine C-Score and the human prediction is correct, while the machine prediction is
incorrect. In contrast, in six tasks the human prediction is incorrect, while the machine prediction
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Figure 7.7.: Left: Accuracy versus C-Scores by participant for BASE dataset tasks, adapted from [5†].
Right: Mean C-Score of human and machine predictions (FaceTransformer + OLT, ArcFace
+ OLT, and ProdPoly, trained on MS1M-V2) per task. The green bar represents tasks where
human predictions are correct but machine predictions are incorrect, the red bars indicate
scenarios where machine predictions are correct but human predictions are incorrect, and
the black bars show cases where both human and machine predictions are either correct
or incorrect for the same task.
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is correct. In the remaining 33 tasks, both the human and machine are either correct or incorrect.
This indicates that there is a potential for human operators to outperform the machine models in
some cases, but the machine models are generally more reliable. However, in this database, it is
preferred to use the machine models’ predictions over the human operators’ predictions, as the
human operators’ decision would lead to six more incorrect predictions, while only one more correct
prediction. Considering only human decisions with higher C-Score than the machine decisions, one
more correct prediction would be made, but still also two more incorrect predictions. In contrast
to the human operators’ accuracy of 67.25 %, the mean machine accuracy on the BASE dataset is
85.00 %. The mean C-Score of the machine models is 76.20 % (±14.15 %), which is lower than the
human operators’ C-Score of 79.83 % (±6.49 %) among the tasks. Note, that the standard deviation in
this case is calculated among the tasks, in contrast to the standard deviation among the participants
in the previous paragraph.

7.4.4. Survey 2–5

To evaluate the human performance and the relation to machine predictions on more challenging
datasets, this section presents the results on the Survey 2–5. Note, that in this scenario each task
is answered by exactly one participant. As in the previous section, the human and mean machine
C-Scores are reported for Survey 2–5 (CALFW, CPLFW, XQLFW, and MLFW database) in Figure 7.8.
In contrast to the chart for the BASE dataset (see Figure 7.7) the tasks on which human and machine
predicted equally are skipped and only tasks where human C-Score is higher than the machine is
selected to ensure a better visibility. Here also the mean prediction across the three machine models is
taken into consideration. The results on Survey 1 show that taking the decision with higher confidence,
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Figure 7.8.: Mean C-Score of human and machine predictions (FaceTransformer + OLT, ArcFace +
OLT, and ProdPoly, trained on MS1M-V2) per task for Survey 2–5. Green bars show
correct human but incorrect machine predictions, red bars for incorrect human but correct
machine predictions, and black bars where both human and machine predictions are
either correct or incorrect. Cases where the machine C-Score was higher than the human
confidence, as well as cases where both gave the same predictions, were disregarded.
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Table 7.2.: Accuracy and C-Score of machine models (fine-tuned on MS1M-V2 database) and human
operators in Survey 2–5.

Accuracy [%] Confidence [%]

Model Survey 2 Survey 3 Survey 4 Survey 5 Survey 2 Survey 3 Survey 4 Survey 5

ArcFace + OLT [2†] 93.37 86.92 91.87 68.51 94.06 (± 10.53) 88.62 (± 13.36) 92.23 (± 12.28) 71.14 (± 13.16)

FaceTransformer + OLT [2†] 94.67 90.83 94.12 83.33 95.02 (± 9.70) 91.76 (± 12.04) 94.37 (± 10.84) 83.53 (± 14.57)

ProdPoly [107] 95.95 92.34 84.40 90.30 98.30 (± 3.26) 95.42 (± 8.47) 85.59 (± 14.89) 91.22 (± 11.99)

x 66.23 68.38 70.19 64.48 82.93 (± 13.13) 80.54 (± 14.43) 75.06 (± 16.30) 80.18 (± 13.81)

with human operators only one misclassified task of the machine can be corrected. However, at the
same time four tasks are misclassified by human operators. The same behavior, while in a different
magnitude of tasks is present for Survey 3 and Survey 5. In contrast, for Survey 4 the human operators
are able to correct more misclassified tasks of the machine models. This indicates that the human
operators are more capable of solving tasks on the XQLFW dataset than on the other datasets and a
simple fusion strategy (just decide upon higher confidence) on this dataset could be beneficial to
improve the overall performance.

In addition to the results in Figure 7.8, the accuracy and C-Score of the machine models and human
operators on Survey 2–5 are summarized in Table 7.2. Note, that only the subsets of image pairs of
the origin datasets (see Section 7.3.1) are considered in this table. The accuracy of the three selected
models is significantly less on the surveys compared to the overall dataset (see Table 2.3), which is
reasonable due to the selection of the image pairs with low confidence. In contrast to the machine
models accuracy, the human operators’ accuracy is remarkably low in all surveys. The same holds
for the C-Score values, except for the ArcFace + OLT model on the MLFW dataset. This indicates
that the human operators are not very confident in their decisions, which is also reflected in the low
accuracy. However, as the Figure 7.8 revealed, there are some tasks where the human operators are
more confident and correct than the machine models.

7.4.5. Human-Machine Fusion

The previous results showed that human operators are able to outperform machine models in some
cases, particularly in scenarios, where machine models have a low C-Score for their decision. This
leads to the question of whether a fusion of human and machine is beneficial to improve the overall
performance. In this section, the simple fusion strategy as introduced in Section 7.3.3 is applied to
the all image pairs of the four datasets. This implies that only a selective segment of the full datasets
is taken into account for fusion, particularly those chosen based on the machine models’ C-Score
levels as outlined in Section 7.3.1. Evaluations of all other pairs of images are conducted exclusively
by machine models. This strategy offers two primary benefits: It necessitates human evaluation for
only a specific subset of image pairs, thereby saving considerable time given the large volume of pairs
within the datasets. Furthermore, it guarantees that human evaluators only review those image pairs
that pose difficulties for the machine models.
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Table 7.3.: Face verification accuracy for the machine models and the fusion approach. The icon x is
denoting human decisions. The values in parentheses indicate the improvement over the
machine model. The number of human decisions considered in the fusion approach is also
denoted. All models are trained on the MS1M-V2 database.

Accuracy [%] for Datasets

Model CALFW [94] CPLFW [92] MLFW [99] XQLFW [3†]

ArcFace + OLT [2†] 93.85 88.37 73.53 93.27
ArcFace + OLT [2†] + x 94.03 (+0.18) 88.83 (+0.47) 75.88 (+2.35) 93.65 (+0.38)

# x Decisions 241 (4.02 %) 470 (7.83 %) 1871 (31.18 %) 257 (4.28 %)

FaceTransformer + OLT [2†] 94.93 91.58 85.63 95.12
FaceTransformer + OLT [2†] + x 94.93 (0) 91.73 (+0.15) 85.70 (+0.07) 95.28 (+0.17)

# x Decisions 187 (3.12 %) 311 (5.18 %) 778 (12.97 %) 172 (2.87 %)

ProdPoly [107] 96.03 92.75 91.30 86.90
ProdPoly [107] + x 96.13 (+0.10) 92.82 (+0.07) 91.35 (+0.05) 88.05 (+1.15)

# x Decisions 17 (0.28 %) 125 (2.08 %) 325 (5.42 %) 605 (10.08 %)

Table 7.3 displays the outcomes of fusing human and machine decisions across four benchmark
datasets. The values in parentheses indicate the improvement over the purely machine-based model.
It is evident that the fusion surpasses the performance of machine models alone on all datasets.
Moreover, it becomes clear that the lower the accuracy of the model, the more human decisions are
required to enhance the overall performance of the fusion approach. Generally, it can be stated that
the fusion approach offers minimal benefits for the CALFW dataset. For all other datasets, it provides
added value; however, it is not distinctly clear whether this depends on the model or the dataset, as
no clear pattern emerges.

7.5. Conclusion

This chapter presents a study on human-machine fusion in FV tasks. A set of surveys was conducted to
evaluate the performance of human operators in comparison to machine models on various benchmark
datasets. The surveys are constructed from image pairs of several well known FV benchmark datasets
and are designed to investigate the performance of human operators in comparison to the machine
models on different modalities, i.e., masked, low-quality, cross-pose and cross-age image pairs. A
survey on the BASE dataset was conducted to establish a reference dataset for the subsequent surveys,
containing image pairs of different modalities and difficulty. The key findings on this BASE dataset
are that human operators perform better on imposter image pairs than on genuine pairs and at the
same time have a higher C-Score in their decisions. The subsequent surveys on subsets of CALFW,
CPLFW, XQLFW, and MLFW reveal that human operators are capable of outperforming machine
models in very specific scenarios. However, the machine models are generally more reliable.

To investigate the potential of combining human and machine decisions in the FV task, a simple
fusion algorithm was proposed. This algorithm is designed to decide based on the C-Score of human
operators and machine models whether to accept the human decision or the machine decision. The
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results of the fusion approach show that the fusion surpasses the performance of machine models
alone on all datasets. The lower the accuracy of the model, the more human decisions are required to
enhance the overall performance of the fusion approach.

However, the results of the study are limited by the low number of participants and the very
one-sided ethnic background of the participants (Cf ., [220]). Moreover, since the identities in the
dataset are predominantly public figures, the study encompasses a combination of familiar and
unfamiliar face matching, which could also influence generalizability (Cf ., [221]).
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Chapter 8.

Conclusion and Outlook

8.1. Conclusion

Having introduced the main body of this work in Chapter 1 and laying the groundwork in Chapter 2,
now the time has come to provide answers to the research questions posed in the introduction and
point towards interesting directions for future work:

Research Question 1: How does image resolution impact the performance of face recognition systems?

Chapter 3 presents the exhaustive analysis, published in [1†], to understand the impact of image
resolution on the performance of Face Recognition (FR) systems. By simply downscaling and upscaling
images to different raw-resolutions the performance of several state-of-the-art FR models is bench-
marked on various challenging datasets. The Face Verification (FV) accuracy is measured for Cross
Resolution (CR) and Equal Resolution (ER) scenarios and reveals the impact of image resolution on the
performance of FV systems. Moreover, the analysis is extended by looking at the feature distances of
the FV models to understand the impact of image resolution on the feature space. This work provides
a fundamental understanding of the impact of image resolution on FR systems. It highlights the
importance of considering image resolution in evaluating FR systems.

To further enhance the validity of this analysis, the degradation method could be further improved
by utilizing a more realistic downscaling approach, as e.g., the generation of Low Resolution (LR) im-
ages applied in Chapter 5. Furthermore, the impact of image resolution could be investigated in more
detail within the models, e.g., one could examine the individual layer maps within a Convolutional
Neural Network (CNN), or the effects on the activations within a CNN.

Research Question 2: What strategies can be developed to enhance the robustness of face recog-
nition systems against variations in image resolution?

This question is addressed by the development of three strategies for making FV systems more
robust to image resolution, which are described in Chapter 4 and published in [1†] and [2†]. The
Resolution Augmentation Training (RAT) strategy is a simple approach to enhance the robustness of FV
models by augmenting the images towards their raw-resolution during training. A more sophisticated
approach is the Contrastive Loss Training (CLT) technique. The contrastive loss principle is applied
additionally for training an FR network. By adding the feature distance between High Resolution (HR)
and LR images, the network is forced to learn a more robust feature representation. The third method
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incorporates the triplet loss principle and is called Octuplet Loss Training (OLT). By utilizing four
triplet loss terms, each building a relation between HR and LR images, the network is furthermore
forced to not only learn the relation between LR and HR version of a single image, but also the relation
between different images and different identities. Combined with a hard-negative mining strategy,
the OLT method is used to fine-tune existing FV models and further enhance their robustness against
variations in image resolution. The results show that all methods can indeed improve the overall
performance on a variety of FV benchmark datasets. While the RAT and CLT methods moderately
improve the performance, the OLT method shows the most promising results. Another advantage is
the adaptability of the OLT to arbitrary network architectures. In conclusion, the research conducted
in Chapter 4 highlights the importance of considering image resolution in the training of FR systems.
It provides strategies to enhance the robustness of FV models against variations in image resolution.

For future work, a promising direction is the exploration of the OLT method in other challenging
scenarios, such as masked FR, which shows many analogies to CR scenarios. Another interesting
direction could be to further optimize the fine-tuning process, particularly the online hard negative
mining strategy, which is computationally expensive. Moreover, the amount of data used for the
fine-tuning process is quite large, making the training time long. A prior offline mining strategy could
be developed to reduce the amount of data needed for the fine-tuning process while achieving similar
results.

Research Question 3: How can a new benchmark be designed to measure the performance of face
recognition systems on images with different resolutions more accurately and precisely than current
methods?

To address this question, the Cross-Quality Labeled Faces in the Wild (XQLFW) [3†] benchmark dataset
creation was introduced in Chapter 5. After having accessed the image quality of the Labeled Faces in
the Wild (LFW) dataset, the XQLFW dataset was created by synthetically downscaling a subset of
the images via subsequent blurring and nearest-neighbor downscaling to different resolutions. The
final dataset was then created by an algorithm that selects different quality level images to meet
the same evaluation protocol characteristics as the original LFW dataset. The dataset was then used
to evaluate the performance of FR systems on images with different resolutions. It reveals that the
robustness of several state-of-the-art FV models to image resolution varies. The increasingly frequent
use of the XQLFW dataset in the field of FV research highlights the significance and impact of this
work. Establishing a dedicated benchmark focusing on the raw-resolution of images is a promising
direction for future work in the field of FR, as it standardizes the evaluation of FR systems on images
with different resolutions.

In the future, the dataset could be further improved by the evolvement of ever more realistic
synthetic image downscaling to meet the natural characteristics of LR images even closer. The
methodology of the XQLFW dataset creation could be extended to video datasets, where the resolu-
tion of the video frames is also a crucial factor for the performance of FR systems. Focusing on face
identification, the methodology to create the evaluation protocol could be extended to generate face
identification evaluation protocols additionally. In general, to make a comparison of results in the
field of FR more reliable, the establishment of dedicated benchmarks focusing on the challenges of
FR is a promising direction for future work in the field of FR.
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Research Question 4: What methods can be established to provide clearer explanations for the decisions
made by face recognition systems?

To answer this question, Chapter 6 introduced the Confidence Score (C-Score) and Explanation Map
(X-Map) model-agnostic methods [4†] and showed the potential to provide meaningful explanations
for the decisions made by FV model. The C-Score, in other words, a level of confidence of any given
model decision, can be calculated by applying the model on a bunch of labeled image pairs, from
which a sigmoid function is estimated to map the feature distance to a confidence value. The X-Map
method is a visualization technique derived by systematically occluding parts of the face images and
measuring the deviation of the feature distance. For a given face image, the X-Map highlights the
regions of the face image that are most important for the decision made by the model. The results
showed that the C-Score is more meaningful than the feature distance value itself, as this value
is not directly interpretable and varies between different FV models. The qualitative results of the
X-Map method showed that the method can highlight the regions of the face image that are most
important for the decision made by the model. To showcase the contributions, an interactive web
platform was developed and published to visualize the X-Map results for five popular FV benchmarks.
Both methods have been applied beyond the scope of CR scenarios to further contribute to the
explainability of FV models and provide a deeper understanding of the decisions made by FR models.

Future work in the field of explainable FR could elaborate on taking not only the feature distance
itself but also an image quality or raw-resolution estimate, or other factors e.g., age, pose, gender,
race, or occlusions into account. As the results in Chapter 6 reveal, the interpretation of the X-Map is
not straightforward, and further research could be conducted on improving the interpretability of
the X-Map by adjusting the algorithm or finding a more suitable visualization technique. Especially
in CR scenarios, the X-Map itself might not explain sufficiently the model’s decision, as for human
observers, the face is hardly recognizable in very LR images. Therefore, combining super-resolution
techniques with the X-Map approach might be interesting.

Research Question 5: How do humans perform in borderline cases of face recognition, and can
an algorithm be developed to effectively fuse human and machine decisions to improve overall accuracy
in face recognition tasks?

Chapter 7 first investigated the challenging cases of FV in [5†], in where machine models fail to predict
correctly. By utilizing the C-Score, cases could be identified where the model is not confident in its
decision. A user study hypothesized that humans perform better in those edge cases in summary than
machine models. To verify this hypothesis, a user study was conducted in [5†], where participants
were asked to do an FV task on a selection of image pairs of several benchmark datasets. The study
revealed that there exist cases where humans can verify the given facial images better than machine
models and, importantly, with higher confidence. To answer the second part of the research question,
a simple fusion strategy was developed to combine the predictions of a model and human operators
based on their C-Scores. The results showed that the fusion strategy can improve the overall accuracy
of FR systems on several datasets.
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A possible direction for future work could be a calibration of the C-Score of the human operators
because this is a subjective value and could somehow be normalized. Another possibility is the
utilization of X-Maps from machine models to provide human operators with additional information
to make their decisions. Furthermore, the fusion strategy could be further improved by utilizing more
sophisticated algorithms or even incorporating machine learning techniques to decide not only based
on the C-Score but also on other factors, such as the images themselves, the quality of the images, or
the X-Map results. In general, the study conducted in Chapter 7 is limited due to the small number
of participants, and a more extensive study could be conducted to further validate the results.

8.2. General Outlook

After having answered the research questions, a more general outlook on exciting directions for future
work in the field of CR FR is given in the following:

Explainability. The field of Explainable Artificial Intelligence (XAI) is growing and has seen much
interest in recent years. The ability to explain the decisions made by a model is crucial for the
acceptance of Artificial Intelligence (AI) in real-world applications [222]. In the context of robust FR,
explainability is important for developers to understand the model’s decisions and identify potential
to make them more robust towards image quality or resolution.

Network Architectures. Recent advancements tend to show a shift in research towards utilizing
the Vision Transformer (ViT) technology in robust FR models and could be a promising direction to
follow up. The exploration of hybrid architectures that combine the strengths of CNNs and ViTs also
represents a promising direction for future work in FR.

Bias. The issue of bias in FR has been a topic of interest in recent years. Previous approaches to bias
mitigation in FR have primarily focused on pre-processing the training data, incorporating penalties
during training to mitigate bias, or post-processing predictions to reduce bias. However, these methods
have shown limited success in addressing bias in challenging FR tasks. Future work could focus
more on the networks themself, such as very recently Dooley et al. [223] did, who proposed a neural
architecture search for fairness, jointly with a search for hyper-parameters.

Synthetic Face Generation. Advancements in synthetic face generation have also led to the creation
of synthetic datasets. Wood et al. [224] introduced a dataset of 100, 000 fake images generated
by combining a procedurally-generated parametric 3D face model with a comprehensive library of
hand-crafted assets. The dataset is designed to be used for training and evaluating computer vision
analysis, such as landmark localization and face parsing. The authors show that synthetic data can
both match real data in accuracy as well as open up new approaches where manual labeling would
be impossible. This is a promising direction and could probably be used to create more realistic and
much larger synthetic datasets that incorporate a wide range of image resolutions. Training on such
datasets, in turn, could potentially lead to more robust FR models and push the boundaries of the
current state-of-the-art.
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Appendix A.

Notation

This appendix briefly introduces the notation used throughout this work. The notation is based on
the style manual published by the Institute of Electrical and Electronics Engineers (IEEE) [225].

References

Self-citations are highlighted by a †, e.g., [1†]. Any other citations are not highlighted, e.g., [1].
References are ordered by appearance in the text. Multi-references are separated by a comma in
alphanumerical order, not in the order of appearance in the text, e.g., the works of Knoche [2] and
Rigoll [1] were both completed in 2024, or in other words, the works [1,2] were both completed in
2024. To avoid clutter from frequently recurring references, each reference is usually repeated only
once per paragraph unless an attribution is ambiguous. Besides, footnotes are marked by Roman
letters.[i]

Acronyms

Each acronym is introduced at least once in the text at the point of its first occurrence in every
chapter. The assignment of articles to acronyms is guided by the pronunciation of the first letter
of the acronym within the context of the research field. E.g., we refer to ‘an’ face recognition (FR)
system and ‘a’ convolutional neural network (CNN), but ‘a’ residual network (ResNet). To prevent
ambiguity in plural forms, an ‘s’ is added to the end of acronyms for pluralization, as in ‘CNNs’ being
the plural form of CNN.

Mathematics

The mathematical notation follows the International Organization for Standardization (ISO) 80000–2
standard where possible [32]. The most important aspects are summarized below:

• Scalars are written in lower-case letters, e.g., 𝑎.

• Constant scalars or scores are written in capital letters, e.g., 𝐶.

[i]This is a footnote
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• Vectors are written in bold letters, e.g., v.

• Matrices and tensors are written in bold capital letters, e.g., X .

• Sets are written in calligraphic capital letters, e.g., B.

• Functions are written in normal font, e.g., 𝑓 or in script font, e.g., L .

• The cardinality of a set is denoted as | ⋅ |.

In addition to ISO 80000—2, the following rules apply:

• The 𝑖-th element of a vector v or a set V is denoted by 𝑣𝑖 or in cases where a second index is
needed as v(𝑖).

• If subscript is already occupied, methods or image resolution variants are denoted by a bracket
superscript, e.g., 𝐴[m] or 𝐼 [LR].

• The identity of a facial image I is denoted by id(I).

• The natural logarithm is denoted by log.

• Downscaling an image I by a factor 𝑠 is denoted by ↓𝑠(I).

• Upscaling an image I by a factor 𝑠 is denoted by ↑𝑠 (I).

• The distance between two vectors v1 and v2 is denoted by d(v1,v2).

• The absolute value of a scalar 𝑎 is denoted by |𝑎|.

• The floor function, which rounds a real number 𝑎 down to the nearest integer, is denoted by
⌊𝑎⌋.

• The L2-norm of a vector v is denoted by ‖v‖.

• The max function with zero as lower bound of a scalar 𝑎 is denoted by [𝑎]
+

.

• The min function with zero as upper bound of a scalar 𝑎 is denoted by [𝑎]
−

.

• The function composition of g
𝜃

and c𝜃 is denoted by g
𝜃
1 ◦ c𝜃.

• The Δ symbol is used to denote a difference or change, e.g., Δ𝐶 = 𝐶2 − 𝐶1.

• The ∇ symbol is used to denote the gradient of a function, e.g., ∇𝑓 .

• f𝜃 denotes an artificial neural network or a feature extraction network, g
𝜃

a layer of a neural
network, and c𝜃 a classifier network.
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List of Acronyms

ADAGRAD Adaptive Gradient Algorithm

ADAM Adaptive Moment Estimation

ADAMW Adaptive Moment Estimation with Weight Decay

AgeDB Age Database

AI Artificial Intelligence

ANN Artificial Neural Network

BRISQUE Blind Referenceless Image Spatial Quality Evaluator

CALFW Cross-Age Labeled Faces in the Wild

CFP-FF Celebrities in Frontal-Profile — Frontal-Frontal

CFP-FP Celebrities in Frontal-Profile — Frontal-Profile

CLT Contrastive Loss Training

CNN Convolutional Neural Network

CPLFW Cross-Pose Labeled Faces in the Wild

CR Cross Resolution

C-Score Confidence Score

DL Deep Learning

EN European Norm

EER Equal Error Rate

ER Equal Resolution

FAR False Acceptance Rate

FIQ Face Image Quality

FP False Positive

FPR False Positive Rate

FR Face Recognition

FRR False Rejection Rate

FN False Negative
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FV Face Verification

GAN Generative Adversarial Network

GFMT Glasgow Face Matching Test

HR High Resolution

IEEE Institute of Electrical and Electronics Engineers

IJB Intelligence Advanced Research Projects Activity Janus Benchmark

iResNet Improved Residual Layer Network

ISO International Organization for Standardization

LFW Labeled Faces in the Wild

LR Low Resolution

MB-CLT Multi-Branch Contrastive Loss Training

MLFW Masked Labeled Faces in the Wild

MS1M Microsoft 1 Million

MS1M-V2 Microsoft 1 Million Version 2

MTCNN Multi-Task Cascaded Convolutional Networks

OFMT Oxford Face Matching Test

OLT Octuplet Loss Training

PFE Probabilistic Face Embedding

RAT Resolution Augmentation Training

ResNet Residual Layer Network

RFW Racial Faces in the Wild

RGB Red Green Blue

RMSProp Root Mean Square Propagation

ROC Receiver Operating Characteristic

S-Map Similarity Map

SER-FIQ Stochastic Embedding Robustness Face Image Quality

SGD Stochastic Gradient Descent

SLLFW Similar-Looking Labeled Faces in the Wild

SR Super Resolution

SXQLFW Semi Cross-Quality Labeled Faces in the Wild

TALFW Transferable Adversarial Labeled Faces in the Wild

TAR True Acceptance Rate

124



List of Acronyms

TP True Positive

UCCS Unconstrained College Students

ViT Vision Transformer

XAI Explainable Artificial Intelligence

X-Map Explanation Map

XQLFW Cross-Quality Labeled Faces in the Wild
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Greek

𝛼 Margin for the contrastive loss, triplet loss, and octuplet loss

𝛽 Stride for the systemic image occlusion algorithm

𝛾 Size of a square-shaped patch in horizontal and vertical direction

𝜂 Learning rate for training a model

𝜃 Parameters of a model

𝜎 Sigma value of a Gaussian kernel

Latin

A Anchor image

B Blended image

D Difference image between two images

I Image — typically a facial image

M Occlusion mask

N Negative image

O Occlusion map

P Positive image

S Similarity map

X X-Map

f Facial feature vector

p Probability vector

v Vector

y Output vector of a neural network

𝐵 Size of a batch of samples

𝐶 Confidence score of a model’s decision

𝐷 Number of distances in a set of distances

𝐹 Dimension of a feature vector
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𝐾 Number of channels in an image

𝐿 Number of classes in a classification task

𝑀 Size of an image in horizontal direction

𝑁 Size of an image in vertical direction

𝑄 Quality score of an image

𝑊 Number of occlusion maps and masks

𝑏 Bias of the sigmoid function

𝑑 Distance between the camera and the face, or between feature vectors

𝑒 Shift of the sigmoid function

𝑓 Focal length of the camera in the pinhole camera model

ℎ Height of a face

𝑖 Index variable

𝑗 Index variable

𝑘 Steepness of the sigmoid function

𝑙 Class label of an image

𝑚 Denominator of a method name

𝑛 Dimension of a vector

𝑟 Raw resolution of an image in both dimensions (horizontal and vertical)

𝑠 Scaling factor for downscaling and upscaling operations

𝑡 Threshold for the distance between feature vectors or for the confidence score of a model

𝑣 Maximum value of the sigmoid function

𝑥 Horizontal coordinate of a pixel in an image

𝑦 Vertical coordinate of a pixel in an image

B Batch of samples

D Set of feature distances

F Set of facial feature vectors

M Set of occlusion masks

O Set of occluded images

P Set of patches

R Set of image resolutions

T Set of triplet samples

X Set of images, also known as a dataset
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ℕ Natural numbers

ℝ Rational numbers

L Loss function
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