
Optimizing Modular Robot Composition:
A Lexicographic Genetic Algorithm Approach

Jonathan Külz and Matthias Althoff

Abstract— Industrial robots are designed as general-purpose
hardware with limited ability to adapt to changing task re-
quirements or environments. Modular robots, on the other
hand, offer flexibility and can be easily customized to suit
diverse needs. The morphology, i.e., the form and structure of
a robot, significantly impacts the primary performance metrics
acquisition cost, cycle time, and energy efficiency. However,
identifying an optimal module composition for a specific task
remains an open problem, presenting a substantial hurdle in
developing task-tailored modular robots. Previous approaches
either lack adequate exploration of the design space or the
possibility to adapt to complex tasks. We propose combining
a genetic algorithm with a lexicographic evaluation of solution
candidates to overcome this problem and navigate search spaces
exceeding those in prior work by magnitudes in the number
of possible compositions. We demonstrate that our approach
outperforms a state-of-the-art baseline and is able to synthesize
modular robots for industrial tasks in cluttered environments.

I. INTRODUCTION

Modular robots (MRs) are an intuitive solution to an
increasing need for mass customization and small-scale
manufacturing [1]–[3]. Thanks to their versatility and ro-
bustness by design, modular manipulators promise signif-
icant technological advances in industrial automation [4],
[5]. As shown in Fig. 1, diverse tasks require different
compositions of robot modules. One of the main challenges
with MRs is determining a robot composition, i.e., selecting
and arranging modules that suit the given requirements.
Due to the exponential number of possible permutations
of modules, an exhaustive search for the optimal modular
composition is usually infeasible. Meta-heuristics such as
deep reinforcement learning or genetic algorithms (GAs)
have been successfully adapted to facilitate MR design
optimization [6], [7]. However, these approaches require
evaluating an immense number of robot designs, rendering
their straightforward application to complex tasks impossible
and resulting in long run times.

A. Contribution

We propose a novel GA-based approach for MR com-
position optimization on heterogeneous modules driven by
a lexicographic fitness function. By hierarchically assess-
ing the fitness of solution candidates, we combine the ex-
ploratory capabilities of GAs with the computational effi-
ciency of hierarchical elimination methods while enhancing
interpretability compared to a single scalar fitness value. As a
result, in contrast to prior approaches, our GA (a) considers

The authors are with the Department of Computer Engineer-
ing, Technical University of Munich, 85748 Garching, Germany.
jonathan.kuelz@tum.de, althoff@tum.de.

computationally expensive metrics, such as trajectory cy-
cle time, during optimization, (b) works in arbitrary en-
vironments with any number of workspace targets, and
(c) imposes no constraints on the robot structure except
that a serial kinematic has to be assembled. We shot that
our approach finds module compositions and trajectories in
cluttered and complex environments tailored to task-specific
requirements and outperforms a state-of-the-art benchmark
regarding robot complexity and cycle time. All tasks and
solutions discussed are available in the CoBRA bench-
mark [8], together with several interactive visualizations1.
The project’s website and additional videos can be found at
https://lexicographic-ga.cps.cit.tum.de.

B. Related Work

Modular robots were introduced decades ago, starting
in the 1980s [9]–[11]. While the automatic generation of
kinematic and dynamic models [12], [13] and their self-
programming [5] has incentivized the introduction of new
robot hardware [14]–[16], the optimization of their modular
composition still poses a considerable challenge.

As exhaustive approaches usually fail, one potential solu-
tion to finding optimized compositions is limiting the search
space, for example, by focusing on morphologies commonly
seen in monolithic manipulators [17]. Alternatively, meta-
heuristics, such as simulated annealing, can be applied to
deal with the large search space [18]. Mixed integer pro-
gramming [19] or an augmented Lagrangian technique [20]
were introduced to optimize for the static reachability of MR
without considering possible robot motion. The work in [6]
deploys a heuristic search leveraging reinforcement learning
to solve tasks with multiple goals and obstacles. However,
due to the large number of evaluations necessary for training,
the authors have to simplify the tasks by discretizing the
space occupied by obstacles, training the agent on tasks with
one goal only, and solving for reachability only instead of
performing motion planning.

By applying hierarchical elimination, i.e., evaluating
robots on a sequence of increasingly computationally ex-
pensive criteria, the authors of [5], [21], [22] significantly
speed up the assessment of the feasibility of a particular
MR for a given task. However, these works fail to navigate
the vast search space effectively, as they do not harness
the information acquired during hierarchical elimination, nor
do they employ information about the robots themselves

1Visit https://cobra.cps.cit.tum.de/tasks and search for
tasks with the name kuelz_lexicographic_ga.

https://lexicographic-ga.cps.cit.tum.de
https://cobra.cps.cit.tum.de/tasks?version=2022&scenario_id__icontains=kuelz_lexicographic_ga

(a) For narrow orientation tolerances at the goal positions, our optimization
yields a robot with six degrees of freedom.

(b) An MR with just four degrees of freedom solves the task if the
orientation tolerances at the desired goal poses are broad.

Fig. 1. Adapting task-tailored MR compositions leads to optimized setup and production costs: In the example shown above, a small change in the task
requirements results in two robots of significantly different complexity. While a six-degree-of-freedom robot is necessary to reach all desired goal positions
exactly (a), a relaxation of orientation tolerances allows us to design an MR with four degrees of freedom only to solve the task (b).

strategically to guide the search process, resulting in the
necessity of imposing structural constraints on the module
composition.

Genetic algorithms (GAs) [23] are another frequently
used approach to optimizing MR composition. By mimick-
ing natural evolutionary processes, genetic algorithms can
be utilized to maximize their fitness for a given environ-
ment [24], [25]. In a GA, a gene sequence composes a
chromosome representing a solution candidate. Starting from
an initial population, a new generation of chromosomes is
recursively created by applying crossover, mutation, and
selection operations to the previous population. Previous
work, such as in [26], has explored GA-based optimization
of robot compositions. However, this research (a) focuses
on a limited subset of robot modules, (b) does not consider
different or mobile bases, (c) imposes strict constraints on
their structure, i.e., the number of joints and the ordering
of joint and link modules, and (d) simplifies performance
metrics and omits complex factors like the computation
of a workspace trajectory, which is crucial in real-world
applications. These challenges are common in related stud-
ies [6], [27]–[29]. In contrast, the authors of [7] propose
a two-step approach involving the elimination of infeasible
MRs through hierarchical elimination. This approach realizes
motion planning on a reduced set of promising MRs. Still,
it imposes constraints on the number of robot modules and
their degrees of freedom to manage the search space.

II. PROBLEM STATEMENT

Throughout this work, we aim to find a composition of
heterogeneous modules that can be assembled to a robot to
solve a given task. We assume that a module m has b bodies
connected by b−1 joints and proximal and distal connectors
cp and cd, respectively, defining interfaces to connect it to
other modules. Our method explicitly permits the inclusion

of empty bodies, enabling the creation of more complex
module structures. For instance, this flexibility allows one to
combine two linear joints with an empty body to construct
a planar joint, which can be used to model a mobile base
module. We consider two special types of modules, bases and
end effectors. For base modules, cp represents the reference
frame of the base; for end effector modules, cd defines the
tool center point (TCP). Any connector is attached to a body
and has a fixed type. The corresponding modules can be
connected if a distal and a proximal connector have the same
type. In this work, we consider any MR that adheres to the
following structure:

Base - M - ... - M - End Effector

Here, M are arbitrary regular modules, so the structure
fits any serial manipulator with exactly one base and end
effector module. An assembled composition of nM modules
is referred to as robot R = (m1, . . . ,mnM

).
A task T , as displayed in Fig. 2, is defined by the tuple

⟨G, T ,O⟩, where G = (g1, . . . , gnG
) is a sequence of goals,

T is a set of tolerances for all goals, and O is the workspace
occupied by obstacles. Joint limits for a robot with nJ

joints are given by lower limits q ∈ RnJ and upper limits
q ∈ RnJ . We define the set of all valid joint configurations
as Q =

[
q, q

]
. A goal g ∈ G ⊂ SE3 is defined as a position

pg ∈ R3 and a desired orientation ng ∈ SO3. We introduce
the operator

rot(n1,n2) = ⟨e, θ⟩, ∥e∥2 = 1, θ ∈ [0, π] (1)

that returns the rotation from n1 to n2 in axis-angle repre-
sentation, defined as a unit vector e and an angle θ. Further,
we define the forward kinematics (FK) for robot R with joint
angles q as

[pTCP,nTCP] = FK(R, q) , (2)

with TCP position pTCP ∈ R3 and TCP orientation
nTCP ∈ SO3. The workspace occupied by the robot is given
by A(R, q). The tolerances T are composed of a position
tolerance tp ∈ R+ and an orientation tolerance, given as
the tuple to = ⟨t, φ⟩, t ∈ {x ∈ R3

+ | ∥x∥∞ ≤ 1}, φ ∈ (0, π],
where t defines the upper bound on the absolute value of the
Euler axis of rotation between nTCP and ng (3).

A goal g can be be reached by robot R, if there exists a
joint configuration q ∈ Q such that

∥pTCP(R, q)− pg∥2 ≤ tp ∧ θ |e| ≤ φ t , (3)

where ⟨e, θ⟩ = rot(ng,nTCP). In (3), |e| denotes the
element-wise absolute value and the inequality holds if it
is true for all dimensions. We denote this predicate as
r(R, q, g, T), which evaluates to true if robot R reaches
goal g with the joint configuration q and false otherwise.
We also introduce the predicate r̂ that determines whether a
trajectory q(t) reaches all goals in the order specified by G
as

r̂(R, q(t), G, T) = ∃ (t1, . . . , tn) : (4)
t1 ≤ t2 ≤ · · · ≤ tn = tmax

∧ ∀i ∈ {1, . . . , n} : r(R, q(ti), gi, T) .

A task T is considered to be achieved by robot R, if there
exists a trajectory q(t) that is collision-free (5a), for which
joint velocity (5b), acceleration (5c), and torque limits (5d)
are met, and for which all goals are reached in the intended
order (5e). We denote the set of all trajectories fulfilling these
properties by:

χT (R) = {q(t) : [0, tmax] → Q | (5)
O ∩A(R, q(t)) = ∅ (5a)

∧ q̇(t) ∈
[
q̇, q̇

]
(5b)

∧ q̈(t) ∈
[
q̈, q̈

]
(5c)

∧ |τ | ≤ τmax (5d)
∧ r̂(R, q(t), G, T } . (5e)

If χT (R) ̸= ∅, we assume there is a path planning
algorithm that computes a trajectory q(t) for task T with the
robot R. Under this assumption, we can define our objective
function

CT (R) = wsCs(R) + wpCp,T (R, q(t)) , (6)

which is composed of a weighted sum of robot setup costs Cs

(such as acquisition cost or module availability) and process
cost Cp,T (such as cycle time or energy consumption) arising
during operation. Consequently, the robot defined by the
optimal composition is given by

R∗
T = argmin

R
(CT (R)), s.t. q(t) ∈ χT . (7)

III. METHOD

In a GA, multiple solution candidates (chromosomes) form
the population, which is altered via the genetic operators in
every generation. To encode a manipulator as chromosome c
of fixed length nc, we index the set of available modules

M and write c = (m1, . . . ,mnc),mi ∈ {0, 1, . . . , |M|}
to encode the sequence of assembled module identifiers. A
gene encodes an empty slot when set to zero (mi = 0) and
a regular module from M otherwise. In a slight abuse of
notation, we will use a gene mi and the encoded module
Mi interchangeably in the remainder of this paper. A series
of genes (u, 0, v) encodes a partial configuration of modules
(Mu,Mv). This flexibility allows us to encode any manipu-
lator with nM modules in a chromosome of consistent length
nc ≥ nM . As a result, we neither predetermine the number
of modules in a solution candidate nor constrain the search
space to alternate joint and link modules, allowing us to
explore unconventional compositions.

A. Genetic Operators

Within every generation, we compute the fitness value for
every chromosome. Based on the fitness, we perform steady
state selection: The p solution candidates (population) with
the highest fitness among all individuals are chosen to be
the parents for the next generation. We then replace any
chromosome not selected by a new one created by a single-
point crossover between two randomly selected parents. We
denote the set of all modules with the same connectors by Vm

and, finally, select a replacement candidate uniformly from
Vm for every gene in the current population with a mutation
probability of pm. If the mutated chromosome mi is neither
a base nor an end effector (i /∈ {1, nc}), the empty module is
added to Vm if a connection between the adjacent modules
(mi−1,mi+1) is possible. Due to the inherent validity check
of connections during population generation, we can incorpo-
rate constraints on module composition, such as those given
by connector properties inherently, and before computing
the fitness. Therefore, even complex module libraries, e.g.,
modules of different sizes, can be optimized using our GA.

B. Fitness Function

As the fitness function f determines the quality
of a solution candidate, we expect the relation
CT (Ri) < CT (Rj) ⇔ f(Ri) > f(Rj) between fitness
and task cost to hold. However, due to the computationally
expensive evaluation of the cost function in (6) that requires
attempting to compute a solution trajectory, it is infeasible to
use it directly as a fitness function. Given that our selection
process relies on the order of fitness scores rather than
their exact numerical values, we implement a lexicographic
fitness function [30]: We select a sequence of fitness
objectives f(R) = ⟨f1(R), . . . , fn(R)⟩, ranked descending
by importance and computational simplicity, and define the
ordering

f(Ra) > f(Rb) ⇔∃k ∈ {1, . . . , n} : fk(Ra) > fk(Rb)

∧ ∀i < k : fi(Ra) = fi(Rb) , (8)
f(Ra) = f(Rb) ⇔∀i ∈ {1, . . . , n} : fi(Ra) = fi(Rb) .

(9)

As an illustrative example, let us consider two robots, R1 and
R2, and evaluate them on two objectives. The first objective,
f1(R), is a binary classifier determining whether a trajectory

q(t) ∈ χT (R) exists for each robot. The second objective,
f2(R) = −nJ(R), is defined as the negative of the number
of joints for each robot. Applying a lexicographic ordering,
R1 is preferred over R2 if a trajectory exists for R1 but not
for R2 or if a trajectory exists for both robots but R1 has
fewer joints than R2. Specifically, we introduce the following
objectives for a robot R:

1) Trivial reachability: A goal can only be reached if
a robot arm is sufficiently long. We introduce the
maximum Euclidean distance between the distal and the
proximal connector of module Mi as dmax(Mi) and
define

f1(R) =

{
1, if

∑
R dmax(Mi) ≥ maxg∈G ∥pg∥2

0, otherwise.
(10)

2) Reachable number of goals: Objective

f2(R) =
∑
g∈G

({
1, if ∃q ∈ Q : r(R, q, g, T)

0, otherwise

)
(11)

returns the number of goal positions that can be reached
by the robot R. The existence of a valid joint configura-
tion q is determined using a numeric inverse kinematics
algorithm.

3) Reachable number of goals, considering collisions: Ob-
jective

f3(R) =
∑
g∈G



1, if ∃q ∈ Q : r(R, q, g, T)

∧O ∩A(R, q) = ∅
0, otherwise


(12)

returns the number of goal positions that can be reached
while there are no collisions between robot and envi-
ronment.

4) Cost objective: The final fitness objective measures
robot setup complexity and task performance and can
be chosen freely. Following (6), (7), we define

f4(R) =

{
−∞, if χT (R) = ∅
−CT (R), otherwise.

(13)

We incrementally compute the lexicographic fitness value
by subsequently evaluation these criteria and stopping if a
composition does not achieve the maximum fitness value
fi(R) ̸= fi,max for an intermediate objective i ≤ 3, where
f1,max = 1, f2,max = f3,max = |G|. This can be interpreted
as a hierarchical pruning procedure, backed by computational
evidence about a robot’s performance. However, unlike prior
work using hierarchical elimination to optimize MR com-
positions [7], we retain information about partial solutions,
such as the ability to reach the final goal in the task and
use it for the selection process. Moreover, the pruning relies
exclusively on task performance, avoiding a human bias
introduced by manually crafted rules and thereby preserving
the explorative capabilities of GAs. Finally, the introduction

of a lexicographic fitness function enhances interpretability.
Rather than managing and fine-tuning weighted sums for
numerous task criteria for a scalar fitness value, a human
evaluator can easily conclude which constraints different
solution candidates satisfy.

IV. EXPERIMENTS

A. Robot Modules

For our experiments, we used data from 29 different
modules manufactured by RobCo2. The set consisted of four
bases, 20 static link modules, four modules with a joint, and
one end effector. The static link modules differed in size and
shape (L-shaped and I-shaped), and the bases differed in size
and mounting orientation. We divided the database into six
large modules, including two bases, and 22 smaller modules,
including the end effector that can only be attached to one
of the large modules using a special connecting link module.
Without the constraints imposed by the connectors and the
necessity of a base and end effector module, there would
have been

∑12
i=n 29

n ≈ 1017 distinct compositions with at
most twelve modules that could be built from this module
set. Considering the different module sizes and types, the
resulting size of the workspace was still beyond 1012 (one
trillion) possible compositions for a chromosome length of
twelve and, to the best of our knowledge, exceeds those in
prior work, such as 15552 in [7], 32768 in [5], and around
106 in [6] significantly.

B. Task Definition

We evaluated our approach on two types of tasks: Ran-
domly generated synthetic tasks and manually curated in-
dustrial manufacturing tasks. We assessed the algorithm’s
performance for each type in two different settings and three
difficulty levels each. Fig. 2 shows an example for every type
of task.

For the first setting (Synthetic I), we implemented a
scenario similar to the one proposed in [6] by discretizing
a space of 1.25m3, centered in the point [0, 0, 0.625]T m in
5 × 5 × 5 voxels of edge width 0.25m. For the different
difficulty levels, we randomly sampled d ∈ {3, 4, 5} box-
shaped obstacles, filling one voxel each and d goal positions
centered in a voxel each. In addition, we created non-
discretized synthetic tasks (Synthetic II), where goal and
obstacle position and orientation were sampled randomly
in a half-ball of radius 1.2m and with a positive z coor-
dinate. In this setting, obstacles could be spheres, boxes, or
cylinders, and their position and volume were determined
randomly. For all goals in the synthetic tasks, we set the
orientation tolerance to half a degree around an arbitrary axis
(e = [1, 1, 1]T , φ = π

360). Finally, we applied a simple, non-
exhaustive heuristic to discard tasks that are not solvable,
e.g., because obstacles covered one of the goal positions or
the base position. In total, we defined 120 synthetic tasks,
20 for each setting with d ∈ {3, 4, 5}.

2https://www.robco.de/en

https://www.robco.de/en

(a) Synthetic I, d = 4 (b) Synthetic II, d = 3 (c) Manufacturing I (d) Manufacturing II

Fig. 2. We evaluated our algorithm on two synthetic and two manufacturing settings: Synthetic obstacles are shown in red, milling machines and conveyor
belts are shown in grey. Every goal consists of a desired position and orientation, indicated by an end effector. The robot base placement is indicated by
a red base module.

Furthermore, we evaluated our approach in two settings
inspired by real-world machine tending problems (Manufac-
turing I & II), where the goals represent a pick position
for raw material, a position inside a milling machine, and a
position to place the final workpiece on. For each one, a dif-
ficulty level was determined by using one of three orientation
tolerances, mimicking different workpiece geometries:

• Sphere-like geometry (to = to,1): The TCP orientation
can be chosen freely within an arbitrary rotation of 90°,
so we set e1 = [1, 1, 1]T , φ1 = π

2 .
• Partially symmetric geometry (to = to,2): The TCP

orientation is free around its z-axis but otherwise con-
strained, so we set e2 = [1

360 ,
1

360 , 1]
T , φ2 = π.

• Arbitrary geometry (to = to,3): The TCP orientation is
pre-determined and we allow a minor deviation only, so
we set e3 = [1, 1, 1]T , φ3 = π

360 .
For all tasks, we set a position tolerance of tp = 10−3m.

C. Baseline

We compared our approach to a two-level GA based on
hierarchical elimination, as proposed in [7]. We eliminated
unfit solution candidates that could not reach the first and
last goal as indicated by (12) before evaluation. Instead
of utilizing the previously introduced lexicographic fitness
function, we adopted [7, (3)-(10)]. Consequently, the baseline
fitness function depended on weighting factors ki, linear
distance L, angular distance A, dexterity D, number of
modules nM , number of joints nJ , joint value differences
V , and the percentage of reachable intermediate points P :

fB = e−(k1R+k2L+k3A+k4D+k5nM+k6nJ+k7V) + k8P .
(14)

We waived the obstacle proximity criterion initially intro-
duced in the referenced work, which is defined solely for
spherical obstacles, and replaced the involved module crite-
rion I by the number of links nM and the number of joints
nJ . All other criteria remained as defined in the reference.

In the second optimization step, we selected the best 25
individuals for each scenario and computed trajectories using
the same method as employed for our solutions.

D. Setup

All experiments were conducted using Timor-Python [29]
on a desktop PC with an Intel i7-11700KF processor. For
trajectory generation, we followed the method from [31]
in combination with the RRT-Connect planner provided by
the Open Motion Planning Library (OMPL) [32] with a
timeout of 3 seconds. To enhance the efficiency of evaluating
recurring module compositions, we optimized the process
by caching the kinematic and dynamic models derived from
module data for the most recent 1000 robots assessed.
However, due to the stochastic nature of the RRT-Connect
planner, we calculated the fitness value for each composition,
regardless of whether it had been evaluated before.

We defined the optimization criterion as a function of the
number of robot joints nJ , robot modules nM , and trajectory
cycle time tmax as:

CT = nJ + 0.2nM + tmax . (15)

The algorithms ran for 200 generations on a population
size of 25, which was initialized using weighted random
sampling, where each initial module had a probability of
pj = 0.9 to contain a joint. For evaluating the performance
on the manufacturing tasks, we performed optimization over
ten random seeds, whereas due to run time constraints, we
ran optimization once on all synthetic tasks. If not stated
otherwise, all results refer to the mean computed over the
difficulty levels d ∈ {3, 4, 5} for synthetic tasks and for
tolerances to,1, to,2, and to,3 for the manufacturing tasks with
differing seeds.

Additionally, to analyze the the ability of both algo-
rithms to adapt to different preferences, we evaluated them
in the “Manufacturing II” setting with tolerance to,3 and
cost functions CT (wJ) = wJnJ + (5− wJ)tmax, where we

TABLE I
SUMMARY OF ACHIEVED TASKS, AVERAGE NUMBER OF JOINTS, AND

AVERAGE CYCLE TIME.

Task Setting Achieved CT nJ tmax

Synthetic I
d = 3 16 11.86 6.2 3.1s
d = 4 10 15.16 6.8 5.7s
d = 5 10 16.42 6.7 7.1s

Synthetic II
d = 3 20 12.27 6.4 3.3s
d = 4 20 13.80 6.7 4.6s
d = 5 20 15.33 6.8 5.9s

Synthetic (average over all) 16.0 14.14 6.6 5.0s

Baseline 15.7 19.61 8.0 14.9s

Manufacturing I
to,1 10 12.81 5.3 5.0s
to,2 10 14.33 6.7 5.0s
to,3 10 15.05 6.6 5.8s

Manufacturing II
to,1 10 10.15 4.5 3.4s
to,2 10 12.48 6.4 3.6s
to,3 10 12.27 6.0 3.8s

Manufacturing (average over all) 10.0 12.85 5.9 4.5s

Baseline 10.0 18.17 7.8 12.9s

CT : Cost as defined in eq. (6), nJ : Number of joints, tmax: Cycle time

evaluated both algorithms’ performance over ten random
seeds for weights wJ ∈ {0, 1, . . . , 5}.

E. Results

The evaluation took 960ms per individual on average,
resulting in 1.2 hours for one optimization over 200 genera-
tions. This is a significant speedup compared to determining
the cost function for every individual and running into the
path planner’s 3s time limit for every unfit solution candidate.
Table I reports the number of tasks achieved in different
settings and the average lowest cost for all tasks with a
valid solution. In addition, we report the mean number of
joints nJ and cycle time tmax for all solutions with minimal
cost, as well as the aggregated mean over all synthetic
and manufacturing tasks for our approach and the baseline
according to section IV-C.

Our algorithm found a valid solution for 80% of the
synthetic tasks. Upon manual inspection, we discovered that
some remaining tasks are inherently unsolvable due to the
proximity of goals and obstacles. For the hand-curated in-
dustrial tasks, our optimization resulted in valid solutions for
every trial. On average, our algorithm yielded solutions with
costs about 30% lower than those generated by our baseline
method. For the synthetic tasks, our approach reduced the
average number of joints by 1.4 and decreased cycle times
by 66%. In manufacturing tasks, we observed an average
reduction of 1.9 joints and a decrease in cycle times by
65%. Notably, the robots’ complexity changed with the task
difficulty. Two different robots for the “Manufacturing II”
setting with to = to,1 and to = to,3 are shown in Fig. 1.

The effect of different cost functions on the optimization
outcome is shown in Fig. 3. For all weighting factors wJ , the
proposed approach outperformed the baseline significantly.
The results of our approach show a tradeoff between the

0

20

40

C
T

(w
J

)

Ours Baseline

0 1 2 3 4 5
wJ

0

5

10

n
J

0

10

t
[s

]

Fig. 3. Our approach outperformed the baseline regardless of the weighting
factor wJ . Especially for our approach, the tradeoff between nJ and t
becomes visible. Shaded areas indicate 95% confidence intervals computed
using bootstrapping.

number of joints and the trajectory cycle time. The baseline
procedure found solutions with fewer joints if incentivized
but failed to reduce the cycle time for lower wJ . This result
strongly indicates that including trajectory cycle time in
the optimization process, as described in (13), provides a
significant advantage over the two-level approach deployed
for the baseline.

V. CONCLUSION

This paper presents a genetic algorithm with a lexico-
graphic fitness function for the task-based optimization of
modular manipulators. Compared to existing approaches,
we impose no prior assumptions on the structure or the
number of modules in an optimal solution. Our experimental
validation shows that our GA can find solutions adapted
to the complexity of a task. Moreover, the unconventional
but high-performant module compositions resulting from
optimizing MR for manufacturing tasks with broad orienta-
tion tolerances showcase that use-case-tailored MRs do not
necessarily follow human intuition. Our approach applies to
all kinds of serially connected MRs, regardless of module
complexity. Additional task constraints can easily be inte-
grated by extending the intermediate objectives evaluated
during fitness computation. Lastly, our method can be used
for any task without the necessity of simplification, e.g., via
discretization.

ACKNOWLEDGMENT

The authors gratefully acknowledge financial support by
the Horizon 2020 EU Framework Project CONCERT under
grant 101016007.

REFERENCES

[1] M. R. Pedersen, L. Nalpantidis, R. S. Andersen, C. Schou, S. Bøgh,
V. Krüger, and O. Madsen, “Robot skills for manufacturing: From
concept to industrial deployment,” Robotics and Computer-Integrated
Manufacturing, vol. 37, pp. 282–291, 2015.

[2] D. Gorecky, S. Weyer, A. Hennecke, and D. Zühlke, “Design and
instantiation of a modular system architecture for smart factories,”
IFAC-PapersOnLine, vol. 49, no. 31, pp. 79–84, 2016.

[3] L. Ribeiro and M. Bjorkman, “Transitioning from standard automation
solutions to cyber-physical production systems: An assessment of
critical conceptual and technical challenges,” IEEE Systems Journal,
vol. 12, no. 4, pp. 3816–3827, 2018.

[4] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson,
E. Klavins, and G. S. Chirikjian, “Modular self-reconfigurable robot
systems [grand challenges of robotics],” IEEE Robotics and Automa-
tion Magazine, vol. 14, no. 1, pp. 43–52, 2007.

[5] M. Althoff, A. Giusti, S. B. Liu, and A. Pereira, “Effortless creation
of safe robots from modules through self-programming and self-
verification,” Science Robotics, vol. 4, no. 31, 2019.

[6] J. Whitman, R. Bhirangi, M. Travers, and H. Choset, “Modular robot
design synthesis with deep reinforcement learning,” in Proc. of the
AAAI Conf. on Artificial Intelligence (AAAI), vol. 34, no. 06, 2020,
pp. 10 418–10 425.

[7] E. Icer, H. Hassan, K. El-Ayat, and M. Althoff, “Evolutionary cost-
optimal composition synthesis of modular robots considering a given
task,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2017, pp. 3562–3568.

[8] M. Mayer, J. Külz, and M. Althoff, “CoBRA: A composable bench-
mark for robotics applications,” in Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA), 2024.

[9] G. Pritschow and K. Tuffentsammer, “A new modular robot system,”
CIRP Annals, vol. 35, no. 1, pp. 89–92, 1986.

[10] T. Fukuda, S. Nakagawa, Y. Kawauchi, and M. Buss, “Self organizing
robots based on cell structures – CEBOT,” in Proc. of the Int. Workshop
on Intelligent Robots (IROS), 1988, pp. 145–150.

[11] D. Schmitz, P. Khosla, and T. Kanade, “The CMU reconfigurable
modular manipulator system,” Tech. Rep. 88–7, 1988.

[12] C. Nainer, M. Feder, and A. Giusti, “Automatic generation of kine-
matics and dynamics model descriptions for modular reconfigurable
robot manipulators,” in IEEE Int. Conf. on Automation Science and
Engineering (CASE), vol. 17, 2021, pp. 45–52.

[13] T. Zhang, Q. Du, G. Yang, C. Wang, C.-Y. Chen, C. Zhang, S. Chen,
and Z. Fang, “Assembly configuration representation and kinematic
modeling for modular reconfigurable robots based on graph theory,”
Symmetry, vol. 14, no. 3, 2022.

[14] A. Yun, D. Moon, J. Ha, S. Kang, and W. Lee, “ModMan: An ad-
vanced reconfigurable manipulator system with genderless connector
and automatic kinematic modeling algorithm,” IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 4225–4232, 2020.

[15] E. Romiti, J. Malzahn, N. Kashiri, F. Iacobelli, M. Ruzzon, A. Lau-
renzi, E. M. Hoffman, L. Muratore, A. Margan, L. Baccelliere, S. Cor-
dasco, and N. Tsagarakis, “Toward a plug-and-work reconfigurable
cobot,” Transactions on Mechatronics, vol. 27, no. 5, pp. 2319–3231,
2022.

[16] A. Dogra, S. Padhee, and E. Singla, “Optimal synthesis of uncon-
ventional links for modular reconfigurable manipulators,” Journal of
Mechanical Design, vol. 144, no. 8, 2022.

[17] S. B. Liu and M. Althoff, “Optimizing performance in automation
through modular robots,” in Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), 2020, pp. 4044–4050.

[18] C. J. J. Paredis and P. K. Khosla, “Synthesis methodology for task
based reconfiguration of modular manipulator systems,” in Proc. of
the Int. Symp. on Robotics Research (ISRR), 1993.

[19] A. Valente, “Reconfigurable industrial robots: A stochastic program-
ming approach for designing and assembling robotic arms,” Robotics
and Computer-Integrated Manufacturing, vol. 41, pp. 115–126, 2016.

[20] S. Singh, A. Singla, and E. Singla, “Modular manipulators for cluttered
environments: A task-based configuration design approach,” Journal
of Mechanisms and Robotics, vol. 10, no. 5, 2018.

[21] E. Icer and M. Althoff, “Cost-optimal composition synthesis for mod-
ular robots,” in Proc. of the IEEE Conference on Control Applications
(CCA), 2016, pp. 1408–1413.

[22] E. Icer, A. Giusti, and M. Althoff, “A task-driven algorithm for
configuration synthesis of modular robots,” in Proc. of the IEEE Int.
Conf. on Robotics and Automation (ICRA), 2016, pp. 5203–5209.

[23] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
learning,” Machine Learning, vol. 3, pp. 95–99, 1988.

[24] K. Sims, “Evolving virtual creatures,” in Proc. of the Ann. Conf. on
Computer Graphics and Interactive Techniques (SIGGRAPH), vol. 21,
1994, pp. 15–22.

[25] H. Lipson and J. B. Pollack, “Automatic design and manufacture of
robotic lifeforms,” Nature, vol. 406, pp. 974–978, 2000.

[26] J. Han, W. K. Chung, Y. Youm, and S. H. Kim, “Task based design of
modular robot manipulator using efficient genetic algorithm,” in Proc.
of the IEEE Int. Conf. on Robotics and Automation (ICRA), 1997, pp.
507–512.

[27] O. Chocron and P. Bidaud, “Evolutionary algorithms in kinematic
design of robotic systems,” in Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), vol. 2, 1997, pp. 1111–1117.

[28] O. Chocron, “Evolutionary design of modular robotic arms,” Robotica,
vol. 26, no. 3, pp. 323–330, 2008.

[29] J. Külz, M. Mayer, and M. Althoff, “Timor Python: A toolbox for
industrial modular robotics,” in Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2023, pp. 424–431.

[30] C. A. Coello, “An updated survey of GA-based multiobjective opti-
mization techniques,” ACM Computing Surveys, vol. 32, no. 2, pp.
109–143, 2000.

[31] T. Kunz and M. Stilman, “Time-optimal trajectory generation for
path following with bounded acceleration and velocity,” in Robotics:
Science and Systems, 2012.

[32] I. A. Şucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robotics and Automation Magazine, vol. 19, no. 4, pp.
72–82, 2012.

	Introduction
	Contribution
	Related Work

	Problem Statement
	Method
	Genetic Operators
	Fitness Function

	Experiments
	Robot Modules
	Task Definition
	Baseline
	Setup
	Results

	Conclusion
	References

