

Technical University of Munich School of Engineering and Design **Chair of Energy Systems**

Measurements of NOx emissions from biomass combustion in small to medium-scale power plants

Gabriel J. Roeder*, Johannes Haimerl*, Yusheng Chen**, Matthias Gaderer**, Sebastian Fendt*, Hartmut Spliethoff*

*Chair of Energy Systems, Technical University of Munich; **Professorship of Renewable Energy Systems, Technical University of Munich

Motivation

Biomass remains a large part of the energy mix in Europe. Its combustion, while generating energy, also produces nitrogen oxide gases (NO_x), which pose significant environmental and health risks [1-2]. Since biomass encompasses a myriad of materials, it contains different contents of fuel-bound nitrogen, leading to varying NO_x

emissions depending on the used biomass.

In order to understand the behaviour of nitrogen species such as oxides (NO_x) and their intermediates in small to medium-sized power plants, a two-point measurement is conducted in the combustion chamber and the exhaust gas line of two distinct power plants. The small-sized power plant is an injection furnace (0.85 MW_{th}) using waste wood from pencil production for in-house heating. The medium-sized power plant is a bubbling fluidized bed (40.4 MW_{th}) producing heat and power with waste wood and screen overflow used as fuel.

Measurement Set-Up

A two-point measuring system was used:

- Exhaust gas was measured with a portable multi-component analyser from MRU Messgeräte für Rauchgase und Umweltschutz GmbH
- Gases from the combustion chamber were sampled at high temperatures through a specially designed air-cooled steel probing lance, passed through a heated filter and analysed by a portable multi-component FTIR gas analyser *Gasmet DX4000* (see **Figure 1**)

<u>Characteristics of the measured points:</u>

- Sampling from the exhaust gas line
- The depth of the high-temperature measuring probe was varied •
- Measurements were conducted for at least 30 minutes for each point

Power plants

The measurements were conducted at a 0.85 MW_{th} injection furnace (PP1) and a 40.4 MW_{th} fluidized bed (PP2). A schematic drawing of the power plants with the measuring points is given in **Figure 2**.

Figure 1: Schematic representation of the employed measurement system

Results

The results from the fuel analysis are summarised in Table 1. It becomes evident that the fuel from PP2 contains a significant amount of inorganics.

The gas analysis of the in-furnace measurements displays a decreased available oxygen with increasing sampling depth. For PP1, this effect leads to the rapid increase in available nitrogen

Table 1. Fuel analysis with emission and concentration values				
		PP1	PP2	
С		47.48	35.92	
Н		5.31	4.00	
Ν		0.58	1.77	
S		0.06	0.17	wt-% (db)
0		46.28	35.13	
As	h	0.30	23.00	

whereas the other points are likely in a dead zone (see Figure 3). The average of the nitrogen species is given in Figure 4 and 6. The sum of the nitrogen species for PP2 does not display the same behaviour since it was measured after air staging (see Figure 5).

Conclusion & Outlook

Combustion and exhaust gas from an injection furnace (0.85 MW_{th}) and a fluidized bed power plant (40.4 MW_{th}) were sampled and analysed. Both plants displayed average power emissions below the allowed limit.

measurements from the combustion chamber exposed а dominance of NH₃ over HCN for both power plants. The NO_x concentration from the combustion gas was further reduced compared to the stack NO_x , with the fluidized bed having a more significant reduction. NH₃ must have reacted with the available NO and reduced it.

Furthermore, the sum of the nitrogen

Figure 2: Schematic drawing of the investigated power plants

species displays a minimum value for both firing concepts.

The gathered data will be used in computational fluid dynamic simulations and compared to lab-scale experiments to gain further insight into the possible reduction potential of the NO_x emission from solid biomass combustion.

