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Abstract

The steady increase in computational power, on the one hand, and the advent of functionally
graded materials, on the other hand, give rise to characterization methods for heterogeneous
materials. Confining the context to non-destructive testing sets the stage for methods like
digital image correlation or digital volume correlation. Next to these involved approaches,
guided waves and data from modal analysis present fundamentally feasible approaches that
are not mature yet in for functionally graded materials. This thesis develops a numerical
method for identifying the spatially varying elastic material properties of a structure using
modal data while considering uncertainty. This is achieved by using Bayesian inference, the
finite element method, the generalized polynomial chaos expansion, and the Karhunen-Loève
expansion. A modification accelerates the method, and a generalization of several quantities
of interest is proposed alongside a stochastic material model for a softwood species. The
acceleration of the procedure implies that once the generalized polynomial chaos surrogate
is trained, it could potentially be applied to an unlimited number of altered configurations.
Stumping intuition, further results show that providing the cross-correlation of multiple un-
knowns a priori is not necessarily beneficial. A realistic covariance model for describing wood
by a random field is presented. Next to unlocking non-destructive testing for this application,
it forms the basis for synthesizing wood at the macro-scale.
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Zusammenfassung

Die kontinuierliche Steigerung der verfügbaren Rechenleistung sowie die Popularisierung
von Werkstoffen mit funktionalen lokalen Eigenschaften kreieren Angebot und Nachfrage von
Prüfverfahren für heterogene Materialien. Innerhalb der zerstörungsfreien Prüfung existieren
Methoden wie die digitale Volumenkorrelation, die auf dem Vergleich von Daten aus der
Computertomografie vor und nach dem Aufprägen einer Last auf die Struktur beruht. Neben
diesen kostspieligen Ansätzen stellen der Einsatz von geführten Wellen und die Nutzung des
Schwingungsverhaltens praktikable Alternativen dar. Allerdings ist die letztere im Kontext
räumlich schwankender Materialeigenschaften noch nicht technisch ausgereift. Ziel dieser
Arbeit ist es, ein numerisches Verfahren zu entwickeln, das das inhomogene linear-elastische
Materialverhalten von Strukturen anhand von Eigenfrequenzen und Eigenschwingformen
unter Berücksichtigung von Unsicherheiten bestimmt. Zu diesem Zweck wird Bayes’sche In-
ferenz unter Verwendung eines von der räumlichen Diskretisierung entkoppelten Ersatzmod-
ells für die Finite-Elemente-Methode eingesetzt. Darauf bauen eine beschleunigte Variante
sowie eine Erweiterung des Verfahrens für die gleichzeitige Bestimmung mehrerer korre-
lierter Zielgrößen auf. Das beschleunigte Verfahren impliziert, dass das Ersatzmodell nach
seiner initialen Erstellung potenziell für beliebig viele weitere Einbausituationen des Bauteils
wiederverwendet werden kann. Es wird gezeigt, dass die Berücksichtigung der Kreuzkorre-
lation mehrerer Unbekannter in der a priori Wahrscheinlichkeitsdichtefunktion nicht zwin-
gend von Vorteil ist. Zur Erleichterung der Anwendung der entwickelten Methode wird ein
stochastisches Materialmodell für Holz entwickelt. Dieses stellt sich als das erste realistische
Kovarianzmodell zur Beschreibung der Materialeigenschaften von Holz durch Zufallsfelder
heraus. Neben der Erschließung der zerstörungsfreien Prüfung für diesen Werkstoff, stellt das
neue Modell die Grundlage für die Erzeugung realistischer Holzmuster auf der Makroskala
dar.
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Chapter 1

Introduction

Functionally graded materials are currently being popularized [41, 131]. They represent
a class of heterogeneous materials whose properties are deliberately varied over space to
achieve a desired effect on the macro-scale. Testing such materials exhibits different require-
ments compared to the procedures used for homogeneous materials. For instance, volume
effects and local deviations in the material properties both impact the procedures for static
bending tests of wood. These protocols then differentiate between the determining the local
and global modulus of elasticity. Suitable methods tailored to functionally graded materials
currently do not exist yet. Hence, characterization methods for these new materials need to
be developed. In principle, strategies for identifying the underlying material properties of a
structure are available. These are mostly imaging methods that provide information on the
local mass density of the subject, such as elastography in medicine applications [9, 43]. Not
only locating stiff inclusions but also quantifying them corresponds to assessing Young’s mod-
ulus. Two ways of determining a specimen’s local elastic material properties at the surface
are described in the literature [68]. Wood represents one application example for a hetero-
geneous material where such a procedure is commonly employed. Here, the tracheid effect,
an interaction of light with the surface of an object, may be employed to measure the orien-
tation of fibers [68]. While this allows for some predictions about the stiffness via a material
model, it is susceptible to local imperfections in the material, and local strain imaging is more
pertinent to the cause together with a beam theory [68]. The correlation of an image of the
surface of a specimen that is endowed with a speckle pattern with an image of the identical
surface after the application of an external load is termed digital image correlation [105, 135,
147]. Using this displacement information and subjecting the specimen to constant bending,
a map of the underlying stiffness can be constructed using the constitutive equations for the
case of linear elastic material after the intermediate derivation of the strains from the dis-
placements [68]. An analogous procedure called digital volume correlation exists for the
three-dimensional case in combination with X-ray computed tomography [38, 84, 156]. It
enables strain imaging in the interior of a structure, but it suffers from a relevant drawback.
Within the digital volume correlation method, the specimen can be investigated with a com-
puted tomography scan at different stages of displacement. This entails packaging issues that
render digital volume correlation unfeasible for quality control applications, as a rudimentary
implementation of the principle would require the tensile testing setup of the specimen to fit
in the scanning apparatus. Further, it is challenging to find features within non-homogeneous
materials that could be correlated in the three-dimensional scanned volume.

This motivates the goal of developing a non-destructive and contactless characterization
method for heterogeneous materials with elastodynamic behavior as described by a struc-
ture’s modal data. In general, the aspiration of ’looking into the material’ and imaging the
quantity of interest there demands the solution of a localization problem [10, 165]. The
latter is the counterpart to numerical homogenization approaches. Both of these are studied
in the literature and considerable research efforts are being made to develop these hierar-
chical or multi-fidelity modeling approaches and establish linkages between homogenization
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and localization [1, 4, 19, 103, 117, 125, 149]. These ambitions will benefit greatly from
the advances in computational power [144]. The present localization approach is centered
on interpreting the a priori unknown stiffness functions as realizations of random fields and
representing the random fields with the Karhunen-Loève expansion, see Figure 1.1. Retain-
ing the description of the unknowns as random variables and recognizing the presence of
noise in any measured data, Bayesian inference solve the inverse problem posed by the lo-
calization problem. Bayesian inference is established as the current method of choice when
measurement data are involved. Noteworthy applications in the fields of acoustics include
the work by Xiang and Fackler [155] and the study by Bockman et al. [15]. The estimation of
homogeneous elastic material parameters of isotropic and orthotropic plates by modal anal-
ysis or dispersion curves using the Bayesian approach is well researched [25, 40, 46, 102].
The combination of Bayesian inference with the Karhunen-Loève expansion is popular for
the inference of permeability fields [140] and in the geotechnical engineering community
[162]. Uribe et al. [146] apply this combination of methods to elastostatics. The following
highlights the contributions to the state of the art.

Material
identification

Modal
analysis

Localization
problem

Accuracy enhancement:
Prior information on

material cross-correlation

Covariance identification:
Wood density patterns

Acceleration:
Surrogate models

(B)

(D)

(C)

Figure 1.1: The developments of the state of the art connected to this dissertation consist of four modules.
In the center lies the localization problem of identifying a structure’s spatially varying stiffness from its natural
frequencies and mode shapes. In order to apply the random field description with the Karhunen-Loève expansion,
the covariance of the material needs to be identified first. This is done for wood here. Based on this methodology,
two improvements are presented on the right. They consist of an acceleration of the method using a generalized
polynomial chaos expansion surrogate and a generalization to the simultaneous recovery of multiple correlated
stiffness functions. The latter entails the potential for further acceleration and an improvement of the estimation
accuracy by the consideration of the cross-correlation coefficient of the quantities of interest.

Contributions and Accomplishments The present dissertation manuscript represents a cu-
mulative thesis in the field of non-destructive material characterization of heterogeneous ma-
terials subject to elastodynamics [60]. Thus, the aim of this document is not to provide ex-
haustive explanations concerning the accomplishments. In contrast to this, the achievements
and contributions to the state of the art are condensed in publications in peer-reviewed sci-
entific journals. Namely, these are Paper A [62], Paper B [57], Paper C [58], and Paper D
[56]. The noteworthy accomplishments are summarized below.

• Firstly, the suitability of natural frequencies for detecting defects in homogeneous plates
is assessed in Paper A. A comparison with the use of guided waves, which presents the
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current method of choice, discovers that employing resonance frequency data offers
some advantages. In fact, it leads to smoother objective functions that facilitate us-
ing gradient-based optimization procedures. However, it entails symmetry problems
concerning defect localization.

• A solution to the stiffness localization problem within a cantilever beam from its natu-
ral frequencies is presented in Paper B. This approach describes the structural flexibility
using the Karhunen-Loève expansion and embeds this description into a Bayesian infer-
ence formulation, which allows for an estimate of the solution uncertainty. The study
shows that basing the inference on modal data does not fall victim to error propaga-
tion, unlike an inversion procedure from the literature that uses deflection data, and it
considers the effects of the stiffness length scale and the signal quality on performance.

• Paper C develops a method for reusing surrogate models mapping from Karhunen-
Loève coefficients to the mode shapes of a structure. This improvement accelerates
the procedure presented in Paper B significantly. This is demonstrated numerically for
a functionally graded material application. Here, three structural beams with respec-
tively changing application purposes are chosen for the demonstration of the method.
Ultimately, the length scale corresponding to the original surrogate model should be
chosen as small as possible.

• Paper D proposes a model for the elastic material properties of wood based on a com-
pact morphological description. This model consists of a density model and a model for
the fiber directions. These computational models are validated experimentally using
computed tomography and modal analysis of a spruce trunk. Further, a generalization
and quantification of formerly qualitatively described wood defects is achieved. The
formulation a stochastic model for the heterogeneous material and quantify the uncer-
tainty in Young’s modulus due to the natural morphological variability of wood marks
the final step.

Chapter 3 covers the key aspects of each paper, including novelty and results, the authors’
contributions, and the citation reference in greater detail. Full-text reprints of the papers are
provided in Appendix II, III, IV, and V.

This thesis is structured as follows: Chapter 2 describes the methods necessary for re-
producing the results of this thesis. The latter are concentrated in publications that are
summarized and put into a more general perspective in Chapter 3. Chapter 4 scrutinizes the
results while relating them to results from the literature and draws the major conclusions to
this dissertation. Finally, reprints of the publications are given in Appendix II, III, IV, and V.





Chapter 2

Methods

2.1 Problem Statement

2.1.1 Finite Element Method

Elastostatics for Spatially Varying Elasticity Finite element method models are routinely
employed for tasks such as elastography [86], where the elasticity of a probe is to be mapped,
and, in some applications, stiff inclusions such as cancer tissue shall be detected. The most
pertinent information in this regard is delivered by strain gauges [146]. The generalized case
of identifying the spatially varying stiffness of a sample receives significant attention in the
literature [79]. Finding a local field from a global quantity is termed localization and is de-
scribed in detail by Yvonnet [164]. Within solid mechanics, modeling the elastostatics of the
system offers one basis for the aforementioned procedures. Koutsourelakis [79] formulates
the corresponding equilibrium equations as

∇ · σ̂(x) + b(x) = 0, ∀x ∈ Ω, (2.1)

where σ̂(x) represents the stress tensor and b are body forces. The constitutive relations are

σ(x) = D(x)ϵ(x), (2.2)

where σ(x) is the stress vector, D(x) is the elasticity tensor, and ϵ(x) is the vector of strains.
The local constitutive matrix De satisfies σe = Deϵe [79]. The strains can be obtained from
the displacements u(x) as

ϵ(x) = Su(x), (2.3)

where the differential operator S is the strain-displacement matrix [79]. Refer to the liter-
ature (see Zienkiewicz [166]) for defining boundary conditions. The local elasticity may be
modeled as constant over each finite element, discretized at the mesh nodes, or assigned at
the quadrature points of each element [79]. Paper B evaluates the spatially varying flexibility
at the mentioned integration points. Finally, Zienkiewicz [166] gives the standard form of
the assembled finite element method equations as

Kũ + f = 0, (2.4)

where K is the stiffness matrix, ũ are nodal displacements and f is the load term.

Numerical Homogenization Having obtained the finite element method formulation that
only departs from the standard formulation in terms of the explicit notation of the spatial
dependence, homogenization approaches that play the counterpart to localization can be ex-
plored. Usually, numerical homogenization is employed for materials with multiple discrete



2.1 Problem Statement 6

phases at the micro-scale [112]. For this case, approaches based on periodic unit cells and
representative volume elements exist [164]. The following connects to the representative
volume element branch. Consider the stress tensor component results on a small scale σ̃ζ,i j
from a static analysis based on Eq. (2.4) on a domain with volume |V |. Now, the homogenized
stress component σ̃h,i j can be obtained using these stresses as

σ̃h,i j =
1
|V |

∫

σ̃ζ,i jdζ, (2.5)

and the homogenized strain ϵh,i j is computed analogously as

ϵh,i j =
1
|V |

∫

ϵζ,i jdζ, (2.6)

where ζ refers to the small scale, see Charalambakis [21]. Finally, the homogenized stiffness
Eh reads as

Eh =
σ̃h

ϵh
. (2.7)

Elastodynamics Consider a matrix eigenvalue problem corresponding to the assembled
finite element method formulation for the case of no damping as [166]

�

K −ϖ2M
�

û = 0. (2.8)

Here, M is the system’s global mass matrix. The eigenvectors û and the angular eigenfrequen-
cies ϖ present the solutions to this eigenvalue problem. The ith natural frequency may then
be found as ϖi/2π. Further, a structure’s general frequency response may be constructed by
modal superposition [34].

This thesis uses modal data resulting from the dynamic behavior of elastic structures
as input data for the characterization of the local stiffness. Paper B solves the localization
problem of identifying the spatially varying structural flexibility from natural frequency mea-
surements. In contrast, Paper C uses information about the eigenvectors.

2.1.2 Applied Bayesian Inference

Overview of Approach The methods from the following sections can be employed for the
Bayesian inference of a parameter that exhibits spatial dependence, which lies at the core of
this thesis, see Figure 2.1, and is published in Paper B. The most important use case within
this dissertation is identifying the Young’s modulus function E(x) of a structure. Measure-
ments d of the mode shapes û or natural frequencies of the structure represent the data for
the inference here. The numerical model consists of a finite element method implementation
of the elastodynamic behavior resulting in Eq. (2.8). To evaluate Eq. (2.11), the prior and
likelihood functions need to be chosen. The measurement noise model is application-specific
and should be chosen according to one of the equations presented in Section 2.2.2. All elastic
material properties are inherently stochastic and non-homogeneous. Typical simplifications
that prescribe a homogeneous and deterministic material, as is often the case for steel, are
merely modeling assumptions that discard the variability based on claims of negligible in-
fluence. For cases where this influence is not negligible, the stiffness shall be considered as
a random field E(x ,ω) represented by the Karhunen-Loève expansion in Eq. (2.50). Con-
sider a stationary mean function µ(x) = µ and an appropriate truncation [70] to K that is
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independent of the spatial discretization of the Karhunen-Loève expansion. This leads to a
description of E(x ,ω) by θ , a collection of parameters {µ,η1,η2, . . . ,ηK}. The evaluation of
the finite element method model G based on this yields the response υ = G(θ ). Finally, the
underlying E(x) can be inferred by updating the joint distribution of θ from Eq. (2.11) [92].

Material
identification

Modal
analysis

Localization
problem

Accuracy enhancement:
Prior information on

material cross-correlation

Covariance identification:
Wood density patterns

Acceleration:
Surrogate models

(B)

(D)

(C)

Figure 2.1: This figure constitutes a repetition of Figure 1.1 for the reader’s convenience. The Bayesian inference
of a Young’s modulus function E(x) given modal data shown in pictogram (B) represents the choice of application
for this dissertation and is published in Paper B.

Acceleration The Karhunen-Loève expansion possesses some characteristics that affect the
solution of the inverse problem. There are fewer parameters to identify than when E(x) is
modeled with one random variable per node of the spatial discretization in the finite element
method. This can be applied using Eq. (2.39). On the one hand, this is detrimental to the
well-posedness of the problem. In a continuous and deterministic setting, the uniqueness of
the problem is still given, as the Karhunen-Loève bases φi are orthogonal. But as soon as the
spatial domain is discretized, it is possible to present the same E(x) using two different sets
of Karhunen-Loève coordinates ηi. This worsens when errors such as noise are introduced to
d. On the other hand, the dimension of the posterior from Eq. (2.11) is reduced to the length
of θ . This facilitates its exploration by the sampling algorithm or the mode identification in
the case of maximum a posteriori estimation.

A compelling argument for using the Karhunen-Loève expansion in Bayesian inference
arises when the likelihood is costly and sampling is done using Markov chains. This moti-
vates constructing a surrogate of the finite element method model that is cheaper to evaluate.
Obtaining the generalized polynomial chaos coefficients, see Section 2.5.2, becomes expen-
sive with a growing number of input parameters. It suffers from the curse of dimensionality
as expressed by Eq. (2.82). This can cause the generalized polynomial chaos expansion to
become unfeasible for approximating parameters with spatial dependence. The Karhunen-
Loève expansion solves this problem by decoupling the dimension of the random space from
the spatial grid. Marzouk and Najm [92] pioneer its usage for Bayesian inference applications
alongside generalized polynomial chaos.

Here, the generalized polynomial chaos expansion is used instead of the finite element
method for the likelihood evaluation, see Eq. (2.18). To this aim, a model output υ is ex-
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panded according to Eq. (2.82). The Karhunen-Loève coefficients ηi that represent the model
inputs are standard normal random variables in the case of a Gaussian E(x ,ω). Thus, Her-
mite polynomials may be chosen as the polynomial basis [92].

The generalized polynomial chaos coefficients must be determined again once a different
prior covariance is imposed on E(x ,ω) within the framework proposed in [92], as the gen-
eralized polynomial chaos expansion formulates the surrogate based on the Karhunen-Loève
coefficients. To decouple the surrogate from changes in the covariance hyper-parameters,
two extensions of the framework are developed in the literature to allow for uncertain q
[138, 142]. One of these extensions is presented in detail in Section 2.5.1. Here, Eq. (2.79)
delivers an approximate description of a Karhunen-Loève expansion endowed with arbitrary
hyper-parameters based on a transformation of the covariance that is used for the original
construction of the surrogate. Following this, the new surrogate is found without new finite
element method evaluations with Eq. (2.86). These methods are integrated into the baseline
procedure and are applied to accelerate the identification of the Young’s modulus function
E(x), see pictogram (C) in Figure 2.1, which is published in Paper C.

Optimal Choice of Prior Distributions for the Bayesian Inference of Multi-Correlated
Random Fields The following covers the accuracy enhancement of the Bayesian inference
using information about the cross-correlation of two or more spatially varying quantities of
interest. The relation of this investigation to the other considerations within this dissertation
is illustrated in the lower-right pictogram within Figure 2.1. There are often several quanti-
ties of interest with spatial dependence that shall be identified simultaneously. If they exhibit
a cross-correlation, the prior distribution on θ may reflect this cross-correlation. One way
this may be achieved is by modeling the quantities of interest as simply cross-correlated ran-
dom fields. This type of approach is best suited to empirical studies. Generally, inferring local
operating conditions along with the main quantity of interest is a perspective that is valuable
to any researcher seeking to achieve reproducible results. In the context of solid mechanics,
the task of identifying the full elasticity tensor D(x) comes to mind. Hooke’s law provides the
basis for the correlation assumption between its components, while the inherent randomness
commands the emergence of covariances.1 No authoritative study on the effect of reflecting
the cross-correlation in the prior distribution exists in the literature. This motivates a corre-
sponding investigation here, presenting an extension to [92]. As causality becomes harder
to identify for complex systems, a very simple, even trivial, problem statement is formulated
here.

Consider two simply cross-correlated random fields M1 and M2 that are represented by
Eq. (2.65)2 with H = 1m evaluated at n = 50 nodes. They exhibit a linear coefficient of
cross-correlation of ρ = 0.9. All kernels are chosen as the squared exponential kernel in
Eq. (2.30) with L = 1m and auto-covariance σ2 = 1 (-), while the cross-correlation kernels
are expressed in terms of the auto-correlation kernels using ρ = 0.9. A visualization of
samples from a cross-correlated bi-variate field is provided in Figure 2.6.

Now, the task is to reconstruct ground truth samples from M1 and M2 given their noisy
observations d. While this problem can be solved using Gaussian process regression, the
aspiration is to arrive at conclusions that can be generalized when any forward operator G
is used. To this aim, the Bayesian inference formulation from Eq. (2.11) is employed. The
likelihood function is adopted from Eq. (2.15) such that each noise component ε j possesses

1The real and imaginary parts of the acoustic boundary admittance also possess a cross-correlation for the
case of granular porous materials. Identifying these while accounting for the cross-correlation in the prior for
the Bayesian inference based on sound pressure evaluations in proximity to the boundary is studied by Hoppe et
al. [59].

2Gratitude is expressed towards Heyrim Cho for providing their source code from [22] for validating the
simply cross-correlated Karhunen-Loève expansion implementation.
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the noise standard deviation γ. The decomposition of the block covariance matrix satisfying
ρ = ρrec in Eq. (2.66) as formulated by Eq. (2.73) generates the samples within the updating
procedure to evade an inverse crime. The coefficients ζ representing θ are endowed with
mutually uncorrelated zero-mean, unit-variance Gaussian prior distributions. This setup im-
plicitly encodes the reconstruction cross-correlation coefficient ρrec of the random fields via
the prior of the Bayesian inference, whose posterior is explored using slice sampling, see
Section 2.2.

Two parameter studies exploring the effect of measurement noise, the reconstruction
cross-correlation coefficient, and the number of observation points are presented in Appendix
A.

2.2 Bayesian Inference

Model updating procedures attempt to identify the parameterization of a system [143]. This
is usually performed iteratively until the output produced by the simulation model matches
the measurement data. This procedure is relevant for a quantity of interest that is not directly
observable or when the measurement is time- or cost-intensive. The Bayesian approach to
inverse problems integrates uncertainty into the procedure. Refer to the literature for in-
troductions to Bayesian inference [23, 85, 89, 97, 104]. Considering uncertainty instead of
modeling a system as deterministic represents a generalization from the engineering perspec-
tive. Many elements in a typical engineering system are fraught with uncertainty. Consider
data d that are subject to additive measurement noise ε [140]

d = G(θ ) + ε. (2.9)

Here, the data shall be described using the parameters θ to a model G yielding the noise-free
model predictions υ= G(θ ). All models are mere approximations of reality, which brings the
concept of model uncertainty. Also, assuming the data is uncertain accounts for measurement
errors. Lastly, the parameters θ can only be determined with finite accuracy, and therefore,
they should also be considered as uncertain. These considerations support modeling each
component of the system as uncertain. Eq. (2.9) assumes a perfect model G, which is just a
mathematical depiction of the real physical system [7, 143]. Solving the connected inverse
problem is then to

find θ : υ= G(θ ) given d. (2.10)

Bayes’ Theorem This task of identifying the true model parameters θ from noisy observa-
tions of the system output may be formulated accounting for the sources of uncertainty listed
above. Employing Bayes’ theorem, the conditional probability density of the parameters θ
given that their evaluation within the model yields the observed data d reads as [140]

P(θ |G(θ ) + ε= d) =
P(d|θ )P(θ )

P(d)
. (2.11)

Typical terminology refers to the marginal distribution P(θ ) as the prior probability distri-
bution, the conditional distribution P(d|θ ) as the likelihood, the marginal distribution P(d)
as the evidence, and to the conditional distribution P(θ |d) as the posterior [82]. Essentially,
Bayes’ rule treats all parameters as random variables and describes how novel data change
prior assumptions on any quantity of interest [7]. The prior offers a way of incorporating
experience and information from previous measurement campaigns [7]. The distribution



2.2 Bayesian Inference 10

P(d|θ ) expresses the likelihood that evaluating the model with θ yields the observation of
d and represents the increase of knowledge by new data [116]. As the factors in the de-
nominator can be small floating point numbers, it is advisable to operate on the logarithm of
Eq. (2.11) to avoid numerical complications during their multiplication [116]. Because P(d)
is not tangible in the Bayesian inference context, it is usually chosen as a normalizing term,
such that the theorem reads as

P(θ |G(θ ) + ε= d)∝ P(d|θ )P(θ ). (2.12)

Challenges A mathematical problem is considered well-posed when its solution exists, is
unique, and changes continuously with respect to the inputs [50]. This definition can be
equally applied to inverse problems [12]. In contrast to this, if no set of parameters θ suffices
to describe the data, several parameter combinations yield the same output, or if small data
discrepancies propagate to a comparatively large parameter variation, the problem is called
ill-posed [33]. While regularization or constraints are used in traditional optimization to
enforce physically sensible parameter values [7, 47], similar effects in Bayesian inference may
be achieved by choosing appropriate prior distributions. One general concept to remember
when the data stems from a computational model instead of experimental measurement is to
coarsen the discretization during the inversion with respect to the computation of the ground
truth. Neglecting this results in an inverse crime, yielding an overestimation of the method’s
accuracy [76].

2.2.1 Sampling

Closed-form solutions for P(θ |d) in Eq. (2.11) only exist when conjugacy is present in special
cases with linear forward models [146]. For all other cases, the posterior distribution must
be approximated by random sampling [76]. Exploration algorithms based on Markov chain
Monte Carlo methods present one option [106]. Here, approaches that neglect [119] and
consider the gradient [54] exist.

The following provides a selection of Markov chain Monte Carlo sampling methods. The
Gibbs procedure samples separately from each component of the quantity of interest [94,
163].

The Metropolis-Hastings algorithm generates candidate samples within each step of the
chain from a proposal distribution [106]. If the acceptance probability of the candidates does
not satisfy a threshold, they are rejected, and the samples from the previous step are retained
[94, 115]. On the one hand, the acceptance probability is sensitive towards the proposal
covariance, while a too-small choice of the latter yields a poor exploration of the posterior
[106]. On the other hand, the acceptance ratio is low for strongly correlated components
of the quantity of interest. One of the remedies [123] is found in Metropolis-within-Gibbs
sampling [82]. Many improvements of the highly influential base algorithm exist [98, 106,
145].

Slice sampling is applied individually to each component, where it uniformly draws sam-
ples based on intervals [100]. While there is no adaptive component involved after the
preparatory tuning, several posterior evaluations are required to produce a sample, which is
especially detrimental for computationally expensive models [96]. Postprocessing the results
of the mentioned sampling procedures yields statistical sample moments of the Markov chain
[163].

Falling back to the maximum a posteriori estimate of θ strays from the intended path of
Bayesian inference and sacrifices the latter’s main advantages. The maximum a posteriori
estimate identifies the mode of the posterior, which is not equal to the expected value for
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skewed data. Though it is computationally cheap as merely an optimization problem needs to
be solved instead of the construction of a Markov chain, applying the maximum a posteriori
estimate entails abandoning the shape of the posterior or even its higher order moments
[151]. Refer to the literature for further reading on Bayesian inference [94, 123].

2.2.2 Likelihood of Observed Data

This section inspects the likelihood introduced in Section 2.2 in greater detail. The likelihood
integrates measurement data into Bayes’ theorem and is the conditional probability that this
data is observed using one set of θ [116]. Essentially, it answers how likely a measurement
of the data is when certain model parameters are used. Consider the noise-free output of
the numerical model as υ = G(θ ) and consider the random additive noise ε as normally
distributed. This implies that the investigated scenarios are based on normal or multivariate
normal distributions.

For one measurement data point d and the corresponding model prediction υ, the Gaus-
sian likelihood with standard deviation γ reads as [85]

L(d|θ ) = 1

γ
p

2π
exp

�

−
1
2
(d −υ)2

γ2

�

. (2.13)

Countless application-specific modifications can be made to this normal likelihood to cor-
rectly accommodate the properties of the data. Some items that mandate customization of
Eq. (2.13) are the repeated acquisition of data, simultaneous measurements of several quan-
tities of interest, and recording vector-valued data points. The following first provides the
appropriate formula for each of these cases and finally presents the generalized equation
that encompasses all of these scenarios.

If one scalar variable d is observed repeatedly, say n times, a suitable likelihood reads as

L(d|θ ) = 1

γ
p

2π
exp

�

−
1

2γ2

n
∑

i=1

(di −υi)
2

�

. (2.14)

This model for the measurement error is valid for multiple measurements of the system
response with constant independent variables at the same location under identical environ-
mental conditions. Note that γ is assumed to be stationary here.

Considering, say, m dependent variables is a common challenge. Some examples include
the simultaneous measurement of several natural frequencies or observing a field quantity
at a grid of locations. For scalar measurements of the specimen, the suitable likelihood [85,
116, 118]

L(d|θ ) =
m
∏

j=1

1

γ j
p

2π
exp

�

−
1
2

(d j −υ j)2

γ2
j

�

(2.15)

is found by multiplying the individual marginal likelihoods. The characteristic here is that the
noise standard deviation components γ j corresponding to each of the set of observed vari-
ables are mutually independent. However, the noise components retain the flexibility of ex-
hibiting different variances [85, 116]. As such, this represents a generalization of Eq. (2.14).

When the variable becomes vector-valued as d with dimension κ, the noise variability is
now given by the noise covariance matrix

Γi j = C(εi ,ε j), (2.16)
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such that the now multi-dimensional measurement noise is distributed as ε ∼N (0, Γ ) [146].
The likelihood becomes [146]

L(d|θ ) = 1
p

(2π)κ |Γ |
exp

�

−
1
2
(d −υ)T Γ−1 (d −υ)

�

with d,υ ∈ Rκ. (2.17)

One practical example is the measurement of the phase and amplitude of a quantity. For this
case, κ= 2.

Generalized Case Finally, the superposition of the abovementioned cases yields a general
likelihood. This general likelihood3

L (d|θ ) =
m
∏

j=1

(2π)−
κ
2
�

det
�

Γ j

��− 1
2 exp

�

−
1
2

n
∑

i=1

�

d ji −υ ji

�T
Γ−1

j

�

d ji −υ ji

�

�

(2.18)

suits repeated measurements of several vector-valued quantities of interest whose noise com-
ponents are mutually uncorrelated but individually described by a covariance matrix. Here,
the ith measurement of the jth dependent vector-valued variable d is denoted as d ji. The
concept of composite likelihood functions is studied in the literature [139].

2.3 Random Vectors and Random Fields

When the uncertainty of the elastic material properties belonging to homogeneous materials
are identified, these properties can be modeled as stochastic. The material properties can be
modeled as random functions that live on the structure’s geometry for heterogeneous materi-
als. The corresponding discrete case is considered a random vector. The following elaborates
on the theory of random vectors and fields, while Section 2.4 treats possible parameteriza-
tions, their identification, and representations. Note that these definitions of the statistical
moments are agnostic to the probability density function, whose special cases are treated
later in this thesis.

Random variables are commonly described by probability density functions, which are
characterized by statistical moments [110]. The expected value µ of a random variable M(ω)
reads as [20]

µ= E[M(ω)]. (2.19)

Here, ω corresponds to the random space, and a realization of ω leads to a realization of M
[2]. The variance, the squared standard deviation σ, is denoted as

σ2 = E
�

(M(ω)−µ)2
�

. (2.20)

Some higher-order statistical central moments describe skewness and kurtosis [110]. Note
that symmetrical distributions possess no skewness. Minimizing the deviation of the statisti-
cal moments of two distributions as a means of fitting one to the other is called the moments-
matching approach [83]. Recently, minimizing the Kullback-Leibler divergence between two
distributions, a generalization of the squared distance between the probability distributions
[83] is being favored over the moments-matching approach.

A collection of random variables becomes a random vector of length n [106]

M(ω) =
�

M1(ω), M2(ω), · · · , Mn(ω)
�T

. (2.21)

3This composite likelihood formulation was developed together with Martin Eser.
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The corresponding collection of mean values becomes a vector as well [20]

µ=
�

µ1,µ2, · · · ,µn
�T

. (2.22)

Several random variables are now considered jointly, and while their individual variance
persists, their relationship can be described using a covariance matrix C with the entries Ci j
[106]

Ci j = E
�

(Mi(ω)−µi)(M j(ω)−µ j)
�

, with i, j ∈ 1, 2, . . . , n. (2.23)

The designation of the random vector changes based on the index set. If the indices refer
to discrete locations in space, the generalized continuous function is called a random field,
and one may write M(x ,ω) [82]. For temporal dependence, the discrete random sequence
[20] can be generalized to the concept of a random process M(t,ω) [106], and combined
dependence results in the use of mixed nomenclature, see Carlton and Devore [20]. Alter-
native naming conventions exist [2, 82]. Random fields possess a mean function µ(x) and a
covariance function C(x , x ′) [20]. The expectation yields the average of a sample ensemble
of realizations at x [20]. The remainder of this thesis will use the terminology related to
random fields. However, all concepts apply equally to the random process case.

If the probability distribution of M(x ,ω) does not change over the domain it is defined on,
that is M(x ,ω) and M(x +∆x ,ω) share the identical distribution for any ∆x [67], Marzouk
and Najm [92] consider the random field as stationary. In greater detail, Carlton and Devore
[20] term a random field strict-sense stationary if its statistical properties are invariant within
the domain. Wide-sense stationarity is given for a constant mean function µ(x), finite vari-
ance σ2, and for a covariance C(x , x ′) that is only a function of the distance between x and
x ′. Any wide-sense stationary random field is implicitly strict-sense stationary; see Hsu [67].
When the ensemble of realizations from a random field is the same as the sample average of
one single sample, then this random field is called ergodic.

2.4 Random Field Description

Probability Distributions Consider the normal distribution over ζ of a random variable
[20]

N (µ, σ2) =
1

σ
p

2π
exp

�

−
1
2
(ζ−µ)2

σ2

�

. (2.24)

The corresponding function for the n-dimensional multivariate case over ζ, implying a num-
ber of n random variables, reads as [106]

N (µ, C) =
1

(2π)n/2|C |1/2
exp

�

−
1
2
(ζ−µ)TC−1(ζ−µ)

�

, (2.25)

where |⊠ | denotes the determinant of any matrix that is symbolized using the placeholder ⊠
here. If the probability density of all subsets of the underlying non-degenerate random field
follows such a multivariate Gaussian distribution, it is called a Gaussian random field [2, 92].
A Gaussian random field is a second-order random field and is completely described by its
mean and covariance [2].

If a non-Gaussian distribution is appropriate for any specific application, it can be conve-
nient to begin with the Gaussian case and the desired correlation structure. This could be the
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case if, say, non-negative material properties are modeled. It is then possible to obtain a ran-
dom field exhibiting arbitrary marginal distributions while conserving the correlation struc-
ture through a transformation approach described by Vořechovský [148]. The remainder of
this paragraph describes this procedure. Samples from M(ω) ∼ N (µ,C) can be transformed
to lie within the interval [0, 1] using

M̃(ω) =
1
2

�

1− erf
�

−M(ω)
p

2

��

(2.26)

with the Gaussian error function erf. Having obtained cumulative distribution function per-
centiles, an inverse cumulative distribution function converts the former back to samples
in the domain of the probability density function. Applying the Gaussian inverse cumula-
tive distribution function yields the original samples of M(ω). But applying, say the inverse
cumulative distribution function of the two-parameter beta distribution equipped with the
shape parameters α and β yields

M̂(ω) = I−1
M̃
(α,β) , (2.27)

where I is the regularized incomplete beta function. Now, the marginals of M̂ are distributed
according to the two-parameter beta distribution β , that is

M̂i(ω)∼ β (αi ,βi) ∀i ∈ 1, 2, . . . , n. (2.28)

Covariance Kernels The following predominantly confines itself to second-order random
fields, and adopting the corresponding notation GP

�

µ(x), C(x , x ′)
�

from Williams and Ras-
mussen [154] improves the readability here. This notation implies a Gaussian random
field that exhibits mean µ(x) and covariance C(x , x ′). The covariance function C(x , x ′) =
σ2r(x , x ′) can be interpreted as the product of variance σ2 and a correlation kernel r(x , x ′).
More precisely, the normalization of the covariance by the product of the variances at the
respective coordinates σ(x) and σ(x ′) results in the correlation kernel [106]

r(x , x ′) =
C(x , x ′)
σ(x)σ(x ′)

. (2.29)

By definition [2], the correlation at two identical coordinates r(x , x) evaluates to 1, and it
follows that |r| ≤ 1, given that σ(x)> 0 ∀x [2].

Correlation kernels are studied extensively in the literature [2, 31, 87]. All parameters of
correlation functions apart from the points in the domain are termed hyper-parameters and
gathered in q such that r(x , x ′,q). A specific q results in choosing a correlation kernel from
such a parameterized family of kernel functions. Many correlation kernels use a length scale
parameter L on which the correlation at two locations is normalized. In this case, q is simply
q = {L}. An example of this is the squared exponential kernel, which is widely used and
describes the correlation based on the Euclidean distance |x − x ′| of the coordinates of two
points. This stationary kernel reads as [154]

r(x , x ′,q = {L}) = r(x , x ′) =exp

�

−
|x − x ′|2

2L2

�

with 0< L. (2.30)

This kernel is convenient for numerical implementations of series expansion methods that
leverage eigenvalue decompositions of the covariance to sample from the random field. This
is because analytical solutions to the eigenvalue problem of the corresponding covariance
operator are available that serve as a reference for the quality of the numerical solution
[74]. For the sake of simpler notation, the dependence on q is not explicitly noted during
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the remainder of the text. Refer to Figure 2.2 for a visualization of the effect of varying
correlation lengths on the sample paths of a random field with otherwise identical covariance.
Observe that a growing correlation length L increases the similarity between two points at
a fixed distance. An infinite L would yield constant random field samples across all spatial
points, while L = 0 would produce uncorrelated noise.

M

x x x

Figure 2.2: The effect of varying correlation length on the random field samples on the domain [0, H]. The left
graph shows the case of L = 0.6H , the middle graph shows the L = 0.3H case, and the plot on the right depicts
the scenario L = 0.1H .

The Whittle-Matérn class of correlation kernels exhibits flexibility in terms of the rough-
ness of the described random fields while maintaining differentiability for special cases. It
incorporates a smoothing parameter ν, yielding q = {L,ν}. This kernel reads as [146]

r(x , x ′) =
21−ν

ΓG(ν)

�p
2ν|x − x ′|

L

�ν

Kν

�p
2ν|x − x ′|

L

�

with ν > 0. (2.31)

Here, ΓG is the gamma function, and Kν is the modified Bessel function of the second kind.
The expression simplifies when ν assumes half-integer values, and naturally, the resulting
compact versions are most often used. This kernel models the material resulting from additive
manufacturing in Paper C.

It turns out that combinations of correlation functions can again produce valid kernels;
see Duvenaud et al. [31]. In fact, if r1 and r2 are positive-definite kernels, then

• r1 + r2

• and r1 · r2

constitute positive-definite kernels as well, see Hofmann et al. [55]. One intuitive use of this
property is the construction of multi-dimensional kernels that consist of the multiplication
of basic kernels. This facilitates the synthesizing of random fields in several spatial dimen-
sions. Consider a two-dimensional squared exponential kernel for two points with Cartesian
coordinates (x , y) and (x ′, y ′) as [30]

r(x , y, x ′, y ′) = exp

�

−
(x − x ′)2 + (y − y ′)2

2L2

�

. (2.32)

Anisotropic in this context implies that a distinct correlation function is applied for each
Cartesian orientation. A two-dimensional an-isotropic squared exponential kernel with dif-
ferent correlation lengths Lx and L y for the spatial dimensions x and y reads as [31]

r(x , x ′)r(y, y ′) = exp

�

−
(x − x ′)2

2L2
x

�

exp

�

−
(y − y ′)2

2L2
y

�

. (2.33)

Using multiplicative kernels for each spatial dimension as in Eq. (2.33) with Lx = L y = L
is equivalent to the representation with a single isotropic kernel in Eq. (2.32). Figure 2.3
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illustrates an exemplary realization of a zero-mean unit-variance Gaussian random field with
isotropic covariance; see Eq. (2.32). In contrast, consider the visible difference given by
the length scale directivity shown in Figure 2.4, which is related to the anisotropic case of
the covariance in Eq. (2.33). The three-dimensional representation is analogous to the two-
dimensional case, see Eq. (2.33), and reads as

r(x , x ′)r(y, y ′)r(z, z′) = exp

�

−
(x − x ′)2

2L2
x

�

exp

�

−
(y − y ′)2

2L2
y

�

exp

�

−
(z − z′)2

2L2
z

�

. (2.34)

x

y

Figure 2.3: The graph illustrates an exemplary realization of a two-dimensional zero-mean unit-variance Gaussian
random field with isotropic covariance.

x

y

Figure 2.4: The graph shows a sample of a two-dimensional zero-mean unit-variance Gaussian random field for
the case of Lx > L y . As Lx ̸= L y , this represents an anisotropic covariance.

Preparing to generate samples from a random field with any certain covariance and noting
the necessary properties of the used kernels invites the consideration of Mercer’s theorem
[159]. This theorem permits an eigendecomposition

C(x , x ′) =
∞
∑

i=1

λiφi(x)φi(x
′), (2.35)

with eigenvalues λi and normalized eigenfunctions φi, given that C is a Mercer kernel [49,
95], which then allows for the application of methods based on principal component analysis
[55]. Any kernel that is continuous, symmetric, as in

C(x , x ′) = C(x ′, x) ∀x , x ′, (2.36)

and whose Gram matrix results in the covariance matrix

C =









C(x1, x1) C(x1, x2) . . . C(x1, xn)
C(x2, x1) C(x2, x2) . . . C(x2, xn)

...
...

. . .
...

C(xn, x1) C(xn, x2) . . . C(xn, xn)









(2.37)

is positive semi-definite, qualifies as a Mercer kernel [141].

Sampling Numerical methods for generating realizations of random fields are abundant.
Several of these are listed in the literature (see [35]). The most popular of these consist
of employing the Cholesky decomposition of the covariance or using the Karhunen-Loève
expansion of the random field, while the moving average method, the circulant embedding
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method [48], the local average subdivision method, and the turning bands method present
alternatives [36]. The Cholesky decomposition of the covariance matrix is finding a lower
diagonal matrix L such that

C = LLT. (2.38)

holds for the symmetric positive semi-definite C [152]. Now, a random vector z with mean
µ that follows the covariance C can be generated as

z = µ+ Lζ (2.39)

using a column vector ζ of independent standard normal random numbers ζ j ∼ N (0,1)
[106]. Note that this procedure using the Cholesky decomposition is the multi-dimensional
equivalent to sampling from z ∼ N (µ,σ2) by the linear transformation operation z = µ +
σζ. Implementations of the numerical routine for any spatial dimension of the random field
involve creating a list of discretization points, the construction of their distance matrix, the
latter’s evaluation to the covariance matrix, and finally, the remapping of the sample vector
to the original sorting of the points.

2.4.1 Covariance Identification

This section covers the methods for identifying the underlying covariance of a random field
whose realization is subject to Bayesian inference. Its relation to the other motifs explored
in this thesis is expressed by Figure 2.5. Essentially, knowing the covariance of the latent
random field is a prerequisite for the localization framework. These methods present a valu-
able resource in the context of Bayesian material discovery applications [5]. They are used
to identify the variability of the material properties of wood due to natural growth in Paper
D.

Material
identification

Modal
analysis

Localization
problem

Accuracy enhancement:
Prior information on

material cross-correlation

Covariance identification:
Wood density patterns

Acceleration:
Surrogate models

(B)

(D)

(C)

Figure 2.5: This section covers the methods related to pictogram (D) for identifying the underlying covariance of
a random field whose realization is subject to Bayesian inference.
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Bayesian Linear Regression Consider a data set d consisting of nd observations that shall
be modeled using np predictor variables ϑ. The corresponding design matrix X has the
dimensions np × nd . Now consider the simple linear regression approach with input vector x
[154]

d = xTϑ+ ε. (2.40)

Here, the independent Gaussian noise is assumed as ε ∼ N
�

0,σ2
ε

�

. The prior ϑ ∼ N (0, B)
with mean 0 and a standard deviation of σp employs a diagonal covariance matrix B of [154]

B = σp I , where I ∈ Rnp×np . (2.41)

The covariance matrix of the posterior is derived as A−1, the inverse of [154]

A=
1
σ2
ε

XXT + B−1. (2.42)

Finally, the mean of the posterior or maximum a posteriori estimate reads as [154]

ϑ̄ =
1
σ2
ε

A−1Xd. (2.43)

Gaussian Process Regression The above approach can readily be extended to the general-
ized polynomial regression. In this context, and assuming that the complete model exhibits
a GP component next to the polynomial global function or trend component, the expected
value for the design parameters is obtained as [107]

ϑ̄ =
�

XR−1XT
�−1 �

XR−1d
�

, (2.44)

with the correlation matrix R and when using an uninformative prior on the parameters
[107]

B−1 = 0. (2.45)

Gaussian process regression is synonymous with Kriging [90, 132], where the Gaussian ran-
dom field model is employed to interpolate between data points and cover local changes.
Consider a collection of n+n∗ points x̂ =

�

x1, x2, . . . , xn, x∗,1, x∗,2, . . . , x∗,n∗
�

, where x1 denotes
the first of n training points and x∗,1 represents the first of n∗ test points. The Gram matrix
corresponding to C

�

x̂ , x̂ ′
�

, see Eq. (2.37), is written as Ĉ . Rasmussen and Williams [154]
employ a prior

�

Ĉi j

�

1≤i≤n
1≤ j≤n

+σ2
ε I on noisy observations of a GP to obtain the joint density of

the data y and function evaluations f∗ at the test points as

�

d
f∗

�

∼N



0,





�

Ĉi j

�

1≤i≤n
1≤ j≤n

+σ2
ε I

�

Ĉi j

�

1≤i≤n
n< j≤n+n∗

�

Ĉi j

�

n<i≤n+n∗
1≤ j≤n

�

Ĉi j

�

n<i≤n+n∗
n< j≤n+n∗







 . (2.46)

In fact, the corresponding regression model evaluations are called predictions [132]. This
usage as a surrogate4 is well-studied in the literature [78]. The expected predictive function
values at the test points read as [154]

f̄∗ =
�

Ĉi j

�

n<i≤n+n∗
1≤ j≤n

�

�

Ĉi j

�

1≤i≤n
1≤ j≤n

+σ2
ε I
�−1

d, (2.47)

4One convenient application is the interpolation of acoustic absorption values between previously measured
frequencies and thicknesses of the porous layer sample. This was studied by Kevin Josef Li within his student
thesis Gaussian Process Regression for Interpolation, Extrapolation and Noise Reduction in several Dimensions that
was handed in on November 5th of 2020 at the Chair of Vibroacoustics of Vehicles and Machines of TUM School
of Engineering and Design.
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while the predictive covariance is found as [154]

E
�

( f∗,k − f̄∗,k)( f∗,l − f̄∗,l)
�

=
�

Ĉi j

�

n<i≤n+n∗
n< j≤n+n∗

−
�

Ĉi j

�

n<i≤n+n∗
1≤ j≤n

�

�

Ĉi j

�

1≤i≤n
1≤ j≤n

+σ2
ε I
�

�

Ĉi j

�

1≤i≤n
n< j≤n+n∗

(2.48)

with k, l ∈ 1, . . . , n∗. Evaluating the prediction error to identify regions where this error is
disproportionately large should be followed by a local increase in the number of samples to
reduce the uncertainty [37].

Maximum Likelihood Estimation of the Covariance The estimation quality of spatially
varying material properties modeled as random field samples is dictated by the chosen co-
variance kernel. If there is a mismatch between the true kernel and the assumed kernel,
the accuracy suffers. An easily visualized example is an ill-chosen length scale, where an
underestimation thereof results in an over-fit and an overestimation yields a sluggish match.
Hence, the covariance model needs to be fitted. Choosing one kernel or a combination of
several kernels as described in Section 2.3 is a task that receives significant attention in the
literature [87]. Once the covariance structure is fixed, its hyper-parameters q need to be
identified by the maximum likelihood estimation of the likelihood (Eq. (2.49)) of the data
[132]. Here, the case of q = L is considered as

L(d|L,σ, ϑ̄) =
1

(2π)nd/2 (σ2)nd/2 (|R(L)|)1/2
exp

 

−

�

d − XTϑ̄
�T

R(L)−1
�

d − XTϑ̄
�

2σ2

!

, (2.49)

where the correlation matrix R is the Gram matrix corresponding to Eq. (2.30) and where
the absence of a trend component can be reflected by setting XTϑ̄ = 0. [107]

2.4.2 Karhunen-Loève Expansion: Definitions and Numerical Treatment

Describing the quantity of interest with a large random vector complicates the inference, as
the exploration algorithm now must travel through a high-dimensional posterior. Compress-
ing this random space facilitates the solution of the inverse problem. This can be achieved by
representing the material property random fields with the Karhunen-Loève expansion.

The Karhunen-Loève expansion utilizes the mean function and decomposition of the co-
variance to find a representation of the random field as

M(x ,ω) = µ(x) +
∞
∑

i=1

Æ

λiφi(x)ηi(ω)≈ µ(x) +
K
∑

i=1

Æ

λiφi(x)ηi(ω), (2.50)

where ηi are the Karhunen-Loève coefficients and where (λi ,φi)∞i=1 are the eigenpairs asso-
ciated with the covariance operator that comply with the Fredholm equation of the second
kind [14]

∫

Ω

C(x , x ′)φi(x
′)dx ′ = λiφi(x) with x ∈ Ω, (2.51)

see Marzouk and Najm [92]. Notably, the full series from Eq. (2.50) may be limited to K
terms, which decouples the random dimensionality of the random field representation from
its spatial discretization [14]. This allows for a more random dimension compared to the
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spatial discretization [14]. The mode strengths ηi(ω) corresponding to a specific realization
of the random field are found as [138]

ηi(ω) =
1
p

λi

∫

Ω

(M(x ,ω)−µ(x))φi(x)dx . (2.52)

The Karhunen-Loève expansion delivers the best random field representation with respect to
the mean square error [14, 44]. If the underlying random field is Gaussian, the Karhunen-
Loève coefficients ηi(ω) are uncorrelated standard normal random variables.

Numerical Treatment Betz et al. [14] review several numerical solution approaches to the
integral eigenvalue problem in Eq. (2.51). One feasible approach they present is the Nyström
method that approximates Eq. (2.51) by

s
∑

j=1

w jC(xn, x j)φ̂i(x j) = λ̂iφ̂i(xn), n ∈ 1, . . . , s, (2.53)

where w j represents the integration weights to the integration positions x j. Here, λ̂i is an
approximation of the eigenvalue λi and φ̂i is the discrete eigenvector corresponding to φi.
Eq. (2.53) can be expressed as a matrix eigenvalue problem with

C W vi = λ̂i vi , (2.54)

where vi is a vector with length s whose nth entry vi,n is φ̂i(xn), W is the diagonal weight
matrix with the diagonal entries W j j = w j [14]. Within this thesis, the integration weights
are set to the volume enclosed by grid points adjacent to the integration point, thus yield-
ing a piece-wise constant integration scheme. This satisfies the requirement of scaling the
eigenvalues of the covariance matrix to reflect the true variance. An appropriately scaled
identity matrix can approximate the matrix of integration weights when equidistant grid
points are used. However, this introduces an error at the boundary, as the correct weight for
a one-dimensional domain equals half of the weight corresponding to an interior grid point.
Adjusting the weights at the boundaries is recommended.

The eigenvalue problem in Eq. (2.54) is readily solved with an eigensolver. Some minor
steps are necessary after the solution to ensure a consistent treatment. Firstly, the eigenvalues
and eigenvectors shall be ordered descendingly in compliance with λ1 ≥ λ2 ≥ λ3 · · · ≥ λK .
Secondly, the orientation of the eigenvectors must be consistent to create a unique descrip-
tion of any random field sample. This is necessary for the well-posedness of any inverse
problem involving characterizing a random field sample represented by the Karhunen-Loève
expansion. One strategy is to require the first entry of all eigenvectors to be positive

vi,1
!
> 0 ∀i. (2.55)

Finally, the length of the eigenvectors needs to be normalized to once again accurately ac-
count for the variance of the underlying random field, as Mercer’s theorem requires [88]

∫

Ω

(φ̂i(x))
2dx = 1 ∀i. (2.56)

One way of obtaining normalized eigenvectors ṽ is to compute [14]

ṽi = vi

√

√

√

√

s
∑

j=1

w j(v j,i)2. (2.57)
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Errors Truncating the series in Eq. (2.50) results, among other effects, in an approximation
error of the random field variability. This truncation error depends on the expansion order
K. In general, shorter correlation lengths and lower smoothness coefficients necessitate re-
taining more terms in the series. One way of choosing an appropriate expansion order is
by evaluating how much of the variability the Karhunen-Loève expansion accounts for [70].
To this aim, the expectation for the field’s energy can be compared to that of the truncated
counterpart [70]. After evaluating

∫

Ω

C(x , x ′)dx =
∞
∑

i=1

λi ≈
K
∑

i=1

λi , (2.58)

the measure for the variance approximation error e by truncation reads as [70]

e = 1−

∑K
i=1λi

∑∞
i=1λi

. (2.59)

Non-Gaussian Case If the random field is non-Gaussian, the generalization of the Karhunen-
Loève expansion induces correlations between the coefficients ηi(ω). The extension to these
cases is not straightforward [14]. An alternative is to perform an operation on the resulting
Gaussian variates. While the normal distribution is retained for linear transformations, albeit
with changed mean and standard deviation, other distribution types can be achieved using
simple operations. If the desired random field shall possess a log-normal distribution, the
exponential of the results from the standard Karhunen-Loève expansion may be utilized. Ex-
amples of plain operations that yield valid probability distributions include using the absolute
value or square of the Gaussian random numbers. For more complex target marginal distri-
butions and in the absence of closed-form transformations, the conversion by Eqs. (2.26) and
(2.27) offers a solution. It consists of transforming the Gaussian random variables to a cu-
mulative distribution function and then applying the desired inverse cumulative distribution
function to maintain smooth sample paths that follow the original covariance [148].

Sampling To synthesize the random field using the Karhunen-Loève expansion, realizations
of its stochastic coefficients ηi(ω) need to be generated. The coefficients ηi(ω) are uncorre-
lated standard normal variates for a Gaussian random field M(x ,ω) [146]. Thus, drawing a
sample ηi ∼N (0,1) ∀i creates a sample of the field [92].

2.4.3 Generalized Karhunen-Loève Expansion: Cross-Correlated Random Fields

Several descriptions for cross-correlated random fields exist in the literature, where Voře-
chovský [148] demonstrates sampling from simply cross-correlated random fields. Papaioan-
nou and Der Kiureghian [108] show how to generate realizations from such generalized
Karhunen-Loève expansions and investigate their numerical treatment. Cho et al. [22] pro-
pose two methods of extending the classical Karhunen-Loève expansion to several correlated
random fields. One of their methods minimizes the size of the assembled covariance matrices,
while the other optimizes the dimension of the random space. The latter property represents
a synergy with the generalized polynomial chaos expansion by mitigating the curse of dimen-
sionality. In this context,

Ci j(x , x ′)
def
= E[Mi(x

′,ω)M j(x ,ω)], 1≤ i ≤ j ≤ m. (2.60)
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represents m(m+1)/2 covariance functions describing the correlation structure of m random
fields that are each defined on [0, H], where H is the length of the domain. One of the
methods proposed by Cho et al. [22] correlates the random fields by imposing a correlation
structure on the traditionally uncorrelated Karhunen-Loève coefficients. The second method
employs uncorrelated Karhunen-Loève coefficients, while the cross-correlation is induced by
the structure of a dedicated joint covariance. The following relates to the latter. Here, an
assembled random field M̃(x ,ω) is considered as

M̃(x ,ω)
def
= Mi(x −Hi−1,ω), x ∈ Ii , (2.61)

a sub-field Mi(x ,ω) of the assembled field is mapped to the interval Ii of the total domain.
Here, Hi = iH. The corresponding assembled covariance function reads as

C̃(x , x ′)
def
= Ci j(x −Hi−1, x ′ −H j−1), x ∈ Ii , x ′ ∈ I j . (2.62)

For n unique points in space within [0, H], the discretized assembly of the covariance C̃(x i , x j)
becomes an n× n matrix. Now, the assembled field can be expanded into the series

M̃(x ,ω) =
∞
∑

k=1

Æ

λkM̃k(x)η(ω), (2.63)

where the Karhunen-Loève coefficients ηk(ω) are uncorrelated, and λk and M̃k(x) are the
eigenvalues and eigenfunctions corresponding to the assembled covariance function. Note
that M̃k(x) can be split into m parts that are associated with sub-fields φ(i)k (x)(i = 1, . . . , m).
The latter can be extracted using [22]

φ
(i)
k (x)

def
= M̃k(x +Hi−1)I[0,H](x). (2.64)

Finally,

Mi(x ,ω) =
∞
∑

k=1

Æ

λkφ
(i)
k (x)ηk(ω) (2.65)

represents the Karhunen-Loève expansion for the sub-field Mi(x ,ω). [22]
To generate realizations of a sub-field within the method by Cho et al. [22], the un-

correlated coefficients ηk need to be sampled as standard Gaussian variables after the cor-
responding Karhunen-Loève expansion is truncated and discretized. Figure 2.6 depicts 10
realizations for the case of two one-dimensional sub-fields, whose cross-correlation kernel
results in a Pearson coefficient of linear correlation [111] of 0.7. Here, the y direction corre-
sponds to the first random field, and the z direction corresponds to the second random field.
The three-dimensional plot is chosen to visualize the effect of the cross-correlation. Some
10 000 samples from a distribution marginalized at x = H/2 are shown with a scatter plot in
the center. This joint density clearly shows the cross-correlation of the fields.

Special Case of Two Correlated Random Fields The signal processing community treats
complex-valued signals in the time domain [127]. The term complex random field refers
to a signal on such a domain within this thesis. A classification of such complex fields can
be accomplished depending on the correlation of the real and the imaginary parts [101]. If
the correlation between the components is zero, the intersection graph shows a symmetric
circular joint distribution. For a non-zero correlation, an ellipse-shaped pattern can be ob-
served [128]. Further narrowing of the classification depending on the degree of correlation
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Figure 2.6: The figure shows 10 random samples of two one-dimensional squared exponential random fields that
are correlated with a Pearson coefficient of linear correlation of 0.7. Evaluating the graph in the y direction yields
the samples of the first random field while doing so for z yields those of the second. The y and z dimensions
of the intersection planes are normalized on the 10 exemplary samples. The cutting plane in the center presents
10 000 samples and approximates the joint density of the fields there.

is not common. Note that the sample cross-correlation matrix is generally not equal to zero
but tends to the latter for large sample sizes. Refer to the literature for more detailed infor-
mation on complex random fields [16]. The insight gained from studying complex random
fields can readily be applied to considering two one-dimensional real-valued random fields
without losing generality. The following paragraphs formulate the complex-valued case. To
treat the case of two real-valued fields, use the real and imaginary parts separately.

Special covariance kernels for complex fields are treated in the literature [17]. However,
a block covariance matrix C ∈ R2n×2n

C =

�

C11 C12
CT

12 C22

�

(2.66)

can readily be constructed with the same effect. It consists of the auto-covariance matrices
C11 and C22 that stem from conventional covariance kernels. The cross-covariance matrix C12
may be found by applying the operation [127]

C12,i j = ρ12

Æ

C11,i j
Æ

C22,i j ∀i, j = 1, . . . , n (2.67)

on the auto-covariances utilizing a linear cross-correlation coefficient ρ12. Naturally, C11
and C22 are symmetric and it follows that C12 = CT

21 [18]. Schreier and Scharf [126, 128]
develop special adaptations of the Karhunen-Loève expansion for such covariance structures
[51, 127]. Full-dimensional approaches for representing two correlated random fields are
available, such as the convolutional approach by Boloix-Tortosa et al. [16], which compares to
the moving average method [35]. This thesis presents an alternative employing the complete
random space by building on results obtained by Schreier and Scharf [127]. They find the
eigendecomposition of the block covariance as

C = UΛUT. (2.68)

Here, U contains eigenvectors and

Λ=

�

Λ(1) 0
0 Λ(2)

�

, (2.69)

where the diagonal matrices Λ(1) and Λ(2) contain the odd and even eigenvalues in decreasing
order, respectively. Denoting the imaginary unit as j and the Hermitian transpose with ⊠H,
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Schreier and Scharf [128] define the unitary transformation

T =
1
p

2

�

I jI
I −jI

�

, T TH = THT = I . (2.70)

Using this yields5

L= UTΛ
1
2 THUH, (2.71)

where ⊠ denotes the augmentation by the complex conjugate of a quantity. This leads to a
representation of complex random fields

z = µ+
�

Li j

�

1≤i≤n
1≤ j≤n

ζ+
�

Li j

�

1≤i≤n
n< j≤2n

ζH (2.72)

that resembles a generalization of Eq. (2.38). Corresponding realizations of two cross-
correlated one-dimensional random fields are obtained by sampling

ζ∼N (0, I ∈ Rn) + jN (0, I ∈ Rn). (2.73)

2.5 Acceleration

Employing the Karhunen-Loève expansion has a second benefit next to the simplification of
the posterior space that the Bayesian inference exploration algorithm traverses. Surrogate
models represent a popular way of accelerating the solution time and are especially bene-
ficial when a computationally expensive forward model needs to be repeatedly evaluated.
Notably, surrogate modeling techniques such as the generalized polynomial chaos expan-
sion suffer from the curse of dimensionality. Employing generalized polynomial chaos to
connect material properties described by a random vector to the stochastic system outputs
offers diminishing time savings when the spatial discretization of the material properties is
increasingly refined. The Karhunen-Loève expansion preserves the advantages of surrogate
models such as generalized polynomial chaos by decoupling the spatial discretization from
the random space.

2.5.1 Generalized Karhunen-Loève Expansion: Acceleration by Transformation

One drawback when using the standard Karhunen-Loève expansion and generalized poly-
nomial chaos expansion in conjunction is that the generalized polynomial chaos surrogate
needs to be updated every time the covariance of the latent field is modified. This is because
the eigenvectors and eigenvalues of the covariance simultaneously change. Consequently, the
Karhunen-Loève coefficients need to be updated. Finally, this calls for adapting the general-
ized polynomial chaos surrogate that expands these coefficients.

Sraj et al. [138] formulate a parameterized generalization of the Karhunen-Loève expan-
sion. Motivated by the elusiveness of hyper-parameters of random fields in many engineer-
ing applications, they alter the Karhunen-Loève expansion to accommodate for changes in
covariance hyper-parameters q . Any covariance kernel such as Eq. (2.30) is subject to such
hyper-parameters, whose notation is introduced in Section 2.3. The following reproduces the

5Simon Mannhardt developed this decomposition and the connected sampling procedure while he was a
student research assistant at the Chair of Vibroacoustics of Vehicles and Machines of TUM School of Engineering
and Design.
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equations related to the core of their method that is provided in [138], as it is not well-known
within the community. Instead of the usual implicit dependence of the Karhunen-Loève ex-
pression on q in Eq. (2.50), they introduce such a dependence explicitly as

MK(x ,ω,q) = µ(x) +
K
∑

i=1

Æ

λi(q)φi(x ,q)ηi(ω). (2.74)

The remaining text passages covering this generalized version of the Karhunen-Loève expan-
sion refrain from explicitly mentioning the spatial dependence on x for brevity. [133, 138]

A Karhunen-Loève expansion with covariance reference C(q r) endowed with reference
hyper-parameters q r marks the start of their procedure. This basis is morphed into a Karhunen-
Loève expansion characterized by target hyper-parameters q . To achieve this, Sraj et al. [138]
leverage the similarity of the connected eigenvectors. The product of the square root of the
eigenvalues and the eigenfunctions of the target covariance yields the scaled eigenfunctions

Φi(q) =
Æ

λi(q)φi(q). (2.75)

They express these scaled eigenfunctions Φi(q) in terms of the reference eigenfunctions φ r
i (q)

by means of projection coefficients bii′ as obtained by the inner product (⊠,⊠)X of any func-
tion symbolized by ⊠ as

Φi(q) =
K
∑

i′=1

bii′(q)φ
r
i′ with bii′ =

�

φ r
i ,Φi′(q)

�

X . (2.76)

Using these projection coefficients bii′ , transformed Karhunen-Loève coefficients may be
found as

η̂i(ω,q) =
K
∑

i′=1

bii′(q)ηi′(ω), (2.77)

or using matrix notation as

η̂(ω,q) = B(q)η(ω). (2.78)

With this transformation, the dependence on q may be moved to the Karhunen-Loève coor-
dinates η̂i(ω,q) from the scaled eigenfunctions Φi. Finally, the Karhunen-Loève expansion of
a centered random field with the target covariance is formulated using the reference eigen-
functions as

MK(ω,q) =
K
∑

i=1

Φi(q)ηi(ω)≈ M̂K(ω,q) =
K
∑

i=1

� K
∑

i′=1

bii′(q)φ
r
i′

�

ηi(ω) =
K
∑

i=1

φ r
i η̂i(ω,q). (2.79)

The minimally possible transformation error is achieved when choosing q r as equal to the
true target hyper-parameters. For an extensive investigation of the approximation error be-
tween the transformed and non-truncated field, refer to the work by Sraj et al. [138].

2.5.2 Generalized Polynomial Chaos Expansion Surrogate Model

Methods like the finite element method for solving partial differential equations represent
the overwhelmingly dominant choice of engineers. In its traditional form, the finite element
method is a deterministic method reporting a deterministic system response to an equally de-
terministic excitation and boundary conditions. Evaluating involved finite element method
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models is computationally expensive. Monte Carlo sampling of the inputs of such a model
presents a popular method within uncertainty quantification. This assesses how input uncer-
tainties propagate to the outputs by repeatedly drawing samples from the input distributions
and subsequently evaluating the forward model. Naturally, a computationally expensive
forward model does not bode well for Monte Carlo sampling. Hence, constructing a com-
putationally cheap surrogate model is desirable. Indeed, a compromise between accuracy
and efficiency exists. Koziel and Pietrenko-Dabrowska [80] state that surrogate models, or
meta-models, present such a trade-off. Physics-based surrogates rely on simplifications, while
data-driven ones are purely mathematical. The generalized polynomial chaos expansion falls
within the latter while approximating the outputs of the high-fidelity model G as random
variables. The notion of polynomial chaos is coined by Wiener [153], where chaos refers to
randomness or uncertainty. Ghanem and Spanos [44] apply the original idea of projecting a
deterministic quantity onto a stochastic space spanned by polynomials Ψ to solid mechanics.
Xiu and Karnidakis [160] generalize this concept beyond the Gaussian case to polynomials
belonging to the Askey scheme [6]. The result is called the generalized polynomial chaos
expansion [157].

The polynomials used in this context are functions of the random vector ξ= [ξ1,ξ2, . . . ,ξn]
[160]. Sepahvand et al. [130] provide detailed explanations concerning generalized polyno-
mial chaos. Consider the expansion of an uncertain parameter υ as [130]

υ= a0Ψ0 +
∞
∑

i1=1

ai1Ψ1(ξi1) +
∞
∑

i1=1

i1
∑

i2=1

ai1 i2Ψ2(ξi1 ,ξi2)

+
∞
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1

ai1 i2 i3Ψ3(ξi1 ,ξi2 ,ξi3) + · · · (2.80)

which reads as [130]

υ=
∞
∑

i=0

aiΨi(ξ) (2.81)

in compact notation, where ai are initially unknown deterministic coefficients. The truncation
of the series to N + 1 terms yields

υ≈
N
∑

i=0

aiΨi(ξ) with N + 1=
(n+ p)!

n!p!
, (2.82)

where p is the expansion order and n represents the dimensionality of the random input
vector ξ [130]. The base functions Ψi possess a mutual orthogonality property [160]. The
distribution type of ξ dictates the optimal choice for Ψi, which consists of Hermite polynomi-
als for Gaussian ξ [160].

Computation of Coefficients If the system equations are accessible, the coefficients ai can
be obtained by a Galerkin projection [137]. This approach results in the optimal error and is
termed an intrusive method [92]. If the model G is a black box, stochastic collocation offers
an alternative [72]. The coefficients may be estimated by minimizing the error between υ and
its representation by the truncated expansion representation using least square minimization
[91]. For the special case of one input random variable ξ, consider n realizations of it as
�

ξ(1),ξ(2), . . . ,ξ(n)
	

and the corresponding observed data points as
�

υ(1),υ(2), . . . ,υ(n)
	

[130].
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Then, solving the linear equation system






∑N
j=0Ψ0(ξ(1))Ψ0(ξ(1)) · · ·

∑N
j=0Ψ0(ξ(n))Ψn(ξ(n))

...
. . .

...
∑N

j=0Ψn(ξ(1))Ψ0(ξ(1)) · · ·
∑N

j=0Ψn(ξ(n))Ψn(ξ(n))











a0
...

an



=







∑N
j=0υ

(0)Ψ0(ξ(0))
...

∑N
j=0υ

(n)Ψn(ξ(n))






(2.83)

yields the coefficients ai [130]. Instead of random samples, the collocation points can be
strategically chosen. One strategy is to utilize the roots of basis polynomials of the degree
p+1 [130]. The next step is to sort the resulting collocation points based on their L2 norm and
to arrange the equation system in Eq. (2.83) such that each entry within the model response
υ(i) is correctly assigned to the corresponding collocation point ξ(i). Sparse collocation point
grids reduce computational effort here [124]. However, it is generally advisable to employ an
over-determined system of equations. For a higher dimensionality, all possible combinations
of terms must be expanded using the tensor product on the polynomial bases [158].

Non-optimal Expansions If the distribution type of the random variable ξ does not align
with the polynomial, the above procedure turns into a non-optimal generalized polynomial
chaos expansion. Now, the series expansion does not necessarily converge. This challenge
can be overcome by transforming the respective probability spaces associated with ξ and υ
to common ground [29, 130].

Sampling To sample from the generalized polynomial chaos surrogate, one may generate
realizations of ξ and evaluate Eq. (2.82) to obtain the approximated system response. Statis-
tical moments of υ follow directly from its generalized polynomial chaos coefficients ai with
no dependence on preceding sampling. The first coefficient is synonymous with the expected
value [73]

µ≈ a0, (2.84)

and a compact expression for the variance reads as [73]

σ2 ≈
N
∑

i=0

h2
i a2

i , (2.85)

where hi is the norm of the basis polynomials [130]. These and higher order normalized
central moments can be computed by additionally using the basis polynomials and the prob-
ability density of ξ; however, this also necessitates higher expansion orders, where the con-
vergence of the approximation is not guaranteed [130].

Coefficient Transformation Traditionally, the covariance of the quantity of interest must
be known for the prior within the Bayesian inference to provide accurate results. The corre-
sponding hyper-parameters can be identified using Gaussian process regression if sufficient
data is available. If this is not possible, a flexible description that does not require new for-
ward model evaluations is valuable. Such a description is available in the literature [138].
Note that this method is valid when the hyper-parameters connected to the chosen kernel
change but does not account for a change of kernel or of the kernel structure in the case of
composite kernels.

The generalization of the Karhunen-Loève expansion by Sraj et al. [138] (see Section
2.5.1) is conceptualized with a link to the generalized polynomial chaos expansion in mind.
They free the generalized polynomial chaos coefficients ai from the dependence on the hyper-
parameters q and cast it on ξ instead. In fact, ai must only be computed once with the
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input of the model G being described by the reference covariance C(q r). Now, the surrogate
for a model G whose inputs are connected to the Karhunen-Loève expansion of a different
covariance reads as [138]

υ(η,q)≈ υ̃
�

ξ(η,q)
�

=
N
∑

i=0

aiΨi(ξ(η,q)) with ξ(η,q) = B̂(q)η, (2.86)

where B̂ is defined as

B̂kl(q) =

(Bkl (q)p
λr

k
if
λr

k
λr

1
> 1× 10−12,

0 otherwise.
(2.87)

Here, the eigenvalues of the reference covariance operator λr
k shall be arranged to steadily

shrink. The threshold enforces a good condition number of B̂ [138].



Chapter 3

Summary of Publications

This chapter summarizes the publications Paper A [62], Paper B [57], Paper C [58], and Paper
D [56]. It covers the key aspects of each paper, including novelty and results, the authors’
contributions, and the citation reference. Full-text reprints are provided in Appendix II, III,
IV, and V.
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3.1 Paper A

Evaluation of inversion approaches for plates based on guided waves and modal anal-
ysis

Karl-Alexander Hoppe, Simon Schmid, Jochen Kollofrath, Steffen Marburg, and Christian
U. Grosse

Summary Recent developments in regression pave the way for the simultaneous employ-
ment of two simulation models to characterize a quantity of interest [109]. Within the so-
called multi-fidelity Gaussian process regression, the designated low-fidelity model is com-
paratively cheap in a computational sense. Its results are comparatively less accurate than
those stemming from the so-called high-fidelity model. Evaluations of this model are costly
but yield superior results. On the one hand, such a setup can be achieved using a fine-grained
and a coarse discretization of the identical model. On the other hand, this could be set up
at two different scales, which offers some new perspectives for computational multi-scale
approaches [24, 39, 42, 161]. Finally, the multi-fidelity regression could also be used with
two models that operate on the same scale but portray different physics. This motivates a
study that presents a preparatory investigation in this regard [61]. The information content
delivered by both modal analysis simulations using the finite element method and guided
wave propagation as implemented by the spectral element method [3] is considered.

The effect of a continuous circular defect in a square aluminum plate on its natural fre-
quencies and the propagation of lamb waves within the plate is investigated [62]. At the time
of writing this manuscript, the author is not aware of any published research that addresses
which method is better suited for the identification of such a defect. To advance here, it is
assumed that a classical optimization task shall be solved to characterize the defect based on
the minimization of an objective function. A set of four objective functions is constructed.
The first results from the full time-domain response represented by the ultrasonic waveform
as it is employed in full waveform inversion [114]. The second is based on the velocity of the
first antisymmetric Lamb wave mode [52, 71] as identified by the peak of the Hilbert enve-
lope [122] around the waveform. Refer to the literature for the fundamentals of elastic waves
[8, 81]. The third and fourth are based on the first and second natural frequencies of the
plate, respectively. The plate is modeled with free-free boundary conditions here [62]. This
is reflected in the validation by experimental modal analysis, where the rigid body modes are
sufficiently separated from the first natural frequency by suspension on strings when excited
with the modal hammer. The laser Doppler vibrometer is also used for the experimental vali-
dation of the guided wave simulation, where the response is evaluated on a grid surrounding
the source, a shear wave transducer. After evaluating the effect of the position of the defect
and its geometry on the objective functions via numerical parameter studies, clear advan-
tages and drawbacks can be associated with each trial method. [62] While the utilized modal
data produces ambiguous objective functions due to symmetry in the investigated modes,
the obtained objective functions are smooth over both the defect position and its size. [62]
This renders modal data suitable for applying a gradient-based optimization procedure. The
optima resulting from guided wave data are comparatively compact and free from ambigu-
ity; however, the objective surface is rough. These findings support employing both lamb
waves and modal data jointly, either with a two-step procedure beginning with natural fre-
quency data or by integrating the approaches into multi-fidelity Gaussian process regression
frameworks.
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3.2 Paper B

Identification of a cantilever beam’s spatially uncertain stiffness

Karl-Alexander Hoppe, Martin G. T. Kronthaler, Kian Sepahvand, and Steffen Marburg

Summary This publication presents the core of this thesis, see Figure 2.1, that all other
efforts are centered on. It should be thus understood as a baseline framework that is com-
plemented and expanded by the other contributions. The non-destructive characterization
of the spatially varying elastic material properties from vibration measurements while incor-
porating uncertainty constitutes the engineering application. In the literature, this is done
employing the generalized polynomial chaos expansion or Karhunen-Loève expansion of the
stiffness and using frequency response functions or mode shape data [11, 26, 28, 93].

To the best of the author’s knowledge at the time of submitting the paper, it is the first
work to apply Bayesian inference to the identification of the spatially uncertain structural
flexibility of a beam by a resonance frequency method together with the Karhunen-Loève
expansion. This task can also be interpreted as a localization problem from the macro- to
the meso-scale, as the natural frequency belongs to the structure globally, while the elasticity
tensor possesses a spatial dependence at the meso-scale. To create a frame of reference, the
model is compared closely to a recent result from the literature, where Uribe et al. [146] study
the identification of the non-homogeneous stiffness of a cantilever beam under static loading
given noisy deflection observations. To ensure comparability, their problem setting is repro-
duced in proprietary implementations for the finite element method and the Karhunen-Loève
expansion. Additionally, the Bayesian inference is executed identically using slice sampling;
see Section 2.2. The likelihood is chosen as given by Eq. (2.15) for both application cases.
The choice of γ j reflects that higher natural frequencies are harder to determine by increasing
together with the eigenfrequency number.

To gain insight into the performance of both approaches, the inversion is applied for a
range of signal-to-noise ratios and a range of correlation lengths L of the underlying random
flexibility fields. The errors are interpreted in a mean sense over 100 ground truth realiza-
tions. The characterization based on static deflection data generally results in lower errors.
This can be explained by the fact that, while using deflection data does suffer from error
propagation, it is not a localization problem, as the deflection data probe positions live on
the same scale as the a priori unknown elastic material properties. Thus, this approach has an
easier time identifying the quantity of interest, much like using mode shape data. The error
propagation in the static case leads to a widening confidence interval with increasing distance
from the support. This is not the case when natural frequencies are used; the estimation un-
certainty remains roughly constant over the problem domain here. Common observations
for both approaches include that higher signal-to-noise ratios improve the accuracy, and an
improved reconstruction can be achieved when L is large relative to the domain’s size. [57]

Contributions Karl-Alexander Hoppe: Conceptualization, Methodology, Software, Valida-
tion, Formal Analysis, Investigation, Resources, Writing - Original Draft, Writing - Review and
Editing, Visualization, Supervision, Project Administration. Martin G. T. Kronthaler: Method-
ology, Software, Validation, Formal Analysis, Investigation, Data Curation, Writing - Original
Draft, Visualization. Kian Sepahvand: Writing - Review and Editing. Steffen Marburg: Su-
pervision, Writing - Review and Editing.

Reference Hoppe, K.-A., Kronthaler, M. G. T., Sepahvand, K., and Marburg, S. “Identifi-
cation of a cantilever beam’s spatially uncertain stiffness”. In: Scientific Reports 13, 1169
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3.3 Paper C

Surrogate recycling for structures with spatially uncertain stiffness

Karl-Alexander Hoppe, Kevin Josef Li, Bettina Chocholaty, Johannes D. Schmid, Kian Kheirol-
lah Sepahvand, and Steffen Marburg

Summary This publication corresponds to the decrease in terms of the computational cost
of the Bayesian inference framework as shown in pictogram (C) within Figure 2.1. It follows
the paragraphs referring to acceleration within Section 2.1.2.

Marzouk and Najm [92] are the first to combine the generalized polynomial chaos ex-
pansion with the Karhunen-Loève expansion in the context of Bayesian inference of spa-
tially varying quantities of interest. [58] The generalized polynomial chaos expansion suffers
from the curse of dimensionality when a random field makes up the inputs. This is why the
Karhunen-Loève expansion is necessary here: to decouple the generalized polynomial chaos
dimensionality from the spatial discretization of the random field. In the original methodol-
ogy, a change in the hyper-parameters of the covariance function of the underlying random
field necessitates recomputing the generalized polynomial chaos surrogate models. The ex-
tension by Sraj et al. [138] to the original methodology offers an approximate alternative that
is flexible in terms of the hyper-parameters and can retain the surrogate after they change.

In fact, the length scale of the elastic material properties may be a priori known for func-
tionally graded materials. This link is based on process-structure-property relations, which
are extensively studied in the literature [53]. The implication of the knowledge of the cor-
relation length is that once a generalized polynomial chaos surrogate is computed, it can
be reused an arbitrary number of times, leveraging the transformation proposed by Sraj et
al. [138]. To explore the value of this insight, the study treats the non-destructive identifi-
cation of the stiffness of structural beams. This study employs mode shape data instead of
natural frequencies, drastically improving characterization accuracy. A functionally graded
materials application serves to judge the performance of the method. Three parts based on
a beam with identical geometry shall be designed to offer the largest possible failure safety
while subjected to changing boundary conditions. This is achieved by building a material
whose yield strength is the highest in regions of high stress due to the loads. The functionally
graded parts indeed exhibit an improved minimum safety. Now, a generalized polynomial
chaos surrogate is trained on a correlation length corresponding to one of the beam config-
urations, and the same surrogate is recycled for the remaining configurations. For the base
case, the procedure yields an excellent location-independent identification of the stiffness
complemented by a relevant workflow acceleration. In fact, the quality of the results remains
excellent for recycled surrogates and scales fantastically with the number of process parame-
ter length scales. A recommendation is that the length scale of the reference surrogate model
should be set to the minimum possible length that is feasible in the light of computational
resources.

Contributions Karl-Alexander Hoppe: Conceptualization, Methodology, Software, Valida-
tion, Formal Analysis, Investigation, Resources, Writing - Original Draft, Writing - Review
& Editing, Visualization, Supervision, Project Administration. Kevin Josef Li: Methodology,
Software, Formal Analysis, Investigation, Data Curation, Visualization. Bettina Chocholaty:
Resources, Writing - Review & Editing. Johannes Schmid: Resources, Writing - Review & Edit-
ing. Kian Kheirollah Sepahvand: Validation. Steffen Marburg: Writing - Review & Editing,
Supervision, Funding acquisition.
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3.4 Paper D

Predicting the elastic properties of Norway spruce by its morphology

Karl-Alexander Hoppe, Pablo Francisco Ramírez Hönack, Simon Schmid, Jochen Kollofrath,
Bettina Chocholaty, Iason Papaioannou, and Steffen Marburg

Summary While the requirement of knowing the covariance hyper-parameters a priori to
the inference may be relaxed in selected cases when using an extension to the traditional
procedure [138], the covariance kernel itself must always be known for the description with
the Karhunen-Loève expansion. In this regard, the identification of the covariance, see Fig-
ure 2.5, can be interpreted as a mandatory preliminary for the Bayesian inference of local
elastic material properties. When samples of a random field are available, this can readily be
achieved using Gaussian process regression as described in Section 2.4.1.

The formulation of a covariance model turns out to be an enticing research opportunity in
comparison with the fitting of an existing covariance kernel. Precisely this is accomplished in
this paper for the material wood, whose properties are scarcely considered as random fields
in the literature [77]. Due to restrictions on the amount of necessary computational memory,
the natural variability of wood is condensed to five one-dimensional random functions over
a tree’s growth direction instead of formulating the full three-dimensional covariance. These
random functions correspond to the morphology of the tree cross-section by a simple sinu-
soidal annual ring model, which possesses a correlation with the mass density of wood. The
morphological parameters are captured from the computed tomography scans of a spruce
trunk, and it turns out that the model delivers an accurate approximation of the annual ring
pattern. The derivation of a complementary model of the fiber directions from the density
model that allows for an evaluation of the full heterogeneous and orthotropic elasticity vali-
dates the morphological model. The validation of the stiffness model via experimental modal
analysis of the trunk shows an excellent agreement with its numerical counterpart. [56]

With uncertainty quantification in mind, the parameters of a stochastic variant of the new
models that now include a model for knots and branches are identified. A comparison with
bow height, taper, and spiral grain values from the literature confirms that the new data falls
within a reasonable range for the regarded wood species. This comparison produces a use-
ful result by delivering a generalized quantitative description of wood curvature in terms of
random fields, while curvature manifestations are traditionally categorized using qualitative
descriptors. Next, each Monte Carlo sample of the stochastic model is subjected to a numeri-
cal homogenization routine yielding the homogenized elasticity modulus Eh. The final result
is a distribution of Eh that reflects the effect of the local fiber directions when considering
a deterministic orthotropic base modulus of elasticity. Note that, among other effects, es-
pecially the variability originating from the naturally uncertain modulus of elasticity in the
local longitudinal, radial, and tangential directions is not covered here. These findings are
valuable for both sustainability and economic efficiency, as less of the raw material needs to
be discarded with confidence intervals that can be readily computed from the uncertainty
quantification procedure. [56]
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Chapter 4

Discussion and Conclusions

The goal of this doctoral project is the development of a method for non-destructively iden-
tifying the spatially varying elastic material properties of engineering structures using modal
data [58]. The first step is accomplished by carrying out a preliminary study to confirm that
resonance frequencies deliver sufficient information to detect defects in plates, see Paper A.
With this preparation, the main goal is achieved for the localization problem of characteriz-
ing the structural flexibility of a beam from noisy measurements of its natural frequencies.
The procedure developed in Paper B interprets the a priori unknown spatially varying elastic
properties as random fields and solves the inverse problem using Bayesian inference such
that an estimate on the solution’s uncertainty is available. The acceleration of the base proce-
dure is presented in Paper C. Here, generalized polynomial chaos expansion surrogate models
describing a beam’s mode shapes based on the Karhunen-Loève coefficients of the function-
ally graded Young’s modulus are recycled. This reuse of the surrogates implies that costly
finite element method models need only be evaluated for the initial surrogate. The only on-
line computational overhead consists of constructing the Karhunen-Loève expansion for the
proper correlation length of the part subject to non-destructive testing. Aiming to enhance
the method’s accuracy after its acceleration and simultaneously generalize it to estimate two
or more unknown spatial functions, the ground truth cross-correlation is incorporated in the
prior for the Bayesian inference as described in Section 2.1.2. It turns out that prescribing the
cross-correlation is not uniformly beneficial [57]. Conversely, it is only advantageous when
the cross-correlation of the quantities of interest is high, the signal-to-noise ratio is low, and
few spatial observation points of the data are available. To provide a basis for the practical
application of the novel method, a stochastic model for the natural variability for the exam-
ple of the elastic material properties of wood is identified in Paper D. This model is based
on the models for the local density and the local grain angle. The validated models serve to
provide an estimate of the uncertainty of the Young’s modulus in the longitudinal direction
due to morphological variability while providing an intermediary result by the quantitative
generalization of previously qualitatively described wood defects.

The following paragraphs evaluate the consistency of the results with those from other
studies. Inconclusive results and limitations of the research are then reviewed. Finally, the
implications of the work are highlighted, and sensible future studies are suggested.

Consistency with Literature Results Uribe et al. [146] arrive at tighter confidence inter-
vals for their estimation of the cantilever beam flexibility from deflection data compared to
the results from Paper B. This can be explained by differences in the numerical setup. They
use a closed-form solution to the posterior, and the present study employs slice sampling.
Additionally, different covariance functions and measurement noise characteristics are used
in these two studies.

The bow height and spiral grain angle results reported in Paper D exceed the average
values reported in the literature [32, 45, 75, 120, 121, 136, 150]. However, they still fall



4 Discussion and Conclusions 40

within the overall range of these literature values. A possible explanation is that the inves-
tigated spruce trunk exhibits particularly prominent growth variability in comparison with
statistically expected growth defects of this wood species. Studying inter-specimen variabil-
ity should prove insightful here.

Inconclusive Results It may prove interesting to scrutinize the findings on prescribing the
cross-correlation belonging to two or more unknown random fields presented in Section
2.1.2. It is possible that the choice of sampling algorithm for the Bayesian inference, the
choice of likelihood, and most importantly, the forward model related to the specific appli-
cation have a significant impact on the benefit of including the cross-correlation in the prior
distribution. Especially gradient-based samplers, which are known for their superior per-
formance when sampling from strongly correlated distributions [54], or recently emerging
non-sampling approaches [129, 134] could react differently to the new prior formulations
presented here.

Limitations The baseline procedure from Paper B demands that the intrinsic covariance
function of the quantity of interest be known. Incorrect judgment of the covariance incurs
several problems. If the correlation length is overestimated, the seemingly appropriate trun-
cation order of the Karhunen-Loève expansion is insufficient. Moreover, the sampling perfor-
mance suffers, as the priors on the Karhunen-Loève coefficients are now ill-fitting, and new
samples must be drawn in regions of low prior probability.

While two approaches form the literature [138, 142] relieve the methodology developed
by Marzouk and Najm [92] of its reliance on the prior knowledge of the correct covariance
kernel hyper-parameters, the restriction on the covariance function itself persists. Note that
the procedure for surrogate recycling proposed in Paper C is only valid when the geometry
of the structure and the boundary conditions remain unchanged. An argument can be made
for the latter, as parts are commonly tested in quality control under identical conditions
before ultimately being integrated into their application-specific environment. However, the
restriction on the geometry is intractable. It is sensible for functionally graded materials,
where the potential for saving costs is found in designing a part with a common geometry for
several load cases by retaining the interface to other parts in the assembly and compensating
for the varying loading conditions with a yield strength grading by design. Ultimately, tying
in with neural networks that consider the underlying partial differential equations could offer
a remedy, as they allow for the flexible modeling of real-world boundary conditions [113].

Implications and Applications The findings from Paper A can be used to fuse data from
guided wave propagation and modal data into a multi-fidelity Gaussian process regression
scheme for an efficient defect characterization [109]. The results from Paper B and espe-
cially the powerful procedure proposed in Paper C may be employed to satisfy the growing
demand for non-destructive testing of functionally graded materials. The models in Paper D
are simultaneously simpler and more holistic than typical material models for wood. It is de-
sirable that they be employed for strength grading based on computed tomography or surface
scan data of logs. The stochastic version of these models shall be extended and parameter-
ized for different wood species to facilitate uncertainty quantification of their load-bearing
capacity. Lastly, the stochastic model possesses the capacity to generate images that realisti-
cally mimic wood patterns. Synthetic wood flooring or paneling represent applications that
immediately jump to mind.

Potential Future Studies A validation of the wood fiber direction model using a finer grid
would be favorable. This could be achieved by applying automatic fiber tracing algorithms on
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higher resolution computed tomography data than that available during this doctoral project
[69]. The methods proposed in Paper B and Paper C could be tested numerically against
step function profiles instead of smooth functions; they could be applied to different material
classes such as carbon-fiber-reinforced polymers, and they could be validated experimen-
tally on a functionally graded structure investigated with digital volume correlation, which is
outside of the scope for this doctoral project. Further research developing additional gener-
alizations of the Karhunen-Loève expansion to acquire the flexibility to account for different
covariance structures instead of merely different sets of hyper-parameters is desirable for the
generalized application of the methods. Such an approach may be inspired by the work by
Lloyd et al. [87]. Significant research effort is still needed to develop a database of covariance
functions describing the variability of material properties. The present research contributes
an initial covariance model for wood. Ontologies such as the European Materials & Modelling
Ontology [27, 63–65, 99] that make use of a taxonomy of materials could be used as a start-
ing point here. Note that a preparatory step of identifying those material classes that exhibit
heterogeneous material properties with a significant impact at the scale of interest should
be completed first. Currently, numerical homogenization methods and multi-scale methods
specified in frameworks like the Integrated Computational Materials Engineering [66] can
be used for this purpose. Ultimately, model order reduction methods [13] or the advance of
computational power [144] may render the aforementioned restrictions obsolete.

In conclusion, the value of modal analysis of structures for characterizing their non-
homogeneous material is recognized. A potent method is developed for identifying the spa-
tially varying stiffness as represented by the Karhunen-Loève expansion via Bayesian infer-
ence and by employing a generalized polynomial chaos surrogate. Including prior knowledge
on the cross-correlation of multiple quantities of interest is not always useful. Finally, this
work proposes a stochastic meso-scale material model for wood based on its morphological
traits.
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Appendix I

Parameter Studies on the Effect of Measurement
Noise, Prior Cross-Correlation, and the Number of
Observation Points Concerning Multivariate Identi-
fication Problems

Measurement Noise and Reconstruction Cross-Correlation Parameter Study Several
configurations serve to investigate the effect of incorporating knowledge about the cross-
correlation of the underlying random fields into their inference. Specifically, consider a range
of synthetic measurement noise standard deviations γ and a range of cross-correlation co-
efficients ρrec. The error obtained by setting ρrec to the respective sweep value is denoted
as eρrec

. The method must be compared against the standard procedure to judge its efficacy.
To this aim, the base-case reconstruction method is set up such that each of the unknown
functions obtains its own Gaussian random field prior that is independent of the other. Set-
ting ρrec = 0 achieves this. The error obtained by this benchmark procedure reads as eρ=0.
Figure I.1 shows the parameter study results that are based on 29 random samples for the
ground truth.

Parameter Study of the Number of Observation Points A second parameter study looks
into the number of observation points nobs.

1 This is done by performing a random choice of
nobs observation points out of the 50 available nodes. In this context, the values {0.01,0.1, 0.2,
0.3, 0.4,0.5, 0.6,0.7, 0.8,0.9, 1} (-) represent the measurement noise standard deviation γ. The
unit-less set {0.375,0.5, 0.625,0.75, 0.875,0.925} is used for the square root of ρrec within the
reconstruction. Figure I.2 shows the corresponding results for 11 realizations of the random
fields. Note that these results are reported in an average sense over the range of γ and ρrec.

Insights Surprisingly, including prior knowledge on the cross-correlation of two a priori un-
known functions is not uniformly beneficial here. Conversely, accounting for cross-correlation
only outperforms the independent model for a certain combination of the reconstruction
cross-correlation coefficient, measurement noise, and observation scarcity characteristics.
The results for a ground truth correlation of ρ = 0.9 demonstrate an advantage of prescrib-
ing cross-correlation in the prior when both the synthesized measurement noise standard
deviation γ and the cross-correlation coefficient within the reconstruction ρrec are compara-
tively high, see Figure I.1. This result can be explained by a flexibility trade-off. Setting ρrec
to a high value inhibits the flexibility of the model. The restriction by essentially coupling
the two quantities of interest leads to comparatively worse performance as the exploration

1The author would like to thank Dr. Jonas Latz and Dr.-Ing. Iason Papaioannou for their encouragement and
several fruitful discussions that led to these results.
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Figure I.1: Comparison of inference of two random fields simply cross-correlated with ρ = 0.9 using independent
representations and using a representation with prescribed cross-correlation. The respective errors are averaged
over 29 ground truth realizations of both fields. Using prior knowledge on the cross-correlation improves the results
in the blue regions.
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Figure I.2: The figure shows the comparison of the inference of two random fields simply cross-correlated with
ρ = 0.9 using independent representations and using a representation with prescribed cross-correlation. The
influence of the number of observation points nobs is investigated. The inference is carried out for 11 realizations
of the fields for each combination of measurement noise and inference cross-correlation kernel. Negative values
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suggest that making use of the cross-correlation offers an advantage.
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algorithm needs to traverse a more constricted posterior solution space. However, the in-
formation about the correlation benefits the inference for noisy observations; see Figure I.1.
Obviously, a mismatch between ρrec and the true ρ diminishes this advantage. The results on
the number of observation points nobs from Figure I.2 suggest that when a random choice of
up to 5 of the nodes is observable, leveraging ρprior benefits the procedure. However, when a
random choice of more than 5 of the 50 nodes is available, the independent model performs
better. Analogously to the effect of excessive measurement noise masking the information,
the information on the correlation is useful as soon as the information content within the
data drops below a certain threshold.
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Abstract
The identification of defects in plate-like structures has been successfully treated using both local guided ultrasonic waves 
and global modal quantities. Although there are many papers on these techniques, a lack of comparability between the 
two methods persists. This makes it difficult for users to identify the most appropriate method for the defect in ques-
tion. This paper examines the effect of different parameterizations of a circular defect in a square aluminum plate on 
the system response in a case study. The measured local ultrasound signal from a propagating guided wave makes up 
the initial data set. The first method uses the entire waveform for the objective function of the optimization problem, 
while the second considers the velocity of the A

0
 mode. In the third and fourth methods, the first and second global 

natural frequencies of the plate modeled with free-free boundary conditions are investigated. The numerical models 
are validated experimentally through measurements with a laser Doppler vibrometer. This results in the qualitative and 
quantitative evaluation of the objective functions for all parameter combinations of the defect. The recommendation to 
sequentially employ modal analysis and then the ultrasound procedure is made for the defect type used in this study. 
The data gathered on the objective functions suggests that potential joint employment of the natural frequency and 
ultrasound methods may increase computational efficiency. For a specific case, the methods could also complement 
each other in terms of challenges such as local minima.

Highlights

•	 Comparison of defect detection methods for plate-like structures using guided waves and global structural modes.
•	 Identification of advantages and limitations from the objective function values related to defect size and position.
•	 Modal data provides ambiguous but smooth estimates of defect properties; ultrasound yields narrowly localized 

minima.
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1  Introduction

Determining the position and size of defects by imaging constitutes one of the challenges in non-destructive test-
ing (NDT) and structural health monitoring (SHM) [1]. Corrosion presents a common defect type that leads to a local 
change in the wall thickness of metal pipes and pressure vessels. Conventionally, the remaining wall thickness is 
determined with time-of-flight measurements of ultrasonic bulk waves. Since this is time-consuming and the struc-
ture is not always fully accessible, there is a need for more efficient approaches, see [2]. Guided waves, especially 
Lamb waves, are efficient approaches to both structural health monitoring [3] and non-destructive testing [4]. With 
guided wave tomography, the dispersion characteristics of the ultrasonic waves are utilized in order to reconstruct 
defects such as the change in wall thickness or delaminations in composite structures [5, 6]. Different approaches for 
guided wave tomography exist in the literature. They use the travel time [1] or diffraction [7] of the ultrasonic wave. 
Also, a hybrid approach of the previous two, called the Hybrid Algorithm for Robust Breast Ultrasound Tomography 
(HARBUT), exists [8]. He et al. [9] make use of the full waveform with reverse time migration. Further, the full waveform 
inversion (FWI) method is utilized for guided wave tomography [10]. This method is intended for imaging problems 
in seismic applications in geophysics. With this method, an objective function is calculated based on the whole cap-
tured signal. With this objective function, an optimization problem is solved by updating the material model [10]. In 
order to map the calculated velocity image to the plate thickness, dispersion thickness mapping is used for all the 
previously introduced methods [8].

Another method for defect detection consists of using modal parameters like eigenfrequencies. This technique 
is applied successfully to characterize cracks in slender structures [11]. But changes in the resonance frequencies 
are also linked to the thickness change in plates [12]. If the mode shapes are available as data, they offer a precise 
identification of the elastic material of structures such as plates [13]. In [14], strain mode shapes are used to calculate 
the sensitivity indices of defects in plates. When using more than one mode shape, the locations of the defects are 
accurately identified. In [15], defects are detected with modal analysis. A rectangular area at a fixed position with a 
reduced thickness serves as a defect. They investigate the relationship between the mass change through the defect 
and the eigenfrequencies. The authors assume that corrosion could be detected through the deduced relation. Modal 
analysis plays an important role in structural health monitoring. Le et al. [16] employ the modal strain energy method 
based on modal data to identify damage to an aluminum plate and identify mode numbers relevant to the inverse 
problem. Hou et al. [17] locally add mass to their structure to gain insight into the local resonance frequencies for 
health monitoring purposes of a truss. Park et al. [18] accomplish health monitoring of bridges experimentally by 
fusing local and global acceleration data. Sun et al. [19] consider the numerically obtained natural frequencies and 
modes of a planar structure and a truss in a Bayesian damage detection scheme. Frequency response functions are 
suitable for identifying the piece-wise heterogeneous Young’s modulus of composite structures [20, 21]. This pro-
cedure is extended to account for continuously heterogeneous materials, which may be regarded as a generalized 
defect in [22].

Reviewing the literature reveals that only limited efforts have been made so far to set ultrasonic and modal 
approaches in relation to each other. Mengelkamp and Fritzen [23] classify plates into damaged and non-damaged 
using a global vibration-based method and conditionally localize the damage with ultrasonic guided waves. The 
considered damage categories are cracks and delaminations. Fritzen and Mengelkamp [24] perform a similar study 
on artificial cracks in stiffened plates. Wang and Hao [25] employ guided wave and structural vibration tests of steel 
beams experimentally and numerically. They find that a shared objective function is not expedient and recommend 
a procedure consisting of two steps, one for each testing method. Claiming to bridge between modal analysis and 
guided waves, Yan and Rose [26] develop a damage identification method based on operating deflection shape 
analysis of the steady-state response to ultrasonic excitation of an aluminum plate in the kHz order of magnitude. 
Ahmed et al. [27] propose the usage of a guided wave method within a global method considering structural vibra-
tions. They study its application to identify defects in a composite wing structure using regression models.

To the authors’ knowledge, methods based on guided waves and modal parameters for defect detection in plate-
like structures have not yet been compared in the context of optimization problems. Furthermore, the current meth-
ods for guided wave tomography are based on the reconstruction of a velocity image and use a dispersion thickness 
mapping in order to calculate the plate thickness. This study introduces a method that directly changes the topog-
raphy of the mesh. We focus on the advantages and restrictions of the four methods and investigate the objective 
function values over the defect parameters range. The results are based on simulations, while our measurements 
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serve to calibrate the simulation models. The subsequent application of an optimization algorithm should be pur-
sued in future research. Our conclusions apply to the case study and any generalizations to other simulation setups 
or experimental ones with real transducers shall be conducted with care.

This paper is organized as follows: Sect. 2 covers the propagation of ultrasonic waves in plates and the latters’ modal 
analysis. Section 3 details the simulation models and their calibration using measurements. Section 4 presents the objec-
tive functions for all methods and a strategic variation of the defect parameters. Finally, we draw some conclusions in 
Sect. 5.

2 � Theoretical background

This section introduces the relevant basics of guided ultrasonic waves (Sect. 2.1) and modal parameters (Sect. 2.2).

2.1 � Propagation of ultrasonic waves in plates

Lamb waves are guided waves propagating between two parallel boundaries [28]. They solely exhibit displacements 
along the propagation direction and the direction perpendicular to the plate. Waves featuring displacements in the 
remaining direction are referred to as shear-horizontal. In this study, only Lamb waves, where displacement is measured 
perpendicular to the propagation direction, are observed. For that reason, only Lamb waves will be further explained 
in this subsection. Lamb waves occur when longitudinal (p-) and transversal (s-) waves superimpose. Based on the 
boundary position (e.g. thickness of the plate) and the frequency of the ultrasonic wave, several characteristic modes 
occur [29]. The modes are distinguished as symmetric Si and antisymmetric Ai modes [30]. Figure 1 displays the A0 and 
S0 modes schematically. Lamb waves are dispersive waves and therefore, their velocity varies with the frequency. With 
the assumption of slowly varying plate thickness, the velocities change either with the frequency or the plate thick-
ness. This can be seen in so-called dispersion curves, which can be obtained with the open-source software ‘Dispersion 
Calculator’ [31], as also used in [32].

2.2 � Modal parameters of plates

Within structural dynamics, the finite element method serves to predict a structure’s vibration behavior in response to 
dynamic excitation. This method becomes increasingly expensive in terms of computational cost for higher frequencies, 
as a minimum number of elements per wavelength is necessary for accurate results [33]. The vibrational response across 
the frequency spectrum may be expressed as a superposition of the structure’s modes connected to the respective 
natural frequencies [34]. Consider the eigenvalue problem resulting from the finite element method as described in the 
literature [35]. The eigenfrequencies and eigenvectors are the solutions to this eigenvalue problem. Figure 2 shows the 
mode shape connected to the first natural frequency f1 of a square plate with free-free boundary conditions on the left 
and the second mode shape on the right.

Fig. 1   Schematic display of 
the antisymmetric A0 and 
symmetric S0 Lamb wave 
modes

antisymmetric mode symmetric mode

Fig. 2   A schematic of the first 
vibrational mode shape of the 
square plate is shown on the 
left, while the second mode 
shape is sketched on the right
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3 � Experimental setup and numerical model

This section introduces the investigated specimens with artificial defects (Sect. 3.1). Additionally, the experimental and 
simulation setups for the measurement of the modal parameters and the guided waves are introduced (Sects. 3.2 and 
3.3). Next, the procedures for evaluating the response of guided waves and modal features after changes in the defect 
parameters are explained in Sect. 3.4. Refer to Fig. 3 for a visual representation of the entire scope of this study.

3.1 � Specimens with artificial defects

This study investigates an aluminum plate made of the AlMg3 alloy. The plate is square with a side length of 40 cm and a 
thickness of 1 cm. The density � is calculated by weighing the specimen and measuring its dimensions. Furthermore, the 
time-of-flight for the p- and s-waves is measured using the OmniScan MX2 ultrasonic device from the company Olym-
pus (Evident) with a 2.25 MHz p-wave transducer (V104-RM) and a 5 MHz s-wave transducer (V157-RM) in a pulse-echo 
configuration. With the time-of-flight and the measured plate thickness, the longitudinal vp and transversal vs ultrasonic 
wave speeds are calculated. Young’s modulus E and Poisson’s ratio � are derived from vp , vs , and � . The measured and 
derived material parameters of the plate are given in Table 1.

Using dispersion curves with the material parameters of AlMg3, it can be shown that around 70 kHz, the center fre-
quency of the chosen transducer, the A0 mode shows large changes in the velocity and is therefore sensitive towards 
plate thickness changes, see Fig. 4.

This study considers the influence of a defect on the ultrasound signals and modal parameters of the plate. A simple 
shape makes up the defect, which is described by the four parameters maximum depth D, diameter W, and the position 
of its center xd and yd . This is displayed in Figs. 5 and 6.

The defect depth profile, which is Hann-shaped, is calculated as

Here, T0 represents the nominal plate thickness and r is the radial coordinate centered at the defect. This function gener-
ates a smoothly varying shape. The defect shape is adopted from [29].

(1)T (r) =

{
T0 −

D

2

[
1 + cos

(
2𝜋r

W

)]
r <

W

2

T0 r ≥ W

2
.
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Fig. 3   A diagram encompassing the entire methodical procedure, whose components are described by the following subsections

Table 1   Material parameters 
of the aluminum plate E 67.9 GPa

� 2,675 kg m−3

� 0.277
vs 3,155 ms−1

vp 5,682 ms−1
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3.2 � Measurement setup for guided waves and calibration of the numerical model

To calibrate the guided wave simulations, measurements are conducted with a laser Doppler vibrometer (LDV) with 
an OFV-505 sensor head and the OFV-5000 controller manufactured by Polytec. The velocity decoder VD-O9 is used. 
The LDV is mounted on a robot (UR5 by Universal Robots) and pointed orthogonally at the surface of the plate. 
Therefore, the local particle velocity of the out-of-plane components of the Lamb wave modes is measured. A sine 

Fig. 4   Dispersion curves of 
the phase and group veloci-
ties for the 40 × 40 × 1 cm 
plate using the aluminum 
material parameters given in 
Table 1

Fig. 5   Plate with defect, 
where W is the defect diam-
eter at the surface and xd and 
yd mark the position of the 
circular defect’s center

Fig. 6   Plate with defect, 
where W is the diameter, D 
represents the maximum 
depth, and T0 is the plate 
thickness
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signal with four bursts at 70 kHz (see Fig. 7) excites the shear wave transducer V151 by Panametrics. A TiePie HS5 
generates the waveform. In order to capture the propagation of the Lamb wave in the x- and y-direction relative to 
the transducer position, several locations for the measurement points are investigated, see Fig. 7. Five measurement 
positions are staggered in the y-direction with 3 cm increments starting from the transducer. Three further measure-
ment points are staggered in the x-direction using 3 cm increments. The latter corresponds to the horizontal line of 
measurement points in Fig. 7.

The simulation is conducted with the software Salvus by Mondaic AG [36]. Salvus is based on the spectral element 
method and is capable of conducting waveform simulations on the GPU. It furthermore offers a meshing routine for 
changing the topography of the mesh. In our study, a structured mesh is deformed in order to introduce the defect. 
The excitation wavelet used for the simulation is extracted from a measurement close to the transducer. The transducer 
is modeled as a point source with forces in the x-, y-, and z-direction. The magnitude of each force is calibrated by an 
optimization scheme using the Simplex algorithm. As an objective function, the least-square norm L of the difference 
between the measured and the simulated signal’s waveform is chosen (see Eq. 4). After the optimization of the three 
forces, a 3.2 times higher force in the x-direction than in the y-direction is identified. Here, the y-direction represents the 
direction of the polarization of the transducer. The remaining force in the x-direction could be explained by manufactur-
ing inaccuracies of the transducer. With this procedure, the force in the z-direction converges to 0.

We further simulate a B-scan of two 2 m long measurement lines in the x- and y-directions to discern, which wave 
modes are present in the measured signal. Absorbing boundary conditions are applied to the sides of the plate. The result-
ing B-scans are given in Fig. 8. The negative slope of the phase fronts relating to the A0 mode in Fig. 8 may be explained 
by the comparatively coarse spatial discretization chosen for this simulation. It can be seen that two distinct wave modes 
are present. By fitting a line through each respective wave mode, the velocities are determined as 3125.0 ms−1 and 
5115.0 ms−1 . The velocities of the A0 and S0 modes are 3049.3 ms−1 and 5159.2 ms−1 based on the analytically determined 
values (see Fig. 4) and for the center frequency of the wavelet (see Fig. 7). It can be concluded that these modes are the 
A0 and S0 modes since no further modes are present. The A0 mode is dominant within the signals compared with the 
S0 mode, because the A0 mode exhibits stronger out-of-plane components in comparison with S0 . The modes are fully 
separated after 30 cm. A major contribution to the superimposed waveform stems from the A0 mode, whose amplitude 
is approximately 6 times larger than that of the S0 mode.

Fig. 7   Experimental setup for calibrating the waveform simulation: the red circle denotes the signal source, while the blue points indicate 
receiver locations used in the calibration process. For two selected receiver positions, the simulated and corresponding measured signals 
are shown. Additionally, the excitation waveform or wavelet is provided at the bottom
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For the subsequent simulations, a denser receiver alignment is applied, leading to a total of 421 receivers. This is 
displayed in Fig. 9.

3.3 � Measurement setup for modal parameters and calibration of the numerical model

Within the experimental modal analysis setup, the plate is suspended on two strings at intervals of thirds aligned in parallel 
to the plate edges, see Fig. 10. The plate is excited by the SAM Scalable Automatic Modal Hammer at the upper left corner. 

Fig. 8   A B-scan related to 
measurement lines in the x- 
and y-direction is shown on 
the left and right, respectively. 
Absorbing boundary condi-
tions are applied to the plate’s 
sides to eliminate side wall 
reflections. The color bar is 
clipped to make the S0 mode 
visible

Fig. 9   Receiver and source 
positions on the plate used 
for evaluation of the objective 
function for the waveform 
simulation. The red circle 
represents the source, and 
the blue points denote the 
receiver positions on the plate

y

x

Fig. 10   A depiction of the 
experimental modal analysis 
measurement setup. The spec-
imen is suspended by two 
strings, excited by a modal 
hammer, and the response is 
captured by an LDV aligned 
orthogonally to the surface of 
the plate

LDV

                            
                                   

Suspension

Hammer 
Excitation

x

y

Specimen

II Paper A 66



Vol:.(1234567890)

Research	 Discover Applied Sciences           (2024) 6:258  | https://doi.org/10.1007/s42452-024-05912-3

Using a Polytec LDV with a PSV-I-500 scanning head and a PSV-500-3D-H frontend, the structure’s velocities in z-direction at 
the top surface are captured on a regular 15 × 15 grid. The modal analysis is carried out based on these velocity data using 
ME’scope for frequencies up to 1,100 Hz. This analysis results in the first natural frequency as 209 Hz.

The considered plate is modeled with the finite element method in COMSOL as a linear three-dimensional volume model 
with free-free boundary conditions. Quadratic serendipity polynomials serve as the shape functions for the weak form. The 
geometry is meshed with 1,096 tetrahedral elements yielding 15,405 degrees of freedom for the numerical modal analysis. 
The maximum element edge length of 2 cm results in at least 10 quadratic elements per wavelength when the first mode 
shape is considered.

This numerical model’s agreement with the measurements is evaluated based on the error � defined in Eq. (2) with respect 
to the first natural frequency.

The density, Young’s modulus, and Poisson’s ratio for the numerical model are set in accordance with the experimentally 
determined values given in Table 1. Using these material parameters leads to an error of 𝜀 < 2% in terms of the first natural 
frequency with respect to the experiment. This parameterization of the simulation model results in a consistent arrange-
ment of the mode shapes in the considered frequency range between the experiment and simulation. The described 
frequency shift is readily explained by the non-perfect approximation of the ideal boundary conditions by the support 
chosen for the experimental setup. This is a well-known challenge in the literature; see, for instance, [37].

3.4 � Change in guided wave and modal features after defect parameter variation

In this study, the simulation models for the modal and Lamb wave parameters are evaluated as a function of the defect 
parameters. To achieve this, the four parameters of the defect xd , yd , W, and D are varied. For this, two of the four parameters 
are varied in 51 steps in a full-factorial manner, while the remaining two are kept constant. This is done for all six parameter 
combinations. The range of the defect parameters’ values is given implicitly using the minimal and maximal values in Table 2.

The changes in the system response are investigated with respect to a reference parameterization considered as

We formulate the objective function L in terms of the defect parameter vector m and the system response vector q as

Here, the response qref corresponds to the defect parameterization m = mref . Now, the optimization procedure aims to 
solve

For the Lamb waves, changes in the full waveform and the A0 group velocity ( L(m) = ||vA0 − vA0,ref ||2 ) are investigated.
The group velocity is determined by truncating the signal around the expected arrival time of the A0 mode and by 

picking the maximum of the Hilbert envelope [38] of the signal, where the A0 mode makes up the strongest contribution. 
This method is referred to as the group velocity method within the remainder of the text. In order to get the velocity, 

(2)� =
|fnum − fexp|

fexp
× 100%

(3)mref =

⎧⎪⎨⎪⎩

xd,ref
yd,ref
Wref

Dref

⎫⎪⎬⎪⎭
.

(4)L(m) = ||q − qref||2.

(5)m = argminL(m).

Table 2   Defect parameter 
ranges including reference 
configuration

Parameter Minimum (cm) Reference (cm) ⊠ref Maximum (cm)

xd 5 xd,ref = 20 35
yd 5 yd,ref = 20 35
W 1 Wref = 4.5 9
D 0.1 Dref = 0.45 0.9
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the determined time point is divided by the distance from the source to the receiver. Further, the Hilbert envelope was 
smoothed using a Savitzky–Golay filter [39], which does not shift the position of the maximum. The smoothed Hilbert 
envelope of a signal can be seen in Fig. 11.

For the modal parameters, the first and second eigenfrequencies f1 and f2 are investigated individually. Here, qref is set 
to f1,ref and f2,ref , respectively.

4 � Results and discussion

This section presents the objective function values obtained from the four methods. The objective functions are shown 
for the six unique pairings of the defect parameters (see Table 2). They are first evaluated separately for the guided 
wave-based approaches on the one hand, and the natural frequency-based approach on the other hand (Sect. 4.1), and 
subsequently compared (Sect. 4.2). Note that the results presented in this section stem from computer simulations, and 
the measurements described in Sect. 3 serve as the initial calibration of the simulation models.

4.1 � Evaluation of the objective functions

The objective function results are grouped for pairs of defect parameters. Figure 12 shows the results as a function of 
the spatial defect coordinates xd and yd , and Fig. 13 shows the same results for an off-center reference defect position at 
x = 10.49 cm and y = 11.86 cm . Figure 14 depicts the results over varying defect dimensions D and W. The joint effects 
of xd with D and xd with W are displayed by Fig. 15 and Fig. 16, respectively. Figure 17 shows the objective function L̃ 
as a function of yd and D, and finally, Fig. 18 shows it as a function of yd and W. Each figure contains four graphs, where 
the top left corresponds to the FWI results and the top right visualizes L̃ using the group velocity of the A0 mode. The 
bottom left and right graphs are connected to the first and second natural frequencies, respectively. The objective func-
tions are normalized to the interval [0, 1] as L̃ . This normalization makes the objective function evaluations qualitatively 
comparable in terms of measurement noise and error amplitude. Here, an error norm value of 0 indicates no deviation 
in the data observed from the reference configuration on the one hand and the modified configuration on the other 
hand. Following Eq. (4), a value of 1 indicates the maximum corresponding deviation.

4.1.1 � Guided waves

For the normalized objective function L̃ surfaces and the variation of the x- and y-position, the full waveform and the 
group velocity surfaces (Fig. 12 top left and right) show a maximum at the source position. The non-symmetry can 
be accounted for by using forces in the x- and y-direction for the source. The high objective function values close to 
the source can be explained on the one hand by the high ultrasound amplitudes in that region. Around the source, 
the FWI objective function shows rings, which can be explained by the so-called cycle-skipping. The reason for this is 
that the least squares objective function L̃ only has a narrow parameter range where it is locally convex with respect 
to phase shifts in the signal [40]. Other error measures, such as cross-correlation, can mitigate this problem. The FWI 
L̃ shows a non-smooth surface with local minima. For this reason, it is not suited for gradient-based optimization 

Fig. 11   Procedure for the 
group velocity method via 
determining the group veloc-
ity of the A0 mode by picking 
the time point at the maxi-
mum of the Hilbert envelope
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algorithms or demands that the starting value be close to the true value. The objective function resulting from the 
A0 mode shows a large cloud of local minima around the true defect position. With some smoothing within post-
processing, this may yield a less steep global minimum. Further, the maximum at the source position is more pro-
nounced in comparison to the FWI error, and at each receiver location, lower errors are reached. These effects around 
the source remain for the altered reference defect position, see Fig. 13. However, while the minimum connected to 

Fig. 12   L̃ resulting from the 
reference defect parameters 
and a variation of its x- and 
y-position

c c

Fig. 13   L̃ resulting from the 
reference defect parameters 
at x = 10.49 cm and y = 11.86 
cm and a variation of its x- and 
y-position

c c
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FWI remains equally accurate, the minimum for the off-center defect position is less spread out when compared to 
the data from the centered position. The deviation of the diameter and maximum depth of the defects show a similar 
trend for the FWI objective function (see Fig. 14) as for the eigenfrequencies, where the minimum of the FWI error 
has the smallest area and is, therefore, the least ambiguous. The group velocity of the A0 mode shows a different 
behavior. The reason for this can be the different slopes of the S0 and A0 modes within the dispersion curves at 70 

Fig. 14   The figure shows L̃ for 
a variation of D and W 

c c

Fig. 15   The figure shows L̃ , 
where D and xd deviate from 
the reference configuration

c c
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kHz. The A0 group velocity is picked instead of that related to S0 because the amplitude of the A0 mode is significantly 
higher. Within the FWI L̃ , the S0 and A0 modes are included with their phase and group velocity. Through the con-
sideration of all Lamb wave modes, using FWI may suppress some information within the data. When the y-position 
or the diameter of the defect leads to a defect close to the source, high L̃ values are present for the group velocity 
of the A0 and the FWI objective functions. Note that small errors in the objective functions belonging to the group 
velocity method are present close to the source position. This is due to the superposition of wave modes. However, 

Fig. 16   Here, L̃ is shown for a 
variation of xd and W 

c c

Fig. 17   The figure shows L̃ , 
where D and yd deviate from 
the reference configuration

c c
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this effect diminishes with growing distance from the source due to the faster velocity and the dominance in terms 
of the amplitude of the A0 mode.

4.1.2 � Modal

The subplots in the lower left quadrant refer to evaluating Eq. (4) for the first natural frequency, while those in the lower 
right quadrant are connected to the second natural frequency of the plate. The modal assurance criterion measures 
the degree of consistency between two vectors, see [41]. It is satisfied for all results, guaranteeing the correct sorting 
of modes.

Generally, we observe that the objective functions are smooth functions over all four defect parameters. This deter-
mines using natural frequency data as suitable when gradient-based optimization algorithms shall be employed.

The first mode shape for an ideal plate without defects, see Fig. 2, is point-symmetric with respect to the plate’s 
center at {x, y} = {20 cm, 20 cm} . The second mode for an ideal plate without defects is axisymmetric with respect to 
both x = 20 cm and y = 20 cm . This makes the change in natural frequency with respect to a perturbation in the defect 
position agnostic to the latter’s quadrant within the plate. Axisymmetry of L̃ with respect to the center lines of the plate 
is the result of this. In the present case, the error surfaces involving one spatial defect parameter develop single axisym-
metry, while the objective function’s surface over xd and yd shows twofold axisymmetry. To clearly show the latter and 
the resulting local minima, Fig. 13 is plotted. Our investigations show that neither using linear combinations of several 
natural frequencies within the objective function nor considering additional, higher natural frequencies can eliminate 
symmetry problems.

Furthermore, for the centered reference defect and the choice of the first two natural frequencies, all error surfaces 
show a single global minimum and, thus, the absence of local minima.

Considering the dimensionless gradient of the L̃ surfaces reveals that the gradient exhibits a stronger sensitivity with 
respect to the defect position when the second natural frequency is used. This is attributed to the increased number of 
nodal line crossings in the x and y parameter space.

4.2 � Comparison

Table 3 provides a summary of requirements for the measurement setups and the numerical simulations for each method. 
Additionally, it compares the properties of the resulting objective functions.

Fig. 18   Here, L̃ is shown for a 
variation of yd and W 

c c
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In general, the necessary fidelity of the simulation depends on the size of the defect and on the considered frequency 
range. However, FWI necessitates the highest measurement fidelity in comparison, as the signal must be represented 
accurately for time and space coordinates where the wave has been significantly attenuated. When the agreement of 
the investigated vibration mode can be guaranteed, a single observation point may suffice for the identification of the 
corresponding eigenfrequency, whereas ultrasound-based procedures rely on dense measurement points.

The minimum for the combined variation of x- and y-position and the diameter or maximum depth is less ambiguous 
for the Lamb waves than for the eigenfrequencies (see Figs. 15, 16, 17, and 18). Table 4 shows the minimum size relative 
to the regarded parameter area, determined by applying a threshold of 5% in relation to the respective maximum objec-
tive function values. Averaged over the parameter pairings, the minimum size lies in the same order of magnitude for 
both natural frequencies, while the Lamb wave data leads to minima smaller by orders of magnitude. The minima sizes 
for FWI and for the group velocity method are generally in the same order of magnitude. However, two irregularly large 
minima are present for the parameter combinations W and D as well as y and D when using FWI. These outliers lead to 
the minimum corresponding to the group velocity method objective function having the smallest area and, therefore, 
being the least ambiguous in this regard.

Further, shallow gradients surround the minimum for the eigenfrequency data. This also holds true when considering 
the variation of D and W using FWI (see Fig. 14). However, the gradients are steeper when compared to natural frequency 
data.

Additionally, positioning the reference defect off-center yields perfectly axisymmetric objective functions for natural 
frequency data, see Fig. 13. The natural frequencies alone do not encode the information to resolve this ambiguity as 
elaborated in Sect. 4.1. Partially due to the choice of the error norm for the objective function, the Lamb wave objective 
functions exhibit local minima. Using FWI exhibits less local minima than using the group velocity method does, where 
these minima mainly occur in proximity to the global minimum, while using the first two natural frequencies produces 
up to four local minima when the reference defect is not located at the center of the plate.

The influence of environmental conditions on the suitability of modal methods for the purpose of damage detec-
tion demands a brief discussion. A homogeneous temperature increment does not influence the mode shapes of 
a structure. For complex structures such as buildings or bridges, a change in ambient temperature may lead to a 
heterogeneous temperature field within the structure. The influence of temperature on the efficacy of employing 
modal methods for damage assessment to large structures has been studied in the literature, see [42]. For simple 
structures like the presently studied plate, the temperature is straightforward to determine. A change in temperature 
shifts the natural frequencies due to the temperature dependence of Young’s modulus. Assuming an uncertainty 
in the temperature measurement of ±1 K, the temperature-dependence of the material aluminum, see [43], leads 

Table 3   Advantages and 
disadvantages of the methods

Criterion Eigenfrequencies FWI Group 
velocity 
method

Necessary fidelity of the simulation Low High Low
Necessary measurement point density Low High High
Symmetry problems Yes No No
Gradient around min Shallow Steep Steep
Local minima No Yes Yes

Table 4   Relative size of the 
optimum at a threshold of 5% 
of the maximum objective 
function value

Parameters FWI Group velocity method f1 f2

x & y 0.04 0.05 11.51 4.07
W & D 1.94 0.07 14.03 13.96
x & D 0.08 0.04 7.83 6.63
x & W 0.08 0.08 9.54 10.26
y & D 1.86 0.07 9.57 10.34
y & W 0.16 0.12 7.98 6.64
Mean 0.46 0.07 10.18 8.31
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to an uncertainty in the natural frequencies that amounts to two orders of magnitude less than the corresponding 
influence of the defects investigated in our study. Thus, it is deemed negligible here. The influence of uncertain 
mounting or boundary conditions remains significant, and the reader is referred to the pertinent literature, see [37].

5 � Conclusions

In conclusion,

•	 The objective functions have been evaluated given the first and second natural frequency, the full waveform, and 
the group velocity of the A0 mode.

•	 The effect of the defect position and geometry on the objective function has been studied.
•	 Advantages and drawbacks of using each simulation method have been obtained.

Using modal data yields ambiguous, albeit smooth estimates for both the defect position and size. Employing ultra-
sound methods provides compact objective function minima, but does not produce gradients pertinent to the global 
minimum when the initial guess for the unknown parameters deviates significantly from their true values. Therefore, 
we recommend a two-step procedure that begins with using eigenfrequency data and uses these results as the initial 
vector for an ultrasound procedure. These conclusions apply to the simulated case study with the specified defect 
and specimen configurations, and generalizations, especially those to equivalent experimental workflows with real 
transducers, need to be done with a lot of care.

Future research should investigate, whether the natural frequency and ultrasound methods could be employed 
simultaneously. The latter promises a decrease in solution time. To achieve this, suitable weighting factors for the 
methods shall be computed. Focusing on the defect’s x- and y-position, our data suggest that the local minima 
produced by, say, FWI could be compensated through the natural frequency objective function’s gradient, given an 
appropriate weighting. Further, the effect of different excitation frequencies on the objective function is an interest-
ing future study. Finally, the effect of using mode shape data instead of natural frequencies should be studied, and 
different error norms should be investigated.
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Identification of a cantilever beam’s 
spatially uncertain stiffness
Karl‑Alexander Hoppe  *, Martin G. T. Kronthaler , Kian Sepahvand   & Steffen Marburg 

This study identifies non-homogeneous stiffnesses in a non-destructive manner from simulated noisy 
measurements of a structural response. The finite element method serves as a discretization for the 
respective cantilever beam example problems: static loading and modal analysis. Karhunen–Loève 
expansions represent the stiffness random fields. We solve the inverse problems using Bayesian 
inference on the Karhunen–Loève coefficients, hereby introducing a novel resonance frequency 
method. The flexible descriptions of both the structural stiffness uncertainty and the measurement 
noise characteristics allow for straightforward adoption to measurement setups and a range of 
non-homogeneous materials. Evaluating the inversion performance for varying stiffness covariance 
functions shows that the static analysis procedure outperforms the modal analysis procedure in a 
mean sense. However, the solution quality depends on the position within the beam for the static 
analysis approach, while the confidence interval height remains constant along the beam for the 
modal analysis. An investigation of the effect of the signal-to-noise ratio reveals that the static loading 
procedure yields lower errors than the dynamic procedure for the chosen configuration with ideal 
boundary conditions.

Material parameters may be identified in various ways. The established methods can be categorized as destructive 
and non-destructive methods1. “Destructive” implies that the measurement specimen has, for example, 
experienced plastic deformations during tensile tests and thus fails to comply with the product requirements 
after the test, i.e. it can no longer fulfill the original purpose. Often, these tests are carried out until the specimen 
fails. Non-destructive testing methods offer a way to identify material parameters while the specimen retains its 
properties. Therefore, these methods are popular for quality control purposes after the manufacturing process 
in order to ensure certain requirements.

On the one hand, dynamic methods are popular for testing engineering materials. Impact-echo or 
transmission measurements using elastic waves present popular high-frequency regime methods that evaluate 
the wave onset2. However, considering the individual modes of guided ultrasonic waves contains more 
information3–5. In general, wave fitting approaches in the high-frequency regime continue to evolve6, where the 
utilization of the full waveform is noteworthy7. In lower frequency regimes, standing waves can be utilized. In 
this case, the resonance frequency method uses the eigenfrequencies connected to the eigenmodes for material 
parameter identification or defect detection8.

On the other hand, static methods may be considered as non-destructive when they are reversible and place 
the specimen in linear elastic loading conditions. Indentation tests and strain measurements with strain gauges 
are used in procedures that operate at the surface level, just as many displacement measurement techniques do. 
Within the latter, digital image correlation between a reference state and the deformed state of a specimen leads 
to a displacement field9, where several techniques can be used for capturing the respective images10.

Discontinuities like defects or cracks are typically the quantities of interest for nominally homogeneous 
materials11. With non-homogeneous materials, local spatial variation of material properties is additionally 
introduced into the system12. Depending on the severity of the non-homogeneity, it may have a relevant effect 
on the system response. This is certainly the case for engineering materials such as wood. The spatial variation of 
material properties has been quantified for individual specimens13,14. Savvas et al.15 identify the mesoscale spatial 
variation of material properties given microscale information. However, rigorous descriptions of the spatial 
behavior are not readily available. Given this lack of data, the standard procedure is to assume a random spatial 
variation of the material properties. This spatial randomness of material properties can be described with the 
theory of random fields, which is extensively treated in the literature16,17. Rasmussen and Williams18 popularize 
this theory for regression, which is generalized by Duvenaud19. The integration of spatial uncertainties with the 
finite element method (FEM) is covered in the literature20,21.
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Spatial uncertainty is thus compatible with established uncertainty quantification practices22. Sepahvand and 
Marburg23 demonstrate this for the forward propagation of uncertainty in structural dynamics by representing 
material properties as random fields.

Knowledge of the sensitivities of the system outputs with respect to the system inputs is valuable. However, 
many non-destructive testing methods involve an inverse problem, as for instance the study on elasticity 
imaging by Gokhale et al.24. Since the quantities of interest as well as the measured parameters are fraught 
with uncertainties, a natural approach for the solution of the aforementioned inverse problems lies in Bayesian 
inference25–27.

Parameter identification using the Bayesian framework holds two major advantages over other methods. 
Firstly, when limited test data on parameters exist, Bayesian methods provide us with an optimal tool to 
quantify uncertainty28. This is crucial when one deals with expensive experiments in engineering. Using classical 
frequentist statistical models for such situations only yields reliable results when the number of data points 
is larger than a specific number, mostly 30, or when the data strictly follows a normal distribution29. If these 
criteria are not met, the results generated with these methods either cannot be trusted to be valid or involve an 
increased level of uncertainty.

Secondly, the Bayesian framework involves available prior information about parameters that the statistical 
model considers30. This prior information is then updated by information gained from observations. Available 
sources of prior information may include primary data, literature, online databases, and even the knowledge of 
experts. This is a substantial argument for using Bayesian methods in engineering applications, where data may 
be scarce but expertise on parameters is abundant.

Marzouk and Najm31 pioneer the application of Bayesian inference to spatially varying quantities of interest 
via dimensionality reduction achieved by the Karhunen-Loève (KL) expansion. They use a surrogate for the 
forward model to reduce computational cost that is based on generalized Polynomial Chaos (gPC)21. The 
decoupling of spatial discretization of the computational domain from the random dimensionality makes inverse 
problems involving larger systems accessible.

Sun and You32 provide an overview of sensitivities and damage features related to modal analysis in the context 
of non-destructive testing. Cugnoni et al.33 perform a deterministic identification of a composite plate material 
model using the combined information of natural frequencies and mode shapes. Sepahvand and Marburg34,35 
compute the homogeneous elastic parameters of composite plates while accounting for uncertainty using 
experimental data. Note the contribution by Desceliers et al.36, who calculate the non-homogeneous beam 
stiffness from frequency response measurements using a maximum likelihood estimate. Batou and Soize37 
consider a random field material model employing model order reduction and maximum likelihood estimation 
given frequency response functions. Mehrez et al.38 estimate the Young’s modulus of a composite structure at 
a set of nodes with Bayesian inference and gPC using frequency response functions acquired at those nodes. 
Debruyne et al.39 apply this general procedure to a honeycomb structure.

This study investigates the identification of spatially varying structural flexibility using both a dynamic and 
a static method. The dynamic method is a novel dimensionality-reduced Bayesian approach for identifying the 
elastic parameters of a structure using resonance frequency information. The static method follows a similar 
scheme as the research by Uribe et al.40, who reconstruct the stiffness fields given deflection observations using 
a modified version of the framework by Marzouk and Najm31.

To provide comparability and insight into each method’s respective advantages, both the dynamic and static 
method use the same setup, namely a cantilever beam with spatially varying structural flexibility. Eigenfrequencies 
mark the starting point for the flexibility identification within the dynamic method, while deflections connected 
to static loading serve as data for the static method. For each method, Bayesian updating is then performed on 
a finite element method model of the cantilever beam with unknown structural flexibility, which is considered 
as a sample of a Gaussian random field along the cantilever beam. The truncated KL expansion represents this 
spatially varying flexibility, resulting in a description with reduced random dimensionality. Owing to the Bayesian 
inference setup, the solution’s uncertainty can then be compared between the dynamic and the static approach.

This paper is organized as follows: “Methods” introduces random fields and inverse problems, as well as the 
Bayesian inference setup shared between the dynamic and static approaches. “Application of the procedure” 
describes the integration of both the dynamic and static cantilever beam models into the inverse problem, and 
then the numeric results are presented in “Results and discussion”. Following the conclusion and an outlook on 
future research in “Conclusion”, we provide additional information in the Online appendix S1.

Methods
This study considers the spatially random fluctuation of material properties about a mean value. The connected 
covariance and the representation by the KL expansion are covered by “Preliminary concepts” alongside Bayes’ 
theorem. “Procedure” treats the inverse problem formulation and the latter’s integration into Bayesian updating 
by specifying the parametrization and measurement error model pertinent to the cantilever beam.

Preliminary concepts.  Together with its mean value, a second-order random field is fully characterized by 
its covariance function. The covariance kernel Cov(t, t ′) is a function of the coordinates of two points t, t′ within 
the field’s domain, the bounded interval [0, L]. This study considers continuous, symmetric, and positive semi-
definite kernels such that the KL expansion can be used.

Several families of functions may be used as covariance functions. We adopt the isotropic exponential kernel 
from the literature17. It is a function of Euclidean distance r and the length scale parameter l as
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where σ 2 is the variance18. It is chosen because there exist analytical solutions to the connected eigenvalue 
problem that facilitate verifying the corresponding numerical implementations41.

Karhunen‑Loève Expansion.  The KL expansion represents a random field by taking into account the random 
field’s mean µ(t) and decomposing its covariance function. This method utilizes deterministic spatial functions 
together with random coefficients ξi for the representation of the random field. Truncating the KL expansion 
after s summands yields an approximation of the field with a finite random space dimensionality42, such that

where �i are the eigenvalues and ϕi(t) are the eigenfunctions of the corresponding covariance operator42. To 
obtain a sample path or realization of the random field, a sample of its parametrization ξ must be drawn.

If the considered material parameter follows a lognormal instead of a normal distribution, the generated 
samples may simply be exponentiated. However, the generalization of the KL expansion to non-Gaussian random 
fields is not straight-forward. Partially, this is due to correlations being induced between the random coefficients. 
When closed-form transformations are not readily available, a full-dimensional multivariate normal distribution 
may present a remedy. After transformation to [0, 1] using the Gaussian error function, the inverse cumulative 
distribution function of a desired arbitrary distribution can be applied. The resulting marginal distributions 
follow the prescribed distributions and retain the sample smoothness over the domain inherent to the initial 
correlation structure, see Vořechovský43.

Bayesian Inference.  The above describes the quantity of interest, which is now declared as θ . The following 
introduces Bayesian inference, a method for estimating the quantity of interest using a model, data, and prior 
knowledge. Bayesian inference approaches attempt to solve the inverse problem while considering uncertainties 
along with prior knowledge about the quantities of interest and the likelihood of the observed data. Essentially, 
its outcome, the posterior, reflects how new data change our beliefs concerning the unknown quantities.

Using the logarithms of the probabilities to circumvent computational issues arising from the multiplication 
of small numbers and neglecting the normalizing constant that is the evidence, Bayes’ theorem reads as

 Here, q is the posterior distribution for θ given some data d , l is the likelihood of observing the data d given a 
model with parametrization θ , and lastly, p is the prior distribution on θ.

The reader is referred to the literature concerning the treatment of three major issues within the solutions 
of inverse problems: existence, non-uniqueness, and instability of the solution, with the latter also called 
ill-posedness44.

Procedure.  Consider a forward model, see Fig. 1, of a cantilever beam

Here, its structural flexibility C(t) is considered as a function over the beam domain [0, L]. The operator G is 
used to transform this function to an output d . Static deflections and eigenfrequencies comprise d for the static 
analysis and the modal analysis, respectively. The measured output

is subject to measurement noise η . Solving the inverse problem is then to

(1)Cov(t, t ′) = σ 2 exp
(
−(|t − t ′|/l)2

)
,

(2)X(t, ξ) ≈ µ(t)+
s∑

i=1

√
�i ϕi(t) ξi ,

(3)q(θ |d) ≡ l(d|θ)+ p(θ).

(4)dtrue = G (C(t)).

(5)dmeas = dtrue + η = G (C(t))+ η

(6)find C(t) s.t. dtrue = G (C(t)), given dmeas.

Figure 1.   The figure shows a side view of the investigated cantilever beam model together with its profile and 
the coordinate system. The rectangular profile exhibits width g and height h. The beam length is L. Here, the 
beam coordinate is denoted as t, and the deflection coordinate reads as w.
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In practice, a finite-dimensional representation of the flexibility C(t) based on the parameter vector θ made up 
of the KL parameters and the mean of the flexibility field reads as

This leads to the discretized numerical forward model

Now, Eq. (3) may be adopted to the problem at hand with d = dmeas , and the finite-dimensional parametrization 
θ given in Eq. (7). The necessary truncation order of the KL expansion depends on the covariance and is 
independent of the spatial discretization chosen within the forward model. To determine s, the ratio of the 
variance covered by the truncated KL expansion to that covered by the full expansion should be compared 
to recommended threshhold ratios45. Typically, s is less than 20, and is significantly smaller than the spatial 
discretization of the governing equations. This reduction in dimensionality from the spatial discretization to the 
number of KL coefficients is crucial for the efficiency of some Markov Chain Monte Carlo (MCMC) algorithms. 
Additionally, it allows for the use of surrogate model methods like gPC31.

Specifying the measurement noise model, a custom likelihood accommodates for flexible signal-to-noise 
ratios of the data components. This measurement error model assumes that the measurement vector dmeas of 
dimension κ is perturbed by independent noise components

with corresponding variances σ 2
j  . Now, for scalar-valued measurements at several frequencies or locations within 

the specimen and a single measurement run, the likelihood

becomes the product of the marginal likelihoods of its components. Vector-valued measurements as well as 
repeated measurements necessitate modifications of Eq. (10).

With fixed choices for the likelihood, the forward model, its parametrization and the latter’s endowment with 
prior densities, the right hand side of Eq. (3) can be evaluated. However, closed form solutions for the posterior 
probability density function are only available for special cases involving conjugacy. This necessitates sampling 
from the posterior, which can be achieved using Markov Chain Monte Carlo (MCMC) algorithms. This study 
employs the single variable slice sampling method as formulated by Neal46. It is applied to each parameter 
separately, while the other parameters are fixed.

Application of the procedure
This section describes the application of the methods presented in “Methods”. Specifically, “Cantilever beam 
model” introduces the used cantilever beam model, while “Modal analysis” describes the system’s modal 
analysis and “Static analysis” covers the system’s static analysis. After the explanations concerning these forward 
models, “Flexibility identification using eigenfrequency measurements from modal analysis” provides the 
solution procedure for the inverse problem based on modal data and “Flexibility identification using deflection 
measurements from static analysis” details the procedure when deflection data is given.

Cantilever beam model.  Consider the Timoshenko cantilever beam model shown in Fig. 1, where the 
boundaries are clamped on the left side and free on the right side. The beam exhibits length L and a rectangular 
cross-section with an area of A = g · h , where the cross-section width and height are denoted by g and h, 
respectively. The second moment of area is computed as I = gh3/12 , and the shear correction factor ks for a 
rectangular cross-section is ks = 5/6 . The material of the beam is characterized by Young’s modulus E and the 
shear modulus G, while considering Hooke’s law.

This problem is implemented with the finite element method via the SfePy Python library47. The discretization 
of the deflection w, the angle ψ , and the corresponding weighting functions is performed using 2nd order 
polynomials that are defined on each element.

To model the spatially varying elastic modulus E, it is assumed to vary randomly over the beam coordinate 
t. The inverse of the elastic modulus, i.e. the elastic flexibility C = 1/E , is then assumed to be a realization of a 
Gaussian random field, where the standard deviation is a fraction of the mean value. The covariance function 
for the random flexibility is defined on the domain t ∈ [0, L] and an exponential kernel with arbitrarily chosen 
correlation length l = L/5 , as defined in Eq. (1), is chosen. The covariance function is evaluated at the nodes 
of the finite element mesh, yielding piece-wise constant material properties as shown for a coarse exemplary 
discretization in Fig. 2.

The domain is discretized with 100 finite elements. This results in 201 nodes for the evaluation of the 
covariance function. The resulting 201× 201 covariance matrix is used for synthesizing the reference flexibility 
vector. The Cholesky decomposition LLT of this covariance matrix achieves the realization of the reference 
flexibility20. This alternative method is chosen for the reference model instead of the KL expansion to mitigate 
an inverse crime, as it is more accurate, albeit higher dimensional, than the KL expansion. With the prescribed 
mean bending flexibility µC,true and the lower triangular matrix L resulting from the Cholesky decomposition, 
the flexibility field reads as

(7)θ = {µC , ξ1, ξ2, . . . , ξs}T ∈ Rs+1.

(8)dmeas ≈ G (C(t, θ))+ η = G̃ (θ)+ η.

(9)ηj ∼ N(0, σ 2
j )

(10)L (dmeas|θ) =
κ∏

j=1

1

σj
√
2π

exp

(
−
1

2

(dmeas,j − G̃ (θ)j)
2

σ 2
j

)
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where ξ is a vector of uncorrelated standard Gaussian random numbers. Realizing ξ yields the reference sample 
of the flexibility.

Modal analysis.  On the one hand, we consider the modal analysis of the cantilever beam described in 
“Cantilever beam model”. Here, the first κ eigenfrequencies of the system f1, f2, . . . , fκ obtained via solving 
the system’s eigenvalue problem make up the response vector. Specifically, the reference flexibility Ctrue of the 
cantilever beam leads to the connected reference eigenfrequencies. A vector of independent Gaussian random 
variables is then superimposed on these eigenfrequencies to emulate measurement noise.

Static analysis.  On the other hand, we consider the cantilever beam described in “Cantilever beam model” 
when subjected to static loading F at t = L . Here, κ equispaced static deflection measurements comprise the 
response vector. After applying the reference flexibility Ctrue to the cantilever beam model, we calculate the 
connected reference deflections. To simulate measurement noise, the static deflections are superimposed with 
independent and identically distributed Gaussian random variables.

Identification of spatially varying flexibility using synthetic noisy measurements.  Flexibility 
identification using eigenfrequency measurements from modal analysis.  Next, we use noisy measurements of the 
first 10 simulated eigenfrequencies of the cantilever beam with the reference flexibility vector. Then, the reference 
flexibility is estimated for all positions within the beam from these noisy eigenfrequency measurements. Note 
that the reference flexibility is unknown in the context of the inversion procedure.

Figure 4 shows a flowchart of the inference procedure, while the following paragraphs describe it in greater 
detail.

Reconstructing the unknown reference flexibility with the methods described in “Methods” necessitates the 
strong assumption of the flexibility mean being constant, that is stationary, and that of the flexibility covariance. 
We assume the same covariance, an exponential covariance kernel with correlation length l = L/5 and an 
exponent of γ = 2 , as used for the reference model to maintain comparability of the flexibility parameterization. 
These assumptions may be relaxed by a parameterized family of kernels and an inference of their parameterization 
together with the KL parameters48. The reconstruction FE model exhibits 50 quadratic elements leading to a 
spatial evaluation of the flexibility at 101 nodes. This coarser discretization in comparison with the reference 
model is once again chosen to avoid an inverse crime49.

To reduce the random dimensionality, we discretize the unknown random field with the KL expansion from 
Eq. (2) truncated to s = 6 terms. Assuming a constant mean, this yields s + 1 unknown random variables that 
make up the discrete vector of unknowns θ , namely the mean and the s KL parameters. Following Huang et al.45, 
this configuration accounts for α = 98% of the variance of the random flexibility.

By using the KL expansion, we essentially apply a Gaussian process prior on the flexibility. Within this prior 
probability, the flexibility mean is distributed according to

and the KL parameters are endowed with a normal prior:

(11)Ctrue = µC,true + Lξ ,

(12)µC ∼ N

(
µ = 5× 10−12 m2

N
, σ 2 =

(
1× 10−12 m2

N

)2
)

(13)ξi−1 ∼ N

(
µ = 0 , σ 2 =

(
1× 10−11m

2

N

)2
)

∀i > 1.

Figure 2.   The graph shows an arbitrarily chosen stiffness distribution over the beam coordinate at ten discrete 
positions within the numerical model of the cantilever beam. The discretization is purposefully chosen as 
coarse for the illustration. Because the stiffness is assigned to nodes as opposed to elements, the stiffnesses at the 
bounds are half as wide compared with those assigned to interior elements.
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These prior distributions may be interpreted analogously to regularization in optimization. The chosen normal 
prior on the flexibility mean represents a weak assumption, while the prior on the KL coefficients encodes an 
assumption on the flexibility variance.

The real noise standard deviations present the ideal choice for the likelihoods standard deviations, 
because inaccurate measurements are not erroneously interpreted as accurate, and conversely, more accurate 
measurements are not assumed as excessively noisy, thus leading to a loss of information. In practice, the error or 
noise characteristics are unknown, but may be estimated from the statistical information gained from repeated 
measurements. We define the likelihoods with a higher standard deviation than that of the synthetic measurement 
noise used and thus underestimate the measurements’ accuracy. The numerical values are compiled together 
with all parameters that are necessary for reproducing the results in the Online appendix S1. The likelihood 
function for vector-valued measurements in Eq. (10) implies that each eigenfrequency is measured only once 
and not repeatedly.

The likelihood’s standard deviation increases quadratically with the number of the corresponding 
eigenfrequency, see Fig. 3. Matching low eigenfrequencies is thus given more importance.

The slice sampling algorithm generates samples θ (i) from the posterior in Eq. (3). Multiple chains with 
different initial values help attenuate the influence of the initial value of the sampled Markov chain alongside 
the exclusion of burn-in samples from the number of samples used U. Evaluating the applied KL expansion at 
the posterior samples then produces the corresponding samples of the posterior random field.

Along with the flexibility’s expected value,

we compute confidence intervals that contain 95% of the values of C(u)(tj) for each position tj . Finally, the root 
mean square percentage error (RMSPE) with respect to the reference flexibility is obtained as

Flexibility identification using deflection measurements from static analysis.  The identification of the structural 
flexibility using static deflection data follows the same general procedure as described in “Flexibility identification 
using eigenfrequency measurements from modal analysis”. This section does not repeat the steps shared between 
the two procedures, it highlights the differences instead.

Here, noisy measurements of the simulated static deflections of the cantilever beam with the reference 
flexibility constitute the data. With these 10 equispaced static deflections, we estimate the unknown reference 
flexibility Ctrue.

Replacing modal with static analysis and eigenfrequencies with static deflections, respectively, in the 
procedure diagram, see Fig. 4, yields the inversion procedure using static analysis.

Contrary to inversion via modal analysis, we choose a constant likelihood standard deviation for the static 
analysis. The likelihood follows Eq. (10), where the static deflections are measured once at each equispaced 
position.

Results and discussion
This section presents the findings of the present study. “Modal analysis” and “Static analysis” consider the 
confidence interval of the solution over the beam coordinate and “The effects of signal-to-noise ratio and 
flexibility correlation length” explores the effects of signal-to-noise ratio as well as flexibility correlation length.

(14)µC,post(tj) =
1

U

U∑

u=1

C(u)(tj),

(15)εRMSPE =

√√√√1

k

k∑

j=1

(
µC,post(tj)− Ctrue(tj)

Ctrue(tj)

)2

· 100%.

2 4 6 8 10
0

20

40

Eigenfrequency number

σ
j

(H
z)

Figure 3.   The measurement likelihood standard deviation is expressed as a function of the frequency. 
The graph shows the chosen quadratic increase of the measurement likelihood standard deviation σj over 
the number of the corresponding eigenfrequency. This weighting emphasizes the influence of the first few 
eigenfrequencies. The higher likehihood standard deviation for the higher eigenfrequencies reflects the 
expectation that measurement accuracy deteriorates with increasing frequency.
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Figure 5 shows the results of the procedure for one exemplary realization of the random flexibility. Here, 
the dashed-dotted lines mark the a priori unknown reference flexibility. Figure 5a shows the result using the 
dynamic method and Fig. 5b illustrates the result for the static deflection-based method for comparison. Note 
that the proposed Bayesian approach yields a chain of samples for θi . These samples can be used to estimate the 
posterior distribution’s higher statistical moments in addition to mean and variance. Restricting the analysis of 
the results to mean and variance would disregard any skewness of the posterior at any location, which is visible 
in Fig. 5 through the asymmetrical confidence intervals. Additionally, note that the procedure has produced a 
non-stationary posterior random field as these moments are not constant over the beam length.

The following paragraphs interpret the confidence interval properties along the beam coordinate t based on 
a total of 100 realizations of the flexibility such that the interpretations are applicable in a general sense.

Modal analysis.  With the eigenfrequency-based approach and with the chosen likelihood structure, the 
size of the confidence interval is roughly constant along the beam coordinate t. The present choice of the first 10 
eigenfrequencies thus leads to a comparable amount of flexibility information for all spatial positions.

Avoiding non-physical signs of the flexibility is straightforward using the eigenfrequency-based model, since 
negative flexibility leads to a negative squared eigenfrequency. For this case, the likelihood of corresponding 
solution candidates is simply set to zero and we thus obtain a purely positive estimation of the flexibility here.

Static analysis.  With the static deflection-based approach, the confidence interval increases as the distance 
from the clamping grows. This is consistent with the intuition that the bending moment within the beam varies 
linearly along the beam axis, with the maximum absolute value being at the clamping. Because the impact 
of flexibility fluctuations on the deflection depends directly on the bending moment, these fluctuations have 

Covariance
function Cov,
flexibility stan-
dard deviation
σC , and prior
distributions
on µC , ξ

Posterior samples
of KL expansion
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Flexibility
assignment
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Figure 4.   General procedure for reconstructing the reference random field given noisy eigenfrequencies and 
assuming the reference covariance, priors, and measurement noise characteristics with Bayesian inference. 
The top part refers to the calculation of the reference eigenfrequency from the reference flexibility. Given noisy 
observations of these reference frequencies, the aim of the procedure detailed at the bottom is to estimate the 
reference flexibility. Here, the dashed line marks the part of the inference that must be computed at every step in 
the chain.
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their biggest impact close to the clamped boundary. Conversely, the deflections contain proportionately more 
information about the flexibility on the left side than on the right side. This facilitates error propagation from the 
left to the right part of the domain and it finally leads to the narrow confidence interval in the left part and the 
wide confidence interval in the right part of the beam.

With the static deflection-based model, some issues may arise with the flexibility’s sign, owing to the Gaussian 
random field’s support C(tj) ∈ R within the reconstruction. Here, the estimation violates the physical restriction 
of the flexibility being positive at some locations on the right side of the beam. The reason for this is a mixture of 
the characteristics of the beam and the assumed measurement noise. The cantilever beam exhibits a small bending 
moment on its right side, leading to a small curvature on this side. To simulate the deflection measurements, 
we add synthetic Gaussian noise to the deflections. In regions on the right side with a low reference curvature, 
the curvature of the noise is likely to dominate the total curvature within the simulated measurements. As the 
bending moment links the flexibility and the curvature, the reconstruction essentially estimates the curvature 
of the beam. This explains why the curvature component resulting from the synthetic measurement noise may 
propagate to the estimated flexibility and consequently lead to negative values for the flexibility in some cases.

The effects of signal‑to‑noise ratio and flexibility correlation length.  This study focuses on 
investigating and comparing two non-destructive methods for material parameter identification. To study 
the efficacy of the dynamic and static method, we demonstrate the strategic variation of the inverse problem’s 
configuration. Specifically, we expect both larger correlation lengths of the flexibility and larger signal-to-noise 
ratios to improve the inversion quality and did indeed obtain these expected results.

The effect of the signal-to-noise ratio (SNR) on the solution quality is investigated with a systematic variation 
of noise standard deviation, see Fig. 6a. To obtain representative results, the described procedure is carried out for 
100 unique realizations of the reference flexibility per signal-to-noise ratio. The error described in Eq. (15) is then 
averaged over the 100 realizations. The error decreases non-lineary for the chosen SNR scale. Comparatively low 
signal-to-noise ratios produce a plateau in the error. After a kink in the curve, higher measurement noise entails 

Figure 5.   The figures show the results for the inference workflow for a specific reference flexibility. The left 
graph corresponds to the modal analysis, while the right figure is connected to the static analysis. The respective 
dashed-dotted lines show the reference flexibility, while the respective solid lines represent its estimated 
posterior mean. Low heights of the confidence intervals indicate a higher certainty of the inference results at the 
respective location.

Figure 6.   Comparison of the methods’ performance influenced by changing inverse problem configurations. 
The left graph shows the effect of changing signal-to-noise ratios, while the right graph shows the impact of 
flexibility correlation length.
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flattening error behavior. We observe a consistently lower RMSPE when employing the approach using static 
deflection measurements and a higher order of error convergence for the resonance frequency method. Note that 
more accurate measurements can be obtained in practice by averaging over several repeated measurement runs.

The variation of the flexibility correlation length shown in Fig. 6b exhibits the expected outcome. The error 
decreases non-linearly with increasing ground truth correlation lengths. The error gap between the static 
and dynamic methods narrows with growing correlation lengths. The comparatively large errors in the small 
correlation length regime result from the higher complexity of the unknown function. This in turn corresponds 
to an increasingly complex parameter space that the inference procedure needs to traverse. On the contrary, an 
infinitely large correlation length would correspond to a constant flexibility. This represents the simplest case 
and we expect the smallest errors here.

Concerning the static analysis, this study does not account for uncertainty in the load and its application to the 
specimen. These uncertainties propagate through the system to the deflections. Additionally, the measurement of 
the deflections is subject to measurement errors. Measurement noise challenges for micro-scale applications are 
linked to physical restrictions in optics50. Macro-scale applications like the one studied in this paper on the one 
hand rely on methods such as digital image correlation51. On the other hand, they use optical active or passive 
marker systems that typically involve camera setups52. Here, a compromise must be found between the covered 
area and the camera distance, the two of which are coupled by the viewing angle. Maletsky et al.53 report a non-
linear relationship between camera distance and SNR and find an overall SNR of 45 dB for a generic setup. In 
fact, SNRs of higher than 60 dB are already achievable for dynamic response measurement setups54. Accounting 
for this measurement accuracy of dynamic methods exceeding that of static methods8, an unfavorable light is 
cast on the modal analysis.

This study considers the modal and static analyses of an identically configured, clamped cantilever beam 
and does not account for uncertainty in the boundary conditions. However, an experimental modal analysis is 
typically conducted with free-free boundary conditions that are more accurately reproducible in practice than 
other mounting conditions55. Here, this benefit of the method is traded for comparability with respect to the 
static analysis.

Debruyne et al.39 find the usefulness of experimental modal analysis doubtful for their model updating 
procedure, when the measurement quality is not excellent. Their conclusion is confirmed by our results that 
stem from a setting with deterministically known modeling errors. Mehrez et al.38 state that their number of 
data points prove suitable for their problem configuration. Our results complement this by setting the SNR and 
error into relationship, which enables an estimate for the required number of data points to achieve an error 
tolerance given the SNR of a single measurement. Their confidence region makes up for ≈30% of the mean value. 
Our resonance frequency method matches this estimation accuracy for high signal-to-noise ratios and ground 
truth random field correlation lengths close to or greater than L. This is due to the gradient-agnostic sampling 
algorithm used in this study on the one hand and due to the difference in information provided to the method 
on the other hand, as local instead of global data is used in the study Mehrez et al.38.

Conclusion
We develop a new Bayesian resonance frequency method with reduced stochastic dimensionality for identifying 
the spatially varying structural flexibility of a cantilever beam. It exhibits a major advantage compared to existing 
non-destructive methods for determining local macro-scale material properties using dynamic data. As it does 
not rely on local information as conventional methods do, it can operate without line-of-sight to the specimen. 
This is especially valuable in the context of the advent of functionally graded materials. The latter is furthering 
spatially varying material properties within geometrically complex assemblies. Here, our method enables non-
destructive testing when undercuts are present.

We obtain results for the non-linear error characteristics with respect to SNR and the flexibility correlation 
length. Considering the influence of SNR highlights that a saturation of the error occurs at low signal-to-noise 
ratios. These results are set in relation to those obtained from applying the Bayesian procedure to the cantilever 
subjected to static linear elastic loading.

In conclusion, using identical noise and flexibility correlation length characteristics:

•	 inversion based on static deflections yields lower absolute errors.
•	 the confidence interval widens with growing distance from the clamping for the static approach.
•	 the confidence interval height using the dynamic approach stays constant along the beam.

We further conclude that, generally:

•	 larger flexibility correlation lengths lead to improved reconstruction.
•	 higher signal-to-noise ratios reduce the estimation error.

In practice, the choice of method should carefully consider the reproducibility of the real boundary conditions 
within the numerical models and especially the signal-to-noise ratios achievable by the experimental setups.

Currently, no reliable data describing the spatial randomness of material properties are available, and Matérn 
covariance models or special cases like isotropic exponential kernels are used as a fallback, see48. Identifying the 
covariance from such data systematically for common material classes, the connected manufacturing processes, 
and engineering applications that introduce heterogeneity would eliminate the need for many assumptions that 
are currently necessary. Future research needs to study the influence of these identified covariance models and 
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their respective parameters on the efficacy of our method. This may include the construction of compound 
covariance kernels from base kernels, for example using addition or multiplication, see Hofmann et al.56. This 
property could be used to combine kernels across spatial dimensions and model, among others, anisotropically 
heterogeneous materials.

This paper shows the solution of the inverse problem for a single quantity of interest that depends on a spatial 
coordinate. In practice, more than one parameter can be relevant. In the context of isotropic materials, the shear 
modulus or Poisson’s ratio as well as the mass density may be relevant. For anisotropic materials, the spatial 
components of the elastic properties are additionally needed to fully characterize the material. This complicates 
the inverse problem. However, taking into account for additional information promises to mitigate these effects. 
For some material classes, the spatial components of the elastic properties are linearly correlated. Specifically for 
wood, the Young’s modulus in a tree’s growth direction correlates linearly with the Young’s modulus in the radial 
direction orthogonal to the growth rings. Often, Pearson’s coefficient for linear correlation exceeds r = 0.5 here. 
Preliminary investigations have shown that incorporating knowledge of the cross-correlation is not uniformly 
beneficial. Conversely, the method’s success depends on the cross-correlation amplitude and the algorithm used 
to sample from the posterior distribution, among others. Future research needs to address this research gap and 
produce encompassing results that serve as a guideline for researchers.

Data availability
The raw data generated during the current study are available from the corresponding author on reasonable 
request.
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Identification of a Cantilever Beam’s Spatially Uncertain Stiffness

A Static Analysis - Model Description

Consider a cantilever beam subjected to static loading F with the deflection
response w(t) at a specific position shown in Figure 7. This results in a linear

t

F

tS
ti

ff
n

es
s

D
efl

ec
ti

o
n

L

Lw

t̄j

wj

Fig. 7: The top graph shows an arbitrary exemplary stiffness curve of a can-
tilever beam and the lower graph shows the beam’s static deflection when
subjected to a load.

forward operator with analytical solutions, see [40].

B Parameters for the Example Calculations

Table 1: Beam properties

Length of beam L 5 m
Height h 0.1 m
Width g 0.1 m

Table 2: Reference random field properties

Mean Young’s modulus µE,true 2× 1011 N/m2

Mean material flexibility µC,true 5× 10−12 m2/N
Dimensionality of discretized ran-
dom field

100

Standard deviation to mean ratio
(flexibility based) σC/µC,true

0.2

Standard deviation for flexibility
field σC

1× 10−12 m2/N

Correlation kernel type exponential
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Table 3: Random field properties used for inversion

Number of KL Parameters s 6
Correlation kernel type exponential
Minimum covered variance α for l =
1

98.13%

Table 4: Bayesian inversion parameters

Initial values µ
(0)
C ∼ N (5× 10−12m2

N
,

(1× 10−14m2

N
)2)

ξ
(0)
d,i ∼ N (0 m2

N
,

(1× 10−15m2

N
)2) ∀i
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B.1 Static Analysis

Table 5: General parameters

Discretization ground truth 400 integration points
Discretization reconstruction 115 integration points
Force 3,300 N
Maximal absolute deflection 7.21× 10−2 m

Table 6: Bayesian inversion parameters

Number of chains 8
Total number of samples per chain 7,000
Number of burn-in samples 2,000
Total number of used samples U 40,000

Priors µprior,µ = 5× 10−12 m2

N

σprior,µ = 5× 10−13 m2

N

σprior,ξi−1
= 5× 10−12 m2

N
∀i > 1

B.2 Modal Analysis

Table 7: General parameters

Discretization ground true 100 quadratic elements
201 degrees of freedom for deflection

Discretization reconstruction 50 quadratic elements
101 degrees of freedom for deflection

Number of computed eigenvalues 10
Lowest computed eigenfrequency 3.625 Hz
Highest computed eigenfrequency 863.8 Hz

Table 8: Bayesian inversion parameters

Number of chains 4
Total number of samples per chain 3,500
Number of burn-in samples 1,000
Total number of used samples U 10,000

Priors µprior,µ = 5× 10−12 m2

N

σprior,µ = 1× 10−12 m2

N

σprior,ξi−1
= 1× 10−11 m2

N
∀i > 1
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C Methods for Second Order Random Fields

C.1 Multivariate Normal Distribution

The normal distribution can be generalized for random vectors x, leading to
the multivariate Gaussian (or normal) distribution. Its probability density is
defined as [20]:

f(x) =
1

(2π)n/2 · |Γ|1/2 · exp

(
−1

2
(x− µ)TΓ−1(x− µ)

)
, (16)

with µ being the mean vector and |Γ| being the determinant of the covariance
matrix Γ.

C.2 Properties of the Covariance Function

The properties of the covariance functions considered here follow Abraham-
sen [17]: First,

Cov(t, t) = 1, (17)

and it follows that

|Cov| ≤ 1. (18)

Second, it must be symmetric, meaning

Cov(t, t′) = Cov(t′, t) ∀t, t′, (19)

and finally, the covariance must be positive semi-definite, meaning

k∑

i=1

k∑

j=1

ci cj Cov(ti, tj) ≥ 0 ∀ k, {t1, ..., tk}, {c1, ..., ck}. (20)

C.3 Numerical Treatment of the KL Expansion

The eigenvalues λi and the eigenfunctions ϕi(t) from (2) are the solutions to
a Fredholm integral equation of the second kind

∫

B

Cov(t, t′) ϕi(t
′) dt′ = λi ϕi(t). (21)

The eigenvalues λi and eigenfunctions ϕi are ordered as λ1 ≥ λ2 ≥ λ3 · · · .
For a Gaussian random field, the KL expansion leads to a representation of
the field with uncorrelated ξi. Betz et al. [42] give an overview of the feasible
methods for solving the integral eigenvalue problem numerically. Here, we use
the Nyström method, where the integral in (21) is approximated by a numerical
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integration scheme. This leads to

k∑

j=1

vj Cov(t, tj) ϕi(tj) dt2 = λi ϕi(t), (22)

with the integration weights vj , j ∈ {1, 2, . . . , k}. We use a piece-wise constant
integration scheme with integration weights given as the length between the
surrounding grid points

vj =





t2−t1
2 if j = 1

tk−tk−1

2 if j = k
tj+1−tj−1

2 else.

This leads to the matrix eigenvalue problem

CV yi = λiyi, (23)

with the covariance matrix

C = Cij = Cov(ti, tj), (24)

and the matrix of integration weights

V = diag(vj), (25)

see [42]. The eigenvectors yi = yji ≈ ϕi(tj ) in Equation (23) approximate the 
eigenfunctions ϕi. For equidistant grid points ti and neglecting boundary effects, 
a scaled identity matrix approximates the matrix of integration weights. The 
eigenvalues of the covariance matrix need to be scaled with the distance 
between the grid points for consistency with Equation (23). To consistently 
account for the random field variance as per Mercer’s theorem, the eigenvectors 
ŷi are normalized as

yi =
ŷi
li

with li =

√√√√
k∑

j=1

vj(yji)2, (26)

see [42]. The direction of the eigenvectors yi needs to be fixed in order for the KL 
expansion to be a unique representation of a random field in the context of the 
inverse problem. We prescribe a positive first element of each eigenvector

yi1
!
> 0 ∀i (27)

to fix the direction.
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A B S T R A C T

This study expands the existing methods for non-destructively identifying the spatially varying
material properties of a structure using modal data. It continues a recently published approach
to this inverse problem that employed Bayesian inference in conjunction with the Karhunen-
Loève expansion to solve it. Here, we present two developments. Firstly, eigenvectors are used
instead of eigenvalues, improving the results significantly. Secondly, a generalized polynomial
chaos surrogate accelerates the inversion procedure. Finally, we develop a methodology for
reusing the surrogate model across inversion tasks. We demonstrate the efficacy and efficiency
of this methodology via the field of additive manufacturing and the fused deposition modeling
process. The good results promise profound computational cost saving potential for large-scale
applications.

1. Introduction

Non-homogeneous materials are receiving increasing attention from researchers. Owing to advances in computational power,
naturally non-homogeneous materials and those, where the manufacturing process induces unintentional non-homogeneity, see
Gupta and Gupta [1], are being regarded. On the other hand, functionally graded materials are being popularized, see Garcia
et al. [2], which creates demand for corresponding testing methods. With functionally graded materials, the material parameters
are varied spatially with intent. Marzouk and Najm [3] develop a method that is useful for characterizing such a material and Uribe
et al. [4] apply a related method successfully to the identification of spatially varying stiffness using static deflection data of a
structure.

Sundararajan et al. [5] report that the material non-homogeneity significantly influences the vibration behavior of functionally
graded plates. As a response to this, Hoppe et al. [6] propose a non-destructive resonance frequency method for identifying the
spatially varying stiffness of structures. Frequency response functions at several observation points improve the estimation of
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the piece-wise non-homogeneous Young’s modulus [7,8]. Batou and Soize [9] extend this procedure to account for continuously
non-homogeneous materials in composite structures.

The framework by Marzouk and Najm [3] demands that the covariance of the spatially varying material property is known. Sraj
et al. [10] propose a procedure that eliminates the requirement of having a priori knowledge of the covariance hyper-parameters
using this established Bayesian inference framework in conjunction with the Karhunen-Loève expansion and generalized polynomial
chaos expansion. Siripatana et al. [11] accelerate this procedure by adding a second, nested generalized polynomial chaos surrogate.
However, these studies assume that the covariance hyper-parameters of the unknown spatially varying quantity are notoriously
intangible.

Indeed, the linkage between manufacturing process parameters and the properties of the manufactured parts continues to elude
researchers. The following paragraphs ponder why process-structure-property relations, that is the impact of process parameters on
part properties, are so hard to identify within the scope of additive manufacturing.

Complexity must be mentioned as the first inhibitor. Hashemi et al. [12] stress that the knowledge of the underlying physics
is incomplete. Non-linearity is notoriously hard to capture in the context of additive manufacturing, and excitation as well as
boundary conditions are not approximated well enough, see Gatsos et al. [13]. Not only are the process-structure-property relations
complex, so are the process parameters themselves [14–16]. On top of that, often more than 10 process parameters exhibit a relevant
impact [12]. Models need to be harmonized across scales and time-scales [17]. In addition to being cost and time-intensive, the
necessary experiment chains and cohesive multi-scale approaches [18,19] are prone to error propagation.

Secondly, the completeness and lack thereof present a recurring theme in the literature. A perpetual dichotomy seems to
be present in the literature. It is often stated that a substantial amount of work has been completed, but that significant gaps
remain [18,20]. Specifically, many physical phenomena have yet to be examined, more materials and manufacturing processes
should be studied, and a broader range of process-structure-property relations are to be investigated, see Patham and Foss [21]. In
general, more experimental and high-fidelity numerical data that are transparent and accessible are needed [21].

Finally, process-structure-property relations are plagued by uncertainties. The lack of deterministic process-structure-property
relations stems from the aleatoric uncertainty that part properties entail and the epistemic uncertainty connected to physics-based
models [22,23]. There exists considerable interest in the statistical information entailed by materials and their processing, where
the correlations of the process-structure-property relations have yet to be established [24].

The integrated computational materials engineering framework proposed by Horstemeyer and Sahay [25] is a design approach
that attempts to connect material models across different scales. Ghosh [26] predicts that multi-scale modeling will accelerate
the discovery of the correlations of process-structure-property relations within the integrated computational materials engineering
framework. They anticipate this to be achieved by the generation of large amounts of data and the subsequent completion of
process-structure-property relations via data-driven methods.

We suggest an abstraction that may serve as a remedy. While process-structure-property relations continue developing, we instead
consider the manufacturing process parameters as random processes and the material parameters of the manufactured part as random
fields. Manufacturing process parameters such as feeding speeds or valve opening trajectories are not deterministic. Conversely, they
are of stochastic nature due to closed-loop control and non-linearity among others and thus they are random processes. Similarly, the
manufactured part exhibits inherently stochastic material properties that turn from random variables to random fields in the case of
heterogeneity. A link between the random field length-scales of the process parameters and the material properties is significantly
easier to establish than a direct one between the corresponding parameters. Especially when the material parameter exhibits a linear
dependence on the process parameter, the length-scale of the latter as a Gaussian process propagates to the material parameter. We
leverage this link to accelerate the inference of spatially varying material parameters of parts designed to meet different requirements
that are configured similarly. For the additive manufacturing process fused deposition modeling [27–29], which uses plastics as a
material, we train a surrogate for one set of hyper-parameters and then recycle this surrogate for modified configurations of the
part.

This paper is organized as follows: Section 2 presents the theoretical preliminaries for our non-destructive material parameter
identification workflow. These concepts are applied to the identification of spatially varying stiffness given a structure’s modal data
in Section 3. This section demonstrates the novel methodology, where the surrogate used for stiffness identification is trained using
one configuration and recycled for the others. The results of this demonstrator are presented in Section 4 and discussed in Section 5,
where we also draw conclusions from our findings.

2. Methods for inferring dimensionality-reduced random fields employing surrogate models

This section covers all relevant methods necessary for the generation of our results in Section 4. Section 2.1 formulates the
Bayesian inverse problem setup, Section 2.2 describes the reduction of the random space via the Karhunen-Loève expansion, and
Section 2.3 briefly covers how the generalized polynomial chaos surrogate is constructed on this dimensionality-reduced space.
Finally, Section 2.4 details the transformation of the generalized polynomial chaos surrogate when the Karhunen-Loève expansion,
whose coefficients are the surrogate inputs, changes.
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2.1. Inverse problem setup using the Bayesian approach

Consider an ideal forward model 𝐆

𝐝 = 𝐆(𝐦)+𝝐, (1)

where 𝐝 is the data, 𝐦 are the model parameters, and 𝝐 is independent and ideally distributed Gaussian measurement noise. Given
the data 𝐝 and the forward model, solving the inverse problem is to estimate the unknown model parameters. One way of solving
an inverse problem is the Bayesian approach. Bayes’ rule reflects how new data updates our prior beliefs, formulated as the prior
probability distribution 𝜌(𝐦), concerning the unknowns 𝐦. Expressing these quantities in terms of probability densities produces
Bayes’ theorem

𝜋𝑚(𝐦) = 𝜌(𝐦|𝐝) ∝ 𝜌(𝐝|𝐦)𝜌(𝐦), (2)

stating that the posterior probability density 𝜌(𝐦|𝐝) of the model parameters given the data is proportional to the product of the
likelihood and prior probability density. The likelihood

(𝐦) = 𝜌(𝐝|𝐦) = 𝜌𝜖(𝐝 −𝐆(𝐦)) (3)

measures how likely an observation of the data 𝐝 is, given the model parameters 𝐦.
Sampling from the posterior distribution is often achieved with exploration algorithms. The samples approximate the true

posterior density and allow for the calculation of statistical moments. A computationally cheaper strategy is finding the mode of the
posterior probability density by solving an optimization problem. This approach, which explicitly does not estimate the expected
value, is called the maximum a posteriori estimate:

𝐦MAP = arg max(𝐦)𝜌(𝐦). (4)

2.2. Karhunen-Loève expansion

When identifying the properties of homogeneous materials, the parameters are typically interpreted as random variables in the
context of Bayesian inference. For non-homogeneous materials, the material parameters are spatially varying and are considered as
functions that live on the spatial domain of the structure. Fine discretization of these functions yields a large number of unknowns
that have to be identified in the inversion procedure. This collection of random variables can be described as a random field. Second
order random fields are fully described by their mean and covariance functions. The covariance function of two points 𝐱 and 𝐱′ reads
as

𝐶(𝐱, 𝐱′) ≈
𝐾∑
𝑖=1

𝜆𝑖𝜙𝑖(𝐱)𝜙𝑖(𝐱′) with ‖𝜙𝑖‖ = 1 (5)

and is decomposable using its eigenvalues 𝜆𝑖, eigenfunctions 𝜙𝑖, and 𝐾 terms.
Having to approximate a high-dimensional multi-variate distribution is detrimental to the inversion procedure, as the inference

must then traverse this high-dimensional space. Mercer’s theorem, see Eq. (5), is the basis for the Karhunen-Loève expansion [30],
which offers a remedy. The Karhunen-Loève expansion of a random field coincides with a dimensionality reduction of the random
space. Specifically, the random dimensionality is decoupled from the spatial discretization and reduced to the truncation order 𝐾.
The truncated Karhunen-Loève expansion reads as

𝑀𝐾 (𝐱, 𝜔) = 𝝁(𝐱) +
𝐾∑
𝑖=1

√
𝜆𝑖𝜂𝑖(𝜔)𝜙𝑖(𝐱). (6)

Here, 𝑀 is a Gaussian second order random field, 𝝁 is the mean function, and 𝜂𝑖 are the Karhunen-Loève coefficients. Now,
𝜂𝑖 represent the new finite collection of random variables that encapsulate the random field’s variability by means of the
Karhunen-Loève expansion. They can be used to generate realizations of the random field when sampled from standard normal
distributions.

2.3. Dimensionality-reduced generalized polynomial chaos

Marzouk and Najm [3] pioneer the combination of the Karhunen-Loève expansion with generalized polynomial chaos in the
context of Bayesian inference. The use of generalized polynomial chaos as a surrogate is beneficial when forward model evaluations
are computationally expensive. This is especially relevant for methods employing Markov chains for the posterior’s exploration.

The goal of the generalized polynomial chaos expansion within this scope is to construct a computationally less expensive
surrogate for the forward model 𝐆(𝜼). This surrogate employs both, an expansion of the forward model inputs

𝜂̂𝑖 = 𝑔𝑖(𝝃) =
𝑁𝑃1∑
𝑘=0

𝑎𝑖𝑘𝛹𝑘(𝝃) (7)
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and an expansion of the forward model outputs

𝐺̂𝑖 =
𝑁𝑃 2∑
𝑘=0

𝛽𝑖𝑘𝛹𝑘(𝝃). (8)

Here, the number of terms

𝑁𝑃 + 1 = (𝑛 + 𝑝)!
𝑛!𝑝!

(9)

depends on the polynomial order 𝑝 and the number 𝑛 of input random variables 𝝃. When the Karhunen-Loève coefficients
comprise the model inputs, an optimal generalized polynomial chaos expansion can be achieved by using Hermite polynomials
for the polynomial basis 𝛹 , as the Karhunen-Loève coefficients are standard normally distributed. After obtaining the generalized
polynomial chaos coefficients 𝐚 and 𝜷 using stochastic collocation, drawing samples from 𝝃 and evaluating the generalized
polynomial chaos surrogate 𝐆̂(𝝃) accordingly yields response samples that approximate the true model response.

2.4. Removing the surrogate model’s dependence on the random field hyper-parameters

A new generalized polynomial chaos surrogate must be computed, when the parametrization of the Gaussian process prior
on the quantity of interest changes. When the covariance hyper-parameters of the random field change, so does its Karhunen-
Loève expansion, as the eigenvalues and eigenvectors are updated. Because the generalized polynomial chaos surrogate utilizes an
expansion of the Karhunen-Loève coefficients to construct the generalized polynomial chaos expansion of the model outputs, it must
be trained anew. Sraj et al. [10] resolve this dependency and develop a more flexible variant of the Karhunen-Loève expansion that
need not be recomputed when the covariance hyper-parameters change. In the following paragraphs, we briefly summarize the
study by Sraj et al. [10], as it is not uniformly known within the community.

The transformation from one parametrization of a covariance function to another by leveraging the projection of their respective
eigenfunctions onto each other lies at the core of their method. It is the aim to transform from a reference covariance 𝐶(𝐪𝑟) = 𝐶𝑟

with a set of reference hyper-parameters 𝐪𝑟 to a covariance endowed with different hyper-parameters. After being projected onto
them, the new eigenfunctions 𝛷𝑖(𝐪) can be expressed in terms of the reference eigenfunctions

𝛷𝑖(𝐪) =
∞∑
𝑖′=1

𝑏𝑖𝑖′ (𝐪)𝜙𝑟𝑖′ with 𝑏𝑖𝑖′ =
(
𝜙𝑟𝑖 , 𝛷𝑖′ (𝐪)

)
𝑋 , (10)

where (𝑈,𝑈 )𝑋 denotes the inner product. These so-called scaled eigenfunctions are defined in the context of the target covariance
as the product of its eigenvalues and eigenfunctions as

𝛷(𝐪)𝑖 =
√
𝜆𝑖(𝐪)𝜙𝑖(𝐪). (11)

The Karhunen-Loève expansion corresponding to the target covariance can now be expressed in terms of the reference covariance
as

𝑀𝐾 (𝜔,𝐪) =
𝐾∑
𝑖=1

𝛷𝑖(𝐪)𝜂𝑖(𝜔) ≈
𝐾∑
𝑖=1

( 𝐾∑
𝑖′=1

𝑏𝑖𝑖′ (𝐪)𝜙𝑟𝑖′

)
𝜂𝑖(𝜔) =

𝐾∑
𝑖=1

𝜙𝑟𝑖𝜂
ct
𝑖 (𝜔,𝐪). (12)

The transformed Karhunen-Loève coefficients

𝜂ct
𝑖 (𝜔,𝐪) =

𝐾∑
𝑖′=1

𝑏𝑖′𝑖(𝐪)𝜂𝑖′ (𝜔) (13)

are found using the reference Karhunen-Loève coefficients and the projection coefficients 𝑏𝑖𝑖′ . They read as

𝜼ct(𝜔,𝐪) = (𝐪)𝜼(𝜔) (14)

in matrix form. Finally, a transformed surrogate is obtained, where the generalized polynomial chaos expansion reads as

𝐺𝑗 (𝜼, 𝒒) = 𝐺𝑟𝑗 ≈ 𝐺̂𝑟𝑗 (𝝃(𝜼,𝐪)) =
𝑁𝑃2∑
𝑖=0

𝛽𝑗𝑖𝛹𝑖(𝝃(𝜼,𝐪)) with 𝝃(𝜼,𝐪) = ̂(𝐪)𝜼, (15)

where the ̂-matrix is defined as

̂(𝐪) =
⎧⎪⎨⎪⎩

𝑘𝑙(𝐪)√
𝜆𝑟𝑘

if 𝜆
𝑟
𝑘
𝜆𝑟1
> 𝜅 with 𝜅 ≈ 1 × 10−12,

0 otherwise.
(16)

This transformed surrogate is trained on the reference covariance, as it reuses the corresponding generalized polynomial chaos
coefficients and applies a transformation to the input random variables 𝜼. It may be used to approximate a system whose input
random field is described by a different covariance function, termed the target covariance.
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Fig. 1. Relative error 𝜀𝑀 and
√
𝛾max for a range of ratios between reference and transformed random field, following Sraj et al. [10].

The relative error 𝜀𝑀 between a random field 𝑀 and its transformed representation 𝑀ct
𝐾 reads as

𝜀𝑀 (𝐾,𝐪) =
‖𝑀(𝐪) −𝑀ct

𝐾 (𝐪)‖𝐿2

‖𝑀(𝐪)‖𝐿2
, (17)

where

‖𝑈‖2
𝐿2 ≐ E

[
(𝑈,𝑈 )𝑋

]
. (18)

The left graph within Fig. 1 shows this error for 𝐾 = 15, a squared exponential kernel with variance 𝜎2 = 0.5, and varying
parametrization 𝐪 = 𝐿. The right graph shows the square root of 𝛾max(𝐪), the largest eigenvalue of the covariance matrix 𝛴̂2(𝐪) =
̂𝑇 (𝐪)̂(𝐪).

A pseudo-algorithm of our method for training a generalized polynomial chaos expansion surrogate model for one length-scale
and then solving multiple inverse problems at different length-scales without having to train the surrogate anew for those cases is
given in Algorithm 1. After a selection of the reference hyper-parameters and the decomposition of the corresponding covariance,
the Karhunen-Loève coefficients represent the inputs to the model 𝐆. The coefficients 𝐚 and 𝜷 of the surrogate can then be obtained
by means of least squares for model evaluations at collocation points of the inputs. Any required covariance distinct from the
reference covariance may now be described by the Karhunen-Loève expansion. Using the inner product of its eigenfunctions with
those of the reference covariance then serves to make the Karhunen-Loève coefficients suitable for use with the original surrogate
by transformation. Finally, the posterior of the transformed coefficients can be evaluated.

Algorithm 1 Pseudo-algorithm for constructing a surrogate for the reference hyper-parameters and then transforming it to evaluate
the posterior for other ground truth hyper-parameters.

1: procedure Surrogate construction following Sraj et al. [10]
2: 𝐶𝑟 ← 𝐪𝑟 ⊳ Select reference hyper-parameters
3:

(
𝜆𝑟𝑖 , 𝜙

𝑟
𝑖
)
𝑖=1,…,𝐾 ← 𝐶𝑟 ⊳ Decompose covariance

4: 𝐚, 𝜷 ← 𝐆 ⊳ Solve generalized polynomial chaos collocation problem
5: end procedure
6: for 𝐪𝑗 in

{
𝐪1,𝐪2,… ,𝐪𝑛

}
do ⊳ Select desired target hyper-parameters for recycling

7: procedure Surrogate recycling
8: 𝐶 ← 𝐪𝑗
9:

(
𝜆𝑖, 𝜙𝑖

)
𝑖=1,…,𝐾 ← 𝐶 ⊳ Decompose covariance

10: 𝑀𝐾 ←
∑𝐾
𝑖=1𝛷𝑖𝜂𝑖

11: ̂(𝐪𝑗 ) ← 𝜱,𝝓𝑟 ⊳ Transform coefficients
12: 𝝃 ← ̂(𝐪𝑗 )𝜼
13: 𝐦MAP ← , 𝜌 ⊳ Evaluate posterior
14: end procedure
15: end for
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Fig. 2. General procedure for reconstructing the reference random field given a mode shape and assuming the covariance, priors, and measurement noise
characteristics with Bayesian inference. The Karhunen-Loève coefficients 𝜼 are the quantities of interest. Within each step of the Bayesian inference sequence,
the evaluation of the Karhunen-Loève expansion with these coefficients yields 𝐸𝑥 with the full spatial resolution. Numerical modal analysis is carried out using
this 𝐸𝑥 assigned within the finite element model, yielding the beam’s first mode shape. The inference uses a generalized polynomial chaos surrogate here that
connects 𝜼 to a probe grid for the first mode shape. Upon comparison with the noisy measurement using the likelihood , this step within the Bayesian inference
is complete and a new sample of 𝜼 is drawn subsequently.

3. Procedure

3.1. Preliminary study and proof of concept: Dimensionality-reduced and generalized polynomial chaos accelerated inference of Young’s
modulus using mode shape data

In this section, we apply the accelerated and dimensionality-reduced inference procedure by Marzouk and Najm [3] to the
non-destructive identification of spatially varying stiffness given mode shape information.

We present our application as a preliminary study and proof of concept for our methodology that will be introduced later. The
quantity of interest is a random function defined on one spatial dimension. It represents the Young’s modulus in 𝑥-direction 𝐸𝑥(𝑥) of a
beam measuring 𝑥×𝑦×𝑧 = 450×60×9mm with free-free boundary conditions. The numerical modal analysis is carried out in a python-
based finite element method software [31] with a structured mesh and 5472 quadratic elements. The first eigenvector of the structure
obtained from performing numerical modal analysis given the ground truth Young’s modulus makes up the synthesized measurement
data. A signal-to-noise ratio of 60 dB describes the simulated independent and identically distributed Gaussian measurement noise.
The reader is referred to Fig. 2 for a visual representation of our procedure and especially the scope of the surrogate model.

The material’s statistical moments read as follows: The Young’s modulus 𝐸𝑥(𝑥) is described by a mean 𝐸̄𝑥 of 3MPa and a standard
deviation of 𝜎𝐸𝑥 = 1% × 𝐸̄𝑥. The material is modeled as a random field over 𝑥 and endowed with a Gaussian process prior with a
Matérn covariance kernel [32]

𝐶(𝐱, 𝐱′) = 𝜎2 2
1−𝜈

𝛤 (𝜈)

(√
2𝜈|𝐱 − 𝐱′|
𝐿

)𝜈

𝐾𝜈

(√
2𝜈|𝐱 − 𝐱′|
𝐿

)
, (19)

where 𝛤 (𝜈) denotes the gamma function and 𝐾𝜈 is a modified Bessel function [33]. The smoothing parameter and correlation
length are set to 𝜈 = 3∕2 and 𝐿 = 𝐿2 = 450mm, respectively. The second order generalized polynomial chaos expansion is used in
conjunction with a Karhunen-Loève expansion truncated to 5 terms. The Karhunen-Loève coefficients 𝜼 are appropriately equipped
with standard normal prior distributions, since 𝜼 ∼  (0, 1). We use a non-normalized logarithmic likelihood 𝑙(𝑋meas|𝜼) of observing
the displacements 𝑋meas connected to the first eigenvector at the top of the geometry

𝑙(𝑋meas|𝜼) = −1
2

𝑁∑
𝑗=1

(
𝑋meas𝑗 − 𝐆̂𝑗 (𝜼)

)2

𝜖2𝑗
, (20)

where 𝑁 = 522 is the number of evaluation points at the top of the geometry within the finite element model. Here, the likelihood
variances are set equal to the measurement noise 𝜖, which is obtained by applying the signal-to-noise ratio to the deterministic
ground truth simulation mode shape data. The synthetic measurement is carried out 10 times in total.

3.2. Application of the methodology to material parameter identification for functionally graded fused deposition modeling parts

This section introduces the manufacturing process and the material models used in the academic example. It describes the
chosen part configurations used in the example, see Section 3.2.1, and the process parameters together with the estimation of
their length-scales, see Section 3.2.2. Finally, Section 3.2.3 introduces uncertainty into the material parameters.

In the following, we demonstrate how, given a correlation between process and part parameter length-scales, the knowledge of
the former enables surrogate model recycling. By leveraging this link between the length-scales, this procedure exhibits significant
computation cost improvements over existing procedures as soon as a part is designed for more than one configuration. It relies on the
combination of the Karhunen-Loève expansion and generalized polynomial chaos within Bayesian inference. The novel interpretation
of the coordinate transformation described in Section 2.4 makes it possible to reuse a surrogate for configurations other than the
reference configuration. We demonstrate this for the acceleration of the inference of spatially varying material parameters, see Fig. 3.
Here, the manufacturing parameters possess length-scale 𝐿𝐼 , which is linked with the length-scale 𝐿𝐼 ′ of the functionally graded
material. In a first step, the elastic material properties are identified from modal data, whereby a surrogate for the numerical model
is employed to decrease computational cost. Now, the same surrogate can be recycled for parts, where the connected manufacturing
process parameters possess length-scales 𝐿𝐼𝐼 , 𝐿𝐼𝐼𝐼 ,… , 𝐿𝑚, owing to the coordinate transformation.
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Fig. 3. The figure shows the proposed novel methodology for recycling surrogate models connecting spatially random materials to a structure’s mode shape. The
recycling is employed based on length-scale correlations between the manufacturing process parameters on the one hand and the resulting material properties
on the other hand. This procedure is embedded into the non-destructive material parameter identification that uses a Bayesian approach for solving the inverse
problem.

3.2.1. Part configurations
The goal for the considered manufacturing process is to produce three geometrically identical parts that are designed for distinct

applications. In the context of large assemblies, interfaces dominate the development cost. If the production volume is high, the
production cost is equally affected. The flexibility of application while maintaining the cost-sensitive compliance with interface
requirements is enabled through the functional grading realized with the fused deposition modeling process and filaments A and B.
The optimized, functionally graded parts offer surplus yield strength in regions with high equivalent stresses and reduce the yield
stress in locations where high strength is not a requirement. The theoretically resulting deterministic stiffness profiles improve the
minimum safety of the assembly for the functionally graded parts in comparison to the homogeneous parts. On the one hand, this
may be used to reduce weight while retaining the safety, on the other hand, the safety-margin can be improved at constant part
mass. The latter is pursued here, as keeping the overall part mass constant reduces the need for load bearing changes in the overall
assembly due to changes in the part mass, thus further lowering costs.

All configurations involve a structural beam with dimensions 450 × 60 × 9mm. Each of the three functionally graded beams is
designed to meet the changing requirements posed by a different application configuration. For the demonstration, we vary the
external loads and the boundary conditions.

• Configuration 1, shown in Fig. 4, is a cantilever beam with a clamping on the left side and the load located on the right side at
the free end. An equivalent one-dimensional and homogeneous system exhibits a linear bending moment curve 𝑀𝐵 , as marked
in the figure with contrasting styling. Designing a material with properties appropriate for the stress decreasing together with
the distance from the clamping requires a matching grading of the yield stress. Choosing a linear yield stress curve leads to
the largest length-scale considered in this study.

• Configuration 2, shown in Fig. 4, is a cantilever beam with a clamping on the left side and a free tip, which is subject to a line
load 𝑝. An equivalent homogeneous one-dimensional system exhibits a bending moment curve 𝑀𝐵 proportional to the trunk
of a parabola, as the contrasting line displays. Designing a material with an according grading of the yield stress necessitates a
decreasing yield stress with growing distance from the clamping. The volume fractions are endowed with a medium correlation
length to assimilate half of a parabolic curve in the material parameters.

• Configuration 3, shown in Fig. 4, involves a beam with the pinned boundary condition on the left side and a roller bearing at
the right end. Subjected to a line load, an equivalent one-dimensional and homogeneous system possesses a parabolic bending
moment curve 𝑀𝐵 that is plotted with a contrasting color. Designing a material with an according grading of the yield stress
requires the maximum yield stress to be at the center between the bearings and the minimum yield stresses to be located at
the bearings. Here, the smallest length-scale investigated in this study is appropriate for the described yield stress distribution.
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Fig. 4. Part design configurations: For configuration 1, the cantilever beam is clamped on the left side and subject to a load located at the free end on the
right. In configuration 2, the cantilever beam is clamped on the left side and subject to a line load acting on the entire domain. In configuration 3, the beam
is pinned on the left side and has a roller bearing on the right side. Again, a line load acts on the entire domain.

Table 1
This table lists the characteristics of the exemplary
homogeneous material that serves as the material for the
baseline parts and thus as a reference for the functionally
graded parts. Specifically, the popular additive manufac-
turing thermoplastic ABS is chosen to be the reference
in terms of density and stiffness.

Homogeneous material

Name ABS

Young’s modulus 3 × 103 MPa
Yield stress 48.3MPa
Density 1190 kgm−3

As a reference for the virtual functionally graded parts, consider a virtual traditional homogeneous part made of a typical additive
manufacturing thermoplastic, see Table 1, whose Young’s modulus is expected as 3 × 103 MPa. For the functionally graded parts,
consider two materials, of which filament A is less stiff than the baseline material with 2.5 × 103 MPa, while filament B is stiffer
than the baseline with 3.5 × 103 MPa. The average stiffness and mass density of filaments A and B are equal to that of the baseline
material for the sake of comparability. This in turn necessitates also fictitious filaments, as no existing materials fulfill this equality
constraint perfectly (see Table 2).

3.2.2. Fused deposition modeling
Our academic example is centered around fused deposition modeling, see Fig. 5. Fused deposition modeling is a multi-material

additive manufacturing process categorized within material extrusion. Thermoplastic polymers make up the most common stock
material for this process. Typically dual nozzle systems are employed, where a separate feed mechanism passes through the extrusion
head for each of the two filaments. The building strategy consists of assigning a filament type to each position on the build
bed. Consequently, the smoothness of the functional grading at the macro-scale depends on the spatial resolution of the building
strategy [29].

For simplicity, we consider the positional volume fractions resulting from the building strategy as the process parameters in this
study and assume that their length-scales match those of the compound material parameters.

The building strategy involving filaments A and B tailors the part to the specific application configuration via functional grading.
Figs. 6 and 7 show possible volume fraction designs for both materials that need to be accomplished by the building strategy for
all configurations. Here, the material strength is shifted towards regions with high stresses, while the overall mass stays constant.

In practice, the length-scale is readily estimated by the maximum-likelihood-estimate of the covariance connected to the standard
Gaussian process regression equation applied to the volume fractions. A naïve estimate thereof suffices for this demonstration.
The variability of the profile for configuration 1 is the smallest, while it increases for configuration 2 and increases further for
configuration 3. With this observation, we arrive at the estimated length-scales reported in Table 3. To rule out any errors by
length-scale approximation for this study, the ideal stiffness profiles are projected onto the eigenfunctions of a covariance operator
parameterized with the length-scales provided in Table 3.
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Table 2
This table presents the Young’s modulus, yield stress, and density
of the two exemplary materials used in the fused deposition
modeling process. Filament A has 5∕6 of the homogeneous
material’s stiffness and density, while filament B has 7∕6 of the
homogeneous material’s stiffness and density. Filament A is thus
the less stiff and dense component and filament B provides higher
stiffness at the drawback of increased density.

Filament A Filament B

Young’s modulus 2.5 × 103 MPa 3.5 × 103 MPa
Yield stress 40.3MPa 56.4MPa
Density 992 kgm−3 1390 kgm−3

Fig. 5. Sketch of the fused deposition modeling principle. The jet shown at the top of the image is capable of producing a part, which is shown at the bottom,
whose material distribution is functionally graded.

Fig. 6. Configuration 2 (reference): Here, the volume fraction corresponding to filament A decreases hyperbolically, while that of filament B constitutes the
remainder. These volume fractions represent the ideal deterministic volume fractions that correspond to the ideal deterministic stiffness profiles and that are not
manufacturable in practice.

Table 3
The table lists the naïve length-scale estimates for each configuration. The volume
fractions’ length-scales pose the optimal choice for the priors on the material
parameter length-scales and care should be taken to correctly identify them. For
our academic problem, we assume these length-scales to be known by projecting the
stiffness profiles onto the eigenfunctions of a covariance function with the respective
length-scale.

configuration 1 configuration 2 configuration 3

Length-scale 𝐿1 = 900mm 𝐿2 = 450mm 𝐿3 = 225mm

3.2.3. Assumption of the manufacturable stiffness profiles as realizations of Gaussian processes
In theory, with a deterministic linear manufacturing process and deterministic materials, the shown material volume fractions

translate into Young’s modulus functions over 𝑥 assuming a linear volumetric Young’s modulus law. Fig. 8 shows the corresponding
stiffness profiles for configuration 1, configuration 2, and configuration 3. These present the ideal aggregated stiffness profiles that
raise the minimum safety-margin and retain the mass.

IV Paper C 106



Journal of Sound and Vibration 570 (2024) 117997

10

K.-A. Hoppe et al.

Fig. 7. The figures show the material volume fractions over the beams’ 𝑥-coordinate for the altered configurations. These volume fractions represent the ideal
deterministic volume fractions that correspond to the ideal deterministic stiffness profiles and that are not manufacturable in practice.

Fig. 8. Deterministic target design Young’s modulus profiles for all configurations and ground truth stiffness for the reference configuration.

In practice, the properties of the manufactured parts are not deterministic. Instead, they are subject to uncertainty. We model the
manufacturable stiffness profiles as realizations of Gaussian processes. To achieve this, the ideal stiffness profiles are individually
approximated with a Karhunen-Loève expansion with a truncation order of 𝐾 = 5, with the covariance from Eq. (19), and the
matching length-scales from Table 3. The manufacturable stiffness profiles are considered as the quantity of interest and thus the
ground truth for the inverse problem in the following section. Fig. 8 shows the ground truth stiffness profile for the reference
configuration, while Fig. 9 shows the corresponding profiles for configuration 1 and configuration 3. The ground truth stiffness
for configuration 1 shows a close agreement throughout the beam with the original stiffness, while the ground truth stiffness for
configuration 2 fails to capture the desired stiffness peak at the clamping. The chosen random space discretization overestimates
the minimum stiffness values at the beam’s boundaries for configuration 3. Overall, the characteristics of the ideal profiles are
captured well. The approximation of the configuration 1 profile being the most accurate demonstrates that retaining more terms in
the Karhunen-Loève expansion would enable the projection to capture even more of the ideal profiles’ variance.

IV Paper C 107



Journal of Sound and Vibration 570 (2024) 117997

11

K.-A. Hoppe et al.

Fig. 9. Ground truth stiffness profiles subject to uncertainty as Gaussian process realizations for configuration 1 and configuration 3.

Fig. 10. This figure shows the result of the dimensionality-reduced and generalized polynomial chaos-accelerated inference of the beam’s Young’s modulus 𝐸𝑥
for configuration 2. The beam’s first eigenvector at the upper surface area serves as the model response and observation data. The solid line shows the ground
truth Young’s modulus field 𝑀 true and the dashed line corresponds to the estimated Young’s modulus field 𝑀̃𝐾 attained via the maximum a posteriori estimate.
Here, the covariance function used to generate the ground truth is employed for training the surrogate and as prior information on the a priori unknown spatially
varying Young’s modulus. The identified field agrees excellently with the ground truth field.

4. Results

4.1. Dimensionality-reduced and generalized polynomial chaos accelerated inference of Young’s modulus using mode shape data

Now follow results for the identification of the ground truth stiffness based on mode shape data generated with the same finite
element method model as described in Section 3.1 and endowed with the identical signal-to-noise ratio. The surrogate shortens the
inversion procedure duration from more than 170 to less than 1.7 s on consumer-grade hardware. Now, the bulk amount of CPU
time is spent evaluating the likelihood instead of the model, as is the case when using the full finite element model. The inference
results for the Young’s modulus 𝐸𝑥 using maximum a posteriori estimation agree excellently with the ground truth, see Fig. 10. This
clearly demonstrates the efficiency and efficacy of our proposed method for identifying the spatially varying Young’s modulus of a
structure using mode shape data.

4.2. Surrogate recycling results

This section first presents the effect of using the functionally graded material as opposed to homogeneous material on the safety-
margin within static loading. Following this, the spatially varying stiffness identification results obtained from the academic example
are shown together with metrics on the computational effort of our methodology.
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Table 4
The table compares the homogeneous parts with the functionally graded parts with respect
to their minimum safeties for each configuration. The minimum safeties corresponding to
the functionally graded parts are higher than those of their homogeneous counterparts
throughout the configurations. The increase of the minimum safety is calculated as the
relative percentage deviation with the homogeneous configuration as reference.

configuration 1 configuration 2 configuration 3

Relative increase of 𝑠min 16.7% 16.7% 16.3%

Table 5
Amount of necessary forward model evaluations comparing the proposed framework to conventional
surrogate modeling. The surrogate connects 𝜼 to the beam’s first mode shape. Traditionally, the surrogate
must be recomputed when the length-scale 𝐿 changes and consequently, new finite element model
evaluations are necessary. With the proposed workflow, no new finite element model evaluations are
necessary and one set of evaluations suffices.
Forward model evaluations configuration 1 configuration 2 configuration 3

Proposed methodology 0 42 0
Conventional surrogate modeling 42 42 42

Fig. 11. The generalized polynomial chaos surrogate is trained using finite element model evaluations based on the stiffness covariance belonging to the
functionally graded part designed for configuration 2. With the known length-scales 𝐿1 and 𝐿3, but without new finite element model evaluations using stiffness
samples based on these length-scales, the surrogate trained on configuration 2 can be reused for both configuration 1 and configuration 3.

The three configurations undergo static analysis with the finite element method to assess the effect of the functional grading in
comparison with the homogeneous material. Here, a three-dimensional volume model of a beam with the same geometry as used
in Section 3.1 is created using the commercial finite element method code COMSOL. The discretization using quadratic tetrahedral
serendipity elements yields 6327 degrees of freedom. The boundary conditions and loads are applied uniformly across the width of
the beam. The yield and von Mises stresses 𝜎y and 𝜎Mises are computed and the safety-margin 𝑠 is obtained as 𝑠 = 𝜎y∕𝜎Mises along
the beam coordinate. The safety-margin 𝑠 is not constant over the beam domain due to the loads and boundary conditions, and
the minimum safety 𝑠min signifies the minimum value of 𝑠 within this region. Table 4 reports the percentage increases in terms of
the 𝑠min of the functionally graded material relative to the homogeneous material for all configurations. These results show that the
functional grading improves the safety in the critical regions. The functionally graded safety of configuration 1 exceeds that of the
homogeneous part at the clamping, where both material configurations exhibit 𝑠min. For configuration 2, the minimum safety lies
at the clamping as well, while the minimum safety for configuration 3 is located at the center of the beam. Using the functionally
graded material results in a uniform increase in 𝑠min with respect to the homogeneous material throughout the configurations.

Now, the stiffness is assumed as unknown. All configurations consequently undergo non-destructive testing where the aim is
to identify the stiffness. For configuration 2, the baseline procedure described in Section 3.1 is applied. The mean value of the
stiffness is assumed as 3 × 103 MPa. The Young’s modulus is modeled as homogeneous in 𝑦 and 𝑧 direction and only varies along the
𝑥-coordinate. The length-scale for the Karhunen-Loève expansion of the inference is chosen as 𝐿2 in accordance with Table 3. Here,
the Karhunen-Loève truncation order is set to 5. The finite element model is evaluated for random field realizations connected to the
length-scale of configuration 2 𝐿2 = 450mm. The generalized polynomial chaos surrogate is trained using these finite element model
evaluations. Presenting one of the main contributions of this study, the stiffness identifications for configuration 1 and configuration
3 use a transformed version of the surrogate connected to configuration 2. No additional finite element model evaluations are
necessary. Merely the Karhunen-Loève expansion must be recomputed with the appropriate length-scale from Table 3 in order to
obtain the projection coefficients from Eq. (10) for the surrogate transformation described in Section 2.4. The transformed surrogates
following the scheme shown in Fig. 11 can now be used for the inference. Table 5 lists the amount of high-fidelity finite element
forward model evaluations that are necessary for each inference. This study uses twice the number of necessary model evaluations as
given by Eq. (9) to augment the amount of equations for the generalized polynomial chaos expansion least squares problem and thus
improve it. Note that only surrogate model evaluations are necessary for the inference involving configuration 1 and configuration
3 with our proposed procedure. The inference is carried out using maximum a posteriori estimation.

Fig. 12 shows the agreement of the identified Young’s moduli with the a priori unknown ground truth stiffness. The unknown
ground truth stiffness is plotted using a solid line and the estimated stiffness uses a dashed style. For configuration 1, the estimation
based on the recycled surrogate correctly identifies the trend and character of the ground truth stiffness. However, there is an
offset throughout the beam domain of order of magnitude 1 × 102 MPa. The estimation using the surrogate trained on 𝐿2 correctly
identifies the trend and character of the ground truth stiffness belonging to configuration 2. However, the inversion underestimates
the beam stiffness near the clamping and overestimates it at 𝑥 > 100mm. Finally, the estimation for configuration 3 based on the
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Fig. 12. Bayesian inference results for the non-reference configurations: The a priori unknown ground truth stiffness (solid) and the estimated stiffness (dashed)
are compared with each other.

recycled surrogate correctly identifies the trend and character of the ground truth stiffness. The maximum stiffness at the center
and the minimum stiffness values at the bounds are overestimated by the order of magnitude 1 × 101 MPa. Overall, the lowest error
is achieved here.

Overall, the estimations agree well with the reference values. The shapes are excellently approximated for all configurations,
while the maximum errors at the respective 𝑥-coordinates lie in the range of 1 × 101 − 1 × 102 MPa. The smallest error over the
beam domain is achieved for configuration 3 and the largest error over the domain is attributed to configuration 1. The error for
configuration 2 lies in between the error connected to configuration 1 and configuration 3. This is an unexpected result, as no
surrogate recycling occurs here. Indeed, the error is proportional to the magnitude of the first two ground truth Karhunen-Loève
coefficients and thus depends on the application.

Accuracy assessment. The errors of the inference procedure clearly depend on the chosen application, the measurement noise, and
the optimization algorithm used to identify the maximum a posteriori estimate. Errors arising from the use of individual components
within the methodology are well-documented in the literature. Specifically, the convergence of the generalized polynomial chaos
expansion is scrutinized by Ernst et al. [34], while Huang et al. [35] study the truncation error of the Karhunen-Loève expansion. The
expected errors connected to our setup are shown in Fig. 13. Several ground truth samples drawn from a Karhunen-Loève expansion
with target correlation length 𝐿 are inferred based on surrogates using reference correlation lengths {225, 360, 450, 900}mm. We
deliberately choose Karhunen-Loève expansion samples here to avoid any unwanted influence of Karhunen-Loève expansion order
errors as studied by Huang et al. [35] on the desired assessment of the error resulting from the surrogate recycling procedure.
Nonetheless, the ratio of covered variance exceeds 95% for all configurations. The inference results are averaged over all samples
and compared to results from the conventional procedure, where 𝑙𝑟 = 𝐿.

The error when using recycled surrogates increases with shortening ground truth correlation lengths 𝐿. This effect is more
pronounced for large reference length-scales 𝑙𝑟. This leads to the recommendation of using the smallest possible 𝑙𝑟. However, this
entails a computational complexity trade-off, as higher Karhunen-Loève expansion orders are required if the variance coverage is
to be kept constant and higher expansion orders in turn necessitate more forward model evaluations due to the increased number
of generalized polynomial chaos inputs.

Note that the quality of results obtained using recycled surrogates depends on the quality of the reference surrogate. To this aim,
a worst-case curve is plotted for 𝑙𝑟 = 360 mm, where the accuracy of the conventional method is lower compared to other 𝐿. Thus
confirming the accuracy of the surrogate before recycling it is prudent. Again, the convergence of the generalized polynomial chaos
expansion is application specific and has been extensively studied in the literature [34].

5. Discussion and conclusions

5.1. Discussion

Scrutinizing the results reveals that the proposed stiffness identification procedure succeeded in identifying the stiffness in a mean
sense for configuration 2 and configuration 3 with reasonable accuracy, but failed to identify the stiffness correctly in the mean
sense for configuration 1. One way of identifying an erroneous offset in the identification results is to carry out a brief cross-check
between the mean of the identified stiffness and an experimentally determined eigenfrequency.

The proposed methodology cannot be applied when the geometry or the boundary conditions of the tested structure change.
Other methods must be developed to cover these application areas.
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Fig. 13. Accuracy assessment for our methodology, where the ratio of covered variance exceeds 95% for all parameter study configurations. The graph shows
the statistically expected error, where 𝑀gt represents the unknown quantity of interest and 𝑀inf results from its inference. The dotted line corresponds to the
conventional inference strategy using the generalized polynomial chaos surrogate, whereas the remaining curves are connected to our approach.

Further, there exist scenarios, where employing the proposed method is not necessary. The advantages thrive when forward model
evaluations are computationally expensive. This is especially the case for complex geometries and the necessity of fine discretization.
If a computationally affordable and sufficiently accurate model exists, the construction of surrogates may not be necessary.

Our academic example uses only three different length-scales. However, the proposed methodology provides more value when
many process parameter length-scales are deployed during manufacturing. The computational cost for constructing the reference
surrogate can be viewed as fixed cost in this context. Further, the fixed cost may be increasingly offset by inference procedures
where the reference surrogate is recycled. Within this analogy, the computational overhead, mainly consisting of Karhunen-Loève
expansion computations and likelihood evaluations, corresponds to variable cost.

5.2. Conclusions

This study used an accelerated method for non-destructively identifying the multi-dimensional spatially varying stiffness while
considering its uncertainty. Here, the structure’s mode shapes served as data. We conclude that

• the method delivers excellent results over the entire structure’s domain.
• the method exhibits a significant computational time speedup when compared with procedures evaluating the finite element

model at each inference step.

Furthering the state of the art, we formulated a novel methodology for recycling the surrogate model for the use in theoretically
unlimited follow-up inference procedures. This methodology was based on the estimation of the random field length-scale of filament
volume fractions and an assumption of the equivalence to the material property length-scales. We conclude that

• the methodology delivers excellent results when recycling a surrogate model.
• the methodology scales well for an increasing number of process parameter length-scales and thus delivers significant further

computational cost saving potential for large-scale applications.
• the reference length-scale shall be chosen as small as possible while considering computational cost constraints.

Future research should produce a database with process-structure-property relations, where correlations between the parameters
may be extracted such that our method can be employed with more confidence and the cumbersome integrated computational
materials engineering framework may be avoided.
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A B S T R A C T

Models for the elastic material properties of wood aim to predict the mechanical response of wooden structures
to external loading. Traditionally, the variability of these properties in trees is described by a taxonomy of
growth defects that is typically based on visual indicators in the material. This includes curvature, knots, and
spiral grain models. Existing meso- and macro-scale models fail to describe the uncertainty connected to the
local heterogeneity of the material. In this paper, we propose a novel meso-scale model that describes the
natural variability of Norway spruce morphology and material properties based on random field theory. Our
approach removes the need for a taxonomy of growth defects and enables uncertainty quantification of the
stiffness and density in a straightforward fashion using simulations. This may enhance confidence for stiffness-
graded applications, where the dynamic resonant behavior of wood structures is relevant and growth anomalies
are present. Further, our stochastic models can generate images that realistically mimic wood patterns, which
is relevant for applications like synthetic wood panels and flooring.

1. Introduction

Developing models for the mechanical behavior of wood [1] is a
challenging research field due to the natural variation of this material.
Walley and Rogers [2] review elastic models for wood and find that
many models attempt to mimic the observed behavior but are not
based on theoretical considerations related to the natural growth of the
material wood. The insufficient prediction of the behavior is partly due
to a lack of understanding of the mechanical behavior of wood [2], but
is also related to a lack of available data [3]. The material properties
are governed by uncertainty, which is due to geometric variability
resulting from natural growth, and uncertainty in effects like moisture
and reaction wood.

As wood is a non-homogeneous material, multi-scale or hierarchi-
cal modeling is often necessary to predict its macroscopic behavior.
Bengtsson et al. [4] investigate how the structure of softwood affects
the elastic properties across the scales. Gambarelli and Ožbolt [5]
formulate a meso-scale model for mechanical damage processes and
find that these significantly influence the macroscopic behavior of
wood.

∗ Corresponding author.
E-mail address: alexander.hoppe@tum.de (K.-A. Hoppe).

Knots, as well as the local grain angle resulting from tapering,
curvature, and spiral growth represent those growth features of wood
with the most significant impact on the strength and modulus of
elasticity [6]. The following briefly reviews the pertinent literature.

The radial growth observed in a tree over the course of the year
is subject to phases. The terms earlywood and latewood very broadly
refer to such phases. Due to differences in density, moisture, chemi-
cal composition, and other factors, the appearance changes between
phases, and thus, annual rings can be made out. Annual ring models
consider the density profile over the radial coordinate or the cross-
section’s shape. The growth layer surface [7] is generally non-circular
with anisotropic radii. Recently, surface annual rings and the pith
location are being identified using neural-network-based black box
models [8,9].

Knots are sections of branches that are encompassed by the trunk,
and they receive significant attention within the literature, see Collins
and Fink [10]. Kandler et al. [11] approximate knot properties using
the distance to the pith and the fiber directions at the surface. Hu-
ber et al. [12] estimate, among other properties, the knot geometry
together with the adjacent fiber directions by X-ray scans. Guindos and

https://doi.org/10.1016/j.ijmecsci.2024.109570
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Guaita [13] point out the analogy of laminar flow around an obstacle
and the fiber alignment around wood knots. Pyörälä et al. [14] employ
terrestrial laser scanning to identify branch parameters, while Kantola
et al. [15] confine their study to the diameter of branches over the
height of trees.

Taper describes the decrease in trunk or bole diameter over the
growth direction. Taper models continue to evolve within the literature.
While polynomial models are being considered [16], most models are
based on the modified Brink’s function [17], which scales and shifts a
superposition of exponential terms. Popular predictor variables include
tree height, age and the number of rings, the mean stand diameter and
basal area, and the bole diameter at breast height [18,19], typically
1.3m from the ground. Kantola et al. [15] integrate taper modeling of
Norway spruce with an adapted version of their holistic growth process
model.

Curvature is the subject of several studies. Khaloian Sarnaghi
et al. [20] quantify the pronounced curvature of beech using a surface
scan and note that a custom board cutting scheme is necessary to reduce
the waste to a level comparable to that of trunks with less significant
curvature. The bow height and crook of a Norway spruce stud [21]
and log [22] are identified in the literature, while the corresponding
statistics for 56 logs are identified by Edlund and Warensjö [23].

Spiral grain results from the twisting growth of fibers about the
pith. To predict shrinkage and twist among other defects, Bäckström
and Johansson [24] develop a deterministic analytical model for spiral
grain angle variation. Bossu et al. [25] study the influence of growth
mechanisms at the tissue level and find extreme grain angle variations.
Gjerdrum and Bernabei [26] refine the knowledge on the transition
from left-handed grain in the juvenile wood in radial proximity of the
pith to subsequent right-handed spiraling over the growth direction.
Säll [27] finds that the slope of the grain angle is statistically barely
significant in the average sense between butt and middle logs. They do,
however, report individual specimens with large grain angles. Finally,
Brémaud et al. [28] confirm that the grain angle not only affects the
strength but also the vibrational properties of wood.

To model the effect of the local fiber directions, their identification
is necessary. Indeed, validation approaches exist for model predictions
of the grain angle: Sepúlveda et al. [29] deem predicting the spiral
grain angle based on commercially accessible X-ray scans possible.
Olsson et al. [30] identify the local fiber orientation on the surface
using laser scanning and Hu et al. [31] repeat this around a branch
within a wood volume using CT scan data, while Hu et al. [32] quantify
the fiber direction of Norway spruce boards using the tracheid effect.
Foley [33] locally predicts the orientation of the orthotropic material
considering knots. The influence of the local grain angle on the Young’s
modulus is studied in the literature. Purba et al. [34] find that their
stiffness predictions are significantly sensitive towards the microfibril
and grain angles and that taking into account for them reduces the
model error.

To ultimately predict the modulus of elasticity, a link needs to
be established between grain angle and stiffness. Astley et al. [35]
formulate the micro-scale orthotropic stiffness as a function of the
microfibril angle. Olsson et al. [30] calculate the local Young’s modulus
from the identified fiber directions. Lukacevic [36] model the stiffness
of benign knots based on surface fiber directions. Hu et al. [37] model
the local bending stiffness using a fiber direction description within
the board volume. In contrast to the expression in terms of the fiber
directions, the direct identification of the Young’s modulus within
an object is cumbersome to achieve. One approach is to use digital
volume correlation if a sufficient speckle pattern is present. While
the Young’s modulus identification at the surface is more accessible,
e.g., Hu et al. [38] use digital image correlation for surface imaging
of the heterogeneous Young’s modulus of wood. However, it does not
capture the complete three-dimensional characteristics of the mate-
rial. Kandler et al. [39] apply their stochastic engineering framework

that considers the non-homogeneous stiffness of boards as random to
laminated timber.

To summarize the classical modeling of the material properties of
wood, many investigations of the global grain angle or local Young’s
modulus do not develop a deductive model; see Denzler et al. [40].
Contrary to this, our study operates on an abstraction level comparable
to the whorl level of the growth process models in an interpretable and
intuitive manner. To this aim, we develop a meso-scale morphological
description of Norway spruce based on the annual ring pattern and
grain angle as induced by curvature, taper, and spiral grain. Our taper
description additionally takes into account the effect of branches. The
basis functions and the structure of our model may be tailored to
specific wood species. The input parameters to the model are unique
for each specimen.

Our morphological model generates heterogeneous fiber directions
and heterogeneous density. Using these intermediate results, the local
Young’s modulus is obtained whilst accounting for earlywood and
latewood elasticity of Norway spruce provided in the literature [41]. To
validate the stiffness predictions similar to the identification of elastic
material parameters from vibration measurements [42], we obtain the
morphological parameters from a CT scan of a Norway spruce specimen
and then compare its experimental and numerical vibration response.

Statistically predicting wood quality from the morphology of trees
and identifying key predictors is a research trend that is rapidly gaining
interest, see Lenz et al. [43]. Many papers attempt to fit parameters
from large data sets to identify causal relationships and significant
predictor variables, see Riesco Muñoz [44]. Unfortunately, the crucial
interpretability is commonly overlooked here. Examples of such data-
driven approaches to predict curvature and twist consider the grain
angle, growth stresses, compression wood, the annual ring width, the
relative ring width difference, drying, the board position within the
trunk, knots, density, and age, see [45–47].

Data-driven prediction of the Young’s modulus of Norway spruce
is primarily accomplished in the literature based on CT scan data. Jo-
hansson et al. [48] and Oja et al. [49,50] predict the stiffness of Norway
spruce boards using data extracted from CT scans. That data includes
density, log diameter and taper, and knot volume and occurrence.

While effort is poured into developing deterministic empirical equa-
tions for spiral grain and taper, these existing models are not flexible
enough to account for the stochastic natural variability of the organic
material wood. Likewise, reviews on multi-scale and hierarchical mod-
eling papers that begin at the microstructure reveal that most of these
contributions fail to capture the natural variability at the macro- over
even the meso-scale [51,52]. Nonetheless, collections of the statistics
of macro-scale material properties of wood exist [53]. The natural
growth process induces variability in the wood properties [47]. The
important task of modeling this growth process is accomplished by hi-
erarchical models operating at the stand, tree, whorl, and branch levels,
see [15]. These types of models are complemented by wood formation
models [54] and tree information models [55]. However, they often
lack the depth and flexibility to incorporate spatial uncertainty within
the tree. Specifically, probabilistic models for the longitudinal and
circumferential distribution of knots as a function of the longitudinal
direction would be valuable.

Indeed, González-Rodrigo et al. [56] observe trends for the variation
of wood properties throughout the tree. Finally, Kandler et al. [57]
interpret wood material properties as random fields. This perspective
is attractive because it can potentially eliminate the need for several
defect taxonomies, most prominently those related to curvature like
bow and crook. If Gaussian random fields are used to describe the spa-
tial variability, it is completely defined by their second-order statistics.
Particularly, the spatial variability is described by the covariance func-
tion [58]. Once the covariance function is identified, the description
of, say, curvature can be reduced to as little as two variables, namely
variance and length-scale.
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Fig. 1. Wood cross-section as obtained by a CT scan of the specimen with the used coordinate system. Here, the ’+’ symbol marks the pith location, while the ’o’ marker refers
to the resin streak. Next to the probe boundaries, exemplary earlywood and latewood locations are annotated in the figure.

Our study considers the curvature, taper, and spiral grain descrip-
tors as stochastic. All stochastic parameters entail a one-dimensional
random field defined on 𝑧, as defined in Fig. 1. Taper and spiral grain
additionally contain trend components, and the taper model is endowed
with a stochastic arrival process model for the local effect of branches
on the taper. We identify the statistics of these shape parameters for
the morphological model from a CT scan of a Norway spruce specimen
and data from the literature to cover inter-specimen variability. The pa-
rameter uncertainty is propagated through a numerical homogenization
routine, which is a standard procedure in the literature [4]. This way,
drawing samples from the stochastic model produces the stochastic
Young’s modulus to predict the homogenized stiffness in the 𝑧 direction
of a cutout. This presents a main outcome of our study.

This paper is organized as follows: Section 2 presents the novel mor-
phological model for Norway spruce logs and the associated material
model. The material model validation using modal analysis follows.
Section 3 considers stochastic inputs to the model and how this un-
certainty propagates to the homogenized Young’s modulus of a small
specimen. Section 4 discusses the model and evaluates the uncertainty
quantification results. Finally, conclusions pertinent to the applica-
tion of the model and relevant for timber stakeholders are drawn in
Section 5.

2. Model development and validation

The following aims to develop a meso-scale description for the
heterogeneous Young’s modulus of Norway spruce. The meso-scale
properties are shown to be relevant in the literature [30], and their
consideration is becoming increasingly accessible due to the continuing
development of computational resources. This motivates our approach.

Fig. 1 introduces the coordinate system used during the remainder
of the paper along with some significant features of the specimen for
reference.

Following the scheme shown in Fig. 2, this section describes the
morphological model comprised of the shape parameters and an annual
ring approximation, see Section 2.1. Its outputs, namely heteroge-
neous fiber directions and density, feed into the material model, see
Section 2.2, which computes the heterogeneous stiffness. To validate
the morphological model and the material model, see Section 2.3,
numerical modal analysis is carried out based on the heterogeneous
stiffness generated using shape parameters identified from a CT scan of
a Norway spruce log. These results are compared with the results of an
experimental modal analysis of the specimen.

2.1. Morphological model

We base the novel meso-scale material model on an intuitive mor-
phological model that predicts the local fiber direction 𝜱 and density 𝜚
of wood. The morphological model utilizes three simple shape param-
eters that are described in the following to achieve this. These shape
parameters 𝜽(𝑧) = {𝜟(𝑧), 𝝇(𝑧), 𝛼(𝑧)}, where 𝜟 is the offset parameter, 𝝇
is the stretching parameter and 𝛼 is a rotation parameter, are defined
as functions of the 𝑧-coordinate running in the out-of-plane direction,
see Fig. 1. They have an effect on the 𝑥𝑦-plane orthogonal to 𝑧. For
ease of notation, we omit explicitly noting the 𝑧-dependency of these
parameters from now on.

Density model. Consider the annual ring pattern of wood modeled by
a deterministic function over the radial coordinate. Step functions,
sawtooth functions, or sinusoidal functions represent some candidates
for such a model. The application should dictate the choice of function,
as the density transitions from earlywood to latewood and from late-
wood to earlywood vary. None of the candidates presents noteworthy
advantages with respect to its peers for our application. Because the
sinusoid function’s character acceptably mimics the general annual ring
pattern and because it is readily modified, we proceed with it. Such a
sinusoid 𝜚 can be represented as

𝜚(𝛿, 𝑇 ,𝜽) = 1
2

(
sin

( 2𝜋
𝑇
𝛿(𝜽)

)
+ 1

)
∈ [0, 1] , (1)

where

𝛿 =
√
𝑥̃2 + 𝑦̃2 (2)

and 𝑇 is the thickness of an annual ring. Now, the first two shape
parameters 𝜟 =

[
𝛥𝑥, 𝛥𝑦

]T and 𝝇 =
[
𝜍𝑥, 𝜍𝑦

]T can be used to manipulate
the reference Cartesian coordinates [𝑥, 𝑦]T shown in Fig. 1 and obtain
the morphed coordinates
[
𝑥̃
𝑦̃

]
=
⎡⎢⎢⎣

1
𝜍𝑥

(
𝑥 − 𝛥𝑥

)
1
𝜍𝑦

(
𝑦 − 𝛥𝑦

)
⎤⎥⎥⎦
. (3)

Firstly, 𝜟 describes the 𝑥 and 𝑦-offset of the pith from the reference
coordinate system, see Fig. 3. 𝜟 can be used to model various manifes-
tations of curvature, such as bow or crook. Secondly, 𝝇 describes the
change in annual ring thickness in the 𝑥 and 𝑦 directions, see Fig. 3.
𝝇 is suitable for modeling the taper along 𝑧, local distortions due to
branches, and longitudinal as well as basic circumferential variability
in the annual ring thickness. Setting 𝜍𝑥 ≠ 𝜍𝑦 creates an elliptic instead
of a circular annual ring pattern.

Here, 𝜚 from Eq. (1) is related to the material density 𝜌; low 𝜚 are
associated with earlywood and high 𝜚 are connected to the location
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Fig. 2. Model development and validation: The figure shows the development scheme for the morphological and material model for wood based on CT scans. How the shape
parameters that are identified from CT data are related to the models is covered in the annotated sections. To validate the models, the generated heterogeneous Young’s modulus
𝐄 as a function of the fiber directions 𝜱 and the density 𝝔 is applied in a numerical modal analysis of the Norway spruce specimen. Ultimately, the simulation results for the
natural frequency 𝑓 are compared with those from the experimental modal analysis.

Fig. 3. Panel (a) shows the offset parameter 𝜟 components. It describes the offset of the pith from the center. Panel (b) depicts the influence of the stretching parameter 𝝇. Its
components 𝜍𝑥 and 𝜍𝑦 can scale the annual ring thickness in the respective directions to create taper with circular cross-sections or also elliptic cross-sections.

of latewood. Following this analogy, stacking 𝜚 along the 𝑧-direction
yields a discrete three-dimensional scalar field of density-like values

P =
[
𝜚𝑧0 , 𝜚𝑧1 , 𝜚𝑧2 ,… , 𝜚𝑧𝑛

]T
(4)

that may be interpreted as a tree trunk.

Fiber direction. The local fiber direction model incorporates the third
and final shape parameter, namely 𝛼. 𝛼 can be interpreted as a rotation
about the pith, as marked in blue in Fig. 4, and is linked to the spiral
grain angle, which in turn is colored red there.

The fiber directions from one 𝑧-layer to another are derived from the
relative positions of early- and latewood annual rings at the respective
layer. This is owed to the fiber directions not being inherently encoded
in the annual ring pattern at one single 𝑧 position. Therefore, consider-
ing the 𝑧-coordinates 𝑍 = {𝑧𝑖 < 𝑧𝑗 < 𝑧𝑘} with 𝑗−𝑖 = 𝑘−𝑗 = 1, it must be
assumed that the fiber direction vector field at 𝑧𝑗 is the average of the
fiber direction field from 𝑧𝑖 to 𝑧𝑗 and from 𝑧𝑗 to 𝑧𝑘, respectively. Since
this is not possible for 𝑧0 and 𝑧𝑛, the fiber directions at these locations
are set to the second and penultimate ones, respectively.

To this aim, the transformed coordinates [𝑥′𝑖 , 𝑦
′
𝑖]
T and [𝑥′𝑘, 𝑦

′
𝑘]

T are
obtained using the transformation function 𝜒 employing a rotation

𝑥′ = 𝜒
(
𝑥,𝜽,𝜽′

)
= cos

(
𝛼′ − 𝛼

) 𝜍′𝑥
𝜍𝑥
𝑥 − sin

(
𝛼′ − 𝛼

) 𝜍′𝑦
𝜍𝑦
𝑦 +

(
𝛥′𝑥 − 𝛥𝑥

)
(5)

𝑦′ = 𝜒
(
𝑦,𝜽,𝜽′

)
= sin

(
𝛼′ − 𝛼

) 𝜍′𝑦
𝜍𝑦
𝑦 + cos

(
𝛼′ − 𝛼

) 𝜍′𝑥
𝜍𝑥
𝑥 +

(
𝛥′𝑦 − 𝛥𝑦

)
(6)

as [𝑥′𝑖 , 𝑦
′
𝑖]
T = [𝜒

(
𝑥𝑗 ,𝜽𝑗 ,𝜽𝑖

)
, 𝜒

(
𝑦𝑗 ,𝜽𝑗 ,𝜽𝑖

)
]T and [𝑥′𝑘, 𝑦

′
𝑘]

T = [𝜒
(
𝑥𝑗 ,𝜽𝑗 ,𝜽𝑘

)
,

𝜒
(
𝑦𝑗 ,𝜽𝑗 ,𝜽𝑘

)
]T. Here,

[
𝑥𝑗 , 𝑦𝑗

]T can be set to the reference coordinates
due to the relative nature of Eqs. (5) and (6). Note that no manipulation
of 𝑧𝑖 and 𝑧𝑘 occurs. Now, using the upper and lower fiber directions
𝜱

𝜱𝑖𝑗 =
⎡⎢⎢⎢⎣

𝑥𝑗
𝑦𝑗
𝑧𝑗

⎤⎥⎥⎥⎦
−
⎡⎢⎢⎢⎣

𝑥′𝑖
𝑦′𝑖
𝑧𝑖

⎤⎥⎥⎥⎦
∈ R3 (7)
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Fig. 4. Effect of spiral grain on the fiber directions: Consider the abstract sketch of a
log in panel (a), where the vertical black lines represent fibers. Now, panel (b) shows
the effect of the spiral grain angle annotated in red on the fiber directions along the
circumference. This study instead uses an absolute rotation angle of each cross-sectional
plane marked 𝛼 in blue color in the figure. The fiber directions are ultimately obtained
using the relative rotation angle between two planes in conjunction with the height
difference.

and

𝜱𝑗𝑘 =
⎡⎢⎢⎢⎣

𝑥′𝑘
𝑦′𝑘
𝑧𝑘

⎤⎥⎥⎥⎦
−
⎡⎢⎢⎢⎣

𝑥𝑗
𝑦𝑗
𝑧𝑗

⎤⎥⎥⎥⎦
∈ R3, (8)

the fiber directions 𝜱𝑗 at 𝑧𝑗 are approximated as

𝜱𝑗 ≈ 𝜱𝑖𝑘 =

𝜱𝑖𝑗
||𝜱𝑖𝑗 ||2 + 𝜱𝑗𝑘

||𝜱𝑗𝑘||2
2

∀𝑗 ∈ [1, 2,… , 𝑛 − 2, 𝑛 − 1], (9)

where ||𝜱𝑖𝑗 ||2 denotes the Euclidean norm of 𝜱𝑖𝑗 .
Due to the CT scan resolution available for this study, individual

fibers cannot be traced along the growth direction [31], and the fiber
direction error cannot be assessed quantitatively. Automatic procedures
that may be helpful when high-fidelity CT data are available include
triggering on a rising edge to identify transitions from earlywood to
latewood and image processing methods such as template matching
or also sparse optical flow. A commercial option for automatic fiber
tracing is given by the XFiber extension to Avizo.1 Fig. 5 now showcases
a qualitative comparison between an overlay of the first and last plane
of the CT scan on the one hand and the predicted fiber direction
fields on the other hand to validate the fiber direction model. The
fiber directions are based on an evaluation of the morphology at the
longitudinal bottom of the CT scan of the trunk (pink color) and of
the morphological parameters at the longitudinal top of the CT scan
(teal color). The arrows correspond to a normalized displacement from
the top (teal) to the bottom (pink). The prediction is evaluated on a
regular square grid, i.e. any arrows originating beyond the teal surface
have no physical implications. Accounting for only 𝜟 yields a uniform
displacement field. Additionally incorporating 𝝇 in Fig. 5(a) produces a
small improvement of the displacement prediction. This tapering effect
would be more pronounced for longer logs but is nonetheless visible
here as the top-left arrow length is greater than the bottom-right arrow
length. Including 𝛼, and thus completing 𝜽, results in a pronounced
improvement. Only now is the counter-clockwise rotation of the log
cross-section about the bottom-left properly accounted for. This agrees
well with the observations gained from a 𝑧-sequential animation of all
CT scan cross-sections.

1 Thermo Fisher Scientific, Waltham, Massachusetts, USA.

2.2. Material model

The material model represents a modification to the standard or-
thotropic material used for wood, where the tangential (index 𝑡), radial
(index 𝑟), and longitudinal (index 𝑙) components are considered. Cor-
responding literature values are aggregated in Table 1. The orthotropic
stiffness entries are gathered in 𝝊 as

𝝊 =
[
𝐸𝑡, 𝐸𝑟, 𝐸𝑙

]
. (10)

First, the longitudinal stiffness 𝐸𝑙 is projected onto the fiber direc-
tions 𝜱 in the Cartesian reference coordinates, yielding

⎡
⎢⎢⎢⎣

𝐸𝑥,𝑙
𝐸𝑦,𝑙
𝐸𝑧,𝑙

⎤
⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

𝐸𝑙
|𝜱𝑥|
||𝜱||2

𝐸𝑙
|𝜱𝑦|
||𝜱||2

𝐸𝑙
|𝜱𝑧|
||𝜱||2

⎤⎥⎥⎥⎥⎦
. (11)

Next, a link between the morphology and the radial as well as
tangential components needs to be established. As the circular annual
ring pattern cross-section 𝜍𝑥 = 𝜍𝑦 is a special case, an elliptic distortion
of the orthotropy needs to be considered. The simplification of real
growth layer cross-sections to be ellipse-shaped is justified as a trade-off
between model complexity and accuracy. The local ellipse slope angle
𝜏 is needed to orient the radial and tangential vectors correctly. The
semi-major axis 𝑎 and semi-minor axis 𝑏 related to the standard ellipse
centered on the origin with width 2𝑎 and height 2𝑏 are obtained as

𝑎 =

√√√√(𝑥 − 𝛥𝑥)2 +
(𝑦 − 𝛥𝑦)2𝜍2𝑥

𝜍2𝑦
(12)

and

𝑏 = 𝑎
𝜍𝑦
𝜍𝑥
, (13)

assuming that the semi-major axis corresponds to the 𝑥 direction and
the semi-minor axis corresponds to the 𝑦 direction, thus 𝜍𝑥 ≥ 𝜍𝑦. This is
based on the standard shifted ellipse equation (𝑥−𝛥𝑥)2∕𝑎2+(𝑦−𝛥𝑦)2∕𝑏2 =
1. Note that if 𝜍𝑥 ≥ 𝜍𝑦 does not hold, a change of variables is required.
Now, the eccentric anomaly connected to the parametric representation
of an ellipse is obtained as

𝑡 =
⎧⎪⎨⎪⎩

tan−1 𝑦−𝛥𝑦
−
√
𝑏2−(𝑦−𝛥𝑦)2

∀𝑥 ≤ 𝛥𝑥

tan−1 𝑦−𝛥𝑦√
𝑏2−(𝑦−𝛥𝑦)2

∀𝑥 > 𝛥𝑥.
(14)

This leads to the tangent slope −𝑏∕𝑎 cot 𝑡, whose angle is finally found
as

𝜏 = tan−1
(
− 𝑏
𝑎

1
tan 𝑡

)
. (15)

Using 𝜏, the tangential stiffness is oriented in parallel to the ellipse
slope, while the radial stiffness is oriented orthogonally on the ellipse
slope. Essentially, 𝜏 provides the correct orientation to the otherwise
fiber-direction-agnostic orthogonal stiffness entries with this mapping.
The heterogeneous Cartesian stiffness
[
𝐸𝑥
𝐸𝑦

]
=
[
𝐸𝑥,𝑙 + 𝐸𝑟 sin(|𝜏|) + 𝐸𝑡(1 − sin(|𝜏|))
𝐸𝑦,𝑙 + 𝐸𝑡 sin(|𝜏|) + 𝐸𝑟(1 − sin(|𝜏|))

]
(16)

is updated accordingly and appropriately scaled to

𝐄 =

√√√√ ||𝝊||22
𝐸2
𝑥 + 𝐸2

𝑦 + 𝐸
2
𝑧,𝑙

⎡⎢⎢⎣

𝐸𝑥
𝐸𝑦
𝐸𝑧,𝑙

⎤⎥⎥⎦
(17)

using 𝝊.
To arrive from a description of the overall stiffness to accounting

for the stiffness disparity between earlywood (index ew) and latewood
(index lw), corresponding compensation coefficients

𝜁lw =
𝐸𝑙,lw
𝐸𝑙

and (18)

V Paper D 120



International Journal of Mechanical Sciences 282 (2024) 109570

6

K.-A. Hoppe et al.

Fig. 5. Fiber direction prediction plotted over an overlay of the first and last CT scan plane of the specimen: panel (a) shows the prediction using 𝜟, panel (b) shows the prediction
considering 𝜟 and 𝝇, and panel (c) displays the fiber direction prediction accounting for all shape parameters 𝜽 = {𝜟, 𝝇, 𝛼}.

Table 1
Literature values for spruce orthotropic material parameters. The density is taken from [59]. The Young’s modulus data is taken from [35].
Literature values for shear moduli and Poisson’s ratios are collected from [6]. Here, it is assumed that 𝐺𝑖𝑗 = 𝐺𝑗𝑖, see [60].

𝜌 𝐸𝑡 𝐸𝑟 𝐸𝑙 𝐺𝑡𝑟∕𝐸𝑙 𝐺𝑟𝑙∕𝐸𝑙 𝐺𝑡𝑙∕𝐸𝑙 𝜈𝑡𝑟 𝜈𝑟𝑙 𝜈𝑡𝑙
440 kgm−3 0.43MPa 0.68MPa 10.8MPa .003 .064 .061 .245 .04 .025

Table 2
Spruce log dimensions.

Cartesian coordinate Min. probe dimension Max. probe dimension

𝑥 295mm 324mm
𝑦 302mm 323mm
𝑧 1015mm 1040mm

𝜁ew =
𝐸𝑙,ew
𝐸𝑙

(19)

need to be computed. They need to be determined individually for
each considered wood species, as the ratio of earlywood to latewood
stiffness is one of the species-specific parameters affecting the stiffness
properties. Influences such as the wood’s chemical composition or
changes in micro-structure are neglected within this study. 𝜁lw = 1.91
and 𝜁ew = 0.694 are found for Norway spruce using literature values
for the longitudinal stiffness of earlywood 𝐸𝑙,ew = 7.5 × 109 Pa and of
latewood 𝐸𝑙,lw = 20.6 × 109 Pa [41]. A density threshold 𝛾 shall be
tuned to accommodate for the specific relative thicknesses of early-
and latewood, where increasing values of 𝛾 reflect a decreasing portion
of latewood. Finally, applying the stiffness ratio coefficients above and
below 𝛾 yields the final material model M

M(𝜱, 𝜚) =

{
𝜁lw𝐄 ∀𝜚 > 𝛾
𝜁ew𝐄 ∀𝜚 ≤ 𝛾

(20)

as an implicit function of the fiber directions 𝜱 and the density-
equivalent 𝜚 that are obtained using 𝜽.

2.3. Model validation

To validate the final material model, the result of the numerical
modal analysis of the Norway spruce log based on the novel model
is compared to its experimental equivalent. To this aim, the shape
parameters 𝜽 and annual ring thickness are identified from a CT scan
of the specimen with the dimensions that are given in Table 2. Then,
the morphological model’s early- and latewood location predictions are
compared qualitatively to the CT scan. Using these predictions, the
material model yields the heterogeneous stiffness approximation, which
is finally used for the numerical modal analysis.

Identification of morphological descriptors – CT. A Yxlon precision scan-
ner refurbished by Diondo is employed to scan the specimen. The
detector comprises 2048 × 2048 pixels, with a pixel pitch of 200 μm.
The scan is carried out using a voltage of 140 kV and a current of
700 μA, with an integration time of 990ms. The resulting projections
are reconstructed using the Feldkamp–Davis–Kress (FDK) reconstruc-
tion technique, see Feldkamp et al. [61], utilizing cube-shaped voxels
with an edge length 0.142mm. The raw generated voxel volume spans
3888 × 3888 × 6430 pixels. Subtracting the buffer volume of air, a total
of 824mm in terms of the trunk’s length can be captured by the scan of
the specimen due to packaging constraints.

The shape parameters 𝜽 are identified manually from the CT scans
using the dimensions and locations marked in Fig. 1 for a set of
longitudinal coordinates. Here, the width and height of the log cross-
section are determined, excluding bark and branches, to obtain the
stretching parameter 𝝇. Tracking the coordinates of the pith along the
height of the trunk represents the offset parameter 𝜟. The identification
of the rotation parameter 𝛼 is not simple with the CT scan resolution
available for this study. If a finer resolution were available, individual
cells or fiber paths along the growth direction could be identified. By
following fibers from bottom to top, their local spiral grain angle could
easily be computed. However, individual fibers are not discernible with
the CT scan at hand. Thus, unique features along the height of the trunk
are necessary for an estimation of the fiber direction at those locations.
Specifically, a second, consistently identifiable feature apart from the
pith is necessary to calculate the rotation about the pith. Conveniently,
a distinct resin streak is visible in the CT data throughout the entire
𝑧-range and the resin streak coordinates are used together with those
of the pith to obtain the angle of the connecting slope and thus 𝛼. Note
that the identified shape parameter data is extrapolated using constant
values for the last 216mm of the specimen that cannot be captured by
the CT scans due to geometrical restrictions. Finally, the parameters are
gathered into 𝜽 such that each longitudinal coordinate corresponds to
a vector with five scalar entries.

Numerical modal analysis. The numerical modal analysis is carried out
with the finite element method implemented in COMSOL using a three-
dimensional model with free boundary conditions. A linear material
model serves as an approximation for the elastic behavior. The stiffness
obtained from Eq. (20) is evaluated on a grid with a density exceeding
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Fig. 6. The measurement setup for the experimental modal analysis is shown in panel (b). The laser Doppler vibrometer captures the vibrations of the log, which is excited by
the shaker via a stinger and is suspended using bungee straps. Bark is locally removed to enable the attachment of the stinger with adhesive, which is shown in panel (a). Panel
(c) shows the crack along the height of the log, and panel (d) shows the geometry approximation within the simulation model with the crack modeled as a wedge.

twice that of the finite element mesh to avoid aliasing. Subsequently,
the stiffness is linearly interpolated from this grid to the mesh vertices.
The shear moduli are considered as functions of the heterogeneous
stiffness in accordance with Table 1. Here, 𝐺𝑥𝑦 = 𝐺𝑡𝑟, 𝐺𝑦𝑧 = 𝐺𝑟𝑙,
𝐺𝑥𝑧 = 𝐺𝑡𝑙. This analysis considers the material density and Poisson’s
ratios as homogeneous as given in Table 1, where 𝜈𝑥𝑦 = 𝜈𝑡𝑟, 𝜈𝑦𝑧 = 𝜈𝑟𝑙,
𝜈𝑥𝑧 = 𝜈𝑡𝑙. Special care is taken that the bounds on Poisson’s ratio are
complied with at each location [62].

Now, the geometry of the numerical wood log model is described.
Fig. 6 shows the real and virtual structures side-by-side with the promi-
nent crack facing forward. The geometry approximation is not straight-
forward, and it is an interesting task connected to the simulation of the
wood log. Miniscule benign holes, deviations, and imperfections cause
attempts at any direct translation of the CT data into a finite element
method geometry to fail. Thresholding the CT data and drawing a three-
dimensional contour plot of the outcome proves helpful here. The outer
surface of the obtained volume is well approximated by the truncation
of an eccentric cone. An appropriately sized slanted, wedge-shaped
cutout mimics the dominant crack and is aligned to the latter’s radially
inner- and outermost positions at the top and bottom of the log.

The displacement field discretization comprises quadratic serendip-
ity shape functions. A structured mesh using 100 triangular prism
elements over the log diameter in the radial direction and 40 elements
along the growth direction yields more than 4.8 × 106 degrees of free-
dom. The high mesh density orthogonal to 𝑧 is needed to capture the
annual ring pattern within the heterogeneous material. As the annual
ring pattern changes morphology over 𝑧, additional elements are re-
quired here. An analysis of the expected transitions from earlywood to
latewood along 𝑧 yields 19 transition cycles over the domain in this
direction. Thus, 40 elements are chosen here to avoid aliasing.

Experimental modal analysis. Similar to the longitudinal natural fre-
quency elasticity measurement found in the literature [63–65], vibra-
tion measurements of the log are conducted to experimentally validate
the model; see Fig. 6. Two rubber-coated cables support the bottom
part of the log at the nodal lines of the first global bending mode.
Bungee straps suspend this setup to mimic free boundary conditions. A
B&K2 modal exciter type 4284 produces white noise excitation and is at-
tached to the log’s bottom part in the radial direction via a stinger glued
to a bark-free part of the surface. A B&K DeltaTron type 8230 force
transducer records the exerted force to facilitate frequency response
functions. Using the PSV-5003 scanning laser Doppler vibrometer with

2 Hottinger Brüel & Kjær GmbH, D-64293 Darmstadt, Germany
3 Polytec GmbH, D-76337 Waldbronn, Germany

a PSV-I-500 scanning head, the PSV-500-3D-H controller captures the
structure’s surface velocities at points where no bark is present or where
the truncated onset of a branch protrudes through it. An average of 10
measurements is obtained for the frequency data. Using the software
ME’scope to carry out the corresponding experimental modal analysis
with the complex mode indication function applied to the real part of
the data for peak counting and subsequent polynomial curve fitting
serves to identify the natural frequency connected to the first global
bending mode shape.

Results. The spruce log belongs to the Norway spruce (Picea abies)
species. Its CT data shows that it exhibits 27 annual rings and that
the average latewood thickness amounts to 0.53mm. To tune the ratio
of earlywood to latewood thickness within the model correctly, the
modified sine function resulting from Eq. (1) that ranges from 0 to
1 needs to be discretized, such that areas above a certain value are
associated with latewood, and those below it are connected to early-
wood. Applying the average latewood thickness of 0.53mm from the
experimental data leads to a density model threshold for earlywood-
latewood discrimination within the material model of 𝛾 = 0.967 for
Eq. (1). This is obtained by optimizing the threshold for the sine
function such that the thickness of the values above the threshold
equals its experimental equivalent. Prior to this, the period for the sine
function must be chosen in accordance with the experimental specimen.

Fig. 7 presents the shape parameters obtained from the CT scan.
Note that 𝜟 is considerably smoother than the remaining shape pa-
rameters. We observe that both components of 𝝇 exhibit a comparable
shape and that they contain kinks. Scrutinizing the CT scan at the
corresponding 𝑧-coordinates shows that these kinks are caused by
branches emerging from the trunk. The curve identified for 𝛼 appears to
possess a linear trend. A deviation from this trend is visible in proximity
to the 𝑧-coordinate of one of the branch kinks; however, due to the lack
of consistency with respect to other branch locations, this deviation is
deemed insignificant.

Using the identified shape parameters, we evaluate the density
model and use 𝛾 to calibrate both the earlywood and the latewood
thickness. The simulation results agree excellently with the experimen-
tal CT data; see the density model validation shown in Fig. 8. The model
captures the closed annual ring contours at the bottom and the leaning
towards the left at the top perfectly. Especially within the top third
of the figures, the spacing between latewood contours is approximated
very well. The 𝐿2 norm of the difference between the measurement and
simulation at the arbitrarily chosen position of 𝑥 = 29.3mm serves as
a quantitative error measure for the density model. Normalizing the
continuous CT scan and the discrete model prediction to the interval
[0, 1] makes them comparable. Note that the density data on the wood is
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Fig. 7. This figure presents the results for 𝜽 as identified from the CT scan of the spruce log. The 𝜟 components exhibit smooth changes over the height 𝑧, more so than those
of 𝝇. The kinks within the latter are caused by branches. The identified 𝛼 appears to have a linear trend. It is mildly noisy, mainly because it is computed from two manually
identified features: the pith and resin streak.

Fig. 8. Density approximation by the morphological model at 𝑥 = 29.3mm after applying the discrimination between earlywood and latewood. Light shades mark earlywood, while
dark shades are connected to latewood. The CT scan excerpt is shown in panel (a) with enhanced contrast. Its data is normalized to the interval [0, 1]. The identically normalized
model prediction is shown by panel (c) and an overlay of both to facilitate comparison is placed in panel (b).

naturally akin to a discrete step function due to the alternation between
early- and latewood and thus additional thresholding is not necessary.
The chosen norm yields 5.73 × 10−4 when evaluated on the rectangular
area shown in Fig. 8 and normalized on the number of pixels.

The heterogeneous stiffness obtained from the material model can-
not be compared directly to the heterogeneous Young’s modulus of
the spruce log, as no feasible direct measurement method is available.
Instead, these two quantities are indirectly compared by means of the
corresponding eigenfrequencies connected to the first global bending
mode shape shown in Fig. 2. The comparison of the experimental
modal analysis and the numerical modal analysis shown in Table 3
represents an outstanding result considering the plethora of involved
uncertainties. The discretization fidelity shall be chosen conservatively,
especially for comparatively small domain sizes, as the heterogeneity of
the wood microstructure has the largest effect on the simulation result
here.

Table 3
Experimental and numerical modal analysis comparison: Frequency 𝑓 of
first global bending mode shape and relative percentage error 𝜀.
Experimental 𝑓exp Numerical 𝑓num 𝜀

832Hz 845Hz ≈ 2%

3. Uncertainty quantification

As shown in Fig. 9, this section quantifies the uncertainty of the
homogenized Young’s modulus of Norway spruce wood. To this aim,
Section 3.1 develops a stochastic description for each shape param-
eter using experimental and literature data. Monte Carlo samples of
the corresponding heterogeneous stiffness are drawn and subjected
to a numerical (finite element method) homogenization routine in
Section 3.2, yielding a sample-based characterization of the Young’s
modulus probability distribution.
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Fig. 9. Uncertainty quantification: this part of the paper develops a stochastic description for the shape parameters 𝜽 and identifies the parameters for this stochastic model using
the experimental CT data. The uncertainty is then propagated through both the morphological and material model and finally through a numerical homogenization scheme for a
small clear wood specimen that is highlighted in red. Ultimately, a distribution of the homogenized Young’s modulus for this small cutout is obtained.

Table 4
Overview of additive components for the stochastic model parameters 𝜽(𝜉). The
components entail a Gaussian random field 𝑞(𝑧), a trend component 𝜓(𝑧), and a
stochastic arrival process 𝛽(𝑧). A cross signifies that the respective component is being
used for a parameter, while a dash means that the component is not used.

𝑞(𝑧) 𝜓(𝑧) 𝛽(𝑧) Full additive model

𝜟(𝜉) × – – 𝜟(𝜉) = 𝑞𝜟(𝑧)
𝝇(𝜉) × × × 𝝇(𝜉) = 𝑞𝝇 (𝑧) + 𝜓𝝇 (𝑧) + 𝛽(𝑧)a
𝛼(𝜉) × × – 𝛼(𝜉) = 𝑞𝛼 (𝑧) + 𝜓𝛼 (𝑧)b

a 𝜓𝝇 (𝑧) = 𝜗𝝇,2 + 𝜗𝝇,1𝑧.
b 𝜓𝛼 (𝑧) = 𝜗𝛼,1𝑧.

3.1. Stochastic model

Our shape parameters relate to established quantities used for the
description of wood defects. Bow height is connected to the parameter
𝜟 as its maximum deviation from a straight line. Taper describes the
narrowing of the trunk with increasing 𝑧. In our description, a linear
trend of 𝝇 corresponds to a linear tapering of the tree. Finally, spiral
grain angle and 𝛼 are geometrically coupled, as shown in Fig. 4, such
that a linear trend in 𝛼 translates to a constant spiral grain angle.

To explain the variability of the morphological parameters, we
pursue a manual analogy to the approach proposed in [66]. To this aim,
additive components that cover the variability of the data presented in
Fig. 7 in a satisfactory manner are identified empirically; see Table 4.
The following describes our approach.

Description of the stochastic parameters. All morphological parameters
comprise a zero-mean Gaussian random field using the following cor-
relation kernel 𝑟

𝑟(𝑧, 𝑧′) = exp

(
− |𝑧 − 𝑧′|2

2ℎ2

)
, (21)

which considers the distance between two spatial points {𝑧, 𝑧′} and a
length-scale ℎ. The 𝑥 and 𝑦 components of 𝑞𝜟 and 𝑞𝝇 are modeled as
uncorrelated random fields with identical variance 𝜎2 and length-scale
ℎ.

The model parameters 𝝇 and 𝛼 additionally contain a trend com-
ponent. Including a linear trend component in the model for 𝝇 is
sensible because the sections of taper curves corresponding to logs are
well-approximated as linear functions [17]. We use the same trend
parameters for the 𝑥 and 𝑦 components of 𝝇, as these components
exhibit strong dependence, cf. Fig. 7. The choice of adding a linear
component to 𝛼 is based on the data because it shows this trend clearly;
see Fig. 7. While the gradient of 𝛼 has an influence on the mechanical

properties, the intercept of 𝛼 is irrelevant for the mechanical properties,
as it is a cumulative measure of spiral grain. Therefore, the intercept
𝜗𝛼,2 is set to zero.

The kinks in 𝝇 caused by branches are modeled using a stochastic
arrival process, as the spacing of the kinks does not follow a deter-
ministic pattern. Naturally, we use the same stochastic arrival process
to model the branch kinks at the 𝑥 and 𝑦 components of 𝝇. Fig. 10
shows our model for the branch kinks. The 𝑧-locations of the kinks
are considered the arrival locations of a stochastic arrival process. The
inter-arrival distances (𝑧𝑎,𝑖 − 𝑧𝑎,𝑖−1) ∼  are modeled as log-normally
distributed. A modified logit-normal function with scale parameter 𝑠 is
empirically found to be a good match for the shape of the branch effect.
The composite effect of the branches is described by

𝛽(𝑧) =
𝑒∑

𝑖 where 𝑧𝑎,𝑖∈
(
𝑧− ℎ𝑧

2 ,𝑧+
ℎ𝑧
2

)𝑤𝑖
1

𝑠
√
2𝜋

1
𝑧̂(1 − 𝑧̂)

exp

[
−
logit2(𝑧̂)

2𝑠2

]

with 𝑧̂ =
𝑧 − 𝑧𝑎,𝑖
ℎ𝑧

+ 1
2
,

(22)

where 𝑒 is the number of arrival events within the considered domain,
𝑤𝑖 is the weight of each arrival event, and ℎ𝑧 is the influence height of
any single branch. The kink amplitudes 𝑤𝑖 are modeled with indepen-
dent log-normal random variables, as the log-normal distribution was
able to best describe the observed data.

Fitting procedure and results. We first describe the fitting of the stochas-
tic arrival process 𝛽(𝑧) modeling the branch kinks in 𝝇. This process
𝛽(𝑧) is fitted using the kinks in the corresponding panels in Fig. 7
that are caused by branches. The locations and the amplitudes of
these kinks are manually picked from this data. The 𝑧-direction scale
𝑠 of the logit-normal approximation for the kinks is identified using
optimization while assuming a linear residual with respect to the data.
The parameters for the log-normal distribution of (𝑧𝑎,𝑖 − 𝑧𝑎,𝑖−1) and 𝑤𝑖
are identified jointly for both 𝑥 and 𝑦 components using maximum
likelihood estimation on the manually picked data.

The trend component and the random field hyper-parameters of the
𝝇 residual are jointly identified using Gaussian process regression with
an uninformative prior. The same procedure is used for 𝛼 from Fig. 7.
Specifically, the hyper-parameters 𝜎 and length-scale ℎ of each Gaus-
sian random field component 𝑞(𝑧) are found by maximum likelihood
estimation, i.e., through maximizing the likelihood function

𝑓 (𝐲|ℎ, 𝜎,𝝑) = 1
(2𝜋)𝑛𝑦∕2

(
𝜎2

)𝑛𝑦∕2 (|𝐑(ℎ)|)1∕2

× exp
[
−(𝐲 − 𝐗𝝑)𝑇 𝐑(ℎ)−1 (𝐲 − 𝐗𝝑)

2𝜎2

]
.

(23)
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Fig. 10. The exemplary effect of two branches on 𝝇 based on the stochastic arrival
process is depicted. All branches are modeled with a modified logit-normal function
with the identical scale parameter 𝑠 and bounded height of influence ℎ𝑧. The weight
𝑤𝑖 of each branch on 𝝇 and the location 𝑧𝑎,𝑖 are considered random variables and are
annotated in the sketch.

Table 5
Identified parameters connected to the stochastic model. Standard deviations are shown
in parentheses.

𝜎 ℎ 𝜗1 𝜗2
𝜟 0.086m 0.75m – –
𝝇 4.67 × 10−3 % 1.85 × 10−2 m 9.8%∕m (0.42%∕m)a 5.5% (0.205%)a

𝛼 1.27° 1.59 × 10−2 m 20.2 °m−1 (1.09 °m−1) –

a Reference: 295mm in Table 2

Here, 𝐗 is the design matrix and 𝝑 makes up the trend parameters,
while 𝐲 is respectively set to 𝜽 as identified in Fig. 7. The correlation
matrix 𝐑 is evaluated through Eq. (21). The expected value and the
variance of the trend parameters are obtained as

E
[
𝝑|𝐲] = (

𝐗T𝐑−1𝐗
)−1 (𝐗T𝐑−1𝐲

)
(24)

and as

V
[
𝝑|𝐲] = 𝜎2

(
𝐗T𝐑−1𝐗

)−1 , (25)

respectively. As no trend component is considered for 𝜟(𝜉), Eq. (23)
uses 𝐗𝝑 = 𝟎 for this morphological parameter.

Table 5 lists the results for the Gaussian random field component
hyper-parameters and the mean slope of the trend component of the
stochastic shape parameters. Comparing the standard deviations and
length-scales obtained for each parameter, it is obvious that the Gaus-
sian random field component must be interpreted differently for 𝜟 than
for 𝝇 and 𝛼. The length-scale of 𝜟 is significantly larger than those
connected to 𝝇 and 𝛼, which in turn may be understood as uncorrelated
noise terms.

A log-normal distribution with a mean of 0.208m and standard
deviation of 4.69 × 10−2 m is identified for the inter-arrival distances
(𝑧𝑎,𝑖 − 𝑧𝑎,𝑖−1). The branch kinks’ amplitudes 𝑤 are best described by a
log-normal distribution with mean 3.83 × 10−3 % and standard deviation
6.39 × 10−3 %, while their 𝑧-direction scale measures 𝑠 = 0.235m for an
area of influence of ℎ𝑧 = 0.824m.

Since 𝜟 is related to bow, it is of interest to establish a link between
these two quantities. Obtaining the bow height in (%) from an individ-
ual sample of a random field can be done by connecting the start and
end point with a line and measuring the absolute value of the maximum
difference between this interpolation line and the sample [23]. This
procedure eventually converges to the ensemble bow height estimate
with increasing sample size. However, converting from the common
description of bow height using (%) in the literature [23] to the cor-
responding variance of a Gaussian random field is not straightforward.

The conversion in terms of the bow height mean may be accomplished
iteratively using optimization.

Evaluating samples of 𝜟(𝜉) shows that their bow height is well-
approximated by a log-normal distribution, see Fig. 11, which is a
noteworthy result. The bow height sample mean over 1 × 104 samples
evaluates to 2.55% and 3.50% for the 𝑥 and 𝑦 components of 𝜟,
respectively, while the associated standard deviations are 1.66% and
2.27%, respectively.

We remark that in the uncertainty propagation study of Section 3.2,
the posterior distribution of the slope 𝜗𝝇,1 is truncated to enforce
positive values. This ensures that the trunk tapers, i.e., it narrows with
increasing height.

Adopted probability distributions. To make our results interoperable, we
convert them to bow height, taper, and spiral grain angle. The bow
height conversion is described above, the taper is obtained from the
identified trend component slope 𝜗𝝇,1, and the spiral grain angle is
computed using the identified trend component slope 𝜗𝛼,1 and the
trivial geometrical relation in Fig. 4. Our fitted results are listed in
Table 6 together with results from previous studies taken from the
literature.

The taper and grain angle results for our spruce log lie within the
upper tail of typical literature data. Concerning the taper, this indicates
that our specimen might be a butt log close to the bottom of the trunk.

The parameters applied in the uncertainty propagation in Sec-
tion 3.2 are obtained by combining the fitting results with the param-
eters from the literature in an attempt to account for inter-specimen
variability. The identified uncertainty for 𝜟 as formulated by the bow
height overlaps with the range of values from the literature, and
therefore, the new results are used for the uncertainty propagation. The
trend components for 𝝇 and 𝛼 are directly related to taper and spiral
grain angle. We apply the respective mean and standard deviation
values from the literature to capture inter-specimen variability. The
uncertainty applied to the trend component 𝜗𝝇,1 for 𝝇 is obtained by
fitting a log-normal distribution to the taper data from [18], resulting
in the log-normal random variable parameters 𝜇ln𝑋 = 0.346 cmm−1

and 𝜎ln𝑋 = 0.630 cmm−1. Concerning 𝛼, Säll [27] presents extensive
information on the spiral grain of Norway spruce. Thus, their results
for the pertinent cambial age of 27 are used. Since they do not provide
standard deviations, the latter for the Gaussian random variable spiral
grain trend component 𝜗𝛼,1 is taken from [26].

3.2. Uncertainty propagation

In this section, samples are drawn from the identified stochastic
model for the shape parameters 𝜽. Using these shape parameters,
the heterogeneous stiffness of a small clear wood specimen is then
computed for each sample using the material model M from Eq. (20).
Then, the specimen is subjected to a numerical homogenization routine
for each stiffness sample, yielding a histogram of the Young’s modulus
prediction.

A possible cutting scheme is based on the minimum diameter of
the Norway spruce specimen. The main yield of the cutting scheme,
see Fig. 12, consists of four 50mm by 200mm beams, one of the
preferred sizes for softwood sawn timber in the EN 1313 standard [67].
The remaining yield of this cutting scheme consists of four 22mm by
150mm boards, commonly occurring in Sweden. Our clear specimen
dimensions are 20mm × 20mm perpendicular to 𝑧 and 120mm long as
applied in Aicher and Stapf [68]. This specimen, highlighted in red
in Fig. 12, is centered on the symmetry axis of the fictitious cutting
scheme and is adjacent to the outermost yield. The motivation for this
placement pursues sustainability targets and lies in the investigation of
the potential usage of traditionally discarded regions within logs.

To obtain the homogenized stiffness for such a specimen, its static
analysis is carried out using the commercial finite element software
COMSOL [69] and the linear elastic material assumption. The displace-
ments of all nodes at the bottom surface of the hexahedral volume
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Fig. 11. Bow height distribution of 1 × 104 samples of 𝜟(𝜉) with a histogram in panel (a) and a cumulative probability distribution in panel (b). The theoretical cumulative
distribution function of the log-normal distribution with matching sample statistical moments is shown on the right side for reference.

Table 6
Comparison of new data with literature values. Standard deviations are shown in parentheses.

Bow height (%) Taper (cmm−1) Spiral grain angle (◦)

Fitted results 3.06 (1.98) 2.92 (0.13) 2.17 (0.12)
Literature 0.65 [21], > 2 [22], 1.3 (1) [23] 1.72 (1.2) [18], 1.3 [16] −0.91 (3.8) [26], 1.77 [Cambial Age 27] [27]
Applied 3.06 (1.98) 1.72 (1.2) 1.77 (3.8)

Fig. 12. Potential cutting scheme, where the 20×20×120mm clear specimen considered
for numerical homogenization is highlighted in red color. This specimen is used for the
stiffness uncertainty quantification.

model are set to zero. The vertical displacements of the nodes at the
top of the specimen are set to 𝑢𝑧 = 0.1mm, see Fig. 13. The structured
mesh comprises hexahedral elements with an edge length of 0.5mm,
while the displacement field is discretized using linear polynomials.
This discretization is sufficient here, as any occurring bending is neg-
ligible. The heterogeneous stiffness is obtained from Eq. (20) on a
three-dimensional Cartesian grid with equidistant vertices spaced every
0.25mm. This stiffness is assigned using linear interpolation at the mesh
vertices. Again, the shear moduli are considered as functions of the
heterogeneous stiffness in accordance with Table 1. Here, 𝐺𝑥𝑦 = 𝐺𝑡𝑟,
𝐺𝑦𝑧 = 𝐺𝑟𝑙, 𝐺𝑥𝑧 = 𝐺𝑡𝑙. This analysis considers the Poisson’s ratios
as homogeneous as given in Table 1, where 𝜈𝑥𝑦 = 𝜈𝑡𝑟, 𝜈𝑦𝑧 = 𝜈𝑟𝑙,
𝜈𝑥𝑧 = 𝜈𝑡𝑙. The local bounds on Poisson’s ratio are satisfied [62]. The
clear specimen is then considered a representative volume element with
volume |𝑉 |. Now, the homogenized stress 𝜎ℎ𝑖𝑗 can be obtained using the

stress 𝜎𝜀𝑖𝑗 resulting from the static analysis as

𝜎ℎ𝑖𝑗 =
1
|𝑉 | ∫ 𝜎𝜀𝑖𝑗𝑑𝑦, (26)

and the homogenized strain 𝜀ℎ𝑖𝑗 is computed analogously as

𝜀ℎ𝑖𝑗 =
1
|𝑉 | ∫ 𝜀𝜀𝑖𝑗𝑑𝑦, (27)

where 𝑦 refers to the meso-scale, see Charalambakis [70]. Finally, the
homogenized stiffness 𝐸ℎ reads as

𝐸ℎ = 𝜎ℎ

𝜀ℎ
. (28)

Results. After the parameter fitting for the stochastic models, samples
can be drawn from the stochastic versions of 𝜽. A few randomly chosen
samples of the shape parameters are plotted in Fig. 14 together with the
bounding envelopes. Note that the random samples of 𝝇 are normalized
on their minimum value for consistency, which implies that 𝜗𝝇,2 is cho-
sen deterministically after the sampling of 𝜗𝝇,1. Immediately, a different
impression arises from these plots when compared to those connected
to the spruce log shown in Fig. 7. This is because the 𝑧-dimension here
is very small in comparison. Among other effects, the branch kinks are
not clearly visible as such here. The extreme percentiles for 𝝇 and 𝛼
appear non-smooth, this is however due to sample size.

Fig. 15 shows five randomly chosen evaluations of the density
model, see Eq. (1), after discretization at the clear specimen surface
using the stochastic shape parameters. The latewood contours vary
heterogeneously in spacing and curvature even on this small domain.
These results indicate that the morphological uncertainty is significant
and that it needs to be taken into account for accurate simulation
results.

Finally, Fig. 16 shows the homogenized Young’s modulus in the 𝑧-
direction for 1477 samples from the stochastic shape parameters that
are propagated through the morphological model to the material model
and ultimately to the numerical homogenization routine. It is not
straight-forward to compare this result to measurements of the longi-
tudinal Young’s modulus, where the measurement direction is aligned
to the fiber direction [71]. This is because the 𝑧-direction explicitly
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Fig. 13. Visualization of the boundary conditions for the numerical static analysis
of the 20 × 20 × 120mm clear specimen considered for numerical homogenization. The
displacement 𝑢𝑧 is shown in blue color. Here, the 𝑧-direction corresponds to the vertical
direction in the figure.

Table 7
Statistical moments of the homogenized Young’s modulus of the small clear specimen
resulting from uncertainty propagation.

Mean Coefficient of variation Skewness coefficient

8.19 × 109 Pa 0.0471 −0.86

does not coincide with the longitudinal one due to the random nature
of wood, which our model captures. Nonetheless, the entire range
spanned by the histogram is plausible and within the ranges reported
in the literature [49]. In fact, the left-skewed distribution of 𝐸̄𝑧, whose
statistical moment estimates are given in Table 7, has an intuitive
interpretation. The theoretically possible upper limit corresponds to
the deterministic case, where the longitudinal direction is parallel to 𝑧.
The upper bound from the rule of mixtures is not exceeded here [72].
Any distortion of the morphology as induced by any of the stochastic
shape parameters reduces 𝐸̄𝑧. Extreme values for the shape parameters
evoke particularly low values for 𝐸̄𝑧. Both constitute rare events, thus
producing the long left tail of the distribution.

These quantitative results should raise awareness for the variability
of wood stiffness, especially at large radial distances from the pith as
studied here, due to its naturally random morphology. More impor-
tantly, they should inspire confidence in dealing with these inherent
uncertainties in practical situations.

4. Discussion

The proposed morphological model has its limitations. Specifically,
this study does not consider knots, pith eccentricity, the change in
the number of annual rings along the growth direction as proposed
by Saint-André et al. [18], it does not consider the radial variability

of annual ring thickness, and it cannot account for tilted ellipse cross-
sections, or generalized cross-section shapes. Further, we approximate
the spiral grain angle as a linear function of the radial distance from the
pith. The material model, in turn, assumes the overall stiffness to stay
constant with changing annual ring number, while the Young’s modulus
as an increasing function of the annual ring number is reported in the
literature [73].

Note that an evaluation of the fiber direction errors at the pith and
resin pocket would arguably cast the most unfavorable light possible
on our results. This is because the displacements along the connection
between pith and resin streak are almost parallel to the pith displace-
ment itself, see Fig. 5. If, for instance, evaluation points were available
at the left-most or the bottom part of the cross-section, the errors there
would decrease significantly with each additionally considered shape
parameter. Due to the geometrically restricted maximum probe height
within the CT device, 824mm of the total probe height of 1040mm is
covered by the CT scan, and the shape parameters for the remainder of
the domain are found using constant extrapolation.

The numerical modal analysis utilizes homogeneous density and
does not account for the influence of moisture. The effect of Pois-
son’s ratio on the natural frequency [74] is less pronounced than that
of Young’s modulus, and the local fluctuation about the equivalent
Poisson’s ratio is not considered in this study.

Here, the mesh fidelity is limited by the available amount of mem-
ory. This is due to the large domain and usage of quadratic shape
functions on the one hand and the eigenvalue problem related to the
modal analysis on the other hand.

The validation of the identified distribution for the inter-arrival
distances, as well as the shape of the branch kinks, could not be
performed within this study due to a lack of findable and accessible
data.

The uncertainty in the maximum likelihood estimation of the
stochastic shape parameter random field variance and length-scale
is high. The gradient of the likelihood with respect to the variance
is comparatively shallow in proximity to the maximum. Indeed, the
variance connected to 𝜟 is higher than that reported in the literature.
However, the distribution identified for the bow height encompasses
the range of values found in the literature. Including new specimens
and, thus, more samples of the shape parameters in this analysis
will significantly enhance the confidence in especially the variance
estimates. Additionally, this may provide better insight into both intra-
and inter-specimen variability.

5. Conclusions

We have proposed and validated a model for the heterogeneous
elastic properties of Norway spruce considering meso-scale geometrical
variations. The shape parameters stem from volume scans, but they
could be identified from surface scans when assuming a centered
pith, fixing the longitudinal direction, and linearly interpolating the
spiral grain between the bottom and top. Stochastic descriptions for
spiral grain, taper, and curvature effects have been identified for Nor-
way spruce to quantify its uncertainty in Young’s modulus. A new
probabilistic model for knot distributions in the longitudinal direction
has been proposed. Further, a link between empirical descriptions of
growth defects like bow height or crook and random fields has been
established. In general, our stochastic model can be applied to other
wood species after the parameters of the stochastic model are identified
for the relevant species. With this model, confidence in using wood with
so-called growth defects is enhanced.

A promising practical application of our method lies in generating
realistic patterns for synthetic, wood-imitating flooring. Merely a non-
linear mapping from our density model to the desired color space is
needed here. This relates to existing research on the simulation of
lifelike images of wood [8]. Future studies may leverage digital volume
correlation to validate the local stiffness directly. They may further
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Fig. 14. Four samples of the stochastic shape parameters together with the 1st and 99th percentiles within the Monte-Carlo simulation plotted with a dashed style. Only the samples
for one component of both 𝜟 and 𝝇 are shown as the statistics are identical for the components. Note that the ordinate scale is significantly smaller in comparison to that of the
shape parameters identified from the CT scan.

Fig. 15. Annual ring pattern at the clear specimen surface after application of the threshold 𝛾. Each picture represents one sample of 𝜽(𝜉).

Fig. 16. Homogenized Young’s modulus of the clear specimen in the longitudinal direction 𝐸̄𝑧 for 1210 random samples of the stochastic shape parameters.
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utilize higher resolution CT scans to more extensively validate the
local grain angle through applying methods like automatic fiber tracing
algorithms as implemented in the XFiber extension to Avizo,4 see Hu
et al. [31].
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