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ABSTRACT: Over the decades, the rise in nitrate levels in the
ecosystem has posed a serious threat to the continuous existence of
humans, fauna, and flora. The deleterious effects of increasing
levels of nitrates in the ecosystem have led to adverse health and
environmental implications in the form of methemoglobinemia and
eutrophication, respectively. Different pathways/routes for the
syntheses of perovskites and their oxides were presented in this
review. In recent times, electrocatalytic reduction has emerged as
the most utilized technique for the conversion of nitrates into
ammonia, an industrial feedstock. According to published papers,
the efficiency of various perovskites and their oxides used for the
electrocatalytic reduction of nitrate achieved a high Faradaic
efficiency of 98%. Furthermore, studies published have shown that there is a need to improve the chemical stability of perovskites
and their oxides during scale-up applications, as well as their scalability for industrial applications.

1. INTRODUCTION
Over the decades, nitrate compounds have been widely
deployed to serve domestic, industrial, and agricultural
purposes. Nitrate is an inorganic ion formed because of
proton loss from nitric acid and is also the conjugate base of
this acid. A molecule of nitrate consists of a nitrogen atom
covalently bonded to three oxygen atoms and has the empirical
formula NO3

−. However, organic forms of nitrates have the
general molecular formula RONO2, where R is the molecular
formula of any organic compound.1 They are a class of ester
compounds formed by the reaction of nitric acids with
alcohols.1

Nitrates have been found useful in feeding ruminant animals
and plants through nitrogen-based fertilizers. They have also
served as essential human nutrients when ingested within safe
consumption limits. For industrial purposes, nitrate com-
pounds are used as strong oxidizing agents for manufacturing
explosives, as fertilizers for enhancing plant growth, and as
feedstock for processes where nitrate sources are required.2

Animals are fed with nitrate compounds as a major nitrogen
source to make ammonia. Intake of human diets with nitrates
helps raise nitric oxide levels in the human bloodstream, which
helps regulate blood pressure, heart disease management, and
regulation of the nervous systems as well as cardiovascular
systems.3 Also, adequate nitrate intake has been identified to
help improve eye condition and reduce the risk of age-related

sight deficiencies when reduced into nitrite and nitric oxide,
which are important nutrients to the eyes.

Their occurrence in human bodies mainly results from the
consumption of vegetables and livestock animals. However, the
ingestion of nitrates beyond the safe limit would lead to nitrate
poisoning. Nitrate poisoning can be evident after plants are fed
with nitrogen-based fertilizers.4 It is also evident in ruminant
animals following how they consume nitrate-poisoned plants.
However, nitrate poisoning could become evident in man
because of poor air quality, water pollution, and even
consumption of nitrate-poisoned plants and animals.

Nitrate deposits are found in both soil and water bodies.5

The accumulation of nitrates in soil results majorly from the
use of excessive fertilizer, plant decomposition, deposition of
animal waste, and runoffs from septic tanks.2,6 However, the
high solubility of nitrates in water allows them to infiltrate into
groundwater or enter surface water through erosion.7−9 Hence,
wastes from domestic, agricultural, and industrial activities
influence the level of nitrates found in ground and surface
water.2 Effluents from poorly treated sewage plants would also
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be passages for excessive nitrate migration into our water
bodies.10

Plants are the major sources of nitrates and are only found in
minute concentrations in animal-based food products.
However, nitrate concentration in food sources is generally
higher than the observed concentration in water sources.5,11

Vegetable plants contain significant concentrations of nitrates,
and nearly 80% of human diets are sourced from vegetable
consumption.5

When nitrates accumulate in water bodies, they become a
potential threat to both man and animals who primarily
consume water,12 and health issues such as eutrophication,
cancer and methemoglobinemia could result afterward.4

The abuse of nitrate intake poses a peril of cancerous
diseases to both humans and livestock, as it becomes a cancer
vector when ingested excessively. The toxicity of nitrates is
measured by the quantity and rate at which it is being ingested.
Nitrate ingestion from plant sources (mainly vegetables),
animals (meats), and drinking water sources have varying toxic
ingestion levels. The accumulation of nitrates in plants has
been identified as the root of excessive nitrates ingestion by
both man and livestock. This accumulation is a sequel to the
effect of low rainfall and unfavorable sunlight conditions that
impede the nitrate reductase system from performing
significant conversion of nitrates to nitrites.13

The accumulation of nitrates in plants harms ruminant
animals as it tends to raise the toxicity index of nitrites in their
body system. The toxicity index of nitrite will tend to increase
when the rate at which nitrates are converted into nitrites
becomes much lower than the rate at which nitrites are
converted into much-needed ammonia.14 The absorption of
excess concentration of nitrites into the bloodstream of animals
impedes the oxygen capacity of their red blood cell, leading to
the formation of methemoglobin, a condition that could
potentially lead to the termination of their life cycles.

A study reported that there may be a connection between
excessive nitrates ingestion from plant vegetables and the
development of cancerous growths in the pancreas of humans,
but not with ingestion from drinking water sources.15 On the
contrary, the cause of cancer issues related to the bladder was
traced to nitrates ingestion from drinking water sources rather
than vegetable plant sources.16 Another study reported that
excessive ingestion of nitrates from processed meats may pose
the risk of development of cancerous growth in the pancreas,
bladders, and breasts of humans who consume them.15,17,18

The ingestion of excessive nitrates from drinking water
sources is potentially harmful to both man and livestock. A
study reported that women ingesting excessive quantities of
nitrates from drinking water sources are prone to suffering
cancerous growth in their ovaries.19 Another study has
reported that excessive ingestion of nitrates from drinking
water sources raises the tendency of the occurrence of gastric
and colon cancers.2,7

Infants (≤6 months) are prone to suffer a health condition
known as methemoglobinemia, because of ingestion of nitrates
from drinking water sources beyond the safe limit.2 Pregnant
women, as well as women trying to get pregnant, are equally
prone to the risk of methemoglobinemia health condition as a
result of excessive nitrates ingestion, allowing for malformation
of babies in the womb and even undue termination of
pregnancies.20

The World Health Organisation (WHO) and the United
States Environmental Protection Agency (USEPA) guidelines

have both established 0−50 mg·L−1 of nitrates concentration
as safe limits for both humans and livestock.11,20 In contrast, a
daily limit of 3.7 mg·kg−1 of nitrates intake has been
recommended by the WHO, to avoid excessive nitrates
intake.5

Nitrates being one of the main essentials of plants, animals,
and human diets, cannot be done away with. However,
conversion into other innocuous gases such as nitrogen and
ammonia can manage their excessiveness. This can be achieved
via direct decomposition, selective catalytic reduction, and
nitrate storage and reduction methods.21

Nitrate reduction processes are essential to environmental
sustainability because they reduce nitrate pollution which can
have detrimental impacts on ecosystem and human health.
One of the main byproducts of nitrate reduction is nitrite
(NO2

−). Sadly, nitrite is poisonous to aquatic life as well as
people.22 However, as a fertilizer for plants, ammonium
(NH4

+) has several advantages. However, too much
ammonium can cause eutrophication in water bodies, which
can upset aquatic ecosystems and result in algal blooms.23,24

Nitrate reduction may also result in the release of nitrous oxide
(N2O), a potent greenhouse gas that contributes significantly
more to global warming than carbon dioxide.25 Emissions of
nitrogen oxide contribute to both climate change and the
depletion of the ozone layer. Nitrogen gas (N2), a harmless
and inert gas, is produced when nitrate reduction is
completed.26,27 Alternatively, an incomplete or inefficient
reduction process may cause intermediary nitrogen species,
such as nitrite, nitrous oxide (N2O), and nitric oxide (NO), to
accumulate.28 These intermediaries may have detrimental
effects on the ecosystem. Improving management strategies via
the optimization of process parameters and reducing emissions
can mitigate adverse environmental effects and promote the
long-term adoption of nitrate reduction technology.29

Since nitrates are very soluble in water, the N�O covalent
bond thus requires a considerably low energy to break.12 Some
of the technologies that have been deployed to achieve nitrate
reduction include photocatalytic, biological, and physical
methods.30 Other treatment methods include electrodialysis,
ion exchange, and biochemical treatment.4 However, the
drawbacks associated with some of these techniques have
resulted in researchers embracing electrochemical reduction as
a more viable alternative for nitrate reduction.4 These
drawbacks include the cost of pretreatment for electrodialysis,
accumulation of brine wastes after ion exchange, and
inconvenient operating conditions for biochemical processes.4

Electrochemical reduction has been reportedly appraised to
be highly efficient and easy to deploy, with lesser demand for
adding other chemicals when compared to the techniques
mentioned above.4 It has also been reported that electro-
chemical reduction is a more viable green route for achieving
biological denitrification and industrial production of ammo-
nia.10,12 Also, the electrochemical reduction technique allows
for selectivity in either producing nitrogen gas or ammonium,
thus providing room for control and flexibility over the desired
outcome.31 However, the technique is combated with the
limitation of poor adsorption of nitrates and the capacity for
activating adsorbed nitrates.12 The efficiency of the electro-
catalytic process has been reported to be largely influenced by
the rational design of electrocatalysts.32,33 Some electro-
catalysts reportedly used for the electrochemical reduction of
nitrates include noble metal electrodes, non-noble metal
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catalysts, bimetallic electrodes, metal compound electrodes,
nonmetallic electrodes, and metal-molecular solid catalysts.10

However, compared to all of the stated electrocatalysts,
perovskite oxides, with general molecular formula ABO3, have
been reportedly identified and appraised for their capacities for
achieving significant nitrate reduction, owing to their abilities
to facilitate much adsorption of nitrates and significant
reduction of the nitrates, which they do by providing more
oxygen vacancy sites and allowing partial substitution of their
B-site transition metals.4,10 It has been stated that perovskite
oxides can be generally prepared by microemulsion, spray-
drying, freeze-drying, citrate complexation, coprecipitation and
sol−gel process.34 While many researchers have appraised
perovskites for their capacity to achieve significant nitrates
reduction in both lean and rich phase processes, some blocks
have been identified as plagues that limit the efficacy of
perovskites for electrochemical reduction of nitrates.

Thus, this review reports a comprehensive investigation of
the facile syntheses and application of perovskite oxides for
nitrates reduction and highlights a research focus geared
toward improving the catalytic activity of perovskites for the
reduction of nitrates.

2. PEROVSKITES AND PEROVSKITE OXIDES
The development of photocatalyst materials is one of the most
promising and thriving answers for a clean and sustainable
future, considering its cleanliness, inexhaustibility, efficiency,
and affordability. Significant attempts have been made to
create enormously operative photocatalyst materials for various
applications, including removing carbon dioxide and nitrogen
from the air and oxidizing organic water pollutants. In light of
this, perovskite photocatalyst materials have gained special
attention due to their exceptional properties because of their
flexibility and adaptability in chemical composition, structure,
bandgap, oxidation, and valence states.35

Perovskites are binary metal oxides with a general formula
ABO3, where A cation can be a lanthanide, alkaline, or alkaline
earth cation, and B cation is a metallic element with 3-, 4-, or
5-day configuration.36 There are several perovskite-related
structures on the earth.37,38 This is due to their special
structural physicochemical characteristics, such as hydro-
thermal stability, electron mobility, and REDOX behavior. As
a result of these distinct features, perovskite and perovskite-
related materials have emerged as an important new class of
materials, making them very resourceful materials in catalysis,
water splitting, solar cells, optical devices, and super-
conductors.39 Additionally, perovskite oxides can be used in
various processes, including those that are liquid at ambient
temperature, gas or solid at high temperatures, or under
irradiation conditions.40

Perovskite oxides are compounds consisting of two or more
simple oxides having high melting points.41 In their ideal form,
perovskite oxides are cubic or nearly cubic, like other transition
metal oxides containing the same formula (ABO3).

42 Phase
transitions may happen in some materials at low temperatures.
Perovskite oxides have vast potential for many applications due
to their structures and crystals, which are simple and
exceptional in their ferroelectric and dielectric properties.42,43

A 3-dimensional framework of BO6 octahedral that share
their corners makes up the cubic cell (Figure 1). According to
Kubacka et al.,44 Peña and Fierro,45 and Huang et al.,46 the B-
site cation is a transition metal component. A group 2 or a rare
earth element frequently makes up the A-site cation, which

resides in the 12-coordinate location created by the BO6
network. As opposed to the model 3-dimensional perovskite
ABO3, perovskite-related structures show lattice distortion to
varying degrees and result in nonideal structures of the crystal
phases like orthogonal, rhombohedral, tetragonal, monoclinic,
and triclinic phases. These structures are caused by losing one
or more proportional operators in the three-dimensional
structure. Although the idealized structure is primitive cubic,
the structure can be altered because of the radii of the two
cations, which usually involves tilting of the BO6 units, also
known as octahedral tilting.44,47−49

There are three forms of perovskite materials: the first has
localized electrons, the second has delocalized energy-band
states, and the third can switch between the first two.
Perovskite structures come in a variety of forms, including
A2BO4 layered Perovskite, ABO3 Perovskite, A2A0 B2B0′O9,
Perovskite three and A2BB0′O6 Perovskite two.50 However,
the most abundant ones are MgSiO3 and FeSiO3.

43 Oxides and
oxides-like types of perovskite have different properties, such as
insulator−metal transition, ionic conduction characteristics,
dielectric, variation of solid-state phenomena, and metallic and
superconducting characteristics.43

The structure could have various charge distributions
depending on the cations’ potential valence and the material’s
electroneutrality. Therefore, more than 90% of the metallic
elements in the periodic table can be used to form perovskite
structures.51 One of the advantages of perovskite structures is
the possibility to adopt a wide range of different compositions,
changing either the A or the B cation or being partially
substituted by other cation(s) of the same or different valence,
resulting in a general formula of A1−xA′xB1−yB′yO3±δ that can
adjust the REDOX, surface, and bulk properties.52,53 The
stability of the structure depends directly on the geometrical
constraints of octahedral or dodecahedral cavities.54 Also, the
compounds with a formula of AB2O4 (A3O4 when A = B),
which is recognized as a spinel structure, possess relatively
similar physicochemical properties and are widely used
together with ABO3 for catalysis applications due to their
high activity and stability.55

Figure 1. A diagrammatic representation showing the ideal cubic
perovskite ABO3 structure (cyan, BO6 units; yellow, An atom; red, O
atoms).44 Reprinted with permission from ref 44. Copyright 2012
American Chemical Society.
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The applications of perovskite oxides in heterogeneous
catalysis can be dated back to the 1950s by Parravano, who
reported the catalytic performance of NaNbO3, KNbO3, and
LaFeO3 for CO oxidation.39,56 The first publications on
perovskites, dated the 1970s, reported the exceptional catalytic
properties in oxidation reactions and nitric oxide (NO)
reduction, suggesting the possibility of replacing platinum-
group metals with perovskite in automotive exhaust catalytic
converters.54

2.1. Classification of Perovskites and Perovskites
Oxides. Perovskites and perovskites oxides classification using
anion X as the baseline. They include inorganic oxide
perovskites, halide perovskites, hydride perovskites, and
perovskites hydroxide.42,43

Another important classification is made based on the radii
of their metallic ions.43 There are multiple perovskite-based
combinations with different physical properties due to the
ABO3 perovskite’s malleable crystal structure, capacity to
accept a wide variety of cations in various oxidation states, and
ability to accept cation or anion vacancies. These features lead
to the formation of two key types of oxide phases, namely the
ternary ABO3 type and their solid solutions and the complex
modern type compounds (AB′xB″y) O3, where B′ and B″ are
two separate elements in numerous oxidation states and x + y
= 1. Subsequently, according to their oxidation states, ternary
oxides can be further categorized into oxygen and cation-
deficient species and A1+B5+O3, A2+B4+O3, A3+B3+O3.

57

3. SYNTHESIS OF PEROVSKITES AND PEROVSKITES
OXIDE MATERIALS

Perovskites are usually formed at increased temperatures
because, from their composition, perovskite oxides are
compounds consisting of two or more simple oxides having
high melting points.58,59 The technique used to synthesize
perovskite oxide must be selected according to the specific
application, specific demands of activity, and selectivity since
these depend on how the atoms are arranged on its surface.60

It is worth stating that the synthesis techniques also affect the
crystal structure and morphology of the synthesized samples.61

Consequently, the synthesis pathways can be categorized into

three primary divisions: solid-state, liquid-state, and gas-state
synthesis. Each method has a distinctive approach. Solid-state
methods are used to synthesize bulk materials, liquid-state
techniques are used to produce nanomaterials, and gas-state
methods are mostly used to fabricate thin films.62

3.1. Solid-State Synthesis Technique. The solid-state
synthesis method is commonly used to prepare perovskite in
pure form due to the availability of impurity-free precursors,
and they find key applications in electronic industries.
Researchers most frequently employ this method.58 Also,
most ceramics are evenly synthesized in this way and are
utilized to create polycrystalline materials. This method
requires raw carbonate and/or oxide form materials.63 The
raw components do not interact chemically in this process at
room temperature. However, the chemical reaction occurs
quickly when the raw material mixture is heated to very high
temperatures (about 700−1500 °C). The downside of the
solid-state synthesis approach is that it requires annealing at
high temperatures for a long time and frequent intermediary
grindings which results in poor homogeneity and difficulty
controlling the particle size.58,62 Therefore, the problem arises
when perovskites from solid-state methods are subjected to
surface-related studies.64 The different synthesis routes using
the solid-state technique are highlighted below.

3.1.1. Mechanical Ball-Milling Method. The mechanical
ball-milling method produces solid-state perovskite com-
pounds in bulk. The raw materials are oxides and/or
carbonates, which are hand-mixed, ball-milled, and calcined
at a high temperature to form perovskite.59,62

3.1.2. High-Speed Ball-Milling Method. The high-speed
ball-milling and the mechanical ball-milling methods are very
similar. However, the striking distinction between the two
techniques is that high-speed ball milling uses a very high
rotation per min (rpm). The technique also uses low
temperatures to create nanoparticles.65 Due to the high
likelihood of chemical reactions occurring during high-energy
ball-milling, which could produce a variety of harmful gases,
this approach only uses metal oxides.62,66

3.2. Liquid-State Synthesis Technique. The liquid-state
synthesis is designed to make nanomaterials. Researchers and

Figure 2. Schematic diagram of the synthesis of LaCoO3 perovskite oxide using the Autocombustion method.70 Reprinted with permission from ref
70. Copyright 2021 John Wiley & Sons Ltd.
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scientists most frequently employ it to create nanoparticles of
oxide materials.67 Typically, this method utilizes raw materials
in nitrates, acetates, or oxalates form. They are combined and
expected to react with one another at room temperature.
Autocombustion, sol−gel, and coprecipitation are some of the
different liquid-state synthesis techniques used to prepare
perovskite nanomaterials, which are to be described in more
detail.43

3.2.1. Autocombustion Method. The autocombustion
method is an easy, low-cost approach for producing perovskite
nanomaterials. The starting materials for this method are
oxalates, acetates, or nitrates, which are readily soluble in
deionized water.62 It uses some organic fuel to aid in
combustion, such as urea, citric acid, and glycine. In a work
by Kumar et al.,68 the starting materials La2O3, SrCO3, and
Mn(CH3COO)2·4H2O were utilized to create La0.7Sr0.3MnO3
perovskite Manganite, with glycine serving as the fuel. La2O3
and SrCO3 were first prepared as nitrates by dissolving them in
dilute nitric acid, followed by the dissolution of Mn
(CH3COO)2·4H2O and glycine in distilled water to start the
reaction. Each of the materials’ precursor solutions was
independently dissolved and synthesized. At the end, they
were mixed while continuously stirred in a big beaker, that was
heated on a magnetic stirrer at 175−200 °C.68 After 6−7 h of
continuous spinning, the mixed solution thickened and
changed into a gel-like structure as seen in Figure 2. As the
stirring time increased, an autocombustion occurred, resulting
in a flame that emitted a vast array of distinct gases. The
temperature of the entire combination increased to 800−1000
°C within a short period during the igniting process. The
produced blackish-brown powder was removed from the
beaker and separated into several portions for calcination at
varied temperatures.69

3.2.2. Sol−Gel Method. Most chemists produce nanoma-
terials using the sol−gel technique. This method includes both
physical and chemical processes related to the following:
hydrolysis, condensation, polymerization, gelation, drying, and
densification.71 This technique uses metal alkoxides as starting
materials.72 Metal alkoxides typically have a chemical formula
of M(OR)x. They are assumed to be either a derivative of
alcohol ROH, where R is an alkyl group or a derivative of metal
hydroxide M(OH)x.

62,73 A mole ration of metal alkoxides is
measured and melted in alcohol or deionized water at 60−80
°C under continuous swirling. It is crucial to regulate the pH
value of metal alkoxide solutions to prevent precipitation and

to create a homogeneous gel produced by basic or acidic
solutions.72 Hydrolysis and condensation are two terms used
to describe the entire process, which results in the production
of polymeric chains. A gel eventually forms because of the
development of the polymeric chains, which also causes a
noticeable increase in the reaction mixture’s thickness as
shown in Figure 3. To avoid undesired substances, the gel must
be dried between 150 and 200 °C. The resultant gel was
annealed at various temperatures between 400 and 800 °C
after removing the contents to produce the pure phased
materials.64,72 For instance, Andrade et al.74 synthesized
nanotubes and nanoparticles of La0.6Ca0.4MnO3 perovskite
Manganite using the sol−gel method following calcination at
different temperatures.74 The mole ratio of La(NO3)3·6H2O,
CaCO3, and Mn(CH3COO)2·4H2O were utilized for the
production of La0.6Ca0.4MnO3 perovskite. To initiate the
process, CaCO3 was dissolved in nitric acid and converted into
CaNO3, while La (NO3)3·6H2O and Mn(CH3COO)2·4H2O
were dissolved in distilled water. The combinations of all
precursors were done using a beaker. As a polymerizing agent
polyethylene glycol (PEG) was added in the proper quantity to
the precursor solutions. The solution was heated at 70 °C for 6
h to complete the polymeric development. The solution
eventually changed into a thick, yellow gel that could be
calcined from 700 to 1000 °C.

3.2.3. Coprecipitation Method. The coprecipitation
method requires metal cations from a general medium and
precipitates as oxalates, carbonates, citrates, or hydroxides as
raw materials.62,64 To get the unadulterated phase in the
polycrystalline form, the resulting precipitates will have to be
calcined at various temperatures after being washed many
times with distilled water. With this technique, nearly
homogeneous polycrystalline powders can be obtained. For
proper precipitation, the solubility of the compounds utilized
should be relatively close to one another.76 It is essential to
remember that the precursor solutions should be mixed at the
atomic level to create smaller particles and be calcined at low
temperatures to produce a pure material.77 Also, the
controlling pH of the precursor solution, stirring speed,
concentration, and mixture temperature are vital parameters
for the coprecipitation method.78

The LaMn1−xFexO3 (x = 0, 0.1, 0.2) perovskite synthesized
by Geetha et al.79 is an example of the coprecipitation
method.79 Mole ratio of La(NO3)3·6H2O, Fe(NO3)3·9H2O
and MnCl2·4H2O were dissolved in distilled water. These

Figure 3. Schematic representation of sol−gel synthesis method for LaCoO3 perovskite oxide.75 Reprinted with permission from ref 75. Copyright
2018 John Wiley & Sons Ltd.
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solutions were combined in a single platform and stirred
continuously at 50 °C for 30 min. Immediately, NaOH
solution was introduced slowly into the mixture until the pH of
the solution got to 13.0. The combined solution of the
precursors was stirred continuously until the creation of a black
precipitate as shown in Figure 4. The precipitate was collected
and treated with distilled water several times to remove excess
chlorides, and oven-dried at 50 °C. Consequently, the finished
product was calcined for 6 h at 800 °C. Usually, the liquid-state
technique at very low temperatures is used to form
nanoparticles from perovskite materials. However, submi-
cron-sized perovskite materials can be created by burning
them at a higher temperature, similar to the solid-state
technique.80

3.3. Gas-State Synthesis Technique. The gas-state
synthesis technique is a bottom-up method for synthesizing
multifunctional nanoparticles.82 The gas-state synthesis
method uses a variety of processes, including lasers, furnaces,
flames, and plasmas, to synthesize powdered oxide materials.
Although their reactors are different, the fundamentals of
thermodynamics and kinetics of the reaction are highly
similar.62 The method of bottom-up nanofabrication is based
on gathering nanomaterials from smaller components.62 These
methods provide a fine dispersal of the nanoparticles. The
dispersion must be reduced for the narrow distribution of the
nanoparticles as it increases in the particle size.83 Coevapora-
tion of Y, Cu, and BaF2 was used to create YBa2Cu3O7 films,
which were subsequently annealed at high temperatures in a
moist O2 environment with water vapor to speed up the
annealing process and minimize substrate contact.64

There are various techniques for the preparation of thin
films, such as chemical vapor deposition, molecular beam
epitaxy, laser ablation, direct current (DC) sputtering,
magnetron sputtering, thermal evaporation, and electron
beam evaporation.62,84,85 These methods are entirely distinct
from other synthesis methods and are used to generate thin
films for various electronic gadgets and solar cells made of
perovskite materials.86 For these synthesis techniques to
provide the appropriate properties in the generated perovskite
materials, an exact setup for high-quality samples is required.87

Gas-state synthesis techniques are divided into three groups,
namely; synthesis at the temperature of crystallization in an
appropriate environment, fabrication at a temperature between
500 and 800 °C, followed by a postannealing process at a
higher temperature, and fabrication with the substrate heated
to a very high temperature afterward for postannealing.43,64,87

The perovskite materials can be produced utilizing gas-state
processes for a range of purposes, including photocatalysts,
solar cells, optical and anticorrosion coatings, capacitor
dielectrics, semiconductor devices, bioimplantable devices,
chemical reactors, and catalysts.43,62 In the approaching
years, industrial interest will undoubtedly rise in creating
nanomaterial-based technologies through gas-state synthesis.88

3.4. Electrospinning Method. Electrospinning is a widely
used technique for the synthesis of perovskite oxide nanofibers.
This approach offers a promising way to tailor the properties
and applications of perovskite oxides. These oxides, which have
an ABX3 crystal structure, have gained significant attention due
to their diverse functionalities, including catalysis, sensing,
energy storage, and electronic devices.89

Figure 4. Schematic representation of the synthesis of BaMoO4 through the coprecipitation method.81 Reprinted with permission from ref 81.
Copyright 2022 Royal Society of Chemistry.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.4c01487
ACS Omega 2024, 9, 19770−19785

19775

https://pubs.acs.org/doi/10.1021/acsomega.4c01487?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c01487?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c01487?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c01487?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c01487?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


To employ electrospinning for perovskite oxide synthesis, a
precursor solution containing the metal cations (A and B-site
elements) and the oxygen source required for perovskite oxide
synthesis is prepared. The compatibility of the electrospinning
process with the precursor salt and solvent should be
considered while preparing the solution. The precursor
solution is then loaded into a syringe equipped with a fine
needle or spinneret, which is connected to the high-voltage
power supply. A high voltage is applied to the precursor
solution using the power supply, inducing electrostatic forces
that draw the solution from the syringe tip toward the
grounded collector. As the solution travels through the air,
solvent evaporation occurs, leading to the formation of
perovskite oxide nanofibers.90,91

Following the electrospinning process, the as-spun perov-
skite oxide nanofibers are typically subjected to thermal
treatment or annealing at elevated temperatures. This process
is crucial for the crystallization of the perovskite structure and
the removal of residual solvents, resulting in well-defined oxide
nanofibers. By using electrospinning for perovskite oxide
synthesis, researchers can achieve precise control over the
morphology, structure, and properties of oxide nanofibers. This
approach enables the development of advanced materials with
tailored functionalities and applications. Moreover, the
scalability and versatility of the electrospinning technique
make it a promising approach for large-scale production of
perovskite oxide nanofibers for various industrial and
technological applications.92,93 Table 1 shows the merits and
demerits of various routes of perovskite oxide, with respect to
the conditions required to optimize them.

4. ELECTROCATALYTIC REDUCTION OF NITRATES BY
PEROVSKITES

Conventional physicochemical technologies comprising bio-
chemical treatment, ion exchange, and electrodialysis have
been employed for nitrate reduction.94 However, these
technologies are confronted with certain drawbacks, including
harsh operating environments, brine wastes after ion exchange,
and the pretreatment requirements for electrodialysis. These
limitations have hindered the large-scale applications of these
technologies.95 In contrast, the minimal input of chemicals,
moderate operating conditions, and high efficiency of electro-
chemical reduction have made it a promising method over the
aforementioned technologies. The electrocatalytic reduction of
nitrate is a cost-effective and environmentally friendly method
because the nitrate undergoes reduction by protonated
hydrogen or electrons without using other reducing agents.94

Studies have shown that electrocatalysis has excellent potential
for removing nitrate. It offers the relative advantages of easy
operation and simplicity of reactor structure.96,97

The efficiency of electrocatalytic reduction can be improved
by adjusting the parameters as well as the appropriate selection
of suitable electrode materials. A suitable electrode material
should be characterized by good corrosion resistance, high
stability, high catalytic activity, and low cost.98,99 In many
studies, metal cathode materials such as Pd, Pt, Cu, Co, Fe, Ni,
and Ti have been developed to efficiently reduce nitrate.100−109

However, the use of these metal cathode materials is impaired
by drawbacks owing to high toxicity and high cost.99

Due to their low cost, flexible structure, and remarkable
catalytic activity, perovskite materials have been thoroughly
studied as alternatives to noble metal-based electrocatalysts.110

They are essential to the effort to achieve a sustainable energy

future. Numerous important reactions, including the reduction
of oxygen, the evolution of oxygen, and the evolution of
hydrogen, are catalyzed by these materials in electro-
catalysis.111 For instance, to ensure the sustainable synthesis
of ammonia via the electrochemical reduction of nitrate, a
study employed the use of bismuth ferrite (BiFeO3) as an
electrocatalyst.112 The study demonstrated that deformed
perovskite-type bismuth ferrite (BiFeO3) flakes are excellent
catalysts for the electrochemical production of NH3 via nitrate
reduction. At a voltage of −0.6 V versus the reversible
hydrogen electrode, they achieved an NH3 yield of 90.5 mg·
h−1·mgcat

−1 and a maximum Faradaic efficiency of 96.9%.112

The design and optimization of perovskite-based catalysts
through ongoing research and development will propel
substantial advancements in sustainable nitrate reduction
technology. These developments could lead to more effective
and environmentally friendly cleanup techniques.

Metal-modified biochar with advantageous physical and
chemical surface characteristics has demonstrated great
potential in the adsorption of water contaminants, including
phosphate and nitrate. This is principally accomplished by
interactions with the oxygen-containing functional groups on
the surfaces of the biochar and/or ion exchange mechanisms.
Metal-modified biochar may be promising in the electro-
catalytic reduction of nitrate.113 This led Liu and his colleagues
to adopt a typical perovskite/biochar nanocomposite, LaFeO3/
biochar, as a photocatalyst in a study owing to its strong
magnetism, narrow band gap, and high stability.114 By
copyrolyzing Lotus biomass and Fe/La salts, composites of
LaFeO3 and biochar-rich in defective oxygen and surface
functional groups were successfully produced. There was no
usage of organic reagents during this process, which could have
been hazardous to the environment. The subsequent photo-
catalytic reduction of nitrate to ammonia was carried out using
the resultant nanocomposites. The study results in changed
structural and surface characteristics of the catalysts through
interactions with lanthanum (La3+) and iron (Fe3+) ions. The
oxygen defects in LaFeO3 were enhanced by adding biomass,
hastening the electron−hole pair separation process. Simulta-
neously, Fe/La salts contributed to the surface alteration of the
biochar during the carbonization process, increasing the
exposure of aromatic structures and functional groups that
contain oxygen, which promoted nitrate adsorption. Crucially,
the REDOX-active quinone/phenol groups on the surface of
the biochar promoted the selectivity of ammonium ion (NH4

+)
as a direct electron donor by helping with the exchange of
photogenerated electrons. Using the LaFeO3/biochar photo-
catalyst under visible light irradiation, nitrate conversion
reached 98%, and ammonia selectivity reached 97% when
the mass ratio of lotus and Fe/La salts was optimized.114 An
innovative method for reducing nitrate is to combine metal-
modified biochar with perovskite-based nanocomposites. By
utilizing the unique qualities of both materials, this synergistic
combination improves catalytic performance and environ-
mental sustainability. Such composite materials have a great
deal of potential for cost-effective and scalable nitrate
remediation, particularly in decentralized or resource-con-
strained environments where traditional treatment methods
would not be practical.

Also, a highly effective catalyst is essential to achieving high
conversion and selectivity in the electrochemical reduction of
nitrate. The high activity of these catalysts allows them to
accelerate the electrochemical reduction reaction, increasing
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the rate at which nitrate is converted into the desired
product.115 Additionally, they exhibit excellent selectivity,
which minimizes the production of undesirable byproducts
while directing the reaction toward the intended product.115

These effective catalysts reduce overpotentials, suggesting that
the reaction needs less energy. This improves the process’s
energy efficiency, which is important for industrial applications.
The sustainability of the process is equally enhanced while
reducing its environmental impact.116,117 This probably
inspired the work of some researchers who assembled a
perovskite (LaFeO3) on hydrothermal carbonation carbon
(HTCC) to obtain a nanostructured photocatalyst that was
used for the reduction of nitrate to ammonia.118 The two-
dimensional HTCC nanosheet has several surface functional
groups and a substantial specific surface area. Fe/La salt was
used to modify the surface of HTCC, increasing the aromatic
structure and the exposure of oxygen-containing functional
groups and promoting nitrate adsorption. Furthermore, a p−n
heterojunction between HTCC and LaFeO3 was created,
facilitating the quick separation of photogenerated electron
holes and improving photocatalytic activity. Under the effect of
visible light irradiation, the LaFeO3/HTCC photocatalyst
obtained a peak nitrate removal of 94.6% and an ammonia
selectivity of 88.7% when the mass ratios of pomegranate peel
to Fe/La salt were optimized.118

While the catalytic activities and tunable physicochemical
properties of perovskites have made them resourceful in the
reduction of nitrates, their design strategies have been
predominantly focused on the selection of B-site cations to
enhance the reduction process through the mechanisms of
Mars-van-Krevelen-like, Langmuir−Hinshelwood-like, or
Eley−Rideal pathways which usually proceed on metal
sites.119−121 However, recent observations have shown that
modification strategies can be employed to improve the
efficiency of electrocatalytic nitrate reduction. One such
strategy involves doping metal cation on the B-site of
perovskite, which was adopted in a study by Zhang and his
Colleagues.122 The study employed the doping of Mn cation
on the B-site of LaCoO3 and investigated its performance in
the electrochemical reduction of nitrate. LaMn0.6Co0.4O3, the
optimized doped material, showed a nitrate removal efficiency
of 41.9%, greater than LaCoO3. The study reported that the
doped material exhibited outstanding stability after 10
consecutive reaction cycles and performed well under various
operating conditions, such as pH levels, cathode potentials, and
varying initial nitrate concentrations. It was deduced that the
doped Mn cation not only affected the valence of the Co
cation but also activated adsorbed oxygen to give an electron
and speed up electron transfer based on the observed changes
in the valence of Co and Mn in the cathode before and after
electrocatalysis.122

Furthermore, it has been suggested that the activity of
perovskite is widely influenced by the electronic environment
around the active sites.123 Perovskite oxides exhibit a
remarkable degree of compositional flexibility since they can
accommodate about 90% of the metallic elements found in the
periodic table. As a result, metal elements can be integrated to
produce a bimetallic perovskite at the B-site. The catalytic
performance of these perovskite oxides can be altered based on
band theory and molecular orbital theory. This can be
accomplished by modifying their [BO6] units’ octahedral
structure, managing the hybridization of B−O bonds, and
generating oxygen vacancies. For example, it has beenT
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established that a critical component of electrocatalytic activity
is the covalency of the bonds between transition metals and
oxygen, which reflects the adsorption strength of intermediates
connected to oxygen.124,125 In this regard, Chu and his
Colleagues attempted to optimize the adsorption strength of
intermediates by constructing a series of Fe-rich perovskite
oxides of LaFe0.9M0.1O3‑δ (where M = Cu, Ni, and Co) from
the starting material LaFeO3−δ (LF) by a B-site substitution
strategy.126 The results of the study showed that the
LaFe0.9Cu0.1O3−δ (LF0.9Cu0.1) submicrofibers showed a supe-
rior ammonia yield rate of 349 ± 15 μg·h−1·mgcat

−1, and a
Faradaic efficiency of 48 ± 2%, compared to LF submicron
fibers. These submicrofibers have a more robust Fe−O
hybridization, an increased number of oxygen vacancies, and
a more positive surface potential.126

Moreover, oxygen vacancies have been reported to enhance
the selectivity and efficiency of the electrochemical reduction
of nitrate. The N−O bond in nitrate can be efficiently activated
by oxygen vacancies, which improves the yield and selectivity
of the nitrate reduction process to ammonia.127 Also, by
modifying the local electronegativity and coordination environ-
ment, oxygen vacancies added to the structure of catalysts for
oxygenated compounds can enhance the catalytic property of
the nitrogen reduction process.128 Hence, an attempt to
improve the performance of electrochemical nitrate reduction
could incorporate the engineering of oxygen vacancies. It traps
metastable electrons in the antibonding orbitals of nitrogen
molecules, breaking the N�N bond and facilitating fast
electron transport.129 In a study by Feng et al.,12 NbWO6
perovskite nanosheets with oxygen vacancy were investigated
in the selective electro-reduction of nitrate. In this study,
thermal treatment and exfoliation were used to create NbWO6
nanosheets with an oxygen vacancy (NbWO6−x), which
showed an NH3 selectivity of 86.8% and a Faradaic efficiency
of 85.7% toward the electrocatalytic reduction of nitrate. Using
1H nuclear magnetic resonance spectra and 15N isotope
labeling tests, the origin of NH3 from NO3 was verified.
Computational studies were conducted to reveal the role of the
oxygen vacancy in the electrocatalytic reduction of nitrate.12

Similarly, another study by Yang and his colleagues aimed to
improve the performance of perovskite oxides by oxygen
vacancies engineering.130 The study presented a novel and
effective electrochemical activation technique for the in situ
synthesis of oxygen vacancies (OVs). The results showed that
the activated La0.9FeO3−δ had a NO3

−−N removal rate that
was 2.6 times higher than the unmodified La0.9FeO3‑δ. The
greater adsorption energy of NO3

− and the facilitation of the
synthesis of atomic hydrogen (H*) for the hydrogenation of
NO3

−−N were credited to the increased presence of OVs,
which also improved the performance of the nitrate reduction
reaction. Furthermore, a-240 h continuous experiment showed
that the activated La0.9FeO3‑δ remained exceptionally stable.130

In addition, the electrochemical reduction of nitrate can be
improved by A-site deficiency engineering of the electro-
catalysts. This was reflected in a study by Liu and
colleagues.110 The study presented a practical method for
modifying the A-site deficiencies in cobalt-based perovskite
oxides to increase nitrate electro-reduction activity (NO3ER).
To demonstrate the concept, the authors used a sequence of
(Ba0.5Sr0.5)1−xCo0.8Fe0.2O3−δ, where x = 0, 0.05, 0.10, 0.15, and
0.20. Their NO3ER activity peaked at x = 0.15 and showed a
volcano-type reliance on the x values. To be more precise,
(BS)0.85CF outperformed most previously reported NO3ER

catalysts in terms of activity (143 mg·h−1·mgcat
−1 or 0.86

mmol·h−1·cm−2), selectivity (97.9%), and stability (200 h) at
−0.45 V (vs. RHE). The optimized properties of NO3ER can
be explained by the modulation of physicochemical properties
caused by A-site inadequacies, including the introduction of a
modest distance between the Fermi level and the band center
and the production of a moderate amount of oxygen
vacancies.110

The potential for improving the catalytic efficiency of
perovskite oxides in nitrate reduction is highlighted by the
application of modification techniques such as metal doping
and oxygen vacancy engineering. A more thorough compre-
hension of the fundamental mechanisms driving these
modifications will make catalyst design more accurate and
efficient.

Recently, the construction of perovskite oxides with
sufficient active sites for the electrochemical reduction of
nitrate has seemed to be challenging. This has brought about
the adoption of high entropy materials. High entropy materials
are particularly useful in electrocatalysis owing to random
element distribution, complex electronic structures, and
intrinsic abundant active sites.131 While various high entropy
materials including phosphate, carbides, and nitrides have been
developed, high entropy perovskites seem to be generating
considerable interest due to their structural stability, several
active sites, and tunable constituent elements.132 Chu and his
colleagues investigated high-entropy perovskite oxides as
electrocatalytic nitrogen reduction reaction (eNRR) catalysts.
These oxides have the composition Bax(FeCoNiZrY)0.2O3−δ,
where x = 0.9 and 1. The materials produced more oxygen
vacancies at the A-site by changing the non stoichiometric
metal components. Particularly, high-entropy perovskite oxides
exhibited a markedly increased eNRR activity. Specifically,
compared to B(FCNZY)0.2, the NH3 yield and Faraday
efficiency for B0.9(FCNZY)0.2 were 1.95 and 1.51 times greater,
respectively.131 This underscores the importance of designing
and developing novel high entropy perovskite oxides with
advanced microstructures that will simultaneously accelerate
the reactions as well as increase the number of active sites on
the perovskite oxides.

Because of their high conductivity and stability, transition
metal oxides have found extensive use as electrocatalysts.133

However, their Faradaic efficiency is frequently constrained,
particularly in oxygen evolution reactions (OER). Unwanted
byproducts may be produced during OER as a result of side
reactions.134 In contrast, perovskite oxides show better
Faradaic efficiency in OER, as evident in the studies earlier
reported. Their high surface area and adjustable electronic
structure reduce side reactions and improve selectivity for the
intended oxygen evolution process, which is why they are
relatively superior to other materials. Perovskite oxides are
attractive options for effective electrocatalysis because of these
characteristics. In addition, the catalytic activity of noble
metals, such as platinum (Pt) and gold (Au), in a variety of
electrochemical reactions is widely recognized. Unfortunately,
their high price and limited availability prevent them from
being widely used.135,136 Furthermore, even though noble
metals have a high Faradaic efficiency, they can deactivate and
become poisonous in harsh operating conditions.137,138

Perovskite oxides offer an appealing alternative. In certain
processes, such as oxygen reduction reactions (ORR), they
provide similar or even better Faradaic efficiency. In addition,
perovskite oxides are more resilient and prevalent than noble
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metals. Their favorable cost-performance ratio makes them an
attractive option for long-term electrocatalysis. Also, the high
surface area and tunable features of carbon-based materials,
such as graphene and carbon nanotubes, have attracted a lot of
interest as electrocatalysts.139 However, heterogeneous archi-
tectures and surface defects might reduce their Faradaic
efficiencies, leading to unpredictable catalytic behavior.140

Perovskite oxides, however, have surface chemistry that can be
controlled and well-defined crystalline structures. They
consequently show improved stability and increased Faradaic
efficiency in a range of electrochemical processes. Perovskite
oxides are potential options for dependable and effective
electrocatalysis because of their characteristics. Finally, metal
sulfides and selenides have become more and more popular as
electrocatalysts owing to their abundance and advantageous
catalytic characteristics.141,142 However, slow kinetics and
unfavorable side effects have the potential to hinder their
Faradaic efficiency.143,144 Perovskite oxides provide a higher
Faradaic efficiency due to their unique electronic structure and
composition. They do this by promoting charge transfer and
reducing energy losses.145−147 Consequently, in a number of
electrochemical processes, perovskite oxides perform better
than metal sulfides and selenides.

The preceding studies highlighted several ways to modify
perovskite materials to increase their electrocatalytic perform-
ance for nitrate reduction. These include the creation of
oxygen vacancies, metal doping, and engineering of A-site
deficiencies. Various approaches demonstrated how flexible
perovskite structures are and how they may be tailored for
specific catalytic applications. Most of the studies emphasized
how perovskite-based electrocatalysts for nitrate reduction
provide great catalytic efficiency and selectivity. Many studies
highlighted the environmentally favorable features of synthesis
methods, like using biomass to create perovskite-based
catalysts and avoiding dangerous organic reagents. These
factors highlighted the potential of perovskite electrocatalysts
to support environmentally friendly activities and are
consistent with the growing emphasis on green and sustainable
chemistry. Nevertheless, despite the strong magnetism, narrow
band gap, and great stability displayed by perovskites like
LaFeO3/biochar, further investigation is still required to
determine their long-term stability under a range of operating
conditions. The mass ratio of biomass to metal salts is one of
the many variables that can impact the performance of
perovskite/biochar composites. Meticulous adjustments are
required for these parameters to function at their best. Even
though research on a laboratory scale has produced promising
results, it is still unclear whether these approaches can be
scaled up to industrial levels.

5. FUTURE PERSPECTIVES AND CONCLUSIONS
In this review, we provided an overview of nitrates and their
toxicity. Additionally, we discussed the use of perovskites and
perovskite oxides for nitrate reduction. We looked at the
electrocatalytic nitrate reduction mechanism, including surface
modifications, metal doping, and the importance of oxygen
vacancies. However, to develop better catalysts, we need a
deeper understanding of their fundamental mechanisms, such
as the exact pathways of the reduction events and how
perovskite structures interact with nitrate ions. Perovskite
oxides have shown high catalytic activity in nitrate reduction
reactions, indicating their potential to remove nitrates from
water sources effectively. Selectivity toward desired products is

crucial in nitrate reduction reactions to avoid the formation of
harmful intermediates. Perovskite oxides usually have good
selectivity toward nitrogen gas, which is a harmless end
product. Stability of the catalysts over extended periods is
essential for practical applications. Perovskite oxides have
shown good stability under certain conditions, but further
research is necessary to optimize stability in different
environments.

Although the reviewed studies’ findings are promising, it is
crucial to identify potential obstacles and areas that require
further research. We must consider the catalyst’s stability
across multiple reaction cycles, its scalability for industrial use,
and the toxicity of specific metal ions. Additionally, more
research is necessary to determine the durability and long-term
performance of perovskite-based electrocatalysts in real-world
applications. In the future, researchers could combine
perovskite-based electrocatalysts with other technologies,
such as advanced sensing and monitoring systems, to increase
the overall efficiency of nitrate reduction processes. This would
provide real-time feedback and control, maximizing the
efficiency of reaction conditions while minimizing the
generation of undesirable byproducts.

To implement perovskite oxides for nitrate reduction in real-
world situations, we must evaluate their economic feasibility
and scalability. Factors such as the availability of raw materials,
synthesis costs, and scalability of production methods must be
considered. We must also assess the overall environmental
impact of using perovskite oxides for nitrate reduction,
including energy requirements for synthesis, potential by-
products, and the process’s overall sustainability. Integrating
perovskite oxide-based catalysts into current water treatment
systems or developing new systems is necessary to ensure
practical applicability. In conclusion, although perovskite
oxides show promise as catalysts for nitrate reduction, further
research is necessary to address stability, scalability, cost-
effectiveness, and environmental impact challenges before
widespread implementation. Collaborative efforts between
researchers, industry, and policymakers are essential to realize
the full potential of perovskite oxide-based catalysis for nitrate
reduction and effectively mitigate nitrate pollution.
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