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Abstract
The performance of present-day fusion experiments and future fusion reactors is nearly
always limited by turbulence. Predicting turbulence in the edge region of fusion experi-
ments with the help of numerical simulations is especially challenging due to e.g. complex
geometries, steep temperature and density gradients and neutral gas physics. Plasma fluid
codes, like GRILLIX, are currently the workhorse for edge turbulence simulations. For
fusion devices and scenarios, that come closer to reactor-relevant conditions low values
of collisionality can be present even in the edge region. This raises challenges for plasma
fluid models since they are derived for high collisionality and lose their validity if the
collisionality becomes too low.

Within this thesis, the commonly used Braginskii closure for parallel heat fluxes is
replaced by the Landau fluid closure, which can be understood as a low collisionality
extension of the Braginskii closure. With this extension, the region of validity of the
whole fluid model is expanded toward low collisionality, as the closure for the parallel
heat fluxes is the most fragile part of the model in terms of collisionality.

The fluid closures are derived and a theoretical background is provided. The different
closures are implemented into a one-dimensional toy model and their behaviour is demon-
strated and examined in this simple geometry. Here we observe non-local heat fluxes
predicted by the Landau fluid closure. The implementation into the edge turbulence fluid
code GRILLIX, built on the flux-coordinate independent approach, is explained in detail
as well as the verification of the implementation. Turbulence simulations in the geometry
of the ASDEX Upgrade tokamak are presented, performed in L-mode conditions. Herein
the Landau fluid closure is investigated in detail and compared to the Braginskii closure
with flux limiters applied to it. Non-local heat fluxes are examined within the turbulence
simulations for the Landau fluid closure and a global temperature asymmetry is observed
for the case with the Braginskii closure and strong flux limiters.

Finally, attempts for simulations in the improved confinement mode (I-mode) regime
are presented. The I-mode is a reactor-relevant operational regime, characterised by low
collisionality in the edge region. Therefore this regime is rather challenging for fluid
models and at the same time an excellent test case for the low collisionality extension due
to the Landau-fluid closure. Although no stationary I-mode could be simulated, features
of experimental I-modes were reproduced including pedestal relaxation events. A major
finding is the identification of the underlying microinstability of pedestal relaxation events
to be a micro-tearing mode.

Overall we demonstrate the importance of the employed fluid closure for performing
predictive edge turbulence simulations of reactor-relevant operational regimes.
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Kurzfassung
Die Leistungsfähigkeit heutiger Fusionsexperimente und zukünftiger Fusionsreaktoren wird
fast immer durch Turbulenz begrenzt. Die Vorhersage von Turbulenzen im Randbere-
ich von Fusionsexperimenten mit Hilfe numerischer Simulationen ist eine besondere Her-
ausforderung, z.B. aufgrund komplexer Geometrien, steiler Temperatur- und Dichtegra-
dienten und der Neutralgasphysik. Plasma-Fluid-Codes, wie GRILLIX, sind derzeit
das "Arbeitspferd" für Randturbulenzsimulationen. Für Fusionsanlagen und -szenarien,
die näher an reaktorrelevante Bedingungen heranreichen, können niedrige Kollisional-
itätswerte bereits im Randbereich auftreten. Dies stellt eine Herausforderung für Plasma-
Fluid-Modelle dar, da sie für hohe Kollisionalität hergeleitet werden und ihre Gültigkeit
verlieren, sobald die Kollisionalität zu niedrig wird.

In dieser Arbeit wird der üblicherweise verwendete Braginskii-Schluss für parallele
Wärmeströme durch den Landau-Fluid-Schluss ersetzt, der als eine Erweiterung für den
Braginskii-Schluss in Richtung geringer Kollisionalität verstanden werden kann. Mit
dieser Erweiterung wird der Gültigkeitsbereich des gesamten Fluidmodells in Richtung
niedriger Kollisionalität ausgedehnt, da der Fluid-Schluss für parallele Wärmeströme der
anfälligste Teil des Modells in Bezug auf Kollisionalität ist.

Die Fluid-Schlüsse werden hergeleitet und der theoretische Hintergrund wird erläutert.
Die verschiedenen Schlüsse werden in ein eindimensionales Spielzeugmodell implementiert
und ihr Verhalten wird in dieser einfachen Geometrie demonstriert und untersucht. Hier
beobachten wir nichtlokale Wärmeströme, die durch den Landau-Fluid-Schluss vorherge-
sagt werden. Die Implementierung in den Randturbulenz-Fluidcode GRILLIX, der auf
dem "flux-coordinate independent approach" aufbaut, wird im Detail erläutert, ebenso
die Verifizierung der Implementierung. Es werden Turbulenzsimulationen in der Geome-
trie des ASDEX Upgrade Tokamaks vorgestellt, die unter L-Mode-Bedingungen durchge-
führt werden. Dabei wird der Landau-Fluid-Schluss im Detail untersucht und mit dem
Braginskii-Schluss verglichen, auf den "flux-limiter" angewendet werden. Nichtlokale
Wärmeströme werden in den Turbulenzsimulationen mit dem Landau-Fluid-Schluss unter-
sucht und es wird eine globale Temperaturasymmetrie für den Fall des Braginskii-Schlusses
und starker "flux-limiter" beobachtet.

Schließlich werden Versuche für Simulationen im I-Mode-Regime vorgestellt. Die I-
Mode ist ein reaktorrelevanter Betriebszustand, der sich durch geringe Kollisionen im
Randbereich auszeichnet. Daher ist dieses Regime eine Herausforderung für Fluidmodelle
und gleichzeitig ein hervorragender Testfall für die Erweiterung für geringe Kollisionalität
durch den Landau-Fluid-Schluss. Obwohl keine stationäre I-Mode simuliert werden kon-
nte, werden Merkmale experimenteller I-Moden reproduziert, einschließlich der "pedestal-
relaxation events". Ein wichtiges Ergebnis ist die Identifizierung der zugrundeliegenden
Mikroinstabilität von "pedestal-relaxation events" als "micro-tearing modes".

Insgesamt legen wir dar, wie groß die Bedeutung des verwendeten Fluid-Schlusses für
die Durchführung von vorhersagekräftigen Randturbulenzsimulationen in reaktorrelevan-
ten Betriebsszenarien ist.
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1 Introduction

1 Introduction

1.1 The idea of fusion

Salimmo sù, el primo e io secondo,
tanto ch’i’ vidi de le cose belle

che porta ’l ciel, per un pertugio tondo.
E quindi uscimmo a riveder le stelle.

We mounted up, he first and I the second,
Till I beheld through a round aperture

Some of the beauteous things that Heaven doth bear;
Thence we came forth to rebehold the stars.

Dante Alighieri
Divina Commedia - Inferno

Canto 34

1.1.1 Real stars

Stars have mesmerised humans for aeons. Therefore, it is no surprise that astronomy is
one of the oldest disciplines in science, which shows e.g. the famous Nebra sky disc, dated
back to ca. 1600 BC [1]. Despite the long history of astronomy, the question of why stars
glow and how they produce such tremendous amounts of energy came up fairly late. A
real discussion started mid of the 19th century.

Johannes Kepler postulated his three laws of planetary motion between 1609 and 1619
and since Henry Cavendish measured the gravitational constant in 1798, people have been
able to calculate the mass of the sun. Today we know the mass of the sun to be about
1.998 × 1030 kg, which is ca. 99.8 % of the mass of the whole solar system. The power
released by the sun can be estimated using the solar constant, which states that the sun
deposits approximately 1.3 kW/m2 [2] at a distance of one astronomical unit. With this
value, we can deduce the total power of the sun over a complete sphere with a radius of
one astronomical unit to be ca. 3.7× 1026W.

Figure 1: The sun on the day I handed in my thesis, 7th of June 2024, taken from [3]
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1 Introduction 1.1 The idea of fusion

Let us assume for a moment the sun would consist completely out of coal with a
typical energy density of 2.4 × 106 J/kg. In a small back-of-the-envelope calculation, we
can estimate that ca. 1.54 × 1020 kg of coal must be burned per second to generate the
required output power. The entire mass of the sun would be consumed in ca. 410 years to
sustain this reaction. This sun out of coal was never a serious theory to explain, how the
sun generates its energy, unlike the following one. The theory of gravitational contraction
was proposed by Hermann von Helmholtz (1821-1894) and Lord Kelvin (1824-1907). It
stated that the sun is slowly contracting due to its own gravity, increasing the pressure
and therefore generating heat in the core while contracting. With this theory, the lifetime
of the sun was estimated to be 20 to 50 million years, which was still far too short to
explain the timescales proposed by derivations of Darwin’s theory of evolution by that
time.

The first scientist who proposed nuclear fusion as a possible energy source for stars was
Jean Perrin in 1919, accounting for a lifetime of billions of years for our sun. The first in-
depth analysis was done by Hans Bethe in 1939 [4], explaining in detail the proton-proton
chain, which is the dominant reaction in our sun.

The reason why energy is released during fusion reactions becomes clear when inves-
tigating the reactants and products, which are hydrogen and helium in the sun. One
helium atom is slightly lighter than 4 hydrogen atoms by about 0.7%. This difference
in mass is released during a fusion reaction in the form of electromagnetic radiation and
thermal energy of the products. 0.7% does not sound much, to set this into context, we
show the binding energy per nucleon over the mass number in fig. 2. The difference in
binding energy between hydrogen isotopes (deuterium and tritium) and helium states how
much energy is released in a fusion reaction. For fission reactions, the maximum available
energy is indicated by the difference between uranium and iron, the element with the
highest binding energy per nucleon. This comparison between fusion and fission reactions
shows the vast potential that lies in fusion energy.

Due to fusion processes, the sun is losing ca. 4×109 kg of mass per second (roughly the
weight of the great pyramid of Giza). Comparing this to the 1.54× 1020 kg of coal needed
per second for producing the same power, shows even more impressively the difference
between energy released in chemical reactions and energy released in nuclear processes.

Figure 2: Binding energy per nucleon taken from [5]
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1 Introduction 1.1 The idea of fusion

1.1.2 Terrestrial stars - fusion on earth

Rafael Grossi, Director General of the International Atomic Energy Agency (IAEA),
opened the 29th Fusion Energy Conference 2023 with the words

People may say that fusion will always be the energy of the distant future, but
new scientific milestones suggest otherwise. [...] Clean and abundant energy
means that the generations to come could have true sustainable prosperity.

Exactly this is the mission of fusion researchers, making fusion energy accessible to
humanity. But how should one be able to recreate the conditions present in the core of
the sun? Luckily this is not necessary, since the reaction that is running there, the proton-
proton chain, is not attractive to use in a power plant anyway. This reaction is running
quite slowly, which has the positive effect of granting the sun a lifetime of several billion
years but is not so handy for producing energy in a compact power plant. Therefore,
different isotopes of hydrogen are used for terrestrial fusion, namely deuterium (2H) and
tritium (3H). Their reaction reads

2H+ 3H −→ 4He (3.5MeV) + n (14.1MeV). (1)

The reason why deuterium and tritium are the most attractive candidates is seen in
the fusion reaction rates ⟨σv⟩ for different fuel components as plotted in fig. 3. For the
temperatures fusion devices aim for, which are between 100 − 150 × 106K, the fusion
reaction rate of deuterium and tritium is more than two orders of magnitude higher than
the next highest, which is deuterium and deuterium.

Figure 3: Fusion reaction rates ⟨σv⟩ for different fuels, taken from [6]
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1 Introduction 1.1 The idea of fusion

How do we have to imagine the state of matter when it reaches temperatures like
100 × 106K? Matter when heated up to such temperatures (and also for much smaller
temperatures) forms an ionised gas, which is made up mainly of negatively charged elec-
trons and positively charged ions. If a few formal definitions are fulfilled, this state of
matter is called plasma. In the following we list three criteria that define plasma, follow-
ing [7, 8]. For the definition of a plasma, we need to define a quantity which is essential
in plasma physics, the Debye length

λD =

(
ε0T

nee2

)1/2

, (2)

with ε0 the vacuum permittivity, T the temperature of the plasma in eV, ne the
density of electrons and e the elementary charge. The Debye length defines the distance
over which the influence of an individual charge is felt by other particles of the plasma.
Or alternatively, if any charged object is inserted into a plasma, the Debye length defines
the length scale over which plasma particles arrange themselves to shield the additional
charge. The first criterion is that all relevant length scales L are much greater than the
Debye length

L ≫ λD. (3)

From this criterion, we can conclude that there are no macroscopic charge separations
present on distances larger than the Debye length, which implies macroscopic neutrality
within a plasma, i.e.

ne ≈
∑
i

Zini. (4)

Since the shielding process is a collective process of many particles, the second criterion
is that the number of particles inside a sphere with the radius of a Debye length, a so-called
Debye sphere is large

neλ
3
D ≫ 1. (5)

The first criterion defines length scales on which the plasma can preserve charge neu-
trality. Analogously the third criterion defines timescales which ensure charge neutrality
within a plasma. The plasma frequency

ωpe =

√
nee2

meε0
(6)

defines the frequency of electrons oscillating against a stationary ion background of
equivalent charge. These oscillations define a natural time scale of the plasma. The third
criterion states that all frequencies of interest ω have to be much smaller than the plasma
frequency

ω ≪ ωpe. (7)

A more elegant definition of plasma is given in [9]: A gas of charged particles is
a plasma when the number of particles involved in any interaction of interest is large
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1 Introduction 1.1 The idea of fusion

enough that they act collectively, rather than simply as individuals. This definition sums
up the three stated criteria and provides a more intuitive picture.

Since a plasma consists of charged particles, it can be manipulated via electric and
magnetic fields. Therefore, it is possible to build a magnetic cage to confine and prevent
the hot plasma from touching the wall, which would cool it down immediately. This is
the fundamental idea of magnetic confinement fusion. The two most promising concepts
for magnetic confinement fusion are the tokamak and the stellarator shown in fig. 4.

For the confinement of both toroidal fusion devices it is necessary to provide helical
magnetic field lines [6] (twisting the field lines as the go around the torus). There are many
differences between tokamaks and stellarators, but the most fundamental one is how the
helical magnetic field is generated. In a tokamak, the toroidal magnetic field (around the
long direction of the torus) is produced by magnetic field coils located around the plasma,
while the poloidal magnetic field (around the short direction of the torus) is generated
by a toroidal current, which flows in the plasma and is induced via the so-called central
solenoid, a large magnet placed in the centre of the torus. In a stellarator on the other
hand both components of the magnetic field, the toroidal and poloidal one, are created
via external coils, which have therefore a (slightly) more complicated shape.

(a) The tokamak concept @IPP (b) The stellarator concept @IPP

Figure 4: The two main concepts for magnetic confinement fusion

1.1.3 Reaching ignition

A valuable figure of merit for any fusion experiment is the so-called triple product nTτE
of the density n, temperature T and energy confinement time τE. The energy confinement
time can be defined via τE = W/Ploss, with the loss power Ploss. W = 3nT is the stored
energy, with nT/2 for each degree of freedom, times 2 for an equal number of electrons and
ions, which is true for singly charged deuterium and tritium ions. The heating provided
by deuterium-tritium fusion reactions reads Pα = fEα with Eα = 3.5MeV the energy of
a α-particle (helium nucleus) and f = nDnT ⟨σv⟩ = n2 ⟨σv⟩ /4 the rate of fusion reactions
with deuterium and tritium mixed to equal parts n = nD/2 = nT/2. We can now define
the Lawson criterion [10], which states

5



1 Introduction 1.2 The challenges of fusion

Pα ≥ Ploss

1

4
n2 ⟨σv⟩Eα ≥ 3nT

τE

nTτE ≥ 12

Eα

T 2

⟨σv⟩
.

(8)

The function T 2/ ⟨σv⟩ has a minimum at T ≈ 14 keV, which means that the ideal
temperature to gain as much fusion power as possible is not where the fusion reaction
rate ⟨σv⟩ peaks in fig. 3, but luckily lower temperatures of T ≈ 14 keV ≈ 160 × 106K.
The Lawson criterion states the point of ignition, i.e. the point where the plasma can
sustain its temperature solely through fusion reactions, without external heating. This is
not necessary and due to limited plasma control, since the heating power would be lost as
a control parameter, not desirable for a fusion power plant. The minimum requirement
for a future fusion reactor is to produce more power via fusion reactions Pfus = fEfus with
Efus = 17.6MeV the total energy released by a fusion process than is required for heating
the plasma Pheat, so

Q = Pfus/Pheat > 1, (9)

i.e. the point of break-even. So far, no magnetic confinement fusion device has reached
this magic number. However, since the heating systems have an efficiency of less than
100 % and additional power is required for cooling systems and providing the magnetic
field, a value of Q significantly greater than 1 would be needed to generate more power
than is used for the operation of the device. This is precisely why ITER, the International
Thermonuclear Experimental Reactor, aims for Q > 10 [11].

A lot of momentum was gained in the fusion landscape over the past few years,
as Rafael Grossi stated at the 2023 Fusion Energy Conference. In comparison to the
decades before when fusion devices were nearly exclusively built in national or interna-
tional projects, more and more start-ups and companies joined this endeavour, of which
some have physically reasonable concepts. Companies like Commonwealth Fusion Systems
(CFS) [12], TAE Technologies [13] or Type One Energy [14] have interesting concepts and
solid physical basis, although they still take high risks. The entry of the private sector
shows most clearly that fusion research has made a lot of progress and the first fusion
power plant comes within reach. Or to come back to the opening quote from Dante, the
first artificial terrestrial stars are already glimmering on the horizon.

1.2 The challenges of fusion

Since the first tokamaks were built in the 1950s, a lot of progress has been made in reaching
higher and higher values in nTτE as illustrated in fig. 5. The Joint European Torus (JET)
in Culham in the United Kingdom has reached the highest values so far. Since JET had
its first records in fusion power in 1997 no new dots were added to the chart that are
closer to the region marked with power plant. What slowed down the progress, that is
visible in this chart?

The optimum value in temperature is already fixed to 14 keV as we saw in the last
section and is also visible in fig. 5. The density is limited indirectly by the Troyon

6



1 Introduction 1.2 The challenges of fusion

Figure 5: Triple product over core temperature for different experiments @IPP

beta-limit [15], which is a limit for the plasma pressure, and directly by the Greenwald
density-limit [16]. Despite both limits taking higher values with increasing toroidal and
poloidal magnetic fields, they remain limits also for machines like ITER with 5.3T on axis
[17] or the SPARC tokamak of CFS with high-temperature superconductors used for the
toroidal field coils [18] achieving 12.2T on axis [19]. The only parameter left to increase
the value of the triple product is the energy confinement time τE. The idea for ITER is
to raise τE by increasing the volume of the plasma and therefore the stored energy. One
could also think intuitively of the plasma travelling a longer radial path since the minor
radius is larger, therefore increasing the time it remains in the confined region. But let
us take one step back and ask what is physically limiting the values of τE in magnetic
confinement fusion experiments.

1.2.1 Turbulence in fusion experiments

In magnetic fusion devices, there are different kinds of radial transport present, which are
the underlying physical mechanisms, that set the confinement time τE. For most toka-
maks and optimised stellarators, the dominant radial transport mechanism is anomalous
transport, or in other words turbulence. To get an intuition of how to think of turbulence
in a fusion device, we can examine fig. 6, which shows a snapshot of the ion temperature
from a plasma edge turbulence simulation, performed with the code GRILLIX [20].

The turbulent structures that are visible in fig. 6 transport hot plasma from the inner
parts outwards, therefore they decrease the confinement time. Before we go on, we take a
moment and use fig. 6 to define some terminology. The white dashed line is the separatrix
because it separates the inner closed-field-line region from the outer open-field-line region.
Of course, the magnetic field lines are not really open, since this would require magnetic
monopoles, but they intersect the wall and leave the domain of the fusion device. The
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Figure 6: Turbulent structures in a GRILLIX simulation

point where the separatrix intersects itself is called X-point for obvious reasons. The region
outside the separatrix is called the scrape-off-layer (SOL), as plasma is transported very
fast along the field lines towards the divertor. The divertor is a special section of the first
wall of the device where plasma hits the wall directly after it is diverted by the magnetic
geometry. This divertor geometry is necessary to manage particle and heat exhaust while
achieving good core confinement [21]. In fig. 6 this corresponds to the region, where the
red line intersects the simulation domain. The divertor has to withstand high heat loads
of up to 10MW/m2 for ITER [22] and is therefore built from robust tungsten monoblocks
for this device. As there is no strict definition of the plasma edge we consider the complete
simulation domain, shown in fig. 6 as plasma edge within this thesis. In contrast to the
plasma edge, the core region is omitted in this simulation.

1.2.2 Turbulence in the plasma edge

Turbulence in the plasma edge has gained more and more importance over the last
years. Improved confinement regimes like the High-confinement-mode [23] (H-mode),
the Improved-mode (I-mode) [24], the Quasi-Continuous-Exhaust regime (QCE) [25] or
the X-Point Radiator (XPR) [26], have in common, that the most relevant physics, is hap-
pening near the separatrix. After the discovery of the H-mode, the standard operational
regime was called Low-confinement-mode (L-mode) for clear separation. The mechanism
that leads to the H-mode [27] is most interesting. The plasma forms a self-organised
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internal transport barrier near the separatrix. In the region where this transport barrier
is active, turbulent structures are torn apart and turbulent transport is therefore strongly
reduced. Transport barriers are strongly linked to zonal flows and the E×B shear due to
the radial electric field. Zonal flows themselves are driven by turbulence via the Reynolds
stress. Details of this intricate interplay are discussed until today [28]. For modelling
such phenomena accurately, the radial electric field is a quantity of major interest. The
contrast of pressure profiles in L-mode and H-mode is shown in fig. 7.

Figure 7: Pressure profile for L-mode and H-mode @IPP

Because the transport barrier is close to the separatrix, the whole profile towards the
centre is raised, as if placed on top of a pedestal. The region where the transport barrier
is active is therefore also called pedestal. With this pedestal the stored energy of the
plasma W increases significantly in contrast to Ploss, therefore τE = W/Ploss is increased.

The occurrence of Edge Localised Modes (ELMs)[29] in H-mode makes the utilisation
of this regime in a future power plant problematic. ELMs expel a significant fraction
of the plasma stored energy periodically in short pulses. Such periodic bursts exceed
the maximum heat loads that can be handled by the divertor dramatically. For using
the improved performance of the H-mode, while keeping the conditions for plasma-facing
components bearable, so-called ELM-free regimes are developed and investigated, which
include I-mode, QCE and the XPR. To understand these regimes in greater detail, simu-
lations of the edge region are necessary.

Here we encounter a problem, since turbulence simulations of the edge region are
rather challenging due to multiple reasons, which include high fluctuation amplitudes,
steep gradients, physics of neutral particles which become important, challenging geome-
tries with one or several X-points and open magnetic field lines. Due to this challenging
environment, there are not many codes that can perform simulations in this region and
even fewer, which can do predictions for machines like ITER. At the same time, conclu-
sions that can be drawn from such simulations can have a significant impact on the whole
fusion community. One recent example of such a case is a debate about the scrape-off-
layer fall-off-length λq. This important quantity defines the width on which heat loads
arriving on the divertor are spread, so the larger λq the larger the wetted area and there-

9



1 Introduction 1.3 The contribution of this thesis

fore the lower the peak heat loads. An experimental multi-machine scaling was published
already in 2013 [30], which revealed that λq only depends on the poloidal magnetic field
Bpol. So there are no further control parameters to increase λq. An extrapolation of this
multi-machine scaling for ITER resulted in λq ≈ 1mm. In contrast to this result, the
gyrokinetic particle-in-cell (PIC) code XGC1 predicted with a value of λq ≈ 6mm [31],
while matching the experimentally measured values for multiple machines included in the
scaling in [30]. If λq will be 1 or 6mm has tremendous implications for the performance
of ITER and future experiments. Although this paper [31] was already published in 2017,
until now this unexpected result was neither confirmed nor contradicted by a second code.

Figure 8: SOL fall of length experimentally measured for different machines and simulated
values by the XGC1 code, figure taken from [31]

Developing simulation tools that are able to make predictions for such regimes is a
task of major importance and has the potential to lead towards a big step in the direction
of the first fusion power plants. The thesis you are currently reading aims to contribute
to this task.

1.3 The contribution of this thesis

As we have seen in the last section, gyrokinetic turbulence simulations of the plasma
edge are already feasible [31]. However, fluid models are still the workhorse of plasma
edge simulations. Codes such as BOUT++ [32], GDB [33], GBS [34], SOLEDGE3X
[35], FELTOR [36] or GRILLIX [37] are designed to solve fluid equations or gyro-fluid
equations in the case of FELTOR in the edge and SOL of magnetic confinement fusion
experiments. There are several arguments in favour of fluid models. Up to now, fluid
models are significantly less computationally intensive than gyrokinetic models, which
is already a selling point by itself. The more important implication is, however, that
due to savings in compute time fluid models are able to scan parameters and investigate
dependencies. Furthermore, fluid models are more easily accessible in comparison to
kinetic models and it is easier to gain physical intuition, as one can deduce from the fluid
equations e.g. how temperature and density influence each other and by what mechanisms.
Gyrokinetic simulations on the other hand can be understood as numerical experiments
due to the complexity of these five-dimensional models, which is suggested by the full name
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of the gyrokinetic code GENE [38] (Gyrokinetic Electromagnetic Numerical Experiment).
Nevertheless, gyrokinetic codes are a very powerful prediction tool and are currently
considered the gold standard in plasma turbulence simulations, as they solve the model of
highest fidelity accessible. A further argument in favour of fluid models is the simulation
time span. While gyrokinetic edge simulations cover time spans of 100µs [31] to 1ms [39],
it is desirable to perform simulations on the time scale of the energy confinement time
of the simulation domain, which is for the edge region shorter than for the whole device
but still of the order of tens of milliseconds. Several milliseconds are already regularly
simulated in fluid simulations [40, 41].

Kinetic effects, like trapped particle or finite Larmor radius effects, are missing in
conventional fluid models, although there are attempts to capture these effects with gyro-
fluid models [36] or with the so-called arbitrary-moment approach [42]. However, fluid
models are facing further challenges. The common Braginskii closure [43], which is used
to close the set of fluid equations, is rigorously valid in the short-mean-free-path regime,
i.e. in highly collisional plasmas. The edge region of a magnetic fusion device shows
considerably lower temperatures than the core region and therefore also higher collision-
alities. Nevertheless, conditions which violate the short-mean-free-path assumption of
the Braginskii closure are already present in the edge of present-day experiments, where
high-performance scenarios with high temperatures near the separatrix are investigated.

In order to apply fluid models to conditions, which will be present in the plasma edge
of ITER, it is necessary to extend the employed fluid closure towards lower collisionality.
In this thesis, the focus lies on the closure term for the parallel conductive heat flux q∥.
This term is most sensible to violations of the short-mean-free-path assumption, as it
represents the highest fluid moment provided by the Braginskii closure. An elaborate
approach for a fluid closure which is valid for lower collisionality is the so-called Landau-
fluid closure [44]. The collisionless limit of the Landau-fluid closure is based on a closure
proposed by Hammett and Perkins [45], which approximates the kinetic effect of linear
Landau damping in fluid models.

This Landau-fluid closure is derived, discussed in detail and compared to the Braginskii
closure as well as to the closure proposed by Hammett and Perkins. It is tested numerically
in a simple one-dimensional geometry to study its behaviour and compare it to previous
work [46], here we reproduce the non-local form of the heat fluxes for low collisional
setups.

The closure is implemented into the edge plasma turbulence code GRILLIX [37], which
employs the Flux-Coordinate-Independent (FCI) approach [47, 48]. Within the FCI ap-
proach, perpendicular dynamics are treated on dense unstructured grids, while for the
much faster parallel dynamics, a sparse resolution is used. For parallel operators, the
magnetic field lines are traced and interpolated once in between two poloidal planes. This
information is stored in matrices, i.e. the application of a parallel operator corresponds
to a matrix-vector multiplication. To calculate the heat fluxes predicted by the Landau-
fluid closure, a set of decoupled elliptic equations has to be solved along magnetic field
lines. In globally field-aligned approaches this problem remains one-dimensional along
the parallel direction and can be solved efficiently, as e.g. shown with BOUT++[49]. In
the framework of the FCI approach, this problem becomes a fully three-dimensional one
due to interpolation between neighbouring planes and is therefore computationally more
demanding.
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Non-linear turbulence simulations employing the Landau-fluid closure in the setup of
an L-mode discharge of the ASDEX Upgrade tokamak are presented and compared with
simulations using the Braginskii closure. The pure Braginskii closure is corrected via
heat-flux limiters, which are a relatively simple ad-hoc correction for low-collisionality.
Three simulations are investigated in detail, one with the Landau-fluid closure and two
employing the Braginskii closure with different values for the heat-flux limiters. All of
the simulations incorporate recently implemented magnetic flutter effects [50] and neo-
classical ion viscosity [51]. The density and electron temperature profiles do not deviate
much between the three simulations as expected for an L-mode discharge with moderate
collisionality, the ion temperature profile on the other hand deviates strongly for the Bra-
ginskii closure with strong heat-flux limiters due to an up-down asymmetry evolving in
the ion temperature caused by the heat-flux limiter. Furthermore, we find for the radial
electric field profile, that with the Landau-fluid closure, it is improved significantly to-
wards values measured in the experiment. Also, the non-locality of heat fluxes predicted
by the Landau-fluid closure is investigated for the non-linear turbulence simulations.

Lastly, a simulation of an I-mode discharge in ASDEX Upgrade is performed with the
Landau-fluid closure. A key feature of the I-mode is high temperatures and low densities
[52], therefore it shows very low collisionality in the edge region compared to other op-
erational regimes. This makes an I-mode discharge the perfect candidate for testing the
low-collisionality extension by the Landau-fluid closure. The simulations show intermit-
tent behaviour, which can be linked to pedestal relaxation events [53]. For comparison,
a simulation with the Braginskii closure and heat-flux limiters is performed but no such
features were present and the observed profiles suggest a strongly heated L-mode. In
those simulations, we see a strong difference between the two heat-flux closures.

In the last chapter, a step towards simulations of reactor-relevant scenarios was taken,
which is the most important point of this thesis. We do not want to lose sight of the
bigger picture, which is making fusion energy accessible to humans. Hopefully, with this
thesis, the first terrestrial stars are already glimmering a little brighter.
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2 Theoretical Background
This chapter has the purpose of introducing the necessary theoretical background and
concepts, upon which the following chapters will be built.
The starting point in the description of plasma forms the Boltzmann equation and the
concept of kinetic theory. Fluid moments are defined via velocity-space integrals over the
distribution function and equations that describe their temporal evolution, namely the
continuity, momentum and energy equation, are found by taking velocity-space integrals
over the Boltzmann equation. We investigate why fluid models need closure approxima-
tions and how such a closure is constructed.
The focus of this work lies on the closure for the parallel conductive heat flux q∥. Dif-
ferent closures including the Braginskii, Hammett-Perkins and Landau-fluid closure are
presented. The Braginskii closure is motivated intuitively by random-walk estimations
and the exact closure is derived for a Lorentz plasma, which is the approximation of ions
with infinitely high charge number (Zi → ∞). An explanation of why the Braginskii clo-
sure for q∥ breaks for low collisionality is given and extensions and more elaborate closures
are investigated. The fluid closure by Hammett and Perkins for collisionless plasmas is
introduced and derived, furthermore, it is explained how this fluid closure introduces the
kinetic effect of linear Landau-damping into a fluid model. The argument involves the
response function of the system, which describes, how the density responds to a driving
electrostatic potential. The linear response function of a kinetic system is derived and
compared to the response functions of fluid models, incorporating different closure approx-
imations. We explain how the Hammett-Perkins closure is translated from a δf -model
into a full-f model. The Landau-fluid closure is presented and it is demonstrated that
it reproduces the Braginskii closure in the limit of high collisionality and the Hammett-
Perkins closure in the limit of low collisionality. It is shown how this model translates
into configuration space and the limitations of the model are highlighted.
Lastly, we discuss the drift reduction of fluid equations including the closure approxi-
mations, which are necessary to eliminate fast time scales and to employ the resulting
equations in plasma fluid turbulence codes. The closure approximations stay essentially
unchanged by this procedure.

2.1 Plasma fluid equations

The derivation in this section follows partly the derivation in [43, 7, 9]. Furthermore,
we want to emphasise that all calculations contained in this thesis, employ the SI units
system, with the small exception of temperatures being expressed as an energy in the unit
of electron volts (1 eV = 1.602×10−19 J). So whenever T appears, it is implicitly assumed
to be kT̃ , with [T̃ ] = K and k = (11605K/eV)−1.

2.1.1 The kinetic equation

The most rigorous approach to predict plasma turbulence would be to solve for each
particle its equation of motion, or equivalently describe the system in a phase space with
dimension six times the number of particles. For relevant systems this is not feasible as
the number of particles is usually of the order of 1021 and all particles are coupled via
electric and magnetic fields.
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However, as we discussed in the introduction part, an elegant definition of a plasma
is, that its particles act collectively, rather than simply as individuals [9]. So following
each single particle is not necessary. With a large number of particles in a relatively
small volume as a fusion device, a statistical approach is close at hand. We consider a
distribution function fα(x,v, t) which is defined as the probability density of particles of
a species α per unit volume in a six-dimensional phase space, three dimensions in x and
three dimensions in v.

The Boltzmann equation describes the temporal evolution of this distribution function

∂

∂t
fα + v · ∇fα +

qα
mα

(E + v ×B) · ∇vfα = Cα (fα) , (10)

with ∇ the spatial gradient and ∇v the gradient in velocity space, qα the charge and mα

the mass of particles, E the macroscopic electric and B macroscopic magnetic field. All
microscopic dynamics are encapsulated in the right-hand side with the collision operator
Cα (fα) = (∂fα/∂t). The collision operator consists of

Cα (fα) =
∑
β

Cα,β (fα, fβ) , (11)

where Cα,β denotes changes of the distribution function of species α due to collisions
with particles of species β per unit time. In the following we consider elastic collisions, in
which the particles do not change their species, so inelastic collisions are neglected and
we assume that e.g. fusion reactions or ionisation processes are modelled in a different
way, not via collisions. Although we have not considered a special form of the collision
operator yet, a few properties have to be fulfilled by any collision operator that models
elastic collisions, i.e.

∫
Cαβ(fα,β) d

3v = 0,∫
mαv Cαα(fα,α) d

3v = 0,∫
mα

2
v2 Cαα(fα,α) d

3v = 0,

(12)

where the first equation states particle conservation due to collisions and the second
and third one momentum and energy conservation for collisions within one species. This
can be extended for collisions between different species, where the collision operator has
to fulfil

∫
mαv Cαβ(fα,β) d

3v +

∫
mβv Cβα(fβ,α) d

3v = 0,∫
mα

2
v2 Cαβ(fα,β) d

3v +
mβ

2
v2 Cβα(fβ,α) d

3v = 0,

(13)

which states total momentum and energy conservation also due to collisions between
species. Many different collision operators with different assumptions have been proposed
over the years. Collision operators are a vast topic on their own. To mention a just few
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important ones, there is the Bhatnagar–Gross–Krook operator [54] which is probably the
simplest one and describes an exponential relaxation towards a thermal equilibrium. Fur-
thermore, there is a Lorentz collision operator [55], which describes collisions of electrons
with infinitely heavy ions and will be used later in this chapter. The Landau collision
operator [43] is an accurate description of elastic collision between charged particles and
is used for derivation of the Braginskii closure.

Although attempts to solve the Boltzmann equation (eq. (10)) and retain a full ki-
netic model are present [56], the method is computationally still far too expensive to
perform simulations of a full scale fusion device. An established method to reduce the
computational effort is the gyrokinetic theory [57], where the fast gyromotion of particles
around magnetic field lines is averaged out and the phase space is therefore reduced to
five dimensions. With gyrokinetics simulations on the scale of a full fusion device are
already possible [58, 59], and they are considered currently as gold standard of turbulence
simulations in fusion plasmas. Global gyrokinetic simulations are possible yet still quite
expensive. Another way to reduce the computational effort even more is to change from
a kinetic to a fluid description of a plasma. This way we eliminate the velocity space
completely and arrive at a three-dimensional problem. This procedure is sketched in the
following chapter.

2.1.2 Deriving fluid moments

Moments in the fluid description of a plasma are defined via velocity space integrals over
the distribution function, we obtain the first four moments by

nα(x, t) =

∫
fα(x,v, t) d

3v,

uα(x, t) =
1

nα(x, t)

∫
vfα(x,v, t) d

3v,

Tα(x, t) =
1

nα(x, t)

∫
mα

3
(v − u(x, t))2 fα(x,v, t) d

3v,

qα(x, t) =

∫
mα

2
(v − u(x, t))2 (v − u(x, t)) fα(x,v, t) d

3v,

(14)

where the four moments represent the density n(x, t), mean velocity u(x, t), temper-
ature T (x, t) and heat flux q(x, t) of the plasma. We can derive equations that describe
the temporal evolution of these fluid moments by taking velocity space integrals over the
Boltzmann equation eq. (10) times 1, mαv and mαv

2/2

∂

∂t
nα +∇ · (nαuα) = 0, (15)

mαnα

(
∂

∂t
uα + uα · ∇uα

)
= −∇pα −∇Πα + qαnα (E + uα ×B) +Rα, (16)

3

2
nα

(
∂

∂t
Tα + uα · ∇Tα

)
= −pα∇ · uα −∇ · qα −Πα ⊗∇uα +Qα, (17)
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with the scalar pressure pα, the stress tensor Πα, the frictional momentum transfer
Rα, the heat flux qα and the heat transfer term Qα. The electric and magnetic field E
and B are defined via the Maxwell equations

∇ ·E =
ρch
ε0

, (18)

∇ ·B = 0, (19)

∇×E = − ∂

∂t
B, (20)

∇×B = µ0J + µ0ε0
∂

∂t
E, (21)

which are coupled back to the plasma again via the charge density ρch =
∑

α qαnα, the
current J =

∑
α qαnαuα. µ0 is the vacuum permeability and ε0 the vacuum permittivity.

We could proceed like this and evolve an infinite set of fluid equations, wherein the full
information of the initial kinetic system is still preserved. In the case of highly collisional
plasmas, however, this is not necessary, since contributions of higher moments decrease
very fast. The assumption of a highly collisional plasma states that thermodynamic
equilibrium is reached faster than the relaxation of macroscopic gradients due to transport
happens. With this assumption the method of Chapman and Enskog [60] is applicable
with a few changes compared to the original work for neutral fluids. The first one who did
this tedious calculation to derive closure approximations for a highly collisional plasma
was Braginskii [43]. In this work, he keeps the three time-dependent moment equations
as we wrote them down in eq. (15), eq. (16) and eq. (17) and derives closure terms for all
higher order moments that still arise in these equations, which are qα, Πα, Rα and Qα.
We will focus mainly on the closure for the heat flux qα since this is the starting point
for the more elaborate heat flux closures that will be discussed in this thesis.

2.1.3 Quasineutrality

Quasineutrality is a key concept of plasma physics and simplifies eq. (15) to eq. (21). It
states that in the non-relativistic limit

ω ≪ ck, (22)

with ω the frequency of interest, k = |k| the magnitude of the wave vector and c the
speed of light, and for frequencies lower than the plasma frequency and length scales L
larger than the Debye length

ω ≪ ωpe and L ≫ λD (23)

the charge separation is negligibly small. In the non-relativistic limit, we find the
displacement current in eq. (21) to be small and it can be neglected. Therefore we find
by taking the divergence of eq. (21) that

∇ · J = 0, (24)
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the current is divergence-free. With this approximation, we also eliminate electromag-
netic light waves in our model. As mentioned in the first chapter the plasma frequency ωpe

defines the frequency at which a cloud of electrons oscillates around a static background
of equivalent positive charge. Therefore, for any frequency much lower than the ωpe, there
is no macroscopic charge separation present in the plasma. Regarding the spatial restric-
tion, we can think of the Debye length as the length scale, where the thermal energy of
the particles, which tends to disturb electric neutrality, becomes comparable to the elec-
trostatic energy, which tends to restore electric neutrality. Therefore, if the length scale of
interest becomes smaller than the Debye length, the assumption of quasineutrality is not
valid. For time and length scales that satisfy eq. (23) the macroscopic charge separation
is small, which implies

ρch = e (Zni − ne) ≪ enα ⇒ ne ≈ Zni ⇒ ∇ ε0
enα

·E ≪ 1 ̸= 0, (25)

with e the elementary charge. Therefore, one continuity equation for the density
n = ne ≈ Zni, which represents electrons and ions simultaneously, is sufficient. This
situation is called quasineutral since the plasma is neutral enough that the total current
is divergence-free, but not enough that the electric field has to be divergence-free.

2.2 Fluid closures

2.2.1 Intuitive motivation of the Braginksii closure

In a small Gedankenexperiment, using random walks, we can estimate the dependency
of the parallel conductive heat flux q∥ on the other fluid moments We think of a one-
dimensional case. Suppose we have a flat density distribution

n(x) = n = const., (26)

so there is no particle flux. During the typical collision time τ , which is small in our
consideration, every particle makes one small random step with the step width ∆x. The
temperature distribution does not vary strongly on length scales of one step ∆x, therefore
we can linearize the temperature distribution

T (x) = T (x0) +
∂T

∂x

∣∣∣∣
x0

(x− x0). (27)

Since we are in a one-dimensional case, half of the particles in the right domain from
x0 to x0 + ∆x (see fig. 9) make a step to the left and end up in the left domain from
x0 − ∆x to x0 and half of the particles make a step to the right. For the left domain,
the situation is vice versa. We calculate now the two unidirectional heat fluxes q+ and q−
that are crossing the plane at x0

q+ =
1

2

∫ x0

x0−∆x

1

τ
nT (x)dx =

n

2τ

[
T (x0)∆x− (∆x)2

2

∂T

∂x

∣∣∣∣
x0

]
, (28)

q− =
1

2

∫ x0+∆x

x0

1

τ
nT (x)dx =

n

2τ

[
T (x0)∆x+

(∆x)2

2

∂T

∂x

∣∣∣∣
x0

]
. (29)
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x
x0x0 −∆x x0 +∆x

T (x)
q−

q+

Figure 9: Temperature distribution along the dimension x with the exact (solid line) and
the linearized temperature (dashed) T (x). The two arrows indicate the unidirectional
heat fluxes from the left domain (x0 −∆x to x0) into the right domain (x0 to x0 + ∆x)
and vice versa, denoted as q+ and as q−.

The complete heat flux is obtained by taking the difference between q+ and q−. There-
fore we obtain

q = q+ − q− = −n
(∆x)2

2τ

∂T

∂x

∣∣∣∣
x0

. (30)

Therefore we find that the heat conduction κ in our plasma, which is per definition
the parameter, that connects the heat flux to a negative temperature gradient, has the
form

κ = n
(∆x)2

2τ
. (31)

With this form for the heat conductivity κ we can find the dependencies of the parallel
and the perpendicular heat conductivity. For the parallel direction (∆x)∥ ∼ vthτ . So we
find for the parallel heat conductivity

κ∥ ∼ n
(vthτ)

2

τ
∼ nTτ

m
. (32)

Similarly, we can find the corresponding step size for the perpendicular dynamics.
Since particles in a strong magnetic field gyrate around the magnetic field lines, the step
size of a perpendicular step is the gyro radius of the corresponding species (∆x)⊥ ∼ r ∼
vth/ωc, with ωc the cyclotron frequency. Therefore the heat conductivity in perpendicular
direction is

κ⊥ ∼ n

τ

(
vth
ωc

)2

. (33)

Two interesting conclusions, that we can derive from the two heat conductivities for
parallel and perpendicular dynamics are found. By comparing the expressions for electrons
and ions

κe
∥

κi
∥
∼
(
Mi

me

)1/2

and
κe
⊥

κi
⊥
∼
(
me

Mi

)1/2

, (34)
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we find that the parallel electron heat conductivity is about a factor square root of
mass ratio larger than the parallel ion heat conductivity, since the thermal velocity of
electrons is larger by this factor. For the perpendicular direction, it is vice versa, since
the ion Larmor radius is larger by a factor (me/Mi)

1/2. We have to emphasise here, that
our small Gedankenexperiment covers just classical transport. In a toroidal fusion device,
the perpendicular transport is nearly always dominated by either neoclassical transport
or turbulence. Therefore the perpendicular classical transport is often negligible.

2.2.2 Derivation of the Braginskii coefficients for the Lorentz approximation

This section is dedicated to the derivation of the closure coefficients which are an essential
part of the applicability of the Braginskii closure in quantitative calculations. This section
follows the derivation which is done in [43] and [55]. The starting point of our derivation
is the kinetic equation for electrons

∂

∂t
fe + v · ∇fe −

e

m
E + ωce (b× v) · ∇vfe = Ce (fe) , (35)

with ωce = eB/me the electron cyclotron frequency. To find closure approximations
is necessary to make a fluid model applicable, but not generally possible without further
assumptions. The Braginkii closure uses the assumption of high collisionality, i.e.

Lref

λmfp

≫ 1, (36)

with the mean free path λmfp = vth,ατα, defined by the thermal velocity vth,α =
(Tα/mα)

1/2 and the collision time

τe =
12√
2
π3/2

√
meT

3/2
e ε20

niZ2e4λ
and τi = 12π3/2

√
MiT

3/2
i ε20

niZ4e4λ
(37)

or in more practical units

τe = 3.44 · 1011 s 1m−3

ne

(
Te

1 eV

)3/2
1

Zλ
, (38)

with Z the charge number of the ions under consideration and λ the coulomb logarithm

λ =

{
23− 0.5 log10 (ne/1m

−3) + 1.5 log10 (Te/1 eV) for Te < 10 eV,
24− 0.5 log10 (ne/1m

−3) + 1.0 log10 (Te/1 eV) for Te > 10 eV.
(39)

as defined in [61]. Note that there is no 2−1/2 missing in the definition of τi in eq. (37),
instead the definition was chosen to stay consistent to Braginskii [43]. To avoid confusion,
we want to mention here that different definitions of collisionality are common depending
on the choice of Lref . In neoclassical theory for example the parallel distance around a
flux surface is chosen Lref = qR, with the safety factor q and the major radius R. For
our purpose the reference length Lref represents the length scale on which macroscopic
quantities, e.g. the electron temperature, changes. We use the inverse collisionality to
define a small parameter
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ε =
λe
mfp

Lref

≪ 1, (40)

which corresponds to the Knudsen number in fluid dynamics of neutral fluids. With
the parameter ε we can expand the distribution function as a series

fe = fe0 + εfe1 + ε2fe2 + ..., (41)

which converges fast in the limit of high collisionality, as ε → 0. This method is
known as the Chapman-Enskog procedure and can be found in great detail e.g. in [60].
The lowest order fe0 is a Maxwellian with the explicit form

fe0(v) = ne

(
me

2πTe

)3/2

exp

(
−mev

2

2Te

)
(42)

in the rest frame, which means we have no mean velocity u. To derive the original
closure from Braginskii we have to retain the contributions of order zero and one, which
means a Maxwellian plus a small perturbation. In the kinetic equation, the magnetic
term and the collisional term are the dominant ones according to the ordering scheme.
Those two terms vanish for a Maxwellian

ωce (b× v) · ∇vfe0 = Ce (fe0) = 0, (43)

which means that for the whole kinetic equation, we have to use fe1 in the magnetic
term and the collisional one, for the other terms of the kinetic equation we use the lowest
order fe0. Therefore we find the equation

∂

∂t
fe0 + v · ∇fe0 −

e

m
E ∇vfe0 + ωce (b× v) · ∇vfe1 = Ce (fe1) , (44)

which we have to solve in order to find a solution for fe1. The time derivative vanishes
∂fe0/∂t = 0 since we are in steady state conditions and the Maxwellian does not depend
on time. We evaluate the terms which act on fe0 and we can express those in terms of
fluid moments
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v ·Q(v) =v · ∇fe0 −
e

me

E · ∇vfe0

=v ·
(
1

n
fe0∇n− 3

2Te

fe0∇Te −
(
−mev

2

2T 2
e

)
fe0∇Te

)
− e

me

E ·
(
−mev

Te

fe0

)
=v ·

(
∇n

n
− 3

2

∇Te

Te

+
mev

2

2Te

∇Te

Te

)
fe0 +

e

Te

E · vfe0

=v ·
(
Te∇n

nTe

+
n∇Te

nTe

− 5

2

∇Te

Te

+
mev

2

2Te

∇Te

Te

)
fe0 +

e

Te

E · vfe0

=v ·
(
∇pe
pE

− 5

2

∇Te

Te

+
mev

2

2Te

∇Te

Te

)
fe0 +

e

Te

E · vfe0

=v ·
(
∇ ln pe +

e

Te

E +

(
mev

2

2Te

− 5

2

)
∇ lnTe

)
fe0

=v ·
(
A1 +

(
mev

2

2Te

− 5

2

)
A2

)
fe0,

(45)

where A1 and A2 are the thermodynamic forces. Now we deviate from the derivation
that was done by Braginskii [43]. He used the approximation of a Landau collision operator
in his work to derive a closure for arbitrary values for the charge number of the ions Z.
The full derivation is quite cumbersome and would require much more space of this thesis
than I can provide. Therefore we use a special case in which the derivation becomes much
simpler, but the process still provides valuable insights. We use the approximation of the
Lorentz collision operator instead, which describes how electrons collide with infinitely
heavy ions. We will see that therefore it is enough to solve for the perturbed electron
distribution function fe1 and we do not need to calculate the perturbed ion distribution
function, in contrast to Braginskii. The Lorentz collision operator reads

Ce (fe1) = νei(v)L (fe1) , (46)

with νe = (3
√
π/4)τ−1

e

(
v3th,e/v

3
)

a velocity-dependent collision frequency, which con-
sists of a numerical prefactor, τ−1

e as expected for a collision frequency and a velocity
correction proportional to v−3, which originates in the nature of coulomb collisions. L(f)
is defined as

L (f) =
1

2

(
1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

sin2 θ

∂2f

∂φ2

)
, (47)

with the azimuthal angle φ and the polar angle θ in spherical coordinates. It is
interesting to note, that since the ions are infinitely heavy, the velocity of electrons is
conserved, therefore no derivatives in v appear in this collision operator. For the Lorentz
collision operator applied to the velocity vector, we find L(v) = −v. Therefore the Ansatz
fe1(v) = v · F (v) is chosen and we find the equation

−νei (v)v · F (v)− ωce (b× v) · F (v) = v ·Q(v), (48)

which has to be true for any choice of v and therefore becomes
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νei(v)F (v) + ωceb× F (v) = −Q(v). (49)

From this equation, we can already see the parallel part F∥ = −Q∥(v)/vei(v), which
is the part we are mainly interested in for the closure expression of the parallel heat
flux. The perpendicular components we can determine by taking the cross-product of the
equation and solving this system of equations. The final result we get is

fe1(v) = −
(

v∥

νei(v)
+

νei(v)v⊥ + ωceb× v

ν2
ei(v) + ω2

ce

)
·Q(v). (50)

By using the ordering parameter ∆ = νei(v)/ωce = ρe/λmfp ≪ 1 we can rewrite the
solution to fe1 as

fe1(v) = −
(

v∥

νei(v)
+

b× v

ωce

+
νei(v)v⊥

ω2
ce

)
·Q(v) = fe1∥ + fe1∧ + fe1⊥ (51)

and since we know now the form of the perturbed distribution function fe1 we can find
now the closure expression by taking moments over it. For u we get

nu =

∫
fe1v d3v = n

(
u∥ + u∧ + u⊥

)
, (52)

where we do not need a closure expression formally, but we will need this expression
to identify the conductive and the convective part of the parallel heat flux. This equation
is not our main interest, therefore we do not perform here a major calculation to derive
it. The solution for the parallel mean velocity is

nu∥ = − 32

3π

τei
me

(
∇∥pe + neE∥ +

3

2
n∇∥Te

)
. (53)

The heat flux we can calculate according to

q =

∫
fe1

(
mev

2

2
− 5Te

2

)
v d3v = n

(
q∥ + q∧ + q⊥

)
, (54)

where this unusual form of the heat flux connects to the standard definition by

q =

∫
me

2
fe1 (v − u)2 (v − u) d3v

=

∫
me

2
fe1v

2v d3v −meu · Pe −
3me

2
upe +

1

2
menu

2u

≈
∫

me

2
fe1v

2v d3v − 5me

2
upe

=

∫
fe1

(
mev

2

2
− 5Te

2

)
v d3v,

(55)

where we considered the mean velocity u to be small compared to the thermal velocity
vth, therefore, the term menu

2u/2 is considered small and vanishes from line 2 to line 3.
Furthermore, we assume that the pressure is isotropic, which means that Pe = Ipe with
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I the unity matrix. The last part that is left to do is calculating the parallel heat flux
that follows from the distribution function fe1∥ explicitly. Therefore we calculate

q∥ =

∫
fe1∥

(
mev

2

2
− 5Te

2

)
v d3v

=

∫
−

v∥

νei(v)
·
(
A1 +

(
mev

2

2Te

− 5

2

)
A2

)
fe0

(
mev

2

2
− 5Te

2

)
v d3v

=− 4τeiTe

3
√
πv3th,e

∫
v3v∥

((
mev

2

2Te

− 5

2

)
A1∥ +

(
mev

2

2Te

− 5

2

)2

A2∥

)
fe0v d3v,

(56)

with A1∥ = ∇∥ ln pe + (e/Te)E∥ and A2∥ = ∇∥ lnTe. To perform the integration we
have to make a coordinate transformation into spherical coordinates with the parallel
direction along the z-axis, so θ = π. In spherical coordinates, all components but the
parallel one vanish due to the integration over φ due to the vector v. Therefore we can
write our equation as a scalar equation for simplicity

q∥ = − 4τeiTe

3
√
πv3th,e

∫
v3v∥

((
mev

2

2Te

− 5

2

)
A1∥ +

(
mev

2

2Te

− 5

2

)2

A2∥

)
fe0v∥ d

3v, (57)

where we replaced v with v∥. For the calculation, we use the following integral iden-
tities

∫ ∞

0

x7 exp(−ax2) dx = 3a−4,∫ ∞

0

x9 exp(−ax2) dx = 12a−5,∫ ∞

0

x11 exp(−ax2) dx = 60a−6,

(58)

which we need for the integral in v. Further we use the identity
∫ π

0
cos2 θ sin θ dθ = 2/3,

which can be easily verified by substituting u = cos θ. The detailed calculation is written
here:

23



2 Theoretical Background 2.2 Fluid closures

q∥ = − 4τeiTe

3
√
πv3th,e

∫
v3v∥

((
mev

2

2Te

− 5

2

)
A1∥ +

(
mev

2

2Te

− 5

2

)2

A2∥

)
fe0v∥ d

3v

= − 4τeiTe

3
√
πv3th,e

∫ ∞

0

∫ π

0

∫ 2π

0

v3v cos θ
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mev

2

2Te

− 5

2

)
A1∥ +

(
mev

2

2Te

− 5

2

)2

A2∥

)
fe0

× v cos θ v2 sin θ dφ dθ dv

= − 4τeiTe

3
√
πv3th,e

2π
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0
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2
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√
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nTe
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3π
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n
∇∥pe + eE∥ +

3

2
∇∥Te

)
− 2τeinTe

9πme

(300− 108)∇∥Te
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2
nTe u∥ −
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3π

nTeτei
me

∇∥Te

(59)

In the second last line, we have rearranged the terms to identify the expression for u∥.
This is the exact closure term proposed by Braginskii [43] for the case of Z ≫ 1.

2.2.3 Braginskii closure for Hydrogen (Z = 1)

The main difference to the derivation in the last chapter is the assumptions on the collision
operator. We used the approximation of a Lorentz collision operator, which simplified the
analytical derivation in the last chapter, but limited the result to the limit of Z → ∞.
To derive an applicable fluid closure for hydrogen and deuterium plasmas we have to use
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the Landau collision operator, as Braginskii did. This makes the whole calculation a lot
more difficult and cumbersome since we have to solve not only for the perturbed electron
distribution function but also for the perturbed ion distribution function. The interested
reader is referred to the original publication [43], where the procedure is sketched. We
will just state the results that he found. The closure for the parallel heat flux takes the
form

qBR
∥α = −κBR

∥α ∇∥Tα with κBR
∥α =

{
3.16n v2th,e τe α = e,

3.9n v2th,i τi α = i.
(60)

In the full Braginskii model eq. (60) this is just the diffusion term of the parallel
conductive heat flux, additionally there is the thermal force and diamagnetic heat con-
duction that also contribute to the total parallel heat flux. Just the first part will be
changed by the different closures introduced in the following sections. The Braginskii
closure is robustly valid for highly collisional magnetised plasmas. For decreasing colli-
sionality, however, the closure loses its validity. In regimes of high collisionality collisions
can drive the plasma distribution function back to a Maxwellian very efficiently, but this
mechanism weakens as the plasma becomes less collisional. Specifically, the issue that
arises for parallel heat conductivity κBR

∥α ∝ T
5/2
α . Only a very collisional plasma obeys

this temperature dependence, however, for low collisional plasmas, the heat conductivity
is dramatically overestimated due to the strong temperature dependence.

2.2.4 Why is the Braginskii closure for q∥ so fragile?

With the knowledge we have gained in the last sections, we are able to answer the question
of why the collisional closure for the parallel conductive heat flux q∥ is the most fragile
quantity in terms of collisionality. First, we have to keep in mind that the derivation
of the Braginskii closure relies on the assumption of high collision, i.e. Lref/λmfp ≫ 1.
While this is usually true in fusion devices for the perpendicular direction since here not
λmfp is the distance the particles travel but the gyroradius, it does not hold along the
magnetic field [62]. The second point is that the lower fluid moments n, u, T and p are
all mainly defined by the Maxwellian part f0 in Braginskiis derivation, while the parallel
heat flux q∥ and the stress tensor Π are purely defined via f1. Furthermore, q∥ is even
more fragile than Π since it corresponds to a higher moment. Therefore it is reasonable
that q∥ becomes unreasonable most quickly, as the assumption of the expansion parameter
being small ε ≪ 1 breaks for low collisionality. This is the reason so much effort is put
into the task of finding a better approximation for q∥ in this thesis, since then the range
of validity of the whole fluid model would be extended, by making the most fragile part
more robust.

2.2.5 Flux limiters

A common method to make the fluid description of plasmas also applicable to lower
collisional cases is the introduction of heat-flux limiters as proposed e.g. in Stangeby [63],
chapter 26. Since the Braginskii closure is derived in the limit of high collisionality, we
should not trust its predictions for cases outside its validity. It feels natural to introduce
an upper limit, since
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κBR
∥ −−−−−−−−−→

(Lref/λmfp) → 0
∞ (61)

in the extreme case of a collisionless system. But how is heat transported in a col-
lisionless plasma? Without collisions, particles move freely along field lines and carry
their heat with them. Those freely moving particles translate into the fluid picture as
a flow of heat in parallel direction with the thermal velocity nvth,αTα. By casting this
free-streaming heat flux in the form of a heat conductivity times a parallel temperature
gradient we arrive at the free-streaming heat flux

qFS∥α = −κFS
∥α∇∥Tα with κFS

∥α = n vth,α q95R0, (62)

with q95 the safety factor at ρ = 0.95 and R0 the major radius of the tokamak. Here
we have already approximated the gradient scale length to the parallel connection length
in the tokamak edge Tα/|∇∥Tα| = q95R0 and we use q95 instead of the local safety factor
to avoid a divergence at the separatrix. This free-streaming heat flux is used as an upper
limit. The Braginskii and the free-streaming heat flux are combined via a harmonic
average to form the flux-limited heat flux

qFL∥α =

(
1

qBR
∥α

+
1

αqFS∥α

)−1

, (63)

with α ∈ [0.03, 3] the flux-limiting parameter for tuning the upper limit. This pa-
rameter α is adjusted according to kinetic simulations and experimental data. To find a
single parameter α that is well suited for all regimes seems unlikely due to the ad hoc
nature of this closure. A fundamental collection of values for α according to various ki-
netic studies is presented e.g. in Fundamenski et al. [64]. This approach is also used
in turbulence simulations where a strong dependence of the radial heat transport on α
is observed [40, 65]. Performing simulations of experiments and machines that have not
been conducted or built yet and predicting divertor heat fluxes and edge profiles is not
feasible with flux-limited heat fluxes, which is the major drawback of this approach.

2.2.6 Hammett-Perkins closure

A more elaborate approach to predict heat fluxes within a fluid model for collisionless
plasmas was proposed by Hammett and Perkins [45]. This fluid closure was developed
with the intention of including the kinetic effect of linear Landau damping [66] into fluid
models, in particular from phase mixing due to free streaming along the magnetic field.
How should we think of linear Landau damping? We consider just ions to stay close
to the derivation in [45] and omit the index of species for all quantities in this chapter.
For electrons the derivation is analogous. To approach this question we consider the
one-dimensional Vlasov equation

∂

∂t
f(x, v, t) + v

∂

∂x
f(x, v, t) +

e

m
E

∂

∂v
f(x, v, t) = 0, (64)

which describes a one-dimensional collisionless system, with the spatial coordinate x
along the magnetic field. We want to investigate, how the system responds to a small
driving electric field E = −∂ϕ̃/∂x. Since the drive is small, we can linearize the kinetic
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equation by splitting f(x, v, t) = f0(v) + εf̃(x, v, t) and neglect quadratic terms in f̃ ,
the expansion parameter is here ε = eϕ̃/T0 ≪ 1, which holds true as long as L ≫ λD.
Since f0(v) has neither a spatial nor temporal dependence, those derivatives vanish when
applied to f0. In the velocity derivative, we keep just f0, since f̃ is an order ε smaller.
The linearized equation reads

∂

∂t
f̃ + v

∂

∂x
f̃ − e

m

∂ϕ̃

∂x

∂

∂v
f0 = 0, (65)

which is Fourier-transformed, wherein perturbed quantities vary as exp(ikx − iωt)),
to

−iωf̃ + vikf̃ − e

m
ikϕ̃

∂f0
∂v

= 0 (66)

and after rearranging the terms and performing a velocity space integral we arrive at

ñ =

∫
f̃ dv =

eϕ̃

T0

kv2th0

∫
∂f0/∂v

vk − ω
dv, (67)

where we can see in the denominator of the integrand that we are dealing with a
resonance phenomenon. This integral has to be treated with care and was already subject
to a dispute between Vlasov and Landau [66]. However, the treatment of Landau is the
correct one, wherein ω is a complex quantity and special attention has to be paid to the
pole of the complex function at v = ω/k. If Im(ω) > 0, we can perform the integral along
the real axis. However, for Im(ω) < 0 the integration path has to be deformed around
the pole as shown in fig. 10.

Re(v)

Im(v)

v = ω/k

Re(v)

Im(v)

v = ω/k

Figure 10: Contour integral in the complex plane of velocity space, if Im(ω) > 0 the
integral can be performed along the real axis, if Im(ω) < 0 the contour has to be deformed
around the pole

We may define the linear response function R(Ω) by

ñ = −eϕ̃

T0

n0R(Ω) =
eϕ̃

T0

kv2th0

∫
∂f0/∂v

vk − ω
dv, (68)

with Ω = ω/(21/2vth0|k|). Ω can be thought of as the ratio between the phase ve-
locity vph = ω/|k| of the electrostatic wave and the thermal velocity of the plasma
Ω = 2−1/2vph/vth0. This linear kinetic response function can also be expressed in terms of
the plasma dispersion function
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Z(Ω) =
1√
π

∫
exp (−t2)

t− Ω
dt (69)

in a clear form

R(Ω) = 1 + ΩZ(Ω). (70)

To get an intuitive feeling of how R(Ω) looks like, we evaluate the integral equation
numerically for different real values of Ω (Im(Ω) = 0) and plot the real and imaginary
part of the R(Ω) in fig. 11. We observe two interesting aspects. Firstly, for Ω = 0 we find
Re(R(Ω = 0)) = 1 and Im(R(Ω = 0)) = 0, so the perturbed density follows instanta-
neously the driving electrostatic potential ϕ̃, this behaviour is usually known as adiabatic
response. Secondly, we notice that for increasing Ω the imaginary part of R(Ω) is growing,
which means physically a damping of the driving wave. This collisionless damping of the
driving wave is the representation of linear Landau damping in this linearized model. We
note also, that the maximum of Im(R(Ω)) is at Ω = 2−1/2 which means vph = vth0.

Figure 11: Real and imaginary part of the linear kinetic response function R(Ω)

In their paper [45] Hammett and Perkins propose a fluid closure that is able to ap-
proximate this form of the linear response function within a fluid model. This closure
takes the form

q̃HP
k = −A

ik

|k|
T̃k, (71)

with A = n0vth0
√

8/π, i the imaginary unit, k the wave vector (here one-dimensional)
and the index k indicating the formulation in wave number space. Henceforth we will
refer to eq. (71) as Hammett-Perkins closure. To understand how this closure reproduces
the linear response function we investigate a one-dimensional fluid model

∂

∂t
n+

∂

∂x
(un) = 0, (72)

∂

∂t
(mnu) +

∂

∂x
(unmu) = − ∂

∂x
p+ enE, (73)
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∂

∂t
p+

∂

∂x
(up) = −2p

∂

∂x
u− ∂

∂x
q, (74)

which we obtain by taking moments over eq. (64). We linearize the fluid quantities
by splitting all quantities into a background f0 and a fluctuating quantity f̃ , similar to
the calculation of the linear kinetic response eq. (68). The background quantities have no
spatial and temporal dependencies, therefore these derivatives vanish. Furthermore, we
note that even moments in v, so u and q have no background quantity in an unshifted
Maxwellian, therefore u0 = q0 = 0 vanish. Quadratic fluctuation terms are ignored again.
We find the linearized set equations

∂

∂t
ñ+

∂

∂x
(ũn0) = 0, (75)

∂

∂t
(mn0ũ) = − ∂

∂x
p̃− en0

∂

∂x
ϕ̃, (76)

∂

∂t
p̃+

∂

∂x
(ũp0) = −2p0

∂

∂x
ũ− ∂

∂x
q̃, (77)

where the definition of the electric field was inserted. Note that the second term on
the left-hand side in the second equation vanished since just terms of higher order appear.
We take again a Fourier transform of all three equations where fluctuating quantities vary
as exp(ikx − iωt). We find for the first equation how to express the fluctuating velocity
ũ = ω/(n0k)ñ in terms of the fluctuating density. For the second equation, we find equiv-
alently an expression for the fluctuating pressure p̃ = (ω/k)mn0ũ− en0ϕ̃.

Response function for closure q̃ = 0

With this set of equations, we can now take different closures for q̃ and calculate the
response function of the fluid system. We start with the simplest possible closure q̃ = 0.
This closure we insert into eq. (77), then substitute p̃ and ũ afterwards. We are left with
an algebraic equation, where we substitute finally Ω for ω and find the response function

R0(Ω) =
1

3− 2Ω2
, (78)

where we observe that this response function has no imaginary part. So there is no
approximation of any kind of damping in this model. We see the strong deviation also by
comparing the two response functions in fig. 12. R0(Ω) does not even match Re(R(Ω))
the limit Ω → 0, between Ω = 1.0 and Ω = 1.5 we see an undamped resonance, where
R0(Ω) → ∞, as expected for an oscillator without damping. The limit of high Ω corre-
sponds with the linear kinetic response.

Response function for the Hammett-Perkins closure

For the Hammett-Perkins closure eq. (88) we find after a more involved calculation a
response function of the form

29



2 Theoretical Background 2.2 Fluid closures

Figure 12: Response function of the fluid system with closure q̃ = 0 in comparison to the
kinetic response function

R3(Ω) =
χ− iΩ

2iΩ3 − 2χΩ2 − 3iΩ + χ
, (79)

with χ = 2/
√
π. This response function has now a real and an imaginary part. We

compare the two closures in fig. 13 and observe this closure approximates the kinetic
response fairly well over the whole domain and matches the limits exactly. Which is no
surprise, since the closure was designed in this way.

We can extend the proposed three-moment fluid model by adding a dynamical equation
for the heat flux, which is calculated by multiplying eq. (64) with v3 and taking the integral
over velocity space. The heat flux equation reads

∂

∂t
q +

∂

∂x
(uq) = −3q

∂

∂x
u+ 3

p

mn

∂

∂x
p− ∂

∂x
r, (80)

with r ≡ m
∫
(v − u)4f dv ≡ 3p2/(mn) + δr the next higher fluid moment after q.

Hammett and Perkins have also proposed a closure term for the four-moment model

δr̃ = −D

√
2vth0
|k|

ikq̃k + βn02v
2
th0T̃k, (81)

with D = 2
√
π/(3π − 8) and β = (32− 9π)/(6π − 16). We can repeat the calculation

we did for the three-moment model also for the four-moment model, which is a bit more
tedious, but otherwise very similar. The response function

R4(Ω) =
3 + 2β − 2iDΩ− 2Ω2

3 + 2β − 6iDΩ− (12 + 4β)Ω2 + 4iDΩ3 + 4Ω4
(82)

has a more complex form than in the three-moment case. By comparing the response
of the four-moment model to the kinetic response in fig. 13 we find that this closure is an
excellent approximation of its kinetic counterpart.
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Figure 13: Response function of the fluid system with the four-moment Hammett-Perkins
closure in comparison to the kinetic response function and one of the three-moment
Hammett-Perkins closure

Response function for the Braginskii closure

We can do the same exercise for the Braginskii closure eq. (60), where we find in the end
a response function that can be written in the same form as the response function of the
Hammett-Perkins closure eq. (79), but the parameter χ takes a different form

χ = 3.16vth0τi0|k|/
√
2 (83)

and is dependent on k and the background temperature, therefore every scale k be-
haves differently. By accident, for one single k the Braginskii closure can even match the
response of the Hammett-Perkins closure if χ = 2/

√
π. We plot the response function of

the Braginskii model in fig. 14 for T0 = 100 eV, n0 = 1020m−3 and with k = 1/(qR0) =
1/(6.6m). Here the Braginskii closure is not off by orders of magnitude, which is the case
for different temperatures and values of k.

2.2.7 Remark on the form of the Hammett-Perkins closure

The form of the Hammett-Perkins closure with its dependency on ik/|k| seems a bit
puzzling at first. With the help of the previous chapters, we can find an explanation
now, why this form of the closure is necessary. We saw that the important parameter for
the kinetic response function is Ω = ω/(21/2vth0|k|) = 2−1/2vph/vth0. In the derivation of
the response function of the Braginskii closure with its dependency on ik we saw that in
the response function a dependency on |k| remained. This implies that the only way of
designing a fluid closure, which is independent of k, as the exact kinetic response function,
is by choosing a closure of the form ik/|k|.

2.2.8 Non-locality of the Hammett-Perkins closure

We want to see what form the Hammett-Perkins closure takes in configuration space.
Therefore we have to transform it from k-space into configuration space via an inverse
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Figure 14: Response function of the fluid system with the Braginskii closure in comparison
to the kinetic response function

Fourier transformation. We use the definition of the Fourier transform and apply it to
the eq. (88) to calculate

q̃(x) = F−1 (q̃(k)) =
1√
2π

∫ ∞

−∞
exp(ikx)q̃k dk

=
1√
2π

∫ ∞

−∞
exp(ikx)

(
−n0vth0,j

√
8/π

ik

|k|
T̃k

)
dk

= −
n0vth0

√
8/π√

π

∫ ∞

−∞
exp(ikx)

ik

|k|
T̃k dk,

(84)

wherein we define the two functions Fk(k) = ik/|k| and Gk(k) = T̃k. The Fourier
transforms of the functions Fk(k) and Gk(k) are

F (x) = F−1 (Fk(k)) =
1√
2π

∫ ∞

−∞
exp(ikx)

ik

|k|
dk = −

√
2

π

1

x
, (85)

G(x) = F−1 (Gk(k)) =
1√
2π

∫ ∞

−∞
exp(ikx)T̃k dk = T̃ (x), (86)

where we want to note that a small trick is needed to perform the Fourier transform of
Fk, i.e. we have to add lim(ε → 0) exp(−|k|x) to make the boundaries at ∞ and −∞ well
defined. Employing the convolution theorem and the two Fourier transformed functions
F (x) and G(x), we can transform the complete expression as
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q̃(x) = −2
√
2n0vth0
π

F [Fk(k)Gk(k)]

= −2
√
2n0vth0
π

∫ ∞

−∞
F (x′)G(x− x′)dx′

= −2
√
2n0vth0
π

∫ ∞

−∞

(
−
√

2

π

1

x′

)
T̃ (x− x′)dx′

= −4n0vth0
π3/2

∫ ∞

0

T̃ (x+ x′)− T̃ (x− x′)

x′ dx′,

(87)

where we find that, unlike the Braginskii heat flux, which is driven by local temperature
gradients, the Hammett-Perkins heat flux is driven by an average non-local temperature
difference. This non-local behaviour is interesting and cumbersome at the same time since
the implementation of this integral equation into a fluid turbulence code would hold many
challenges. Luckily we do not want to implement exactly this equation but an extended
version of it, which is introduced in the following.

2.2.9 The step from δf to full-f

During this section, all investigations were performed in a δf model, where we split
all quantities in background quantities f0 and perturbed quantities δf = f̃ . In fluid
turbulence simulations of the edge region of fusion devices fluctuation amplitudes can be
quite large, therefore a δf -splitting is not possible and so-called full-f models are used,
where the quantities are not divided in background plus perturbation. A fundamental
question that arises is how to translate the Hammett-Perkins closure into a full-f picture
and if this form of the closure is valid. The translation is done in a pragmatic and
straightforward way

q̃HP
∥α,k = −n0vth0,α

ik∥
|k∥|

T̃α,k → qHP
∥α,k = −nvth,α

ik∥
|k∥|

Tα,k, (88)

where we exchange the background quantities with the full quantities f0 ≈ f and for
the perturbed temperature as well, since this term translates to a spatial derivative in
real space, i.e. gives just a contribution for a non-constant (perturbed) temperature. This
transformation is valid for the assumption of small fluctuation amplitudes. To address
the question of validity we have to check the assumption of small fluctuations. In the
following section, the Landau-fluid model is introduced, in which the Hammett-Perkins
closure is the limiting case for low collisionality. In the inner edge region of a fusion device,
where the Hammett-Perkins limit might be reached, fluctuation amplitudes are usually
of the order of a few per cent [67, 68], therefore the assumption of small fluctuations is
valid for usual operational regimes.

2.2.10 Landau-fluid closure

The Hammett-Perkins closure is derived for collisionless regimes. However, this is not
the case in the edge region of a fusion device. There are still regions which are very
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collisional. Therefore we would like to combine the two closures and use each one in the
regime of its validity. This combination was done by Umansky et al. [44], who extended
the Hammett-Perkins closure from collisionless to arbitrary collisionality as suggested by
Snyder et al. [69] and Beer et al. [70]. This closure will be referred to as Landau-fluid
closure and it takes the form

qLF∥α,k = −A
ik∥

|k∥|+ δα/λmfp

Tα,k, (89)

with the mean free path λmfp = vth,ατα and δe ≈ 0.5 and δi ≈ 0.41 as constants to
reproduce the Braginskii closure for electrons and ions in the limit of high collisionality.
To perform an analytical comparison between the different heat flux closures we rewrite
them in terms of the parameter λmfpk∥. The comparison is performed for electrons and
the index for species is again omitted. For the Braginskii closure, we find

qBR
∥k = −3.16nv2thτik∥Tk = −3.16nvthλmfpik∥Tk

iqBR
∥k

nvthTk

= 3.16
(
λmfpk∥

)
,

(90)

which is the Braginskii heat flux divided by the thermal free streaming heat flux times
the imaginary unit. Note that the Braginskii closure scales linearly in λmfpk∥. For the
Hammett-Perkins closure, we find

qHP
∥k = −nvth

√
8/π

ik∥
|k∥|

Tk

iqHP
∥k

nvthTk

=
√

8/π
k∥
|k∥|

=
√
8/π (for k∥ > 0),

(91)

which is independent of λmfpk for the same normalisation. For the Landau-fluid clo-
sure, we obtain

qLF∥k = −nvth
√
8/π

ik∥
|k∥|+ δ/λmfp

Tk

iqLF∥k

nvthTk

=
√

8/π

(
λmfpk∥

)(
λmfpk∥

)
+ 0.5

(for k∥ > 0),

(92)

wherein we find the two limiting cases with the Braginskii closure for λmfpk∥ → 0 and
the Hammett-Perkins closure for λmfpk∥ → ∞. To visualise this behaviour in an example
with practical relevance, we set k∥ = (q95R0)

−1 with typical values for the edge region of
the ASDEX Upgrade tokamak with q95 = 4 and R0 = 1.65m. Therefore we can express

λmfpk∥ = vthτe (q95R0)
−1 ≈ 1.46 · 10−4 T 2 (93)

just in terms of the electron temperature. In fig. 15 we compare the heat fluxes
proposed by the Braginskii, Hammett-Perkins and Landau-fluid closure, normalized to the
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Figure 15: Magnitude of the heat-flux closures for electrons at fixed k∥ = (q95R0)
−1 =

(6.6m)−1 which is a typical value for ASDEX Upgrade, n = 1019m−3 and constant
coulomb logarithm of λ = 15

thermal heat flux. We observe the magnitude of the Braginskii heat flux steadily growing
with decreasing collisionality and the Hammett-Perkins heat flux being independent of
collisionality. The latter is reasonable since the Hammett-Perkins closure was derived
for a collisionless system. The Landau-fluid closure recovers for high collisionality the
Braginskii closure and for low collisionality the Hammett-Perkins closure which can be
seen in fig. 15 as well. The fact that the Landau-fluid closure predicts a lower magnitude
heat flux in the intermediate collisional regime compared with the other two closures
is also recovered with a more elaborate kinetic Landau-fluid closure [71]. The Landau-
fluid model is probably valid for the collisional SOL, where it approaches the Braginskii
limit. At the inner edge region, where the Hammett-Perkins limit is reached, the model
should retain its validity due to small fluctuation amplitudes, as already mentioned in
section 2.2.9. However, there might exist intermediate regions or conditions that are
outside the region of validity of the Landau-fluid model.

2.2.11 Transformation into configuration space

The Landau-fluid closure is formulated in Fourier space, see eq. (89). Since most edge
turbulence fluid codes act in configuration space due to the complex geometry of current
fusion devices, we have to transform the Landau-fluid closure into configuration space.
A direct Fourier transformation of this equation results in a non-local integral over the
whole configuration space (see eq. (87)), which is computationally not feasible during a
turbulence simulation. A significantly more efficient method to translate eq. (89) into
configuration space was proposed by Dimits et al.[72]. With this fast non-Fourier method
the original equation is approximated with a sum of Lorentzian functions

−A
ik∥

|k∥|+ δα
λmfp

Tα,k ≈ −A
δα
λmfp

N∑
n=1

αn

k2
∥ +

(
δα βn

λmfp

)2 ik∥Tα,k, (94)
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where αn and βn are fixed numerical constants that arise from the fit of the Lorentzian
functions to the original equation and are visualised in fig. 16a. The transformation of
the Hammett-Perkins closure can be done similarly and is shown in appendix B.

By plotting the single Lorentzians fig. 16b we find that with decreasing collisionality
the higher-numbered Lorentzians become more important. The value of αn and βn are
taken from Chen et al. [46] for the cases of N ∈ {3, 7, 12}, with N the number of
Lorentzian functions. We use the same numbers for N later in the implementation of the
model. The value of αn and βn are also shown in table 1. We performed the fit to obtain
these parameters ourselves and compared them to the data in [46] in appendix C.
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(a) Sum of Lorentz functions for N ∈ {3, 7, 12}
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(b) Single Lorentz functions n for N = 7

Figure 16: Approximation of the Lorentzian functions to the function f(x) = x/(x + 1)
with x = k∥λmfp/δα which corresponds to eq. (94) (adapted from Zhu et al. [49])

N = 3 N = 7 N = 12
n αn βn αn βn αn βn

1 0.01315 0.2044 0.007438 0.1678 0.001424 0.09419
2 0.924 1.3587 0.6161 1.1106 0.20736 0.6741
3 14.1365 8.9643 5.9804 5.6457 2.5653 2.9628
4 37.9822 33.1536 14.927 14.43958
5 234.3654 202.738 79.305 75.1106
6 1466.4331 1254.2144 419.2399 395.8293
7 14981.4634 9275.3323 2215.7233 2090.8877
8 11709.7857 11049.1471
9 61885.2763 58392.0969
10 327392.6096 308695.7371
11 1773350.1566 1645460.1472
12 16903628.3745 10794779.4293

Table 1: Numerical values of αn and βn as found in Chen et al. [46]

A rough estimate for the minimum number of Lorentzians needed for a simulation can
be done by calculating x from fig. 16a with provided values for k∥ and λmfp. For electrons
in our simulation of ASDEX Upgrade in a later chapter, we estimate k∥ = (q95R0)

−1 =
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(6.6m)−1 via the inverse parallel connection length, n(ρpol = 0.91) = 2.0 × 10−19m−3

and Te(ρpol = 0.91) = 350 eV taken at the core boundary a value of x ≈ 18, therefore
we can conclude from fig. 16a that N = 7 should be sufficient. For ions, we find that 7
Lorentzians are fine as well. The single Lorentzian functions can be easily translated back
into configuration space which leads to a set of decoupled elliptic equations[

−∇2
∥ +

(
δα βn

λmfp

)2
]
qLF∥α,n = −A

δα
λmfp

αn∇∥Tα, (95)

that has to be solved along field lines for every n. The total heat flux is then the
sum qLF∥α =

∑
n q

LF
∥α,n. The computational cost of the method is thus optimal at higher

collisionality, where only a few Lorentzians are required.

2.3 Drift reduced fluid equations

This part is based on [73].
Until now no restrictions on the fluid equations have been imposed, which means

dynamics of all timescales are still present, ranging from the electron cyclotron frequency
ωce ≈ 1011 1/s (for B ≈ 1T) and ion cyclotron frequency ωci ≈ 108 1/s over the typical
time scale of turbulent fluctuations of the order of µs up to confinement time scales of
the order of s. Since we are interested in the relatively slow turbulence of the order of µs
it is important to eliminate the fast time scales. The ordering which is used for the drift
reduction consists of three assumptions

ω ∼ ∂

∂t
≪ ωci, k∥ ≪ k⊥, k⊥ ≫ ∇B

B
, (96)

where the first means the considered time scales ω are slow in comparison to the ion
gyro frequency. The second assumption states that turbulent structures are elongated
along field lines, this approximation is called ’flute-mode’ approximation and is robustly
valid in magnetised plasmas [9]. The flute-mode approximation implies that parallel
and perpendicular dynamics are strongly separated. The third assumption says that
the perpendicular turbulent scales are much smaller than the length scale over which
the magnetic field changes. With this ordering we can derive ’drift-reduced’ equations,
starting from the fluid equations obtained by taking moments over the kinetic equation
eqs. (15) to (17). They are called drift-reduced since effectively we are splitting the
dynamics into the fast gyro-motion and the slow drifts, with the application of the ordering
eq. (96) we eliminate the fast gyro-motion and we are left with the drift-velocities. As
explained in [74], the electric field within the drift approximation is given by

E = −∇ϕ− ∂

∂t
A∥, (97)

which means the electric field is electrostatic in perpendicular and electromagnetic in
parallel direction. We begin with the momentum equation eq. (16) and take the perpendic-
ular component of it by applying B/B2× to the equation. We find for the perpendicular
velocities
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ve⊥ =
B ×∇ϕ

B2
− B ×∇pe

enB2
− 1

ωce

b× de

dt
ve

= vExB + ve
dia +O

(
de/dt

ωce

)
,

(98)

vi⊥ =
B ×∇ϕ

B2
+

B ×∇pi
enB2

+
1

ωci

b× di

dt
vi +

c

enB2
B ×∇ · Pi

= vExB + vi
dia + upol +O

(
di/dt

ωci

)2

,

(99)

with the polarisation velocity

upol = − Mi

eB2

[
∂

∂t
+
(
u∥b̂+ vExB

)
· ∇
](

∇⊥ϕ+
1

en
∇⊥pi

)
+

b̂

enB
×∇ · Π̃i, (100)

which is one order O((di/dt)/Ωi) smaller than the other velocities, although its di-
vergence is of the same order. Therefore the polarisation velocity is neglected, unless it
appears under a divergence.

We will not do the full derivation of all drift-reduced equations necessary for our plasma
model here, where we would obtain a continuity equation, quasineutrality equation, an
equation for momentum balance and Ohm’s law, an electron and ion temperature equation
and an equation for Ampére’s law. For this full derivation, we refer to [73]. However, as
an example, we will derive the drift-reduced electron temperature equation from eq. (17).
In the first step, we note that the electron stress tensor Πe is about a factor (me/mi)

1/2

smaller than the ion stress tensor, therefore it is neglected. We find

3

2
n

[
∂

∂t
+ ve · ∇

]
Te = −pe∇ · ve −∇ · qe −Πe ⊗∇ve + (Qe −Q∆)

3

2
n

[
∂

∂t
+ vExB + ve

dia · ∇+ v∥∇∥

]
Te = −pe∇ ·

(
v∥b̂+ vExB + ve

dia

)
−∇ · qe + (Qe −Q∆).

(101)

We insert the full expression of the electron heat flux

qe = q∥ −
5

2

pe
eB

b̂×∇Te − 0.71
Te

e
j∥b̂ (102)

and the terms for the frictional ohmic heating for electrons Qe = η∥j
2
∥−0.71(j∥/e)∇∥Te

and the heat exchange Q∆ = 3nme(Te − Ti)/(Miτe). The diamagnetic velocity in the
advective derivative cancels with the second term of the electron heat flux in eq. (102),
which is known as diamagnetic cancellation. After inserting all the terms and a few lines
of algebra we arrive at the drift-reduced electron temperature equation
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3

2
n

[
∂

∂t
+ uExB · ∇+ v∥∇∥

]
Te =− Te

(
∇× b̂

B

)
· ∇ϕ− Te

n

(
∇× b̂

B

)
· ∇pe

− Te∇ ·
(
v∥b̂
)
+

1

n
∇ · q∥ +

5

2

Te

e

(
∇× b̂

B

)
· ∇Te

+ 0.71
Te

en
∇ · j∥b̂+

1

n
η∥j

2
∥ −

3me

Mi

(Te − Ti)

τe
.

(103)

The same procedure can be applied to all other equations to obtain their drift-reduced
form. To obtain the ion temperature equation is a bit more intricate since one has to deal
with the ion stress tensor, however, for an extended derivation we refer once more to [73].
The important message for this thesis is that the closure assumption on q∥ is not changed
by the drift-reduction as we can see in eq. (103).

2.4 Chapter summary

Within this chapter, we derived plasma fluid equations and showed, why closure approx-
imations are necessary for fluid models to become applicable. For the Braginskii closure,
we derived its dependencies employing random walk estimates. Furthermore, we derived
the exact closure for a plasma under the Lorentz approximation, i.e. infinitely heavy
ions. The Braginskii closure for hydrogen was stated and an explanation, of why the
closure for q∥ is the most fragile part for low collisionality, was given. Flux limiters were
introduced as a simple way to extend the validity into the direction of low collisional-
ity. The Hammett-Perkins closure was introduced and the motivation for including linear
Landau-damping into a fluid model via this closure was explained with the help of re-
sponse functions. Response functions of different closures were calculated and compared.
Finally, the Landau fluid was presented as a more sophisticated extension of the Braginskii
closure for low collisionality. The Landau fluid closure corresponds for the limiting case of
high collisionality to the Braginskii closure and for the limiting case of high collisionality
to the Hammett-Perkins closure. Finally, it was shown how to transform the Landau fluid
closure elegantly into configuration space and that it is unaffected by the drift reduction.
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3 One-dimensional toy model
Parts of this chapter are reproduced from C. Pitzal, A. Stegmeir, W. Zholobenko, K.
Zhang, and F. Jenko, “Landau-fluid simulations of edge-SOL turbulence with GRILLIX,”
Physics of Plasmas, vol. 30, no. 12, 2023., with the permission of AIP Publishing.

In this chapter, we want to investigate the behaviour of the presented fluid closures for
the parallel conductive heat flux in a simple environment, yet one that offers new insights.
Therefore we use a 1D toy model, that represents the parallel direction. In this toy model,
we prescribe a temperature and optionally a density profile and calculate the heat fluxes
predicted by the different closures. We will investigate the Braginskii, Hammett-Perkins
and Landau-fluid closure with respect to collisionality, different boundary conditions, the
contributions of the single Lorentz functions and an example with a more advanced ana-
lytical profile. For the whole chapter, we only consider electrons, since the only difference
in their treatment is to change a numerical parameter, therefore the index for species is
omitted.

3.1 Implementation

Since in real geometry, the parallel heat flux is the one-dimensional quantity, a one-
dimensional toy model should be well suited to describe and explore the most fundamental
properties of these heat flux models. To perform tests in a simple environment, a small
FORTRAN code was written to calculate the heat fluxes predicted by different heat-flux
closures. The code works in a 1D geometry, where various boundary conditions and
different solvers were tested, both simple iterative and direct solvers. First, we derive
the normalized versions of eq. (60), eq. (88) and eq. (95). For the normalisation of this
1D model, we need to define a reference temperature T0, a reference density n0 and a
reference length L∥. We want to keep this toy problem already close to the application,
which will be a GRILLIX simulation of the edge region of the ASDEX Upgrade Tokamak.
Therefore typical ASDEX Upgrade edge parameters are used for the normalisation, i.e.
T0 = 100 eV, n0 = 1.0 × 1019m−3 and L∥ = q95R0 = 4 · 1.65m = 6.6m the parallel
connection length. We also calculate here (partly out of curiosity) the normalisation of
the thermal velocities in m/s for electrons, since ions are not considered in this chapter.
We find

vth,0 =

√
T0

me

≈ 4.1938× 106m/s = 4193.8 km/s. (104)

However, for the normalisation of the heat flux, we use the thermal free streaming heat
flux q0 = T0vth,0n0 and for the heat conductivity follows κ0 = L∥vth,0n0. We investigate
the following equations along the parallel direction denoted by the normalised parallel
coordinate x. The different heat fluxes take a simpler form in normalised quantities, we
start with the Braginskii heat flux (eq. (60))

q̂BR = − κBR

n0T0vth,0
∇∥T = −3.16nv2thτ

n0T0vth,0
∇∥T = −3.16 vth,0τ0

L∥
T̂ 5/2 ∂T̂

∂x
, (105)

where quantities with a hat f̂ are normalised ones. The Hammett-Perkins heat flux
(eq. (88)) takes the form
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[
−∇2

∥ + (k0α
n)2
]
qn∥ = −nvth

√
8/πk0α

nβ∇∥T

⇔
[
− ∂2

∂x2
+ (L∥k0α

n)2
]
q̂n∥ = −L∥

√
8/πk0α

nβ n̂T̂ 1/2 ∂T̂

∂x

(106)

in normalised units. And finally, the Landau-fluid heat flux (eq. (95)) becomes

[
−∇2

∥ +
δ2

λ2
mfp

β2
n

]
qn∥ = −nvth

√
8/παn

δ

λmfp

∇∥T

⇔
[
− ∂2

∂x2
+ (

δ

λmfp

L∥βn)
2

]
q̂n∥ = −L∥

√
8/παn

δ

λmfp

n̂T̂ 1/2 ∂T̂

∂x

⇔

[
− ∂2

∂x2
+

(
L∥δβn

vth,0τ0

)2(
n̂

T̂ 2

)2
]
q̂n∥ = −

√
8/παnδ

vth,0τ0L∥

(
n̂2

T̂ 3/2

)
∂T̂

∂x
.

(107)

For this simple model, we already use a canonical and dual grid, which has half in-
dices. This is done to mimic the numerical setup of GRILLIX, which will be explained in
the following chapter. An illustration of the dual and canonical grids can be seen in fig. 17.

i = 0 i = 1/2 i = 1 i = 3/2 i = 2 i = 5/2 i = 3 i = 7/2 i = 4 i = 9/2

Figure 17: Canonical grid points in blue and dual ones in orange

Until further notice, we investigate a periodic system, which means in simple terms
that the points i = 9/2 and i = 0 are connected in fig. 17 to close the loop. The blue points
where the index is an integer belong to the canonical grid, while the orange points with
half-integer indices form the dual grid. Within the discretisation, the temperature lives on
the canonical grid, while the parallel heat flux lives on the dual grid. The discretisation
of the first and second-order derivatives in eqs. (105) to (107) standard finite differences
are used.

To solve the linear equation system of equations, that arises by discretising the elliptic
equations for the Hammett-Perkins and the Landau-fluid heat flux, an iterative Jacobi
and Gauss-Seidel algorithm [75] was implemented and additionally, a direct solver which
employs the Thomas algorithm [76].

3.2 Dependency on collisionality

The very first point to investigate with our numerical tool is to calculate the Braginskii,
Hammett-Perkins and Landau-fluid heat flux for a test case. The setup can be thought
of as a temperature perturbation along a closed field line in the edge region of a fusion
device. A temperature distribution of the form

T̂ (x) = 1 + 0.3 exp(−x2/σ) (108)
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3 One-dimensional toy model 3.2 Dependency on collisionality

is used, with σ = 0.5m/L∥ ≈ 0.076 and T0 ∈ {3 eV, 30 eV, 300 eV}, which is shown in
fig. 19a. Periodic boundary conditions are used here. For this investigation, we consider
spatial distribution and magnitude of the heat fluxes separately, i.e. we normalise all
heat fluxes to a peak value of 1 and plot their spatial distribution in fig. 19b, fig. 19c
and fig. 19d. The magnitudes of the peak heat fluxes we used for the normalisation are
visualised in fig. 18. The Landau-fluid closure behaves in this numerical one-dimensional
experiment exactly as we would expect from theory. For low temperature T0 = 3 eV,
i.e. high collisionality, the Landau-fluid closure matches the Braginskii-closure in form
(see fig. 19b) and in magnitude (see fig. 18). For high temperature T0 = 300 eV, i.e.
low collisionality, it matches the Hammett-Perkins-closure (see fig. 19d). For the case in
between T0 = 30 eV the form of the Landau-fluid heat flux is in between the two other
heat-flux closures and the magnitude is lower than the two other heat closures, which is
in line with the theoretical behaviour in fig. 15.
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Figure 18: Magnitudes of the peak heat flux proposed by the Braginskii, Hammett-Perkins
and Landau-fluid closure for three different values of T0

Furthermore, we observe a non-locality in the Hammett-Perkins heat flux and the
Landau-fluid one for low collisionality. By non-local we mean heat fluxes in regions where
no local temperature gradient is present and a local heat flux model as the Braginskii
closure would predict no heat flux, in fig. 19a this corresponds to x > 0.3. Here we
confirm the observation of non-local behaviour as already reported in Chen et al. [46].

42



3 One-dimensional toy model 3.2 Dependency on collisionality

0.4 0.2 0.0 0.2 0.4
Spatial position / L

1.0

1.1

1.2

1.3

Te
m

pe
ra

tu
re

 / 
T 0 Initial temperature

(a) Initial Gaussian temperature profile

0.4 0.2 0.0 0.2 0.4
spatial position / L

1

0

1

he
at

 fl
ux

 / 
q

0

Braginskii *  2.79e+02
Hammett-Perkins *  3.50e+00
Landau-fluid *  2.80e+02

(b) Heat fluxes with T0 = 3 eV
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(c) Heat fluxes with T0 = 30 eV

0.4 0.2 0.0 0.2 0.4
spatial position / L

1

0

1

he
at

 fl
ux

 / 
q

0

Braginskii *  4.44e-02
Hammett-Perkins *  3.50e+00
Landau-fluid *  3.48e+00

(d) Heat fluxes with T0 = 300 eV

Figure 19: Initial temperature profile and normalised heat fluxes proposed by the Bragin-
skii, Hammett-Perkins and Landau-fluid closure for different values T0. Note the scaling
of the heat fluxes in the legends, all are plotted with a maximum value of 1.0 to compare
the spatial distribution
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3.3 Boundary conditions

Different boundary conditions can be applied to the Landau-fluid heat flux within the
system, namely periodic boundary conditions representing closed field lines in a fusion
device and Dirichlet boundary conditions representing parallel boundary conditions at the
intersection of open field lines with a limiter or divertor. Neumann boundary conditions
would be possible, but since there is no physical motivation to apply them as parallel
boundary conditions to the heat flux, they are not considered here.

How to set boundary conditions at the divertor targets is described in detail in [63].
There is no physical motivation for a boundary condition applied in the temperature
directly. Due to considerations regarding the plasma sheath, there are so-called sheath
boundary conditions. They can be applied to a fluid model and they contain an expression
for the heat flux at the targets, which is

qα∥,bnd = γsh,αnTαu∥, (109)

with γsh,α the sheath transmission coefficient and u∥ = cs reaches sound speed at the
targets according to the Bohm criterion (see also [63]). The values of γsh,α are determined
by the divertor material and its secondary electron emission coefficient. According to
[63] and calculated for the ASDEX Upgrade tungsten divertor in [40], the relevant values
are γsh,e ≈ 1.0 and γsh,i ≈ 0. To test Dirichlet boundary conditions with a finite value,
corresponding to the boundary condition for the parallel electron heat flux, and with
a value of zero, corresponding to the boundary condition for the parallel ion heat flux,
we take the same setup as in section 3.2. Here we look just at the right half of the
domain x ∈ (0, 0.5). Two different temperatures are used T0 = 30 eV and T0 = 300 eV.
We investigate just the Landau-fluid closure since the Hammett-Perkins closure behaves
nearly identically to the Landau-fluid case at T0 = 300 eV. In fig. 20 the Landau-fluid heat
fluxes are plotted with Dirichlet boundary conditions of q∥,bnd = 0 and q∥,bnd = 0.1 are
plotted. The case with periodic boundary conditions matches the Dirichlet case qbnd = 0
exactly and is omitted therefore in fig. 20. Aside from the observation that the boundary
value at x = 0.5 is approached smoothly by the model, we note that also the peak value
of the heat flux around x = 0.1 is increased, which might play a role for heat fluxes in the
scrape-off layer of a fusion device.
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Figure 20: Dirichlet boundary conditions with different values qbnd applied to the Landau-
fluid closure for T0 = 30eV and T0 = 300eV

44



3 One-dimensional toy model 3.4 Single Lorentz functions

Regarding the Braginskii closure, this sheath boundary condition has to be applied
as a Neumann boundary condition on the temperature, since the heat flux is evaluated
locally according to the gradient of temperature. Therefore strong parallel gradients in
temperature have to build up near the targets to match the sheath boundary conditions.
This is a major difference from the Landau-fluid closure, where temperature gradient
and heat flux are decoupled. Neumann boundary conditions were not implemented into
the 1D model, since they were not relevant for the Landau-fluid closure and this kind of
boundary conditions were already implemented and used in GRILLIX. Therefore no plot
for the Braginskii closure is added here.

3.4 Single Lorentz functions

The contributions of the single Lorentz functions are investigated. Therefore we use again
the medium collisional case with T0 = 30 eV from section 3.2 since the magnitudes of all
three models are comparable here and therefore the heat fluxes can be plotted without
normalising them to max(q) = 1 as we did in fig. 19. Additionally, we plot in fig. 21 the
contribution of every single Lorentzian function. We observe that mainly the Lorentzians
n = 2 and n = 3 contribute to the total heat flux. Furthermore, we note that the lower
active Lorentzians are important for the non-local behaviour of the heat fluxes, here n = 2.

Figure 21: Heat fluxes and single Lorentzians of the Landau-fluid closure for T0 = 30eV

What happens if we decrease the collisionality by increasing the temperature in our
toy model? For this investigation, we just keep the Landau-fluid heat flux and use again
the initial Gaussian temperature distribution from eq. (108) with the same value for σ
and the values T0 ∈ {30 eV, 300 eV, 1000 eV, 6000 eV} for the background temperature.
In fig. 22 the total heat flux predicted by the Landau-fluid closure plus the contribution
of the single Lorentz functions are plotted. We observe that with increasing temperature
(so decreasing collisionality) the higher-numbered Lorentzians carry the heat flux, which
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(a) Lorentz functions for T0 = 30 eV (b) Lorentz functions for T0 = 300 eV

(c) Lorentz functions for T0 = 1000 eV (d) Lorentz functions for T0 = 6000 eV

Figure 22: Total Landau-fluid heat flux and the contribution of the different Lorentz
functions for 4 different temperatures
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is consistent with fig. 16b. The total heat flux increases from T0 = 30 eV to T0 = 300 eV,
but stays constant from T0 = 300 eV to T0 = 1000 eV, which is in line what we already
observed in fig. 18. With the last case T0 = 6000 eV we can observe what happens
when the number of Lorentz functions is too little to describe this regime of collisionality
adequately. The highest Lorentz function is reached, the total heat flux becomes less
peaked and the magnitude of the total heat flux is underestimated. For even higher
temperatures the magnitude of the heat flux becomes smaller and approaches a value of
zero in the limit of infinitely high temperatures.

3.5 Examples with analytical initial conditions

Two examples are presented here to gain more intuition about how the Landau-fluid heat
flux module behaves and reacts. The first case is kept close to the Gaussian tempera-
ture distribution, that was used already. The distribution is modified by adding a small
perturbation on top

T̂ (x) = 1 + 0.3 exp(−x2/σ) + 0.006 cos(50x), (110)

Figure 23: A modified initial state and the corresponding heat fluxes plus Lorentzians

with the form of a cosine function, which varies on smaller spatial scales than the
Gaussian does. With this initial condition, we can mimic a perturbation that has different
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3 One-dimensional toy model 3.6 Chapter summary

components in the one-dimensional wave vector k. From fig. 16b one would assume that
not only larger values of λmfp are carried by higher-numbered Lorentz functions, but also
structures with a higher value in k, since the variable on the abscissa is x = k∥λmfp/δe.
This behaviour is also seen in fig. 23, where the structure with large k, so a small parallel
wavelength is carried by Lorentz function with higher numbers in comparison to the
larger structure arising from the Gaussian component. The Braginskii closure predicts
significantly larger fluctuation amplitudes of the heat flux along the parallel direction,
since here just the local temperature gradient plays a role. For the Landau-fluid and
Hammett-Perkins closure, the heat fluxes are smoother due to the non-local effects, which
can be thought of as a convolution from a mathematical point of view, as it was shown
in section 2.2.8.

3.6 Chapter summary

Within this chapter, we explained how we set up a 1D model for testing the different
fluid closures. A test with different values of collisionality was performed by varying the
background temperature. All three closures behaved as expected from the theory section.
We showed, that in this implemented 1D setup, the Landau fluid closure reproduces
the Braginskii closure for high collisionality and the Hammett-Perkins closure for low
collisionality, both in magnitude and spatial distribution. Furthermore, the Hammett-
Perkins and the Landau-fluid closure predicted non-local heat fluxes. The application
of Dirichlet boundary conditions necessary to imply sheath boundary conditions to the
Landau fluid closure was successfully tested. Furthermore, the behaviour of the single
Lorentz functions was examined for different values of collisionality. We saw that the
heat flux is carried by higher-numbered Lorentzians with lower collisionality, while the
lower-numbered active ones are responsible for the non-locality. We showed that for low
values of collisionality, which are beyond the range of validity of the model, the heat flux
is underestimated. Lastly, we observed that for a temperature distribution with small-
scale and large-scale dependencies, the corresponding heat fluxes are carried by different
Lorentzians, as they correspond to different values of the wave number k.
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4 Implementation into the edge turbulence fluid code
GRILLIX

This chapter is used for introducing the flux-coordinate-independent (FCI) approach,
where we mainly follow [77, 48]. Special focus is put on the treatment of parallel op-
erators, as they are important for the implementation of the Landau-fluid closure. The
normalisation of GRILLIX is stated as well as the full normalised Landau-fluid equation,
that is implemented into GRILLIX. We explain where magnetic flutter enters the Landau-
fluid equation and how it is treated. The implementation is tested with the method of
manufactured solutions and by comparing a test case to the one-dimensional toy model. A
few simple tests utilising the geometric capability of GRILLIX for the Landau-fluid model
are shown. Lastly, the numerical algorithm, which is used currently and alternatives that
might be more efficient are discussed.

4.1 Discrete formulation

4.1.1 Flux-coordinate-independent approach

Modelling the edge region of magnetic confinement fusion devices entails the necessity
of crossing the separatrix. Commonly used field-aligned coordinate systems, which have
a large computational benefit due to exploiting the flute-mode character of turbulence,
cannot be used here, since this coordinate system becomes singular at the separatrix. A
method which enables simulations across the separatrix and still exploits the flute-mode
character is the FCI approach. Herein the coordinate system consists of poloidal planes,
which themselves are organised in an equidistant unstructured grid. The grid points of a
plane are accessed via their indices in a one-dimensional array. In fig. 24a the index of
each point is colour-coded to visualise the ordering of the unstructured grid. In between
the planes, the magnetic field is traced until it intersects the following plane, where the
intersection point is interpolated using the neighbouring grid points, as shown in fig. 24b.
The discretization inside a poloidal plane is straightforward, since the grid is equidistant,
it can be viewed for practical reasons as Cartesian.

The discretization along the parallel direction is more challenging. We explain briefly
the key concepts for constructing parallel operators within the FCI approach, wherein we
have to trace magnetic field lines along the parallel direction. A magnetic field line γ(φ)
with a starting point γ(0) is parameterised in cylindrical coordinates (x = R,φ = φ, y =
Z) via

γ̇(φ) =

Bx/Bφ

1
By/Bφ

 with γ(0) =

x0

0
y0

 , (111)

with Bx, Bφ and By the components of the magnetic field in the corresponding direc-
tions. With the parameterisation we can find any point along the magnetic field line by
performing the integral

γ(φ) = γ(0) +

∫ φ

0

γ̇(φ′) dφ′. (112)
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(a) Indices of points of the un-
structured grid in a poloidal plane

(b) Field line tracing between planes, taken from [20]

Figure 24: Visualisation of the FCI approach

The arclength s(φ) along the field line γ(φ) is parameterised via

ṡ(φ) =
|B(γ(φ))|
Bφ(γ(φ))

with s(0) = 0, (113)

with B the total magnetic field. The value of s is determined by a similar integral as
eq. (112). Suppose we start at a point (x0, 0, y0) and follow the corresponding field line
a toroidal distance of ∆φ until we intersect the following plane. We find the field line
intersecting at the coordinates γ(∆φ) = (xP ,∆φ, yP ). Since the points (xP , yP ) on the
following poloidal plane k+1 will most likely not coincide with a grid point, it is necessary
to interpolate between the neighbouring grid points (xi, yi). For some variable u we use
the notation u(xP ,∆φ, yP ) = uk+1(xP , yP ) on one discrete plane. The interpolation can
be written as

uk+1(xP , yP ) =
∑
i

ciuk+1(xi, yi), (114)

with ci the interpolation coefficients and (xi, yi) the coordinates of a stencil of neigh-
bouring points. By performing this task for every single grid point j an interpolation
matrix C can be constructed and stored, which has the interpolation coefficients as en-
tries C

∣∣
ij
= cij. With the help of these interpolation matrices, we are able to construct

parallel operators. One major limitation of the FCI approach becomes apparent here, since
the construction of the interpolation matrices is computationally expensive, a constant
background magnetic field B0 is favourable because the field line tracing has to be done
once. For strong changes in the background magnetic field, however, the interpolation
matrices would have to be updated regularly.

As we mentioned in the previous chapter for the parallel direction the grid implemented
in GRILLIX consists of a canonical grid G with indices k ∈ {0, 1, 2, ...} and a dual grid
G⋆ with indices k ∈ {1/2, 3/2, 5/2, ...}. These grids are needed for the construction of
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parallel operators according to the support operator method [78]. With this method of
constructing parallel operators some conservation laws that hold true for the continuous
formulation of equations can be maintained in the discrete formulation, for further details
we refer to [78].

We focus now on the parallel gradient, which takes quantities from the canonical grid
as input and computes quantities on the dual grid, and the parallel divergence, which
works vice versa

∇∥u : G ⇒ G⋆,

∇ · (bu) : G⋆ ⇒ G,
(115)

with the parallel unit vector b = B/B. The calculation of the parallel gradient on the
plane k + 1/2 at the point (x0, y0) via a finite difference involves the intersection points
(x+

P , y
+
P ) on the forward plane k + 1 and (x−

P , y
−
P ) on the backward plane k. The parallel

gradient reads in the standard form of a central finite difference

(
∇∥u

)
k+1/2

(x0, y0) =
uk+1(x

+
P , y

+
P )− uk(x

−
P , y

−
P )

s(∆φ/2) + s(−∆φ/2)
. (116)

where the toroidal distance is ∆φ/2 in forward and backward direction. A visualisation
of the intersecting magnetic field lines is shown in fig. 25.

Figure 25: Visualisation of a magnetic field line intersecting neighbouring planes in the
FCI approach an a flux box volume in two dimensions, taken from [20]

Since these points have to be interpolated in the poloidal plane, we can rewrite this
simple finite difference for all grid points l, arranged in a vector, at once by using inter-
polation matrices

(
∇∥u

)
l,k+1/2

= Q · u
∣∣
l,k+1/2

=
(Cfwd · uk+1 −Cbwd · uk)l

sl,k+1/2(∆φ/2) + sl,k+1/2(−∆φ/2)
, (117)

where Q is the complete matrix representation of the parallel gradient, while Cfwd and
Cbwd are the interpolation matrices for the forward and backward neighbouring plane.

The parallel divergence is now constructed according to the support operator method
[78]. The important property, which is kept from the continuous level towards the discrete
one with this method, is the following
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∫
V

u∇ · (b∇∥v) dV = −
∫
V

∇∥u∇∥v dV +

∫
∂V

..., (118)

where the integral over the boundary of the volume is dropped, as this has to be
addressed via boundary conditions and is therefore treated separately. Note that for the
discrete version the integrand of the left integral is living on the canonical grid, while the
integrand of the right integral is living on the dual grid. Therefore the finite volumes,
which approximate the integrals, are not the same. A visualisation of a flux box volume
in two dimensions is shown in fig. 25. If φ = 0 at the canonical plane k = 0 The volume
of the left integral is

V =

∫ ∆φ/2

−∆φ/2

A(φ)γ(φ) dφ (119)

and for the right integral it is

Λ =

∫ ∆φ

0

A(φ)γ(φ) dφ, (120)

which is not necessarily the same. A(φ) = A(0)Bφ(0)/Bφ(γ(φ)) is the cross-section of
the flux box we are following due to magnetic flux conservation and A(0) = h2 with h the
grid spacing. Now we are able to translate the formula above into its discrete formulation∑

α,β,γ

uαPα,βQβ,γvγVα = −
∑
µ,ν,ξ

Qµ,νuνQµ,ξvξΛµ, (121)

where Pα,β denotes the parallel divergence and Vα the finite flux box volume of grid
point α on the canonical grid G and Λµ the flux box volume of grid point µ on the dual
grid G⋆. Since this equation has to hold true for any u and v we find after renaming the
indices

Pα,β = −Qβ,α
λβ

Vα

(122)

by interpreting V and Λ as diagonal matrices with the corresponding flux box volumes
as entries, we can write the equation as

P = −V −1QTΛ. (123)

With this method of constructing the parallel divergence, we make sure that the
parallel divergence is the negative adjoint operator with regard to the parallel gradient
also on the discrete level. Therefore the property of eq. (118) is conserved also in the
discrete formulation up to machine precision.

4.1.2 Landau-Fluid closure as 3D-problem

During the construction of parallel operators, we recognised that they become three-
dimensional in the framework of FCI, in comparison to flux-aligned coordinate systems,
where they stay one-dimensional. We take a look at the equation for the Landau-fluid
heat flux eq. (95) again
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(
δα βn

λmfp

)2

qLF∥α,n −∇∥
(
∇ ·
(
b qLF∥α,n

))
= −A

δα
λmfp

αn∇∥Tα, (124)

which we write down here ad hoc in terms of the available parallel operators, which
are the parallel gradient and divergence. This equation lives on the dual grid since q∥ is
defined on the dual grid, as well as the gradient of the divergence of q∥ and the gradient of
temperature. Since the temperature is a known quantity, the evaluation of the right-hand
side can be done with a simple matrix-vector multiplication. The left-hand side can be
written as a matrix A = QTQ, with the sparse matrix Q. The first term of eq. (124)
is a diagonal matrix and the second term a matrix including off-diagonal elements. The
whole equation can be written as

A · q = r, (125)
with q the vector of all values of the parallel heat flux and r the right-hand side of

the equation. Since the problem is three-dimensional, the vector q has a length of N ×P
with N the number of points per plane and P the number of planes. The Matrix A has
therefore the dimension (N × P )× (N × P ), but is sparse. In GRILLIX a parallelisation
is used across the poloidal planes, where every plane is handled by a separate process
of the Message-Passing-Interface (MPI). The matrix A is usually too large for the usage
of direct solvers, so iterative methods are considered. To avoid the necessity of building
the dense matrix A, the PIM (Parallel Iterative Methods) library [79] is used, which just
needs information about the sparse matrices Q and QT . This library provides a set of
parallel matrix-free methods that can solve equations of type eq. (125), which are spread
across different MPI processes with a low communication effort and without building a
global matrix.

4.1.3 Parallel boundary conditions

There are perpendicular and parallel boundary conditions present in GRILLIX. The per-
pendicular ones are treated numerically in a rather standard way as expected for an
unstructured equidistant grid. For parallel heat flux, the perpendicular boundary con-
ditions are homogeneous Neumann boundary conditions. There is no major influence
of these boundary conditions expected and found since buffer zones, particle and heat
sources are active as well in the regions where the perpendicular boundary conditions are
applied. In FCI the parallel boundary conditions are enforced as source terms within
an immersed boundary method [37, 80]. Therefore a penalisation function χ is defined
with a value of χ = 0 inside the domain and χ = 1 where the boundary conditions are
applied. The transition between the two domains happens smoothly and can be tuned
via a penalisation strength 1/ϵ. The penalisation is visualised in fig. 26.

With this penalisation function, the parallel boundary conditions are added as explicit
terms to the equations we want to solve, so an equation of the form of eq. (125) reads
then

(1− χ)A · q +
χ

ϵ
q = (1− χ) r +

χ

ϵ
qbnd, (126)

with qbnd the value of the Dirichlet boundary condition, which is opposed here. The
parallel boundary conditions applied to the heat flux at the divertor targets are sheath
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Figure 26: Penalisation function χ, which reaches from 0 to 1 and immerses the parallel
boundary conditions

boundary conditions, defined in eq. (131), as proposed e.g. in [63]. Regarding the Landau-
fluid closure, sheath boundary conditions can be applied directly to the heat flux as a
Dirichlet boundary condition. For the Braginskii closures, on the other hand, sheath
boundary conditions have to be applied via Neumann boundary conditions on the tem-
perature.

4.1.4 Magnetic flutter in FCI

The effect of magnetic flutter was implemented into GRILLIX recently [50]. We investi-
gate shortly the consequences of magnetic flutter on the implementation of the Landau-
fluid closure for the parallel heat flux. The effect of magnetic flutter corresponds physically
to small perturbations B1 = ∇ × A∥ of the background magnetic field B0 lines due to
turbulent fluctuations in the parallel vector potential A∥. A background and perturbed
magnetic field line is visualised (not to scale) in fig. 27

The treatment of magnetic flutter within the FCI approach modifies parallel operators,
e.g. the parallel gradient takes the form

∇∥f =
B0

B0

· ∇f − B0

B2
0

·
(
∇A∥ ×∇f

)
, (127)

where the term including the fixed magnetic background B0 is treated internally still
via stored mapping matrices, as explained at the beginning of this chapter. The deviation
from the B0 due to magnetic flutter is treated via a perpendicular correction term. In the

54



4 Implementation into the edge turbulence fluid code GRILLIX 4.2 Implementation

Landau-fluid closure eq. (124) this modification of parallel operators applies to the parallel
gradient of temperature on the right-hand side and the second-order parallel derivative
on the left-hand side. In globally aligned approaches the inclusion of magnetic flutter
on the right-hand side of eq. (124) is easy to implement and works the same way as
including magnetic flutter in the temperature gradient of a Braginskii-type closure [65].
On the other hand, due to the implementation of the left-hand side, many advantages of
field-aligned codes are lost, since the originally one-dimensional problem would become
three-dimensional. However, since the parallel operators are already three-dimensional in
the framework of FCI the inclusion of both terms is natural and quite straightforward.

Figure 27: Visualisation of magnetic flutter with a background magnetic field line B0 and
a small perturbation B1, not to scale

4.2 Implementation

4.2.1 Implemented Landau-fluid equation

The current set of equations employed by GRILLIX is listed in appendix A. Two equa-
tions need to be adapted, namely the two temperature equations (eq. (151), eq. (152)), in
which the Braginskii expressions (eq. (60)) for q∥e and q∥i are replaced by the Landau-fluid
expressions (eq. (95)). In order to solve the model equations numerically, the normali-
sation of GRILLIX has to be applied to eq. (124). The magnetic field is normalised by
B0, the density by n0, the temperatures via Te0 and Ti0, the electrostatic potential by
Te0/e, the parallel velocities by sound speed cs0 =

√
Te0/Mi, the current by cs0en0, the

perpendicular length scales by ρs0 = c
√
Te0Mi/(eB0), the parallel length scales by R0, the

time by R0/cs0 and the parallel component of the magnetic vector potential by β0B0ρs0,
with β0 = 4πn0Te0/B

2
0 .

After applying penalisation and expressing quantities in their normalised versions,
starting from the Landau-fluid equation eq. (95) we arrive at

χe
∥0
√
µ

3.16δeαn

√
8/π

(1− χ)

( 3.16δe
χe
∥0
√
µ

n̂

T̂ 2
e

βn

)2

− ∇̂∥

(
∇̂ · b

)+
χ

ϵ

 q̂∥e,n

= − (1− χ)
1
√
µ

n̂2√
T̂e

∇̂∥ log T̂e +
χ

ϵ
q̂∥e,n,bnd,

(128)
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χi
∥0ζ

−1/2

3.9δiαn

√
8/π

(1− χ)

( 3.9δi
χi
∥0ζ

−1/2

n̂

T̂ 2
i

βn
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χ

ϵ
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= − (1− χ)
√
ζ

n̂2√
T̂i

∇̂∥ log T̂i +
χ

ϵ
q̂∥i,n,bnd,

(129)

where a hat indicates normalised quantities, µ = me/Mi is the mass ratio between
electrons and ions, ζ = Ti0/Te0 the ratio of normalised ion and electron temperature and
b = B0/B0 is the unit vector in the direction of the magnetic field, which is the parallel
direction. The parallel derivatives on the left-hand side act on ∇∥(∇· (bq̂∥,n)). The factor
χα
∥0 is the normalised Braginskii heat conductivity which is

χα
∥0 =

{
3.16 cs0τe0/ (µR0) for electrons,
3.9 cs0τi0ζ/R0 for ions.

(130)

The parallel boundary condition q̂∥α,bnd take the form [63]

q̂∥e,n,bnd =

±
γsh,e

√
µχe

∥0n̂T̂e

√
T̂e+ζT̂i

3.16δeαn

√
8/π

for n = 1,

0 for n ̸= 1,
(131)

q̂∥i,n,bnd =

±
γsh,iχ

i
∥0n̂T̂i

√
T̂e+ζT̂i

3.9δi
√
ζαn

√
8/π

for n = 1,

0 for n ̸= 1,
(132)

with γsh,α the conductive sheath heat transmission factor, which has a value of γsh,e =
1.0 for electrons and γsh,i = 0.1 for ions in the presented simulations of ASDEX Upgrade
in the following two chapters. The factor ±1 corresponds to the outer and inner divertor
leg. The implementation of the eqs. (128) and (129) is checked via MMS and explained
in more detail later.

4.2.2 Solvers

Due to the size of the three-dimensional problem we aim to solve, direct solvers are no
option. Until now for solving the set of elliptic equations of the Landau-fluid closure a
robust GMRES (Generalised Minimal RESidual) algorithm provided by the PIM library
[79] is used, which also offers matrix-free methods as mentioned before. To speed up
convergence a Jacobi preconditioner is used. The GMRES algorithm [81] belongs to the
class of Krylov-subspace solvers and is applicable to a wide range of problems since the
matrix A has to be only invertible, without further criteria. However, for the presented
problem we know about additional properties of our matrix A. By constructing parallel
operators via the support operator method, we find the discrete version of the second
derivative in eq. (124)

∇∥ (∇ · (bf)) ⇒ QP f, (133)

where P = −V −1QTΛ. The first term on the left-hand side of eq. (124), can be
ignored here since it corresponds to a diagonal matrix. The matrix QP is by construction
self-adjoint, as P is derived from Q to keep this property on the discrete level (eq. (123))
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Furthermore, the matrix QP is symmetric up to the flux bx volumes. When ignoring
the box volumes for a moment by assuming Vβ/Λα ≈ 1 ∀ α, β, the matrix QP = −QQT

is by construction also symmetric.
Since QP is self-adjoint, it is also positive definite. The properties of our matrix

are then to be symmetric and positive-definite. With these properties of the matrix, it
should be possible to utilise more efficient methods for solving this problem numerically,
e.g. a CG (Conjugate-Gradient) algorithm [82]. Within a CG algorithm, each iteration
requires the same amount of numerical operations, unlike the GMRES, where the number
of operations grows with the iteration number squared. Employing a CG algorithm should
be therefore computationally advantageous.

Initial tests to utilise a CG algorithm, also provided by the PIM library, in GRILLIX
were made. The method works for simple geometries, like a periodic slab. However,
by changing to more complex diverted geometries, the CG solver does not converge.
Investigations regarding this issue revealed that the algorithm does not converge when
the flux box volumes deviate from unity. Further points that might break the symmetry
or the positive-definiteness of the matrix QP are the penalisation function χ or the
treatment of boundary and ghost points on the plane.

In summary, the problem was found and it should be possible to utilise more efficient
algorithms for solving the set of Landau-fluid equations by changing the way how it is
implemented. However, this task was beyond the scope of this thesis.

4.3 Verification

4.3.1 Method of manufactured solutions

Reproduced from C. Pitzal, A. Stegmeir, W. Zholobenko, K. Zhang, and F. Jenko, “Landau-
fluid simulations of edge-SOL turbulence with GRILLIX,” Physics of Plasmas, vol. 30,
no. 12, 2023., with the permission of AIP Publishing.

"To verify the correctness of the implementation the method of manufactured solu-
tions (MMS) [83] is used. The test is performed in slab geometry with three Cartesian
coordinates x ∈ [0, 1], y ∈ [0, 1] periodic and z ∈ [0, 2π] periodic and a time coordinate
t ∈ [0, 0.5]. The model parameters used in GRILLIX are set to the be δ0 = 680, η∥0 = 1.2,
ηi0 = 0.3, νe0 = 0.2, ζ = 0.8, β0 = 0.05, ν = 0.01, κ∥e0 = 0.12 and κ∥i0 = 0.1. Analytical
solutions for all dynamical quantities including q∥e and q∥i are prescribed. The neutrals
model is tested separately and not shown here. The analytical solution for any plasma
quantity has the form:

fMMS(x, y, z, t) = α0 + α1 sin (2π kx x) sin (2π ky y − ϕy) cos (kz z − ϕz) sin (ωt− ϕt) ,
(134)

with the corresponding parameters for each plasma field shown in table 2.
With these analytical solutions, source terms are calculated as described as in Salari

et al. [83]. Those source terms are added on the right-hand side of all equations in ap-
pendix A and also for the two Landau-fluid equations eq. (128) and eq. (129). Those
source terms are calculated with a symbolic computation program, in this case, Mathe-
matica. With MMS we can verify that e.g. eq. (128) and eq. (129) are implemented as
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α0 α1 kx ky ϕy kz ϕz ω ϕt

n 1.15 1.0 1.0 2.0 0.1 1.0 1.1 59.0 0.4
ϕ 0.0 0.8 1.0 3.0 0.7 1.0 0.2 83.0 1.1
u∥ 0.0 1.3 2.0 2.0 1.2 1.0 0.1 99.0 0.5
A∥ 0.0 0.7 1.0 3.0 0.5 1.0 0.6 66.0 0.3
Te 1.3 1.2 2.0 3.0 0.3 1.0 0.5 79.0 0.1
Ti 1.07 0.9 2.0 2.0 0.4 1.0 0.8 61.0 0.6
q∥e 0.0 0.5 2.0 3.0 0.8 1.0 0.4 71.0 0.7
q∥i 0.0 0.6 1.0 2.0 0.6 1.0 0.3 51.0 0.2

Table 2: Parameters for the numerical solutions eq. (134) for each dynamical plasma field
including q∥e and q∥i

Figure 28: Supremum norm of numerical error ∆inf for MMS verification of the Landau-
fluid closure in slab geometry

they are written down here and that the solution converges against the prescribed analyt-
ical solution with the expected order of discretization, for our case second order in space.
We have tested numerous subsystems, including just the parallel-heat-flux term isolated
or just the two temperature equations isolated. In fig. 28 the results of such a convergence
test for the full system including all terms are shown starting with 8 poloidal planes and
1120 points per plane, doubling the parallel perpendicular and temporal resolution three
times until we arrive at 64 poloidal planes. The supremum norm of the numerical error
∆inf of all plasma quantities is converging as expected with second order. Therefore we
have strong evidence that the implementation was performed correctly. The supremum
norm of the numerical error is given by ∆inf = |fnum − fMMS|∞/|fMMS|∞ with the numer-
ical solution fnum obtained by GRILLIX and the analytical MMS solution fMMS for each
plasma field. The model was tested in simple slab geometry for the purpose of finding
e.g. typing errors in the implementation of the model. The 3D-solvers used for solving
eq. (128) and eq. (129) and the model with limited Braginskii closure are also tested in
more complex geometries. The test performed here is not the pinnacle of verification, but
it adds one additional layer of safety."
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4.3.2 Comparison to 1D toy model

An additional layer of verification was added by comparing the Landau-fluid heat flux
predicted by GRILLIX to the predictions of the one-dimensional toy model from section 3.
For this purpose, a case was specially set up in GRILLIX. The geometry is as simple
as possible, a set of 32 circular planes with a homogeneous magnetic field along the
parallel direction and parallel periodic boundary conditions. In this geometry a Gaussian
temperature distribution according to eq. (108) along the parallel direction with T0 =
100 eV is prescribed, along the radial coordinate the distribution is also Gaussian. A
sketch of this setup is shown in fig. 29, where in red an equi-temperature surface is
visualised, which has the form of a blob. In green the magnetic field lines are plotted
and in orange the line of sight, i.e. the line along the comparison between GRILLIX and
the one-dimensional model is performed. A case with the same number of points and the
same length of the system is used in the one-dimensional model.

To perform the comparison, the normalisation of both models has to be checked against
each other and all the physical parameters need to be specified with identical precision.
Further, we have to make sure that the peak temperature is the same since the grid
generated by GRILLIX does not necessarily have a point at the position (x = 0, y = 0)
on a poloidal plane, however, the temperature is initialised with an analytical Gaussian
profile with a peak at (x = 0, y = 0). Therefore the temperature of the 1D-model was
prescribed to match exactly the peak value on the line of sight in GRILLIX. After taking
care of such issues we compare the temperature profiles as well as the Landau-fluid heat
fluxes predicted by the two codes in fig. 30. Here we find that both quantities match
qualitatively. For the sake of brevity, we compare here just the electron heat fluxes,
similar tests were performed for the ion heat fluxes.

To perform a quantitative comparison, we calculate the errors between the two codes
according to

err(f) =
N∑
i

|fGR(i)− f1D(i)|
N

. (135)

For the temperature distribution, we find err(T ) = 9.638 · 10−15, which is effectively
machine precision. For the Landau-fluid heat flux, we find err(qLF) = 2.391 · 10−10. This
error is not limited by machine precision but by the residuum of the iterative solver used in
GRILLIX, which was chosen to be 10−10. A similar test was performed for the Braginskii

Figure 29: Sketch of the setup in GRILLIX for comparison to 1D model, in red an equi-
temperature surface, in green magnetic field lines and in orange the line of sight
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(a) Initial temperature in GRILLIX and the
1D model

(b) Heat fluxes proposed by GRILLIX and the
1D model

Figure 30: Comparison between the 1D toy model and GRILLIX

heat flux, which just involves derivatives. Here an error of err(qBR) = 9.120 · 10−14 was
found.

4.3.3 Blobs in AUG

One further test, which shows nicely the geometric capabilities of GRILLIX as well as
the non-local character of the Landau-fluid heat flux is performed here. A similar tem-
perature blob, Gaussian distribution in the plane but constant in parallel direction, is
placed exactly on top of the X-Point in a magnetic equilibrium of an L-mode discharge in
ASDEX Upgrade shown in fig. 31a. The Gaussian has again an amplitude of 30 % of the
background temperature T0 = 100 eV. Within GRILLIX the heat fluxes according to the
Landau-fluid and the Braginskii closure were calculated and plotted in figs. 31b and 31c.
The same plots are shown again with a strongly limited colour bar in figs. 31d and 31e,
here we observe that the Braginskii heat flux stays local, while the Landau-fluid heat flux
spreads non-locally along the separatrix. We want to emphasise, that the plots shown
here involve no temporal evolution yet but are just the heat fluxes corresponding to the
initial temperature distribution. A similar test was already performed with a blob at the
top of a diverted tokamak with the code BOUT++ [49].
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(a) Initial temperature (b) Braginskii heat flux (c) Landau fluid heat flux

(d) Braginskii heat flux with limited colour
bar

(e) Landau fluid heat flux with limited
colour bar

Figure 31: Gaussian temperature distribution and heat fluxes according to the Landau-
fluid and Braginskii closure
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4.4 Chapter summary

Within this chapter, we explained the FCI approach with a special focus on parallel opera-
tors and how they are constructed. The Landau-fluid equation became three-dimensional
within the framework of FCI. We saw, that the discrete version of the second-order parallel
derivative in the elliptic Landau fluid equation is self-adjoint by construction of the paral-
lel operators. However, the corresponding matrix does not have to be symmetric. Parallel
boundary conditions are treated via a penalisation method and we showed how this mod-
ifies the implemented Landau fluid equation. Furthermore, the inclusion of magnetic
flutter into the Landau-fluid closure was straightforward within FCI. The normalised and
implemented elliptic Landau fluid equations were presented as well as the parallel sheath
boundary conditions applied to them. We explained that currently a GMRES algorithm
is used to solve these three-dimensional problems and that the possibility of employing
also a CG algorithm exists, which would require further efforts and was beyond the scope
of this work. To verify the implementation into GRILLIX the method of manufactured
solutions was used and a comparison between the 1D model and GRILLIX was performed,
which resulted in an agreement up to the residuum of the iterative 3D solver. Finally,
the Landau fluid closure was tested in tokamak geometry, where a temperature blob was
placed at the X-point and the corresponding non-local heat fluxes were calculated.
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5 Turbulence simulations in ASDEX Upgrade
Reproduced from C. Pitzal, A. Stegmeir, W. Zholobenko, K. Zhang, and F. Jenko, “Landau-
fluid simulations of edge-SOL turbulence with GRILLIX,” Physics of Plasmas, vol. 30,
no. 12, 2023., with the permission of AIP Publishing.

The parts section 5.1 up to section 5.6 are direct quotes from the mentioned publication
including all figures within these sections. The corresponding sections are therefore marked
with quotation marks.

In this chapter simulations based on a L-mode discharge in the ASDEX Upgrade
(AUG) tokamak are performed and investigated in detail. The rough setup is visu-
alised in fig. 32. The detailed simulation setup is explained as well as the parameters
of the three performed simulations, which employ the Landau-fluid closure as well as the
Braginskii-closure with different heat-flux limiters. Outboard-mid-plane (OMP) profiles
are compared as well as the measured input power, required to keep up the prescribed
temperature at the inner core boundary.

A spurious ion temperature asymmetry is found in the simulations with the Braginskii-
closure and strong heat-flux limiters. It is shown, that this asymmetry evolves due to the
artificial limitation of the parallel heat conductivity and the resulting interplay between
parallel and diamagnetic heat fluxes.

The Landau-fluid closure within a turbulence simulation is investigated in detail, es-
pecially which of the Lorentz functions are active in the simulation and if the number
of employed Lorentz functions is sufficient for this setup. Furthermore, we find a radial
dependence of the active Lorentzians, in line with the decreasing collisionality towards
the core boundary.

Figure 32: Ion temperature snapshot within a saturated turbulent state (same as fig. 6)
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The non-locality of the Landau-fluid closure is also investigated during a turbulence
simulation via an effective heat conductivity, which depends strongly on how the data
were averaged. Finally, the performance of the simulations is compared.

5.1 Simulation Setup

"We investigate and compare the Landau-fluid closure with the previously used Braginskii
closure in a fully non-linear turbulence simulation resembling the ASDEX Upgrade exper-
iment. Three simulations are performed, the first one using the Braginskii closure with
a strong heat-flux limiter (α = 0.1), the second one also with the Braginskii closure but
a weaker heat flux limiter (α = 1.0) and the third one employs the Landau-fluid closure.
The complete physical model is given in appendix A, for a comprehensive discussion of the
model we refer to Zholobenko et al. [84]. Besides the Landau-fluid closure, two further
model improvements have been applied since then, namely magnetic flutter and neoclas-
sical ion viscosity. Magnetic flutter, as introduced in eq. (127), is used for all parallel
operators in our system and for the Landau-fluid equations (128) and (129) just in the
temperature gradient on the right-hand side, after preliminary tests showed that including
it in the left-hand side does not change the physical results, but the computational cost of
the 3d-solver is increased. The neoclassical ion viscosity extension is briefly discussed in
appendix A. Both extensions will be discussed in detail in separate publications. The ge-
ometry and the equilibrium of these simulations are based on ASDEX Upgrade discharge
#36190, an attached L-mode with a plasma current of 800 kA, q95 = 4.4 and an average
triangularity of δ = 0.21. The toroidal magnetic field strength is Btor = 2.5T on axis
in favourable configuration, i.e. the ion-∇B drift points towards the active X-point. The
plasma was heated in the experiment with Ohmic heating and neutral beam injection.
After subtracting the radiation losses, which are not modelled by GRILLIX, the total
input power was 475 kW in the experiment. Two species are considered in the simulation,
electrons and deuterium ions. In all simulations, the density, electron and ion temperature
are kept constant at the inner core boundary of our simulation domain by an adaptive
source at ρpol = 0.91, which maintains the values n(ρpol = 0.91) = 2.0 × 1019m−3 and
Te(ρpol = 0.91) = Ti(ρpol = 0.91) = 350 eV. Additionally, a diffusive neutrals model is
used for all the simulations [40], which requires a fixed neutrals density at the divertor as
boundary condition, this value is here chosen to be 5.0×1017m−3. All parameters remain
the same for the three simulations, except for the different heat flux closures employed."

5.2 General comparison

"The time traces of flux-surface-averaged density, electron and ion temperature at ρpol =
0.998 for all three simulations are depicted in fig. 33. Both the Braginskii case with weak
limiter (α = 1.0) and the Landau-fluid case seem to approach convergence. However the
Braginskii case with strong limiter (α = 0.1) shows a second rise in the electron and ion
temperature starting at t = 2.5ms. This originates in a strong asymmetry in the ion
temperature, which will be explained in more detail in section 5.3.

To compare the three simulations directly we plotted the outboard-midplane (OMP)
profiles of density, electron and ion temperature on top of each other for the three sim-
ulations at t = 2.5ms in fig. 34, averaged toroidally and over ∆t = 100µs. The density
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Figure 33: Time trace of flux-surface-averaged density, electron and ion temperature at
ρ = 0.998

profiles exhibit distinct “shoulders” near the separatrix, especially for the two cases with
Braginskii closure. These shoulders are caused by neutral gas that is ionised near the
X-point. For the Landau-fluid closure, this effect is less pronounced. Since the neu-
trals density at the divertor is a free parameter in the model, a careful scan would be
necessary to match the actual experimental values. However, this work focuses on the
investigation of the different heat flux closures and their respective influence, an extensive
validation against the experiment we leave for future work. The electron (fig. 34b) and
ion temperature profiles (fig. 34c) are more directly influenced by the respective heat-flux
closure. Here we see for the temperature of both species that the Landau-fluid case falls
in between the two Braginskii cases in terms of separatrix temperature. Deep in the edge
region (ρpol < 0.97) the three cases predict similar temperature profiles, except for the ion
temperature profile of the Braginskii case with α = 0.1, where the different shape of the
ion temperature profile is due to an asymmetry in ion temperature, which is examined in
the subsequent section. Looking closer especially at the temperature profiles, a decrease
of the fluctuation amplitudes by going from α = 0.1 to α = 1.0 to the Landau-fluid model
is visible. This indicates a change in the underlying turbulent dynamics. To investigate
this a little deeper, the radial electric field is shown in fig. 34d. The origin and properties
of the radial electric field in simulations with GRILLIX were analysed in great detail by
Zholobenko et al. [84] for the same setup and compared with the experimentally measured
values. We find that with the Landau-fluid closure the quantitative values of the radial
electric field are significantly closer to the experiment [40]. An extensive discussion of the
influence of the closure on the radial electric field will be left for the future since it is

Pe Pi

Braginskii (α = 0.1) 350 kW 600 kW
Braginskii (α = 1.0) 20 kW 400 kW

Landau-fluid 40 kW 400 kW
experiment 475 kW

Table 3: Input powers for electrons Pe and ions Pi for all three cases taken at t = 2.5ms
and averaged for ∆t = 500µs
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(c) OMP ion temperature profiles
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Figure 34: OMP profiles with fluctuation amplitudes (shaded) at t = 2.5ms averaged
over ∆t = 100µs

beyond the scope of this work.
Comparing the input power in table 3, we observe the Braginskii case (α = 1.0) and

Landau-fluid being similar in terms of total input power and close to the experiment.
The case with Braginskii closure (α = 0.1) deviates strongly in electron input power,
regardless of the just slightly flatter electron temperature profile (fig. 34b). Nevertheless,
the flux limiters work as expected since an increase in α leads to smaller temperature
fluctuations therefore to decreased radial heat transport, so less input power is needed to
keep the temperature constant at the core boundary. In Zholobenko et al. [40] a very
similar case was considered in the original Braginskii limit (α → ∞). Such simulations
are computationally challenging as the parallel heat conductivity is becoming very stiff.
A further steepening of the profiles and a very low input power, much lower than typical
experimental values, were obtained."

5.3 Parallel vs. diamagnetic heat fluxes

"The already mentioned asymmetry in ion temperature for the Braginskii case (α = 0.1)
becomes apparent by looking at the corresponding ion temperature across the whole
simulation domain in fig. 35 in comparison with the two other cases. A strong up-down
asymmetry is present in the ion temperature which is shifted in anti-clockwise direction
due to the poloidal E ×B rotation. Since this asymmetry is still present at the OMP, it
determines the shape of the ion temperature profile fig. 34c.

The origin of this asymmetry lies in an interplay between perpendicular and parallel
heat fluxes within our system. In toroidal plasmas the main component of the perpendic-
ular heat flux is diamagnetic and not divergence-free
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Figure 35: Ion temperature at t = 2.5ms with strong poloidal asymmetry for Braginskii
(α = 0.1), but not for the two other cases

∇ ·
(

5pj
2qjB2

B×∇Tj

)
̸= 0 (136)

due to the toroidicity of the geometry, with pj the pressure and qj the charge of each
species, B the magnetic field and B its absolute value. For the total heat flux to become
divergence-free, which is a requirement for steady state, there is an additional parallel re-
turn flux necessary (Helander et al., chapter 8) [55]. This parallel return flux is realised in
our system via the parallel conductive heat flux q∥ and is driven by a temperature gradient
along a field line connecting the minimum and maximum of the temperature asymmetry.
As we limit the parallel conductive heat flux artificially and quite substantially for the
Braginskii case (α = 0.1), the total heat flux is not divergence-free and we observe an ac-
cumulation of ion temperature in the region of poloidal angle θ ∈ (3π/2, 2π) (between the
X-point and the OMP). The temperature asymmetry is building up during the simulation
and therefore the flux surface averaged electron and ion temperatures rise again in fig. 33
when the temperature asymmetry reaches ρpol = 0.998 at approximately t = 2.5ms. The
term in the ion temperature equation eq. (152) that contains the diamagnetic heat flux
is 5/2ζT̂iC(T̂i), for electrons in eq. (151) respectively −5/2T̂eC(T̂e), and is referred to in
the following as curvature term. The parallel term that balances the diamagnetic term is
1/n̂∇·

(
q̂∥ib

)
in eq. (152) and 1/n̂∇·

(
q̂∥eb

)
in eq. (151) and is referred to in the following

as parallel-heat-flux term.
The limitation of the parallel conductive ion heat flux for the Braginskii (α = 0.1)

case is indeed apparent from fig. 37a, where < | < q∥i >φ | >θ,t is plotted. On the other
hand, the electron heat flux in fig. 37b shows no big difference between the two Braginskii
cases, but for the Landau-fluid case. Firstly, we note that the limiting free-streaming heat
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Figure 36: Ion temperature deviation, curvature and parallel-heat-flux term and the sum
over the remaining terms of the ion temperature equation eq. (152) along the flux surface
ρpol = 0.965 at t = 2.5ms averaged over ∆t = 100µs

conductivity is about a factor
√
Mi/me ≈ 60 higher for electrons than ions. Secondly,

we have to keep in mind that the heat conductivity is limited and not the heat flux
directly. Therefore, we additionally plot < | < ∇∥Tj >φ | >θ,t in figs. 37c and 37d. As
expected, we find for electrons in the case Braginskii (α = 0.1) that the similar amplitude
of the heat flux in comparison with the case Braginskii (α = 1.0) can just be obtained
by a significantly larger parallel temperature gradient in the quasi-stationary state. We
want to highlight that the Braginskii case (α = 1.0) is still limited in comparison to
an unlimited Braginskii case (α → ∞), which would provide significantly larger parallel
heat fluxes for comparable temperature gradients. Interestingly we note that the parallel
electron heat flux for the Landau-fluid case is large despite the small parallel temperature
gradient, which illustrates that no simple linear connection between ∇∥T and q∥ exists
for this case. This finding is investigated in more detail in section 5.5.

To ensure that the asymmetry in ion temperature is caused by the curvature term and
balanced by the parallel-heat-flux term, we examine those terms along the flux surface at
ρ = 0.965. The value of ρ is chosen to match the radial position of the largest temperature
asymmetry. This analysis is performed for all three cases and depicted in fig. 36, the black
line shows the sum of all remaining terms of eq. (152). The ion temperature asymmetry
is strongest for the case with Braginskii closure (α = 0.1) and weakest for the case with
the Landau-fluid closure. The analysis confirms that the curvature term is building up
the asymmetry as it peaks for all cases near the maximum of the temperature asymmetry
and is again strongest for the case with Braginskii closure (α = 0.1). We can not compare
the three cases one to one, since every case is a full non-linear turbulence simulation and
changing the parallel heat conduction changes the state of the whole system. Nevertheless
the parallel-heat-flux term in fig. 36 for Braginskii (α = 1.0) and Landau-fluid together
with the sum of the remaining terms of the ion temperature equation (black line) coun-
teracts the curvature term and decreases the ion temperature asymmetry. For Braginskii
(α = 0.1) we see the heat flux term being close to zero throughout the whole flux sur-
face because of the strong heat-flux limiter. Comparing the two terms to the sum of all
remaining terms of the ion temperature equation shows that the two terms are not just
small perturbations, but significant contributions.

A similar asymmetry in ion temperature was observed and described already in circular
geometry by Zhu et al. [41] with the GDB code. In their simulations, a weak up-down
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Figure 37: Flux-surface averaged absolute values of parallel heat fluxes and parallel tem-
perature gradients over ρpol with fluctuation amplitudes for the parallel heat fluxes at
t = 2.5ms averaged over ∆t = 100µs

asymmetry was observed in all quantities but the most prominent one in ion temperature.
By turning off the parallel heat conduction the asymmetry got more pronounced, which
can be understood as an extreme case in terms of heat-flux limiters by setting α = 0."

5.4 Looking under the bonnet - Landau-fluid closure at work

"In the theory section, we have discussed already that the Landau-fluid closure employs
higher numbered Lorentzians to represent the parallel heat flux as collisionality decreases.
This correlation was found with a simple one-dimensional model. To investigate if this
characteristic is also visible in a turbulence simulation, where temperature distributions
along field lines are far more complex than a simple Gaussian, we plot the flux surface
averaged absolute values of the individual Lorentzians < | < qLF∥j,n >φ | >θ,t over ρpol in
fig. 38. For electrons fig. 38a it is clearly observed how the number of the relevant
Lorentzian is increasing with decreasing ρpol. This is perfectly in line with our expectation,
since with decreasing ρpol the temperature is increasing and therefore the collisionality
reduces. For ions, the same behaviour is visible although not as distinctly separated
as for electrons. This method offers also a straightforward approach for testing if the
number of Lorentzians used in the simulation is sufficient. If the ensemble of active
Lorentzians would reach the highest number or even move out of the frame, the number
of Lorentzians is insufficient for resolving the range of collisionality. Furthermore, two
additional simulations were conducted with 3 and 12 Lorentzians to ensure the consistency
of this heat-flux closure. For 3 Lorentzians we found that the simulation is indeed under-
resolved in terms of Lorentzians. In this case, a similar ion temperature asymmetry as for
the Braginskii case (α = 0.1) was observed, since the parallel ion heat flux is artificially

69



5 Turbulence simulations in ASDEX Upgrade 5.5 Non-local heat fluxes

(a) For electrons (b) For ions

Figure 38: Flux-surface average of the absolute value of the single Lorentz functions for
one snapshot at t = 2.5ms
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Figure 39: Flux-surface averaged absolute values of the parallel heat fluxes < | < q∥i >φ

| >θ,t over ρpol with fluctuation amplitudes at t = 1.3ms averaged over ∆t = 100µs

damped, see fig. 39, as there are no higher numbered Lorentzians to represent it.
This mechanism becomes evident from fig. 16a, where the parallel heat flux predicted

by the Landau-fluid closure approaches zero for very low collisionality. The simulation
with 12 Lorentzians does not show any major differences compared with the standard
case with 7 Lorentz functions."

5.5 Non-local heat fluxes

"We want to investigate whether the non-local heat fluxes predicted for Landau-fluid
closure in the one-dimensional setup (see fig. 21) are also relevant in a three-dimensional
turbulence simulation. Further, we want to investigate if the effect of the Landau-fluid
closure could be approximated for this case by an appropriate local closure.

First, we assume the Landau-fluid closure to be local and therefore proportional to a
heat conductivity times a parallel temperature gradient. We calculate an effective heat
conductivity

κ̃LF
∥j = −

〈
qLF∥j

〉
t,φ〈

∇∥Tj

〉
t,φ

, (137)

where ⟨f⟩t,φ is an average in time and toroidal direction on a test function f . This
averaged effective heat conductivity is set equal to the flux-limited heat conductivity,
which we get from eq. (63) divided by the parallel temperature gradient. By solving this
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equation for the flux-limiting parameter we get an effective αLF. The expression we find
is

αLF =
1

κFS
∥j

κBR
∥j κ̃LF

∥j

κBR
∥j − κ̃LF

∥j
, (138)

which we have to interpret carefully. There are two cases in which αLF is reaching
excessively high absolute values. Firstly for κBR

∥j = κ̃LF
∥j , which happens especially in the

collisional SOL of our simulation and is no signature for non-local dynamics. Therefore,
we restrict the domain for this analysis to the closed-field-line region.

(a) For electrons (b) For ions

Figure 40: Effective αLF calculated according to eq. (138), calculated at t = 2.5ms and
averaged over ∆t = 300µs

Further, we exclude the area near the core boundary since the temperature and density
sources are active there. Secondly αLF can reach high values when κ̃LF

∥j itself becomes very
large. This is the case we are interested in since it implies a non-locality as we observe a
heat flux in the region of vanishing temperature gradients.

The calculated effective αLF for electrons and ions is depicted in fig. 40. We have cut
the colour scale since αLF is reaching excessively high values in this region. The value of
the cut is arbitrary and chosen here for visualisation reasons, but we want to denote that
the values in the domains reach higher values (αLF

j > 1000). For both electrons and ions,
we find values for αLF that are far beyond the usually used limit of α = 3. This is strong
evidence that the non-local behaviour of the Landau-fluid closure is not just academically
relevant in simple one-dimensional cases (section 3) but also in non-linear edge turbulence
simulations. The high values of αLF also indicate that the parallel temperature gradients
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(a) For electrons (b) For ions

Figure 41: Absolute value of effective Landau-fluid heat conductivity point wise over
corresponding temperature for the same spacial domain and time average as in fig. 40 and
analytically calculated flux-limited heat conductivities, all normalised to κBR

∥

are significantly smaller with the Landau-fluid closure than with the Braginskii closures,
considering that the heat fluxes are of the same order of magnitude, see fig. 37. Further, it
is interesting to note that αLF also reaches negative values which implies that heat fluxes
in those regions flow upwards the temperature gradient. This effect is by definition not
possible for a local closure. The conclusion of constant flux-limiters in space and time
being unable to represent non-local heat-flux models was drawn in Omotani et al. [85]
(figure 4) for a one-dimensional time-dependent system already. However, we do not want
to make estimations for relevant values of α to conduct simulations with a flux-limited
closure, since this rather pragmatic comparison between local and non-local closures is
not expected to work quantitatively. Detailed quantitative investigations of non-local
heat-flux models in simpler geometries have been already conducted by e.g. Brodrick
et al. [86]. We tried to investigate the Landau-fluid closure specifically for turbulence
simulations.

Another way to visualise this behaviour of the Landau-fluid closure is by plotting the
effective heat conductivity (eq. (137)) for every point in the domain in fig. 40 over the cor-
responding temperature in fig. 41. We can draw the same conclusion here, since the single
points spread over an area they can not be described by an analytic regression function
dependent on temperature as it is possible for the flux-limited expressions, especially for
electrons."

5.6 Performance

"To give an impression on the computational cost, for the Landau-fluid simulation 3.8·106
time steps were performed for simulating well into the saturated state until 3.5ms of
physical time. This simulation was carried out on the MARCONI SKL partition from
CINECA, employing 8 compute nodes with 48 cores each and took approximately 40 days,
i.e. 3.7 · 105 CPUh in total.

As pointed out in Stegmeir et al. [80] parallel dynamics play a crucial role for code
performance. From the computational perspective, the Landau-fluid and Braginskii model
are very similar, as the implicit treatment of the Braginskii heat-flux term also results in
an elliptic problem along magnetic field lines, similar to equations (128) and (129), which
is solved with the same GMRES method from the PIM [79] library. The difference being,
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time per RHS [%] 2D solver [%] 3D solver [%] others [%]
time step [s]

BR (α = 0.1) 0.3909 28.3 36.7 23.1 11.9
BR (α = 1.0) 0.3889 28.4 35.4 23.8 12.4
LF (N = 3) 0.4449 25.2 34.0 29.4 (22.6) 11.4
LF (N = 7) 0.5682 19.6 24.9 47.0 (41.5) 8.5
LF (N = 12) 0.7350 14.8 19.2 59.2 (54.8) 6.8

Table 4: Seconds per time step of GRILLIX and relative fraction for calculating the RHS
of all equations, employing the 2D- and the 3D-solvers and for other parts of the code
(MPI, auxiliary variables, etc.) for different heat flux closures. The value in brackets for
the 3D solvers denotes the fraction consumed by the Landau-fluid closure.

that for the Braginskii model only one such elliptic problem has to be solved per species,
whereas for the Landau-fluid model, N problems depend on the number of Lorentzians.
Otherwise, we were able to use similar time-step sizes for all simulations.

For a direct performance comparison, we continued all five simulations for a few thou-
sand time steps starting from the last stored point in time on 8 nodes of the RAVEN
cluster, which employs Intel Xeon IceLake-SP 8360Y processors with 72 cores per node,
from the Max Planck Computing and Data Facility. In table 4 the average duration for a
single time step of the plasma model is given, which comprises evaluation of explicit terms
(RHS), 2D elliptic solves for the electrostatic and parallel perturbed electromagnetic po-
tential, and 3D field-aligned solves (where the necessary MPI communication is included)
for the parallel heat fluxes and parallel momentum dissipation. As expected the Landau-
Fluid model comes with an expense in computational time increasing with the number of
Lorentzians. The increase of 46 % for 7 Lorentzians can be considered acceptable given
the gained validity of the physical model and the removal of free parameters.

Finally, the bottleneck of the code shifts from the 2D solvers to the 3D solvers. While
a lot of optimisation effort has already gone into the 2D elliptic solvers, for which even a
GPU porting is currently ongoing, little work has been invested into the 3D solver so far,
but only a naive GMRES algorithm with Jacobi preconditioning is employed. Therefore,
a large span of optimisation is still possible, by employing more advanced algorithms,
e.g. algebraic multigrid methods offered by the HYPRE [87] library that comes already
with GPU support."

5.7 Connection between Landau-fluid closure and flux limiters

One further investigation was performed by employing a different averaging procedure for
the effective heat conductivity in comparison to eq. (137), where an average in time and
in toroidal direction was performed. Now we investigate the effective heat conductivity
averaged in toroidal direction and over a flux-surface

κ̂LF
∥j = −

〈
|qLF∥j |

〉
θ,φ〈

|∇∥Tj|
〉
θ,φ

, (139)

where we investigate the absolute values of the heat flux and the temperature gradient
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here since a flux-surface average would annihilate the parallel gradient used in the denom-
inator otherwise. The flux-surface average was evaluated at 200 equidistant flux surfaces
within the closed-field line region of the simulation domain from ρpol = 0.9− 0.9995 with
step width of ∆ρpol = 0.0005. We do not perform an average in time, but plot the values
for different points in time and evaluate their spreading. The result of this analysis is
plotted in fig. 42.

(a) For electrons (b) For ions

Figure 42: Effective Landau-fluid heat conductivity averaged in toroidal direction and
over flux surfaces for the same time interval as in fig. 40, all values normalised to κBR

∥

We find that the flux-limited expressions for both α = 0.1 and α = 1.0 correlate
perfectly as expected, however, the analytical expressions (solid lines) are not matched
exactly. The reason for this deviation is that for the analytical expressions the density is
kept fixed to the normalisation value n0. For the values extracted from the simulations,
however, the density varies over ρpol (see fig. 34a). To verify, that the density variation is
really the reason for the deviation, we keep the data for κ̂LF

∥j extracted from the simulations
as they are, but for the analytical expressions we assume a density profile that varies
linearly with temperature as n(Tj) = n0(1.5 + 0.1Tj). The data with density-corrected
analytical expressions are shown in fig. 43, where we see excellent agreement between
the data extracted from the simulation for the two Braginskii cases and the analytical
expressions.

For the Landau-fluid closure, we find with this averaging procedure a very high cor-
relation for ions and also a high correlation for electrons in comparison to the analysis
shown in fig. 41. The electrons still show a larger spreading, which is in agreement with
fig. 41a in comparison to fig. 41b. The Landau fluid data close to Tj = 350 eV should not
be taken seriously, as this is the region where temperature sources and buffer zones are
active.

It makes sense, that the correlation of the effective heat conductivity is significantly
larger after taking a flux-surface average, since the parallel direction in which the non-local
behaviour of the Landau-fluid heat flux is showing up, is averaged out.

As pointed out by Zholobenko et al. [51] the free-streaming limited Braginskii heat
flux eq. (63) can be derived from the Landau-fluid expression (eq. (89)), by approximating
k∥ ≈ 1/(q95R0), ik∥Tj,k = ∇∥Tj and the flux-limiting parameter α =

√
8/π we find

−nvth,j
√

8/π
ik∥

|k∥|+ δj/λmfp

Tj,k ≈ −κBR
∥,j

(
1 +

κBR
∥,j

αn
√

Tj/mjR0q95

)−1

∇∥Tj. (140)
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(a) For electrons (b) For ions

Figure 43: The same analysis as in fig. 42 with a density correction of the form n(Tj) =
n0(1.5 + 0.1Tj)

This indicated that for a suitable choice of the flux-limiting parameter α global trans-
port behaves quite similarly between the flux-limited Braginskii closure and the Landau-
fluid closure, which is indicated by the input power in table 3 and the density and tem-
perature profiles in fig. 34. This observation is also confirmed by simulations GRILLIX
in H-mode conditions [51]. The averaging method in eq. (139), might be used to give
estimations on reasonable values for values of the flux-limiting parameter α.

It is emphasised that while global behaviour can be matched between the two closures,
the dynamics along field lines are very different between the two closures. These dynam-
ics are important for more intricate global phenomena such as zonal flows and geodesic
acoustic modes and might explain the differences visible in the radial electric field of the
three simulations fig. 34d.

5.8 Chapter summary

Within this chapter, we performed and analysed turbulence simulations in the geometry
of ASDEX Upgrade. In a general comparison, the three cases behave similarly and the
profiles are close to each other, except for the ion temperature in the case Braginskii
(α = 0.1), which links to an ion temperature asymmetry. The radial electric field for
the Landau fluid case was significantly closer to the experimental measurements than
the other two cases. An ion temperature asymmetry was found for the case Braginskii
(α = 0.1), which originates in the artificial small parallel heat fluxes due to the strong
flux limiter and is explained in detail. The Landau fluid closure was investigated during
the turbulence simulation. We found that with increasing temperature, i.e. dependent
on the radial coordinate, higher-numbered Lorentzians carry the heat flux. Furthermore,
we showed that a simulation employing only three Lorentzians would not be sufficient for
this case. The non-local behaviour of the Landau-fluid closure was investigated, where we
found that at single points in the simulation domain, the heat-flux deviates strongly from
a local description, while averages over a flux surface agree better with local descriptions
and comparisons with flux limiters are possible. Nevertheless, more intricate dynamics are
very different between the two closures, as can be seen in the radial electric field. Lastly,
the performance of the turbulence simulations was addressed, where we found a 46 %
increase in computation time from the flux-limited Braginskii closure to the Landau-fluid
closure.
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6 GRILLIX simulations in the I-mode regime

6.1 The I-mode regime

The Improved-confinement mode (I-mode) [24] is a type-I ELM-free operational regime
with significantly improved energy confinement time τE in comparison to the standard
L-mode regime and low impurity accumulation. This makes the I-mode an attractive
regime for future reactors.

In I-mode, the energy confinement is H-mode-like while the particle confinement is
L-mode-like. This is also reflected in the density and temperature profiles. Profiles of
the L-mode discharge # 36190, the I-mode discharge # 37980 and the H-mode discharge
# 40411 are shown in fig. 44. It is commonly said that I-mode shows a pedestal in
temperature but not in density. Looking at the I-mode density profile isolated in fig. 47,
a steep-gradient region is visible here as well. However, this is not considered a pedestal
compared to the H-mode pedestals. The temperature pedestal is even higher for the
considered I-mode than for the H-mode, which is not necessarily the case.

It is considered that parallel heat fluxes play an important role in decoupling particle
and heat transport [88]. Due to the absence of a transport barrier like in H-mode [89],
the I-mode does not suffer from strong impurity accumulation. The operational window
of the I-mode in terms of heating power opens up between L-mode and H-mode if the
necessary input power to access H-mode is high enough. Therefore I-mode discharges are
performed in unfavourable configuration, where the ion ∇B drift points away from the
active X-point and the heating power required for accessing H-mode is higher than in
favourable configuration, where the ion ∇B drift points towards the active X-point. The
I-mode regime was observed in different machines, i.e. in Alcator C-mode [24], ASDEX
Upgrade [52] and DIII-D [90]. While the L-mode regime is characterised by broadband
turbulence, a prominent feature in I-mode turbulence is the so-called Weakly-Coherent
Mode (WCM) [52, 88], which is observed in ASDEX Upgrade in the outer confined region
ρpol = 0.98 − 1.00 with a frequency of 70 − 140 kHz. There are also challenges, e.g. for
achieving detachment in I-mode [91].
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Figure 44: Density and electron temperature profiles in L-mode (# 36190), I-mode (dis-
charge #37980) and H-mode (discharge #40411)
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Due to high temperatures and low densities in the edge region the collisionality in
I-mode is rather low. To quantify this we plot also the calculated collisionality for the
three experimental profiles in fig. 44 according to eq. (36). With the reference length
chosen as Lref = q95R0 = 6.6m we arrive at

Lref

λmfp

≈ 6.86 · 10−16 nexp

T 2
e,exp

, (141)

with nexp in m−3 and Te,exp in eV. The calculated collisionality is plotted in fig. 45,
where we observe that the collisionality in I-mode is nearly an order of magnitude lower
over the whole closed-field-line region. Due to these low values of collisionality, the I-
mode regime provides perfect conditions for testing the low-collisionality extension of the
Landau-fluid closure.
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Figure 45: Collisionality calculated for profiles in L-mode (# 36190), I-mode (discharge
#37980) and H-mode (discharge #40411) from fig. 44 according eq. (141).

6.2 Simulation setup

For the simulations with GRILLIX, we investigate the ASDEX Upgrade discharge #37980.
This discharge starts in L-mode, accesses I-mode for a long stationary phase of several
seconds and enters H-mode at the end of the discharge where the heating power is further
increased. The simulation setup is taken from the stationary I-mode phase in the experi-
ment at the time t = 4.1 s within the discharge. The experiment was performed in upper
single-null geometry and unfavourable configuration. The toroidal magnetic field has a
strength of Btor = 2.5T on axis. The plasma was heated by electron cyclotron resonance
heating and neutral beam injection. After subtracting the radiation losses, the total input
power was ca. 1.9MW in the experiment. The experimental density and electron tem-
perature profiles can be seen in fig. 44, and the experimental ion temperature profile is
shown in fig. 47c. The values at the inner core boundary of our simulation domain, which
are maintained by adaptive sources at ρpol = 0.91 are n(ρpol = 0.91) = 3.8 × 1019m−3,
Te(ρpol = 0.91) = 800 eV and Ti(ρpol = 0.91) = 500 eV.

The normalisation used for this simulation is precisely the same as for the L-mode
simulations in section 5. A few model extensions are employed in these simulations com-
pared to the last chapter. Instead of the one-moment neutrals model a more advanced
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three-moment neutrals model is used here, involving the density, parallel velocity and tem-
perature of the neutrals. This three-moment neutrals model will be discussed in detail in
a separate publication in the near future. The fixed neutrals density at the divertor as a
boundary condition, is still necessary and is chosen to be 1.0×1018m−3. Two simulations
are presented in the following, one performed with the Landau-fluid closure and one with
the Braginskii closure and heat-flux limiters with a value of αe = αi = 1.0. Magnetic
flutter is also incorporated in both simulations.

The I-mode regime is challenging for fluid models since the collisionality is rather low
in the simulations domain due to high temperatures and low densities, as shown in fig. 45.
Because of the low collisionality and the possible importance of parallel heat fluxes for
this regime, the I-mode is an ideal test case for the low collisionality extension of the
Landau-fluid closure. However, we still need to be careful when evaluating the simulation
results, as we might encounter issues due to other fluid-closure terms. Deviations from
the experimental results are also possible due to missing kinetic effects in the fluid model,
that might be important for the I-mode regime, e.g Finite-Larmor-Radius (FLR) effects
[88].

The computation time used for the Landau-fluid simulation for 5.2ms of physical time
on the MARCONI SKL partition from CINECA was approximately 3.5 × 105 CPUh,
corresponding to a run time of 40 days. The computational cost is approximately the
same as for the L-mode simulation in the last chapter, the increase in physical time is
mainly due to a larger time step, which is possible due to the improved neutrals model.
The computation time for the Braginsii simulations was about 30− 40% less.

6.3 Approaching the simulation

The simulation behaves very differently from the previous L-mode simulations. A time
trace of the input power, required to keep the temperatures at the inner core boundary
on its target value, is shown in the first panel of fig. 46. After the initial instability
up to t = 0.4ms, we find a quiescent phase interrupted by three peaks at t = 1.75ms,
t = 3.25ms and t = 4.75ms mainly in the electron heating power Pe. The axis here
is truncated, the three peaks have maximum amplitudes of 32MW, 23MW and 22MW.
This behaviour differs greatly from the L-mode simulations in section 5, where we observed
an initial instability followed by a successive convergence towards a quasi-stationary state
in fig. 33.

A series of tests and investigations were performed to check if these bursts might be
caused due to numerical issues. Until now they seem to be a persistent feature of these
I-mode simulations performed with the Landau-fluid closure.

To gain further insights we investigate the OMP profile of several quantities over
time, namely density, electron and ion temperature, radial electric field, perturbed mag-
netic field and parallel electron and ion heat fluxes. All quantities are shown in fig. 46.
The peaks in heating power are visible in all plotted quantities, except for density and
ion temperature, where just minor changes are observed. For further analysis, we first
investigate the quasi-stationary phases in between the bursts and compare them to ex-
perimental measurements. Afterwards, we investigate the bursts in detail, where we will
connect them with pedestal relaxation events (PREs) [53]. Therefore we will call the
bursty events in the simulation PREs from in the following.
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Figure 46: Heating power and OMP profile (y-axis in ρpol) for different quantities over
time. The black dotted line marks the beginning of the first burst, and the two time
intervals marked by grey dotted lines are used to calculate averaged profiles, which are
shown in fig. 47
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6.4 Analysis of quasi-stationary phases

6.4.1 General observations
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(d) Radial electric field profile

Figure 47: Density, electron temperature, ion temperature and radial electric field profiles
for the first (1) time interval t = 1.19 − 1.43ms and the second (2) time interval at
t = 3.58− 3.81ms, each marked by a pair of grey lines in fig. 46

We compare profiles at two different time intervals within two different quasi-stationary
phases. The two time intervals we picked are between t = 1.19− 1.43ms and t = 3.58−
3.81ms in fig. 47 to avoid the strong changes during the bursts. The two time intervals
are also marked with grey lines in fig. 46. We observe that the profiles in the second time
interval are considerably closer to the experimental values than in the first time interval,
especially for the electron temperature. Looking again at the fig. 46, we observe in the
electron temperature profile, that it relaxes again slightly until the third burst occurs.

6.4.2 The weakly-coherent mode

The weakly-coherent mode (WCM) is a key feature of the I-mode regime. However, it is
not exclusively observed in I-mode but also less pronounced in L-mode. In experiments,
the WCM is visible e.g. in the electron cyclotron emission signal or in reflectometry sig-
nals, where it is caused by edge density fluctuations [52, 92]. An example of a measurement
of density fluctuations during different an I-mode discharge is shown in fig. 48.

A possible explanation for the WCM is, that the broadband turbulence, which is
usually present in L-mode is damped at large scales due to phase randomisation and at
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Figure 48: Measurements of a WCM during different stages of an I-mode discharge, where
the WCM is not visible at first and becomes then more pronounced, taken from [52]

(a) Spectrum at t = 0.95− 1.27ms (b) Spectrum at t = 3.82− 4.23ms
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(c) Spectrum at t = 0.95 − 1.27ms at ρpol =
0.95
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(d) Spectrum at t = 3.82 − 4.23ms at ρpol =
0.95

Figure 49: Spectrum of density fluctuations before the first burst (t = 0.95 − 1.27ms)
and after the second burst (t = 3.82 − 4.23ms), where a WCM is more pronounced and
marked by a circle. Additional to the 2D colour maps, a cut at ρpol = 0.995 is plotted for
easier comparison to fig. 48.
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small scales due to FLR stabilisation [88]. The WCM would then be just the remainder
of broadband turbulence at scales which are damped less efficiently. In ASDEX Upgrade
in the outer confined region ρpol = 0.98− 1.00 with a frequency of 70− 140 kHz [52, 88].

In the simulation, we investigate density fluctuations directly. We consider the time
evolution of density at the OMP with a high temporal resolution of ∆t = 0.24µs. The
density signal n(t) is Fourier transformed for each value of ρpol. The resulting spectra over
frequency and ρpol are plotted in fig. 49 for similar time intervals as they were used to
calculate the OMP profiles, i.e. t = 0.95− 1.27ms and t = 3.82− 4.23ms. In comparison
to OMP profiles, more data are necessary for calculating clear signals, therefore, the time
intervals are longer than the ones used for the OMP profiles. The frequencies for all
positions along the OMP are plotted colour-coded in figs. 49a and 49b and additionally
as a curve similar to fig. 48 at the position ρpol = 0.95 in figs. 49c and 49d. In both
time intervals, a structure similar to the WCM is found. The structure is spread over the
whole closed field line region, especially for the first time interval, in comparison to the
experiments, where the WCM is radially localised around ρpol = 0.98− 1.00 [93, 52, 88].
For the second time interval in fig. 49b a more localised structure in the expected region
is observed and marked by a circle.

The observed frequency f ≈ 200 kHz is higher than the observed values in AUG of f =
70−140 kHz. A possible explanation for this deviation is connected to the differences in the
radial electric field Er between simulation and experiment (see fig. 47d). The radial electric
field is mainly responsible for the background rotation of the confined region. Since Er is
negative in our simulation the background rotation is in electron diamagnetic direction,
while in the experiment the background rotation is in ion diamagnetic direction linked to a
positive Er in the confined region. The WCM propagates in electron diamagnetic direction
[93] and propagates faster than the background rotation. Therefore, the background
rotation would add up to the propagation speed of the wave and the measured frequency
of the WCM in the lab frame is Doppler shifted to higher frequencies, in contrast to the
experiment, where the measured frequency of the WCM is lower due to the background
rotation in opposite direction. However, this argument does not apply to the position
ρ ≈ 1.0, where the radial electric field in the experiment is also negative.

An idea to match the background rotation is to adapt the boundary value of the
parallel velocity at the inner core boundary. A rotation e.g. induced by NBI could be
mimicked since the NBI heating is not intrinsically captured in GRILLIX, which might
explain the deviations between the radial electric fields.

6.5 Pedestal relaxation events

Some I-mode discharges show so-called Pedestal Relaxation Events (PREs) [92, 53, 94],
not to be confused with ELMs. PREs are not generally present in I-mode, but just if the
I-mode is close to a transition into H-mode [53]. PREs tend to relax the pedestal, as the
name suggests. They affect mainly the electron pressure profile and they show magnetic
precursors [94]. However, during a PRE typically about 1% of the plasma stored energy is
lost, which is much less than ca. 10% during Type-I ELMs [53]. The possible mechanism
behind PREs was already assumed to be due to micro-tearing modes [94], although this
was neither shown in experiments nor in simulations.
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6.5.1 Micro-tearing modes

The small introduction on Micro-tearing modes (MTMs) is based on [28]. MTMs are
electromagnetic modes, which are closely linked to their macroscopic relative, the neo-
classical tearing mode. Since they are electromagnetic modes, they appear more likely in
high confinement regimes due to the higher values of β. MTMs are driven by the electron
temperature gradient and propagate in electron diamagnetic direction. They show tearing
parity and show strong fluctuations in A∥. MTMs increase mainly the radial transport
of electron thermal energy [95]. The linear analytical dispersion relation for MTMs taken
from [96, 97], reads

(νe − 0.54iω) (ω − ωe∗)− 0.8ωT∗νe = 0, (142)

with νe the electron collision frequency, ωe∗ = kθρscs(1/Ln + 1/LTe) and ωT∗ =
kθρscs(1/LTe), the density gradient length Ln = (∇n)/n and the electron temperature
gradient length LTe = (∇Te)/Te. In the original paper, ky was used instead of kθ due
to a different coordinate system, but no significant difference is expected, since the two
directions are nearly the same.

6.5.2 PREs in the simulation

We take another look at fig. 46. The black dotted line indicates the beginning of the
first PRE, where the electron temperature profile starts to change significantly. The first
precursors of this burst show up in the perturbed magnetic field and the parallel electron
heat flux, where slightly increased amplitudes are visible shortly before the burst happens.
This agrees well with the magnetic precursors of PREs in the experiment [94]. After the
black dotted line strong changes in all quantities are observed, except for density and ion
temperature, where just moderate changes occur.

(a) Ã∥ at t = 3.05ms (b) Ã∥ at t = 3.23ms (c) Ã∥ at t = 3.29ms

Figure 50: Fluctuating A∥ before, at the beginning of and during the first burst
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This chain of events suggests that first the electron heat transport increases quite
rapidly and thereafter the input power for electrons Pe is strongly increasing to keep the
electron temperature at its target value.

A conceptual difference needs to be stated first: In experiments, it is observed, that a
temperature pedestal builds up and relaxes in a small time interval of the order of 100µs.
In our simulation, on the other hand, the profiles do not show any pedestal in electron
temperature in fig. 47a as dashed line before the first burst occurred. After the first burst
and even more after the second one, plotted as solid line, the profiles are considerably
closer to the experimental profiles. The major difference between experiment and simu-
lation in this regard is that in the experiment the plasma is heated with constant power,
while in the simulation an adaptive temperature source is employed, which leads to a
time-varying power input (see fig. 46). Therefore, the source will change its value only
if the radial transport in the system changes. Nevertheless, the underlying mechanism
leading to the PREs in the simulation agrees very well with experimental observations.
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(a) Density flux before the burst
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(b) Density flux during the burst

0.90 0.92 0.94 0.96 0.98 1.00
pol

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

th
er

m
al

 e
le

ct
ro

n 
flu

x 
[a

.u
.]

ExB Diamagnetic EM Sum

(c) Thermal electron flux before the burst
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(d) Thermal electron flux during the burst
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(e) Thermal ion flux before the burst
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(f) Thermal ion flux during the burst

Figure 51: Radial transport for density, electron and ion temperature before (t = 2.81−
2.93ms) and during the burst (t = 3.29− 3.41ms)
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Motivated by the magnetic precursors to the PRE in our simulation, we investigate the
perturbed parallel magnetic vector potential Ã∥. The perpendicular perturbed magnetic
field is derived from Ã∥ via B̃⊥ = ∇× Ã∥. We plot Ã∥ at three points in time in fig. 50,
before (t = 3.05ms), at the begin (t = 3.23ms) and during the second burst (t = 3.29ms).

In comparison to the time point before the burst Ã∥ shows at the beginning of the
burst a coherent structure at the low-field side, which becomes more pronounced during
the crash. This is the first hint of an electromagnetic mode present in the system. Next,
we directly compare the radial transport before and during the crash in fig. 51. The
radial particle flux and the flux of ion thermal energy are mildly changed mainly due to
a change in the E×B-transport. However, the main difference is found in the radial flux
of electron thermal energy, shown in fig. 51c and fig. 51d. The flux of electron thermal
energy is increased strongly due to electromagnetic transport. This increase in the electron
thermal transport is in line with an MTM as dominant instability.

To gain insights into the temporal evolution of the bursts, a spectrogram of electron
temperature fluctuations is calculated for the flux surface at ρpol = 0.95 in fig. 52.

Figure 52: Spectrogram of electron temperature fluctuations at the flux surface ρpol = 0.95

We observe that before all three bursts, which are clearly visible in the spectrogram,
a mode starts to grow with at kpolρs ≈ 0.2. This mode appears as a precursor and leads
to the burst event. Additional to the three bursts two smaller events are visible in the
spectrogram at t ≈ 1.5ms and t ≈ 3.8ms. These two events are also visible in the
input power in the top panel of fig. 46, where the Pe is larger than Pi for a short time.
The smaller events seem to be closely connected to the PREs, but too small to lead to
a relaxation of the pedestal. The band with higher amplitude around kpolρs ≈ 0.5 is
probably the WCM which is also visible in the spectrogram.

To find a waterproof argument, we calculate the dispersion relation of the underlying
mode during the second PRE between t = 3.2187 − 3.3617ms for the flux surface at
ρpol = 0.95, where the background E×B-rotation is calculated and subtracted. The result
of this analysis is shown in fig. 53. Here we can see clearly, that the mode propagates
in electron diamagnetic direction. Furthermore, we observe that our mode matches the
linear dispersion relation for MTMs eq. (142) very well. The second analytical dispersion
relation plotted in red is for resistive ballooning modes and can be considered as an upper
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bound for resistive MHD modes according to [98]. The observed mode has a significantly
higher propagation velocity than resistive MHD modes.

Figure 53: Dispersion relation of A∥ for the mode present during the PRE, where an
excellent agreement to the linear dispersion relation is observed

A further quantity investigated is the parallel electric field, which should be large for
MTMs and can be quantified via

Ê∥ =

∫ ∣∣−∂∥ϕ+ iωA∥
∣∣ dx∥∫ ∣∣∂∥ϕ∣∣ dx∥ +

∫ ∣∣iωA∥
∣∣ dx∥

, (143)

with x∥ the parallel coordinate, according to [99]. Usually Ê∥ < 0.1 for KBMs, during
the bursts present in the simulations we achieve values of up to Ê ≈ 0.9.

Lastly, we investigate the parity of fluctuations of the electrostatic potential ϕ and the
parallel magnetic vector potential A∥ along a flux surface with ρpol = 0.95. Explicitly we
calculate
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Figure 54: Parity of ϕ and A∥ during a burst in I-mode and as a reference in L-mode
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⟨ϕ(t0)− ⟨ϕ⟩t⟩φ and
〈
A∥(t0)−

〈
A∥
〉
t

〉
φ
, (144)

with t0 = 3.2187ms and the time average over t = 3.2187 − 3.3617ms. The mean
is subtracted to get rid of the background of the quantities, this is also necessary for ϕ,
since in our turbulence simulations it is no perfect flux-surface function, but shows a small
up-down asymmetry. The resulting plot is shown in fig. 54. We find in the PREs that
ϕ is an odd function, while A∥ is an even function. This configuration is called tearing
parity and is typical for MTMs. As a consistency check, the same analysis was performed
for the L-mode simulation from the last chapter. Here we find the opposite configuration
called ballooning parity, i.e. ϕ is an even function, while A∥ is an odd function.

With all investigations and indications presented within this chapter, we can conclude,
that the mode which is responsible for the PREs in our simulation is an MTM. For the
very last plot of this chapter, we made a 3D visualisation of the MTM visible in the
fluctuating parallel vector potential Ã∥ in fig. 55.

Figure 55: 3D visualisation of Ã∥ during a PRE
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6.6 The role of the heat-flux model

In this part, we want to emphasise the importance of the employed heat-flux mode for
modelling plasma edge turbulence accurately.

6.6.1 Landau-fluid heat conductivity

We check how the heat Landau-fluid heat conductivity behaves during the simulation.
Therefore we perform the same analysis as for the L-mode simulation and calculate the
effective heat conductivity for the Landau-fluid closure. The data were averaged over a
time interval of t = 4.172− 4.292ms, which should be a relative quiescent phase between
two bursts.

(a) For electrons (b) For ions

Figure 56: Effective Landau-fluid heat conductivity averaged in toroidal direction and
over flux surfaces for the time interval t = 4.172− 4.292ms, all values normalised to κBR

∥

In this analysis, we incorporated the accurate density profile for the flux-limited ex-
pressions in comparison to the analysis in the last chapter. Therefore the averaged density
for each value of ρpol is connected to the corresponding averaged ion and electron temper-
ature. The density as a function of temperature is then fitted via a polynomial regression,
this regression formula is used for the density in the formula for the flux-limited heat flux.

We find again that electrons show a larger scatter than ions. The scatter here is partly
due to the simulation being not in a steady state even between two bursts. Overall the
data agree quite well with a value of α = 1.0, in comparison to the lines at α = 0.1 and
α = 4. Although we see for ions a deviation for high temperatures, where the Landau-fluid
model would suggest a value of α ≈ 2.0. For electrons, we see higher values for κLF

∥e for
the highest and lowest temperatures present, but α = 1.0 is still in reasonable agreement
with most of the data.

6.6.2 Braginskii closure with heat-flux limiters

A second simulation was performed with the same setup but with the Braginskii closure
and heat-flux limiters with values of αe = αi = 1.0 for electrons and ions. In fig. 57 the
time trace of power is shown as well as the flux-surface averaged values of density, electron
and ion temperature at ρpol = 0.998. In the time traces no burst events are observed as
they were present in the Landau-fluid simulations, instead, the simulation is quiescent
and converging towards a steady state. Profiles at the OMP can be seen in fig. 58 for the
time interval t = 4.768− 4.888ms, which is also indicated by grey lines in fig. 57.
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Figure 57: Input power and flux surface average at ρpol = 0.998 of density, electron and
ion temperature over time
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(c) Ion temperature profile
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(d) Radial electric field profile

Figure 58: Density, electron temperature, ion temperature and radial electric field profiles
for the time interval t = 4.768− 4.888ms

We observe especially in the electron and ion temperature profile that no pedestal is
present and the simulation results are far off from the experimental measurements. In
fact, the profiles tend more towards a strongly heated L-mode, instead of an I-mode. To
find the exact reason for the absence of the bursts in comparison to the Landau-fluid
simulations more investigations are necessary. For now, we can just state this fact due to
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Figure 59: Spectrum of density fluctuations in the time interval t = 1.907− 2.403ms

observations in the two simulations.
We calculate a density fluctuation spectrum for the time interval t = 1.907− 2.403ms

in fig. 59, for comparing to the spectra shown for the Landau-fluid simulations. We observe
that there are increased fluctuation amplitudes at ca. 200 kHz over the whole closed field
line region (ρpol < 1.0), except for the inner region at ρpol < 0.91, where buffer regions
and sources are active. This matches qualitatively with fig. 49a, the large radial extend
is more visible for the limited Braginskii case.

6.6.3 Removal of heat-flux limiters

We perform an artificial test with the Braginskii closure, which should be considered as
an academic test case. The simulation shown in the last section was continued and the
heat-flux limiters αe and αi were removed, i.e. the original Braginskii closure [43] was
used, which predicts parallel heat fluxes of significantly greater amplitude.

The evolution of profiles can be seen in fig. 60, where the black dotted line marks
the point, where the heat-flux limiters were removed. The parallel heat fluxes increase
strongly as expected and the temperature profiles develop a pedestal, most pronounced in
electron temperature. After saturation in this new state of the system at t ≈ 4ms, even
the total input power of P ≈ 2.2MW is in reasonable agreement with the experimental
value of 1.9MW.

The profiles in steady state without heat-flux limiters at t = 4.530−4.768ms are shown
in fig. 61. The two temperature profiles are in excellent agreement with the experimental
data, whereas the density and radial electric field are also close to the experimental
measurements.

This academic test illustrates nicely the importance of the correct treatment of parallel
heat fluxes for simulations of the I-mode regime, but also for edge fluid turbulence sim-
ulations in general. Furthermore, this indicates, that radial particle and heat transport
can be decoupled due to parallel heat conduction, if the parallel heat conductivity is high
enough.

The mechanism which leads to the difference in the profiles with and without heat-flux
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Figure 60: Heating power and OMP profile (y-axis in ρpol) for different quantities over
time. The black dotted line marks the point, where the heat-flux limiters were removed
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Figure 61: Density, electron temperature, ion temperature and radial electric field profiles
for the Braginskii closure without heat-flux limiters for t = 4.530− 4.768ms

limiters can be understood by investigating the fluctuation amplitudes σ for both cases.
The fluctuation amplitudes are plotted in fig. 62 for the case with heat-flux limiters
(t = 2.146 − 2.384ms) in solid lines and without limiters (t = 4.530 − 4.768ms) in
dashed lines. In the fluctuation amplitudes of electron and ion temperature, we see a
strong reduction due to the missing heat-flux limiters. Larger parallel heat fluxes damp
decrease the temperature fluctuation amplitudes, and smaller fluctuation amplitudes in
temperature correlate with less radial heat transport and steeper temperature gradients
in the profiles. However, we want to emphasise, that the pure Braginskii closure is not
valid in the present range of collisionality. Therefore this section needs to be understood
as an academic test case.

For the sake of completeness, we also plot the density fluctuation spectrum for the
Braginskii closure without heat-flux limiters. The spectrum for the time interval t =
4.053 − 4.768ms is shown in fig. 63. We observe smaller fluctuation amplitudes in com-
parison to the previous cases, especially for high frequencies (f > 40 kHz). In fig. 63 we
do not find indications for a WCM, which confirms that this academic test case repro-
duces the experimental profiles by accident and not by capturing the underlying physics
present in the experiments. Nevertheless, the simulation without heat-flux limiters illus-
trates how important parallel heat fluxes and their accurate description are for modelling
plasma turbulence with fluid models.
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Figure 62: Fluctuation amplitudes for the time interval t = 2.146−2.384ms with heat-flux
limiters (solid lines) and t = 4.530− 4.768ms without heat-flux limiters (dashed lines)

Figure 63: Spectrum of density fluctuations in the time interval t = 4.053− 4.768ms

6.7 Chapter summary and outlook

Within this chapter, an attempt to simulate the I-mode regime with the extended plasma
fluid model of GRILLIX was undertaken. The simulations were expected to be challenging
due to the low collisionality of the I-mode regime. Although no stationary I-mode could
be simulated, many features of an I-mode in experiments were visible in the simulation
data, e.g. the profiles were not far off the experimental ones, traces of a WCM were visible
and PREs were observed. A perfect match with the profiles was not expected, since in the
experiment, there are no PREs present. Furthermore, a detailed analysis of the observed
PREs revealed that we could pinpoint the underlying microinstability with confidence to
be an MTM. Finally, we highlighted the importance of the employed heat flux model.
Simulations with a limited Braginskii closure reached from an overheated L-mode up
to profiles close to the experimental ones depending on the flux-limiting parameter α.
However, despite the matching in profiles, the match is by chance and not by capturing
the underlying physics accurately, as is indicated by the total absence of a WCM. This
last simulation with α = ∞ is understood therefore as an academic test case.
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Simulating a stationary I-mode is left for future work. To work in this direction a few
points should be tested. Firstly and most importantly the magnetic equilibrium used for
the simulation was constructed without a pressure constraint. A corrected version was
already obtained and the first tests with this new equilibrium were made, which showed
significant differences. However, performing a new set of simulations was beyond the
scope of this thesis. A further point that might be relevant is the boundary condition
applied to the neutral gas at the divertor, which might be too low, as suggested by the
recycling rate. Simulations with higher values of neutral gas at the divertor or with a
recently implemented recycling model, which eliminates this boundary condition as a
free parameter, might be performed to investigate this point. A final point is, that no
resolution scans were performed. This task is also left for future work. Nevertheless, the
insights gained by this first I-mode simulation with the Landau fluid closure, especially the
observation of PREs and the clear evidence of underlying MTMs, give some confidence
that plasma fluid simulations of the I-mode regime are possible with the drift-reduced
fluid model employed by GRILLIX including the Landau fluid closure.
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7 Conclusion and Outlook
Within this thesis the drift-reduced fluid model employed by the edge turbulence code
GRILLIX has been extended for low collisionality with a Landau-fluid closure, replacing
the previously used limited Braginskii closure.

In Chapter 2 the necessity of fluid closures to close the fluid hierarchy was explained,
as well as a derivation for the Braginskii closure [43] for the special case of a plasma
under the Lorentz approximation. Furthermore, we explained why the Braginskii closure
for the parallel heat fluxes breaks first for low collisionality. The Landau-fluid closure
was motivated and derived in detail, following the original work [45, 44], including the
motivation of matching the linear kinetic response function with a fluid model. The
transformation into configuration space via an approximation with Lorentz functions [72]
was shown. Lastly, we demonstrated that the drift reduction procedure leaves the Landau-
fluid closure unaffected.

Chapter 3 is dedicated to a one-dimensional setup to show the effects of the Landau-
fluid closure in a simple environment. The Landau-fluid closure was compared to the
original Braginskii closure for various values of collisionality. The magnitudes of the heat
fluxes match the theoretical expectations. A non-local behaviour of the Landau-fluid heat
flux was observed in line with previous research [46]. The limits in terms of collisionality
are examined in this setup and the behaviour when crossing them, where the predicted
heat-flux is too low in amplitude.

The implementation of the Landau-fluid closure within the FCI framework is shown in
Chapter 4. The major difference, that arose, is the problem becoming three-dimensional
in comparison to a one-dimensional one in flux-aligned coordinate systems. A straightfor-
ward combination with the effect of magnetic flutter compensates for the disadvantage of
the problem being fully three-dimensional. The implementation into GRILLIX was ver-
ified via MMS and by setting up a comparison case between the one-dimensional model
and the implementation, where we achieved an agreement up to machine precision or the
residuum of the iterative solver respectively.

In Chapter 5 turbulence simulations of an AUG L-mode discharge were performed and
compared between the Braginskii closure with different heat-flux limiters and the Landau-
fluid closure. Large parts of the content of this chapter have already been published [100].
It was shown that an incorrect treatment of parallel heat fluxes, i.e. too strong limitation
in the Braginskii closure leads to a nonphysical temperature asymmetry. The Landau-
fluid closure including the single Lorentz functions was investigated during the simulation,
where the behaviour matches the expectations. The non-local behaviour was examined
and we can conclude, that for every single point in the simulation domain, the correlation
between parallel temperature gradient and heat flux is low, especially for electrons. The
correlation is significantly higher after taking a flux-surface average and a comparison to
flux limiters is possible. Overall only little global differences between the Landau-fluid
closure and the Braginkii closure with α = 1.0 were found, except for the radial electric
field, where the Landau-fluid closure provided a radial electric field which was in better
agreement with the experiment. Also for H-mode studies, that were conducted with
GRILLIX, the best match of the radial electric field was best employing the Landau fluid
closure [51]. However, the radial electric field plays a crucial role in improved confinement
regimes and transitions like the L-H or I-H transition. Therefore capturing the radial
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electric field accurately is a major improvement of the plasma fluid model.
An attempt to simulate the I-mode regime was undertaken in Chapter 6. The I-mode

is an ELM-free, reactor-relevant operational regime with increased energy confinement
time compared to L-mode [24]. Moreover, the I-mode shows high temperatures and low
densities at the edge, i.e. low collisionality. In the quasi-stationary phases of the I-mode
simulations, the profiles were not far off the experimental ones and traces of a WCM
were visible. However, since in comparison to the simulation, no PREs were present in
the experiment, a perfect match of the profiles was not expected. In between the quasi-
stationary phases, intermittent events happen that can be linked to PREs, which are
present in some I-mode discharges. The instability responsible for the sudden increase
in radial energy transport is investigated in detail and identified with confidence to be
a micro-tearing mode. Major experimentally measured properties of PREs are repro-
duced by the simulation. In contrast to the Landau-fluid closure, the Braginskii closure
reproduces L-mode-like profiles and does not show any intermittent events within the
simulation. Lastly, an academic test was performed, where the heat flux limiters were
removed and the original Braginskii closure was employed. Although the profiles agree
here with the experimental ones, the underlying physics do not. This demonstrates how
sensitive the system reacts to changes in the parallel heat fluxes and how different the
result can be for different flux limiters. Therefore, this test underlines the importance of
modelling parallel heat fluxes accurately to make predictive and quantitative simulations
possible. The results of this chapter emphasise that the Landau-fluid closure is a valuable
extension for simulations in low collisional regimes.

Besides the progress that was made, a few points were raised within this work, that
were left for future work. The first point is the solver for the elliptic Landau-fluid equation.
Exchanging the currently used GMRES solver with more efficient methods might have
the potential to save computation time and increase the stability of simulations. The
second important point arises from the last chapter about the I-mode. The bursts which
relate to PREs are a most interesting subject to study, especially due to the micro-tearing
modes present. Nevertheless, a simulation of a stationary I-mode remains for future work.
Ideas to approach this were listed in the corresponding section. Furthermore, it would be
interesting to attempt simulations of an L-I transition, which means starting in L-mode
conditions and increasing the heating power until a transition starts to happen. These
simulations will probably need a long time as the heating power has to be adjusted step-
wise after the simulation saturates. For this thesis, such simulations were beyond the
scope.

There are also further reactor-relevant regimes, like the QCE regime or the XPR, which
can be performed now with even more confidence, after simulating the I-mode regime, as
the collisionality is significantly higher in those regimes and the fluid approximation deeper
in its region of validity. Moving from tokamak to stellarator simulations is another big task
for GRILLIX. The geometric capabilities are present, but to perform such simulations a
lot of work and effort is needed. However, this is a task of major importance, since
there are even fewer codes, which are able to perform edge turbulence simulations for
stellarators than for tokamaks.

Looking from a more theoretical perspective, performing a comparison between the
Landau-fluid closure, which includes linear Landau-damping into the fluid model, and a
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gyro-kinetic code as e.g. GENE-X [101] or the arbitrary-moment approach [42] would
provide further insights but is also left for future work.

To conclude, this thesis provides a step towards plasma edge turbulence simulations
of reactor-relevant scenarios and devices. The observation of modelling the radial electric
field more accurately with the Landau fluid closure is one of the main findings and will
be of major importance for future simulations of transitions, e.g. the L-H transition, or
improved confinement regimes, in which the radial electric field plays a crucial role. With
the attempt to simulate the I-mode regime, we approached a reactor-relevant operational
regime, which is the second big result of this thesis. Although there is still much work
to do, with this step we started paving the path to simulate such scenarios regularly and
make predictions for machines like ITER. Following this path further will hopefully gain
deep insights for future fusion research and the first terrestrial stars may seem a little less
distant.
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Appendix

A Model equations
Reproduced from C. Pitzal, A. Stegmeir, W. Zholobenko, K. Zhang, and F. Jenko,
“Landau-fluid simulations of edge-SOL turbulence with GRILLIX,” Physics of Plasmas,
vol. 30, no. 12, 2023., with the permission of AIP Publishing.

The physical model used for the turbulence simulations consists of eight equations, the
continuity equation (147), vorticity equation (148), parallel-momentum equation (149),
Ohms law (150), electron temperature equation (151), ion temperature equation (152),
Amperes law (153) and the equation for the neutrals density (154). In the following
equations ϕ = (Te0/e)ϕ̂ is the electrostatic potential, pe = nTe and pi = nTi the electron
and ion pressure, j∥ = n(u∥ − v∥) = cs0en0ĵ∥ the parallel current, u∥ = cs0û∥ the parallel
ion velocity, v∥ = cs0v̂∥ the parallel electron velocity, the remaining physical quantities
were mentioned in the main text. The curvature operator is defined as

Ĉ(f) = δ0

[
−
(
∇̂ ×

(
b/B̂

))
· ∇̂f

]
(145)

for a test function f . The ion viscous stress function is G = n0Ti0Ĝ with

Ĝ = −η̃i0T̂
5/2
i

[
2B̂−3/2∇̂ ·

(
û∥B̂

3/2b
)
− Ĉ(ϕ̂)/2− Ĉ(p̂i)/(2n̂)

]
. (146)

The terms Dα(α) are numerical diffusion terms acting on a quantity α, and Sα are
source terms for density and temperature, including the heating at the core boundary
as well as the interaction with neutral gas. The ion viscous heating term, which is the
eighth term on the right-hand side of eq. (152) was turned off for the presented sim-
ulations. In eq. (154) N is the neutrals density and DN = Ti/(Mikcxn), with kiz the
ionisation rate coefficient, krec the recombination rate coefficient, kcx the charge-exchange
rate coefficient, for further details on the neutrals model we refer to Zholobenko et al.
[40]. The dimensionless parameters used in the equations are δ0 = R0

ρs0
, ζ = Ti0/Te0,

β0 = 4πn0Te0/B
2
0 , µ = me/Mi with me the electron and Mi the ion mass, η∥0 = 0.51µνe0,

νe0 = R0/(cs0τe0), ηi0 = 0.96cs0τi0/R0, κ∥e0 = 3.16cs0τe0/(R0µ) and κ∥i0 = 3.9cs0τi0ζ/R0.
The advective derivative is defines as d

dt
= ∂

∂t
+ δ0

(
b/B̂ ×∇ϕ̂

)
. All quantities in the

following equations are normalised, therefore we omit the hat for indication of normalised
quantities.

d

dt
n = nC(ϕ)− C(pe) +∇ ·

[(
j∥ − nu∥

)
b
]
+Dn (n) + Sn (147)

∇ ·
[
n

B2

(
d

dt
+ u∥∇∥

)(
∇⊥ϕ+ ζ

∇⊥pi
n

)]
=− C(pe + ζpi) +∇ ·

(
j∥b
)

− ζ

6
(G) +DΩ (Ω)

(148)

(
d

dt
+ u∥∇∥

)
u∥ = −

∇∥ (pe + ζpi)

n
+ ζTiC

(
u∥
)
− 2

3
ζ
B3/2

n
∇∥

G

B3/2
+Du∥

(
u∥
)

(149)
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β0
∂
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dt
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)
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3/2
e

)
j∥ −∇∥ϕ+

∇∥pe
n
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(150)

3
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n
C(pe)−

5

2
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Te
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(151)
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+
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(152)

∇2
⊥A∥ = −j∥ (153)

∂

∂t
N = ∇ · DN

Ti

∇NTi − kiznN + krecn
2 (154)

The neoclassical extension of the ion viscosity G essentially adapts the Braginskii
coefficient ηi0 to η̃i0 according to eq. (39) in Rozhansky et al.[102]. This follows the work
of Hirshman and Sigmar from 1981[103], figure 1 therein shows in particular that this
introduces an upper limit for the ion viscosity coefficient, while the Braginskii expression
diverges as T 5/2

i , similarly to the (ion) heat conductivity. Neoclassical heat viscosity is not
yet included. For the work here, we approximate the connection length as Lc ≈ q95R0,
and the inverse aspect ratio as ϵ ≈ 0.3, these are typical values for ASDEX Upgrade.
Details on the physical effect of this extension will be published separately. We have to
make the remark that all simulations presented in Chapter 5 contain a small mistake
in the form of the neoclassical extension. The collisionality was implemented with a
temperature dependency of νi ∝ T

5/2
i instead of the correct dependency of T 2

i . Although
small quantitative changes are possible, we do not expect a qualitative change in the
results, especially as the same model (including the mistake) was used for all simulations.
For the simulations presented in Chapter 6 this mistake was already corrected.
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B Transformation of the Hammett-Perkins closure
To transform the Hammett-Perkins closure into configuration space we use a similar
method as the one used for the Landau-fluid closure. The method is also a fast non-
Fourier method [72]. The approximation of the exact function for the Hammett-Perkins
heat flux also relies on Lorentz functions

qHP
∥,k = −A

ik∥
|k∥|

Tα,k ≈ −A
N−1∑
n=0

k0α
nβ

k2
∥ + (k0αn)2

ik∥Tα,k, (155)

where in contrast to the Landau-fluid closure just three numerical constants are nec-
essary. The value of a = 5.0, b = 1.0275 and k0 = 1.0 are motivated by [46]. To illustrate
how to represent different ranges of parallel wave numbers k∥, we reproduce two figures
from [46].

(a) Sums of Lorentz functions with different N (b) Sums of Lorentz functions with different k0

Figure 64: Sums of Lorentz functions for the Hammett-Perkins closure with different
values of N and k0

In fig. 64 we observe that by increasing the number of Lorentz functions N , we can
expand the range towards larger parallel wave numbers k∥ and by decreasing the value
of k0, we can increase the range towards smaller k∥. Similar to the Landau-fluid closure,
each Lorentz function can be transformed into configuration space[

−∇2
∥ + (k0α

n)2
]
qHP
∥α,n = −Ak0α

nβ∇∥Tα. (156)
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C Fit for Lorentz functions
The parameters αn and βn in table 1 for the Lorentz functions of the Landau-fluid model
are taken from [46]. To verify these numerical parameters a fit was performed using the
python module LMFIT [104], which was also employed in [46]. The resulting parameters
are shown in table 5.

n αn βn

1 0.0046960 0.13975
2 0.51308 1.0047
3 5.3780 5.1124
4 34.7388 30.1791
5 216.7386 186.4066
6 1370.083 1165.395
7 14058.137 8687.863

Table 5: Values for the parameters αn and βn for the case of N = 7 Lorentz functions
obtained with the python module LMFIT [104]
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Figure 65: The 7 Lorentz functions corresponding to table 5 in colours, in black their sum
and in grey the exact function. Below the error between the black and grey curve and
the dashed line shows the error neglecting the first Lorentz function n = 1
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The values for the numerical parameters are close to the ones provided in [46]. The
region of interest in x, where the Lorentz functions are fitted to the analytical curve
can still be fine-tuned to increase the agreement of the parameters. However, an exact
reproduction is not the purpose of this section, but the fact that these fits can be performed
quite easily. The Lorentz functions and their sum are shown in fig. 65. Furthermore, in
the lower plot, we visualise the error between the analytical function in grey and the sum
of Lorentz functions in black. The solid black line is the error for the complete sum, while
the dashed line shows the error without the first Lorentz function n = 1.

The purpose of plotting the dashed curve is, that in some cases we could observe that
the low-numbered Lorentz functions converge very slowly. A possible way to make this
problem less severe would be to exclude here the lowest numbered Lorentz function. As
we observe in the lower plot of fig. 65, the error for low values of x decreases, but stays
still below 2%.
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