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The finding of physical realizations of topologically ordered states in experimental settings, from
condensed matter to artificial quantum systems, has been the main challenge en route to utilizing their
unconventional properties. We show how to realize a large class of topologically ordered states and sim-
ulate their quasiparticle excitations on a digital quantum computer. To achieve this, we design a set of
linear-depth quantum circuits to generate ground states of general string-net models together with uni-
tary open-string operators to simulate the creation and braiding of Abelian and non-Abelian anyons. We
show that the Abelian (non-Abelian) unitary string operators can be implemented with a constant- (linear-
) depth quantum circuit. Our scheme allows us to directly probe characteristic topological properties,
including topological entanglement entropy, braiding statistics, and fusion channels of anyons. Moreover,
this set of efficiently prepared topologically ordered states has potential applications in the development
of fault-tolerant quantum computers.
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I. INTRODUCTION

Starting with the discovery of the fractional quantum
Hall (FQH) effect [1], a rich zoo of topologically ordered
phases of matter has been discovered [2,3]. Topologically
ordered phases do not fall into the conventional Landau
symmetry-breaking paradigm but are instead characterized
by their long-range entanglement. This long-range entan-
glement can in turn give rise to some unique physical
properties such as the topological ground-state degener-
acy dependent on the boundary conditions of the system. A
particularly exotic feature of topologically ordered phases
in two-dimensional (2D) systems is manifested by emer-
gent anyonic excitations that exhibit fractional Abelian or
non-Abelian braiding statistics. Despite extensive exper-
imental efforts to detect anyons, it is only recently that
signatures of the Abelian anyonic statistics have been
demonstrated in v = 1/3 FQH states via collision and
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interferometry experiments [4,5]. Meanwhile, even though
experimental signatures consistent with non-Abelian any-
onic statistics have been observed in FQH states at ν = 5/2
and 7/2 [6–8], its definitive confirmation remains elusive
thus far.

While the search for physical systems hosting topolog-
ical order and methods of its detection remains an active
area of research, another route toward realizing topologi-
cal states is through their simulation in suitable quantum
systems. To this end, exactly solvable models play a spe-
cial role; they can serve as a test bed for calibrating
the system in order to realize the established properties
before venturing into the unknown. A quintessential exam-
ple of soluble models of topological order is provided
by string-net models [9]. These are lattice models the
low-energy physics of which is described by a nonchiral
doubled topological quantum field theory (TQFT) [10,11].
String nets also have an intimate connection to quantum
computation: Abelian string-net models can be regarded
as a family of quantum error-correcting codes [12] and
certain non-Abelian string-net models can be used for uni-
versal quantum computation in relation to Turaev-Viro
codes [13]. While the realization of such topologically
ordered states in physical systems is extremely challenging
due to their long-range entanglement, recent advances in
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the fabrication of controlled quantum systems—including
programmable superconducting qubits [14,15] and Ryd-
berg atomic arrays [16–18]—offer promising platforms for
their realization. In the noisy-intermediate-scale-quantum
(NISQ) era, quantum simulations are intrinsically noisy
and limited system size [19] and thus an efficient scheme
with shallow quantum circuits is highly desirable.

In this work, we show that generic string-net (ground)
states can be efficiently realized and manipulated on a dig-
ital quantum computer with shallow unitary circuits. This
work generalizes and goes beyond the algorithm recently
implemented experimentally in Ref. [15]. Our protocol
allows a preparation of topologically ordered states with
O(l)-depth quantum circuits of local gates, where l is
the smaller of the width and the height of the system.
Moreover, it is possible to characterize the topological
order of the prepared states by entanglement and braid-
ing statistics measurements. The creation and manipulation
of the localized anyonic quasiparticles in the Abelian and
non-Abelian phases rely on stringlike quantum circuits.
The depth of the required circuits is constant for Abelian
anyons and scales linearly with the separation of the non-
Abelian anyons. Based on the anyonic braiding, we also
show how the fusion of anyons can be determined by an
efficient interferometry measurements. This completes a
toolkit for simulating the underlying TQFT of the string-
net model. As a result, the scheme can be viewed as an
efficient mapping from gate-based computation to anyon-
based computation [20]. Due to the inherent noise of NISQ
devices, efficient algorithms become particularly important
for obtaining reliable results. A special case of our proto-
col has already been used to realize Z2 topological order
on the 31-qubit Sycamore quantum processor [15].

It is worth mentioning that other explicit unitary con-
structions for string-net states are known. Letting L be
the perimeter of the system, a depth-O(L log L) quantum
circuit can be derived from entanglement renormalization
[21,22]. The isometric tensor-network representation [23]
of the string-net states can be regarded as a local quantum
circuit of depth O(L) [24–26]. A subclass of the string-net
model, the quantum double model and its anyonic exci-
tations [27], can be simulated without the presence of a
background Hamiltonian by involving measurement oper-
ations [28,29]. Additionally, there are alternative protocols
for extracting anyon statistics based on wave-function
overlaps [30] or using defects and lattice deformation,
such as in Ref. [13]. The paper is structured as follows.
In Secs. II and III, we describe the circuit construction on
the Abelian examples of the toric code and double-semion
models before moving to the general case in Sec. IV. In
Secs. V and VI, we discuss the measurement of the topo-
logical entanglement entropy and anyonic statistics that
characterize the topological order. We then proceed to
describe the circuits for braiding anyons in Sec. VII, giving
both Abelian and non-Abelian examples. We conclude in

Secs. VIII and IX by discussing the possible experimental
realizations and applications.

II. TORIC CODE

One of the simplest examples of topologically ordered
states is the ground state of the toric code (TC) model [27].
This model consists of spin-1/2 degrees of freedom on the
bonds of a honeycomb lattice with Hamiltonian

ĤTC = −
∑

s

Q̂(TC)
s −

∑

p

B̂(TC)
p . (1)

The commuting projectors Q̂(TC)
s = 1

2 (1 +∏
j ∈s σ̂

z
j ) con-

tain a product of Pauli matrices σ̂ z around each ver-
tex s and B̂(TC)

p = 1
2 (1 +∏

j ∈p σ̂
x
j ) contains a product of

Pauli matrices σ̂ x around each plaquette p , as shown in
Fig. 1(a). Throughout this paper, we consider open bound-
ary conditions, as in Fig. 1(a), which are most relevant for
experimental realization of the states on NISQ devices.

In the Pauli-z basis, we regard the qubit |1〉 = |↓〉 as
being occupied by a string and |0〉 = |↑〉 as unoccupied.
The vertex and the plaquette projectors, Q̂s and B̂p , con-
strain the ground state to be an equal-weight superposition
of all the closed-loop configurations. A ground state can be
compactly written as a product of the plaquette projectors
over the product state, neglecting the normalization:

(a)

(b)

(c)

FIG. 1. The construction of the toric code ground state. (a) The
honeycomb lattice with qubits on the edges that contains a pla-
quette (black) and a vertex (purple): the vertices on the boundary
only have two incoming legs. (b) The quantum gate C-B̂p that
is controlled by the representative qubit and targets the rest. The
green marks the control qubits (unchanged upon C-B̂p ), while the
yellow marks the target qubits (changed). (c) A graphical illus-
tration of the algorithm: prepare the red qubits in |0〉 and the
blue qubits in |+〉 = (|0〉 + |1〉)/√2; then apply C-B̂p on each
plaquette in parallel for each row.
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|G〉TC ∝
∏

p

⎛

⎝1 +
∏

j ∈p

σ̂ x
j

⎞

⎠ |000 · · · 0〉 . (2)

With the choice of open boundary conditions, Eq. (2) is the
unique ground state of the Hamiltonian given in Eq. (1)
[31]. A similar idea can be adapted to periodic bound-
ary conditions, where the ground state of the Hamiltonian
becomes fourfold degenerate.

The compact form of Eq. (2) motivates an efficient quan-
tum circuit construction for the ground state, which is as
follows:

(1) Prepare an initial product state. We associate a
representative qubit with each plaquette and they
are initialized as |+〉 = (|0〉 + |1〉)/√2 [blue in
Fig. 1(c)]. The rest of the qubits are initialized as
|0〉 [red in Fig. 1(c)].

(2) Perform C-B̂p over all the plaquettes in parallel on
each row and iterate this from the bottom row to the
top row; where the controlled-B̂p operation (C-B̂p
for short) applies controlled-NOT (CNOT) gates con-
trolled by the representative qubit to the rest of the
qubits in the same plaquette, shown in Fig. 1(b).

The depth of the quantum circuit built from this algorithm
is linear in the number of plaquette rows in the system.
Graphical illustrations of the steps are shown in Figs. 1(b)
and 1(c). The C-B̂p operator plays a central role in our con-
struction of the quantum circuit. It flips all the rest of the
qubits in the plaquette if the representative qubit is |1〉;
otherwise, it acts trivially. The algorithm therefore has a
nice interpretation that each operation C-B̂p , together with
the initialization of the representative qubit for plaquette
p , splits the state into an equal-weight superposition of
being acted on by the identity or

∏
j ∈p σ̂

x
j . Iterating this

set of operations over all the plaquettes yields the ground
state of the form given in Eq. (2). If we follow this row-
wise construction in Fig. 1(c) and step 2, the circuit can
be designed to have a depth that scales proportional to the
smallest linear dimension of the system. A concrete exper-
imental implementation of this algorithm can be found in
Ref. [15].

The algorithm can be extended beyond the row-wise
construction to other geometries, e.g., to periodic bound-
ary conditions. However, the order must be such that each
representative qubit is used as a control qubit before it is
part of the targets of the C-B̂p gate. That is, before apply-
ing the C-B̂p gate, we require the representative qubit for
that plaquette not to be entangled with the rest of the sys-
tem. If the choice of representative qubits and the order
in which the C-B̂p gates are applied satisfy this constraint,
then we say that the order is permissible. The row opera-
tion in step 2 of the algorithm can be replaced with other
protocols following any permissible order. In general, the

algorithm yields a parallel quantum circuit of depth that is
at most linear in the perimeter of the system. We see that
this statement holds true for all the string-net models.

III. DOUBLE-SEMION MODEL

Before moving on to general string-net models, let us
consider another spin-1/2 example—the double-semion
(DS) model. This model can support semions and their
chiral partners as excitations with an exchange phase of
±i [11]. The Hamiltonian of the DS takes a form simi-
lar to Eq. (1), with Q̂(TC)

s replaced by Q̂(DS)
s and B̂(TC)

p by
B̂(DS)

p . The vertex projector Q̂(DS)
s projects onto the space

where an even number of strings meet on each vertex s
(i.e., the same as the TC). The plaquette projector takes
the form B̂(DS)

p = 1
2 (1 − B̂1

p), where B̂1
p flips all the qubits

in the plaquette p and associates a phase +1 (−1) to the
configuration if the total number of loops in that configu-
ration is changed (unchanged) after the flip. Note that in
the literature, the factor of −1 in the DS model is typi-
cally associated with a change in the number of loops but
here we have an additional minus sign in front of B̂1

p , cor-
responding to the choice of |−〉 = (|0〉 − |1〉)/√2 for the
representative qubits. This is only a matter of convention;
we keep the minus sign here for later generalizations.

Similarly to the TC, the resulting DS ground state
can be obtained by applying a product of plaquette
projectors B̂(DS)

p :

|G〉DS ∝
∏

p

B̂(DS)
p |000 · · · 0〉 . (3)

The DS ground state is a superposition of all the closed-
loop configurations with weights (−1)C, where C is the
total number of closed loops in that configuration.

To construct the wave function given in Eq. (3), we
translate the same procedure from the TC construction:

(1) We assign a representative qubit to each plaquette
and initialize them in |−〉 = (|0〉 − |1〉)/√2; the rest
of the qubits are initialized in |0〉.

(2) We then apply the C-B̂p operator over the plaquettes
row by row in parallel, as in Fig. 1(c).

Note the difference compared to the TC case: we initialize
the representative qubits in the |−〉 state instead of |+〉. We
also employ a different C-B̂p , which applies B̂1

p to the other
qubits in the plaquette if the representative qubit is |1〉 and
acts trivially otherwise. An explicit circuit for the C-B̂p is
shown in Fig. 2. Again, during the construction, the order
in which we apply C-B̂p is important. We can choose the
same row iteration as in the TC case and then the depth of
the circuits constructed row-wise scales linearly with the
smallest linear dimension of the system. More generally,
we can follow any permissible order, as defined in Sec. II.
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(a) (b) (c)

FIG. 2. The construction of the double-semion ground state.
We implement the algorithm as an analogy to Fig. 1(c): the rep-
resentative qubits (blue) are initialized in |−〉 = (|0〉 − |1〉)/√2
and the rest of the qubits (red) are |0〉. (a) The construction con-
sists of parallel application of C-B̂p on each row. (b) The circuit
diagram for C-B̂p . The two-qubit gate symbolized by two solid
dots connected by a line is a controlled-Z gate. The three-qubit
gate applies σ̂ z to the third qubit if the solid and hollow control
qubits are 1 and 0, respectively; otherwise, it does nothing. The
dashed box in the circuit diagram contains the unitary that gives
a phase +1 (−1) if the number of loops changes (unchanged)
when a TC plaquette operator is applied [as shown in (c)].

IV. GENERAL STRING-NET MODEL

A general string-net model can be defined on a honey-
comb (or any trivalent) lattice with local spins located on
the edges. These spin degrees of freedom correspond to
different string types at that edge. The strings are oriented
in general: we use i∗ to denote the string i with inverted ori-
entation, with i∗ 	= i for oriented strings. String-net models
describe a large class of topologically ordered phases
the low-energy physics of which gives rise to a doubled
TQFT [9]. On a quantum computing platform, the spins
(or strings of different types) are encoded as qudits, a gen-
eralization of qubits with more than two levels, which in
practice could correspond to multiple physical qubits.

A string-net model is specified by a set of branching
rules and self-consistent local constraints. The branching
rules are all the triplets of string types {a, b, c} that are
allowed to meet at each trivalent vertex, while open-ended
strings are prohibited. For example, in the TC and DS
model, the branching rules only allow qubits that add up to
0 (mod 2) to meet at the vertex. On the other hand, the local
constraints ensure that any string configurations that can be
smoothly deformed to each other have the same weight in
the ground state. As a result, the system describes a fixed
point of the real-space renormalization group flow [22,32].
We give a brief summary of the general string-net model
in Appendix A.

For a model with N nontrivial string types, we can define
an orthonormal basis {|s〉}, i.e., (N + 1)-level qudit states,
for string s = 0, 1 . . .N , where each qudit state |s〉 labels
an edge occupied by a string s. The label s = 0 is reserved
for the vacuum or null string. The Hamiltonian of the gen-
eral string-net model generalizes the form of TC and DS,

consisting of commuting projectors

Ĥ = −
∑

v

Q̂v −
∑

p

B̂p , (4)

where Q̂v projects the triplet of strings at each vertex v
onto the allowed branching; B̂p = ∑

s asB̂s
p is the plaquette

projector, with as being some real coefficients determined
by specific string-net models. B̂s

p is a plaquette operator
for each string type s; it acts on the plaquette p and its six
external legs (for a detailed definition, see Appendix A).
By construction, all the terms commute with each other.

Note that the TC and DS in the previous sections are spe-
cial cases of Eq. (4) with a0 = a1 = 1/2 and a0 = −a1 =
1/2, respectively. The plaquette operators are B̂0

p = 1 and
the nontrivial plaquette operator B̂1

p in each case. The coef-
ficients as are related to the total quantum dimension D of
the underlying anyonic theory through D = 1/

∑
i a2

s .
A ground state of the general string-net model can be

conveniently written as a product of projectors over the
zero product state:

|GS〉 ∝
∏

p

B̂p |000 · · · 0〉 =
∏

p

(
∑

s

asB̂s
p

)
|000 · · · 0〉 .

(5)

The state preparation is a direct generalization of the
case for the DS, with the C-B̂p (DS) operator acting on
qubits replaced by the new C-B̂p operator acting on qudits.
Similar to controlled operations on qubits, this controlled
operation applies a unitary to the target qudits if the control
qudit is in a particular state s, as shown in Fig. 3.

For simplicity, we focus on the same row-wise construc-
tion as in the previous sections. A generalization to any
permissible order is straightforward. When C-B̂p opera-
tions are performed from the bottom to the top row during
the row-wise construction, the qudit subspace on which
the qudit gates act is shown in Fig. 3(a). The shape of
general C-B̂p generalizes those for the TC and DS; there
are four additional qudits covered by the gates and the
states of these qudits are unchanged upon the application
of the gate. Despite the shared bond between the neighbor-
ing operations, similar to the CNOT decomposition for the
TC construction in Fig. 1(c), the C-B̂p gate can be decom-
posed into a sequence of smaller controlled qudit gates
around a plaquette. This allows for parallel implementa-
tion of the gates to all the plaquettes along each row (see
Appendix E).

We can therefore adopt the following steps to construct
a general string-net ground state:

(1) We assign a representative spin for each plaquette
and initialize them in a state

√
D∑

s ai |s〉. The rest
of the spins are initialized to be |0〉.
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(a)

(b)

...

...

...

Qudit changed
Qudit unchanged

FIG. 3. The construction for general string-net models.
(a) During the construction, C-B̂s

p only acts on the subspace
shown on the left; here, i1, i2, i3, e1, e2, e3, and e4 label all the
allowed strings under branching rules. s is the state of the repre-
sentative qudit. The arrows indicate the convention for the string
orientation. One can prepare general string-net states on a honey-
comb lattice by applying C-B̂p row by row. Despite the overlap
of the gates, they can be decomposed for parallel implementa-
tion on each row. The C-B̂p gate is controlled by the green qudits
and alters the yellow ones. The representative qudits (blue) are
initialized in D∑

i ai |i〉. (b) The gate structure of C-B̂p . If the
representative qudit is in state |s〉, it applies B̂′s

p to the rest of the
spins within the plaquette. This gate satisfies Eq. (6). We provide
an explicit circuit for the gate in Appendix E.

(2) We then iteratively apply the C-B̂p on each row of
plaquettes.

Here, operators C-B̂p for the row construction satisfy

. (6)

Thin unlabeled edges denote the vacuum |0〉, while the set
of labels {i} and {e} are arbitrary qudit configurations sat-
isfying the branching rules of the string-net ground state.
Edges with arrows indicate a convention that we use to
label an oriented string with the qudit state. Operator B̂′s

p
is implicitly defined by Eq. (6) and takes into account that
the representative qubit starts in the state s, such that its
action corresponds to applying plaquette operator B̂s

p to
that plaquette. We indicate the strings with a particular
convention for the orientation. However, for models with
only unoriented strings, no convention needs to be cho-
sen. This includes all the spin-1/2 string-net models, the
TC, the DS, and the double-Fibonacci model discussed in

Secs. VIII and IX. The C-B̂p operation is controlled by the
representative qudit: if the qudit is |s〉, B̂′s

p is applied to the
rest of the qudits in the same plaquette p [see Fig. 3(b)],
which is the same as acting with B̂s

p on the state with a
trivial representative qudit. It is also possible to implement
the C-B̂p operations in a different permissible order other
than the row-wise construction above. To do this, a more
generic definition of C-B̂p is needed whereby the subspace
of the initial qudit configurations is more general than that
shown in Fig. 3(a) and Eq. (6). In Appendix C, we give
a more general subspace of qudit configurations for defin-
ing C-B̂p that can be used for any permissible order. The
operator C-B̂p is well defined due to the isometry condition
of B̂s

p restricting to the subspace where at least one of the
qudit states on the plaquette edge is trivial |0〉. A proof of
the isometry property is given in Appendix C.

The construction prepares any given string-net ground
states from O(l) layers of parallel local quantum gates,
where l is the smallest linear dimension of the system.
The circuit depth shows explicitly that the lower bound
of the circuit scaling provided in Ref. [33] is optimal for
string-net states.

V. TOPOLOGICAL ENTANGLEMENT ENTROPY

Topological order is characterized by the presence of
long-range entanglement. Measurement of the long-range
entanglement of string-net states allows us to verify and
partly characterize the topological order of the string-net
states that we can efficiently prepare. Such entropy mea-
surements are generally costly but are still feasible on
small-scale experiments on current and near-term devices
[34–36], as experimentally demonstrated in Ref. [15]. For
the sake of completeness, we recall the main idea of this
entanglement measure and its detection on a honeycomb
lattice.

The entanglement entropy of subsystem A is defined as
the von Neumann entropy SA = −tr(ρA ln ρA), where ρA
is the reduced density matrix of the subsystem A. If we
consider a disk with boundary length L and compute the
entanglement entropy for the region enclosed by the disk,
it is expected to follow S = αL − γ + · · · , where α and γ
are constants. The rest of the terms vanish as L → ∞. This
so-called area law has been proven for a one-dimensional
(1D) gapped Hamiltonian [37] and conjectured for higher
dimensions.

The constant α is nonuniversal and depends on the
details of the Hamiltonian but γ (≥ 0) is a universal quan-
tity that cannot be changed unless a quantum phase tran-
sition occurs. The negativity of −γ and the positivity of
von Neumann entropy prevent us from smoothly connect-
ing the state to a product state without changing γ (via
a quantum phase transition), indicating an intrinsic long-
range entanglement. This universal quantity Stopo = −γ

040315-5
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(a) (b)

FIG. 4. Probing the TEE on a quantum computer. (a) The sim-
ply connected domains A, B, and C are used in the subtraction
procedure given in Eq. (7); the exterior is the rest of the system.
(b) A connected domain on a honeycomb lattice for extracting
the TEE. The domain includes the qudits on the external legs,
while the qudits on the boundary of two domains are shared by
both sides.

is dubbed the topological entanglement entropy (TEE)
[38,39] and can be determined in a model-independent way
via a subtraction procedure,

Stopo = SA + SB + SC − SAB − SBC − SAC + SABC, (7)

where A, B, and C are simply connected domains
[Fig. 4(a)] and they are assumed to be large compared
to the correlation length. The TEE is an invariant in the
sense that it does not change when A, B, and C are
smoothly deformed. It therefore serves as a useful probe
to characterize a topological order of the system.

The string-net ground states are known to obey the
area law and have Stopo = − logD, where D is the total
quantum dimension. In a model with Abelian anyons,
the quantum dimension simply counts the total number
of anyon species D = √

No. anyons, which for the TC
and DS give Stopo = − ln 2. The zero correlation length in
string-net states allows for accurate inference of the TEE
from very small subsystems and ensures that the TEE stays
invariant even when the region outside ABC is truncated
away in the state construction.

We can extract the TEE from the system by performing
a full quantum state tomography (QST). This is gener-
ally impractical for a large system size, as it involves
reconstructing the reduced density matrices by measuring
a complete set of observables. A nice feature of the string-
net states is that their TEE remains unchanged if the von
Neumann entropy is replaced by the Rényi entropy of arbi-
trary order [40]. This provides an alternative approach to
accessing the TEE via randomized measurements [35,36].
The protocol allows for a direct access to the entropy with-
out reconstructing the state, which significantly reduces
the necessary measurements needed for statistical aver-
aging. When operating on NISQ devices, the randomized
measurements can be performed together with the state-
of-art error-mitigation technique to produce an unbiased
estimator for the TEE, as successfully demonstrated for
subsystems up to nine qubits in Ref. [15].

VI. ANYONIC BRAIDING AND FUSION
CHANNELS

Anyons emerge as the nonlocal excitations of topologi-
cally ordered phase. They are quasiparticles that obey frac-
tionalized statistics. The existence of these exotic anyonic
excitations is a defining property of topologically ordered
phases. Two key quantities of the underlying anyonic the-
ories are the twist factors θa and the modular S matrix.
They can be used to classify the theory down to finitely
many possibilities [41] (up to gauge equivalence). The
measurement of these data serves as another useful tool
to characterize the topological order experimentally [42].

The anyonic twist factor θa is defined to be the phase
accumulated when a particle is rotated by 2π about itself.
For Abelian anyons (including bosons and fermions), the
twist factor determines their braiding statistics, i.e., the
phase resulting from exchanging two identical particles.
Whereas θa = ±1 for bosons and fermions, it can take
other rational phases for generic anyons. To obtain the
twist factor, we first create a pair of anyons, a and ā (parti-
cle and antiparticle), from the ground state and then move
particle a to the final position with unitary Ûa along a
twisted path as shown in Fig. 5(b). The twist factor is the
phase relative to the state with the particle moved to the
same location along a path without a twist. We denote
the unitary that drags particle a along this alternative
(untwisted) path as V̂a.

The modular S matrix captures the mutual statistics
between the anyons. In the Abelian case, the matrix ele-
ments encode the phase accumulated when one anyon

A

?

(a) (b)

(c) (d)

FIG. 5. Probing braiding statistics by interferometry. The uni-
tary paths V̂ and Û for obtaining (a) Sab and (b) the twist factor
θa. (c) A simple circuit for measuring the expectation 〈ψ |Â|ψ〉,
where Â is a unitary operator acting on |ψ〉 and the ancilla qubit
is initially prepared in |0〉. At the end of the circuit, the ancil-
lary qubit is measured to obtain 〈σ̂ z − iσ̂ y〉. The expectation of
Â follows from 〈ψ | Â |ψ〉 = 〈σ̂ z − iσ̂ y〉. (d) An alternative path
to measure the S matrix. The path can be used to measure an
unknown anyon (blue) at a fixed position by braiding with anyons
of known species (black).
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winds around another. In the non-Abelian case, the wind-
ing induces a nontrivial transformation in the subspace
formed by these anyonic particles. To measure the S
matrix, we first create two pairs of anyons, a, ā and b, b̄,
from the ground state and then intertwine a and b with uni-
tary Ûab [see Fig. 5(a)]. Next, we consider another path
corresponding to moving these anyons to the same location
without crossing each other along the way; we denote the
unitary for this path as V̂ab. Matrix element Sab is obtained
by measuring the overlap between the final states in the
two scenarios above. The twist factor θa and the S matrix
are expressed in terms of expectation values of unitaries
V̂a, Ûa and Ûab, V̂ab as follows:

θa = 〈ψaā| V̂†
aÛa |ψaā〉 ,

Mab = 〈ψaābb̄| V̂†
abÛab |ψaābb̄〉 . (8)

Here, Mab is the monodromy matrix [43] and it is related
to the S matrix via Sab = (dadb/D)Mab, where da,b is the
quantum dimension of anyons a and b. |ψaā〉 is the wave
function with a pair of anyons a, ā and |ψaābb̄〉 is the wave
function with two anyon pairs, a, ā and b, b̄. Once we know
how to implement Û and V̂, the expectation value can be
efficiently measured by a simple Hadamard-test quantum
circuit with one ancilla qubit, as shown in Fig. 5(c). The
number of local gates needed to perform the measurement
will scale linearly with the number of qudits supported
by the unitary being measured. The costs come from the
long-range controlled gates from the ancilla qubit to the
support of the unitary. The procedure is a typical example
of Mach-Zehnder or Ramsey-type interferometry for mea-
suring the braiding statistics [43,44], where the anyonic
statistics results from the interference of paths V̂ and Û.

Note that the details of the paths in Figs. 5(a) and 5(b)
are not important: any paths that can be continuously
deformed to them are considered equivalent. Some nonuni-
versal phases can emerge locally along the paths (e.g.,
geometric phases); nevertheless, the braiding phase can
still be determined by splitting a single path into multiple
segments. These segments of paths can be implemented in
a different order to create trajectories with and without the
particle braiding, the interference of which determines the
statistics [45]. In our approach, we do not encounter these
nonuniversal phases, since we can explicitly construct the
Wilson-string operators corresponding to the anyons, as
explained in Sec. VII.

A measurement of the monodromy matrix alone is suf-
ficient for determining the modular S matrix for string-net
models. This is because the modular S matrix is required
to satisfy certain constraints, e.g., the modular S matrix is
symmetric and unitary and satisfies the Verlinde formula
[46]. These stringent constraints do not only allow us to
directly infer the modular S matrix from the monodromy

matrix measured from the experiments,

Sab =
√
(M−1)∗ba

Mab
Mab, (9)

where M−1 is the inverse of M . In practice, they are helpful
in identifying the correct modular S matrix from the noisy
data (see Appendix D).

Measurement of these interfered paths also provides
access to the fusion channel. If we bring two Abelian
anyons together, they can be regarded as a single par-
ticle of a unique type. Abelian anyons have a unique
fusion channel, whereas non-Abelian anyons have multi-
ple fusion channels by definition. For non-Abelian anyons,
combining them can result in a particle of multiple types.
Suppose that we have an unknown anyonic state |ψ〉 =∑

i pi |i〉 at a fixed position, where i labels all the possi-
ble anyons and the pi are some complex amplitudes. We
can prepare a known anyon a and braid it around the
unknown anyon [Fig. 5(d)]; interfering this winding path
with the path without winding gives the same quantity
as the S-matrix element in Eq. (8), i.e., 〈ψa| V̂†Û |ψa〉 =
D∑

i |pi|2Sai/dadi, where |ψa〉 is |ψ〉 with a pair of a, ā
created and Û, V̂ are the unitaries for the two paths. The
probability amplitudes |pi|2 are determined by inverting
the matrix Sai/dadi. Measurement of the fusion results
allows us to directly access the fundamental algebraic
relation underlying the TQFT [47].

VII. CREATING AND MOVING ANYONS IN THE
STRING-NET MODEL

In this section, we describe how Abelian anyons can be
created and braided using quantum circuits of a constant
depth, whereas braiding of non-Abelian anyons requires
linear-depth (in anyon-anyon separation) quantum circuits
due to their nonunique fusion.

The quasiparticles in the string-net model are identified
with closed-string (Wilson-loop) operators that commute
with the string-net Hamiltonian. When a closed-string
operator is broken to have open ends, the quasiparticle
and the corresponding antiquasiparticle emerge as defects
localized at the endpoints of the open-string operator
applied to the string-net states [9]. The string operators
connecting the two endpoints can be thought of as a trajec-
tory traced by the quasiparticle at one end while the other
is at rest. As a result, the braiding events can be simulated
by realizing the open-string operators with a sequence of
unitary gates.

The precise details of how the closed-string operators
are broken into open strings are not essential for our pur-
pose. Braiding is described by the relative motion between
different quasiparticles. In other words, the braidings are
captured by how the open-string operators cross each other
away from their endpoints (see Fig. 5). We require the

040315-7



YU-JIE LIU, SHTENGEL, SMITH, and POLLMANN PRX QUANTUM 3, 040315 (2022)

open-string operators to have the exact same bulk form
as the closed-string operators given in Ref. [9] but at the
same time to be unitary. These string operators are gener-
ally isometries but can be promoted to a unitary form. Such
unitary string operators allow the manipulation of anyons
by decomposition into a sequence of smaller gates.

To simplify the discussion, we focus on the string-net
models where quasiparticles correspond to either a sim-
ple string operator or a product of simple string operators.
This is not a very restrictive condition and, for instance,
it includes all of the spin-1/2 string-net models originally
considered in Ref. [9] and non-Abelian anyons beyond
the spin-1/2 lattice, such as the Ising anyon. A string
operator being simple means that it can be assigned a
unique basis string label s ∈ {0, 1, . . . , N } and it character-
izes an irreducible quasiparticle in the model (for details,
see Appendix A). We give a definition of the open sim-
ple string operators that can be promoted to a unitary in
Appendix B. The shapes of the operators are depicted in
Fig. 6(a) for general Abelian and non-Abelian cases. The
string operator changes the qudit states {i} along its path
and leaves the states {e} on the legs unchanged. The orien-
tation of the path along the string is indicated with arrows.
The quasiparticles at the endpoints of the open string can
be moved by deforming the string operator with some
local unitary gates [see Fig. 6(b)]. The product of simple
strings can be implemented by multiple simple strings with
nonoverlapping endpoints.

A. Locating the quasiparticles

The braiding interferometry in Sec. VI assumes the
quasiparticle configurations at the end of the interfered
paths to be identical. To unambiguously locate a quasi-
particle at the endpoint of a string operator, we label each
endpoint with a vertex and a plaquette. If the string opera-
tor turns left (right) before the spin at the endpoint, then the
associated plaquette is on the left (right) of the endpoint.
The associated vertex is the vertex away from the endpoint
of the string operator. The plaquette-vertex pair labels the
location and orientation of the quasiparticle [see Fig. 6(a)].
The motion of the quasiparticle can be visualized as mov-
ing the pair of labels as shown in Fig. 6(b). Note that the
plaquette or vertex label does not necessarily coincide with
the actual plaquette-vertex violation that appears as exci-
tation in the microscopic string-net Hamiltonian. In some
cases, they can be chosen to coincide. An example is the
TC excitations, which are created by a string of σ̂ x along
the vertex labels and σ̂ z along the plaquette labels (Fig. 7).
Each string operator thus only needs one of the plaquette
or vertex labels and the other one becomes irrelevant.

B. Unitary string operators for the Abelian anyons

If the quasiparticle describes an Abelian anyon, the
trajectory represented by the string operator can be

Non-AbelianAbelian

Abelian

Non-Abelian

(a)

(b)

FIG. 6. Preparing and moving anyons with unitary string oper-
ators. (a) Open-string operators for Abelian (left) and non-
Abelian (right) anyons. The operators act on the set of labeled
qudits {i} along the path and {e} of the legs. Only the states of the
qudits {i} along the path are changed by the operator. Each quasi-
particle has an associated vertex (red) and plaquette (yellow).
Before the string operators are applied, the ancillary qudits in
the non-Abelian case are initialized to align with the other qudits
on the same edge. (b) The endpoint quasiparticles can be moved
by extending the string operator sequentially with unitary gates.
The dark gray marks the existing string. The enclosed qudits on
the left are acted on by the endpoint-moving unitary gates, which
correspond to an exact (modified) form of the unitary string oper-
ators for the Abelian (non-Abelian) case. The plaquette-vertex
labels are used to locate the quasiparticle. When extending the
string operator, they trace the motion of the quasiparticle. Note
that the ancillary qudit in the non-Abelian case can be moved
without physically displacing the qudits. For more details, see
Appendices B and E.

interpreted as a chain of anyon-antianyon–pair creations.
Since the Abelian anyon and its antianyon are guaranteed
to fuse into the vacuum, the result will be the same as hav-
ing one quasiparticle at each end of this chain, as depicted
in Fig. 8(a).
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FIG. 7. The string operators for toric code. The end points can
be labeled by a plaquette or vertex that corresponds to exactly
the microscopic excitation in Eq. (1). The dashed line indicates
the path that the plaquette excitation takes as the Wilson string is
generated.

This shows that a long unitary string operator for the
Abelian anyons is a product of disjoint short unitary string
operators. As seen in the circuit decomposition of the
string operator shown in Fig. 6(b), an Abelian open-string
operator can be extended by one more site, with a two-
qudit quantum gate that does not overlap with the existing
string operator. In this case, this two-qudit gate corre-
sponds to a unitary open-string operator in Fig. 6(a) with
one endpoint slightly modified. To create a long string
operator of the form in Fig. 6(a), we can apply a short
string operator (a three-qudit quantum gate) and extend it
to a longer string, as schematically illustrated in Fig. 9(a).
Since none of the gates overlap with each other, the circuit
can be implemented with a constant depth. Further details
of the two- and three-qudit gates are given in Appendix B.

(a)

(b)

FIG. 8. The manipulation of Abelian and non-Abelian anyons.
(a) Two separate Abelian anyons a and ā can be created by
a sequence of multiple local anyon-antianyon pairs. The inter-
mediate quasiparticles fuse to the vacuum. (b) If a and ā are
non-Abelian anyons, the transport of the anyon is no longer
equivalent to local pair creation and pair annihilation of a and ā.
The fusion yields a superposition of the vacuum and some other
nontrivial anyon species b, with amplitudes pb.

(a)

(b)

FIG. 9. The decomposed string operators using the move-
ments from Fig. 6(b). (a) For the Abelian string operators, an
initial short string (dark gray) can be extended to a long string
operator (light gray) by a constant-depth local quantum cir-
cuit. (b) A sequentially applied quantum circuit is required for
extending a short non-Abelian string, resulting in a linear-depth
quantum circuit. We show the details of the circuits, including
the short string initialization, in Appendix B.

C. The difficulty of manipulating non-Abelian anyons

The argument given for the Abelian anyons no longer
holds when we consider the non-Abelian case. The fusion
of two non-Abelian anyons along the chain not only gives
the vacuum but, in general, a superposition of fusion chan-
nels [see Sec. VI and Fig. 8(b)]. To create two separated
non-Abelian anyons from the local pairs, additional projec-
tions are needed around the anyon-antianyon pair to ensure
that they fuse to the vacuum.

Therefore, a unitary (and hence reversible) movement
of non-Abelian anyons can only be achieved sequentially,
requiring at least a number of time steps that scales with
the separation between the anyons. In the language of field
theories, this amounts to the necessity of path ordering
in the Wilson-loop operator for non-Abelian anyons. This
intuition implies that at least a linear-depth quantum cir-
cuit is needed to implement a unitary string operator that
describes the movement of non-Abelian anyons. A recent
work [48] has proved this lower bound in the context of
the quantum double model.

D. Unitary string operators for non-Abelian anyons

To define a unitary string operator for the non-Abelian
anyons, we introduce an additional qudit at each endpoint
of the string, as shown in Fig. 6(a). This additional degree
of freedom at the string endpoints is motivated by the dia-
grammatic calculus of the string operators in Appendix D
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of Ref. [9]. In the diagrammatic approach, an endpoint of
a string operator will carry a simple string label and split
the edge it touches (represented by a physical qudit) into
two edges. One of the edges still retains the original qudit
state and the other edge now stores the new qudit state
obtained from applying the string operator. In our proto-
col, we introduce the additional qudit to take into account
this additional split edge so that we can keep the full infor-
mation about the open-string endpoint, making the unitary
construction of the operator possible.

As depicted in Fig. 6(b), a non-Abelian open-string
operator can be extended by one site with a four-qudit
quantum gate. In contrast with the Abelian case, the gate
that extends the string operator needs to involve the qudits
at the endpoint of the existing string operator and the gate
itself cannot be regarded as a short unitary open-string
operator. To create a long string operator, we first imple-
ment a short unitary string operator of the form in Fig. 6(a)
(in the non-Abelian case, this is achieved by a four-qudit
quantum gate, as explained in Appendix B): the short
string is extended using a sequence of four-qudit gates in
Fig. 6(b). An explicit procedure is depicted in Fig. 9(b),
which is a quantum circuit the depth of which grows lin-
early with the separation of the string endpoints. Note that
the resulting unitary string operators satisfy the optimal
scaling of the circuit depth argued above. The existence
of the efficient string operator decomposition allows for
manipulation of non-Abelian anyons without the need of
any projection.

When simulating the non-Abelian strings, the additional
ancillary qudits should always be placed at the endpoints
of the current string operators. This can be achieved by
swapping the ancilla states through the lattice without
physically displacing the qudits. We provide full details
of the protocol together with explicit quantum circuits in
Appendices B and E. Alternatively, we can simply place
two qudits on each edge instead of only one. Despite dou-
bling the number of qudits, the alternative approach retains
the translational and rotational invariance of the lattice.

VIII. MINIMAL EXPERIMENTAL REALIZATION
ON NISQ DEVICE

In the era of NISQ computation, the major challenge
comes from the intrinsic noise and the various imperfec-
tions in state initialization and gate operations. A feasible
experimental realization of a topologically ordered state
must be conducted with shallow circuits of local gates and
efficient braiding that can be used to measure all the twist
factors and the full S matrix. The scheme described above
yields promising designs for small-scale experiments that
are already possible on NISQ devices; in particular, for the
Abelian spin-1/2 models (TC and DS).

A minimal example for the experiment of a three-
plaquette TC is depicted in Fig. 10(a) (see also Ref. [15]

for a square-lattice version). The TEE can be inferred from
a minimum system of three qubits around a vertex using
the subtraction procedure in Sec. V. The quasiparticles in
TC come in four types, the trivial I, e (a string of σ̂ x),
m (a string of σ̂ z), and the composite e × m (the product
of e and m). They can be prepared on the TC ground state
using strings of Pauli matrices. To understand the braiding
in TC, it suffices to consider only the braiding paths for
the composite e × m, from which all the other paths of the

(a)

(b)

(c)

(d)

FIG. 10. Small-scale experimental realization. (a) In a three-
plaquette toric code, the TEE can be measured using the three
connected domains as in Fig. 4, consisting of three qubits. On the
right, we show the initial configuration of the anyons prepared by
σ̂ x and σ̂ z: the anyons can also be moved using the same opera-
tors. (b) Braiding steps to realize the exchange of e × m particles.
The solid lines are string operators used to drag the particles.
(d) We can extract other S-matrix elements by following (c) twice
with some specific anyons removed. Here, we only keep the m
on the left and the e on the right. Applying (c) twice results in
three parallelized steps as shown, which gives Sem = Sme = −1.
(d) The braiding for general Abelian and non-Abelian anyons
can be simulated on a small system as shown. The left and right
diagrams depict the interfered paths of the anyons. Note that the
final anyon configurations are identical.
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braiding can be extracted. Figure 10(b) shows the path to
exchange two e × m particles, where we make use of the
property that the twist factor for Abelian anyons can be
extracted from the phase when exchanging two identical
particles. The mutual statistics can be obtained by inter-
changing the spatial positions of the particles twice and
back to the initial quasiparticle configuration. It is not hard
to check that the paths traced out by the particles are the
same as Fig. 5(a) up to a smooth deformation. An exam-
ple of the mutual braiding between e and m is shown in
Fig. 10(c).

For more general Abelian and non-Abelian models, the
braiding can be carried out on a minimal system such as
that shown in Fig. 10(d). The system is subject to further
reduction on the number of the boundary qudits that can be
disentangled without affecting any observables in the bulk.
Using the protocols that we have, it would be exciting to
realize a proof-of-principle simulation of the non-Abelian
spin-1/2 double-Fibonacci (DF) model that supports the
non-Abelian Fibonacci anyon as quasiparticle excitation.
Apart from its exotic non-Abelian physical nature, the
Fibonacci anyons are also known to be universal in topo-
logical quantum computation [47]. In Appendix F, we
provide the circuit diagrams for the state preparation and
anyonic braiding in DF. The circuits yield a rough estimate
for the resources overhead of DF compared to the TC and
DS, based on the C-B̂p operator in the state preparation,
which can be decomposed into �5 local CNOT gates for TC
and �15 local CNOT gates for DS, but �120 CNOT gates for
DF. In other words, to construct a string-net ground state
on a system of N × M hexagon plaquettes (approximately
3NM qubits) and N ≤ M , the layers of parallel local CNOT
gates scale as �5N for TC, �15N for DS, and �120N
for DF. Although the resources needed to realize the DF
are an order of magnitude more demanding than for the
Abelian examples, the quest for small-scale experiments
have already begun [49].

IX. DISCUSSION AND CONCLUSIONS

In light of the ground-state structure of the string-net
models, we develop a set of efficient quantum circuits
for preparing the topological string-net states with depth
that scales linearly as the minimum width of the system.
The implementation offers substantial practical advantages
compared to the previously known unitary constructions
[22,24]. The prepared topological states serve as platforms
supporting Abelian or non-Abelian anyons, which are
braided by the unitary string operators. Although we focus
our discussion on the honeycomb lattice, the implementa-
tion of the protocol can easily be run on the heavy-hexagon
lattice [50], which is available in current quantum com-
puting platforms. The construction also straightforwardly
generalizes to any other 2D trivalent lattices compati-
ble with the architecture of the devices, rendering further

reduction on the number of qudits needed. The explicit
quantum gates that we use during the construction are local
within each plaquette on the lattice (see, e.g., Fig. 3). In
practice, the implementation of these gates needs to be
optimized based on specific device connectivity, as has
been done in Ref. [15] for the square lattice.

The circuit construction can be extended to other topo-
logical states or quantum stabilizer codes that share a simi-
lar ground-state structure. An example is Kitaev’s quantum
double model [27], which can be defined on any lattice
embedded in a 2D orientable surface with orthonormal
basis {|g〉 |g ∈ G} labeled by the elements of a finite group
G. The Hamiltonian also takes the form of a sum of com-
muting local projectors on vertices and plaquettes. We can
use a similar idea to obtain a linear quantum circuit for its
ground state with the representative spin in each plaquette
initialized as 1/|G|∑g∈G |g〉. This is not surprising, as it
is known that quantum double models can be mapped to
a subclass of string-net models [51,52]. The same scheme
can also be used to prepare any states that are related to
the string-net states by a finite-depth quantum circuit, the
corresponding quasiparticle string operators being smeared
out with support bounded by the light cone of the finite
circuit. The states of this form (often with a finite corre-
lation length) will exhibit the same topological order [53],
making them valuable computing resources for the study
of correlated quantum many-body physics with controlled
quantum systems.

The preparation scheme can be exploited as an efficient
generator for a family of 2D quantum data sets on digital
quantum computers. It would be interesting to use these
exotic states for benchmarking various protocols where
the nontrivial order of the states are relevant. Some exam-
ples include quantum phase recognition [54,55], quantum
tomography for weakly entangled states [56–58], or entan-
glement measurements [34,36,59,60], which have so far
mostly only been illustrated on 1D cases. These quan-
tum data can also be efficiently generated on a photonic
quantum computer [61].

Another exciting direction to be explored is fault-
tolerant quantum computation. The circuits realize an
efficient unitary encoding of the logical information in pla-
nar geometry with suitable boundary conditions, i.e., the
surface-code protocol [62–64]. Despite not being intrinsi-
cally fault tolerant, small-scale unitary encoding already
provides useful insights into the logical state injection and
logical error dynamics [15]. An alternative approach to
achieving fault tolerance is topological quantum compu-
tation (TQC) [47], where logical information is encoded
in non-Abelian anyons. A key advantage of TQC com-
pared to the surface-code protocol is that it allows for
universal fault-tolerant computation by anyonic braiding.
While universal computation is possible in surface code,
it requires a costly state distillation process. The unitary
quasiparticle string provides a unitary encoding scheme
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for TQC (e.g., based on Fibonacci anyons). The braid-
ing is accomplished by a sequence of local gates, which
can also be used to determine the fusion of the anyons.
However, whether all these anyonic operations can be
performed fault tolerantly, e.g., by introducing syndrome
measurements [65,66] or anyon distillation [67], remains
an interesting open question for future work.
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APPENDIX A: A BRIEF SUMMARY OF THE
STRING-NET MODEL

Here, we give a brief summary of the string-net model
introduced in Ref. [9]. There exist generalizations beyond
the original construction [68–70]. In this paper, we focus
on the original construction in (2+1)D with rotational
invariance.

The string-net models are defined on a 2D trivalent
graph where each edge is associated with a string. We
label the strings by s = 0, 1, 2, . . . , N , where N is the total
number of nontrivial string types in the model, with s = 0
labeling the absence of any strings. The strings are gener-
ally oriented: each string s has a dual string s∗ that points
to the opposite direction [see Fig. 11(a)]. As a result, the
unoriented string satisfies s = s∗. The branching rule is the
set of triplets of strings {a, b, c} allowed to meet at the ver-
tex, with the orientation convention shown in Fig. 11(b).
We define the branching delta δabs = 1 if the branching
{a, b, c} is allowed and zero otherwise. The null string
s = 0 is associated with the branching rule δ0ss∗ = 1 for
any string type s. In the Abelian string-net model (the
excitations are Abelian anyons), if two strings a and b
meet (branch) at a vertex, then the third string c at the
same vertex is uniquely determined [70]: we denote this
by c∗ = a × b. For a continuous string {0, s, s∗}, we have
s = s × 0. For general non-Abelian string-net models, the
third string c is not uniquely determined.

(a) (b)

FIG. 11. (a) Inverting a string s is the same as changing to the
dual string s∗. (b) The orientation convention for branching at a
vertex.

The string-net ground state is the state that satisfies
a set of local rules. More precisely, let us consider a
configuration X in the ground-state wave function, its
amplitude being denoted by �(X ). The ground state is
the weighted superpositions of string configurations |ψ〉 =∑

X �(X ) |X 〉, The set of local rules relates the weights of
the configurations that only differ locally:

(A1)

where vs = √±ds, with ds > 0 being the quantum dimen-
sion of string s: they also satisfy v0 = 1 and vs = vs∗ . The
rank-6 tensor F is called the F symbol. For convenience,
we usually define Fijm

kln to be zero if the corresponding dia-
gram has forbidden branching. By setting i = j = 0, we
see that a type-s loop carries a weight of bs = v2

s ∈ R.
These rules completely determine the ground-state wave
function in the sense that the amplitude of any config-
uration can be reduced to the amplitude of the trivial
configuration |00 · · · 0〉 by applying these rules (neglecting
the boundary conditions).

Because one configuration can be related to the same
configuration by applying the local rules in a differ-
ent order, they therefore satisfy the so-called pentagon
equation:

∑

n

Fmlq
kp∗nFjip

mns∗Fjs∗n
lkr∗ = Fjip

q∗kr∗Friq∗
mls∗ . (A2)

In addition, it can be shown that in order for the string-
net model to be physical and self-consistent, the F symbol
should satisfy

Fi∗j ∗m∗
k∗l∗n∗ =

(
Fijk

kln

)∗
,

Fijm
j ∗i∗0 = vm

vivj
δijm,

Fijm
kln = Flkm∗

jin = Fjim
lkn∗ = Fimj

k∗nl
vmvn

vj vl
, (A3)

where the asterisk (∗) on the scalar denotes the complex
conjugate of that number. The algebraic object (Fijk

kln, bs)

040315-12



STRING-NET STATES AND ANYONS ON A DIGITAL QUANTUM. . . PRX QUANTUM 3, 040315 (2022)

that satisfies the constraints above is what defines a string-
net model. Using the equations from above, we can derive
one of the most useful properties of the F symbol that
underlines the unitarity of our construction in the main
text:

∑

n

Fijm
kln

(
Fijm′

kln

)∗
= δmm′δijmδklm∗ . (A4)

Another useful identity that can be derived from Eqs. (A2)
and (A3) is

∑

s

δabc∗dc = dadb, (A5)

where ds = |vs|2 > 0 turns out to be the quantum dimen-
sion of the anyon realized by the type-s simple string
operator.

The string-net wave function is the ground state of the
Hamiltonian given in Eq. (4), where the plaquette operator
is written as B̂p = ∑

s asB̂s
p . For the topological phase to

have a continuum limit, as is chosen to be as = bs/
∑

s b2
s .

With this choice of as, B̂p becomes a projector. Each B̂s
p

physically corresponds to adding a type-s loop to a pla-
quette and fusing it into the lattice based on the local rules
given in Eq. (A1). With this graphical picture, we can work
out the general matrix element for B̂s

p in terms of the F
symbol:

. (A6)

Note that the spins on the six external legs are not changed
upon the application of B̂s

p . The operators of any string
types and on any plaquettes commute, i.e., [B̂s1

p1 , B̂s2
p2 ] = 0

for any s1, s2 and p1, p2.
Each quasiparticle excitation of the Hamiltonian given

in Eq. (4) corresponds to a closed-string operator. The
string should not be observable: only the endpoints of the
string (quasiparticles) are. For this reason, the closed-string
operator should commute with the Hamiltonian. A type-s
string operator that fulfills the requirements has the matrix
element from i to i′

W
i′1i′2···
i1i2···(e) =

(
∏

k

F
ek−1i∗k ik−1
s∗i′k−1i′∗k

)(
∏

k

ωk

)
, (A7)

where i1, i2, . . . are the spins along the closed string and
e is the set of external legs along the path of the string

operator [see, e.g., Fig. 6(a)]. The closed-string operator W
only changes the spins along the path but not the ones on
the external legs. The quantity ω is defined as

ωk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vik vs
vi′k
ω

i′k
ik , if before (after) ik, it turns right (left),

vik vs
vi′k
ω

i′k
ik , if before (after) ik, it turns left (right),

1, otherwise,
(A8)

where ωi
j and ωi

j are phase factors satisfying Eq. (A9).
Note that when W acts on a plaquette p , it should corre-
spond to adding a type-s string loop and fusing it into the
plaquette, i.e., it is equivalent to applying B̂s

p .
The solutions of ω are solved from a set of consistency

equations by imposing the commutativity of the string
operators with the Hamiltonian

ω
j
i =

∑

n

ωk
i∗Fis∗k

i∗sj ∗ ,

vsvj

vm
ωm

j Fsl∗i
kjm∗ωl

j =
∑

n

Fji∗k
s∗nl∗ω

n
k Fjl∗n

ksm∗ . (A9)

A string operator of this form is called a simple string
operator. The product of two simple string operators,
W1W2, results in another string operator for the compos-
ite quasiparticle. The simple string operators form a large
subclass of the general string operators: they describe
many interesting anyonic quasiparticles that are relevant
for physical realizations, such as the anyons in the Abelian
TC and DS and the non-Abelian double-Fibonacci model.
We speculate that it is also possible to generalize the
unitary definition of the open-string operators to the non-
simple cases using ancillary qudits: this is discussed in
Appendix C.

APPENDIX B: QUASIPARTICLE STRING
OPERATORS

The anyonic excitations in the string-net models are
localized at the endpoints of the open-string operators.
There is no unique way to define the endpoints (excita-
tions) of these open-string operators. However, the topo-
logical properties of these quasiparticles are independent
of such details. Here, we give a definition of the open-
string operator (corresponding to a type-s string of length
L) in the string-net model. Its matrix element from initial
spins i1, i2, . . . to i′1, i′2, . . . can be written as

W
i′1i′2···i′L
i1i2···iL(e) =

vi′1
vi1vs

(
L∏

k=2

F
ek−1i∗k ik−1
s∗i′k−1i′∗k

)(
L−1∏

k=2

ωk

)
, (B1)

where e = {e1, e2, . . . eL−1} is the set of external legs along
the string [see Fig. 6(a)]. The complex numbers vi and
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rank-6 tensor F are the data that define the given string-net
model (see Appendix A). ω is defined in Eq. (A8).

This open-string operator has the property that creating
a type-s string along {i1, i2, . . . , iL} is the same as creat-
ing a type-s∗ string along {iL, . . . , i2, i1}. In addition, the
open-string operator satisfies an isometry condition that
underlies the unitary decomposition of the operator, as
discussed below.

1. Abelian quasiparticle strings

In Abelian theory, we can move the Abelian anyon by
applying the open-string operator that connects between
the anyons at the initial and final positions. That is, we
change the position of the endpoint by joining two open
strings together to form a new open string. This is possi-
ble because Abelian anyons have a unique fusion channel.
When two endpoints (anyons) join, the anyon and its
antipartner combine (fuse) to vacuum.

Since we can move the anyon using a sequence of local
unitaries, it is convenient to initialize a short open-string
operator and move the anyons (endpoints) apart from each
other later. We can prepare a pair of Abelian anyons (that
corresponds to an type-s string) by a three-qudit unitary
having the matrix elements in Eq. (B1) for L = 2:

, (B2)

where q′
1,2 = s × q1,2 and {e, q1, q∗

2} is an allowed branch-
ing. The dark path on the right-hand side indicates the
path created by the string operator. We use an arrow along
the string to indicate the orientation convention, following
Fig. 6(a). In Abelian theory, the nontrivial values in the F
symbol become phase factors (see Appendix A). This oper-
ator initializes a string of length 2 on the lattice. Note that
we could have set the phase vq′

1
/vq1vs to 1 by local unitary

in this Abelian case, but in non-Abelian theory this factor is
no longer a phase and it becomes important for preserving
the isometry property of the open-string operator.

The Abelian anyon at the end of the string can be moved
using a two-qudit unitary that satisfies

, (B3)

Here, again, p = e∗ × q, p ′ = s × p and q′ = s × q. We
also define ωp ′,p to be the same as ωk in Eq. (A9) by replac-
ing i′k = p ′ and ik = p . A schematic diagram of the unitary
is shown in Fig. 13. We give an example of the circuit
realization for Eqs. (B2) and (B3) in Appendix E.

2. Non-Abelian quasiparticle strings

By placing one additional qudit at each end of the string
operator, we can prepare a length-2 non-Abelian open
string (which corresponds to a type-s string) similarly to
the Abelian case:

.

(B4)

This four-qudit unitary uses two ancillary qudits to create
a non-Abelian string with two qudits along the path. The
orange color highlights the qudits that store the ancillary
qudit states.

We can further define a local unitary to move an exist-
ing non-Abelian anyon at the endpoints of an open string.
A key difference between the non-Abelian and Abelian
cases is that unitarily encoding non-Abelian anyons with
open-string operators requires an additional ancillary qudit
at the endpoint. In order to implement non-Abelian strings,
we need to ensure that the endpoint of the string operator
always lands on an edge that has an ancillary qudit. This
can be achieved by placing one additional qudit on each
edge. Alternatively, we can adapt the following strategy
that only requires two additional qudits for implementing
one open-string operator.

For a given configuration, we first perform a local lattice
distortion as shown in Fig. 12. Such a distortion does not
require any physical quantum operation: one can simply
register such a change, e.g., on a classical computer. This
step makes sure that the endpoint of the string will land
at an edge with two qudits. Following this virtual lattice
distortion, we implement a four-qudit unitary that satisfies

.

(B5)

The operators for creating and moving the anyons are
schematically shown in Fig. 14, with a circuit in terms
of qudit quantum gates. Note that a long Abelian string
decomposes into a constant-depth quantum circuit while a

FIG. 12. A local change of registered connectivity, to make
sure that the endpoint of the string can land at an edge with two
qudits. No physical gates are needed here.

040315-14



STRING-NET STATES AND ANYONS ON A DIGITAL QUANTUM. . . PRX QUANTUM 3, 040315 (2022)

s
s

s

(a)

(b)

FIG. 13. The quantum circuits for Abelian open-string opera-
tors. (a) A circuit realization for preparing Abelian anyons. The
shaded box shows the F move defined by the F symbol in the
Abelian model, together with the labeling convention for the F
symbol. We define the shaded circuit element to associate the
qudit state with an F-symbol phase. This phase is computed
based on the F-symbol labels assigned in the circuit diagram
(see also the discussion in Appendix E). (b) A circuit realization
for moving the Abelian anyons by extending the string operator
(dark gray).

linear-depth is required for the non-Abelian strings.

APPENDIX C: THE ISOMETRY PROPERTY OF
PLAQUETTE OPERATOR B̂s

p AND THE
OPEN-STRING OPERATOR

Here, we prove that B̂s
p is an isometry on the given sub-

space, as in Fig. 3(a), when the representative qudit is in
the null state initially. This follows directly from the alge-
braic definition of B̂s

p in Eq. (A6). We show this isometry

(a)

(b)

FIG. 14. The quantum circuits for the non-Abelian open-string
operators. The orange color highlights the qudits that store the
ancillary qudit states. (a) A circuit realization for preparing non-
Abelian anyons. The shaded box shows the F move defined by
the F symbol in the non-Abelian model, together with the label-
ing convention for the F symbol. The shaded circuit elements are
qudit quantum gates that perform the F move. The gates are con-
trolled single-qudit rotations that change the state of the green
qudit labeled with m. The gates are controlled by the states of the
other input qudits, each of which is assigned with a label in the F
symbol according to the circuit diagram. (b) A circuit realization
for moving the non-Abelian anyons by extending the open-string
operator (dark gray).

property for the case when h = 0 (by continuity of the
strings b = g and c = i∗), i.e., we compute the overlap

. (C1)

Taking the algebraic definition of B̂s
p ,

∑

g′i′j ′k′l′
Fbb∗0

s∗sg′∗
(

Fbb∗0
s∗sg′∗

)∗
Fc0c∗

s∗i′s∗
(

Fc0c∗
s∗i′s∗

)∗
Fdcj1

s∗j ′i′∗
(

Fdcj2
s∗j ′i′∗

)∗
F

ej ∗
1 k1

s∗k′j ′∗
(

F
ej ∗

2 k2
s∗k′j ′∗

)∗
F

fk∗
1 l1

s∗l′k′∗
(

F
fk∗

2 l2
s∗l′k′∗

)∗
F

al∗1b
s∗g′l′∗

(
F

al∗2b
s∗g′l′∗

)∗

=
∑

g′i′j ′k′l′
δs∗i′cFbb∗0

s∗sg′∗
(

Fbb∗0
s∗sg′∗

)∗
Fdcj1

s∗j ′i′∗
(

Fdcj2
s∗j ′i′∗

)∗
F

ej ∗
1 k1

s∗k′j ′∗
(

F
ej ∗

2 k2
s∗k′j ′∗

)∗
F

fk∗
1 l1

s∗l′k′∗
(

F
fk∗

2 l2
s∗l′k′∗

)∗
F

al∗1b
s∗g′l′∗

(
F

al∗2b
s∗g′l′∗

)∗

= δj1j2δk1k2δl1l2

∑

g′
δs∗g′b∗Fbb∗0

s∗sg′∗
(

Fbb∗0
s∗sg′∗

)∗
= δj1j2δk1k2δl1l2 , (C2)

where we repeatedly use the unitarity of the F symbol in Eq. (A4). The isometry property required in Eq. (6) for C-B̂p
to be well defined follows by setting b = c = 0. However, the isometry property holds even for b, c 	= 0: this allows
us to define C-B̂p on a more general subspace. It follows that any permissible order, other than the row-wise algorithm
presented in the main text, can be used for the string-net state construction.
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In Appendix B, we claim there exist unitary opera-
tors that can be used to prepare and move the anyons on
the string-net ground state. To see that the conditions are
compatible with unitarity, it suffices to consider the non-
Abelian case of the operators. The form of the Abelian
open-string operator is a special case of the non-Abelian
string operator (see Appendix B). The isometry property
of the operator for moving directly comes from the unitar-
ity given in Eq. (A4) of the F symbol and from ω being a
phase. The isometry condition on the preparation operator
in Eq. (B4) can be computed as

〈mp1p2p2|
(

Ûs
prep

)†
Ûs

prep |eq1q2q2〉

=
∑

q′
1,q′

2,p ′
1,p ′

2

dq′
1

dq1ds

(
F

mp∗
2 p1

s∗q′
1q′∗

2

)∗
F

eq∗
2q1

s∗q′
1q′∗

2
δmeδp2q2δp ′

1q′
1
δp ′

2q′
2

= δmeδp2q2δq1p1

∑

q′
1

dq′
1

dq1ds
δsq′∗

1 q1

= δmeδp2q2δq1p1 , (C3)

where the labels m, p1, and p2 correspond to a qudit con-
figuration matching e, q1, and q2 in Eq. (B4). In the second
line of the calculation, we use Eq. (A4) and the definition
d = |v|2. The last equality follows from Eq. (A5).

Note that in Eq. (C3), it is important to have an ancil-
lary qudit at the endpoint to orthogonalize the states. We
expect that a similar construction using ancillary qudits
can be used to realize nonsimple open-string operators.
However, nonsimple string operators will no longer cor-
respond to a single string type; instead, we have a mixture
of several string types. Correspondingly, the phase factors
ωk in Eq. (A8) associated with the strings are replaced
with tensors [9]. The construction will likely have to be
modified.

APPENDIX D: DETERMINATION OF THE S
MATRIX FROM MEASUREMENT

The measurement of the S matrix relies on measuring
the expectation of the unitary paths by an interferometry-
like experiment (see Sec. VI). The S matrix is obtained
by Sab = dadbMab/D, where Mab is called the monodromy
and is measured by braiding anyons a and b, as shown in
Eq. (8). Sometimes we know the quantum dimension d of
the quasiparticles beforehand and sometimes we do not.
However, it turns out we can directly obtain the S matrix
just from the monodromy Mab without knowing the quan-
tum dimensions. This is because we restrict ourselves to
anyon models that are described by a unitary modular ten-
sor category, where S matrix is unitary. The constraint of

unitarity implies S† = S−1. It follows that

(
dadb

D

)2

= (M−1)∗ba

Mab
, (D1)

where M−1 is the inverse of the matrix Mab. We can sub-
stitute this relation into Eq. (8). The S matrix is directly
given by

Sab =
√
(M−1)∗ba

Mab
Mab, (D2)

solely in terms of the measurement outcomes. Due to the
structure of the S matrix, the monodromy Mab should also
satisfy a set of constraints in order to yield a physical S
matrix. For example, from Eq. (D1), we can immediately
conclude that (M−1)∗ba/Mab > 0. By definition, we have
Sab = Sba: this suggests that Mab = Mba. The list of con-
straints is not exhausted. Other constraints can come from,
e.g., the Verlinde formula [46] or from being (together with
the twist factors) the generator for the modular group [43].
In practice, these stringent constraints and Eq. (D2) will
be very helpful in benchmarking the experimental data and
identifying the correct S matrix for the underlying modular
tensor category from the noisy data.

APPENDIX E: QUANTUM CIRCUITS FOR
STRING OPERATORS AND C-B̂p

In this appendix, we provide some examples of quantum
circuits for the string operators, which also lead to a quan-
tum circuit for the C-B̂p . Since all the open-string operators
satisfy the isometry condition, there are certain degrees of
freedom in defining the unitary to realize them. What we
show here is one realization of such a unitary.

We encode the spin state on each site in a qudit. As a
result, the quantum gates become qudit gates in general.
For example, we can generalize the two-qubit CNOT gate to
a two-qudit CNOT by modular arithmetic, i.e., for an (N +
1)-level qudit, CNOTqudit |a, b〉 = |a, b + a〉 in mod N + 1.
Another example is the qudit SWAP gate that swaps the two
states of two qudits, SWAPqudit |a, b〉 = |b, a〉. We use the
same circuit symbol for the qudit CNOT and SWAP as for
the qubit CNOT and SWAP. For clarify, let us consider the
cases for Abelian and non-Abelian strings separately.

The Abelian open-string operators (i.e., each nontrivial
value in the F symbol is a phase), such as for the toric code,
take a particularly simple form due to the fusion constraints
(see Appendix A). A quantum circuit implementation of a
type-s string in terms of qudit gates is shown in Fig. 13,
where we define the colored circuit element in Fig. 13
as a two-qudit gate that associates each state with an F-
symbol phase. Explicitly, they map |eq1〉 → Fejq1

kln |eq1〉 or
|eq〉 → Feq∗m

kln |eq〉, depending on which two of the labels
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s

FIG. 15. The definition for the qudit gates used in the con-
struction of the open-string operators, where s is the label for
the corresponding simple string operator. The quantity ωp ′ ,p is
the phase ωk in Eq. (A9), with i′k = p ′ and ik = p , and the orien-
tation is to be identified from the direction of the string operators
in the circuit diagrams, such as in Figs. 13 and 14.

i, j , k, m, n, l in Fijm
kln are assigned to the input qudits accord-

ing to the circuit diagram. The rest of the four unknown
labels in the F symbol are uniquely determined by fusion
in the Abelian model. The other qudit gates that we use
can be found in Fig. 15. In the string-preparation stage, we
simplify the circuits by removing the phase in Eq. (B2) as
discussed in Appendix B. The string-preparation gate thus
satisfies Ûs

prep |eq1q2〉 = F
eq∗

2q1
s∗q′

1q′∗
2

|eq′
1q′

2〉, which is equiva-
lent to Eq. (B2) up to an overall phase.

The non-Abelian string circuits are shown in Fig. 14,
where we use the qudit CNOT introduced above. The col-
ored gate in this case implements the F move to the state
according to the assigned labels in the circuit diagram.
Unlike the Abelian case, the gate changes the state of
the qudit assigned with green label m in Fig. 14. The
definitions for the other qudit gates can be found in Fig. 15.

Next, we use the circuits for the string operators to con-
struct a circuit for the C-B̂p . The controlled gate C-B̂p can
be seen as applying a type-s string operator around the
plaquette if the control qudit of the gate (i.e., the repre-
sentative qudit for the plaquette) is in state |s〉. It thus
follows that we can decompose C-B̂p into a sequence of
local controlled gates that prepare and deform the string
operator as in Figs. 13 and 14. We show how this can be
done for the non-Abelian case; the Abelian case follows
straightforwardly. Note that the subspace on which C-B̂p
acts is

. (E1)

Our goal is to apply a type-s string operator around the
plaquette, where |s〉 is the state of the control qudit at
the top.

A schematic of the circuit is shown in Fig. 16. To con-
struct C-B̂p , we first initialize a length-2 string using the

FIG. 16. A circuit decomposition for the C-B̂p gate using the
labeling convention in Eq. (E1). All the gate operations are
controlled by the qudit on the top bond (the green s). The
dashed arrows show the virtual location of the ancillary qudit
state, which is stored in the initially disentangled qudit (orange)
throughout the steps. In step 1, the qudit gate is a qudit CNOT fol-
lowed by Fig. 14(a). The CNOT aligns the |0〉 qudit (orange) with
the qudit at the endpoint of the string operator that is to be ini-
tialized. In steps 2 and 3, the qudit gate is the same as Fig. 14(b),
followed by a SWAP gate that keeps the ancillary qudit state in
the orange qudit. Step 4 is similar to steps 2 and 3, except that
we adapt the circuit slightly, since no ancillary qudit is required
at the last step. The explicit circuit diagrams are given in Fig. 17.

circuits in Fig. 14(a). In this step, we use one of the ini-
tially disentangled qudits, which is chosen to be the one on
the right in this example, to store the ancillary qudit state.
Next, we extend the string around the plaquette by apply-
ing the circuit in Fig. 14(b), followed by a qudit SWAP gate
that ensures that the ancillary qudit state is always stored in
the same qudit throughout. In the last step, the endpoint of
the string is going to land at the qudit that stores the ancil-
lary qudit state. We do this with a slight adaptation of the
circuit by fixing the state q3 to |0〉 in Fig. 14(b). In other
words, since the ancillary qudit is supposed to store the
initial state of the endpoint qudit before the string oper-
ator is applied, the use of the ancillary qudits becomes
unnecessary if that initial qudit is disentangled |0〉. The
resulting explicit circuit diagrams for the decomposition
are depicted in Fig. 17 for both Abelian and non-Abelian
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(a)

(b)

s
s
s

s

s

FIG. 17. Explicit circuit diagrams for Fig. 16. The qudits are
labeled by Eq. (E1). (a) The C-B̂p for the Abelian case. Here, we
use the controlled fusion gate C-S, which performs the unitary C-
S |s, i〉 = |s, s × i〉. (b) The circuit for the non-Abelian case; the
qudit used to store the ancillary state is marked in orange.

cases. One can check that for the case s = 0, the circuit
operates an identity on the input state.

We note that all the qudit gates that implement the cor-
responding F symbol can be realized as multicontrolled
qudit gates. The gate applies a single-qudit rotation on the
qudit marked by a green label, depending on the states of
the other qudits. We illustrate this in Appendix F with an
explicit example.

APPENDIX F: THE CIRCUITS FOR THE
DOUBLE-FIBONACCI MODEL

The double-Fibonacci model is a string-net model that
hosts a non-Abelian topological order. The model can be
defined on a honeycomb lattice with qubit (|0〉 or |1〉 corre-
spond to string-0 and string-1) on each site. The strings are
unoriented, with branching rules given by δ111 = δ110 =
δ000 = 1. The F symbol is defined by the Fibonacci unitary

tensor category:

v0 = 1, v1 = φ
1
2 ,

F111
110 = φ− 1

2 , F111
111 = −φ−1,

F110
110 = φ−1, F110

111 = φ− 1
2 , (F1)

where φ = 1 + √
5/2 is the golden ratio [9]. All the other

nonzero values in the F symbol are 1.
As mentioned in Appendix E, a circuit implementation

of the F move can be realized by a multicontrolled qubit
gate. For the double-Fibonacci model, this gate can be
decomposed as shown in Fig. 18 [65], where the single-
qubit rotation is given by the F symbol in Eq. (F1) as
(F)ij = F11i

11j .
We can insert the circuit of the F move into Figs. 14

and 17(b) to obtain a set of circuits that efficiently sim-
ulates the double-Fibonacci model on a digital quantum
computer. Although the circuit has not yet been optimized
for practical implementation (this depends on the connec-
tivity of the device), we can still roughly estimate the
resources needed for the simulation by counting the num-
ber of CNOT gates needed to do a C-B̂p and perform an
anyon movement. The multicontrolled F gate in Fig. 18
can be broken down into 30 CNOT gates [71]. The Toffoli
gate can be further decomposed into six CNOT gates [72].
Together with the other four CNOT gates, we have 40 CNOT
gates in total. For the C-B̂p operator in Fig. 17(b), the first
and last F-move unitary can be simplified by exploiting the
fact that we are not using the full F symbol. In the first F
move, the four-qubit controlled gate in Fig. 18 becomes a
three-qubit controlled gate by identifying l = k, which can
be decomposed into 13 CNOT gates [71]. Altogether, the
first F move consists of 23 CNOT gates. Similarly for the
last F move, by setting j = 0, the circuit in Fig. 18 can be
simplified to eight CNOT gates. Taking these considerations
into account, there are 120 CNOT gates in total (without any
circuit optimization).

The above counting does not take any circuit paralleliza-
tion into account. In practice, many of the gates can be

F

FIG. 18. A quantum circuit for the F symbol given in
Ref. [65], where all the gates are qubit gates. Here, we use a
four-qubit controlled-rotation gate, i.e., a single-qubit rotation is
applied to the fifth qubit if the qubits at the solid dots are |1〉; oth-
erwise, no operation will be performed. The single-qubit rotation
is defined in Eq. (F1).
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operated in parallel to improve the efficiency and circuit
simplification may be exploited. For example, the continu-
ity of the strings on the subspace in Eq. (E1) implies that
e1 = i1 and i3 = e4. This can be used to further reduce the
number of gates needed in Fig. 17.
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