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Direct implementation of a perceptron in superconducting circuit quantum hardware
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The utility of classical neural networks as universal approximators suggests that their quantum analogues
could play an important role in quantum generalizations of machine-learning methods. Inspired by the proposal
in Torrontegui and García-Ripoll [Europhys. Lett. 125, 30004 (2019)], we demonstrate a superconducting qubit
implementation of a controlled gate, which generalizes the action of a classical perceptron as the basic building
block of a quantum neural network. In a two-qubit setup we show full control over the steepness of the perceptron
activation function, the input weight and the bias by tuning the gate length, the coupling between the qubits,
and the frequency of the applied drive, respectively. In its general form, the gate realizes a multiqubit entangling
operation in a single step, whose decomposition into single- and two-qubit gates would require a number of gates
that is exponential in the number of qubits. Its demonstrated direct implementation as perceptron in quantum
hardware may therefore lead to more powerful quantum neural networks when combined with suitable additional
standard gates.
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I. INTRODUCTION

Artificial neural networks and engineered quantum sys-
tems are both quickly developing technologies with far-
reaching potential applications. The promise that quantum
computing can solve certain problems exponentially faster
than classical computing technology and the ever growing
thirst for computational power of machine learning appli-
cations has triggered substantial interest in the development
of quantum machine learning methodology [1–8]. Whereas
some work explored the acceleration of specific computa-
tional tasks in machine learning with quantum encodings [9],
a major part of the research considers quantum neural net-
works as counterparts to artificial neural networks in classical
software. Quantum neural networks are largely implemented
as variational quantum circuits [10–13], that are composed
of parametrized gates and where finding optimal parameters
corresponds to the training of the network. Moreover, it has
been shown that quantum speedup is possible in supervised
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machine learning [14], providing a perspective for hardware-
efficient machine learning realizations.

An important question for quantum neural networks is
their expressivity, i.e., which mappings between input and
output states can be realized by the network. In the clas-
sical domain, expressivity is guaranteed by the universal
approximation theorem, which requires a nonlinear activation
function for the perceptrons in the network. In the quan-
tum setting, there is currently no unique accepted way to
extend the concept of classical neural networks to quantum
systems [15,16]. In one approach, the inputs are encoded as
classical parameters of applied gates [17], and the network
approximates functions mapping these parameters to quan-
tum states. Another option is to encode the neuron inputs
as quantum states and to design a quantum perceptron as
a unitary whose action on a set of basis states matches a
classical perceptron [18]. Such a building block can serve
as a tool to enable experimental studies and development of
quantum neural networks. Since such an approach includes
the functionality of classical neural networks in limiting
cases, it has the expressive power guaranteed by the univer-
sal approximation theorem in those cases and thus forms a
natural starting point for exploring quantum generalizations.
Another advantage of this approach is that the perceptron
may be directly realized at the hardware level, rather than
encoded in software: this neuromorphic approach is more
hardware efficient and may thus offer significant advantages
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FIG. 1. (a) Schematic representation of a classical perceptron
with n = 5 inputs. The perceptron output y is given by a nonlinear
activation function f (·) applied to the sum of input values x1, ..., xn

individually weighted by w1, ..., wn and biased by a term b. A quan-
tum analog (b) can be constructed, where the inputs are encoded
in quantum states |x1〉 , ..., |xn〉 of n qubits and an output qubit un-
dergoes a rotation by an angle of θ = 2 arcsin[c(x)] determined by
the inputs values, leading to an excited population of |c(x)|2 when
starting the output qubit in the ground state.

for scaling the concept to larger and more data intensive
applications.

The construction of the quantum counterpart to a percep-
tron is easily illustrated with the example of a binary classifier
perceptron. This simple classical perceptron takes a number of
binary inputs xi ∈ {0, 1}, each with an associated weight wi,
and outputs another binary value y depending on whether the
linear combination xin = w1x1 + . . . exceeds a given thresh-
old or not:

y =
{

0 if xin + b < 0,

1 if xin + b � 0,

or, written compactly in terms of the Heaviside step function,
y = �(xin + b) with an additional bias b. More generally, as
illustrated in Fig. 1(a), the step function may be replaced by
a continuous activation function f and the inputs and out-
puts promoted from binary values to continuous ones. The
key advantage of such continuous activation functions is that
they have finite gradients which can be used for training the
network in gradient descent approaches.

In a quantum generalization of the classifier perceptron, the
binary variables can be naturally represented by qubit states,
which we will label as |0〉 and |1〉. The action of the perceptron

can then be represented by a gate U whose effect on the output
qubit depends on the states of the input qubits:

|x1x2 . . .〉in ⊗ |0〉out
U−→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|x1x2 . . .〉in ⊗ |0〉out

if xin + b ≡ ∑
j w jx j + b < 0,

|x1x2 . . .〉in ⊗ |1〉out

if xin + b ≡ ∑
j w jx j + b � 0.

When the input is a product state |x1x2 . . .〉in, then the unitary
is simply a rotation of the output qubit by 0 or π depending on
the sign of xin + b [19]. This concept of a quantum perceptron
can be further generalized, similarly to the classical case, by
letting the rotation angle have a different dependence on x than
a simple Heaviside function. The action of the perceptron,
shown schematically in Fig. 1(b), is then described as

|x1x2 . . .〉in ⊗ |0〉out
U−→ |x1x2 . . .〉in ⊗ |y〉out,

where |y〉out =
√

1 − |c(x)|2|0〉 + c(x)|1〉. (1)

Here the excitation amplitude c(x) is a continuous, steplike
function of x ≡ xin + b such as depicted in Fig. 1. The pre-
viously described binary perceptron is the special case where
c(x) is the Heaviside step function �(x).

Since the perceptron gate is a unitary operation, it can
in principle be implemented via any universal set of quan-
tum gates, such as single-qubit rotations and controlled-NOT
(CNOT) gates. However, the depth of such a decomposition
in general grows exponentially in the number of input qubits.
Therefore, we instead realize the perceptron gate directly,
making use of an adiabatic protocol. This approach allows us
to implement the gate with a single pulse whose duration does
not scale with the number of input qubits: From Eq. (1) it can
be seen that the perceptron acts like a multiqubit controlled
gate. However, instead of triggering an operation on the target
only when the control register is in the |1 . . . 1〉 state (like a
Toffoli gate [20], which applies an X gate to the target only
when the control qubits are in the state |11〉), the perceptron
gate applies a different operation to the output qubit for each
possible input basis state |x1x2 . . .〉in. As the number of input
basis states grows exponentially in the number of qubits,
a standard decomposition into elementary gates leads to an
expontial growth of the circuit depth (see Sec. III), which is in
contrast to the implementation discussed in the following.

II. THE PERCEPTRON GATE

A. Concept

We construct the perceptron unitary with an approach
that is a slight modification of a theoretical proposal by
Torrontegui and García-Ripoll [18], as described below. An
implementation of a similar operation was also proposed [19]
based on repeated measurements and feedback, while a gate-
based approach to construction of activation functions was
demonstrated in Ref. [21].

Our protocol, which we implement in a device with two
fixed-frequency superconducting transmon qubits [22] inter-
acting via a tunable coupler [23] [schematically depicted in
Fig. 2(a)] is based on a chirped pulse applied to the output
qubit. The resulting unitary Uad is designed in such a way that
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FIG. 2. (a) Diagram of the two-qubit experimental setup: two
fixed frequency transmons are capacitively coupled via a flux-tunable
coupler whose frequency determines the ZZ coupling between the
qubits. (b) Measured value of the ZZ coupling as a function of the
tunable coupler’s frequency (orange dots). Here we plot the coupling
strength J conventionally defined via Hint = J|11〉〈11|. In the per-
ceptron context, the weight w from Eq. (3) is given by w = −J . The
solid line is the result of numerically diagonalizing the Hamiltonian
of the system and the dashed line is the result of the lowest-order
perturbative calculation (Appendix B).

the final excited state amplitude depends on the detuning � of
a microwave drive frequency from the output qubit frequency
via the steplike response function c(�):

|0〉out
Uad−→

√
1 − |c(�)|2|0〉out + c(�)|1〉out. (2)

Note that this becomes exactly the mapping in Eq. (1) if
the detuning � is equal to the linear combination of inputs∑

j w jx j + b. We achieve this linear dependence of � on
the input states by subjecting the system to a ZZ interaction
between each of the input qubits and the perceptron qubit:

Hint = −
∑

j

w j |1〉〈1| j ⊗ |1〉〈1|out. (3)

Here j enumerates the input qubits and “out” labels the out-
put qubit. If the input qubits are in a product state |x1 . . .〉,
this is equivalent to shifting the frequency of the output by
−∑

j w jx j , or −w1x1 in the case of a single input.

B. Implementation

The ZZ interactions need to be configurable in-situ to
allow training of the network. This can be achieved by us-
ing tunable couplers [23] mediating interactions between the
output qubit and each input qubit. When the couplers are
sufficiently far detuned from the qubits, the dispersive ap-
proximation is valid and the interactions effectively introduce
ZZ coupling terms, giving rise to the Hamiltonian in Eq. (3).
The individual interaction strengths representing the network

weights can be tuned by changing the frequencies of the
couplers [24]. Using this scheme we can control the weight of
each input by tuning of the respective coupler frequency and
the bias point by changing the frequency of the microwave
drive.

In the two-qubit device used for our experimental demon-
stration, qubit 1 at a frequency ω1/2π = 6.189 GHz serves as
the output while qubit 2 at a frequency ω2/2π = 5.089 GHz
is the single-valued input register. The qubits have anhar-
monicities α1/2π = −286 MHz and α2/2π = −310 MHz.
The coupler has a frequency tunable from its maximum
of approximately ωc,max/2π = 7.8 GHz to well below the
frequencies of both qubits. The qubit-coupler interaction
strengths are approximately g1/2π = 142 MHz and g2/2π =
116 MHz.

Using Ramsey-type measurements with the input qubit
either in |0〉 or in |1〉, we characterize the dependence of the
ZZ coupling on the frequency of the coupler and observe
that it can be tuned over a range of a few MHz (see Fig. 2),
covering both positive and negative values. The main features
of the measured dependence are well reproduced by an analyt-
ical expression obtained from fourth-order perturbation theory
[see Eq. (B2)], and similarly by the numerical diagonalization
of the Hamiltonian [see Eq. (B1)].

The single-qubit operation described by Eq. (2), which
underlies the quantum perceptron protocol is realized by ap-
plying a chirped pulse to qubit 1 [25,26]. The pulse’s initial
frequency ωi is far below the output qubit’s frequency ω1

(where ω1 is defined in the absence of the interaction Hint)
while its final frequency ωf is detuned from it by b ≡ ωf − ω1.
This means the initial detuning of the drive from the qubit is
negative while the final detuning is � = ∑

j w jx j + b. Note
that the bias b, being equal to the final chirp detuning from
the unshifted qubit frequency, can be tuned arbitrarily by
changing ωf .

Under perfect adiabatic conditions, as illustrated in
Figs. 3(a) and 3(b), if the initial and the final detuning have
the same sign, then the two basis states |0〉 and |1〉 re-
main unchanged by the pulse (up to accumulated phases).
If they have opposite signs, then the states are flipped.
The resulting dependence of the final excited state pop-
ulation on the qubit frequency is illustrated in Fig. 3(c).
Since we choose the initial frequency of the chirped pulse
ωi significantly lower than the lowest possible frequency of
the output qubit (ω1 − ∑

j,w j>0 w j), we neglect the rising
edge of the function. The adiabatic operation is then ex-
actly described by Eq. (1) with |c(�)|2 = �(�) and � =∑

j w jx j + b. Smooth response functions |c(�)|2 arise nat-
urally from imperfect adiabaticity of the chirp pulse: With
a pulse of finite duration T , the process becomes nona-
diabatic when the detuning � is on the order of 1/T or
smaller. This leads to a smoothening of the step in the re-
sponse function and a finite width of roughly 1/T . In our
experiment, the chirped pulse has a time-dependent frequency
ωp(t ) = ωi + (ωf − ωi ) sin2(πt/2T ) and amplitude �(t ) =
�0 sin(πt/T ), (Fig. 3(d)). As a time-transformed version of
a hyperbolic secant pulse [27,28], for which analytical solu-
tions of the population transfer exist, it leads to hyperbolic
shaped activation functions with few fitting parameters (see
Appendix C).
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FIG. 3. (a, b) Illustration of the effect of a chirped pulse with
initial and final frequencies ωi and ωf on a qubit with a frequency ω.
(a) If the initial and final detunings have the same sign, then the basis
states |0〉 and |1〉 are unchanged (up to a phase). (b) If the signs are
opposite, then the states get swapped. This results in a dependence
of the final state on the shifted qubit frequency shown in panel (c).
The perceptron activation function is realized by this dependence
in the vicinity of ω ≈ ωf (darker line). (d) Time-dependence of the
amplitude �(t ) and frequency ωp(t ) of an exemplary chirped pulse
realizing the output-qubit rotation.

Figure 4(a) shows the measured effect of the pulse on the
qubit state as a function of the bias b = ωf − ω1 for several
durations, T , of the pulse. Since the control qubit is left in its
ground state, i.e., x1 = 0, the curves are independent of the
weight w1. In these measurements, performed with a pulse
amplitude �0/2π = 19.7 MHz (as calibrated by a comparison
with the π -pulse) and initial frequency ωi = ωf − 80 MHz,
the qubit is initialized in its ground state and its excited state
population pe after the pulse is observed to follow a steplike
curve, where the slope of the transition increases with the
pulse length. The broadening of the response curve due to
nonadiabatic effects is well reproduced by unitary simula-
tions, where we simply evolve the driven two-level-system
Hamiltonian in the rotating frame, taking the rotating wave
approximation. We choose T = 1.67 μs to be the default gate
time for the following results, as it provides a compromise
between a narrow activation function, maximizing the range
that can be sampled with the achievable weights, and fast
evolution, minimizing the amount of decoherence introduced
by the gate.

(s
ca
le
d)

FIG. 4. (a) The quantum perceptron activation functions: The
excited state population pe of the output qubit as a function of its
final detuning � after a chirped pulse is applied on the ground state
of two-qubit system. Results for different pulse lengths T are offset
for visualization. The characteristic width of the activation function
is inversely proportional to the pulse lengths T . The solid lines result
from a simulation of unitary evolution, with no fit parameters in this
model. (b) Frequency shift of the activation function dependent on
the state of the input qubit, for a pulse length of T = 1.67 μs Both
the magnitude and sign of this shift can be varied by tuning the
frequency of the coupler. In these plots, the output qubit excitations
are rescaled to correct for relaxation and readout imperfections, to
highlight the agreement of the curve’s shape with the simulation
results. The frequency spacing between the simulated curves is not
obtained by fitting but rather predicted from measured J values [see
Fig. 2(b)]. The vertical lines indicate values of b/2π = 0.8 MHz
(dashed) and b/2π = 4.0 MHz (dotted) which are used in Fig. 5(a).
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FIG. 5. (a) Final population of the output qubit as a function of
the weight w1 = −J for two different bias values b/2π of 0.8 MHz
and 4.0 MHz. As expected, when the input qubit is in the |0〉 state,
the final output state does not depend on the weight, while for control
state |1〉 it follows the nonlinear activation function. The solid and
dashed lines are derived from numerical simulations with no fit
parameters. (b) Negativity of the final two-qubits state after preparing
the input qubit in an equal superposition state and the output qubit
in its ground state and applying the perceptron gate with a weight
w1/2π = −5.2 MHz. Negativity of a two-qubit state can range be-
tween 0 for a separable state to 1/2 for a maximally entangled state.
Lines show the simulated negativity for perfect unitary dynamics
(solid) and when including relaxation of the qubits with decay times
of T1 = 20 μs (dashed).

The effect of the ZZ coupling between the output and
the input qubit is a shift of the S-shaped activation function
dependent on the input qubit being in the excited state, as
demonstrated in Fig. 4(b). The curves corresponding to the
input qubit being in the ground state (blue) are unshifted,
while the ones for an excited input qubit (orange) show a shift
which is adjustable by changing the coupler frequency. This
shift equals the ZZ coupling strength J = −w1 (where the
sign flip is included in the definition of the weight such that
the activation function is increasing, as per convention) in the
single connection between the output and the input qubit in the
quantum perceptron gate. Depending on the relative frequency
of the coupler with respect to the qubit frequencies, the weight
can be made positive or negative (see Fig. 2).

As the next step toward trainability of the network, we
control the weight w1 at a fixed bias [see Fig. 5(a)]. For the
input qubit in the ground state, the final state of the output
does not depend on w1, and is simply given by f (b) since
x1 = 0. For the control in the excited state, the dependence on

w1 is simply the activation function itself, shifted by choosing
different values for the bias b.

We further characterize the perceptron gate with quantum
process tomography [29] and verify several important aspects
of the implemented process for the representative case of
w1/2π = −5.2 MHz. First, for each bias value, we calculate
the average fidelity [30] of the process as compared to the
controlled gate

U = |0〉 〈0| ⊗ Rz(α0)Rx(θ0)Rz(β0)

+ |1〉 〈1| ⊗ Rz(α1)Rx(θ1)Rz(β1)eiγ ,
(4)

where the Ri are rotations about the i axis. Since only the
angles θi determine the populations in the activation function,
we set these from the simulation, and optimize over αi, βi and
γ to obtain a fidelity of approximately 0.86 independent of
the bias. Next, to show its entangling property, we prepare
the input qubit in an equal superposition state and the output
qubit in its ground state. We then apply the gate, extract the
density matrix of the final two-qubit state, and calculate its
negativity [31], which reaches nearly the maximum value of
1/2 for bias values at which the activation functions for the
two computational states of the input qubit are well separated
[Fig. 5(b)]. In the limit of large weight, the ideal operation
at the mid-point between the activation function slopes would
become equivalent (up to local phases) to a controlled NOT
gate, preparing a Bell state and reaching maximum negativity.
Indeed, the gate is expected to act as a controlled gate—that
is, if the input qubit is prepared in one of the basis states |0〉,
|1〉, then the gate should leave it in this state, independently of
the output qubit’s initial state. We calculate a fidelity measure
capturing how well the process M satisfies this condition, i.e.,

F = 1

2

∑
i∈{0,1}

〈Tr(|i〉〈i| ⊗ 1)M[|i〉〈i| ⊗ |ϕ〉〈ϕ|]〉ϕ, (5)

where 〈·〉ϕ denotes averaging over the initial state |ϕ〉 of
the output qubit. This average is calculated from the pro-
cess matrix of M by directly using Eq. (5) and the identity
〈|ϕ〉〈ϕ|〉ϕ = 1/2. The obtained fidelity values are independent
of the bias and lie between 0.95 and 0.97, indicating, in
conjunction with the results above, that the implemented op-
eration is to a good approximation a controlled gate. Finally,
to properly capture decoherence effects we also evaluate the
purity of the final state averaged over the initially prepared
state �, i.e.,

P = 〈Tr((M[|�〉〈�|])2)〉�, (6)

and obtain a value around 0.78, independent of the qubit-
drive detuning. This confirms that the gate is mostly a unitary
process, limited slightly by qubit decoherence. The average
purity value is consistent with typical observed qubit dephas-
ing times which vary in our experiment between 10 μs and
20 μs.

III. EQUIVALENT CIRCUIT AND SCALING COMPLEXITY

For a general, multiqubit input register the perceptron’s
action in Eq. (1) can be considered as a generalized multiqubit
conditional gate: A separate operation V (x) is applied for each
of the basis states |x〉 ≡ |x1x2 . . . xN 〉 of the N input qubits.
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FIG. 6. (a) A circuit that implements the equivalent of the per-
ceptron gate with a single input and a single output qubit. A
controlled-V operation needs to be applied for each possible string
of the inputs, in this case xin ∈ {0, 1}. (b) The circuit can be sim-
plified by applying one of the multiqubit controlled operations as
a single-qubit gate and adjusting the following operations. Here,
W (x = 1) = V (x = 1) · V (x = 0)†. (c) The controlled-W gate is fur-
ther decomposed into at most two CNOT gates and three single qubit
gates A, B, and C.

This is in contrast to a single multiqubit controlled operation,
that applies the operation V to a output qubit only if all input
qubits are in the state |1〉. Thus, to implement the perceptron
gate requires a multiqubit controlled gate for each input basis
state, in total 2N operations. This can be reduced to 2N − 1 by
implementing the V (x) of one of the input strings as a single
qubit gate and adjusting all multiqubit controlled operations
accordingly. For small N � 10, a multiqubit controlled gate
can be decomposed into 2N+1 − 2 two-qubit gates [32], which
gives us a total gate count for the equivalent circuit of Ng =
(2N − 1)(2N+1 − 2), approaching ∼22N+1 for large number of
input qubits.

More specifically, the single-input perceptron implemented
in this paper can be decomposed into single qubit gates and
two CNOT gates (Fig. 6). The fidelity and total duration of
a sequence is typically limited by the number of two-qubit
gates in transmon-based architectures. Hence, when ignoring
single qubit gates, the sequence equivalent to the perceptron
gate would be implemented in a gate time of ∼120 ns and
with an estimated fidelity of ∼99.4%. Here, we have assumed
state of the art CNOT/CZ gates with fidelities of up to 99.7%
[33,34] and gate times of 60 ns. The advantage of our protocol,
with approximately constant time, over the equivalent unitary
circuit becomes apparent as the number of input qubits is
increased, as discussed in Appendix A. For example, when
decomposing the perceptron gate with three input qubits the
best scenario estimate suggests a fidelity of ∼74.5% with a
gate time of ∼5.9 μs.

IV. DISCUSSION AND OUTLOOK

By realizing the perceptron dynamics that activates the
output qubit depending on the state of connected input qubits
directly in hardware, we have demonstrated the basic build-
ing block of a quantum feed-forward neural network. In this
codesign approach, we show that by changing the length of

the perceptron pulse the shape of the activation function can
be modified, whereas the ZZ shift mediated by a tunable
coupler and the drive final frequency can be tuned to modify
the weights and bias, which allows for training of the neural
network.

As an extension of the demonstrated single-digit input
scenario, an efficient implementation of a multiinput quan-
tum perceptron can be realized by coupling multiple input
qubits, each with its own tunable coupler, to a single out-
put qubit. Its cumulative frequency shift would be of the
form shown in Eq. (3) [35]. It is noteworthy that the gate
presented here leads to complex multiqubit operations with
two-body interactions only and with a gate time that is in-
dependent of the number of inputs. In contrast, the time to
run the equivalent circuit scales exponentially in the num-
ber of qubits, with significant advantage of the codesigned
perceptron expected already for the three-qubit input case.
While the quantum perceptron we codesign exponentially
reduces the number of required conventional gates, all-to-all
connectivity between the qubits of adjacent layers is desired
to fully benefit from this advantage. Limitations imposed by
the number of couplers that can be physically attached to
a single qubit or compromises in the connectivity between
layers may reduce this advantage. Therefore, multiqubit cou-
plers [36–39] may become increasingly useful, as will be
architectures that combine the presented implementation of
a perceptron with standard digital gate sequences. More-
over, a recent study shows that the presence of many-body
terms can be beneficial to the expressivity of quantum neural
networks [40].

To ensure proper trainability of the network, the range
of achievable weigths and biases should allow to probe the
activation function at both limits f (x) ≈ 1 and f (x) ≈ 0. For
our implementation, the possible range of ZZ shifts should be
comparable to the charateristic width of the activation curve,
that is in turn limited by the ability to follow the eigenstates
adiabatically given by the speed of the gate. Therefore, to
reduce the perceptron gate time one could envisage either
nonadiabatic versions of the perceptron [40], or an extended
range of achievable ZZ coupling by AC [41,42] or DC [43]
pulses on the coupler.

While we have demonstrated the entangling power of the
perceptron gate, evaluating quantum advantage in larger net-
works is subject to forthcoming investigations. For instance,
it will be important to understand how decoherence will af-
fect the result and what role the entanglement between the
input and output layer plays, in particular if the input layer
is in a superposition state. Partially tracing out input and
hidden layers and recycling qubits might allow for larger
networks and protect the results from decoherence of earlier
layers. Moreover, an investigation of the effects of higher
connectivity on the expressivity of the nextwork will be
required.

Finally, neural networks based on our perceptron gates
may also have applications not directly related to machine
learning. As an example, it is plausible that their quan-
tum counterparts could serve well to parametrize unitaries
in variational quantum algorithms [10,11,13], similar to the
efficient approximation capability found in classical neural
networks.
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APPENDIX A: EQUIVALENT UNITARY

The equivalent unitary matrix for the proposed perceptron
can be expressed in terms of standard gates such a two-qubit
controlled NOT and single qubit gates. However, the depth of
the equivalent circuit grows exponentially with the number of
input qubits.

The action of the perceptron in Eq. (1) can be thought
of as a generalized multiconditional gate. Whereas a “con-
ventional” N-controlled-V operation applies the gate V to a
output qubit only if the control qubit (or qubits, for a mul-
tiqubit controlled gate) is in the |1〉 state, in the perceptron
gate for every computational basis state |x〉 ≡ |x1x2 . . . xN 〉
with xi ∈ {0, 1} of the control qubits a different gate V (x) is
applied to the output qubit. The matrix representation for such
a controlled-gate has a block-diagonal structure

U =

⎛
⎜⎜⎝

V (x = 0 . . . 0)
V (x = 0 . . . 1)

. . .

V (x = 1 . . . 1)

⎞
⎟⎟⎠,

with each block V (x) corresponding to a particular input
string x. Thus, the perceptron gate can be expressed in terms
of multiqubit controlled unitaries as illustrated for a single
input qubit in Fig. 6(a) and for two input qubits in Fig. 7(a).
However, the number of multiqubit controlled unitaries can be
decreased by one by applying one the V (x) gates as a single
qubit gates, e.g., the unitary V (x = 0 . . . 0) conditioned on all
inputs being in the ground state, and adjusting all other mul-
tiqubit controlled gates to account for the extra operation, in
this example V (x) → W (x) = V (x)V (0 . . . 0)†. See Figs. 6(b)
and 7(b) for one- and two-input qubits examples.

When acting on an output qubit initialized in the |0〉 state,
the perceptron gate corresponds to the map

|x〉 ⊗ |0〉 → |x〉 ⊗ (
√

1 − |c(x)|2 |0〉 + c(x) |1〉). (A1)

By imposing unitarity, we can infer the action of the per-
ceptron gate on a output qubit in the |1〉 state, and the
controlled-V (x) gate with

V (x) =
(√

1 − |c(x)|2 c∗(x)
−c(x)

√
1 − |c(x)|2.

)
. (A2)

(a)

(b)

(c)

∣∣∣x(0)

in

〉
X X X X

∣∣∣x(1)

in

〉
X X X X

|xout〉 V (x = 00) V (x = 01) V (x = 10) V (x = 11)

∣∣∣x(0)

in

〉
X X

∣∣∣x(1)

in

〉
X X

|xout〉 V (x = 00) W (x = 01) W (x = 10) W (x = 11)

W

= D D† D

A B B† B C

FIG. 7. (a) Decomposition of the perceptron gate with two inputs
and a single output qubit into controlled-controlled-V operations and
single-qubit operations X . (b) Improved circuit decomposition: one
of the controlled-controlled operations, V (00), is applied as a single-
qubit gate with a simple adjustment V (x) → W (x) = V (x)V (00)†

for the other controlled-controlled operations. (c) Decomposition of
a controlled-controlled-W gate in terms of 6 CNOT gates and eight
single-qubit gates.

For real c(x), we can write c(x) = sin θx/2 and√
1 − c2(x) = cos θx/2 and express V (x) as

V (x) =
(

cos θx/2 sin θx/2
− sin θx/2 cos θx/2

)
= Ry(θx ). (A3)

That is to say, the perceptron reduces to a sequence of rota-
tions around the X,Y, and Z axes. The number of multiqubit
controlled rotations in this decomposition is equal to the num-
ber of possible input bitstrings, which scales exponentially
with the number of input qubits. As discussed in the main
text, this may lead to a potential advantage of this protocol
over more standard paramaterized gates.

Moreover, near-term quantum computers cannot generally
implement multiqubit controlled gates at once, but rather must
decompose them into a series of one- and two-qubit gates as
shown in Figs. 6(c) and 7(c) by using CNOT gates as the
primitive two-qubit operation.

In the main text, we use gate times and fidelities quoted for
CZ instead of CNOT gates, being F = 99.7% and τ = 60 ns
as these are currently better for state-of-the-art transmon qubit
architectures and since a CZ can easily be transformed to a
CNOT via single qubit gates.

With these decompositions, and assuming that the two-
qubit gates are the dominant source of error, we obtain
estimates for the equivalent fidelities and gate times quoted in

TABLE I. Number of CNOT gates Ng required for a circuit
equivalent to the adiabatic protocol with N input qubits, along with
estimates for the total circuit time t and the circuit fidelity F .

N 1 2 3 4

Ng 2 18 98 450
t (μs) 0.12 1.08 5.88 27
F 0.994 0.947 0.745 0.259
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FIG. 8. Comparison for different gate times of the simulated
populations, solid line, and fits to the analytical [Eq. (C2)] from
Ref. [27]. Results for different pulse lengths T are offset for visu-
alization. The analytical form well describes the simulated results,
with small deviations for short gate times.

the main text: for the two-qubit (single-input, single-output)
gate, 2 CNOTs are needed, leading to a fidelity of ∼99.4%
and a gate time of ∼120 ns; for the three-qubit (two inputs,

one output) gate 18 CNOTs are needed, leading to a fidelity
of ∼94.7% and a gate time of ∼1.08 μs; for the four-qubit
(three inputs, one output) gate 98 CNOTs are needed, leading
to a fidelity of ∼74.5% and a gate time of ∼5.88 μs. Gate
time and fidelity estimates for more inputs are summarised in
Table I.

APPENDIX B: HAMILTONIAN AND PERTURBATION
THEORY

The Hamiltonian describing the system is

H/h̄ =
∑

i=1,2,c

ωia
†
i ai + αi

2
a†

i a†
i aiai

+
∑
i=1,2

gic(ai − a†
i )(ac − a†

c ), (B1)

where a†
i (ai) are creation (annihilation) operators, ωi are the

frequencies and αi are the anharmonicities of qubits (i = 1, 2)
and coupler (i = c), and gic are their respective couplings.
The anharmonicities αi are defined as the difference ω12 − ω01

between the 0 ↔ 1 and 1 ↔ 2 transition frequencies; values
for the measured parameters can be found in Ref. [42].

Using fourth-order perturbation theory, we can approxi-
mate the ZZ coupling strength J as

J = 2g2
1cg2

2c

α1α2(�1 + �2)2 + α2αc�
2
1 + α1�

2
1(�1 + �2) + α2�

2
2(�1 + �2) + αc(�1 + �2)(�1 − �2)2

�2
1�

2
2(�1 + �2 + αc)(�2 − �1 − α2)(�1 − �2 − α1)

, (B2)

>where �1,2 = ωc − ω1,2 are the detunings of the coupler from the two qubits.

APPENDIX C: ANALYTIC SOLUTION FOR CHIRPED PULSES

The driven two-level system, although ubiquitous, has proven to notoriously difficult to solve analytically. The most well
known analytical solution is the Landau-Zener linear ramp [44]. Soon after, another exact solution was found for a hyperbolic
secant pulse [45] and was later extensively used [46], analyzed, and extended [27]. The hyperbolic secant pulse is chirped to
have a detuning ωp(t ) and modulated in amplitude �(t ) according to

ωp(t ) = ωi + (ωf − ωi ) tanh2(πt/T ),

�(t ) = �0sech(πt/T ).
(C1)

Assuming that the pulse begins at time t = −∞ and ends at time t = +∞ one can find an analytical expression for the population
transfer at the end of the pulse. This is given as

P1(+∞) = sech[(ωi + � f )T/2]sech[(ωi − � f )T/2]
[
sin2(

√
�2

0 + �2
f T/2) + sinh2(� f T/2)

]
. (C2)

The chirped pulses in our experiment can be obtained from the ones described above by applying the time transformation

t → artanh[− cos(π ∗ t ′/T )] ∗ T

and indeed define the same trajectory in the detuning versus amplitude plane. When we compare the analytical solution described
above with the simulation results we find agreement in the curve behavior (Fig. 8). Differences in steepness of the curves are due
to the time transformation between the two cases. Nonetheless the underlying sigmoid behavior remains, and the curves can be
precisely matched by allowing for the fitting parameter T and a further detuning of the whole curve δ, given by ωi → ωi + δ.
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