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We showcase the importance of global band topology in a study of the Weyl semimetal CoSi as a
representative of chiral space group (SG) 198. We identify a network of band crossings comprising
topological nodal planes, multifold degeneracies, and Weyl points consistent with the fermion doubling
theorem. To confirm these findings, we combined the general analysis of the band topology of SG 198 with
Shubnikov–de Haas oscillations and material-specific calculations of the electronic structure and Berry
curvature. The observation of two nearly dispersionless Shubnikov–de Haas frequency branches provides
unambiguous evidence of four Fermi surface sheets at the R point that reflect the symmetry-enforced
orthogonality of the underlying wave functions at the intersections with the nodal planes. Hence,
irrespective of the spin-orbit coupling strength, SG 198 features always six- and fourfold degenerate
crossings at R and Γ that are intimately connected to the topological charges distributed across the network.
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In recent years the identification of nontrivial topological
quasiparticles (TQPs) in solids attracts great interest in the
context of spintronics and quantum technological applica-
tions. Contributions of such topological quasiparticles in
the physical properties are expected to scale with the Berry
curvature of the bands, the inverse energy difference
between the band crossings and the Fermi level, and the
separation of corresponding sources and sinks of Berry
curvature in k space. However, to account for these
phenomena, knowledge of the distribution of topological
charges across the entire band structure around the Fermi
level is required.
The need for determining the global band topology may

be highlighted in terms of maximally large Chern numbers
in nonmagnetic chiral materials crystallizing in SG 198,
such as CoSi, RhSi, and PdGa [1–6], recently inferred from
the observation of Fermi arcs [4–7] and quasiparticle
interference patterns [8]. Based on the bulk-boundary
correspondence and ab initio calculations, these observa-
tions were attributed to degeneracies at the Γ and R point,
where the corresponding charges were believed to satisfy
the fermion doubling theorem (FDT) between them [9,16],
but where the global band topology had not been

determined. However, the discovery of symmetry-enforced
topological nodal planes (NPs) in the ferromagnetic state
of MnSi [17], described by magnetic subgroups of SG 198
suggests that this picture may be incomplete, raising
questions for (i) the existence of topological NPs in SG
198, (ii) whether the analysis of the band topology and
the Berry curvature for specific points reported so far
is sufficient for an assessment of their impact on the
physical properties, and (iii) whether strongly simplified
Hamiltonians of the TQPs as inspired by high-energy
physics [1] are justified [3].
Further, when spin-orbit coupling (SOC) is strong as in

PdGa, spin degeneracies are lifted, leading to fourfold and
twofold points at Γ and a sixfold point at R [7]. In contrast,
it has been argued that SOC may be ignored in the
light transition metal silicides CoSi and RhSi such that
all bands are spin-degenerate, leading to a threefold point at
Γ and a fourfold point at R [18]. In fact, scanning tunneling
microscopy studies in CoSi suggest a SOC as large as 25 to
35 meV [8], while conflicting interpretations of quantum
oscillations in CoSi inferred a SOC as low as 1 meV
[19–21]. This raises the additional question of how to
reconcile the topological properties of SG 198 with SOC
and NPs, being dictated by fundamental quantum theory
and crystal symmetry.
To resolve these questions requires determination of the

complete set of topological charges, starting with a general
symmetry analysis. As SG 198 is chiral with three twofold
screw rotations along the three main axes, we note that
any band structure in this SG contains NPs on the three
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Brillouin zone (BZ) boundaries kx;y;z ¼ �π. This trio of
NPs can carry a finite topological charge that is protected
by the screw rotations combined with time-reversal sym-
metry [17,22,23]. Inferring the existence of band crossings
on high-symmetry points and lines from the dimensionality
of the irreps of the little groups and their compatibility
relations, we performed a general band topology analysis
and determined the main aspects of NPs in SG 198 (see
Supplemental Material (SM) [9] for details). For instance,
with SOC there can be twofold and fourfold degeneracies at
Γ, while on the Γ-X path there are symmetry-enforced,
movable Weyl crossings. With SOC the pinned crossings at
Γ enforce a topological charge of the NPs. Finally, the
multiplicity of accidental crossing points at and away from
high-symmetry lines or planes is independent of SOC, and
the Chern number of symmetry-related Weyl points is
always the same since SG 198 does not contain inversion or
mirror symmetries. Taken together, a symmetry-enforced
topological charge of the NPs must be odd. This shows that
earlier assessments were incomplete [1–7].
To confirm these general findings we studied CoSi,

calculating the band structure and Fermi surface (FS) in
density functional theory (DFT) using WIEN2K [24] and
QUANTUM ESPRESSO [25,26] within the generalized gradient
approximation [27]. We then determined the band topology
in addition to the topological charges of the trio of NPs,
computing the Berry curvature from the DFTwave functions
by means of an algorithm based on Wilson loops we
developed for this purpose [28–31] (for details, see SM [9]).
In the following we denote the Chern number, ν, and the

multiplicity, l, of band crossings with and without SOC by
νnA, l

n
A and ν̃nA, l̃

n
A, respectively [9]. Here, A denotes the loca-

tion in the BZ and n designates the index of the energetically
lower band (or bandpairwhen the crossing is located onaNP)
that participates in the degeneracy going from low to high
energies starting above the global band gap at ∼ − 0.5 eV.
While we do not denote the spin degeneracy explicitly when
labeling bands, we include it in the Chern numbers.
Summarized in Fig. 1 are the band structures of CoSi

without and with SOC as well as illustrations of key results
of our band topology analysis. Cyan shading highlights the
NPs. Bands intersecting with the NPs are marked in color.
Topological point crossings are marked by colored circles.
Curly brackets denote all well-defined Chern numbers of
the crossing bands in ascending order in energy. Fermi
surface degeneracies (FSDs) and topological protectorates
(TPs) [17] are marked by triangles. Here, the expression
“topological protectorates” refers to intersections of FS
sheets with NPs that carry a nonzero topological charge.
The expression was introduced in Ref. [17] to highlight that
TPs guarantee that topological properties are pinned to EF,
independent of material-specific details.
Consistent with the underlying symmetries, the

band structure of CoSi exhibits NPs on the three BZ
boundaries regardless of SOC. Without SOC all bands are

spin-degenerate [Fig. 1(a)], and there are two spin-degen-
erate trios of NPs close to the Fermi energy EF, where the
topological charges for each of the crossings add to zero in
accordance with the FDT. With SOC the spin degeneracy is
lifted [Fig. 1(b)] and the two trios of NPs split into four trios
and the corresponding crossings at Γ are forced to carry odd
topological charges [1,3]. For these odd band fillings n the
charges at Γ can only be compensated by the trios of NPs,
as all other crossings (accidental or enforced) sum to an
even number [9,17]. Thus, with SOC the two NP trios
crossing EF form TPs.
To determine the relationship between the different

topological charges, we analyzed the band structure of

FIG. 1. Electronic band structure of CoSi. See text for details of
notation. (a) Band structure without SOC. (b) Band structure with
SOC. Insets: Enlarged views around R and Γ. (c),(d) Illustration
of the FDT for selected band fillings. No SOC and filling up to
band 1 yields a charge ofþ4 at Γ (green) compensated by the trio
of NPs with charge −4 (red=cyan). With SOC and filling up to
band 5 the bulk crossing points carry a net charge of þ5, taking
into account their multiplicities, which is compensated by the trio
of NPs with charge −5 (blue=cyan).
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CoSi systematically for different band fillings. Without
SOC we found that the NPs are not forced by symmetry to
carry a charge. In contrast, with SOC all NPs are forced to
carry topological charges by symmetry.
Two selected band fillings nicely illustrate this situation

(for all other fillings see SM [9]). First, without SOC and
the first band being filled, the trio of NPs that is lower in
energy, marked in red/cyan in Fig. 1(c), supports a charge
of ν1npt ¼ −4 that compensates the charge of ν1Γ ¼ þ4 of the
threefold point at Γ (green), in agreement with the FDT
[16]. The upper trio of NPs, in contrast, has charge zero,
since the Chern numbers at Γ given by ðν1Γ; ν2Γ; ν3ΓÞ ¼
f4; 0;−4g add up to zero [green circle in Fig. 1(a)], when
the lowest three bands are filled. Second, when taking
into account SOC, the situation changes fundamentally as
illustrated in Fig. 1(d) for a filling up to band 5. Here, we
find at Γ a total charge ν3Γ þ ν4Γ þ ν5Γ ¼ þ3. On the Γ-X line
there is a movable Weyl point with charge ν5ΓX ¼ −1 and
multiplicity l5ΓX ¼ 6, resulting in a charge l5ΓXν

5
ΓX ¼ −6. On

the Γ-R line there is a crossing, ν5ΓR ¼ þ1 very close to R,
contributing a total charge l5ΓRν

5
ΓR ¼ 8. Since an odd

number of bands is filled, the point crossings at M and
R within the NP do not contribute any charge. Hence,
according to the FDT the NP must compensate these
charges, i.e., ν5npt ¼ −ν3Γ − ν4Γ − ν5Γ − 6ν5ΓX − 8ν5ΓR ¼ −3þ
6 − 8 ¼ −5. This result is also obtained in direct numerical
calculations [9], indicating the absence of additional
uncompensated Weyl points at generic positions.
To prove the existence of NPs experimentally, we

measured the quantum oscillations arising from the FS
sheets centered at the R point as these sheets intersect with
the NPs (Fig. 2) [19–21]. Here, FSDs and TPs denote the
location of FS degeneracies (black line) and topological
protectorates (red line), respectively, and the numbers
denote the octants of the FS sheets facing the observer.
A constant length has been subtracted from the distance
between R and the FS contour for better visibility of the
different shapes. The predicted SOC splitting at EF around
R is small, ∼15 meV, for low-symmetry directions. This
corresponds to a k-space distance of the FS sheets of about
∼0.7% of a reciprocal lattice vector, which may be readily
resolved in quantum oscillations.
Without SOC two spin-degenerate sheets are expected

[Figs. 2(a1)–2(a3)], which exhibit topologically trivial FSDs
on the NPs [Fig. 2(a1)]. Ignoring the NPs [Fig. 2(a2)], the
extremal cross-sectional areas are identical for Bk½100�,
resulting in a single oscillation frequency [cf. Fig. 4(a)].
Note that this is a “Gedankenexperiment” assuming that
individual bands as sorted by their energy eigenvalues are
not connected at the NPs, which we subsequently falsify
by showing the contradiction to experiment. In comparison,
for arbitrary directions the FS cross sections are different
[Fig. 2(a2)] and two dispersive frequency branches are expec-
ted [cf. Fig. 4(a)]. Considering now the NPs [Fig. 2(a3)], the
band connectivity changes such that (space-) diagonally

located octants are recombined, i.e., sectors 1̃ and 3̃ in
Fig. 2(a2) combine with 6̃ and 8̃ in Fig. 2(a2) (and analo-
gously for the octants facing away from the observer) to form
the blue FS sheet shown in Fig. 2(a3). Vice versa, sectors 2̃, 4̃,
5̃, and 7̃ form the red FS sheet shown in Fig. 2(a3). The
extremal cross sections of the reconstructed FS sheets are
essentially identical regardless of orientation, resulting in a
single almost dispersionless frequency branch even though
two FS sheets contribute [cf. Fig. 4(c)]. Further, the band
connectivity suppresses transitions between different sheets
and thus additional branches.
With SOC the spin degeneracy is lifted resulting in four

FS sheets [Figs. 2(b1)–2(b3)]. The analysis of the band
topology reported above establishes TPs (red lines). The
effects of the NPs are identical to the FS sheets without
SOC. Because of the band connectivities at the NPs, the
four FS sheets reduce to two pairs with essentially identical
cross sections regardless of orientation [Fig. 2(b3)]. Thus,
two frequency branches with low dispersion are expected

FIG. 2. Effect of SOC and NPs on the FS sheets at the R point.
See text for details of notation. (a1),(b1) FS sheets at the R point
and splitting without and with SOC. (a2),(a3) FS sheets at the R
point without SOC. Two spin-degenerate sheets are expected.
NPs alter the band connectivity such that diagonally located
octants combine to form the FS sheets. (b2),(b3) FS sheets at the
R point with SOC. Effect of the NPs is the same as in (a3).
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even though four FS sheets contribute [see Fig. 4(d)] This
picture gets modified when additionally taking into account
magnetic breakdown, which further decreases the angular
dispersion of the two branches with the highest weight.
To confirm our predictions for the FS sheets centered at

R we measured the Shubnikov–de Haas (SdH) effect.
Our data are in excellent agreement with the literature
[19–21,32]. For details on the experimental methods, see
SM [9]. As illustrated in Fig. 3(a), the resistivity ρxx
exhibits pronounced quantum oscillations for magnetic
fields Bk½100� exceeding ∼6 T on a monotonically increas-
ing background, where the oscillatory component of the
signal is shown in Fig. 3(b). Fast Fourier transforms (FFTs)
were calculated using a Hamming window, where typical
FFT spectra are shown in Fig. 3(c).
Two frequencies, fα ¼ 565 T and fβ ¼ 663 T, and their

higher harmonics could be resolved. Based on close
inspection of the higher harmonics observed in samples
of different quality, we conclude that asymmetries of
the FFT peaks reported previously are not intrinsic (see
SM [9] for details). The temperature dependence of the
FFT amplitude was analyzed within the Lifshitz-Kosevich
formalism [33], yielding effective masses mα ¼ 0.90 me
and mβ ¼ 0.95 me [inset of Fig. 3(c)]. The angular disper-
sion of the SdH branches is shown in Fig. 3(d), where
the strength of the shading reflects the FFT amplitude. The
variation of frequency with θ was very low around ∼5 T
and ∼10 T for fα and fβ, respectively.

For the interpretation of our data we assume a semi-
classical quasiparticle motion and magnetic breakdown
according to Chambers’ formula [9,33]. Shown in Fig. 4
are the cyclotron orbits for selected field orientations and
comparisons of the experimental frequency branches
(gray scale) with the calculated behaviors (colored lines)
[Figs. 3(a)–3(d)]. We note that orbits enclosing the small
areas in between adjacent large orbits are semiclassically
forbidden, because an electron would have to travel on
trajectories opposing the Lorentz force as indicated by the
arrows.
Without SOC and NPs, representing the interpretation in

Refs. [19,20], there are two spin-degenerate bands crossing
EF near R. For Bk½100� the two extremal orbits coincide
[Fig. 4(a)], resulting in a single SdH frequency. A tiny
splitting of the upper branch close to [100], reflecting the
constrictions of the red FS sheet in Fig. 2(a), vanishes
quickly under field rotation, whereas the main branch splits
into a dispersive inner and outer orbit in stark contrast with
experiment.
Further, neglecting SOC but taking into account the band

connectivity due to the NPs [Fig. 4(b)], the extremal cross

FIG. 3. Typical SdH data. (a) Magnetoresistance ρxxðBÞ;
Inset: experimental geometry using cubic equivalent directions.
(b) Oscillatory part of the resistivity ρ̃xxð1=BÞ for selected
temperatures. (c) FFTs of ρ̃xxð1=BÞ. Two frequencies fα ¼
565 T and fβ ¼ 663 T and their harmonics are resolved.
Inset: Lifshitz-Kosevich behavior of the FFTamplitudes, yielding
effective masses mα ¼ 0.90 me and mβ ¼ 0.95 me. (d) FFT
amplitude versus frequency and field direction θ. Both SdH
branches exhibit a very low dispersion.

FIG. 4. Comparison of experimental SdH branches (gray scale)
and calculated branches (color). From the shapes of extremal orbits
for Bk½100� and Bk½110�, an R-centered circle was subtracted for
better visibility. Magnetic breakdown junctions are marked by
colored circles. (a) Without SOC and without NPs. (b) With NPs
(cyan) and without SOC. (c) With SOC and without NPs. Shaded
area reflects up to 8192 partly degenerate breakdown branches.
(d) With SOC and with NPs. Breakdown branches are calculated
explicitly,with symbol size reflecting the orbit probability resulting
in two strong almost dispersionless branches.
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sections of the two FS sheets will be the same, resulting
in a single SdH frequency [see Fig. 4(b)]. Upon field
rotation the bands continue to cross at the NPs with
orthogonal wave functions and thus without interaction,
giving rise to a single nondispersive SdH branch, in
contrast with experiment.
Shown in Fig. 4(c) is the behavior when including SOC

but neglecting the NPs as proposed in Ref. [21]. Again, a
small branch splitting is expected close to [100]. Because of
SOC, four distinct FS sheets would exist around R with
pairwise degenerate extremal cross sections for Bk½100�
that split into four branches under field rotation. Since the
extremal orbits on the intermediate sheets 2 and 3 would
come close to each other at up to 12 breakdown junc-
tions (yellow circles), up to 8192 (highly degenerate)
breakdown branches are expected as indicated by the
shading between branches 2 and 3. None of this is observed
experimentally.
The presence of both SOC and NPs are, finally, shown in

Fig. 4(d). Since the spin degeneracy is lifted and the
extremal orbits reside on a NP (cyan) for Bk½100�, two
extremal cross sections and thus two SdH frequencies are
expected. Under field rotation these split into four orbits
that intersect at the NPs and remain pairwise-degenerate.
Magnetic breakdown occurs at the same junctions as in
Fig. 4(c). However, due to the band connectivities only up
to 6 breakdown junctions are expected for each pair of
orbits [Fig. 4(d)]. Calculating the frequency spectra in DFT
[9], we find two dominant branches with a high probability
as indicated by the symbol size with a difference between
80 T and 90 T and a very low dispersion of ∼10 T, as well
as a tiny probability for other breakdown branches, all in
excellent agreement with experiment.
Taken together, we demonstrated the importance of a

general analysis of the global band topology for the example
of SG 198, focusing on CoSi [17]. The SdH frequencies
associated with FS sheets at theR point we observed in CoSi
provide unambiguous evidence of a sixfold degeneracy at
R even for weak SOC, implying a fourfold degeneracy at Γ.
[4–6,8,19–21]. These degeneracies are part of a topological
network comprising, in addition, the topological NPs, the
fourfold crossings at M, the enforced Weyl points on screw
rotation axes, as well as accidental Weyl points at generic
positions in the BZ, in combination satisfying the FDT
[9,16]. Although the NPs do not give rise to additional Fermi
arcs at the surface, they will contribute substantially to the
bulk topological responses, such as spin anomalous Hall
currents and nonlinear optical properties. Moreover, in the
light of our findings it seems difficult to justify the use of
strongly simplified Hamiltonians of TQPs in analogy to
particle physics.
Since our analysis is based on symmetry, it is also

applicable to other nonmagnetic representatives of SG 198,
such as PdGa, and can be generalized straightforwardly to
other chiral or noncentrosymmetric SGs as well as other
excitations such as phonons and magnons. This highlights

the need for a global assessment of the topological charges
beyond isolated degeneracies for any material.
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