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The only thing you should be afraid of is not trying. 
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Abstract 

 

Karst systems represent a major global source of freshwater, providing drinking water to nearly a quarter 

of the world's population. Hydrological models are crucial for understanding the functioning of karst 

systems and ensuring the sustainable use of karst groundwater resources. However, modeling karst 

systems is challenging due to the difficulties in observing subsurface flow and transport processes. 

Similarly, the complex interactions between the solid rock matrix and the karst conduits and cavities 

formed by rock dissolution are difficult to describe. Hydrological conceptual models are often used to 

conceptualize the hydrological processes of karst systems at the catchment scale due to their relatively 

easy implementation and low data requirements. Uncertainties in model outcomes arise from various 

sources, i.e., input, parametric, and structural uncertainties. Typically, model evaluation is performed 

using measured discharge time series at a monitoring site and computing performance metrics. 

Nonetheless, acceptable values of a model performance indicator do not necessarily imply that the model 

is reliable and capable of making predictions. This is due to the equifinality of the model, meaning that 

comparable results can be achieved with various model variants.  

This dissertation aims to contribute to the current discussion on the investigation of the different kinds 

of uncertainties in hydrological karst conceptual models (in the sense of lumped-parameter and semi-

distributed models), with a particular focus on using multi-objective approaches to reduce equifinality. 

The initial step focuses on the time-dependent relevance of model input uncertainties, defined as the 

uncertainties in the conceptualization of groundwater recharge processes, for the LuKARS hydrological 

conceptual model on a daily scale. Nine different input modeling approaches were considered, 

addressing interception, evapotranspiration, and snowmelt for the Kerschbaum karst system, Austria. 

Results indicate that evapotranspiration and snowmelt input uncertainties are higher than interception 

uncertainties and exhibit seasonal variability. Furthermore, the significance of a particular process in 

groundwater recharge can be inferred from its corresponding input uncertainties. Next, structural 

uncertainties were explored by considering model structures with varying complexities. Semi-

distributed recharge models with an increasing number of land cover and land use (LCLU) were 

implemented at a daily scale for three forest-dominated karst watersheds: Kerschbaum in Austria, Baget 

and Oeillal in France. 

To account for different conceptualizations of flow processes, two hydrological conceptual models, 

LuKARS and KarstMod, were used. It was found that a semi-distributed recharge improves model 

performance in some catchments but not in others, indicating the need for higher frequency data to 

capture dynamic recharge processes in heterogeneous systems. To address the issue of hydrochemical 

data availability, a method was developed to derive continuous solute concentrations from electrical 

conductivity (EC) measurements at karst springs. The concentrations of free ions and solute species 
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involved in complexes were computed separately using speciation calculations on PHREEQC. The 

methodology was applied to two karst catchments, Kerschbaum and Baget, showing that accurate solute 

concentration estimates need to account for complexation processes, especially for SO₄, Ca, Mg, and 

HCO₃. For the Baget catchment, the method shows significant uncertainty due to varying water 

contributions from different geological regions. In contrast, it accurately estimates solute concentrations 

in more homogeneous areas like the Kerschbaum watershed. Finally, high-temporal resolution 

hydrochemical data were used to verify and constrain the parametrization of the LuKARS 2.0 model at 

an hourly scale for the Baget karst system. The LuKARS model was modified to account for the 

interaction between matrix and conduit, as well as to represent the surface water bypassing the spring at 

peak flow conditions. The results highlight the importance of considering hydrochemical constraints 

when selecting hydrological models. Indeed, even if different model realizations simulate the spring 

discharge with a comparable KGE, not all of them are consistent with the dynamics of the measured 

SO4
2- and HCO3

- time series. 
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Zusammenfassung 

 

Karstsysteme repräsentieren eine bedeutende globale Süßwasserressource und stellen Rohwasser für 

circa 25% der Weltbevölkerung bereit. Hydrologische Modelle sind relevante und effiziente Werkzeuge, 

um die Funktionsweise von Karstsystemen zu verstehen und um die nachhaltige Nutzung von Karst-

grundwasserressourcen zu gewährleisten. Es ist jedoch eine Herausforderung, Karstsysteme mit 

Modellen darzustellen, da sich die unterirdischen Fließ- und Transportprozesse nur schwierig 

beobachten lassen. Ebenso lassen sich die komplexen Wechselwirkungen zwischen Festgesteinsmatrix 

und den aufgrund von Gesteinslösung entstandenen Karströhren und Hohlräumen nur schwierig 

beschreiben. Lumped-Parameter Modelle werden häufig verwendet, um die hydrologischen Prozesse 

von Karstsystemen im Einzugsgebiet zu konzeptualisieren und mathematisch zu beschreiben, da diese 

Modelle relativ einfach zu implementieren sind und relative geringe Anforderungen an die ntowendigen 

Daten stellen haben. Unsicherheiten in den Modellergebnissen ergeben sich aus verschiedenen Quellen, 

u. a. Eingangsdaten-, Parameter- und strukturelle Unsicherheiten. Typischerweise wird die Modell-

evaluation anhand gemessener Abflusszeitreihen an einer Messstelle durchgeführt. Dazu werden 

entsprechende Kennzahlen der Modellgüte berechnet. Eine akzeptable Modellgüte, ausgewiesen durch 

die entsprechenden Kennzahlen, impliziert jedoch nicht unbedingt, dass das Modell zuverlässig und 

prognosefähig ist. Dies begründet sich aus der Mehrdeutigkeit beziehungsweise Equifinalität des 

Modells, d. h. mit verschiedenen unterschiedlichen Modellvarianten lassen sich vergleichbare Ergeb-

nisse erzielen. 

Diese Dissertation liefert einen Beitrag zur aktuellen Diskussion in Hinblick auf die Untersuchung 

verschiedener Unsicherheiten in hydrologischen konzeptionellen Karstmodellen (im Sinne von 

Lumped-Parameter und semidistributiven Modellen). Dabei liegt der Fokus auf der Verwendung von 

multi-objektiven Ansätzen um die Mehrdeutigkeit der Modelle zu reduzieren. Im ersten Schritt wird die 

zeitabhängige Relevanz von Eingabeunsicherheiten in Bezug auf die tägliche Grundwasserneubildung 

als Eingangsinformation für das hydrologische konzeptionelle Modell LuKARS untersucht. Dabei wird 

die Eingabeunsicherheit bezüglich täglicher Daten der Grundwasserneubildung in Hinblick auf 

Unsicherheiten in der Konzeptualisierung von Grundwasserneubildungsprozessen betrachtet. Für die 

Eingabemodellierung werden neun verschiedene Ansätze betrachtet, welche die Interzeption, die 

Evapotranspiration sowie die Schneeschmelze für das Kerschbaum-Karstsystem (Österreich) 

berücksichtigen. Die Ergebnisse zeigen, dass die Unsicherheiten bei der Evapotranspiration und Schnee-

schmelze höher sind als bei der Interzeption und saisonale Schwankungen aufweisen. Darüber hinaus 

kann die Bedeutung eines bestimmten Prozesses bei der Grundwasserneubildung aus den 

entsprechenden Eingabeunsicherheiten abgeleitet werden. Anschließend wurden Strukturunsicherheiten 

untersucht, indem Modellstrukturen mit unterschiedlichen Komplexitätsgraden betrachtet wurden. 
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Semidistributive Neubildungsmodelle mit einer zunehmenden Anzahl von Landbedeckungs- und 

Landnutzungsklassen (LCLU) wurden im täglichen Maßstab für drei walddominierte Karsteinzugs-

gebiete implementiert: Kerschbaum in Österreich sowie Baget und Oeillal in Frankreich. Um 

verschiedene Konzeptualisierungen von Fließprozessen zu berücksichtigen, wurden zwei hydrologische 

konzeptionelle Modelle verwendet: LuKARS und KarstMod. Es wurde festgestellt, dass eine 

semidistributive Verteilung der Grundwasserneubildung die Modellleistung in einigen Einzugsgebieten 

verbessert, in anderen jedoch nicht. Dies deutet darauf hin, das höherfrequente Daten notwendig sind, 

um dynamische Neubildungsprozesse in heterogenen Systemen zu erfassen. 

Um das Problem der Verfügbarkeit von hydrochemischen Daten zu untersuchen, wurde eine Methode 

entwickelt, welche die kontinuierliche Konzentration gelöster Stoffe an Karstquellen aus Messungen 

der elektrischen Leitfähigkeit (EC) ableitet. Die Konzentrationen freier Ionen und der an Komplexen 

beteiligten gelösten Stoffe wurden separat mit Hilfe von Speziationsberechnungen im hydrochemischen 

Modell PHREEQC berechnet. Die Methodik wurde auf zwei Karsteinzugsgebiete angewendet, 

Kerschbaum und Baget. Dabei wurde gezeigt, dass aufgrund der komplexen Prozesse genaue 

Schätzungen der Konzentration gelöster Stoffe berücksichtigt werden müssen, insbesondere für SO₄, 

Ca, Mg und HCO₃. Für das Baget Einzugsgebiet zeigt die Methode erhebliche Unsicherheiten aufgrund 

variierender Zuflüsse aus den verschiedenen geologischen Teilregionen. Im Gegensatz dazu liefert die 

Methode in homogeneren Gebieten wie dem Kerschbaum-Einzugsgebiet genaue Konzentrationen 

gelöster Stoffe. 

Schließlich wurden hydrochemische Daten mit hoher zeitlicher Auflösung auf stündlicher Basis 

verwendet, um die Parametrisierung des LuKARS 2.0-Modells für das Baget-Karstsystem zu überprüfen 

und sinnvoll einzugrenzen. Das LuKARS-Modell wurde modifiziert, um die Interaktion zwischen 

Festgesteinsmatrix und Karströhren zu berücksichtigen. Ebenso wurde der Einfluss von 

Oberflächengewässern einbezogen, welche dazu führen können, dass die Karstquelle bei Spitzenabfluss 

umgangen werden kann. Die Ergebnisse unterstreichen die Bedeutung hydrochemischer Daten und 

Informationen, um die Auswahl geeigneter hydrologischer Modelle einzugrenzen. Es konnte 

letztendlich gezeigt werden, dass nicht alle verschiedenen Modellrealisierungen, die den Quellabfluss 

mit einem vergleichbaren KGE simulieren, mit den Dynamiken der gemessenen SO4
2- und HCO3

- 

Zeitreihen konsistent sind. 
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Chapter 1 

Introduction 

1.1  General motivation  

Groundwater is the most important source of fresh water providing almost half of the world´s drinking 

water demand (Smith et al., 2016). In the last decades, the vulnerability of groundwater systems to 

anthropogenic activities has drastically increased due to growing demand of fresh water for irrigation 

(Aeschbach-Hertig and Gleeson, 2012; Siebert et al. 2010) and growing exposure to contaminants 

(Foley et al., 2011; Menció et al. 2016). The impact of anthropogenic activities on different kinds of 

groundwater resources have been intensively studied (Luo et al., 2016; Narany et al., 2017; Zipper et 

al., 2019).  

Karst systems cover 10-15% of the emerged Earth's surface and 35% of Europe's continental area 

(Goldscheider et al., 2020). They are a crucial source of freshwater, providing drinking water to nearly 

a quarter of the world's population (Ford and Williams, 2007; Stevanović, 2019). Sustainable 

management of karst systems is essential to maintain sufficient quantity and quality of groundwater for 

societal needs (De Stefano et al., 2012; Wada et al., 2016). The degradation of karst resources, in terms 

of both quantity and quality, results from climate change and increasing anthropogenic pressures such 

as unsustainable water abstraction and changes in land cover and use (Gleeson et al., 2012; Gutiérrez et 

al., 2014; Hartmann et al., 2014; Katz, 2019; Taylor et al., 2013; Vilhar et al., 2022; Zhang et al., 2023). 

Studies have documented reductions in karst groundwater capacity in regions like the Mediterranean 

(Charlier et al., 2015; Smiatek et al., 2013), North America (Chen et al., 2005; Lóaiciga et al., 2000), 

and Asia (Hao et al., 2009; Wu et al., 2017). Additionally, karst water contamination is increasingly 

causing serious quality issues (Reberski et al., 2022; Savio et al., 2018; Selak et al., 2023). Karst aquifers 

are particularly vulnerable to contamination (Katz et al., 2009) due to the possible reversal of flow from 

karst conduits into the surrounding rock matrix during high flow events, causing a subsequent long-

lasting release of contaminants from the rock matrix into karst conduits (Faulkner et al., 2009). In 

addition, preferential flow paths facilitate rapid pollutant spread (Bakalowicz, 2005; Stevanović, 2018; 

Quinn et al., 2006; Field, 2018; White, 2018) and thin soils allow direct pollutant release into the aquifers 

(Sinreich, 2014; White, 2019). 

Consequently, there is the need to investigate and better understand karst flow and transport dynamics, 

which requires, due to the karst subsurface heterogeneity, special considerations and aquifer specific 

characterization. Hydrological models support the understanding of karst system functioning and are 

fundamental to ensure the sustainable water management of karst water resources (Hartmann et al., 
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2014) as well as to investigate the potential evolution of karst groundwater availability under different 

climate change (Chen et al., 2018; Nerantzaki et al., 2020) and management scenarios (Hartmann et al., 

2012; Sivelle et al., 2021). However, modelling of karst systems is affected by large uncertainties, which 

can derive from the conceptualization of complex internal dynamics of the system (Chen et al., 2017; 

Enemark et al., 2019), the scarce availability of hydrochemical data at high temporal resolution (Pinza 

et al. 2024) and from the quality/quantity of driving input time series (Bhanja et al., 2023; Oudin et al., 

2006). There is therefore the need to investigate possible approaches for multi-objective calibration to 

reduce the uncertainties affecting hydrological karst models. Multi-objective calibration involves 

optimizing a model against multiple criteria simultaneously, allowing for a more comprehensive and 

balanced assessment of model performance across various aspects of the system being studied 

(Efstratiadis and Koutsoyiannis, 2010; Seibert and McDonnell, 2002). 

1.2 An overview of karst systems 

Karst systems originate from the weathering of water-soluble rocks, such as limestone (consisting in the 

mineral calcite CaCO3) and dolostone (consisting in the mineral dolomite CaMg(CO3)2). Typically, karst 

develops in carbonate rocks, but can also appear in other soluble rocks such as halite and gypsum; 

however, carbonate sedimentary rocks represent the most important karstifiable rocks for water 

resources management (Ford and Williams, 2007; Hartmann et al., 2014). Karst aquifers and related 

land surface features develop due to water-rock interaction over a long period of time. Although the 

solubility of carbonate rocks in pure water is low, the presence of carbon dioxide (CO2), which reacts 

with water leading to the formation of carbonic acid (H2CO3), strongly increases this solubility. The 

carbon dioxide contained in water originates both from the atmosphere (Ford and Williams, 2007) and 

from biological processes in the soil, such as plant decomposition or plant roots respiration (Liu et al., 

2007). The chemical equilibriums in Eq 1.1 and Eq 1.2 (Ulloa-Cedamanos et al., 2020) represent the 

dissolution of calcite (Eq 1.1) and dolomite (Eq 1.2), respectively, by carbonic acid. Carbonate 

dissolution processes affect the chemical composition observed at karst springs, which in the case of 

dolostone is dominated by Ca2+, Mg2+, and HCO3
- and therefore belong to Ca–Mg–HCO3 (alkaline-

earths-carbonatic) groundwater type (Narany et al., 2019). The carbonate dissolution kinetics are 

strongly influenced by water temperature and pCO2 partial pressure (Ulloa-Cedamanos et al., 2020). 

Thermodynamically, carbonate solubility decreases with increasing temperature (Parkhurst and Appelo, 

2013). However, high temperatures enhance biological activity and decomposition of soil organic 

matter, causing the increase in pCO2 and carbonic acid and, consequently, an acceleration in carbonate 

dissolution (Calmels et al., 2014).  

𝐶𝑎𝐶𝑂3 + 𝐻2𝐶𝑂3 →  𝐶𝑎2+ + 2𝐻𝐶𝑂3
−                                                                                                           (1.1) 

𝐶𝑎𝑀𝑔(𝐶𝑂3)2 +  2𝐻2𝐶𝑂3 →  𝐶𝑎2+ +  𝑀𝑔2+ +  4𝐻𝐶𝑂3
−                                                                          (1.2) 
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The process of formation of karst systems is called karstification and is controlled by dissolution 

kinetics. Initially, water rich in CO2 enters narrow fractures and within a few meters dissolves 

calcite/dolomite at a high dissolution rate up to 75% calcite/dolomite dissolution. After this threshold, 

the dissolution rate drops to very low levels (Berner and Morse, 1974; Dreybrodt, 1990; Plummer and 

Wigley, 1976). This slightly undersaturated water causes the initial karstification to be at a very slow 

rate. On the contrary, the karstification process becomes much faster when dissolution causes wider 

fractures, which allow a larger flow and thus more calcite/dolomite dissolution. The difference in 

dissolution rates in narrow and wide fractures leads to the development of a hierarchically organized 

network of conduits, fractures, and caves, which are hydraulically connected to each other and often 

drain to a single large karst spring (Worthington and Ford, 2009). The presence on the land surface of 

karst landforms, such as karrens, dolines, sinkholes, and dry valleys indicate the presence of subsurface 

karstification processes (Hartmann et al., 2014). 

Karst systems are characterized by the coexistence of three types of porosities (Bakalowicz, 2005). The 

first porosity, also called continuous porosity, refers to the intergranular pore space; the second porosity 

to small fissures that developed due to tectonic processes; the third porosity to large conduits and 

fractures that developed due to karstification processes. This triple porosity results in heterogeneous and 

anisotropic hydraulic parameters with hydraulic conductivities that can vary by several orders of 

magnitude over short distances (Kuniansky et al., 2012). The presence of large conduits and fractures 

causes the characteristic rapid response of karst springs, whose discharge can vary by one order of 

magnitude within hours or days (Hartmann et al., 2014). Moreover, the strong karstic heterogeneity 

governs both the flow and transport at multiple spatial scales, i.e., regional scale, aquifer scale, local 

scale, and single fracture scale.  

Fig. 1.1 provides a description of the functioning of karst groundwater systems. On the catchment scale, 

the recharge of karst systems can be classified as autogenic, i.e., internal runoff and diffusive infiltration, 

and allogenic, i.e., external runoff and sinking streams (Hartmann et al., 2014). Karst systems can be 

conceptualized by means of three compartments, i.e., epikarst, matrix (first and second porosity) and 

conduits (third porosity). The epikarst is the uppermost layer underneath the upper soil, which results 

from rapid dissolution (Williams, 2008), and plays an important role in regulating flow and transport 

processes (Perrin et al., 2003) as well as the storage of karst aquifers (Klimchouk, 2000; Sauter, 2000). 

The water is then routed downward either through rapid (direct) discharge in the conduits or slow 

(diffuse) infiltration into the matrix. Gradients in water pressure can then cause the transfer of water 

from the matrix to the conduit or the other way around (Faulkner et al., 2009). The coexistence of matrix 

and conduits results in the characteristic dual behavior of karst systems (Kavousi et al., 2020): 

• Duality of recharge processes: direct localized recharge into conduits through, e.g., sinkholes 

and diffuse distributed recharge into the matrix (Geyer et al., 2008). 
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• Duality of flow fields: fast turbulent flow in the conduit and slow laminar flow in the matrix 

(Kiraly, 1998; Hauns et al., 2001). 

• Duality of storage: major storage in the matrix, and minor storage in the conduits (Sauter, 1992). 

• Duality of discharge conditions: during precipitation events the karst spring discharge is 

dominated by the flow through the conduit and thus shows high temporal variability, whereas 

during dry periods the baseflow is typically fed by water from the matrix (Hartmann et al., 

2014).  

 

Fig. 1.1 Conceptualization of karst groundwater systems functioning including all characteristic karst 

processes. 

The high temporal variability, spatial heterogeneity, and anisotropy of flow fields in karst systems 

result in complex transport phenomena and a highly transient (e.g., hourly) chemical signal at the spring 

(Dagan, 1988). The variability in the chemical signature at karst springs results from the variability in 

relative water contributions from the matrix and conduits (Ewers et al., 2012; Field, 2018) and relative 

water contributions from different geological areas of the aquifer (Richieri et al, 2023). Moreover, the 

chemical composition at karst springs depends on the recharge processes (Filippini et al., 2018; Wang 

et al., 2020) as well as on storage and residence time, which ranges from hours to decades (Jourde and 

Wang, 2023). Karst systems dominated by diffusive recharge processes typically display a piston and 

flushing effect of the elements stored in the saturated zone, meaning that the increase in discharge and 

electrical conductivity at the spring are simultaneous. Indeed, the rainwater pushes out water which had 

been stored in the system and thus rich in ionic content due to prolonged water-rock interaction. 
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Contrary, karst systems dominated by concentrated recharge/point infiltration are characterized by a 

rapid and direct transfer of the recharge water to the spring through large conduits causing a reduction 

in ionic content observed at the spring. Thus, in case of dilution, the increase in spring discharge is 

followed by a decrease of electrical conductivity. The same karst system can display different responses 

to precipitation events close in time, underlining the importance of the initial condition of the system 

especially in terms of water storage (Perrin et al., 2003; Richieri et al., 2023).  

Understanding these chemical and flow dynamics at karst springs requires a detailed examination of the 

transport processes within both the karst matrix and conduits. The transport processes in the matrix at 

the pore scale are controlled by advection (mainly transport along the main flow direction), pore 

diffusion (driven by a concentration gradient) and mechanical dispersion (random velocity variations). 

Generally, the advective velocity in the matrix is laminar with a Reynolds number smaller than one 

(Bear, 1972). In karst conduits flow can become turbulent when the Reynolds number exceeds 500 to 

2000 (Reimann et al., 2011; Shoemaker et al., 2008; White, 2002). When the ratio between the product 

of the groundwater flow velocity and the grain size over the aqueous diffusion coefficient (grain Pèclet 

number) is smaller than one, pore diffusion is the dominant transport process in the karst matrix; whereas 

if the grain Pèclet number is larger than one, advection is the dominant transport process (Bear, 1972). 

Transport processes in karst conduits show similarities, depending on the degree of saturation, with free 

surface flow or with saturated pipe flow under pressurized conditions (Liedl et al., 2003; Reimann et al., 

2014). The solute transport in conduits is mainly controlled by advection and aqueous diffusion. 

However, being the typical flow velocity such to lead to turbulent flow in the conduit, the role of 

turbulent diffusion becomes relevant for the mass dispersion (Hauns et al., 2001; Taylor 1954, Birk et 

al. 2005). 

 At the karst aquifer scale, the transport mechanisms can be overall described by (1) transport along the 

main flow direction controlled by advection and dispersion processes, (2) matrix diffusion and 

mechanical dispersion along the conduit surfaces in and out of the matrix (matrix acts as a sink and/or 

source depending on the hydraulic head and concentration gradient of the system) , and (3) matrix 

exchange between flowing water and matrix via sorption, ion exchange, and chemical reactions (Field 

and Liej, 2014; Field and Pinsky, 2000; Sinreich, 2011). Solutes, which are neither affected by sorption 

nor chemical reactions, are defined as conservative. Sorption is the process through which solutes move 

from the dissolved aqueous phase to an immobile sorbed phase in the matrix causing an initial reduction 

in solute concentration and a retardation effect. Ion exchange is a specific type of sorption process, 

which occurs when ions in a solution are replaced by ions of similar charge from the solid phase. 

Sorption and ion exchange occur at the conduit walls and within the surrounding carbonate matrix 

(Geyer et al., 2007; Morales et al., 2010) and are generally relevant at local scale (Hauns et al., 2001). 

Retardation is the delay of the solute transport with respect to the groundwater flow and is generally 

negligible in karst systems due to the quick flow in the conduits (Kresic and Stevanovic, 2009). Finally, 
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(biogeo)chemical reactions (i.e., degradation, nitrification, dissolution, mineralization, weathering) 

occur when the reactants are mixed and degrade with consequent formation of the reaction products. In 

the matrix, reaction processes are limited by transport mechanisms due to slow diffusion and dispersion 

processes; whereas in the conduit by the reaction rate constants (Spiessl et al., 2007). 

1.3 Characterization of flow and transport processes in karst systems  

The characterization of flow and transport processes in karst systems requires specific investigation 

techniques which need to be able to capture the duality of karst dynamics (Goldscheider and Drew, 

2014). Tracers are commonly used to investigate and quantify flow and transport processes and 

parameters in karst systems (Goldscheider et al., 2008; Martín-Rodríguez et al., 2023; Mudarra et al., 

2014). Tracers can be categorized in natural tracers, artificial tracers, and physical quantities.  

Natural tracers, such as major ions, stable isotopes (oxygen-18, deuterium, and tritium), trace elements, 

dissolved organic carbon DOC and natural fluorescence, are naturally present in karst groundwater 

(Hartmann et al., 2014). Natural tracers are used to determine proportion and mixing of water 

contributions from different sources or recharge areas (Barbieri et al., 2005, Đurović et al., 2022; Gil-

Márquez et al., 2017), and to investigate the internal system functioning, i.e, variability of relative 

importance of the saturated/unsaturated zones and/or of quick/slow flow components under different 

flow conditions (Aquilina et al., 2006; Barbera´ and Andreo, 2011; Frank et al., 2019; Hartmann et al., 

2013; Hartmann and Andreo, 2017; Mudarra and Andreo, 2011; Ravbar et al., 2011; Torresan et al., 

2020). In addition, stable water isotopes are widely used, due to their conservative behavior, to 

investigate the residence time and origin of karst waters (Batiot et al., 2003; Long and Putnam, 2004; 

Wang et al.,2021; Winston and Criss, 2004). The residence time indicates the time between the water 

entering and leaving the system and provides insight into the system’s mixing, storage, and transport 

characteristics (i.e., piston flow, complete mixing) (Bailly-Comte et al., 2011). Karst springs typically 

show rapid reactions to precipitation events both in terms of flow and transport processes, with discharge 

variation commonly by factors of 10 to 100 within hours or days (Hartman et al., 2014). Therefore, 

continuous monitoring (e.g., hourly) is required to characterize the dynamics and variability of karst 

systems. However, the collection at high temporal resolution of water samples is limited by high cost 

and time requirements (Charlier et al., 2012; Richieri et al., 2023). On the contrary, physical properties 

of water, such as electrical conductivity and temperature, are often used as natural tracers due to easy 

and cheap monitoring (Hartmann et al., 2014).  

Artificial tracers are substances, which are added to the system at specific injection points and allow the 

estimation of the travel flow paths and times through the system. An artificial tracer is considered ideal 

if it is highly soluble, detectable at low concentrations, conservative and nontoxic to humans and the 

environment (Käss, 2004). Artificial tracers widely used due to their behavior close to the ideal are 
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fluorescent dyes, such as uranine, sulforhodamine, eosin, or naphthionate (Leibundgut et al., 2009). 

Artificial tracers are applied to estimate karst systems´ hydraulic properties (e.g., hydraulic conductivity, 

porosity), geometric properties (e.g., conduit volumes and diameters) and transport parameters (e.g., 

dispersion, mass exchange rate) (Mudarra et al., 2019; Lauber and Goldscheider, 2014; Peely et al., 

2021). Moreover, they allow the delineation of subsurface connections and karst spring recharge area 

(Luhmann et al., 2012) as well as the identification of the origin and destination of contaminants 

(Goldscheider et al., 2008). The breakthrough curve (BTC) is the principal result of artificial tracer tests. 

The BTC shows the tracer concentration over time and thus allows the determination of the recovery 

time (Labat and Mangin, 2015). 

1.4 Modelling approaches for karst systems 

Hydrological models are representations of the hydrodynamic processes governing the movement and 

distribution of water within the hydrological cycle. Hydrological models support the assessment of the 

system functioning and are fundamental to perform sustainable water management of karst water 

resources (Hartmann et al., 2014). The first models for the investigation of karst systems were developed 

in the 1960s (Castany, 1968; Forkasiewicz and Paloc, 1967; Schoeller, 1962) and since then several 

conceptual ideas have been developed including a wide variety of types of mathematical models 

(Jeannin et al., 2021, Kovács and Sauter, 2007). The simplest approach to model a karst system is the 

application of the so called black-box models, which transfer input to output without accounting for any 

physical process. Black-box models can be based on analytical transfer functions (Labat et al. 2000a; 

Jukic and Denic-Jukic, 2008) or neural networks (Kurtuluş and Razack, 2007). However, black-box 

models are not reliable outside the specific hydrological conditions of the calibration period (Hartmann 

et al., 2014). Therefore, distributed models and hydrological conceptual models are required for proper 

characterization of karst systems functioning and for predictions (Jeannin et al. 2021). In this thesis the 

terminology hydrological conceptual model is used for lumped and semi distributed models. 

Distributed models represent the spatial variability of the hydrological parameters by discretizing the 

karst system in a two- or three-dimensional grid, assigning at each grid cell characteristic parameters 

and system states, and solving governing equations for each grid cell. They ensure the representation of 

the complexity and spatial heterogeneity of karst internal dynamics and provide the temporal and spatial 

evolution of groundwater levels. Different subtypes of distributed modeling approaches can be found in 

the literature (Jeannin et al., 2021; Kuniansky, 2016). Generally, distributed models describe the flow 

in the matrix with the groundwater flow equation based on Darcy´s law (Eq 1.3), where 𝑆𝑆 (1/L) is the 

specific storage coefficient, 𝐾 (L/T) is the hydraulic conductivity, 𝐻 (L) is the hydraulic head, 𝑡 is the 

time (T), and ∇ is the Nabla operator (Bear, 1972). These parameters are defined over a Representative 
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Elementary Volume (REV) to ensure they accurately represent the average properties of the porous 

medium. 

𝑆𝑆  
𝜕𝐻

𝜕𝑡
=  ∇(𝐾∇𝐻)                                                                                                                                              (1.3) 

The specific storage 𝑆𝑆 is a measure of the volume of water that a porous medium can store per unit 

volume of saturated material and per unit change in hydraulic head. Hydraulic conductivity 𝐾 represents 

the ability of a porous medium to transmit water, and it is defined as the volume of water that flows 

through a unit cross-sectional area of the porous medium per unit time under a unit hydraulic gradient.  

On the contrary, the flow in the conduits is often represented by the one-dimensional Darcy-Weisbach 

equation (Eq. 1.4), as function of the friction coefficient 𝜇 (-), conduit diameter 𝑑 (L), the mean flow 

velocity 𝑞 (L/T), the flow length along the path 𝑥 (L), the gravitational acceleration 𝑔 (L/T2), and time 

𝑡 (Liedl et al., 2003; Munson et al., 2021; Reimann et al., 2011). 

𝜕𝐻

𝜕𝑥
(𝑡) =  −𝜇 

𝑞(𝑡)2

2𝑔𝑑
                                                                                                                                           (1.4) 

Different approaches have been investigated to include karst heterogeneity in distributed model (Jeannin 

et al., 2021; Kuniansky, 2016), e.g., equivalent porous medium approach (EPM) (Rodríguez et al., 2013; 

Worthington, 2009), double continuum approach (DC) (Kordilla et al.,2012; Maréchal et al.,2008) and 

combined discrete-continuum approach (CDC) (Liedl et al. 2003, Reimann et al., 2011; Shoemaker et 

al., 2008). Despite allowing the representation of karst complexity, the application of distributed models 

to karst systems is restricted to well-explored study areas (e.g., Birk et al., 2005; Doummar et al., 2012). 

This is caused by the high data requirement of distributed models together with the large uncertainty 

characterizing the subsurface structure of karst systems which cannot be directly observed (Berthelin 

and Hartmann, 2020). Distributed models are here presented to provide a general overview of karst 

modelling approaches. However, as they are not the focus of the present dissertation thesis, they will 

not be further discussed. 

Hydrological conceptual models do not explicitly consider the spatial distribution of hydro(geo)logical 

properties and include both fully lumped and semi-distributed models. Lumped models conceptualize 

physical processes at the scale of the entire karst system, whereas semi-distributed models divide the 

catchment into hydrological response units (Bittner et al., 2018; Ladouche et al., 2014). Hydrological 

conceptual models conceptualize the karst system functioning using different buckets, i.e., model 

compartments, and transfer functions, each of them representing a specific hydrological process (Azimi 

et al., 203; Bancheri et al., 2019; Mazzilli et al., 2019; Tritz et al., 2011). For a single bucket model, the 

discharge 𝑄 is often computed as linear on nonlinear function of the stored water volume 𝑆 (Eq. 1.5), 
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with a and b model parameters that depend on system properties, 𝑡 the time, 𝑃 the precipitation and 𝐸𝑇 

the evapotranspiration (Rimmer and Hartmann, 2012).  

𝑄 = − 
𝑑𝑆

𝑑𝑡
− 𝐸𝑇 + 𝑃 =  a 𝑆𝑏                                                                                                                           (1.5) 

A large variety of hydrological conceptual models have been developed to represent karst processes 

from the infiltration into the soil to the spring discharge considering different levels of complexity (e.g., 

Bancheri et al., 2019; Bittner et al., 2018; Hartmann et al., 2013; Le Moine et al., 2007; Rimmer and 

Salingar, 2006). More complex lumped models allow the representation of a larger variety of 

hydrological processes for which simpler models would not be sufficient. However, introducing more 

complex model structures could result in overparameterization and overfitting due to the large number 

of model parameters (Engelhardt et al., 2014; Hartmann et al., 2014).  

Hydrological conceptual models are widely used for the investigation of karst systems. Despite the 

relatively easy implementation, the parameters of hydrological conceptual models cannot be directly 

measured in the field, and thus need to be estimated during the calibration process (Wagener and Gupta, 

2005). Moreover, model parameters need to be validated to access models’ reliability and usefulness for 

further applications (Andréassian, 2023; Klemeš, 1986). Typically, model evaluation generally involves 

assessing both the structure and parameters of the model, along with calibrating and validating these 

parameters, using measured discharge time series at the karst spring and computing performance 

metrics. Among the several existing metrics, commonly used metrics in hydrological studies are the 

Nash-Sutcliffe efficiency NSE (Nash and Sutcliffe, 1970) and the Kling-Gupta efficiency KGE (Gupta 

et al., 2009). For a comprehensive description of the existing performance metrics, one can refer for 

instance to the works of Bennett et al. (2013), Ferreira et al. (2020) and Moriasi et al. (2007). Given the 

inherent uncertainties in parameter estimation, global sensitivity analysis and uncertainty quantification 

should be performed when applying hydrological conceptual models (Bittner, 2020). 

1.5 Multi-objective calibration  

A single metric is generally insufficient for a comprehensive evaluation of all aspects of hydrological 

model performance (Gupta et al. 2008; Leins et al. 2023). Due to the problem of equifinality (Cinkus 

et al. 2022), i.e., the existence of multiple optimal parameter sets that reproduce the observed values 

(Beven and Freer, 2001; Chiogna et al., 2024), acceptable values of a model performance indicators do 

not necessarily mean that the model is reliable. Studies have demonstrated that when validated using 

data from a single spring monitoring site, different models with varying structures or parameter values 

can produce satisfactory simulated spring discharge (Mudarra et al., 2019). However, these models often 

fail to adequately capture the internal dynamics of the karst system, leading to significant equifinality 
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(Hartmann et al., 2017). Multi-objective calibration approaches can be used to reduce the problem of 

equifinality and related modeling uncertainties (Seibert and McDonnell, 2002). In this context, the 

model results should not only be able to reproduce a discharge time series measured at the karst spring 

but also further relevant hydrological processes, e.g., water contributions from different compartments 

of the systems and transport processes (Wang et al., 2017). This requires the calibration of the 

hydrological model with more than a single objective function and the incorporation of additional 

information beyond the measured discharge time series at the karst spring (Gupta et al., 2008; Leins et 

al. 2023). Multi-objective approaches can consist in calibrating the input models used to generate driving 

input time series (e.g., evapotranspiration, interception), in extracting more information from the 

available data (i.e., discharge data), or in considering additional data (i.e., hydrochemical data). Some 

of the existing approaches are presented in the following subsections.  

1.5.1 Input time series analysis  

The input of any hydrological model is the groundwater recharge time series, which is controlled, for 

the case of pre-alpine karst catchments, by precipitation, evapotranspiration, interception, and snowmelt 

processes (Bittner et al., 2021). While precipitation time series are generally recorded at meteorological 

stations, other driving forces are difficult to measure. Therefore, additional input models are often 

applied to compute input time series for hydrological models (Hartmann et al., 2014b; Mazzilli et al., 

2012; Ollivier et al., 2020). For instance, evapotranspiration can be modeled using temperature-based 

parametrizations (Oudin et al. 2005; Thornthwaite 1948) or energy balance methods (Colaizzi et al. 

2012; Penman 1948); interception using mechanistic (Gash et al. 1995; Liu 2001) and stochastic 

modeling approaches (Calder 1996; Hall 2003); snow processes using degree-day-factor methods 

(Girons Lopez et al. 2020; Martinec 1960) or energy balance methods (Herrero et al. 2009; Marks et al. 

1999). Parameters related to physical properties like vegetation characteristics and soil properties can 

often be measured directly or estimated from remote sensing data (Mohanty et al., 2017; Thenkabail et 

al., 2011). However, other parameters within these models, such as proportionality constants, are not 

measurable with field experiments and thus need to be calibrated. This is particularly true for input 

models relying on (semi)empirical relationships and for hydrological conceptual models, which 

conceptualize the recharge processes at the scale of the entire catchment. 

In a multi-objective calibration approach, the model's performance on the output discharge time series 

can be assessed in conjunction with the calibration of the parameters of the input models. Observations 

of input time series can be either measured in the field or obtained from satellite images/gridded data 

(Ollivier et al., 2020). This approach can lead both to a more realistic representation of the recharge 

processes and to a reduction in the model output uncertainty starting from the analysis of the input data 

which are independent from the discharge. 
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1.5.2 Spring discharge time series analysis 

In karst systems, there is usually only one monitoring point at the spring outlet, providing typically 

solely discharge measurements. In this case, multi-objective calibration approaches rely on the intensive 

use of the information contained in discharge time series (Moussu et al., 2011). The extraction of 

additional information from the available data can be achieved, for instance, by comparing multiple 

performance metrics (Li et al., 2017; Pölz et al., 2024; Rudolph et al., 2023; Sivelle et al., 2022), or by 

means of auto-correlation analysis of spring discharge (Lorette et al., 2018; Moussu et al., 2011; Sivelle 

and Jourde, 2020, Sivelle et al., 2022), cross-correlation between discharge and precipitation (Sivelle et 

al., 2022) and wavelet multiresolution analysis (Labat et al., 2000b; Mallat, 1989; Sivelle, 2019; Sivelle 

et al., 2022). 

Combination of multiple performance metrics 

Several performance metrics are used to quantify model errors (Ferreira et al., 2020; Hauduc et al., 2015; 

Jackson et al., 2019). Each metric could be more or less suitable to capture specific aspects of flow 

conditions and model performance. For instance, the Nash-Sutcliffe Efficiency (NSE) tends to give more 

importance to peak flow conditions and the Root Mean Square Error (RMSE) is sensitive to outliers 

(Mizukami et al., 2019). NSE and RMSE are computed as shown in Eq. 1.6 and Eq. 1.7 (Bennett et al., 

2013), where 𝑦𝑜𝑏𝑠,𝑖 is the observed variable at time 𝑖, 𝑦𝑠𝑖𝑚,𝑖  the observed variable at time 𝑖, 𝑦𝑜𝑏𝑠̅̅ ̅̅ ̅̅  the 

mean of the observed values, and 𝑛 the total number of time steps. 

NSE = 1 −
 ∑ (𝑦𝑜𝑏𝑠,𝑖 − 𝑦𝑠𝑖𝑚,𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑜𝑏𝑠,𝑖 − 𝑦𝑜𝑏𝑠̅̅ ̅̅ ̅̅ )
2𝑛

𝑖=1

                                                                                                              (1.6) 

RMSE =  √
1

𝑛
 ∑(𝑦𝑜𝑏𝑠,𝑖 −  𝑦𝑠𝑖𝑚,𝑖)

2
𝑛

𝑖=1

                                                                                                              (1.7) 

On the contrary, the Kling-Gupta Efficiency (KGE), is considered suitable for capturing the entire flow 

regime (Gupta et al., 2009). Eq. 1.8 shows the equation for the computation of KGE, with 𝑟𝑐 the linear 

correlation between the observations and simulations, 𝜎𝑠𝑖𝑚 the standard deviation in simulations, 𝜎𝑜𝑏𝑠 

the standard deviation in observations, 𝜇𝑠𝑖𝑚 the simulation mean and 𝜇𝑜𝑏𝑠 the observation mean 

(Knoben et al. 2019). 

KGE = 1 −  √(𝑟𝑐 − 1)2 + (
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠

− 1)
2

+  (
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠

− 1)
2

                                                                                            (1.8) 
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To ensure a comprehensive analysis of the model performance, a multi-objective approach accounting 

for a combination of different performance metrics is recommended (Huo and Liu, 2020; Monteil et al., 

2020). In this sense, KGE could be already considered as a multi-objective model performance criterion 

since it combines information about linear correlation between the observations and simulations with 

mean and standard deviation of the simulations and observations (Knoben et al., 2019).  

Several studies have considered multiple performance metrics (Li et al., 2017; Pölz et al., 2024; Rudolph 

et al., 2023; Sivelle et al., 2022). For instance, Sivelle et al. (2019) defined a new objective function as 

the weighted sum of Nash-Sutcliffe Efficiency (NSE) and balance error (BE) to avoid important mass 

balance errors between observed and simulated data caused by the overestimation at low flow 

conditions. Zhao et al. (2023) used five different performance metrics, including NSE (Nash and 

Sutcliffe 1970), KGE (Gupta et al. 2009), flood peak relative error (FPRE), flood volume relative error 

(FVRE), and root mean square error (RMSE) to evaluate the model performance. For the mathematical 

description of the existing performance metrics, one can refer for instance to the works of Bennett et al. 

(2013). 

Auto-correlation and cross-correlation analyses 

The auto-correlation and cross-correlation functions are widely used in hydrological studies to 

characterize the temporal structure of hydrological signals under the linear-stationary hypotheses (Labat, 

2000a). The auto-correlation function is a normalized measure of the linear dependence among 

successive values of a single time series (rainfall or discharge) and allows to quantify the memory effect 

of a system (Labat et al., 2000a; Mangin, 1984; Panagopoulos and Lambrakis, 2006). The auto-

covariance function 𝐶(𝑘) is calculated as shown in Eq. 1.9, with 𝑘 the lag time, 𝑛 the length of the time 

series, 𝑥𝑡 the value of the studied variable at time t, �̅� the mean value of the studied variable (Labat, 

2000a). The auto-correlation function 𝐴𝐶𝐹(𝑘) is then equal to 𝐶(𝑘) normalized respect to the auto-

covariance for a lag time equal to zero (𝐶(0)), which corresponds to the variance (Eq. 1.10, Delbart et 

al., 2014).  

𝐶(𝑘) =
1

𝑛
 ∑(𝑥𝑡 −

𝑛−𝑘

𝑡=1

 �̅�)(𝑥𝑡+𝑘 −  �̅�)                                                                                                                 (1.9) 

 𝐴𝐶𝐹(𝑘) =
𝐶(𝑘)

𝐶(0)
                                                                                                                                               (1.10) 

As proposed by Mangin (1984) and later applied in different hydrological studies (Lorette et al., 2018; 

Sivelle and Jourde, 2020), the memory effect of a karst aquifer can be defined as the lag time value at 

which the ACF of the spring discharge time series reaches the value of 0.2 (also called decorrelation 

time). From the hydrogeological point of view, the shape of the correlogram, i.e., ACF over lag time, 
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gives information on the degree of karstification and storage capacity of a karst system (Panagopoulos 

and Lambrakis, 2006). For instance, well-developed karst systems with limited water storage are 

characterized by a low memory system, meaning steeper decreasing slope of the correlogram and shorter 

decorrelation time. On the contrary, poorly developed karst systems with relevant water storage show 

high memory system with ACF values above 0.2 over a long-time lag (Panagopoulos and Lambrakis, 

2006).  

The cross-correlation function quantifies the statistical relation between, for instance, the precipitation 

and discharge time series (Panagopoulos and Lambrakis, 2006). Assuming the precipitation to be a 

random process (white noise), the shape of the cross-correlation function gives insights into the impulse 

response of the system: the higher the peak, the more the system acts as a piston; the smaller the lag 

time to reach the maximum value of cross-correlation, the faster the response time of the system 

(Mangin, 1984). Being 𝑥𝑡 and 𝑦𝑡 input (precipitation) and output (discharge) time series, respectively, 

𝑘 the lag time, 𝑛 the length of the time series, �̅� and �̅� the mean values, the cross-covariance function 

𝐶𝑥𝑦(𝑘) is computed as shown in Eq. 1.11 (Labat, 2000a). Finally, the cross-correlation function 

𝐶𝐶𝐹𝑥𝑦(𝑘) is obtained by dividing 𝐶𝑥𝑦(𝑘) by the product of the standard deviations 𝜎𝑥and 𝜎𝑦 as shown 

in Eq. 1.12 (Delbart et al., 2014). 

𝐶𝑥𝑦(𝑘) =
1

𝑛
 ∑(𝑥𝑡 −

𝑛−𝑘

𝑡=1

 �̅�)(𝑦𝑡+𝑘 −  �̅�)                                                                                                          (1.11) 

𝐶𝐶𝐹𝑥𝑦(𝑘) =
𝐶𝑥𝑦(𝑘)

𝜎𝑥𝜎𝑦
                                                                                                                                         (1.12) 

Both the auto-correlation and cross-correlation functions can support the assessment of hydrological 

model performance in addition to numerical performance criteria such as NSE and KGE. For instance, 

to compare the performance of different model structures or parametrizations, the autocorrelation 

calculated on the observed discharge can be compared with the autocorrelation calculated on the 

simulated discharge of each model realization. Similarly, cross-correlation functions can be calculated 

between precipitation and both observed and simulated discharges of each model realization (Sivelle et 

al., 2022). However, when applying auto- and cross-correlation analyses, one should consider that both 

the memory effects and response time can be affected by the sampling frequency of precipitation and 

discharge time series (Sivelle and Jourde, 2020). This results from the coexistence of several processes 

with characteristic frequencies that can vary over several orders of magnitudes (Blöschl and Sivapalan, 

1995).  
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Wavelet analysis 

To account for non-stationarities, several studies showed that the wavelet analysis can be used to 

decompose the discharge time series observed at karst springs into different signals each of which 

characterized by its specific frequency scale (Labat et al., 2001, Labat, 2005, Labat, 2010, Hao et al., 

2012, Miao et al., 2014). Contrary to the Fourier analysis, which fails to determine frequency time-

dependence, the wavelet analysis allows not only the identification of signals with different frequency 

scale but also their temporal variation (Labat, 2005). Therefore, the wavelet analysis is suitable in case 

of signals characterized by localized high frequency events or by large numbers of scale-variable 

processes (Labat et al., 2000b). Signals characterized by different frequency scales provide relevant 

information about different hydrological processes, e.g., conduit and matrix flow, and transfer between 

them. Each frequency scale in which the discharge signal can be decomposed thus can be considered as 

an individual time series that is representative for different (sub)processes in a defined karst aquifer 

(Labat et al., 2000b). The investigation of these individual time series can support model performance 

assessment (Chiogna et al., 2018; Rathinasamy et al., 2014), model calibration (Duran et al., 2020; 

Schaefli and Zehe, 2009) and model parameter sensitivity analysis (Bittner et al., 2021b; Chiogna et al., 

2024).  

The continuous wavelet transform was introduced by Grossmann and Morlet (1984). The approach 

involves shifting a mother wavelet function 𝜓(𝑡) along the signal and computing the corresponding 

spectrum at each location. As shown in Eq. 1.13, a mother wavelet 𝜓(𝑡) is transformed into a wavelet 

function  𝜓𝜏,𝑠(𝑡) through dilation or compression of the mother wavelet, along with a time shift.  

 𝜓𝜏,𝑠(𝑡)   =  1

√|𝑠|
  𝜓 (

𝑡− 𝜏

𝑠
)                                                                                                                                                                                    (1.13)  

The parameter 𝑠 represents a dilation (𝑠 > 1) or a contraction (𝑠 < 1) factor of the mother wavelet 𝜓(𝑡), 

and corresponds to different scales of observation; the parameter 𝜏 represents the temporal translation 

of the wavelet 𝜓(𝑡) which allows to study the signal 𝑥(𝑡) locally around the time 𝜏 (Labat et al., 2000b).  

In the case of the Continuous Wavelet Transform (CWT), the convolution of the signal 𝑥(𝑡) with the 

wavelet function determines the wavelet coefficients 𝐶𝑥(𝜏, 𝑠) (Eq. 1.14), which indicate the strength of 

each frequency scale component 𝑠 at each time 𝜏 and position 𝑥 (Labat et al., 2000b). The 2D plot of 

the wavelet coefficients as a function of the scale s and time 𝜏 is called scalogram and allows to 

graphically identify the strength of frequency components at specific scales and positions/times. Patterns 

and structures in the scalogram can provide insights into the dominant frequency components and their 

evolution over time or space (Chiogna et al., 2018; Schuler et al., 2021). 

𝐶𝑥(𝜏, 𝑠) =  ∫ 𝑥(𝑡) 
+∞

−∞
𝜓𝜏,𝑠(𝑡) 𝑑𝑡                                                                                                                    (1.14)  
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The results of the wavelet analysis of a signal are strongly affected by the choice of the mother Wavelet 

function 𝜓(𝑡). In continuous time applications, the most frequently used wavelets are the Haar wavelet 

and the complex Morlet wavelet (Labat et al., 2000b). 

Since the CWT is not orthogonal (Mallat, 1999), the original signal cannot be reconstructed as the sum 

of all the decomposed signal components. For multiresolution analysis in hydrological studies, it is 

therefore more convenient to adopt an orthogonal wavelet transformation. The discrete wavelet and 

coefficients are defined in Eq. 1.15 and Eq. 1.16, respectively, where 𝑗 is the scale factor and 𝑘𝜏0 is the 

translation factor (Labat et al., 2000b). To reconstruct a scale in power of two (dyadic scale) the 

parameters are fixed such as 𝑠0 = 1 and 𝜏0 = 2 (Mallat, 1989). 

 𝜓𝑗,𝑘(𝑡) =  𝑠0

𝑗
2 𝜓(𝑠0

𝑗
𝑡 − 𝑘𝜏0)                                                                                                                          (1.15) 

𝐶𝑥(𝑗, 𝑘) =  ∫ 𝑥(𝑡) 
+∞

−∞

𝜓𝑗,𝑘(𝑡) 𝑑𝑡                                                                                                                   (1.16) 

Being the DWT orthogonal, the original signal 𝑥(𝑖) at the discrete time 𝑖 can be obtained as a linear 

combination of translates and dilates of orthonormal wavelets (Eq. 1.17) (Labat et al., 2000b). 

𝑥(𝑖) =  ∑ ∑ 𝐶𝑗,𝑘
𝑥 (𝑖)

+∞

𝑘= −∞

+∞

𝑗=0

 𝜓𝑗,𝑘(𝑡)                                                                                                                (1.17)  

In the context of multiresolution analysis for model performance assessment, the DWT can be applied 

to both the discharge model realizations as well as to the observed time series. Standard performance 

metrics can be computed for each decomposed signal components allowing to quantify the ability of the 

model to represent processes characterized by different frequency scales (Sivelle et al., 2022).  

1.5.3 Hydrochemical time series analysis 

The use of hydrochemical data in addition to hydrometric information like spring discharge allows for 

a better understanding of the spatial and temporal variability in the hydrological response of karst 

systems (Barbieri et al., 2005; Chang et al., 2021; Gil-Márquez et al., 2017). Typical natural tracers used 

for the investigation of karst springs are major ions, electrical conductivity, dissolved organic carbon 

DOC, and water isotopes (Goldscheider and Drew, 2007; Leibundgut et al., 2009). For example, they 

allow to differentiate between the contribution from the critical zone, conduit and matrix compartments 

under varying hydrometeorological conditions (Dreiss, 1989; Frank et al., 2019; Liu et al., 2004; Ravbar 

et al., 2011; Torresan et al., 2020). They can also be used to estimate the fractions and mixing of water 

from different sources (Aquilina et al., 2006; Plummer et al., 1998), assess the functioning of karst 
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systems (Barberá and Andreo, 2011; Mudarra and Andreo, 2011), and determine the origin and 

residence times of karst waters (Batiot et al., 2003; Long and Putnam, 2004). 

The integrated use of discharge time series and hydrochemical data (Li et al., 2022, Zhang et al., 2021) 

can address the problem of equifinality and thus support the increase in model reliability (Hartmann et 

al., 2013b; Khatami et al., 2019, Sarrazin et al., 2022). The use of hydrochemical data has been applied 

to test the realism of hydrological flow model structures and parameter uncertainty reduction (Hartmann 

et al., 2013a, Chang et al., 2021). In addition, Hartmann et al. (2013c) used hydrological and 

hydrochemical signals for model calibration, by combining discharge autocorrelation with δ18O 

variability, Q–NO3
- cross-correlation and Q–SO4

2- regression. The model performance of coupled flow- 

and transport models over the parameter space can be quantified by computing performance metrics 

(e.g., KGE), which consider both the computed spring discharge and hydrochemcial time series 

(Hartmann et al., 2017; Çallı et al., 2023). Oehlmann et al. (2015) shows how the combination of 

groundwater flow and transport simulations can be used to reduce model ambiguity and to get insights 

into the karst network geometries. 

The hydrochemical data particularly relevant for this dissertation are the electrical conductivity EC and 

the major ions, which are the cations calcium Ca2+, magnesium Mg2+, sodium Na+, and potassium K+, 

and the anions bicarbonate HCO3
-, sulfate SO4

2-, nitrate NO3
-, and chloride Cl-. These major ions 

originate from various sources, including geogenic sources, atmospheric deposition, and anthropogenic 

activities (Goldscheider and Drew, 2014; Ulloa-Cedamanos et al., 2020). In karst waters, Ca2+, Mg2+ 

and HCO3
- originate mainly from the weathering of carbonate rocks, following the dissolution reactions 

of calcite and dolomite shown in Eq 1.1 and Eq 1.2, respectively. SO4
2- can originate, for instance, from 

geogenic sources, such as gypsum dissolution or pyrite oxidation, or from anthropogenic compounds 

and contaminants, including fertilizers and pesticides. NO3
- can be related to natural sources, such as 

soil organic matter decomposition, or to agricultural and industrial activities. Na+ and Cl- can originate 

from silicate rocks and halite, respectively, as well as from anthropogenic sources, such as road deicing 

and agricultural practices. K+ can be released into water by the dissolution of minerals such as feldspar 

(orthoclase), mica, and clay minerals, or be the result of industrial discharges and use of fertilizers. In 

minor concentrations, Ca2+, Mg2+, Na+, K+, SO4
2-, NO3

-, and Cl- can originate from atmospheric 

decomposition (Goldscheider and Drew, 2014). Based on the concentration of major ions, the dominant 

water type can be visualized by means of a piper diagram (Piper, 1944). Karst waters dominated by 

calcite and dolomite usually belong to Ca–HCO3 and Ca–Mg–HCO3 groundwater type, respectively 

(Narany et al., 2019). Those ions which do not undergo significant chemical reactions or transformations 

are defined as conservative. The major ions considered conservatives are Na+ and Cl-, which can serve 

as tracers for studying the movement of water and mixing of water in hydrological studies. On the 

contrary, non-conservative ions, e.g., HCO3
- and SO4

2-, can be involved in processes such as weathering 

of minerals and dissolution of carbonate rocks (Hartmann et al., 2014). 
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Electrical conductivity (EC) in water refers to the ability of water to conduct an electrical current 

(µS/cm). The total electrical conductivity EC of water (Eq. 1.18) results from the sum of the 

contributions 𝐸𝐶𝑖 (μS/cm) of the individual ions 𝑖 (Eq. 1.19) (Parkhurst and Appelo, 2013). 

𝐸𝐶 =  ∑ ECi 

i

                                                                                                                                                   (1.18) 

𝐸𝐶𝑖 =  Λm 
° ∗  𝑚 ∗  𝛾EC                                                                                                                                     (1.19) 

Where 𝛬m 
°  is the molar conductivity (μS m2/mol), 𝑚 the molar concentration (mol/m3) and 𝛾EC the 

electrochemical activity coefficient (-) of the individual ion. The molar conductivity of an ion is related 

to its diffusion coefficient 𝐷W (m2/s) at 25 °C (Eq. 1.20) (Parkhurst and Appelo, 2013). 

Λm 
° =  

𝑧2 ∗ F2

R ∗  𝑇
 𝐷W                                                                                                                                         (1.20) 

Where 𝑧 is the charge number (-) of the ion, F the Faraday´s constant (96485.333 Coulomb/mol), R the 

gas constant (8.315 J/°K/mol) and 𝑇 the absolute temperature (°K). For temperatures different from 25 

°C, the diffusion coefficient needs to be corrected based on the viscosity of water 𝜂 (Pa s) at the specific 

temperature (Eq.1.21) (Parkhurst and Appelo, 2013). 

(𝐷W)𝑇 =  (𝐷W)298 ∗
𝑇

298
∗  

η298

η𝑇
                                                                                                                 (1.21) 

The electrochemical activity coefficient 𝛾EC (-) of the individual ion i is function of the charge number 

𝑧 (-) and the Debye-Hückel activity coefficient 𝛾DH (-). For an ionic strength 𝐼 < 0.36 |𝑧|, 𝛾EC is 

calculated es shown in Eq. 1.22 (Parkhurst and Appelo, 2013). To remove the temperature effect on 𝛬m 
°  

and 𝛾EC, 𝐸𝐶 measurements are normally given at the standard temperature of 25◦C. 

log(𝛾EC) = log(𝛾DH) ∗  
0.6

|𝑧|0.5
                                                                                                                       (1.22) 

As proposed by Benettin and van Breukelen (2017), the chemical properties of each ion 𝑖 can be grouped 

in a single coefficient 𝑎𝑖 ((μS/cm) /(mg/L)) with 𝑀 the solute molar mass (g/mol) (Eq. 1.23). 

𝑎𝑖 =  
Λ° ∗  𝛾EC

𝑀
                                                                                                                                                   (1.23) 

Finally, Eq. 1.18 and Eq. 1.19 can be written as function of the coefficients 𝑎𝑖, concentration 𝐶𝑖 (mg/L) 

and time 𝑡 (Eq. 1.24). 

𝐸𝐶(𝑡) =  ∑ 𝐸𝐶𝑖(𝑡) = 

𝑖

∑ 𝑎𝑖(𝑡) ∗  𝐶𝑖(𝑡) 

𝑖

                                                                                                  (1.24) 
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Equations 1.18 to 1.24 are included in the supplementary material B.1.3 and are crucial for the section 

of this dissertation that focuses on the enhanced insights provided by high-temporal-resolution 

hydrochemical data in the investigation of karst systems. (Chapter 5). 

As further discussed in Chapter 5, the high ion content and the complex hydrogeochemical interactions 

between water and the matrix often result in a karst spring discharge with intricate water speciation, 

characterized by complexation processes. Complexation processes involve the formation of complexes 

between two or more molecules or ions. These complexes are formed through coordination bonds, which 

involve the sharing of electron pairs between a central atom or ion (usually a metal) and surrounding 

ligands (atoms, ions, or molecules) known as complexing agents or ligands. Given the relevance of 

complexation processes within this dissertation (Chapter 5), the following nomenclature is introduced 

here and adopted throughout the thesis. The total concentration of a solute species (e.g., Ca, Mg, HCO₃) 

is the sum of the corresponding free ion (e.g., Ca²⁺, Mg²⁺, HCO₃⁻) and the solute species involved in 

aqueous complexes. 

1.6 Challenges in karst hydrological conceptual models 

Uncertainties on model outcomes arise from different sources, i.e., structural (Enemark et al., 2019; 

Fandel et al., 2020; Henson et al., 2018), parametric (Mazzilli et al., 2012; Moussu et al., 2011), and 

input uncertainties (Liu et al., 2018; Nerantzaki et al., 2020). Structural uncertainties result from the 

simplifications required to create a conceptual model of a natural system (Butts et al., 2004; Gupta and 

Govindaraju, 2019; Lee et al., 2011; Rojas et al., 2008). Parametric uncertainties derive from the fact 

that the exact values of model parameters, such as storage capacity and discharge coefficients, are often 

unknown (Ahmadi et al., 2019; Hu et al., 2019). Finally, input uncertainties arise from missing or 

uncertain input and from the simplification of the processing resulting in the input boundary conditions, 

i.e., groundwater recharge (Breinl, 2016; McMillan et al., 2012). Due to the conceptualization of 

hydrological processes at the catchment scale and due to the impossibility to constrain the parameters 

by means of field experiments, hydrological conceptual models of karst systems are particularly prone 

to uncertainties (Wagener et al., 2003). Hence, there is the need to carefully assess the impact of the 

different kinds of uncertainties on the performance of karst hydrological conceptual models, accounting 

for driving input times series, model structure, and parametrization.  

To account for the complexity and spatial heterogeneity of karst internal dynamics, karst hydrological 

conceptual models can be developed by including, for instance, a semi-distributed recharge and thus 

subareas of the catchment characterized by uniform hydrological properties (Bittner et al., 2018). 

However, considering more buckets introduces a higher degree of complexity in the modeling approach 

and consequently a larger uncertainty (Hartmann et al., 2014; Sivelle et al., 2022), opening the 

discussion about the trade-off between hydrological model complexity and hydrological model 
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performance. Hence, the implications of considering semi-distributed recharges in hydrological 

conceptual models need to be further studied. 

The use of hydrochemical data provides insights into the internal dynamics of karst aquifers and thus 

supports the understanding of the system functioning. Karst systems exhibit intricate hydrological 

behaviors with significant fluctuations in discharge that may change by one order of magnitude within 

hours or days (Hartmann et al., 2014). To maximize the utility of hydrochemical data to reflect the 

variability of the internal response of a system more accurately, the hydrochemical sampling frequency 

should be comparable to the time scale of the hydrological response of the system (i.e., hours at peak 

flow conditions). However, continuous monitoring is often constrained to water level, discharge, 

temperature, and electrical conductivity (EC), whereas obtaining high-frequency time series of major 

solute species is hindered by the prohibitive analysis costs and time requirement (Charlier et al., 2012). 

Consequently, new approaches are needed to retrieve high temporal resolution hydrochemical data 

without the need for intensive field measurements. 

Typically, model evaluation as well as parameter calibration and validation are done using measured 

discharge time series at a spring and computing performance metrics. Various models, characterized by 

diverse structures or parameter values, can produce satisfactory simulated spring discharge (Mudarra et 

al., 2019). Hence, prior studies have demonstrated that solely evaluating models based on spring 

discharge may not fully capture the internal dynamics of karst systems and can result in significant 

equifinality (Hartmann et al., 2017). To address the problem of equifinality and to constrain karst 

conceptual model structure and parametrization, multi objective approaches aim to couple hydrological 

(e.g., spring discharge) and hydrochemical (e.g., high resolution ion concentration time series) 

information data. In addition, to capture the internal variability of karst systems, conceptual models 

should have a temporal resolution that aligns with the time scale of the hydrologic response of the 

system, which, for karst systems with high temporal variability, is on an hourly scale. However, karst 

hydrological conceptual models calibrated solely on the time series of spring flow rates are generally 

implemented on a daily scale (Bakalowicz, 2005; Bittner et al., 2018; Sivelle et al., 2019). Hence, there 

is the need to investigate how high-temporal resolution hydrochemical data can be used for the 

verification of karst hydrological conceptual model structure and parametrization at hourly scale.  
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Chapter 2 

Research framework 

2.1 Previous works 

2.1.1 Framework-specific modelling approaches 

The models used in this thesis have been developed starting from two karst hydrological conceptual 

models, i.e., LuKARS (Bittner et al., 2018) and KarstMOD (Mazzilli et al., 2019). Here, a brief 

description of their model structure is presented. The equations of LuKARS and KarstMOD are reported 

in appendix A.2 and in the supplementary materials B.2.1 and B.2.2. 

LuKARS 

LuKARS (Land use change modeling in KARSt systems) is a semi-distributed model developed by 

Bittner et al. (2018) that lumps the predominant hydrotopes in a karst catchment as independent non-

linear units. Each hydrotope represents an area of the catchment characterized by similar land use and 

soil type and by homogeneous hydrological behavior. Fig. 2.1a shows the schematic conceptualization 

of LuKARS for the case of two hydrotopes. The epikarst zone is represented by the specific responses 

of each hydrotope. To account for the duality of karst systems, each hydrotope contributes to the spring 

discharge (Qspring) with a slow flow (Qis) through the matrix and a fast flow (Qhyd) through preferential 

flow paths directly to the spring. Infiltration through the matrix is implemented as a linear function of 

the water level in the corresponding bucket. The fast flow starts when the hydrotope-specific maximum 

storage capacity (Emax) is reached and stops once the storage volume drops below the hydrotope-specific 

minimum storage capacity (Emin). The saturated zone consists of a single linear storage B which is 

recharged independently by each hydrotope. Finally, to represent secondary springs, part of the water is 

moved out of the catchment (Qsec) once a hydrotope-specific threshold (Esec) is exceeded. 

KarstMOD 

KarstMod is a modeling platform, which allows a flexible implementation of different conceptual 

reservoir models and thus flexible representation of karst hydrological processes (Jourde et al., 2015; 

Mazzilli et al., 2019). Among the different structures available within the platform, Fig. 2.1b shows the 

model structure relevant in the context of this thesis. It consists of a two-level structure, i.e., epikarst 

routine (E) and groundwater routine (Matrix (M), and Conduit (C) components). The upper level 

represents the infiltration zone, whereas the lower level is the saturated zone where compartment M and 

C stand for the different sub-systems of the saturated zone. The water in the epikarst is transferred to the 

lower compartments either by a slow infiltration to the matrix (QEM) or fast flow to the conduits (QEC). 
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Both the matrix and conduit then provide water to the spring (QMS and QCS, respectively). Based on the 

pressure head in the lower compartments, a transfer of water can occur from the conduit to the matrix 

or vice versa (QMC). Finally, the hysteretic response of the epikarst is represented by accounting for both 

the discharge from compartment E to compartment C (QhyES) and the discharge from compartment E 

directly to the spring (QhyES). All the discharge components are implemented as exponential functions 

of the water levels in the buckets. (Mazzilli et al., 2019) 

 

Fig. 2.1 Schematic representation of the model concept of a LuKARS and b KarstMod. 

2.1.2 Experimental recharge areas  

In this work, three karst systems in Europe were investigated, i.e., the Las Hountas spring and the Oeillal 

spring in southern France, as well as the Kerschbaum spring in Austria (Fig. 2.2). The three selected 

recharge areas show similarities in catchment size (2.5 – 43.2 km2) and land cover (dominated by forest), 

and differences in geological and climate properties. In particular, they are characterized by different 

degree of karstification and accordingly show differences in discharge variability. In the following, a 

brief description of each selected karst system is provided. More information about the study areas is 

provided in Chapters 3–6. 

The Las Hountas spring  

The Baget recharge area (13 km2) is located 10 km southwest of the city of Saint-Girons (French 

Pyrenees). It is a binary karst system with heterogeneous geology and intermittent overflow. The 

recharge area is characterized by the coexistence of calcareous formations with a mineralogical 

composition dominated by calcite (Jurassic and Lower Cretaceous) and an outcrop impermeable 

formation of black flysch (Ulloa-Cedamanos et al., 2021). Las Hountas is the only perennial spring of 

https://www.sciencedirect.com/science/article/pii/S0022169422000865#b0345
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the recharge area, and it is representative of a part of the total response of the system. Indeed, during 

high flood events, the water from the upper part of the recharge area bypasses the spring and directly 

reaches the catchment outlet (Mangin, 1975; Ulloa-Cedamanos et al., 2021) (Fig. 2.2 a). The Baget 

recharge area is predominantly covered by fir-beech forests (Fig. 2.2 a). The region is characterized by 

the Atlantic oceanic climate with an average annual air temperature of 12.3°C and mean annual 

precipitation of approximately 1700 mm (period from 1970 to 2020). The average annual discharge at 

the catchment outlet is 0.48 m3/s with no influence of snow melt processes (Ulloa-Cedamanos et al., 

2020). 

 

Fig. 2.2 Land use maps of the recharge areas of a Baget (France), b Oeillal (France), and c Kerschbaum 

(Austria) (modified after Sivelle et al., 2022). Note that the Oeillal spring is outside its recharge area 

(Sivelle and Jourde, 2020; Sivelle et al., 2021). 

Météo-France provided precipitation data recorded at the meteorological station of Antichan, 

approximately 8 km northeast of the Baget spring, for the period 1970–2022. The French Karst National 

Observatory Service (SNO KARST) and French Geological Survay (BRGM) supplied daily discharge 

time series at the recharge area outlet (Fig. 2.2a) for the period 1970–2022. In addition, as part of the 

experimental work of this thesis, the Las Hountas spring (Fig. 2.2a) was instrumented in October 2021 

with an In-Situ Aqua TROLL 200 device (In-Situ Inc., United States), recording continuous water level, 
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specific EC, and water temperature every 15 minutes (Fig. 2.3a). The observed discharge time series at 

the Las Hountas spring was derived from the recorded water levels by applying the rating curve from 

Mangin (1975), which was adjusted to account for the current cross-sectional state based on additional 

field measurements conducted in 2021 and 2022. To collect water samples for analysis of ions, a 6712 

ISCO sampler (Teledyne ISCO, United States) was installed at the spring inside a shelter always in the 

shade and linked to the EC probe (Fig. 2.3b). For efficient sampling during storm conditions, the sampler 

was programmed to automatically initiate sampling when the water level exceeded a 30 cm threshold. 

Four precipitation events were sampled: from 4 October 2021 to 14 October 2021, from 1 November 

2021 to 7 November 2021, from 30 March 2022 to 7 April 2022, and from 20 November 2022 to 26 

November 2022. During these events, the sampling temporal resolution was 1 hour during the rising 

limb of the hydrograph and 2 hours during the recession phase. To capture baseflow following each 

precipitation event, composite samples were collected, integrating 8-hour intervals.  

 

Fig. 2.3 Experimental site at the Las Hountas spring in the Baget catchment. Installation of a the In-Situ 

Aqua TROLL 200 probe and b the 6712 ISCO sampler (on the left side).  

The samples were collected daily in LDPE plastic vials with zero headspace, filtered through 0.22 

μm membrane filters, and stored in a refrigerator at 4°C for approximately one week before analysis. 

For each sample, an aliquot designated for cation analysis was acidified with nitric acid (HNO3) to 

prevent complexation and precipitation (Weiss, 2020; Ulloa-Cedamanos et al., 2020). All samples were 

analyzed for major solute concentrations. Inductively coupled plasma optical emission spectrometry 

(ICP-OES) was used to quantify Ca, Mg, Na, and K; ion chromatography to quantify NO3, SO4, and Cl; 

and titration analysis to quantify HCO3. Detailed specifications of the laboratory analysis are provided 

in the supplementary material B.1.2. During data preprocessing, the software PHREEQC was used to 

ensure that the charge balance error of each sample was within ±5% (Parkhurst and Appelo, 2013). 
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The Oeillal spring 

The Oeillal spring is located north of the city of Narbonne, southern France, and drains water from the 

limestone terrain of the Fonfroide-Monredon massif (Fig. 2.2b). The primary aquifer in this region 

resides within a calcareous formation, supplying water to the Oeillal spring, which emerges in the 

western part of the Narbonne-Sigean sedimentary basin at four distinct spring pools (Padilla et al., 1994). 

Additionally, in the northern part of the area, there is an alluvial aquifer located within the Quaternary 

formation of the Aude river terrace. The recharge area covers around 43.2 km2 with a potential additional 

10 km2 contributing zone (Sivelle and Jourde, 2020). The recharge area is characterized by 

Mediterranean climate with mean annual temperature of 14.7°C, annual precipitation of 570 mm, and 

mean annual discharge around 0.14 m3/s (1980–2020) (Sivelle and Jourde, 2020). 

Daily precipitation was measured at the Narbonne meteorological station and provided by Météo-France 

for the period 1987–2020. Daily discharge time series were computed starting from rating curves by 

Sivelle and Jourde (2020) 

The Kerschbaum spring  

The Kerschbaum spring is located 10 km south of the city of Waidhofen a.d. Ybbs, Austria. It has a 

recharge area of approximately 2.5 km2 (Fig. 2.2c) and belongs to the eastern foothills of the Northern 

Calcareous Alps, showing a homogeneous dolomitic geology. Despite the dominance of carbonate 

bedrocks, the study area does not show significant sinkholes and therefore the spring discharge is 

controlled by diffusive infiltration (Narany et al., 2019). The recharge area is primarily covered with 

forests (Fig. 2.2 c) and is characterized by continental climate with a mean annual temperature of 8°C, 

mean annual precipitation of 1379 mm, and average annual spring discharge of 0.034 m3/s (period from 

1981 to 2014) (Bittner et al., 2018). 

Most of the hydrochemcial data used in the framework of this thesis were recorded in the Kerschbaum 

spring recharge area by the water works in Waidhofen a.d. Ybbs, who provided 

- daily discharge, precipitation and air temperature for the period 2006 – 2007; 

- EC and dissolved major solutes (i.e., Ca, Mg, HCO3, SO4, NO3, Cl, Na, K) for the periods 2000–2016 

and 2018–2019 at different temporal resolutions (quarterly and weekly, respectively).  

In addition, as part of the experimental work of this thesis, water samples were collected every 5 hours 

by means of a 6712 ISCO sampler during the period from 23 January 2022 to 28 January 2022. The 

specific EC was measured in the field using a conductivity meter (HT Hydrotechnik, Typ 575-LTC) and 
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reported at 25°C. Fig. 2.4 shows the installation at the Kerschbaum spring. The specifications of the 

laboratory analysis are reported in the supplementary material B.1.1. 

 

Fig. 2.4 Experimental site at the Kerschbaum spring. View from a outside and b inside the spring 

chamber where the ISCO sampler is located (see lower right corner in the right figure).  

2.2 Research objectives  

In the context of the challenges described in Subchapter 1.6, this dissertation aims to contribute to the 

current discussion related to the investigation of uncertainties in hydrological conceptual karst models 

and how to constrain them. In particular the following hypotheses will be evaluated. 

1) Model input uncertainties show temporal variations depending on how much the groundwater 

recharge and the modeled spring discharge are controlled by one specific process, e.g., 

snowmelt or evapotranspiration.  

2) The systematic consideration of a semi-distributed recharge does not necessarily lead to an 

increase in model performance in case of hydrological conceptual karst models at a daily scale.  

3) Using continuous electrical conductivity measured at a karst spring, solute concentration time 

series can be retrieved at the same temporal resolution of the observed electrical conductivity.  

4)  Hydrochemical data at high temporal resolution can be used to conceptualize and select hourly 

event-based karst model concepts as well as to properly constrain the model parameter ranges. 
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Each hypothesis was addressed in an individual peer-reviewed publication. Fig. 2.5 gives an outline of 

the presented cumulative dissertation, by summarizing the hypothesis, main contents, and related article 

as well as indicating the chapter of this dissertation that deals with it. For each article, a summary abstract 

will be presented in Subchapters 2.3. 

 

Fig. 2.5 Outline of this cumulative dissertation.  
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2.3 Research components and specific objectives 

2.3.1 Hypothesis 1 

Hydrological models simplify the subsurface heterogeneity and complex hydrodynamic processes 

typical of karst systems (Guinot et al., 2015; Sivelle et al., 2021; Sivelle and Jourde, 2020). Therefore, 

to assess the reliability of a model, different sources of uncertainty and their impact on the model output 

should be investigated (Sarrazin et al. 2018). The uncertainties in the model output can arise from 

different sources, i.e., structural (Enemark et al., 2019; Fandel et al., 2020; Henson et al., 2018), 

parametric (Mazzilli et al., 2012; Moussu et al., 2011) and input uncertainties (Liu et al., 2018; 

Nerantzaki et al., 2020). Structural uncertainties are related to the simplification necessary during the 

development of a conceptual model, potentially resulting in the underrepresentation of significant 

hydrodynamic processes (Butts et al., 2004; Gupta and Govindaraju, 2019; Lee et al., 2011; Rojas et al., 

2008). Parametric uncertainties are the consequence of the unknown exact values of model parameters 

which need to be calibrated (Ahmadi et al., 2019; Hu et al., 2019). Input uncertainties arise from 

uncertain input data (Breinl 2016; McMillan et al. 2012), as well as from the simplifications of 

groundwater recharge processes (Patil et al. 2011; Vrugt et al. 2008). For the specific case of pre alpine 

karst systems, the groundwater recharge is controlled by interception, evapotranspiration and snowmelt 

processes, whose time series are often computed by applying additional models rather than measured in 

the field (Mazzilli et al., 2012; Ollivier et al., 2020). 

The study presented in Chapter 3 explores the input uncertainties, arising from the representation and 

parameterization of processes relevant to groundwater recharge, i.e., interception, evapotranspiration, 

and snow melt processes, for the case of the semi-distributed karst model LuKARS (subchapter 2.1.1). 

This study hypothesizes, firstly, that input uncertainties may fluctuate seasonally, and secondly, that the 

specific contribution of individual processes to groundwater recharge can be determined from the 

uncertainties in the model output. The research questions are as follows. 

1. To what extent do the input uncertainties of each individual recharge process affect model 

predictions compared to parametric uncertainties? 

2. Are input uncertainties affected by seasonality?  

3. Do input uncertainties show temporal variations depending on how much the groundwater recharge 

is controlled by one specific process?  

4. How do the input uncertainties change when considering more processes to be unknown?  

These research hypotheses and questions are addressed in the article Bittner et al. (2021) presented in 

Chapter 3. To study the time-dependent relevance of model input uncertainties, nine input models were 

selected to compute the input recharge time series: three to compute interception (DVWK, Gash and 

Liu), three to compute evapotranspiration (Thornthwaite, Hamon and Oudin) and three to compute snow 
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processes (Martinec, Girons Lopez and Magnusson) (Fig. 2.6a). All the input model combinations were 

tested at the pre alpine karst spring Kerschbaum, for which the hydrological conceptual LuKARS model 

was implemented by Bittner et al. (2018) (Fig. 2.6b). To focus on input uncertainties, only the 

parameters of the input models were considered as uncertain, while the model parameters were taken 

constant and equal to those previously calibrated for the same study area by Teixeira Parente et al. 

(2019). The findings of this study indicate that input uncertainties exhibit seasonal variations (Fig. 2.6c). 

Furthermore, the uncertainties associated with evapotranspiration and snowmelt inputs are greater than 

those related to interception (Fig. 2.6c). These results suggest that the significance of a particular process 

in groundwater recharge can be inferred from its corresponding input uncertainties. Finally, the results 

show that two or more uncertain processes can compensate for each other. 

 

Fig. 2.6 a Minimum and maximum percentage discrepancies between computed spring discharge from 

each input model combination and the observed spring discharge. b Model structure of LuKARS for the 

Kerschbaum system. c Interquartile ranges of LuKARS model outputs normalized by the observed 

discharge when considering uncertain the single processes with the different input models, in 

comparison to the parametric uncertainties computed by Teixeira Parente et al. (2019) (modified after 

Bittner et al., 2021). Please refer to Chapter 3 for further details.  
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2.3.2 Hypothesis 2 

Hydrological conceptual models have been used to assess the impact of climate change and 

anthropogenic activities on karst systems (Brenner et al., 2018; Chen et al., 2018; Doummar et al., 2018; 

Nerantzaki et al., 2020; Hartmann et al., 2012; Sivelle et al., 2021). However, only a few models have 

considered the influence that land-cover and land-use (LCLU) changes have on karst groundwater 

resources (Bittner et al., 2018; Sarrazin et al., 2018). As shown in former studies, it can be of interest to 

consider a semi-distributed recharge to improve the representation of flow spatial dynamics in karst 

systems (Bittner et al., 2018; Ollivier et al., 2020). On the one hand, a semi-distributed recharge 

approach is relevant for capturing the impact of land cover and land use (LCLU) on flow dynamics; on 

the other hand, it introduces more complexity into the modeling process. Therefore, it is necessary to 

assess the implications of considering a semi-distributed recharge in lumped parameter models. The aim 

of the study presented in Chapter 4 is to perform multiple hydrological model calibrations, focusing on 

the uncertainty arising from the model structure. The hypothesis of this study is that the performance of 

karst hydrological conceptual models does not necessarily improve when a semi-distributed recharge 

approach, based on LCLU, is considered. Therefore, it is essential to identify the levels of model 

complexity that result in the best performance in terms of simulated spring flows. The research questions 

are as follows. 

1. How does a semi-distributed recharge affect the flow dynamics of a hydrological conceptual karst 

model, particularly the infiltration toward the saturated zone? 

2. How can we evaluate the trade-off between hydrological model complexity and hydrological model 

performance? 

3. Does considering a more complex conceptualization of recharge processes always result in better 

performance of hydrological conceptual karst models? 

These research hypothesis and questions are addressed in the article Sivelle et al. (2022) presented in 

Chapter 4. The semi-distributed recharge is conceptualized based on the definition of hydrotopes 

(Bittner et al., 2018), which are individual units in the recharge area characterized by similar soil and 

land use, resulting in homogeneous response to precipitation events and different contribution to the 

groundwater. Two hydrological conceptual models, LuKARS and KarstMod (subchapter 2.1.1), were 

implemented to account for different conceptualizations of the flow processes. Three forest-dominated 

recharge areas were chosen for this investigation: Baget, Oeillal, and Kerschbaum (Fig. 2.2). A multi-

model calibration, considering different levels of complexity in the upper model layer, was conducted 

by testing different configurations in the upper level (ranging from 1 to 4 hydrotopes) for each recharge 

area (Fig. 2.7a). To focus on the infiltration toward the saturated zone, the configuration of the lower 

level remains consistent with previous studies (Bittner et al., 2018; Sivelle et al., 2019; Sivelle et al., 

2021).  
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The evaluation of the models was carried out using seven numerical performance criteria (Fig. 2.7b, 

pag. 68) and time series analysis, including auto-correlation function ACF (Fig. 2.7c), cross-correlation 

function CCF (Fig. 2.7d), and wavelet multiresolution analysis MRA (Fig. 2.7e). The results indicate 

that the consideration of a semi-distributed recharge does not necessarily lead to an increase in model 

performance. A more complex conceptualization of recharge processes results in better performance for 

both Kerschbaum and Oeillal, while no improvement is observed for the Baget catchment. The Baget 

catchment is characterized by a high degree of karstification and significant temporal variability in 

spring discharge. Therefore, recharge processes are difficult to capture using a daily lumped parameter 

hydrological model as applied here, and investigations at higher temporal resolutions are recommended. 

 

Fig. 2.7 a Structure of the hydrological conceptual models for the three catchments. Evaluation of model 

performance by means of b multiple numerical performance criteria, c auto-correlation function (ACF), 

d cross-correlation function (CCF) and e wavelet multiresolution analysis (MRA) (modified after 

Sivelle et al. (2022)). Please refer to Chapter 4 for further details.  
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2.3.3 Hypothesis 3 

Hydrochemical data at high temporal resolution (e.g., hourly) at a karst spring can support the 

understanding of the subsurface hydrodynamical functioning (Hartmann et al., 2014). However, the 

continuous monitoring at karst springs is restricted to discharge, electrical conductivity and temperature, 

whereas the collection of solute concentration at high frequency is limited by high analysis costs and 

time requirement (Charlier et al., 2012). On the contrary, the EC signal is easy and cheap to measure by 

automatic instruments and therefor has been intensively used for the investigation of karst systems 

(Cano-Paoli et al., 2019; Chang et al., 2021; Hayashi et al., 2012; Jourde et al., 2018; Meus et al., 2014). 

Recently, continuous EC signal and point ionic measurements at a river gauge were used by Benettin 

and van Breukelen (2017) to derive the individual ion concentration at the same temporal resolution as 

the observed EC. Benettin and van Breukelen (2017) tested this approach for the Upper Hafren river 

catchment, United Kingdom, which shows low EC values of on average 29 μS/cm and total ion content 

dominated by Na+ and Cl-, which have no or little tendency to form complexes. Due to the high ion 

content with EC values up to 500 μS/cm and non-negligible concentrations of aqueous complexes in 

karst systems (Chang et al., 2021; Hilberg and Schneider, 2011; Narany et al., 2019), we had the 

necessity to modify the methodology proposed by Benettin and Van Breukelen (2017) to account for 

aqueous complexation processes. Thus, in the study presented in Chapter 5, we derived the 

concentrations of solute species present as free ions and as part of complexes separately (Fig. 2.8a). The 

concentration of free ions were derived from the linear interpolation of the relative contribution of each 

ion to the total measured EC (called weight factors). The contribution of each individual ion was 

computed with Eq. 1.18 – Eq. 1.24. On the contrary, the solute species involved in complexes were 

obtained by means of speciation calculations with PHREEQC as difference between the total molality 

of a solute (mol/kgw) and the molality of the solution (mol/kgw). 

In this work, we hypnotize that it is possiblt to retrieve high-temporal resolution solute concentration 

at a karst spring if complexation processes are explicitly considered by performing additional speciation 

calculation with PHREEQC. The research questions are as follows. 

1. Is it possible to retrieve solute concentration time series from EC measurements at a karst spring? 

2. Can the method be used to interpolate from low to high frequency concentration time series? 

3. Can the method be used to predict high frequency concentration time series? 

4. Can the method be applied equally to a catchment with rather homogeneous and heterogeneous 

geology and different temporal resolution of the available datasets?  
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Fig. 2.8 a Schematic representation of the EC decomposition approach used to derive the individual 

solute species at high temporal resolution starting from continuous EC and point ionic measurements at 

karst springs. b Uncertainty quantification of the individual solute species concentrations in case of 

interpolation. c Predictive model based on the frequency of occurrence of the weight factors. Please 

refer to Chapter 5 for further details.  

These research hypothesis and questions are addressed in the article Richieri et al. (2023) presented 

in Chapter 5. Two karstic catchments with differing geologies and temporal resolutions of available 

hydrochemical datasets are considered, i.e., the Kerschbaum dolostone system (Fig. 2.2c) and the Baget 

limestone system (Fig. 2.2a). The results show that complexation processes should be considered for 

accurately estimating total solute concentrations, particularly for SO₄, Ca, Mg, and HCO₃. The EC signal 

of a karst spring can effectively be used to retrieve the dynamics of those solutes significantly 

contributing (approximately > 6%) to the total EC, i.e., HCO3, Ca and Mg. For the case of Baget, the 

method shows substantial uncertainty due to the varying water contributions from different geological 

regions. In addition, the temporal variability of the weight factors of the free ions SO4
2- and HCO3

- 

provides insight into the variability of the water contributions from different areas in the catchment. On 

the contrary, the proposed method can estimate solute concentrations in karst systems with stationary 

and hydrogeochemical homogeneous contributing areas, as is the case of the Kerschbaum watershed. 



  

33 
 

2.3.4 Hypothesis 4 

Hydrological models need to be calibrated due to the lack of knowledge in process understanding and 

model parameter values (Le Moine et al., 2008). This is particularly true in the case of hydrological 

conceptual model of karst systems since model parameters cannot be determined by means of field 

observations (Hartmann et al., 2014). Generally, the model performance is evaluated by considering the 

discharge observed at the karst spring and by computing performance metrics (Bennett et al., 2013; 

Ferreira et al., 2020). However, calibrating the model solely against the spring discharge is considered 

not reliable since different model structures and parameters can result in satisfactory simulated spring 

discharge (Mudarra et al., 2019). Thus, multi-objective approaches based on the use of additional data 

can be applied to reduce the problem of equifinality, i.e., multiple parameter sets reproducing the 

observed discharge (Chiogna et al., 2024). As described in subchapter 1.5.3, major ions and EC allow 

to investigate the spatial and temporal variability in the hydrological response of karst systems (Barbieri 

et al., 2005; Chang et al., 2021; Gil-Márquez et al., 2017; Hartman et al., 2013). 

In the study presented in Chapter 6, we aim to verify the model parametrization of a conceptual event-

based karst model by coupling hydrological data (spring discharge) and hydrochemical data (high 

resolution solute concentration time series), which were collected in the Baget karst watershed during 

the field campaign in April 2022. Due to the high temporal variability of the hydrochemical signal 

observed at the spring (hourly), the semi-distributed model LuKARS 2.0, based on the original model 

from Bittner et al. (2018) (subchapter 2.1.1), was implemented for the first time at hourly scale. 

LuKARS 2.0 allows a flexible conceptualization of karst systems by accounting for the water 

contributions draining from the main geological areas (hydrotopes) in the watershed. In addition, a 

transfer between matrix and conduit was implemented in the lower compartment of the model (Fig. 2.9a) 

following the approach proposed in the model KarstMod (Mazzilli et al., 2023; Sivelle et al., 2023). 

The hypothesis of this work is that hourly hydrochemical data can be used for the selection of proper 

model parametrization for a hydrological conceptual event-based karst model. The research questions 

are as follows. 

1. When considering a set of model realizations covering the parameter space, do the realizations 

simulating the spring discharge with comparable Kling-Gupta Efficiency (KGE) also capture the 

internal dynamics of a karst system? 

2. Can high resolution ion concentration time series be used to select proper model parametrizations 

for hydrological conceptual event-based models?  

3. When coupling hydrological and hydrochemical information, can hydrological conceptual models 

capture the response of water contributions from different geological areas in the catchment to 

different flow conditions? 
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4. Is sensitivity analysis considering solely the spring discharge time series reliable for the 

identification of sensitive parameters? 

 

Fig. 2.9 a LuKARS 2.0 model concept. b Internal fluxes (left) and spring discharge (right) of the selected 

Morris´ simulation based on the constraint on the spring discharge. c Internal fluxes (left) and spring 

discharge (right) of the subset of simulation respecting the hydrochemical constraints (modified after 

Richieri et al., (2024)). Please refer to Chapter 6 for further details.  
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These research hypothesis and questions are addressed in the article Richieri et al. (2024) 

presented in Chapter 6. The model was tested on the Baget karst system (Fig. 2.2a), characterized by 

a heterogeneous geology combining karst (limestone) and non-karst (black flysch) areas. The Morris 

screening method was used to investigate parameter sensitivity by considering 9,000 parameter sets, 

each corresponding to a model run, i.e., a Morris realization. First, the model was evaluated by 

selecting an envelope of Morris´ realizations simulating spring discharge with a certain accuracy 

(KGE < 0.5) (Fig. 2.9b). Then, time series at hourly resolution of the contributions of the free ions 

HCO3
- and SO4

2- to the total EC, called weight factors (Richieri et al. (2023)), were used to define 

hydrochemical constrains and thus to identify a subset of realizations respecting both the temporal 

variability at the spring and the variability of the internal fluxes of the system (Fig. 2.9c). The results 

show that high resolution ion concentration time series can be effectively used to constrain model 

parametrization for an hydrological conceptual event-based karst model.  
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Chapter 3 

Impact of input model uncertainties on hydrological conceptual 

karst modelling 

Bittner, D., Richieri, B., and Chiogna, G. (2021). Unravelling the time-dependent relevance of model 

input uncertainties for a lumped hydrologic model of a pre-alpine karst system. Hydrogeology Journal, 

29(7): 2363–2379. https://doi.org/10.1007/s10040-021-02377-1 

 

Abstract 

Uncertainties in hydrologic model outputs can arise for many reasons, such as structural, parametric and 

input uncertainty. Identification of the sources of uncertainties and the quantification of their impacts 

on model results are important to appropriately reproduce hydrodynamic processes in karst aquifers and 

to support decision-making. The present study investigates the time-dependent relevance of model input 

uncertainties, defined as the conceptual uncertainties affecting the representation and parameterization 

of processes relevant for groundwater recharge, i.e. interception, evapotranspiration and snow dynamic, 

on the lumped karst model LuKARS. A total of nine different models are applied, three to compute 

interception (DVWK, Gash and Liu), three to compute evapotranspiration (Thornthwaite, Hamon and 

Oudin) and three to compute snow processes (Martinec, Girons Lopez and Magnusson). All the input 

model combinations are tested for the case study of the Kerschbaum spring in Austria. The model 

parameters are kept constant for all combinations. While parametric uncertainties computed for the same 

model in previous studies do not show pronounced temporal variations, the results of the present work 

show that input uncertainties are seasonally varying. Moreover, the input uncertainties of 

evapotranspiration and snow melt are higher than the interception uncertainties. The results show that 

the importance of a specific process for groundwater recharge can be estimated from the respective input 

uncertainties. These findings have practical implications as they can guide researchers to obtain relevant 

field data to improve the representation of different processes in lumped parameter models and to 

support model calibration. 

 

Keywords: Conceptual models, Input uncertainties, Groundwater recharge, Karst, Rainfall-runoff 
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3.1 Introduction 

Hydrologic models serve as important tools for the assessment of dominant hydrodynamic processes in 

karst systems (Hartmann et al., 2013a; Sivelle et al., 2019). In those models, subsurface heterogeneity 

and the resulting complex hydrodynamic processes typical for karst aquifers are often represented in a 

simplified way (Fleury et al., 2007; Guinot et al., 2015; Sivelle et al., 2021; Sivelle and Jourde, 2020). 

The assessment of the reliability of a model output is therefore an important step towards an improved 

description of the karst system (Hartmann et al., 2014). This assessment is usually done by uncertainty 

quantification techniques, which investigate the likelihood of a model outcome while considering the 

unknowns in a hydrologic model (Sarrazin et al., 2018; Teixeira Parente et al., 2019). These unknowns 

arise from different sources of uncertainties, i.e. structural (Fandel et al., 2020; Henson et al., 2018), 

parametric (Mazzilli et al., 2012; Moussu et al., 2011) and input uncertainties (Liu et al., 2018; 

Nerantzaki et al., 2020).  

Structural uncertainties evolve from the simplifications required while creating a conceptual model of a 

real world system (Gupta and Govindaraju, 2019; Rojas et al., 2008). This conceptualization often 

neglects certain parts of the natural system due to a lack of knowledge, which can lead to an 

underrepresentation of important hydrodynamic processes (Butts et al., 2004; Lee et al., 2011). 

Parametric uncertainties arise from the fact that the exact values of model parameters, such as discharge 

coefficients and storage thresholds, are often not known (Ahmadi et al., 2019; Hu et al., 2019). This is 

particularly true for lumped conceptual models, whose parameters cannot often be constrained by 

physical field experiments (Wagener et al., 2003). Hence, for each parameter, a reasonable parameter 

range needs to be defined in which the true parameter value is located (Seibert, 1997). Finally, input 

uncertainties exist due to missing and/or uncertain input data (Breinl, 2016; McMillan et al., 2012) as 

well as due to simplifications of the processes that finally represent the model input, e.g., the 

groundwater recharge (Kavetski et al., 2006; Patil et al., 2011; Vrugt et al., 2008).  

More recent studies highlighted that groundwater recharge in systems with strong subsurface 

heterogeneities, such as karst systems, exhibits a high sensitivity to changes in climatic forcings 

(Hartmann et al., 2017b). In the specific case of pre-alpine karst catchments, these forcings controlling 

groundwater recharge are interception, evapotranspiration and snow melt processes. Garrigues et al. 

(2015) and Sarrazin et al. (2018) showed that the sensitivity of groundwater recharge with respect to 

vegetation related processes, i.e. interception and evapotranspiration, mainly results from the spatial 

variability of soil properties. Moreover, Ollivier et al. (2021) underline that this sensitivity is further 

related to often missing information about spatially distributed and vegetation-dependent 

evapotranspiration dynamics. In cases where snowmelt represents a controlling factor in the water 

balance of karst areas, Doummar et al. (2018) showed that groundwater recharge estimations are most 

sensitive to temperature variations. That is mainly due to the importance temperature has for the timing 
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of snow accumulation and melt and the resulting control on a spring’s discharge behavior (Liu et al., 

2021). 

As it is difficult to measure interception, evapotranspiration and snow melt, additional models are often 

applied to compute input time series for hydrologic models (Hartmann et al., 2014b; Mazzilli et al., 

2012; Ollivier et al., 2020). Interception can be modeled using mechanistic (Gash et al., 1995; Liu, 2001) 

and stochastic modeling approaches (Calder, 1996; Hall, 2003). Data demanding energy balance 

methods (Colaizzi et al., 2012; Penman, 1948) or simple temperature-based parametrizations (Oudin et 

al., 2005; Thornthwaite, 1948) provide evapotranspiration time series. Snow processes, which were 

recently shown to play a major role for groundwater recharge in pre-alpine and alpine areas (Jódar et 

al., 2020; Lucianetti et al., 2020), can be modeled using energy balance methods (Herrero et al., 2009; 

Marks et al., 1999) or simpler degree day factor methods (Girons Lopez et al., 2020; Martinec, 1960). 

Reliable time series of interception, evapotranspiration and snowmelt are a prerequisite for a proper 

description of the water balance for distributed, semi-distributed and conceptual models. 

An example for a conceptual model applied to a pre-alpine karst system is the LuKARS model, which 

was developed by Bittner et al. (2018) for the Kerschbaum springshed in Austria. Given the natural 

characteristics of the springshed (forested catchment, elevation between 415 and 969 m a.s.l., annual 

mean temperature of 8°C), evapotranspiration, interception and snow melt representations are expected 

to have an important influence on the modeled spring discharge (Bittner et al., 2018). However, since 

no direct measurements for these input data are available, simple algorithms have to be applied for 

computing the input time series for the LuKARS model (Bittner et al., 2020a). 

While previous studies investigated the parametric uncertainties of LuKARS for the Kerschbaum 

springshed (Teixeira Parente et al., 2019), the presented article aims to investigate how much the input 

uncertainties affect model predictions. The hypotheses, which we want to test in this study, are, first, 

that the input uncertainties can vary seasonally, then, that it is possible to derive the specific importance 

of a single process, e.g., snow melt, for groundwater recharge from its related uncertainties in the model 

output. This is of particular importance, as it serves as a practical example which is beneficial to guide 

researchers and decision-makers in favoring field experiments and data collection differently during 

different seasons to improve the output of a karst aquifer model. To study the uncertainty propagating 

to the spring discharge, three different modeling approaches are applied for each of the considered 

hydrological processes, i.e. interception, evapotranspiration and snow processes. In particular, the 

methods of DVWK (1996), Gash et al. (1995) and Liu (2001) are applied to compute interception, the 

methods of Hamon (1961), Oudin et al. (2005) and Thornthwaite (1948) to calculate evapotranspiration 

and the methods of Girons Lopez et al. (2020), Magnusson et al. (2014) and Martinec (1960) to model 

snow melt and accumulation. The selection of lumped approaches is driven by data availability in the 

study area and in particular by the lack of radiation data. Then, all possible model combinations are run 

varying the parameters of the input models and by using the sampling algorithm of the Fourier 
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Amplitude Sensitivity Test (FAST) (Pianosi et al., 2015). Finally, the study investigates the impact of 

the input model parametrization on the LuKARS model output and how this changes over time. To 

conclude, the input uncertainties are compared with the parametric uncertainties, which were computed 

in an earlier study (Teixeira Parente et al., 2019). 

3.2 The study area  

The Kerschbaum springshed is located close to the city of Waidhofen a.d. Ybbs (Fig. 3.1a), about 100 

km west of the city of Vienna (Austria) (Fig. 3.1b). The study site covers an area of 2.5 km². This pre-

alpine recharge area forms part of the eastern foothills of the Northern Calcareous Alps and is dominated 

by a lithologic sequence of dolomitic basement rocks (Fig. 3.1c). The study area shows karst features 

such as springs, dry valleys and caves. Due to the absence of significant sinkholes, the groundwater 

recharge can be assumed barely influenced by point-infiltration processes. Moreover, according to the 

study of Narany et al. (2019), the Kerschbaum springshed is characterized by a deep karstified 

groundwater system with a well-connected network of fractures and conduits. 

 

Fig. 3.1 Overview of the study area close to Waidhofen a.d. Ybbs and the LuKARS model 

implementation. a The orthophoto of the study area including the delineated recharge area of the 

Kerschbaum spring. b The location of Waidhofen a.d. Ybbs seen from a European perspective. c The 

geological map of the study area (GBA 2021). 

The land cover is dominated by beech forests. Its spring provides a mean discharge of 34 l/s to the 

regional water supply and shows a quick reaction time to precipitation and snow melt events of 1 day 
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(Bittner et al., 2021). Fig. 3.2 shows the available precipitation, temperature, snow depth and discharge 

time series for the period from 01 January 2006 to 31 December 2007. These time series were measured 

at the weather station whose location is shown in Fig. 3.1a. For more information about the study area, 

the interested reader could refer to the publication of Narany et al. (2019). 

 

Fig. 3.2 Data time series used in the presented study. a Daily precipitation (mm), b daily snow depths 

(m), c daily air temperature (°C) and d daily discharge of the Kerschbaum spring (L/s). 

 

3.3 Methodology 

The paper briefly describes the lumped karst hydrological model LuKARS of the Kerschbaum 

springshed. For more information about the model the reader could refer to the publication of Bittner et 

al. (2020b). The paper then focuses on the description of both commonly applied and recently proposed 
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parameterizations for interception, evapotranspiration and snow processes. Since precipitation and air 

temperature are the only meteorological parameters measured in the study area, temperature-based 

methods are used to compute evapotranspiration and snowmelt. Finally, the method used to quantify the 

uncertainty of all investigated model combinations is described.  

3.3.1 The LuKARS model 

The LuKARS model is a lumped parameter model developed by Bittner et al. (2018) that considers the 

dominant hydrotopes in a recharge area as distinct response units. Hydrotopes are defined as landscape 

units with similar soil and land use characteristics (Arnold et al., 1998). Each hydrotope is characterized 

by a specific retention capacity. As Figure 3.3a shows, shallow and coarse-textures soils lead to low soil 

storage and high quickflow intensity. In contrast, thick and fine-textured soils lead to high soil storage 

and low quick flow intensity. The conceptual model considers the hydrotopes to represent the vadose 

zone (soil-epikarst-infiltration zone) and to be directly connected to the saturated zone, which consists 

of a single linear storage recharged by each hydrotope independently. The duality of flow behavior is 

implemented by considering for each hydrotope both the fast flow component through the conduits and 

the slow diffusive discharge in the matrix. Each hydrotope simulates three different types of flow, i.e. 

the quickflow (Qhyd), the matrix infiltration (Qis) that feeds the baseflow storage (B), and the secondary 

spring discharge (Qsec) (Fig. 3.3b). Qhyd represents the discharge that is directly moved to the outlet of 

the catchment through preferential flow paths, such as subsurface conduits, and factors that are 

responsible for the fast reaction of the spring discharge to rainfall and snowmelt events. Qhyd is 

implemented considering the hysteretic behavior of the soil-epikarst system that starts after a constant 

hydrotope specific storage value (Emax) was exceeded and stops after a lower constant threshold (Emin) 

was reached. Qis is the water that infiltrates into the lower reservoir B (Fig 3.3) and, thus, represents the 

groundwater recharge. Qsec is the flow that discharges outside the investigated recharge area and is 

activated only when the threshold for secondary spring discharge (Esec) was exceeded. Qis, Qsec and Qb 

(the baseflow) are implemented using linear transfer functions. Finally, Qtot is the discharge at the spring. 

The mathematical equations and a graphical user interface for the model are provided in Bittner et al. 

(2018) and Bittner et al. (2020a), respectively. 

3.3.2 Interception 

The approach applied by Bittner et al. (2018) was based on the percentages for interception of beech 

forest stands proposed by DVWK (1996). This study further considers the methods proposed by Gash 

et al. (1995) and Liu (2001). 

DVWK (1996) suggests that 11% of precipitation is intercepted from beeches in the winter season (21 

December, 𝑑w), whereas 17% of precipitation is intercepted in the summer season (21 June, 𝑑s). A 

linear interpolation is applied between these values following Eq. 3.1 and Eq. 3.2, which compute daily 
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time series of interception 𝐼 (mm/d) for the time between 21 December and 21 June and the time between 

21 June and 21 December, respectively. The maximum interception is limited to 5 mm/d.  

if 𝐼 < 5 mm/d, 𝐼 = 11 + (
17−11

𝑑s−𝑑w
) (𝑑 −  𝑑w), else 𝐼 = 5 mm/d from Dec 21 to June 21      (3.1) 

if 𝐼 < 5 mm/d, 𝐼 = 17 + (
11−17

𝑑w−𝑑s
) (𝑑 −  𝑑s), else 𝐼 = 5 mm/d from June 21 to Dec 21      (3.2) 

 

Fig. 3.3 The conceptual modeling approach of LuKARS. a Conceptual representation of the four 

implemented hydrotopes. Hyd 1 indicates the dolomite quarries with no groundwater recharge and the 

dominance of surface runoff (SF). Hyd 2 and Hyd 4 represent coarse-textured and fine-textured soils, 

respectively. b The bucket-type model implementation of dominant hydrotopes. Qsec is the secondary 

spring discharge, Qhyd the quickflow, Qis the matrix infiltration feeding the baseflow storage B, Qb the 

baseflow and Qtot the discharge at the spring. Esec, Emax and Emin are thresholds storage values regulating 

the activation of the discharge components. 
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The approach by Gash et al. (1995) is based on the calculation of a gross rainfall that is needed to 

saturate the canopy, i.e. 𝑃′g (mm). 𝑃′g is calculated using Eq. 3.3. 

𝑃′g = − [
𝐶m

𝐸𝑅 (1−𝑝)
] ln(1 − ER)           (3.3) 

where 𝐶m is the stand storage capacity (mm), ER (-) is the ratio between the mean evaporative rate 𝐸 

and the mean rainfall rate of the event for saturated canopy conditions 𝑅. The parameter 𝑝 represents 

the free throughfall coefficient (-). For a daily time step, if the precipitation 𝑃 (mm/d) is larger than 𝑃′g 

(mm/d), 𝐼 (mm/d) can be calculated with Eq. 3.4. 

𝐼 = (1 − 𝑝) 𝑃′
g + (1 − 𝑝) ER (𝑃 − 𝑃′

g)            (3.4) 

If 𝑃 < 𝑃′g, 𝐼 is computed following Eq. 3.5. 

𝐼 = (1 − 𝑝) 𝑃             (3.5) 

The method proposed by Liu (2001) requires the definition of the same parameters as in the method of 

Gash et al. (1995). However, instead of differentiating between the cases in which precipitation 𝑃 is 

greater or smaller than the gross rainfall that is needed to saturate the canopy (𝑃′g), the exponential 

function in Eq. 3.6 is defined to compute daily interception amounts (𝐼). 

𝐼 = 𝐶m  [1 − 𝑒
(−

(1−𝑝)

𝐶m
 𝑃)

] [1 −
ER

(1−𝑝)
] + ER ·  𝑃                                 (3.6) 

Liu (2001) investigated the parameter sensitivities of Eq. 3.4 and 3.6 and showed that an overestimation 

of either 𝐶m or ER results in an overestimation of interception, whereas large values of 𝑝 cause an 

underestimation of interception. Moreover, the parameter sensitivities depend on the magnitude of a 

considered rainfall event and the type of canopy. For example, ER is most sensitive in areas dominated 

by intense rainfall events, whereas ER and 𝐶m are most sensitive in areas characterized by small rainfall 

events. The parameter 𝑝 is sensitive when the models are applied to areas with small rainfall events and 

open canopies.  

3.3.3 Evapotranspiration 

The Thornthwaite (1948) evapotranspiration model was used to calculate the potential 

evapotranspiration (ETpot) in the original LuKARS model of the Kerschbaum spring (Bittner et al., 

(2018). In this work, the simulation approaches proposed by Hamon (1961) and Oudin et al. (2005) are 

additionally applied. It is important to note that Bittner et al. (2018) and Teixeira Parente et al. (2019) 

used ETpot as actual evapotranspiration (ETact), since the results obtained for the annual ETpot losses 

were in good agreement with ETact computed in previous studies for the same study area (Markart et al. 
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2006). Specifically, for the years 2006 – 2007, Bittner et al. (2018) calculated a total of 45% ETpot, 

which is in good agreement with the 43% ETact presented in Markart et al. (2006). In the presented study, 

ETact is hence considered to be equal to the ETpot to be able to compare the different model configurations 

under the same conditions.  

Thornthwaite (1948) provides estimates for monthly ETpot and assumes that once the mean monthly 

temperature becomes larger than 0 °C, ETpot becomes 0. In this method, the hours of daylight are 

assumed to be 12 and each month is 30 days long. Then, ETpot (mm/month) is calculated as shown in 

Eq. 3.7, 

ETpot = 𝑘TH  (10 
𝑇Mean

𝐻
)

𝑟
                                                       (3.7) 

where 𝑘TH (mm/month) is a proportionality constant, 𝑇Mean (°C) the mean monthly temperature and 𝐻 

(°C) is the heat index defined in Eq. 3.8, 

𝐻 = (
𝑇Mean

5
)

1.514
                    (3.8) 

with 𝑟 an exponent given by Eq. 3.9. 

𝑟 = 6.75𝑒−7 𝐻3 + 7.71 𝑒−5 𝐻2 + 1.792 𝑒−2 𝐻 + 0.49239                                         (3.9) 

As proposed by Bittner et al. (2018), the monthly ETpot are divided by the number of days and the 

resulting daily ETpot are to be representative for the 15th day of a month. In order to obtain daily ETpot 

(mm/d) from this method, a linear interpolation is applied between these representative ETpot values. 

Oudin et al. (2005) derived an empirical equation to estimate daily ETpot (mm/d) as input for lumped 

rainfall-runoff models. They tested various ETpot modeling approaches for numerous catchments in 

France, Australia and the United States. Their goal was to identify those atmospheric variables which 

provide the best streamflow predictions when being used as input for ETpot models. The equation they 

derived is shown in Eq. 3.10,  

ETpot = [0.408  𝐻O] [𝑘OU (𝑇Mean + 5)]                                         (3.10) 

where 𝐻O is the extraterrestrial solar radiation (MJ/ (m2 d)), 𝑘OU (m³ kg/ (1000 MJ² °C)) is a 

proportionality constant, 𝑇Mean is the mean daily temp (°C), and 0.408 is an approximation for the latent 

heat flux (MJ/kg). It is important to note that ETpot is 0 (mm/d) if 𝑇Mean ≤ 5 (°C). 

The third method applied to calculate ETpot was proposed by Hamon (1961), who derived a simple 

procedure to be used in water balance estimations. The goal was to use readily available data, i.e. daily 
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air temperature (𝑇Mean), for ETpot estimations. The derived methodology is based on the saturated water 

vapor concentration at 𝑇Mean, i.e. 𝑒0(𝑇Mean) (kPa) and is expressed by Eq. 3.11, 

ETpot = 𝑘HA  
𝑁

12
 [216.7 𝑒0 (𝑇Mean)/(𝑇Mean + 273.3)]                              (3.11) 

where 𝑘HA (mm/d) is a proportionality constant and 𝑁 is the maximum number of daylight hours. 

𝑒0(𝑇Mean) was approximated using the modified Magnus equation proposed by Alduchov and Eskridge 

(1996) that is shown in Eq. 3.12. 

𝑒0(𝑇Mean) = 6.1094 𝑒17.625 𝑇Mean/(243.04 + 𝑇Mean)
                          (3.12) 

 

3.3.4 Snow melt  

Bittner et al. (2018) used the method proposed by Martinec (1960) to model snow melt and storage for 

the Kerschbaum spring recharge area. This study additionally considers the methods described by 

Girons Lopez et al. (2020) and Magnusson et al. (2014). All snow routines considered in this framework 

assume that the energy available for snow melt is proportional to air temperature. This means that below 

a certain threshold temperature 𝑇T, precipitation falls as snow, whereas rainfall occurs for temperatures 

above this threshold. The proportionality of snow melt (𝑀) is controlled by the degree-day factor 𝐶0 

(mm/ (d °C)) and the daily mean temperature 𝑇Mean  (°C). Moreover, all the considered snow models 

neglect sublimation processes, which is often the case in degree-day methods.  

The degree-day method proposed by Martinec (1960) simulates 𝑀 (mm/d) using Eq. 3.13. 

𝑀 = 𝐶0 max(0, 𝑇Mean − 𝑇T)                     (3.13) 

While Martinec (1960) considers 𝐶0 to be constant, Braun and Renner (1992) argue that this factor 

should be changing over time, since environmental conditions, e.g., solar inclination and snow albedo, 

vary seasonally. Girons Lopez et al. (2020) describe a seasonally varying degree-day factor, i.e. 𝐶0,n, 

based on a sine function. The intensity by which 𝐶0 varies is controlled by an amplitude factor 𝐶0,a (mm/ 

(d °C)). Then, 𝐶0,n is computed as shown in Eq. 3.14, where n is the time (d). 

𝐶0,n = 𝐶0 +
1

2
 𝐶0,a 𝑠𝑖𝑛

2𝜋(𝑛 − 81)

365
                       (3.14) 

Finally, Magnusson et al. (2014) approach the calculation of snow melt with the exponential function 

shown in Eq. 3.15, 
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𝑀 = 𝐶0 𝑀M[
𝑇Mean − 𝑇T

𝑀M
+ ln (1 + 𝑒

−
𝑇Mean−𝑇T

𝑀M )]                                      (3.15) 

where 𝑀M represents a snowmelt transition (°C). This method allows for melting to occur even below 

freezing temperature. 

According to the investigation of Girons Lopez et al. (2020), who tested a variety of modifications to 

different temperature-based snow routines, the most sensitive parameters in the models applied in this 

study are the snowmelt transition 𝑀M and the temporally varying degree-day factor 𝐶0,n. 

3.3.5 Parameter sampling and investigated model combinations 

Appropriate parameter ranges are defined for all unknown parameters in the equations describing 

interception, evapotranspiration and snow melt. The parameter ranges selected for the nine considered 

calibration parameters, i.e. 𝐶m, 𝑝, ER, 𝑘OU, 𝑘HA, 𝐶0, 𝑇T, 𝐶0,a and 𝑀M, are shown in Table 3.1. The 

specific range of values for each parameter is based on previous studies, which are indicated in Table 

3.1.  

This study considers the model configuration from Bittner at al. (2018) as the reference model, whose 

results are used to evaluate the performance of all the considered model combinations. All investigated 

model combinations are shown in Table 3.2. The name given to each model combination indicates the 

input algorithms which have been changed from Bittner et al. (2018). Each simulation is run with daily 

time steps for a warm-up period between 2001 and 2005 and an evaluation period from 2006 – 2007. 

The selection of these two particular years was driven, firstly, by the fact that the original LuKARS 

model from Bittner et al. (2018) was calibrated and validated for the years 2006 and 2007, respectively. 

Secondly, the relevant contrast in snow accumulation and evaporative demand between 2006 and 2007 

makes it possible to account for the climatic variability between different years. Indeed, as Fig. 3.2b 

shows, the winter in 2006 is characterized by snow depth values up to 0.72 m, whereas almost no snow 

accumulation occurred in 2007 (max snow depth = 0.2 m). 

The sampling algorithm of the Fourier Amplitude Sensitivity Test (FAST), which was developed by 

Cukier et al. (1978) and implemented in the SAFE toolbox (Pianosi et al., 2015), is used in this study to 

obtain for each model combination a set of values that covers the full parameter space of each parameter. 

To avoid unrealistic water budgets, the model input time series computed with each parameter sample 

of each model combination are compared with the computed input time series of Bittner et al. (2018) 

for the hydrological year 2006. All parameter samples leading to an annual model input that differs more 

than 15% from the water volume computed by Bittner et al. (2018) are discarded. Then, the remaining 

2673 parameter samples are used to investigate all possible model combinations, i.e. 26, which are 

evaluated and compared with the results of Bittner et al. (2018) for the period 2006 and 2007. For the 

input algorithms of the original Kerschbaum spring LuKARS model, i.e. DVWK (1996), Thornthwaite 
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(1948) and Martinec (1960), rather than defining parameter ranges and samples, this study keeps the 

parameters fixed and equal to those found in Bittner et al. (2018) (Table 3.1). The model combinations 

including the total number of investigated samples are summarized in Table 3.2. For the sake of 

completeness, Appendix A.1 shows the calibrated LuKARS model parameters found in Bittner et al. 

(2018). The hydrotope specific parameters control the behavior of the soil-epikarst system, of the matrix 

infiltration and of the quickflow through the conduits, while the baseflow storage parameters determine 

the response of the saturated zone. 

 

Table 3.1 Overview of the calibration parameter used in the presented methodology, including their 

respective parameter range, their description and the reference. The parameters marked with (*) are taken 

fixed and correspond to the input algorithms used in Bittner et al. (2018). 

Parameter 
Parameter 

range 
Description Reference 

𝐶m 0.1–5  Stand storage capacity (mm) Liu (2001) 

𝑝 0.01–0.6  Free throughfall coefficient (-) Liu (2001) 

ER 0.01–0.4  Ratio between mean evaporative rate and 

mean rainfall rate for saturated canopy 

conditions (-) 

Liu (2001) 

𝑘OU 0.006–0.012 Proportionality constant in Oudin’s method 

(m³ kg/ (1000 MJ² °C)) 

Almorox et al. 

(2015) 

𝑘HA 0.1–0.2  Proportionality constant in Hamon’s method 

(mm/d) 

Almorox et al. 

(2015) 

𝐶0 1–10  Degree-day factor (mm/ (d °C)) Bittner et al. (2018) 

𝑇T -2–2  Threshold temperature (°C) Bittner et al. (2018) 

𝐶0,a 1–10  Amplitude factor (mm/ (d °C)) Hottelet et al. 

(1994) 

𝑀M 1–10  Snowmelt transition (°C) Magnusson et al. 

(2014) 

𝑘TH
(*) 16 Proportionality constant in Thornthwaite’s 

method (-) 

Bittner et al. (2018) 

𝐶0
(*) 4 Degree-day factor (mm/ (d °C)) Bittner et al. (2018) 

𝑇T
(*) 0.5 Threshold temperature (°C) Bittner et al. (2018) 



  

48 
 

Table 3.2 Overview of the 26 investigated model combinations including the total number of 

investigated parameter samples. 

Name of model combination Samples I model ET model M model 

Gash 17  Gash Thornthwaite Martinec 

Liu 11  Liu Thornthwaite Martinec 

Oudin 24  DVWK Oudin Martinec 

Hamon 19  DVWK Hamon Martinec 

Girons Lopez 105  DVWK Thornthwaite Girons Lopez 

Magnusson 105  DVWK Thornthwaite Magnusson 

Gash – Hamon 48 Gash Hamon Martinec 

Gash – Girons Lopez 63 Gash Thornthwaite Girons Lopez 

Gash – Magnusson 64 Gash Thornthwaite Magnusson 

Gash – Oudin 59 Gash Oudin Martinec 

Liu – Hamon 34 Liu Hamon Martinec 

Liu – Girons Lopez  51 Liu Thornthwaite Girons Lopez 

Liu – Magnusson 52 Liu Thornthwaite Magnusson 

Liu – Oudin 45 Liu Oudin Martinec 

Girons Lopez – Hamon 232  DVWK Hamon Girons Lopez 

Girons Lopez – Oudin 281  DVWK Oudin Girons Lopez 

Magnusson – Hamon 238  DVWK Hamon Magnusson 

Magnusson – Oudin 285  DVWK Oudin Magnusson 

Gash – Girons Lopez – Hamon  114  Gash Hamon Girons Lopez 

Gash – Girons Lopez – Oudin 153  Gash Oudin Girons Lopez 

Gash – Magnusson – Hamon 113  Gash Hamon Magnusson 

Gash – Magnusson – Oudin 150  Gash Oudin Magnusson 

Liu – Girons Lopez – Hamon  84  Liu Hamon Girons Lopez 

Liu – Girons Lopez – Oudin 121  Liu Oudin Girons Lopez 

Liu – Magnusson – Hamon 83  Liu Hamon Magnusson 

Liu – Magnusson – Oudin 122  Liu Oudin Magnusson 

 

3.4 Results 

The results of this study are presented in the following sections. First, the uncertainties of single 

processes in relation to the parametric uncertainties of the Kerschbaum spring LuKARS model which 

were computed in an earlier study (Teixeira Parente et al., 2019). Notice that this comparison is mainly 

qualitative, since the parameter uncertainty was estimated using only the combination DVWK – 
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Thornthwaite – Martinec with fixed input parameters. Then, section ‘Evaluation of all model 

combinations’ focuses on the comparison of the results of all evaluated model combinations and 

highlights how the input uncertainties change when considering more processes to be unknown, i.e. 

interception, evapotranspiration and snow melt. The analyses focus on the comparison of the 

interquartile range of the LuKARS model outputs as an indicator for model uncertainty. Moreover, the 

interquartile ranges are normalized with the observed spring discharge to make the interpretation of 

input uncertainties independent of high and low flow periods, occurring during snow melt and snow 

accumulation periods, respectively. 

Fig. 3.4 shows the cumulative input values generated with all parameter samples for each applied 

algorithm. As the analyses focus on the interquartile range of model outputs, also the generated 

cumulative recharge values of that range are shown. Cumulated sums allow a better visualization 

through continuous plots. It is observed that the inputs computed with the different algorithms are well 

distributed around the input time series used in the original Kerschbaum spring LuKARS model. Slight 

deviations are only visible for ETpot in 2006, where the method of Hamon (1961) partially overshoots 

the inputs generated with the method of Thornthwaite (1948), and in 2007, where the Thornthwaite 

(1948) method overshoots the interquartile range of inputs computed with the method of Oudin et al. 

(2005). These deviations are related to the linear interpolation which is applied to derive daily values 

from the monthly ETpot ,which are obtained with the methodology of Thornthwaite (1948). 

3.4.1 Model input uncertainties related to single hydrological processes 

In this section, the focus is on the uncertainties related to single hydrological processes, i.e. interception, 

evapotranspiration and snow melt, how these uncertainties change in different periods of the year and 

how they compare to the parametric uncertainties previously computed by Teixeira Parente et al. (2019). 

The model parameters, which were considered in the evaluation of the parametric uncertainties of the 

LuKARS model, are highlighted with an asterisk (*) in Appendix A.1 and are the discharge coefficients 

and exponents, minimum and maximum storage capacities, and activation level of secondary spring 

discharge for hydrotopes Hyd 2, Hyd 3 and Hyd 4 (Teixeira Parente et al., 2019). 

Fig. 3.5 shows that the interquartile ranges resulting from uncertainties in interception (model 

combinations Gash and Liu) are generally smaller than the evapotranspiration and parametric 

uncertainties. Moreover, the uncertainties related to interception do not show a distinct seasonal 

variation in 2006. However, a slight seasonal variation with increasing interception over the summer 

period can be observed in 2007. Moreover, both Gash and Liu model follow the same temporal dynamics 

and lead to very similar interquartile ranges, showing that the choice of the interception model is not 

very significant for this case study. 
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Fig. 3.4 The plots show the interquartile range of the cumulative input values for each applied algorithm. 

For comparison, the black lines highlight the inputs used in the study of Bittner et al. (2018). a The 

interception inputs, b the potential evapotranspiration inputs and c the potential snowmelt inputs. 

Regarding the interquartile ranges resulting from the use of the Oudin et al. (2005) and Hamon 

(1961) methods, it is noted that the uncertainties related to evapotraspiration are characterized by a clear 

seasonal variability. The method of Oudin et al. (2005) brings the largest difference in the normalized 

interquartile range, which increases over the summer seasons in 2006 from 0.03 (29 March) to 0.06 (2 

August) and in 2007 from below 0.04 (21 January) to 0.1 (5 September) and decreases again in the 

winter seasons. Overall, the normalized interquartile range of evapotranspiration is smaller than the 

parametric uncertainties. Moreover, most of the time the uncertainties of evapotranspiration are higher 

than the snow melt uncertainties, even over the winter period 2006–2007. The uncertainties in snow 

melt are higher than the evapotranspiration uncertainties for an extended period only in the early year 
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2006. Also in this case, as it was observed for interception, the difference in the normalized interquartile 

range between the Hamon and the Oudin models is rather small, reaching a maximum value of 0.04 on 

4 September 2007. 

 

Fig. 3.5 Interquartile ranges of LuKARS model outputs normalized by the observed discharge. Single 

processes, i.e. interception, evapotranspiration and snowmelt, are considered as uncertain. For 

comparison, the parametric uncertainties of the Kerschbaum LuKARS model computed by Teixeira 

Parente et al. (2019) are also shown. A clear seasonal dependence of uncertainties related to snowmelt 

and evapotranspiration can be identified. 

Fig. 3.5 also shows that the uncertainties in snow melt have the highest temporal variability of all 

investigated hydrological processes. Here, the method of Magnusson et al. (2014) bears the largest 

variation in normalized interquartile range, i.e. between 0.18 on 19 January 2006, and 0.003 on 6 

November 2006. Moreover, similar to the normalized interquartile ranges of model results considering 

uncertainties in evapotranspiration, the results show a seasonal dependence of uncertainties in snow 

melt. The normalized interquartile range of LuKARS results considering snow melt to be uncertain 

exceeds all other normalized interquartile ranges in January 2006. In contrast, the snow melt related 

uncertainties are even smaller than the uncertainties related to interception during the winter season 

2006–2007. Moreover, the normalized interquartile range of LuKARS results considering snow melt to 

be uncertain almost becomes 0 (< 2% of the measured discharge) in summer time in 2006 and 2007.  

In case of snow processes, the choice of the model appears to be more relevant than for 

evapotranspiration and interception. On the one hand, the mean of the differences in the normalized 

interquartile range between both ET models, i.e. 0.011, is higher than the mean of the normalized 

interquartile range differences between the snow models, i.e. 0.008. On the other hand, the maximum 

difference in the normalized interquartile range is identified between the Girons Lopez and Magnusson 

models, i.e. is 0.06 on 21 March 2006. This is reasonable, since snow processes do not play a role over 

the whole time of a year, whereas ET does. 



  

52 
 

3.4.2 Evaluation of model combinations 

The minimum and maximum percentage discrepancies between the simulated and observed spring 

discharge for each model combination are shown in Fig. 3.6. 

 

Fig. 3.6 The bars show the minimum and maximum percentage discrepancies between each model 

combination and the observed spring discharge. 

Fig. 3.7 shows the interquartile ranges of all model evaluations, including the results of the 

parametric uncertainty study performed in Teixeira Parente et al. (2019) and the simulated spring 

discharge obtained from the original Kerschbaum LuKARS model. Comparing the interquartile ranges 

of the different model combinations (Fig. 3.7), it is seen that including more uncertain hydrological 

processes does not necessarely lead to an increase in the output variance. As an example, Fig. 3.8a and 

3.8b show two different cases, characterized by an increase and a decrease in output variance with 

increasing process complexity, respectively. Fig. 3.8a compares the model combinations Liu, Liu–

Magnusson and Liu–Magnusson–Oudin, therefore introducing progressive uncertainties in interception, 

snow melt and evapotranspiration. Here, the normalized interquartile ranges increase with the number 

of hydrological inputs considered as uncertain. Fig. 3.8b considers the model combinations Magnusson, 

Magnusson–Oudin and Gash–Magnusson–Oudin. In contrast to the previous case, the model 

combination considering snow and evapotranspiration as uncertain input (Magnusson–Oudin) shows 

larger output variability than the model considering uncertainties in all the three processes (Gash–

Magnusson–Oudin). Looking at all model combinations in Fig. 3.7, the highest normalized interquartile 

ranges are noted for model combinations considering snow melt and evapotranspiration to be uncertain.  
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Fig. 3.7 Interquartile ranges of each model combination (red bands), including the results of the 

calibrated model from Bittner et al. (2018) (black line) and the parametric uncertainties obtained from 

Teixeira Parente et al. (2019), which are shown in the bottom-right graph. The results of the calibrated 

model from Bittner et al. (2018) (black line) are also compared to the measured discharge (red line) in 

the top-left graph. 

 

3.5 Discussion 

When considering the uncertainties related to single processes, no significant seasonal variation is 

observed in the normalized interquartile range related to uncertainties in interception. In the particular 

case of a broadleaf forest, in Waidhofen/Ybbs beech forest, a more pronounced seasonal variation should 

be expected due to the higher interception capacity of the leafs in the summer period. This change in 

canopy cover is, however, not considered in the modeling approaches of Gash et al. (1995) and Liu 

(2001). In order to obtain more realistic interception estimates, future works should represent variable 

canopy cover by considering the gross rainfall needed to saturate the canopy, i.e. 𝑃′g, to be changing 
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over time rather than constant. This could be achieved by a temporally varying stand storage capacity 

(𝐶m). 

 

Fig. 3.8 Two examples to highlight that model input uncertainties do not necessarily increase with 

increasing hydrological process complexity. a Shows a case in which the input uncertainties increase 

with increasing process complexity. b Shows a case in which the input uncertainties can also partially 

decrease with increasing process complexity. 

In contrast to uncertainties related to interception, a pronounced seasonal variation characterises 

the uncertainties related to evapotranspiration. The reason why the uncertainties in evapotranspiration 

are higher in summer 2007 as compared to summer 2006 can be found in the mean summer temperatures 

of both years (Fig. 3.2). The mean temperature between April and September in 2006 was 13.17 °C. In 

comparison, a mean temperature of 14.16 °C was observed in the same period in 2007. This difference 

of 1 °C leads to the observed increased uncertainties in ETpot. Thus, the results using temperature-based 

approaches for computing ETpot show that the uncertainties of ET𝑝𝑜𝑡 increase with the available 

temperature for evapotranspiration. Given the fact that evapotranspiration related uncertainties can even 

reach the range of parametric uncertainties, e.g., in summer 2007, an appropriate representation of 

evapotranspiration is crucial to reasonably calculate the groundwater recharge as input for modeling a 

karst spring discharge in pre-alpine karst systems. Given the seasonal variation of uncertainties related 

to evapotranspiration, a reasonable representation of evapotranspiration for computing groundwater 

recharge is even more important during the summer period. This specific knowledge can guide 

researchers in gathering better field data when specific discharge conditions, e.g., mean and low flow 

conditions in summer, should be favored in model calibration. As recent studies highlighted the specific 

role of snow melt for groundwater recharge in alpine and pre-alpine catchments, this study further 

investigates if this specific importance is also reflected in increased uncertainties in modeled spring 

discharge when snow melt is relevant. Similar to evapotransipiration, the results show a clear seasonal 

pattern of snow melt related uncertainties. The differences in snow melt uncertainties are more 

pronounced than for evapotranspiration. Large uncertainties in snow melt are found in the winter 

2005/2006, whereas snow melt related uncertainties are even smaller than those related to interception 
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in winter 2006–2007. Fig. 3.2b shows that in the winter season 2005–2006 the snow cover stayed for 

several months. Whereas, no longlasting and pronounced snow cover was observed in the winter season 

2006–2007. The same pattern of uncertainties can also be identified when considering snow melt to be 

uncertain in combination with other processes, i.e. interception and evapotranspiration. Fig. 3.9 shows 

the maximum interquartile range for all model combinations including uncertainties in snow processes, 

i.e. 18 model combinations, and for those which do not include these uncertainties, i.e. 8 model 

combinations. In case of uncertain snow melt, the overall interquartile range significantly changes when 

snow melt controls groundwater recharge and, thus, the modeled spring discharge (e.g., from January 

2006 to May 2006). Moreover, while only considering snow melt estimations to be uncertain does not 

lead to a significant increase in model output uncertainties in the evaporative season (Fig. 3.5), Fig. 3.9 

shows that snow melt estimations increase model output uncertainties in cases when snow melt, 

interception and evapotranspiration are uncertain, e.g., in summer 2007. This can be explained by the 

fact that different processes can compensate for over- or underestimated water budgets of other 

processes. For example, an overestimation of the snow melt can be compensated by an underestimation 

of the evapotranspiration. 

 

Fig. 3.9 Contribution of uncertainties related to snowmelt to the total LuKARS model input 

uncertainties. The two bands show the maximum interquartile ranges of the investigated model 

combinations that include uncertainties in snowmelt (grey) and of those which do not (red). An effect 

of snow process uncertainties can be observed throughout the years with a more pronounced impact 

during the winter. 

Summarizing, the results show that the higher uncertainties in snow melt occur when the simulated 

spring discharge is controlled by snow processes. This highlights that the specific importance of snow 

melt for groundwater recharge can be identified in the snow melt related uncertainties when modeling a 

karst spring discharge. Hence, an erroneous assessment of snow melt related groundwater recharge can 

negatively affect the simulated spring discharge. On the contrary, the results do not exhibit a clear impact 

of uncertainties in snow melt on the spring discharge during the evaporative season in summer, when 
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the snow melt related uncertainties are not significant (< 2% of the observed discharge, Fig. 3.5). In the 

specific case of the Kerschbaum LuKARS model, the baseflow storage of the dolomite-dominated 

aquifer has a high storage capacity and is not immediately affected by changing hydrometeorological 

conditions. However, this can be different in more limestone-dominated karst systems and requires 

further investigations. 

 Finally, the results of all model combinations highlight that considering more processes to be uncertain 

does not necessarily lead to an increase of the normalized interquartile range of modeled spring 

discharge. This is particularly true when considering evapotranspiration and snow melt to be uncertain 

compared to considering also interception to be uncertain. These results highlight once more that two 

uncertain processes can compensate each other, leading to a reduction of the interquartile range of model 

outputs. 

 

3.6 Conclusion 

This study investigated how the input uncertainties of a lumped parameter model, i.e. LuKARS, vary 

temporally when applying the hydrologic model in a pre-alpine recharge area. Therefore, snow melt, 

evapotranspiration and interception were computed with three different algorithms each. The resulting 

groundwater recharge was used as input for LuKARS considering each possible model combination and 

focusing on the uncertainties of each single process. Moreover, the input uncertainties imposed by each 

process were compared to the parametric uncertainties obtained in previous studies (Teixeira Parente et 

al., 2019).  

No clear tendency towards increasing model output uncertainties can be identified when more 

hydrological input time series are considered to be uncertain. Indeed, it was found that with increasing 

number of uncertain input the interquartile range of the LuKARS model outputs can even decrease. This 

shows that two or more uncertain processes can compensate each other. 

The results of this study further show that model input uncertainties show temporal variations depending 

on how much the groundwater recharge and the modeled spring discharge is controlled by one specific 

process, e.g., snow melt and evapotranspiration. Thus, the results highlight that the importance of a 

specific process for groundwater recharge can be derived from the respective input uncertainties. 

Further, this research identified that uncertainties in snow processes can even be higher than parametric 

uncertainties. 

This study investigated the time-dependent relevance of the model input uncertainties for pre-alpine 

conditions typical of Central Europe. A similar approach should be applied to extend these results to 

karst catchments with different climate conditions and land uses. An intercomparison study could be 

based on the recently developed WoKaS database (Olarinoye et al., 2020). Moreover, it is of particular 
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interest to apply the presented methodology to karst catchments characterized by different recharge 

processes. Thus, a comparison between catchments dominated by diffusive recharge, as the Kerschbaum 

springshed, and those dominated by point infiltration is suggested. 

The knowledge gained from investigating temporally varying model input uncertainties can guide 

researchers and water managers in gaining relevant data needed for improving the reliability of 

hydrologic model results. In this case, e.g., the uncertainties in snow melt could be reduced by 

implementing snow measurement stations in the recharge area. Moreover, the information on the 

temporal variability of model input uncertainties helps to derive which data are needed to improve the 

reliability of model output results during different times of a year.  
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Chapter 4 

Impact of semi-distributed recharge on hydrological conceptual 

karst modelling 

Sivelle, V., Jourde, H., Bittner, D., Richieri, B., Labat, D., Hartmann, A., and Chiogna, G. (2022). 

Considering land cover and land use (LCLU) in lumped parameter modeling in forest dominated karst 

catchments. Journal of Hydrology, 612, Part C, 128264. https://doi.org/10.1016/j.jhydrol.2022.128264 

 

Abstract 

Lumped parameter modeling approach has been widely applied in karst hydrology for, among other 

applications, groundwater availability assessment in a context of global change. Nonetheless, such 

approach generally does not account for land-cover land-use (LCLU) and its impacts on recharge 

processes. Then, considering a semi-distributed recharge constitutes a relevant approach to capture the 

impacts of LCLU on flow dynamics but also introduce more complexity in the modeling approach. The 

present study consists of a multiple hydrological model calibration to assess the implication of 

considering a semi-distributed recharge in a lumped parameter model and focuses on the uncertainty 

originating by the model structure. The modeling results are discussed to evaluate the trade-off between 

hydrological model complexity and hydrological model performance. The study focuses on forest 

dominated karst areas with three karst catchments: Kerschbaum (Lower Austria), Baget (French 

Pyrenees) and Oeillal (southern France). Considering a semi-distributed recharge gives better 

performance for both Kerschbaum and Oeillal catchments hydrological models, while no improvement 

is obtained for Baget catchment. Systematic consideration of LCLU is thus not necessarily worthwhile 

in karst environments as it can bring contradictory results in terms of hydrological model performance. 

 

Keywords: Karst hydrology, Lumped parameter modeling, Land Cover Land Use, Recharge 
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4.1 Introduction 

One-quarter of the world's population depends on freshwater from karst aquifers (Ford and Williams, 

2013). Ensuring a sustainable karst freshwater supply constitutes a major challenge in a context of 

increasing imbalance between freshwater supply capacity and the needs of a growing population 

(Stefano et al., 2012; Wada et al., 2016). Moreover, both climate change and anthropogenic pressures, 

including an increase in water abstraction or changes in land cover and land use (LCLU), may have a 

strong impact on the future availability of karst water resources (Gleeson et al., 2012; Taylor et al., 

2013). A decreasing karst groundwater availability has already been observed in various regions around 

the world such as in the Mediterranean area (Charlier et al., 2015; Fiorillo and Guadagno, 2012; García-

Ruiz et al., 2011; Smiatek et al., 2013), North America (Loáiciga et al., 2000), and Asia (Guo et al., 

2005; Hao et al., 2009; Ma et al., 2004; Wu et al., 2017). Moreover, many studies have investigated the 

potential evolution of karst groundwater resources under various climate change assumptions (Brenner 

et al., 2018; Chen et al., 2018; Doummar et al., 2018; Nerantzaki et al., 2020) or various future 

anthropogenic scenarios (Andreas Hartmann et al., 2012; Sivelle et al., 2021). Nonetheless, only a few 

studies consider the impact of LCLU changes such as urban area expansion or vegetation adaption to 

climate change in the assessment of global change impacts on karst groundwater (Sarrazin et al., 2018). 

Zhao et al. (2020) highlighted on a global scale that vegetation in the karst regions can be more sensitive 

to changes in precipitation regimes than to temperature. Ellison et al (2012) stated that “forest–water 

interactions play a crucial role in supplying the atmospheric moisture that becomes precipitation in the 

hydrologic cycle” and so forest may have a noticeable influence on the rainfall regime on a large scale. 

Also, forest coverage around the world is in evolution with an estimated loss of around 2.3 million 

kilometers square and a gain of around 0.8 million kilometers square from 2000 to 2012 (Hansen et al., 

2013). Under changing climatic conditions, the vegetation can show an adaption and consequently 

modify the land-atmosphere exchanges (Bussotti et al., 2014; Klausmeyer and Shaw, 2009; Llorens and 

Domingo, 2007), which could at the end cause a modification in the recharge processes (Tramblay et 

al., 2020). Finally, LCLU changes may constitute a first-order factor in the evolution of groundwater 

resources, since they may strongly impact the recharge processes. The assessment and prediction of the 

effects of LCLU changes on groundwater resources require information on the heterogeneities of the 

recharge processes and thus the implementation of hydrological models that include a distributed or 

semi-distributed recharge. 

One common approach for hydrodynamic modeling in karst systems consists of considering different 

combinations of the dominant flow components as distinct conceptual buckets (Bittner et al., 2018; 

Butscher and Huggenberger, 2008; Fleury et al., 2007; Guinot et al., 2015; Mazzilli et al., 2019; Tritz et 

al., 2011). Such a model can be useful for the long-term assessment of the flow dynamics and 

groundwater resources evolution. Sivelle et al., (2019) highlighted a decrease of more than 10 % in the 

water level during spring periods since the 1960s on Aliou and Baget karst systems in the French 
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Pyrenees. Hartmann et al. (2012) show that the discharge could decrease by 30% by the end of the 21st 

century at the Faria spring in Palestine. Nerantzaki and Nikolaidis (2020) highlighted an increased 

dryness in terms of frequency, duration and intensity for three Mediterranean karst springs located in 

Greece. Sivelle et al. (2021) proposed a methodology to assess the relative impact of climate changes 

and anthropogenic forcing on spring discharge and highlighted climate change as the main factor causing 

a decrease in the predicted Oeillal´s spring discharge, in southern France. In these former studies, the 

proposed conceptual lumped-parameters models consider homogeneous recharge processes at the 

catchment scale. Depending on land use, heterogeneities in soil properties, heterogeneities in climate 

inputs (e.g., convective events, altitudinal gradient), and catchment size, it can be of interest to consider 

a semi-distributed recharge as shown in former studies (Bittner et al., 2018; A. Hartmann et al., 2012; 

Ollivier et al., 2020).  

The first purpose of this study is to investigate how considering a semi-distributed recharge, depending 

on LCLU, affects the flow dynamics of a lumped parameter model and more especially the infiltration 

toward the saturated zone. The second purpose is to identify the appropriate levels of model complexity 

that allows obtaining the best performance in terms of spring discharge simulations. For that purpose, 

the study will focus on forest dominated karst areas to avoid bias due to significant differences in terms 

of the dominant type of LCLU in the recharge area. Therefore, three karst catchments characterized by 

recharge areas lower than 50 km2 were chosen to run a multi-model calibration considering different 

levels of complexity in the upper level of the model (i.e. the compartment can be subject to 

evapotranspiration and so reproduce the land-atmosphere exchanges). Also, the evapotranspiration is 

supposed independent of the LCLU to avoid uncertainties related to the estimation method as well as 

the introduction of cultural coefficient. In this way, the study is more related to the impact of model 

structure rather than input uncertainty. 

4.2 Study sites and data 

Fig. 4.1 shows the location and the land-use for the three selected catchments: Kerschbaum (Bittner et 

al., 2018), Oeillal spring (Sivelle et al., 2021; Sivelle and Jourde, 2020) and Baget (Sivelle et al., 2019). 

To avoid misinterpretations due to significant differences in terms of dominant land-use, the study 

focuses on forest dominated karst areas. Table 4.1 summarizes the main characteristic of the three 

catchments in terms of climate, geology/lithology and LCLU. 

The Kerschbaum spring is located 10 km south of the city of Waidhofen a.d.Ybbs, Lower Austria. Its 

recharge area covers approximately 2.5 km2 and is characterized by a mean annual temperature of 8 °C 

and annual precipitation of 1405 mm (2001 - 2014). The small-scale recharge area is predominantly 

covered by beech forests and parts of it by dolomite quarries (Table 4.1). With a mean annual discharge 

of 34 l.s-1, the Kerschbaum spring is part of the regional water supply and shows a response time to 

rainfall events of 1 day (Bittner et al., 2021). The recharge area belongs to the eastern foothills of the 
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Northern Calcareous Alps and consists of a sequence of dolomitic basement rocks, which result in a 

deep karstified groundwater system. Despite the well-connected network of conduits, the recharge area 

does not present significant sinkholes and the recharge processes can be assumed to be mainly diffusive 

(Bittner et al., 2018). 

 

Fig. 4.1 Land use in the recharge area a Kerschbaum, b Oeillal and c Baget. The land use is determined 

based on field investigation and the CORINE Land Cover - CLC12. 

The Oeillal spring is located north of the city of Narbonne (southern France) and drains water from 

the limestone terrain of the Fonfroide-Monredon massif. The main aquifer in the area runs within the 

calcareous formation and fed the Oeillal spring, which is located in the Western part of the Narbonne-

Sigean sedimentary basin and rises at four spring pools. In the Northern part of the area, there is also an 

alluvial aquifer which is contained in the Quaternary formation of the Aude river’s terrace. The recharge 

area covers around 43.2 km2 with a potential additional 10 km2 contributing zone (Sivelle and Jourde, 

2020) and is characterized by a Mediterranean climate with a mean annual temperature of 14.7 °C and 

annual precipitations of 570 mm (1980-2020). The mean annual discharge is estimated to be around 

0.14 m3/s. 

The Baget catchment is located 10 km southwest of the city of Saint-Girons (French Pyrenees). Its 

recharge area covers approximately 13.2 km2 and is characterized by a mean annual temperature of 11.8 

°C and annual precipitation of 1000 mm (1970 - 2020). The mean annual discharge is estimated to be 

around 0.45 m3/s. The karstified part of the basin is characterized by metamorphic Jurassic to Cretaceous 
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dolomites, limestones and calcareous marls. These formations deep 70 to 90° southwards, under the 

slaty Albian-Cenomanian Ballongue flysch that constitutes the southern boundary of the catchment. The 

contact between karstified formation and non-karstifiable rocks give the west-east direction of the main 

drainage system. The northern limit of the Baget drainage basin consists of a secondary fault from the 

North Pyrenean fault, the Alas fault. 

Table 4.1 Information about the karst catchments 

   Climate Geology LCLU 

 

Recharge 

Area 

(km2) 

Mean 

annual 

discharge 

(m3/s) 

Mean Annual 

Precipitation 

(mm) 

Mean 

Annual ET 

(mm) 

  

Kerschbaum 2.5 0.034 

mean = 1405 

 

from 1040 to 

1820 

mean = 814 

 

from 723 to 

984 

Dolostone 

Triassic 

Dolomite 

quarries – 4% 

Bluegrass-

Beech Forest – 

13% 

White Sedge-

Beech Forest – 

56% 

Christmas Rose-

Beech Forest – 

27% 

Oeillal 43.2 0.14 

mean = 570 

 

from 300 to 

1150 

mean = 1380 

 

from 875 to 

1540 

Limestone 

Upper and 

Lower 

Jurassic 

Urban area and 

limestone 

quarries – 6.5% 

Wine yard and 

agricultural 

plots – 30.8% 

Coniferous 

forest – 62.7 % 

Baget 13.2 0.45 

mean = 1000 

 

from 650 to 

1350 

mean = 810 

 

from 680 to 

940 

Limestone 

and 

dolostone 

Jurassic to 

Cretaceous 

Non-karstic 

impluvium - 

20% 

Agricultural 

plots - 3% 

Poor vegetal 

cover - 5% 

Hardwood trees 

forest - 72% 

 

Both Kerschbaum and Oeillal catchment are impacted by the presence of quarries and Oeillal catchment 

is also impacted by the presence of urban areas. The Baget catchment differs from other catchments due 

to the presence of non-karstic impluvium that represent 20 % of the total recharge area. This part of the 

watershed consists of the slaty Albian-Cenomanian Ballongue flysch, considered an impervious 
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formation. The orientation of the main drainage system in the area is given by the contact between the 

Ballongue flysch and the karstified part of the basin in the west-east direction (Debroas, 2009; Sivelle 

et al., 2020). This part of the watershed contributes to the spring discharge through surface runoff rather 

than infiltration in the main aquifer. 

The three selected catchments are characterized by a small recharge area (< 50 km2) and with a LCLU 

dominated by forest that represents 96% of the total recharge area for Kerschbaum, 62.7% of the total 

recharge area for Oeillal and 72% of the total recharge area for Baget (Fig. 4.1). The catchments are 

chosen based on their dominant LCLU and their comparable size of recharge areas to avoid bias related 

to LCLU and scale effects. Regarding Kerschbaum and Baget, the two systems show similar catchment 

size and land cover characteristics but different geological and climate properties. The Kerschbaum 

springshed is a dolostone karst system with a mean annual temperature of 8 °C. On the contrary, the 

geology of Baget is dominated by limestones and the climate is characterized by a mean annual 

temperature of 12.2 °C. Moreover, the Kerschbaum and Baget springs have a mean discharge of 34 and 

450 l.s-1, respectively. 

4.3 Methodology 

 

4.3.1 Hydrological models 

4.3.1.1 Semi-distributed recharge in lumped parameter modeling 

A semi-distributed recharge can be implemented in lumped parameter model at the catchment scale 

employing two distinct approaches which consist of either increasing the model complexity (and so 

adding more parameters) or considering distributed meteorological data (precipitation, land-surface 

temperature, evapotranspiration) as input in the model. Such approaches have proved their efficiency in 

improving karst aquifers hydrological modeling: 

Ollivier et al. (2020) propose the KaRaMel model with several lumped model units running in parallel. 

The structure of the model is based on a three-compartments model: the upper compartment collects 

precipitation, hosts evapotranspiration, and governs infiltration toward a slow discharge compartment 

(M) and a rapid discharge compartment (C). The outlet discharge consists of the sum of discharge from 

the slow and rapid compartments. Such model structure is widely used in karst hydrology (Baudement 

et al., 2017; Moussu, 2012; Pinault et al., 2001; Schmidt et al., 2014). The modeling is performed over 

the Fontaine de Vaucluse aquifer (southern France) showing a large watershed area (about 1600 km2). 

The model structure allows accounting for both slow matrix flows and fast conduit flows (Fleury et al., 

2007; Mazzilli et al., 2019) considering there is no exchange between these two flow components, 

although exchanges flow can be observed in the non-saturated zone (Dal Soglio et al., 2020). The input 

data consists of gridded data set with a spatial resolution of several kilometers that cannot be considered 

as valuable input for hydrological modeling on karst aquifers with recharge areas lower than 50 km2. 
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Such an approach allows to better assess the recharge distribution, with heterogeneities due to 

environmental factors such as geology, LCLU or even meteorological forcing (precipitation, 

evapotranspiration). In large karst catchments such as Fontaine de Vaucluse, the recharge distribution 

explains a large part of the discharge variation at the outlet (Ollivier et al., 2020). 

Another approach relies on the introduction of hydrotopes, which were considered in the LuKARS 

model (Bittner et al., 2018). Each hydrotope is characterized by land use and soil type and conceptually 

represents the vadose zone. The model structure consists of a compartment contributing to the recharge 

of the saturated zone, including also a loss function flowing to secondary springs and a hysteresis 

function (Tritz et al., 2011) flowing directly to the spring. In the LuKARS model, each hydrotope is 

exposed to effective precipitation depending on interception, evapotranspiration and, when applicable, 

snow processes. The hydrotopes consist of several lumped parameter models running in parallel, in a 

similar way as the KaRaMel model (Ollivier et al., 2020). Each hydrotope contributes to recharge, loss 

and fast flow depending on their relative area, their distance from the spring as well as the land use and 

soil properties. The use of such “hydrotopes” relies on the assumption of a hydrophysical uniqueness of 

each hydrotope (Bittner et al., 2018). 

4.3.1.2 Model structures 

Two lumped parameters models are implemented in this study to account for a different 

conceptualization of the flow processes. The first model corresponds to the original LuKARS model 

(Bittner et al., 2018) and the second model corresponds to a coupled model with the concept of 

hydrotopes implemented in the LuKARS model in the upper level of a model structure with two 

interconnected compartments in the lower level of the model structure, as proposed in the KarstMod 

modeling platform (Mazzilli et al., 2019). A detailed description of LuKARS and KarstMod and their 

underlying equations are provided in appendix A.2.1 and appendix A.2.2, respectively. Fig. 4.2 

summarizes the different model structures for each catchment concerning both the upper and lower level 

of the model structures and a description of the associated parameters is given in Table 4.2. In this study, 

the different configurations in the upper level are tested, considering 1 up to 4 hydrotopes, bringing also 

more uncertain parameters for the model calibration. Conversely, the lower level is chosen for each 

catchment based on former studies for Oeillal (Sivelle et al., 2021), Kerschbaum (Bittner et al., 2018) 

and Baget (Sivelle et al., 2019). The present study focuses on the characterization of the infiltration 

processes through two fluxes denoted Qis and Qhy that flow from the upper level toward a compartment 

in the lower level or directly to the spring (Fig. 4.2). In this study, the original “Linear baseflow storage” 

from Bittner et al, (2018) is referred to as a compartment with linear discharge law for notation 

consistency with the use of coupled LuKARS and KarstMod model structures. Also, this compartment 

is denoted M (Fig. 4.2) and represent the baseflow as suggested in the original KarstMod model 

(Baudement et al., 2017; Mazzilli et al., 2019; Sivelle et al., 2019). 
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In this study, the lower level in the model structure for Kerschbaum corresponds to a compartment with 

linear discharge law implemented in the original LuKARS model (Bittner et al., 2018) whereas a model 

structure considering matrix-conduit exchanges in the lower level is applied within the Baget catchment 

(Sivelle et al., 2019). Concerning the Oeillal spring, a threshold effect in lower level of the model 

structure (i.e. compartment with linear discharge law ) allows reproducing the change in flow dynamics 

during the period of low water table elevation (Sivelle et al., 2021). 

 

Fig. 4.2 Structure of the lumped parameter model for the three catchments. The upper level is based on 

the LuKARS model (Bittner et al., 2018) for each catchment whereas the lower level is based on former 

studies for Baget (Sivelle et al., 2019), Kerschbaum (Bittner et al., 2018) and Oeillal (Sivelle et al., 

2021). 

The upper level of the model structure consists of four lumped model units running in parallel, 

denoted ‘hydrotopes’, characterized by different land uses and soil types. It conceptually represents the 

vadose zone compartment (higher level with the continuum soil-epikarst-infiltration zone). A hydrotope 

is analogous to a bucket that has three discharge components with different flow directions: [1] the 

quickflow component Qhy (L3 T-1) is characterized with a hysteresis function (Tritz et al., 2011) and is 

directly transferred to the spring outlet, [2] the secondary spring discharge Qsec (L3 T-1) is transferred out 

of the system and do not contribute to the spring discharge or the lower compartment recharge and [3] 

the recharge Qis (L3 T-1) is transferred to the lower compartment. 

The lower level of the model structure in the LuKARS model consists of one compartment with linear 

discharge law. The recharge of the compartment consists of the sum of the intra-storage flow Qis from 

each hydrotope. The outlet discharge of the lower compartment is transferred to the spring. The total 
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spring discharge consists of the sum of the fluxes flowing from the compartment with linear discharge 

law QMS (L3 T-1) and the fluxes from the hydrotopes Qhy (L3 T-1) with a hysteretic behavior. 

Table 4.2 Information about the model structures tested along with the three-karst catchment 

(Baget, Oeillal and Kerschbaum). Some of the mode structure were already published in former studies. 

   Upper level 
Lower level 

Catchment Model Ref. Hyd. 1 Hyd. 2 Hyd. 3 Hyd. 4 

Oeillal 

LK_01 - Complete recharge area 

1 compartment with 

linear discharge law 

LK_02 

Sivelle et 

al., 

(2021) 

Impervious 

zone 

Infiltration 

zone 
- - 

LK_03 - 
Impervious 

zone 

Wine yard 

Agricultural 

lots 

Forest - 

Kerschbaum 

LK_01 - Complete recharge area 

1 compartment with 

linear discharge law 

LK_02 - Quarries 
Infiltration 

zone 
- - 

LK_03 - Quarries 

White 

Sedge-

Beech 

Forest 

Christmas 

Rose-Beech 

Forest 

+ 

Wood 

Barley-Beech 

Forest 

- 

LK_04 

Bittner et 

al., 

(2018) 

Quarries 

White 

Sedge-

Beech 

Forest 

Christmas 

Rose-Beech 

Forest 

Wood 

Barley-

Beech 

Forest 

Baget 

LK_01 - Complete recharge area 

1 compartment with 

linear discharge law 

LK_02 - 

Non-

karstic 

impluvium 

Karstic 

impluvium 
- - 

LK_03 - 

Non-

karstic 

impluvium 

Poor 

vegetation 

cover 

Agricultural 

plot 

+ 

Forest 

- 

LK_04 - 

Non-

karstic 

impluvium 

Poor 

vegetation 

cover 

Agricultural 

plot 
Forest 

LK-

KM_01 
- Complete recharge area 

1 compartment with 

linear discharge law 

LK-

KM_02 
- 

Non-

karstic 

impluvium 

Karstic 

impluvium 
- - 

LK-

KM_03 
- 

Non-

karstic 

impluvium 

Poor 

vegetation 

cover 

Agricultural 

plot 

+ 

Forest 

- 

LK-

KM_04 
- 

Non-

karstic 

impluvium 

Poor 

vegetation 

cover 

Agricultural 

plot 
Forest 

KM 

Sivelle et 

al., 

(2019) 

1 compartment with 2 different discharge law through the 

compartments of the lower level 

2 interconnected 

compartments M 

and C with 

nonlinear discharge 

laws 

 

Concerning the coupled LuKARS-KarstMod model, the lower level of the model structure consists of 

two interconnected compartments denoted M (representative of slow linear flow dynamics that mainly 
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occurs in the matrix) and C (representative of quick non-linear flow dynamics that may occur in conduits 

and/or unclogged fractures). Then compartment M corresponds to the capacitive function of the aquifer, 

whereas compartment C is more related to the transmissive function of the aquifer. Both M and C can 

be filled with water flow from the upper compartment, which are the intra-storage flow Qis and the 

quick-flow component Qhy. The flow partition is made through a portioning coefficient for both Qis 

flowing to M or to C and Qhy flowing to C or to the spring. One should note that the original KarstMod 

modeling platform also implemented such flow partition from the compartment in the upper level to the 

different compartment of the lower level. The difference for the coupled LuKARS/KarstMod model 

relies on the use of several buckets running in parallel rather than a single bucket with different discharge 

coefficients toward the bucket in the lower level of the model. Such conceptualization brings more 

complexity to the model structure and increases the number of uncertain parameters for the model 

calibration. 

Finally, the two proposed models (Fig. 4.2) consist of modular “bucket-style” model of lumped 

parameters that enable to build of interconnected compartments, depending on different levels of 

complexity in both upper and lower levels of the models. In this study, it should be noticed that 

hydrotopes can be activated/deactivated depending on the levels of complexity considered in the upper 

level of the model to run the fluxes contributing either to the recharge of the lower level or directly to 

the spring discharge. So, the number of hydrotopes varies depending on how the heterogeneity in the 

upper level is considered. Table 4.2 summarizes the model structures in terms of flow conceptualization 

in the upper and lower level of the model for the three catchments 

4.3.1.3 Model calibration 

The hydrological models were implemented in the Python environment (Summerfield, 2010) while the 

parameter estimation was performed using a particle swarm optimization (PSO) procedure (Eberhart 

and Kennedy, 1995) implemented in the “pyswarm” package (Lee, 2014). This approach leads to the 

definition of a unique optimal parameter set for each model configuration and therefore this study does 

not address parametric uncertainty and model equifinality since the study focuses on the uncertainty 

originating by the model structure. The data set for the calibration and validation of the hydrological 

model depends on the available data and the calibration procedure is performed on the same time 

intervals considered in the former studies to avoid bias due to the calibration period on the parameter 

estimation (Mazzilli et al., 2012). The calibration is made on a period of 1 year for the Kerschbaum 

spring, 18 months for the Oeillal spring and 10 years for the Baget. The calibration and validation 

periods are presented in Table 4.3. The calibration is made on a period where the required data are 

available on a daily time step. Regarding the Oeillal spring, validation data consists of sparse temporal 

discharge time series, measured before installation of probes for continuous hourly measurement 

(Sivelle and Jourde, 2020). Also, adding BE in a weighted function with KGE was required to give more 
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importance of the water balance in the calibration procedure and to better reproduce the significant flow 

decrease during the summer period. 

Table 4.3 Calibration periods, validation periods and objective function (Wobj) for hydrological 

models. Calibration and validation periods and objective function are based on former references. BE: 

Balance Error, NSE: Nash-Sutcliffe Efficiency, KGE: Kling-Gupta Efficiency and Q: spring discharge 

 Period Calibration Validation Wobj Reference 

Baget 
from 

to 

01/10/1970 

30/09/1980 

01/10/1980 

31/12/2016 

0.9×NSE(Q) + 

0.1×BE(Q) 

(Sivelle et al., 

2019) 

Kerschbaum 
from 

to 

01/01/2006 

31/12/2006 

01/01/2007 

31/12/2007 
NSE(Q) 

(Bittner et al., 

2018) 

Oeillal 
from 

to 

19/09/2018 

25/04/2020 

01/01/1987 

31/12/2017 

0.75×KGE(Q) + 

0.25BE(Q) 

(Sivelle et al., 

2021) 

 

4.3.2 Model evaluation  

4.3.2.1 Model evaluation using performance criteria  

The metrics used for hydrologic model calibration and evaluation are mainly based on the comparison 

between observed and simulated streamflow. According to Hauduc et al. (2015) model errors can be 

calculated in different ways and expressed as performance criteria, allowing to evaluate model 

performance numerically. Several studies have proposed number of performance criteria (Bennett et al., 

2013; Ferreira et al., 2020; Hauduc et al., 2015; Jackson et al., 2019). To assess different aspects of the 

model performance, it is recommended to adopt a multi-objective model evaluation with a combination 

of different performance criteria (Huo and Liu, 2020; Monteil et al., 2020). 

In this paper, the hydrological models are evaluated with some performance criteria widely used in karst 

hydrology: the Nash-Sutcliff efficiency NSE (Nash and Sutcliffe, 1970), the Kling-Gupta efficiency 

KGE (Gupta et al., 2009), the non-parametric Kling-Gupta efficiency KGENP (Pool et al., 2018). To 

evaluate the model performance in terms of volume of transit, the modified balance error BE (Perrin et 

al., 2001) and the volumetric error VE (Criss and Winston, 2008) are also considered. The correlation 

coefficient of Pearson Rp as well as Spearman Rs are also considered. Then, hydrological model 

evaluation is performed using an ensemble of seven performance criteria, allowing to account with 

different aspect of the model performance. For more information, the reader may refer to some literature 

review (Bennett et al., 2013; Ferreira et al., 2020; Jackson et al., 2019). Given that the model structures 

are characterized by a different number of parameters, the Akaike Informative Coefficient (AIC) is 

computed such as AIC = 2k + Nln(RSS), where k is the number of model parameters, N the number of 

observations and RSS is the sum of the squared residuals. The AIC penalizes the model structures with 

large number of parameters and gives information on how the performance may evolve with the number 

of uncertain parameters. 
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The various performance criteria are plotted according to a “radar chart”, which consists of a polygon 

where the position of each point from the center gives the value of the performance criteria. One should 

note that all the performance criteria used in this study are given with a perfect model fitting when the 

value is equal to 1. Then, plotting several models in the same radar plot allows a quick comparison of 

the model performance according to the various criteria. 

4.3.2.2 Model evaluation using time series analysis 

In karst hydrology, the auto-correlation function (ACF) is frequently used to characterize the temporal 

structure of hydrological signals under the linear-stationary hypothesis (Labat et al., 2000a; Larocque et 

al., 1998; Mangin, 1984; Padilla and Pulido-Bosch, 1995; Panagopoulos and Lambrakis, 2006). Mangin 

(1984) proposed to determine the memory effect of karst aquifers as the lag time value where the ACF 

of the spring discharge time series reaches the value of 0.2. This approach is commonly used to 

characterize hydrodynamics in karst aquifers (Lorette et al., 2018; Sivelle and Jourde, 2020). In addition, 

the cross-correlation function (CCF) between rainfall and spring discharge provides an approximation 

of the impulse response (Mangin, 1984) when assuming the rainfall consists of a random process (white 

noise). Also, it describes the capacity of a system to transform the rainfall into discharge. The higher the 

CCF peak, the more the system acts as a piston. Moreover, the lag time for the occurrence of the 

maximum value in CCF corresponds to the time of response. Due to high heterogeneities in karst 

aquifers, the response time can be dependent on the seasonal variability in rainfall intensity (Delbart et 

al., 2014). Both memory effects and response time can be dependent on the sampling frequency of the 

rainfall-discharge time series (Sivelle and Jourde, 2020) because of the occurrence of several processes 

with characteristic time covering several orders of magnitudes (Blöschl and Sivapalan, 1995). Lumped 

parameter modeling can show bias such as underestimation of the memory effect and overestimation of 

CCF peak (Sivelle, 2019) and may testify the importance of considering low frequencies component in 

the simulated impulse response since the high frequencies processes appear to be predominant. Such 

time series analysis can provide information about the hydrological model performance in addition to 

the performance evaluation through numerical performance criteria such as NSE, KGE or KGENP. 

In addition, the wavelet multiresolution analysis (MRA) is applied to project the spring discharge time 

series on an orthogonal basis of wavelet and scale functions (Labat et al., 2000b; Mallat, 1989). The 

basis is generated from a filter band following a dyadic scale. The projection allows building for each 

level of this scale the component of the signal that explains the variability at this scale. The 

decomposition is orthogonal and therefore the sum of all components (details and residue or smooth) 

give back the initial signal. For a deeper hydrological model evaluation, Sivelle (2019) runs MRA on 

both observed and simulated spring discharge time series and calculate the goodness of fit with the NSE 

criteria for each scale. Application on highly karstified watersheds such as Aliou and Baget karst systems 

shows the weakness of a daily rainfall-discharge model for the high frequency (scale < 8 days) and for 

the 8-months scale (scale = 256 days). Such an approach can be useful to evaluate hydrological model 
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performances, in addition to ACF and CCF, since it gives a deeper description of the model bias. Indeed, 

since the usual performance criteria consider the mean errors it does not capture how the model errors 

can be structured in time and frequency and so how the model can be biased in forecasting purposes. 

4.4 Results and discussion 

4.4.1 Hydrological models´ calibration and validation 

The calibrated model parameters set for LuKARS model on Baget, Oeillal and Kerschbaum catchments 

are reported in Table 4.4 whereas the performance criteria for both the calibration and the validation 

periods are shown in Fig 4.3. The performance criteria are color scaled from red for bad values to blue 

for good values, where the closer the value to 1 the better the fit between observed and simulated spring 

discharge. The simulated spring hydrographs are reported in Fig 4.4 and the radar chart for model 

performance evaluation are given in Fig 4.5. 

    Table 4.4 Model parameters for LuKARS model over Kerschbaum, Oeillal and Baget and the coupled 

LuKARS/KarstMod model for the Baget catchment. Parameter description is given in Table 4.2. 

 

1 2 3 4 1 2 3 1 2 3 4 1 2 3 4

Ra 2,5 0,1 0,1 0,1 42,3 2,7 2,7 13,2 2,64 2,64 2,64 13,2 2,64 2,64 2,64

L 1000 550 550 550 7300 7300 5600 5000 2000 2000 2000 5000 2000 2000 2000

khy 320,817 0 0 0 426,80 0 0 1840100 593920 1727320 1083560 0 0,965 0 0

Emin 38,242 0 0 0 117,85 0 0 762,65 894,76 632,54 570,49 0 95,78 31,36 31,36

Emax 160,075 1 1 1 191,63 1 1 1127,94 1194,28 1496,22 1157,98 1 179,74 495,75 495,75

alpha 0,547 0 0 0 0,28 0 0 1,98 1,34 1,015 1,25 1 5,81 2,61 2,61

kis 0,003 0 0 0 0,02 0 0 0,0001 0 0 0 1 0 0 0

ksec 0,488 0 0 0 5,35 3,9 3,9 0 0 0 0 0 0 0 0

Eloss 233,109 0 0 0 162,76 0 0 10000 100000 100000 100000 100000 100000 100000 100000

Ra 2,35 0,325 0,325 39,6 13,0 10,56 1,056 0,396 10,56 1,056 0,396

L 971 1600 1600 5900 6200 5000 3000 2000 5000 3000 2000

khy 118,77 517,86 684,21 919,15 224,87 1483800 1605420 2429460 0 0 0

Emin 2,98 14,09 34,89 110,16 69,70 744,07 195,32 104,48 0 0 0

Emax 62,83 55,55 73,65 193,42 148,99 1652,6 640,97 140,08 1 1 1

alpha 1,44 1,47 1,54 0,38 0,44 1,25 1,21 1,04 1 1 1

kis 0,04 0,03 0,12 0,02 0,29 0,0001 7,6 7,22 0,302 0,46 0,46

ksec 0,28 0,77 0,92 16,08 14,60 0 0 0 0 0 0

Eloss 35,00 27,83 64,10 177,17 16,29 100000 100000 100000 100000 100000 100000

Ra 2,075 1,4 26,5 9,504 0,66 9,504 0,66

L 920 900 6800 5000 3100 5000 3100

khy 99,9284 105,1630 740,60 3413900 2116618 0 0

Emin 46,6049 8,0584 97,94 532,55 432,55 0 0

Emax 148,9139 114,7194 159,40 1357,07 1153,07 1 1

alpha 0,8078 0,9812 1,81 1,25 1,25 1 1

kis 0,0035 0,0033 0,04 1,02 1,02 0,31 0,35

ksec 0,0298 0,0465 87,34 0 0 0 0

Eloss 211,2942 171,7668 118,10 100000 100000 100000 100000

Ra 0,675 9,504 9,504

L 960 5000 5000

khy 167,593 3413900 0

Emin 100,676 532,55 0

Emax 224,941 1357,07 1

alpha 0,489 1,25 1

kis 0,001 1,02 0,21

ksec 0,024 0 0

Eloss 419,301 100000 100000

kMS_bot 0,00099 0,00098 0,00092 0,00092 0,06134 0,02880 0,06670 0,00774 0,04050 0,09233 0,04032

kMS_top 0,00844 0,00886 0,00822

M_min 2,38138 4,93496 2,57138

XEC 0,75 0,87 1 1

Xhy 1 0,78 0,626 0,626

aMS 1 1 1 1

kCS 0,0001 0,00483 0,00676 0,00676

aCS 4 4 4 4

kMC 0,39 0,559 0,634 0,634

aMC 1 1 1 1
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The LuKARS model shows quite satisfactorily performance criteria for both Kerschbaum and Oeillal 

and provides lower performance criteria on the Baget catchment. In comparison, the coupled 

LuKARS/KarstMod model provides higher performance criteria values although it appears to be quite 

close to the performance criteria with the KarstMod model (Sivelle et al., 2019) where NSE = 0.59, BE 

= 0.94 and KGE = 0.61 within the same calibration period. 

 

Fig. 4.3 (top) Hydrological models’ performance criterion between observed and simulated spring 

discharge for both the calibration and validation periods. R_p: Pearson correlation coefficient, R_s: 

Spearman correlation coefficient, NSE: Nash Sutcliff Efficiency, KGE: Kling Gupta Efficiency, 

KGE_prime: modified KGE, KGENP: Kling Gupta Efficiency Non-Parametric, _c2m: bounded version 

for NSE, KGE, KGE_prime and KGENP, BE: Balance Error and VE: Volume Error, IOA: Index of 

Agreement. The performance criteria are color scaled from red for bad values to blue for good value, up 

to 1 when perfect fit between observed and simulated discharge time series. (bottom) Akaike 

Informative Criterion (AIC) as a function of number of hydrotopes, and so number of parameters. 

The first LuKARS application on the Kerschbaum catchment counts 4 hydrotopes and shows 

satisfactorily performance criteria (Bittner et al., 2018). Here, the LuKARS model application with a 

lower number of hydrotopes shows lower performance criteria values but is still quite satisfactorily. 

Indeed, the LK_01 and LK_04 model structures show tiny close BE and VE values. Conversely, other 

performance criteria show significant differences when the model structure considers at least two 

hydrotopes in the upper level. Both LK_03 and LK_04 outperforms with the NSE, KGENP, R_s and 

R_p and share close performance. Thus, a comparison of the different combinations of hydrotopes may 

allow assessing the trade-off between model complexity (i.e. number of calibration parameters) and the 

model performance. Analysis of the simulated spring hydrograph (Fig 4.4) shows that whatever the 

number of active hydrotopes, the LuKARS model allows capturing the complete spring hydrograph in 
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a quite satisfactorily way. Moreover, increasing the number of hydrotopes allows to better capture the 

recession part. Indeed, the LK_01 model structure shows an important misfit during recession periods, 

with a quite permanent offset (while the recession dynamics appears to well reproduced) and 

underestimates the flood peaks. LK_02 model structure produces a better fit for the recession periods 

but overestimates the flood peaks (Fig 4.4). Finally, LK_03 and LK_04 model structures seem to provide 

a satisfactorily fit during both flood and recession periods of the spring hydrograph. All LK model 

structures show very good BE and VE errors and both LK_03 and LK_04 model structure outperforms 

other LK model structures considering most of the performance criteria (Fig. 4.5). The AIC shows a 

lower value when considering the LK_03 model structure within the calibration period compared with 

the other LK model structures. Then the model performance increase does not compensate for the 

introduction of additional parameters for Kerschbaum when moving from LK_03 to LK_04. 

Nonetheless, a higher number of hydrotopes gives higher performance for both the calibration and 

validation periods (Fig. 4.3). Considering the NSE criteria one should note a significant decrease in the 

performance criteria between calibration and validation periods, whereas the other criteria show quite 

satisfactorily agreement. It may testify significant errors on flood peaks estimation within the validation 

period while the model correctly reproduces water balance (VE and BE) and correlation (R_p and R_s).  

Concerning the Oeillal spring’s catchment, the total landcover consists of four types of land use: (i) 

quarries covering 2% of the total area, (ii) urban areas covering 4.5% of the total area, (iii) vineyards 

and agricultural plots covering 30.8% of the total area, and (iv) forests and natural plots covering 62.7% 

of the total area (Fig. 4.1). The first LuKARS application within the Oeillal spring’s catchment consists 

of two hydrotopes that represent an impervious zone (quarries and urban area) and an infiltration zone 

(Sivelle et al., 2021). Here, the LK_03 model structure is introduced to consider different LCLU in the 

infiltration zone with a distinction between wine yard and agricultural plots, covering 30.8% of the total 

recharge area, and forest, covering 62.7 % of the total recharge area. In a general way, the different LK 

model structures shows close performance considering KGE, BE, VE and R_p whereas LK_02 model 

structure outperforms considering the KGENP. Thus, the different LK model structures gives 

satisfactorily results for the different performance criteria, although some minor changes can be 

observed within the different LK model structures. Elsewhere, the model structures include a threshold 

effect in the lower compartment with linear discharge law, where all LK_01, LK_02 and LK_03 model 

structures show quite similar values for both the height of the threshold Mmin around 2 to 5 mm and the 

discharge parameter for the upper fluxes out of the compartment kMS_top around 0.008 mm.day-1. 

Conversely, hydrotope 2 and hydrotope 3 within the LK_03 model structure shows contrasted discharge 

coefficient values for the fast flow going directly to the spring, with hyd2_khy around 224 m mm-1.day-

1 and hyd3_khy around 740 m mm-1.day-1. The discharge coefficient for the slow flow going to the lower 

level of the model structure also shows contrasted values with hyd2_kis around 0.29 m mm-1.day-1 and 

hyd3_is around 0.04 m mm-1.day-1. It testifies that the LK model, whatever the number of active 

hydrotopes, allows to capture the slow recession dynamics of the karst system associated with the 
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Oeillal’s spring. Then, considering a different number of hydrotopes only affects the flow dynamics 

from the upper to the lower level and allow to correctly reproduce the spring hydrographs (Fig. 4.4). 

The AIC criteria show the lower value for the LK_01 within the calibration period (Fig. 4.3). It may call 

into question the interest of considering a pseudo-distributed recharge for calibration purpose only. The 

decrease of the performance criteria within the validation period might be the consequence of the sparse 

temporal resolution of discharge time series during the validation period (i.e. monthly gauging). Indeed, 

such discrepancy in performance criteria between periods with continuous monitoring and period with 

sparse temporal measurement was already experienced in the former study (Sivelle and Jourde, 2020). 

Nonetheless, the LK_03 model structure shows higher performance criteria within the validation period. 

 

Fig. 4.4 Observed and simulated spring discharge time series within the calibration for the LuKARS 

model on Kerschbaum, Oeillal and Baget and for the coupled LuKARS/KarstMod model on the Baget. 

For a better comparison of spring discharge dynamics, only one year of the Baget discharge time series 

is shown during the calibration periods (10 years). The NSE is estimated for the whole calibration period. 
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Considering the Baget catchment, Sivelle et al. (2019) proposed a conceptualization of the 

hydrodynamic behavior based on the KarstMod model (Mazzilli et al., 2019) without any consideration 

for LCLU and so considers a homogeneous recharge at the catchment scale. To assess the impact of 

considering a semi-distributed recharge in the model structure, the original compartment E is replaced 

by the LuKARS model conceptualization with 4 hydrotopes within the upper level of the model 

structure. The model then corresponds to the coupled LuKARS and KarstMod model (Fig. 4.2), denoted 

LK-KM. As a comparison, the classical LuKARS model, denoted LK, is also calibrated considering 1 

up to 4 hydrotopes. The LK_01 and LK_02 model structures show poor performance criteria regarding 

the NSE and KGE both lower than 0.5 which is also significantly lower than the performance observed 

with the original KarstMod model where NSE = 0.59 and KGE = 0.61 (Sivelle et al., 2019). The LK_03 

and LK_04 model structures show performance criteria closer to the original KarstMod model although 

the value for both NSE and KGE is still lower. 

 

Fig. 4.5 Radar chart of the performance criteria for the calibration period within the Kerschbaum, 

Oeillal, and Baget catchments. The closer the point is to the outside of the radar chart, the better the 

model performs. 

Analyses of the simulated spring hydrograph together with the observed one (Fig 4.4) show that 

increasing the number of hydrotopes leads to dramatically underestimating the discharge peaks, whereas 

all the LK model structures, with 1 up to 4 hydrotopes, provides quite comparable flow dynamics during 
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recession periods. In a general way, one should note a spring discharge overestimation during significant 

recession periods such as July to September 1971, with both LK and LK-KM models. Also, the LK-KM 

model simulates higher discharges during floods, which is following the model structure that includes a 

compartment with nonlinear discharge law in the lower level of the model structure contrary to the LK 

model structures that consider one compartment with linear discharge law. Considering the LK_03 

model structure, hyd3_kis is around 1 mm.day-1 whereas concerning LK_04 model structure both 

hyd3_kis and hyd4_kis are also around 1 mm.day-1. Then, the introduction of a fourth hydrotopes (when 

moving from LK_03 to LK_04 model structure) does not allow to differentiate the dynamics for the 

intra-storage fluxes from the upper level to the lower level. Moreover, hyd2_kis is still in the same range 

of values when moving from LK_03 to LK_04 model structures with a value around 7.6 mm.day-1 and 

7.2 mm.day-1 respectively. It might show that the recharge dynamic from hydrotope 2, corresponding to 

poor vegetation cover, is well contrasted with the hydrotopes 3 and 4 corresponding to agricultural plots 

and forests respectively. Conversely, hydrotopes 3 and 4 cannot be separated in terms of recharge 

dynamics and brings back into question the assumption of hydrophysical uniqueness as well as the need 

of considering an additional hydrotope in the model structure. Finally, both LK and LK-KM models 

within the Baget catchment provide contradictory results with the above application within the 

Kerschbaum and the Oeillal spring catchments. Indeed, a higher number of hydrotopes do not 

necessarily provide a better model performance criterion (Fig. 4.3 and Fig. 4.5). Also, the AIC criteria 

confirms such analysis since the lower value concerns the model structure with 1 hydrotope for LK 

model and with 2 hydrotopes for LK-KM model and so the gain in model performance does not 

compensate for the penalization due to the introduction of additional parameters. Also, such 

observations within the calibration periods are consistent with the performance criteria calculated within 

the validation periods for which the lowest AIC values are obtained for LK with 1 hydrotope and LK-

KM with 2 hydrotopes, as observed within the calibration period. 

4.4.2 Model evaluation using time series analysis 

4.4.2.1 Autocorrelation and crosscorrelation function analysis 

The ACF is calculated on both observed and simulated spring discharges within the different model 

structures for the three karst catchments (Fig. 4.6). The ACF calculated on observed and simulated 

spring discharges for the Oeillal spring with the LK model structures look very closely. The memory 

effect appears to be well estimated at around 80 to 90 days. Conversely, the ACF calculated on simulated 

discharge for Kerschbaum seems to systematically underestimate the memory effect of 40 days. The 

second peak for a lag value around 65 days appears to be reproduced by the LK models, although the 

peak appears less frankly with the LK_01 model structure. Concerning the Baget catchment, the LK 

models generally estimate very poorly the memory effect of 17 days. Indeed, LK_01 and LK_02 model 

structures provide a lower value around 9 days whereas LK_03 and LK_04 model structures 

overestimate the memory effect, all the more with the LK_04 model structure that gives a memory effect 
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of around 45 days. The LK-KM models provide an underestimation of the memory effect although the 

higher the number of hydrotopes the closer the ACF on simulated discharge to ACF on observed 

discharge. One should note that such misfit considering the ACF was already investigated within the 

Baget catchment considering daily rainfall-discharge lumped parameter modeling (Sivelle, 2019) due 

to a short response time that may require a higher sampling frequency (Labat et al., 2000a). 

 

Fig. 4.6 Auto-correlation function (ACF) on spring discharge for each hydrological model during the 

calibration period. The memory effect ME is calculated based on ACF on the observed spring discharge 

measured during the calibration period. 

In the same way, CCF is calculated between rainfall and both observed and simulated spring 

discharge within the different model structures for the three karst catchments (Fig 4.7). 
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Fig. 4.7 Cross-correlation function (CCF) between rainfall and spring discharge within the calibration 

period for each hydrological model 

Concerning the Oeillal spring, CCF based on observed and simulated discharge appears very close 

when considering LK_03 model structure. Then, the impulse response of the karst system with a slow 
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recession dynamic appears well reproduced with both the LK_02 and LK_03 model structures whereas 

the LK_01 model structure fails to reproduce the quick time of response. Concerning Kerschbaum, the 

LK_02 model structure seems to overestimate the CCF peak amplitude and to under estimate the 

persistence of correlation for lag values larger than 10 days. Also, the second peak around 65 days is 

well reproduced although the LK_01 model structure gives a lower CCF peak amplitude. Such a second 

peak in the rainfall-discharge CCF can be the consequence of the existence of the slow flow dynamics, 

which may have a delayed contribution with an important response time. Such observation can be 

consistent with the lithology of the Kerschbaum catchment dominated by dolostones, and a low value 

of the discharge coefficient for the compartment with linear law with an order of magnitude of 10-4 

m.day-1. This value is in contrast with values around 10-2 m.day-1 for both Baget and Oeillal, dominated 

by limestones. Then the LK models allow capturing both short-term and mid-term responses although 

the short-term response with LK_04 model structure appears delayed. Within the Baget catchment, both 

LK and LK-KM models seem to overestimate the CCF peak value although the LK_04 and LK_04-KM 

model structure show lower peak value of the CCF and so closer to the CCF based on observed data. 

Such overestimation of the CCF peak was already observed with the KarstMod model (Sivelle, 2019). 

4.4.2.2 Orthogonal wavelet decomposition 

Application of orthogonal wavelet decomposition on both observed and simulated spring discharges 

allows to calculate the performance criteria according to a dyadic scale (Fig. 4.8) and to evaluate the 

model performance across different temporal scales. Here, the performance criteria consist of the bunded 

version of the NSE criteria (Mathevet et al., 2006), denoted NSE_c2m. It allows to reduce the amplitude 

of variation between -1 and 1. One should note that, the bounded version of NSE criteria keeps the same 

meaning with a comparison of the model errors with a “naïve” predictor (i.e. the mean of the observed 

spring discharge time series) where positive values mean the model is a better predictor and a NSE_c2m 

value of 1 corresponds to a perfect fit between the model prediction and the observation. 

Fig. 4.9 shows the performance criteria (i.e. the bounded version of NSE) as a function of the scale. 

Concerning the Kerschbaum catchment, both le LK_03 and LK_04 seems to outperforms for the various 

scales, excepted for the 16 days scale, where all the LK model structures gives lower NSE_c2m values. 

Considering the periods larger than 32 days the LK_02, LK_03 and LK_04 models shows close 

performance, larger than the LK_01 model structure. Concerning the Oeillal spring, LK_02 and LK_03 

model structures outperform the LK_01 model structure for the scales from 2 days to 128 days whereas 

as considering the larger periods all LK model structures show quite close performance. Also, all the 

LK model structures show poor performance criteria for the high frequency (periods lower than 8 days) 

whereas the low frequencies (period larger than 64 days) give much higher NSE_c2m values. Due to 

the slow recession dynamics of the Oeillal spring system, and the important contribution of the lower 

compartments in the spring discharge, it is difficult to well capture the fast flow dynamics. This is also 

observed with the rainfall-discharge CCF that shows a low peak value and testify of an important 
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smoothing effect operated by the karst system. Such results may testify to the importance of considering 

several flow dynamics from the non-saturated zone to the capacitive function of the aquifer. Then, since 

most of the effective rainfall flows toward the lower level of the model structure (Fig. 4.2) a suitable 

characterization of the recharge toward the capacitive function of the aquifer may constitute an important 

step for the assessment of groundwater resource variability.  

 

Fig. 4.8 Orthogonal wavelet decomposition of measured (black) and simulated (red) spring discharge 

over the calibration period for the Baget catchment with the coupled LK_01/KM model. 

Concerning the Baget system, all the LK model structures present close performance criteria for 

the temporal scale above 128 days whereas the performance for the smaller scale can show a significant 

difference. This may indicate that for a reactive karst system such as Baget, the high-frequency processes 

can be better reproduced by considering homogeneous recharge at the catchment scale. Indeed, 
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increasing the number of hydrotopes seems to degrade the performance criteria for periods lower than 

100 days. This is observed when the lower level is supposed to be a compartment with linear discharge 

law, and so the saturated zone consists of a unique flow dynamic. Over the Baget area, former studies 

have shown the existence of a well-developed drainage system (Mangin, 1975; Marsaud, 1996), with 

efficient quick flow evidenced by artificial tracer tests (Labat and Mangin, 2015; Sivelle and Labat, 

2019) and highlighted the interest of considering two flow dynamics with exchange flow (Sivelle et al., 

2019). Then, considering a lower level of the model structure with a more complex structure highlight 

that whatever the number of hydrotopes the model performance is comparable, scale by scale. In the 

end, increasing the number of hydrotopes does not bring better performance either in the high frequency 

or the low frequencies. 

 

Fig. 4.9 Decomposition of the performance criteria on the calibration period. 

4.4.3 Effect of hydrotopes on hydrodynamics 

To quantify the impact of considering a different number of hydrotopes on the flow dynamics, the 

monthly mean intra-storage flow Qis (discharge from the hydrotopes in the upper level to the lower level 

of the model structure, considered as a proxy of the recharge) is calculated within the month of the year 

(Fig. 4.10). It gives an overview of how the recharge may occur along with the hydrologic cycle. Due 

to the bad performance of the modeling approach within the Baget karst system, the analysis is made 

only within the Kerschbaum spring and the Oeillal’s spring, where considering several hydrotopes 

helped improving the hydrological model performance. To perform a preliminary assessment of the 

influence of parametric uncertainties, the estimation of the mean Qis is made on the 0.99 percentile 

ensemble of simulated hydrographs using the Latin Hypercube Sampling (LHS) procedure implemented 

in the SAFE toolbox (Pianosi et al., 2015). Then, the simulation with the highest objective function is 
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reported in solid line, while the confidence interval is given through a colored envelope (Fig. 4.10). The 

simulated spring hydrograph is given within the calibration period while the recharge is estimated on 

periods of 10 years, considering the hydrological model can be used out of calibration periods due to 

acceptable performance within the validation period (Fig. 4.3). The estimation is made on the 2010-

2020 periods for Oeillal and 2006-2016 periods for Kerschbaum. Kerschbaum and Oeillal’s spring 

catchments show very different pattern in the proxy of recharge along the hydrological cycle. Indeed, 

Qis appears quite constant along with the month of the year on Kerschbaum while Qis shows significant 

temporal variation with period of important recharge during spring and autumn, and low recharge during 

the summer period. Such discrepancy is a consequence of the exposition to different climate which is 

warm-moderate regional climate for Kerschbaum against Mediterranean climate for the Oeillal’s spring 

catchment. Within the Oeillal’s spring the regime of recharge follow the main Mediterranean 

precipitation pattern with two rainy seasons, in spring and autumn periods. 

 

Fig. 4.10 Proxy of the effective recharge in the lower level compartments along with the month in the 

year. The estimation is made on simulated internal fluxes within periods of 10 years: from 2006 to 2016 

for Kerschbaum and from 2010 to 2020 for Oeillal. 

The analyses show that for both Kerschbaum and Oeillal’s spring catchment the confidence interval 

on the variation of Qis along with the month of the year appears to reduce when considering a higher 

number of hydrotope. Such results are consistent with the analysis of the estimated parameters (Table 

4.4). Indeed, for both Kerschbaum and Oeillal’s spring catchment, the parameter values related to the 

lower compartment appears well constrained, whatever the number of hydrotopes in the upper part of 

the model structure. Then, considering infiltration heterogeneities through a semi-distributed model 

seems to better capture the infiltration processes from the upper level to the lower level compartments 

on both Kerschbaum and Oeillal’s spring karst systems. 
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4.5 Conclusions  

This study investigated how considering LCLU, and thus a semi-distributed recharge impacts 

the performance of a lumped parameter hydrological model as well as the recharge dynamics 

in forest dominated karst system. The model performances are compared using numerical 

performance criteria, time series analysis (i.e. auto-correlation analysis, cross-correlation 

analysis and wavelet multiresolution analysis) and analysis of the simulated recharge dynamics. 

Considering a semi-distributed recharge gives better performance for both Kerschbaum and 

Oeillal catchments hydrological models, while no improvement is obtained for Baget 

catchment. Kerschbaum and Oeillal karst springs are characterized by slower recession 

dynamics than the Baget spring. The results within the Baget catchment show that considering 

a more complex conceptualization of recharge processes does not bring better hydrological 

model performance. The Baget is characterized by a high degree of karstification, an important 

spring discharge variability as well as an important role of matrix-conduit exchanges. The 

heterogeneities in recharge processes are difficult to capture considering a daily lumped 

parameter hydrological model. A deeper investigation considering a higher frequency base 

might be needed to better assess the impact of LCLU on recharge processes. Also, considering 

a semi-distributed recharge seems to reduce the uncertainty in the quantification of the internal 

fluxes, flowing from the upper level to the lower level of the model structure. The main results 

of the study consist of a first step in the assessment of the trade-off between hydrological model 

complexity and hydrological model performance, in a framework of lumped parameter 

modeling dedicated to karst hydrology. Systematic consideration of LCLU is thus not 

necessarily worthwhile in karst environments as it can bring contradictory results in terms of 

hydrological model performance. Further work should investigate both structural and 

parametric uncertainties related to the inclusion of LCLU in lumped parameter modeling in 

karst hydrology since LCLU changes mays have strong impact on recharge processes as well 

as strong implications on groundwater vulnerability. 
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Chapter 5 

Retrieve solute concentrations at high temporal resolution from 

electrical conductivity measurements in karst systems 

Richieri, B., Bittner, D., Hartmann, A., Benettin, P., Van Breukelen, B. M., Labat, D., and Chiogna, G. 

(2023). Using continuous electrical conductivity measurements to derive major ion concentrations in 

karst systems. Hydrological Processes, 37(6), e14929. https://doi.org/10.1002/hyp.14929 

 

Abstract  

Hydrochemical data of karst springs provide valuable insights into the internal hydrodynamical 

functioning of karst systems and support model structure identification. However, the collection of high-

frequency time series of major solute species is limited by analysis costs. In this study, we develop a 

method to retrieve the individual solute concentration time series and their uncertainty at high temporal 

resolution for karst springs by using continuous observations of electrical conductivity (EC) and low-

frequency ionic measurements. Due to the large ion content and non-negligible concentrations of 

aqueous complexes in karst systems, the concentration of each solute species occurring as free ion and 

as part of aqueous complexes are computed separately. The concentration of species occurring as free 

ions are computed considering their contributions to the total EC, whereas the concentration of the 

species as part of complexes are obtained from speciation calculations. The pivotal role of the 

complexation processes for the reconstruction of ion concentration time series starting from the EC 

signal is investigated in two karstic catchments with different geologies and temporal resolution of the 

available hydrochemical datasets, i.e., the Kerschbaum dolostone system in Austria and the Baget 

limestone system in France. The results show that complexation processes are significant and should be 

considered for the estimation of the total solute concentration in case of SO4, Ca, Mg and HCO3. The 

EC signal of a karst spring can be used to interpolate and quantify the dynamics of those solutes 

characterized by large contribution (approximately >6%) to the total EC and low relative variability, 

i.e., HCO3, Ca and Mg. Moreover, the presented method can be used to estimate concentrations of 

solutes when applied to karst systems with stationary and hydrogeochemical homogeneous contributing 

area. On the contrary, the method is affected by large uncertainty in case of dynamic systems 

characterized by varying contributions of water from different geological areas. This study aims to 

contribute to the problem of hydrogeochemical data availability and to support future works on karst 

systems conceptualization.  

 

Keywords: Electrical conductivity decomposition, High-resolution hydrochemical data, 

Hydrochemical modeling, Karst 

https://doi.org/10.1002/hyp.14929
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5.1 Introduction 

The use of multiple data sources to improve our understanding of the karst hydrological functioning is 

getting more and more attention. For example, hydrochemical data of karst springs provide valuable 

insights into the internal hydrodynamical functioning, e.g., to characterize different kinds of karst 

systems or to differentiate between the contribution from the vadose and the phreatic zones under 

varying hydrometeorological conditions (Aquilina et al., 2006; Dreiss, 1989; Frank et al., 2019; 

Hartmann et al., 2013b; Hartmann et al., 2017; Liu et al., 2004; Mudarra and Andreo, 2011; Ravbar et 

al., 2011; Torresan et al., 2020). Therefore, it is important to collect and analyze hydrogeochemical 

information in karst systems.  

Karst systems are characterized by a complex hydrologic response and discharge variations that may 

change by one order of magnitude within hours or days (Hartmann et al., 2014). To investigate flow and 

transport processes in such systems, the hydrochemical sampling frequency should be comparable to 

the time scale of the hydrological response of the system, that is hours to days. However, high-frequency 

monitoring is generally restricted to continuous measurements of water level, discharge, temperature, 

and electrical conductivity (EC), whereas the collection of high-frequency time series of major solute 

species e.g., Ca, Mg and HCO3, is limited by high analysis costs (Charlier at al., 2012). 

Recently, few studies investigated methods to derive continuous time series of major ions without the 

need of continuous measurements of these ions. Mewes et al. (2020) tested the ability of different 

machine learning algorithms to interpolate time series of natural tracer concentrations in karstic 

environment and to predict SO4
2- and NO3

- concentrations from discharge data. While the study showed 

that machine learning algorithms are valuable to fill gaps between point measurements of ionic 

concentrations, these algorithms cannot predict the tracers’ temporal variability (Mewes et al., 2020). 

Benettin and van Breukelen (2017) proposed a method to derive the individual ion concentration from 

the total ion content information embedded in the EC signal measured at a river gauge. The approach is 

based on the decomposition of the EC into the specific contributions of the major free ions that conduct 

electrical current in water. EC can be easily and cheaply measured by means of automatic instruments 

and thus shows a huge potential in model development and evaluation (Cano-Paoli et al., 2019; Chang 

et al., 2021; Hayashi et al., 2012; Jourde et al., 2018; Meus et al., 2014). Starting from continuous EC 

data and ionic point measurements, the method of Benettin and Breukelen (2017) makes it possible to 

estimate ionic concentration time series at the same temporal resolution as the EC signal. The approach 

was tested on data from the Upper Hafren river catchment in the Plynlimon area, mid-Wales, U.K., 

characterized by low EC values (average of 29 μS/cm) and by a total ion content dominated by Cl and 

Na, which have no or little tendency to be involved in complexation processes. The approach proved to 

give a better representation of the ion dynamics than a direct linear interpolation of the concentration 

point measurements. Similar approaches were used to first establish regressions between ionic 

concentrations and laboratory measurements of EC and then to decompose the EC measured at river 

gauges into the major ion contributions (Lechuga-Crespo e al., 2020).  
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Differently from the Upper Hafren river catchment, karstic environments can be characterized by large 

content of solutes that could form complexes and EC values around 500 μS/cm (Chang et al., 2021; 

Hilberg and Schneider, 2011; Narany et al., 2019). The large ion content and the complex 

hydrogeochemical interactions between water and the matrix cause the discharge of a karst spring to 

often show an intricate water speciation. Due to the non-negligible concentrations of aqueous complexes 

in karst systems, there is the necessity to modify the methodology proposed by Bennettin and van 

Breukelen (2017) to account for aqueous complexation processes. The aim of the present work is hence 

to develop a method to retrieve individual solute species concentration time series at high resolution 

from continuous EC measurements in karst springs, by explicitly accounting for complexation 

processes. Indeed, some solute species, like SO4, Ca and HCO3, have high tendency to form complexes, 

which thus need to be considered in the reconstruction of the total concentration, despite not having a 

significant influence on the total EC of the water. Moreover, we investigate the uncertainties related to 

the quantification of each individual solute species both for interpolation and prediction of high-

resolution concentration time series. Since different geological structures and rock types of a system 

determine the flow regime and aqueous chemistry (Odeh et al., 2009), we consider two karstic 

watersheds with different types of bedrock and temporal resolution of the available hydrochemical 

datasets, i.e., the Kerschbaum dolostone system in Austria (quarterly, weekly and 5-hour sampling 

temporal resolutions) and the Baget limestone system in France (sampling temporal resolution from 1 

to 4 hours). Thus, by testing the approach on karst systems characterized by different geology and 

different sampling frequency, we evaluate the relevance of complexation processes in karst systems 

characterized by different degrees of complexity.  

 

5.2 Materials and methods 

5.2.1 Study areas  

We consider two study areas, that is the Kerschbaum dolostone karst system in Austria and the Baget 

limestone karst system in France (Fig. 5.1a). The different geological formations characterizing the two 

spring watersheds (Fig. 5.1b, c) result in different degree of karstification, discharge variability and 

solute transport processes. 

The Kerschbaum spring is located 10 km south of the city of Waidhofen a.d. Ybbs, Austria (Fig. 5.1a, 

b). The pre-alpine springshed covers approximately 2.5 km2 and is part of the eastern foothills of the 

Northern Calcareous Alps, showing a homogeneous dolomitic geology. The Kerschbaum spring aquifer 

is characterized by a complex small-scale groundwater karst system with a deep and developed network 

of fractures and conduits (Hacker 2003; Narany et al., 2019). Despite the dominance of carbonate 

bedrocks, the study area does not show significant sinkholes. Therefore, we assume that point infiltration 

and concentrated recharge processes scarcely contribute to the groundwater recharge and, thus, that the 

spring discharge is controlled by diffusive infiltration. Consequently, the response of the spring 
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discharge to precipitation events is characterized by a piston and flushing effect of the dissolved 

elements stored in the saturated zone. The recharge area is primarily covered with forests and is 

characterized by a mean annual temperature of 8°C and mean annual precipitation of 1379 mm (period 

from 1981 to 2014). The annual rainfall distribution is bimodal with a peak in the summer (June and 

July) and a peak in the winter (December and January) (Bittner et al., 2018). The Kerschbaum spring is 

an important source of fresh water providing a mean discharge of 34 l/s to the regional water supply and 

shows a fast reaction time to precipitation events of one day (Bittner et al., 2021). 

 

 

Fig. 5.1 Lithological maps of the study areas showing the location of the springs and recharge areas. a 

The locations of the study areas in Europe. b Kerschbaum dolostone karst system in Austria. c Baget 

limestone karst system in France. 

The Baget karst system (13 km2) is located in the Pyrenees, in the Ariege administrative department 

(Fig. 5.1a, c). The main perennial spring of the Baget catchment, called Las Hountas, is mainly recharged 

by the calcareous formation of the Jurassic and Lower Cretaceous, with a mineralogical composition 

dominated by calcite. Despite the large occurrence of limestone bedrocks, the catchment is also 

characterized by an outcrop impermeable formation of black flysch, which strongly influences the 

hydrochemical composition of the spring discharge due to pyrite oxidation and consequent formation of 

strong acids, that is sulfuric acid. Minor gypsum and dolomitic rocks are also observed in the watershed. 

The different geologies present in the area affect the temporal variability of the spring discharge 

displaying a complex response characterized by different mechanisms, i.e., dilution processes during 
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high discharge periods, piston and flushing effects after long dry periods and varying contributions of 

water draining different areas of the watershed (Ulloa-Cedamanos et al., 2020). The water from 

calcareous formations feeds the subsurface karst system through seepage or water losses of the Lachein 

stream, which is usually dry and gets activated only at high flow conditions. Las Hountas is the only 

perennial spring of the Baget catchment and it is representative of a part of the total response of the 

karstic watershed. Indeed, during high flood events, when the upper part of the catchment is active, there 

is water bypassing the spring (Mangin 1975; Ulloa-Cedamanos et al., 2021). The Baget catchment is 

mainly covered by fir-beech forest and is under the influence of the Atlantic oceanic climate with an 

annual air temperature of 12.3 °C and an average annual rainfall close to 1700 mm. The annual rainfall 

distribution is bimodal with a first peak in December and a second one in February. The average annual 

discharge is 477 l/s with no influence of snow melt processes (Ulloa-Cedamanos et al., 2020). 

 

5.2.2 Datasets  

Tables 5.1 and 5.2 show the temporal resolution, number of samples and the statistics of the 

measured EC (μS/cm) and major solute species of interest, i.e., Ca, Mg, HCO3, SO4, NO3, Cl, Na and K 

(mg/L), for both the studied areas and available data periods. 

 

Table 5.1 Summary of the datasets characteristics, including: temporal resolution (TR), number of 

samples (n), mean, standard deviation (Sd), minimum (Min) and maximum (Max) values of the 

electrical conductivity EC (μS/cm) and major solute species (mg/L) measured at the Kerschbaum spring 

for the periods 2000–2016, 2018–2019, and 23 January 2022–28 January 2022. 
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Table 5.2 Summary of the datasets characteristics, including: temporal resolution (TR), number of 

samples (n), mean, standard deviation (Sd), minimum (Min) and maximum (Max) values of the 

electrical conductivity EC (μS/cm) and major solute species (mg/L) measured at the Las Hountas spring 

for the events 4/10/2021–14/10/2021, 1/11/2021–7/11/2021, and 20/11/2022–26/11/2022. 

 

 

The EC was measured in the field at the Kerschbaum spring using a conductivity meter (HT 

Hydrotechnik, Typ 575-LTC) and reported at 25 °C. During data preprocessing, the EC signal in 2018– 

2019 was corrected to compensate for an offset of the probe of 19 μS/cm. The solute concentration 

measurements were provided by the waterworks of Waidhofen a.d. Ybbs for the periods 2000–2016 and 

2018–2019 at different temporal resolutions. During the event from 23/1/2022 to 28/1/2022, water 

samples were collected every 5 h by means of a 6712 ISCO sampler.  

The EC at the perennial spring Las Hountas was measured continuously with a temporal resolution of 

15 minutes using an In-Situ Aqua TROLL 200 device. To collect water samples for ionic measurements, 

a 6712 ISCO sampler was installed at the spring and connected to the EC probe. To enable an efficient 

sampling at the spring during storm conditions, the sampler was programmed to automatically start 

sampling above a given water level threshold (30 cm). In total, three precipitation events were gauged, 

the first from 4 October 2021 to 14 October 2021, the second from 1 November 2021 to 7 November 

2021 and the third from 20 November 2022 to 26 November 2022. For all the events, the temporal 

resolution of the sampling was 1 h during the rising limb of the hydrograph, while it was set to 2 h 

during the recession phase. To record the baseflow following the end of each precipitation event, we 

collected composite samples, integrating 8 h samples each. All the collected samples were analyzed in 

terms of major solute concentrations. The specifications of the laboratory analysis for the datasets of 
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Kerschbaum and Las Hountas are reported in supplementary materials B.1.1 and B.1.2, respectively. 

During the preprocessing of the data of both the study areas, the charge balance of each sample was 

checked using the software PHREEQC (Parkhurst and Appelo, 2013) and the samples with an error 

larger than +/- 5% are considered too uncertain and eliminated from the datasets.  

 

5.2.3 EC decomposition method 

Our methodology aims to retrieve individual solute species concentrations at high temporal resolution 

for the specific case of karst springs starting from the work of Benettin and van Breukelen (2017), which 

we modify to consider complexation processes in the karstic environments of the springs. The observed 

EC signal is decomposed into the major solute species concentrations at the same temporal resolution 

as the available EC data, based on the results of ionic measurements of water samples collected at lower 

temporal resolution than EC. Due to sample preparation procedures, the total concentration of a solute 

species measured in the laboratory consists of the sum of that species as free ion and as part of aqueous 

complexes. The concentrations of each species occurring as free ions and as complexes are first 

computed separately, then summed together and compared to the total solute species concentrations 

obtained with laboratory analyses. The concentrations of the species present as free ions are computed 

based on the contributions of each ion to the total measured EC, whereas the concentrations of the 

species involved in complexes are derived with speciation calculations. The workflow is as follows: 

1. Estimation of the contribution of each free ion to the total EC: The EC is a measure of the 

water´s capability to pass an electrical flow through the movement of charged ions and results 

from the total amount of dissolved solid (Massei et al., 2007). Consequently, the total EC 

(μS/cm) of water can be expressed as the sum of the contributions of each individual ionic 

species 𝑖 (Eq. 5.1). 

 

               𝐸𝐶 =  ∑ 𝐸𝐶𝑖 

𝑖

                                                                                                                                       ( 5. 1) 

 

The contribution of the species 𝑖 to the total electrical conductivity (𝐸𝐶𝑖) is computed from Eq. 

B.2–B.5 presented in the supplementary material B.1.3. As suggested by Benettin and van 

Breukelen (2017), the chemical properties of each ion 𝑖 can be grouped in a single coefficient 

𝑎𝑖 ((μS/cm) /(mg/L)) as: 

 

𝑎𝑖 =  
𝛬𝑚 

° ∗ 𝛾𝐸𝐶

𝑀
                                                                                                                       (5.2) 

 

with 𝛬m 
°  the molar conductivity (μS m2/mol), 𝛾EC the electrochemical activity coefficient (-) 

and 𝑀 the solute molar mass (g/mol) of the individual ion. 
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Eq. B.1–B.6, which are reported in supplementary material B.1.3, can be implemented on 

PHREEQC to derive the ECi of the free ions Ca2+, Mg2+, HCO3
-, SO4

2-, NO3
-, Cl-, Na+ and K+. 

The PHREEQC file containing the implemented equations to compute the 𝐸𝐶𝑖 and 𝑎𝑖 of each 

ion is reported in the supplementary material B.1.4. In addition, for a more detailed explanation 

of the procedure, one can refer to the PHREEQC manual (Parkhurst and Appelo, 2013).  

Following the approach of Benettin and van Breukelen (2017), for each free ion 𝑖 is possible to 

define a “weight factor” 𝑓𝑖 (−) that describes how much the free ion contributes to the total EC 

based on its chemical properties and concentration: 

 

𝑓𝑖(𝑡) =  
𝐸𝐶𝑖(𝑡)

𝐸𝐶(𝑡)
=

𝑎𝑖(𝑡) ∗  𝐶𝑖(𝑡)

𝐸𝐶(𝑡)
                                                                                            (5.3) 

 

The weights 𝑓𝑖 can only be measured at times 𝑡, when the ion concentration 𝐶𝑖(t) is available. 

2. Linear interpolation of the weights 𝑓𝑖 to obtain high-resolution major free ion time series: The 

low-frequency weight factors 𝑓𝑖 (Eq. 5.3)) are linearly interpolated to the same high-resolution 

time scale of the observed EC. Then, the high-frequency concentrations 𝐶𝑖 time series of the 

individual solute species as free ions are computed with the inverse of Eq. 5.3.  

 

𝐶𝑖(𝑡) =  
𝐸𝐶(𝑡) ∗  𝑓𝑖(𝑡)

𝑎𝑖(𝑡)
                                                                                                           (5.4) 

 

3. Computation of high-resolution time series of species involved in aqueous complexes: The 

concentrations of the species involved in complexes cannot be derived by applying the same 

method used for the species as free ions. Some complexes, such as NaSO4
- and CaHSO4

+, 

involve more than one of the species of interest, that is Ca, Mg, HCO3, SO4, NO3, Cl and Na. 

Thus, it is not possible to directly correlate the contribution of a complex to the total observed 

EC and the concentrations of the individual species. In addition, even if this correlation was 

possible, the low contribution of the complexes to the total measured EC would result in large 

errors in the computed concentrations. Indeed, Benettin and van Breukelen (2017) found out 

that species with small contribution to the total EC are prone to high relative errors on the 

estimation of the weight factors 𝑓𝑖 and thus more difficult to isolate in the EC decomposition. 

Instead, the concentration of each individual species, which would form complexes under the 

given conditions, is derived at the resolution of the collected water samples by speciation 

calculations with PHREEQC as difference between the total molality of a species (mol/kgw) 

and the molality of the solution (mol/kgw). The PHREEQC file containing the implemented 

equations is reported in the supplementary material B.1.3. The derived low-resolution 
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concentrations of each complex are then linearly interpolated at the temporal resolution of the 

measured EC.  

4. Finally, the total concentration time series at high resolution of each major solute species of 

interest, that is Ca, Mg, HCO3, SO4, NO3, Cl, Na and K, is computed as the sum of the 

concentrations of that species as free ion and as involved in complexes. 

 

5.2.4 Uncertainty quantification 

In the present study, we investigate both the uncertainty on the individual solute concentrations resulting 

from the experimental error on 𝑓𝑖, and the uncertainty derived by considering 𝑓𝑖 as random variables 

(Subsection 5.2.4.1). Moreover, we propose to use the described methodology not only to interpolate 

between the coarse samples, but also to reconstruct the ion content for periods in which only the EC 

data are available (Subsection 5.2.4.2). The presented analyses are done for both the Kerschbaum and 

Las Hountas. However, since for the Kerschbaum spring no ionic measurements were available at peak 

spring discharge conditions in January 2019, the results of the uncertainty quantification for 

Kerschbaum are reported in the supplementary material.  

 

5.2.4.1 Uncertainty quantification of the weight factors 𝒇𝒊 

Each value of 𝑓𝑖 (𝑡) is affected by uncertainty that propagates from the EC(𝑡) measurement error and 

from the error in the ion concentration obtained at the coarse temporal scale as shown in Eq. 5.3. We 

can then quantify the uncertainty 𝛿𝑓𝑖(𝑡) on the weight factor 𝑓𝑖 (𝑡), assuming that the uncertainty 

affecting 𝑎𝑖(𝑡) is negligible, according to (Fornasini 2008): 

 

𝛿𝑓𝑖(𝑡)  ≃  √[(
𝛿𝑓𝑖(𝑡)

𝛿𝐶𝑖(𝑡)
)

0

2

∗  (𝛿𝐶𝑖(𝑡))
2

+ (
𝛿𝑓𝑖(𝑡)

𝛿EC(𝑡)
)

0

2

∗  (𝛿EC(𝑡))
2

]  ∗  𝑎𝑖(𝑡)2                                     (5.5) 

 

which results in: 

 

(𝛿𝑓𝑖(𝑡))
2

 ≃  [(
𝛿𝑓𝑖(𝑡)

𝛿𝐶𝑖(𝑡)
)

0

2

∗ (𝛿𝐶𝑖(𝑡))
2

+ (
𝛿𝑓𝑖(𝑡)

𝛿EC(𝑡)
)

0

2

∗  (𝛿EC(𝑡))
2

]  ∗  𝑎𝑖(𝑡) =                                

=  [
1

EC0(𝑡)2
 ∗  (𝛿𝐶𝑖(𝑡))

2
+  

𝐶𝑖0
(𝑡)2

EC0(𝑡)4
 ∗  (𝛿EC(𝑡))

2
]  ∗  𝑎𝑖(𝑡)           (5.6)

 

 (
𝛿𝑓𝑖(𝑡)

𝑓𝑖0
(𝑡)

)

2

 ≃  [(
𝛿C(𝑡)

𝐶𝑖0
(𝑡)

)

2

+ (
𝛿EC(𝑡)

EC0(𝑡)
)

2

]  ∗  𝑎𝑖(𝑡)                                                                                  (5.7) 

 

As shown in Eq. 5.7, we can further observe that the relative error in the weight factor 𝑓𝑖 is always larger 

than the relative error in EC and 𝐶𝑖. Table 5.3 shows the values of 𝛿EC and 𝛿𝐶𝑖 which we consider for 
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the analysis, their measurement device/analysis and the reference used for the estimated measurement 

error. 

Finally, we derive the experimental uncertainty on individual solute species concentrations by applying 

the EC decomposition method considering the measured weight factors 𝑓𝑖 and their experimental error. 

In addition, the experimental uncertainty on the individual species concentrations is compared with the 

concentration’s estimates obtained considering the weight factors 𝑓𝑖 as random variables.  

Table 5.3 Measurement errors used to quantify the uncertainty on the weight factor 𝑓𝑖, together 

with their value, measurement device/analysis and reference. 

 

 

5.2.4.2 Predictive model based on the frequency of occurrence of the weight factors 𝒇𝒊 

The ability of the method to determine high-resolution concentration time series of major solute species 

is investigated by computing the frequency of occurrence of the weight factors and applying them in a 

predictive manner. For Kerschbaum, the years 2000–2016 are used as period in which we estimate the 

frequency of occurrence of the weight factors (calibration period), while the year 2018–2019 and the 

event 23 January 2022–28 January 2022 are 

used as validation periods; for Las Hountas, the first event in October 2021 is used as calibration period, 

the second event in November 2021 and the third event in November 2022 as validation periods. In the 

calibration step, the weight factors 𝑓𝑖 are calculated by considering the solute concentrations and total 

EC both measured in the calibration period (Eq. B.1– B.6, Eq. 5.3). Then, in the validation step, to predict 

the concentration of each solute species as free ion (Eq. 5.4), the empirical frequency distribution of the 

weight factor of each free ion computed for the calibration period is combined with the total EC observed 

in the validation periods and 𝑎𝑖. The concentration of each species involved in complexes is first 

computed for the calibration period as described in Subsection 5.2.3 and then for the validation periods 

by assuming the same proportion between solutes as free ions and involved in complexes as observed 

in the calibration period. This assumption is done based on speciation calculations with PHREEQC, 

which show that the percentages of solutes as free ions and as part of complexes are constant, for each 

karstic spring, over the studied periods (Fig. 5.2a, c). This analysis evaluates the performance of the 
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method to estimate, based on historical data, high-resolution concentrations time series when only 𝐸𝐶 

observations are available.  

 

 

Fig. 5.2 Speciation of the spring discharge. a, c Solute species occurring as free ions (%) and as involved 

in aqueous complexes (%) expressed, for each species, as mean percentage of the total solute 

concentration, together with their percentage contribution to the total electrical conductivity EC, for the 

Kerschbaum spring (a) and for the Las Hountas spring (c). b, d Mean contribution to the total EC (%) 

of each free ion observed at the Kerschbaum spring (b) and at the Las Hountas spring (d). e, f Computed 

total concentration, computed concentration as free ion and observed concentration of SO4, for the 

Kerschbaum spring (e) and for the Las Hountas spring (f). 

 

5.2.5 Investigation of different water contributions  

For the case of Las Hountas, we tested different approaches to investigate the water contributions from 

the different geological areas present in the Baget catchment (Fig. 5.1c).  
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The dissolution processes and stoichiometric relationships characterizing the calcareous rocks and black 

flysch are shown in the supplementary material B.1.5 (Fig. B.1). The sulfuric acid, which comes from 

the black flysch, results in an alkalinity lower than what we would have in case of only carbonate 

dissolution by carbonic acid. The percentage decrease in alkalinity can be estimated as shown in the 

following equation:  

 

ΔAlk(%) =  
(Ca2+ +  Mg2+) −  HCO3

−

(Ca2+ +  Mg2+)
                                                                                                        (5.8) 

 

where the ion concentrations are expressed in meq/L (Ulloa-Cedamanos et al., 2020).  

The computed alkalinity reduction is then correlated with the equivalent ratio SO4
2- over HCO3

- and with 

the performance of the method both when interpolating and predicting solute concentrations at high 

resolution. 

In addition, the variation over time of the relative contributions to the total EC provides insights into the 

system functioning. More precisely, the correlation between EC, water level and weight factors of HCO3
– 

and SO4
2- makes it possible to investigate the water contributions from the calcareous rocks and black 

flysch under different discharge conditions.  

 

5.3 Results  

5.3.1 Speciation and total electrical conductivity calculations on PHREEQC 

From the major solute concentrations, speciation calculations with PHREEQC provide the distribution 

of the aqueous species in each water sample. Fig. 5.2a, c show the average percentages of each solute 

species as free ion and as involved in aqueous complexes for both the Kerschbaum and Las Hountas 

springs. The results are consistent between the two studied areas. Among the investigated solutes, SO4 

is the one with the largest tendency to form complexes, with 16.3% (Kerschbaum) and 14.2% (Las 

Hountas) of its total concentration involved in the formation of CaHSO4
+, NaSO4

- and HSO4
-. Also, Ca, 

Mg and HCO3 are involved in complexes (CaOH+, CaHSO4
+, CaHCO3

+, MgHCO3
+ and MgOH+) and 

for Kerschbaum the percentages of Ca, Mg and HCO3
 are 5%, 4.5% and 3%, respectively, whereas for 

Las Hountas 6.1%, 5.5% and 5.2%, respectively. For both springs, only 0.2% of Na forms NaSO4
- and 

NaCO3
-, while NO3 and Cl are present only as free ions. Finally, K occurs in Kerschbaum only as free 

ions, whereas in Las Hountas 0.1% of it forms complexes. For the case of SO4, Fig. 5.2e, f compare the 

computed free ion and total concentration time series and thus show the pivotal role of complexes when 

reconstructing the total solute concentration from the total EC. 

As described in Subsection 5.2.3, the total EC is computed as the sum of the electrical conductivities 

𝐸𝐶𝑖 of the charged individual solutes (Eq.B.1–B.5 in the supplementary material B.1.3). The individual 

free ions contribute to the total computed 𝐸𝐶 differently in the two studied areas (Fig. 5.2b, d), due to 
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the different geological formations of the watersheds. For the Kerschbaum spring, the contributions of 

HCO3
-, Ca2+ and Mg2+ to the total EC are on average 42.1%, 30.5% and 20.1%, respectively, with about 

92.7% of the total 𝐸𝐶 correlated to the dissolution of dolomite rocks. SO4
2-, NO3- contributes with a 

percentage of 1.5% and 1.3%, respectively, and the total contribution of Cl-, Na+ and K+ is approximately 

4.1%. On the contrary, for Las Hountas, the dominance of limestone bedrocks leads to a larger 

contribution of Ca2+ (45.5%) and a lower contribution of Mg2+ (6.2%), while the contribution of HCO3
- 

(39%) is comparable. Moreover, the black flysch formation releases SO4
2-, which contributes with a 

percentage of 6.3% to the total EC. Finally, the total contribution of NO3
- , Cl-, Na+ and K+ is equal to 

2.8%. 

Fig. 5.3a, b and Fig. 5.3e, f present the EC and charge balance errors (%), respectively, computed by 

PHREEQC at the same temporal resolution as the measured water samples for the Kerschbaum (period 

2018–2019) and Las Hountas (event 4 October 2021–14 October 2021) springs. The low frequency 

computed EC (dashed line) and the continuous observed EC (solid line) are plotted together in Fig. 3a, 

b. For the case of Kerschbaum, the computed EC does not fully capture the dynamic of the system due 

to the low temporal resolution. For example, in December 2018 and January 2019 no water samples 

were collected and hence the manual sampling does not cover the period with the highest EC values. 

Considering the Las Hountas dataset with a higher temporal resolution of hydrochemical measurements, 

the computed EC time series better matches the short dynamic of the system.  

The relative error time series (
ECobserved− ECPHREEQC

ECobserved
) and relative error probability distributions are 

shown in Fig. 5.3c, d and Fig. 5.3g, h, respectively. For Kerschbaum, the computed EC slightly 

underestimates the observations, with a relative error range between -0.01 and 0.05 and relative error 

mean of 0.02. Las Hountas shows computed EC slightly lower than the observations. The relative error 

ranges from 0.01 to 0.06 and has a mean value of 0.03. Overall, for both springs, the 𝐸𝐶 computed 

through Eq. B.1–B.5 by PHREEQC is satisfactory. 

Finally, Fig. 5.3e, f presents the charge error (%) time series computed for each input water sample by 

means of built-in functions on PHREEQC. For Kerschbaum, the charge error ranges from -1.7% to 3.7% 

with a mean value of 0.5%, while, for Las Hountas, it ranges between -2.8% and -0.1% with mean value 

of -1.2%. For both the springs, the charge error indicates an overall respected charge balance. 

 

5.3.2 Frequency of occurrence of the weight factors 𝒇𝒊 

Fig. 5.4 shows the violin plots comparing the frequency of occurrence and boxplots of the weight factors 

𝑓𝑖 of each major free ion observed during the available data periods. Thus, we compared the 𝑓𝑖 observed 

in 2000–2016, 2018–2019 and 23/1/2022–28/1/2022 for Kerschbaum and those observed during the 

events in October 2021, November 2021 and November 2022 for Las Hountas. Fig. 5.4 shows that, 

despite referring to two events close in time, the differences between the frequency of occurrence of the 

weight factors 𝑓𝑖 observed in Las Hountas are more pronounced than those observed for Kerschbaum. 
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For Las Hountas, two events separated by a longer time interval, like the ones in October 2021 and 

November 2022, can display more similar distributions of the weight factors of some ions than two 

events closer in time (October 2021 and November 2021). 

 

Fig. 5.3 Electrical conductivity EC (μS/cm) computed on PHREEQC at the same temporal resolution of 

the observed water samples given as input, for the Kerschbaum (period 2018–2019) and Las Hountas 

(events 4/10/2021–14/10/2021) springs. a, b Computed against observed total EC time series, c, d 𝐸𝐶 
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relative error (-) time series, e, f charge error (%) time series and g, h probability distribution of the EC 

relative error (-). 

  

Fig. 5.4 Frequency of occurrence of the weight factors 𝑓𝑖 of the individual free ions for both the springs 

and periods. For the Kerschbaum spring, the distributions refer to the periods 2000–2016 (pink), 2018–

2019 (blue) and 23/01/2022 – 28/1/2022 (green); for the Las Hountas spring to the periods 4/10/2021–

14/10/2021 (pink), 1/11/2021–7/11/2021(blue) and 20/11/2022 – 26/11/2022 (green). 

 

5.3.3 Uncertainty quantification of the individual solute species concentrations in case of 

Interpolation  

This subsection presents the uncertainty on the individual solute species concentrations resulting from 

the experimental error on 𝑓𝑖 (Eq. 5.7), as well as the uncertainty derived by considering 𝑓𝑖 as random 

variables when we apply the methodology for interpolation. Both the computed uncertainties are shown 

for each solute species in Fig. 5.5 for Las Hountas (4 October 2021–14 October 2021) together with the 

low-resolution observed solute concentrations (red points). 

The error in the interpolated solute concentrations caused by the experimental error in the estimation of 

fi is shown for Las Hountas in Fig. 5.5 and for Kerschbaum in Fig. B.2 (left side) and B.3 (left side) with 

dashed red lines. We can observe that the larger the concentration of a specific solute species the lower 

the related experimental error on 𝑓𝑖 and consequently on the interpolated 𝐶𝑖. For instance, the 

concentration of Mg is much larger in Kerschbaum (Table 5.1) than in Las Hountas (Table 5.2) and 

consequently the error in the interpolated Mg values for Las Hountas (Fig. 5.5) is larger than for 
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Kerschbaum (Fig. B.2 (left side) and B.3 (left side)). On the contrary, Las Hountas shows a larger 

concentration of SO4 and thus a lower experimental error than Kerschbaum.  

 

Fig. 5.5 Interpolated experimental uncertainty on the individual solute species concentrations (dashed 

red lines) together with their interpolated uncertainty based on the frequency of occurrence of the 

observed weight factors (gray bands). The black, gray and light gray areas of the bands represent the 

interquartile, the 10–90% percentile and full ranges of the computed solute species concentrations 

(mg/L), respectively. The red points are the observed solute concentrations (mg/L). The concentrations 

are computed at the Las Hountas spring for the period 4/10/2021–14/10/2021. 

 

Fig. 5.5 also shows the uncertainty bands computed for Las Hountas considering 𝑓𝑖 a random 

variable whose value is sampled from the frequency of occurrence shown in Fig. 5.4. The measured 

solute concentrations are indicated with red points and, for each solute species, fall within the full-range 

uncertainty band. The majority of the observed concentrations are included in the computed interquartile 
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ranges, with exception of HCO3 and SO4. As shown in Table B.1 in the supplementary material B.1.6, 

there is a positive correlation between the relative variation in measured concentrations and relative 

width of the uncertainty bands. The method shows low uncertainty in the estimation of Mg and Ca, 

followed in order by Na, Cl and NO3. Whereas, the method is less accurate for HCO3 and SO4, for which 

it overestimates and underestimates, respectively, the peak concentrations observed on 4 October 2021 

(Fig. 5.5). Finally, the large uncertainty in the estimates for K results from the large relative variation in 

the measured concentration (Table B.1). 

Fig. B.2 (left side) and B.3 (left side) in the supplementary material show the same analyses for 

Kerschbaum for the period 2018–2019 and 23 January 2022–28 January 2022, respectively. The results 

show that the method provides a better interpolation of the observations than in Las Hountas. Moreover, 

the results are in line with what observed for Las Hountas spring, confirming that the method is more 

uncertain for those solute species contributing less to the total EC and with larger relative variability. 

Due to the lack of samples representing the variability at high flow conditions, the behaviour of the peak 

in January 2019 has to be interpreted as the probable behaviour considering the available information. 

 

5.3.4 Predictive model based on the frequency of occurrence of the weight factors 𝒇𝒊 

For most solute species, the use of 𝑓𝑖 as a random variable allows us to reproduce quite well the 

observations when we apply the method for interpolation. Therefore, we test under which circumstances 

the method can be applied to predict the ion content for periods in which only the 𝐸𝐶 data are available. 

Fig. 5.6 shows the predicted high-resolution concentration time series of major solute species for Las 

Hountas (1 November 2021–7 November 2021 and 20 November 2022–26 November 2022). The 

weight factors distribution is taken from the event of October 2021, which we use as calibration event. 

The accuracy of the prediction is for each solute species correlated with changes in the frequency 

distribution of the related weight factor 𝑓𝑖. More precisely, the larger the difference between the 

frequency of occurrence of the weight factor observed in the calibration and validation periods (Fig. 4) 

the lower the accuracy of the estimations. The performance of the decomposition EC method in 

predicting solute concentrations is hence significantly different in the two validation periods due to the 

results described in Section 5.3.2.  

The differences between the frequency of occurrence of the weight factors 𝑓𝑖 observed for Las Hountas 

during the events in October and November 2021 are larger than those observed between October 2021 

and November 2022 (Fig. 5.4), leading to a less accurate prediction. This is particularly evident for Ca, 

Mg, Cl and K, whose predicted uncertainty bands for November 2021 show a shift with respect to the 

observations (Fig. 5.6, left side). On the contrary, being the frequency of occurrence of the weight factors 

𝑓𝑖 similar between October 2021 and November 2022, the model well predicts the concentrations of Ca 

and Mg in November 2022 with most of the observations falling in the 10 - 90% percentile range 

(Fig. 5.6, right side). 
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Fig. 5.6 Uncertainty bands for the predicted individual solute species (mg/L). The concentrations are 

computed at the Las Hountas spring for the periods 1/11/2021–7/11/2021 (left side) and for the period 

20/11/2022–26/11/2022 (right side) based on the frequency of occurrence of the weight factors observed 

in 4/10/2021–14/10/2021. The black, gray and light gray areas of the bands represent the interquartile, 

the 10–90% percentile and full ranges of the computed solute species concentrations (mg/L), 

respectively. The red points are the observed solute concentrations (mg/L). 

Regarding HCO3 and SO4, all observations fall in the full range of the predicted uncertainty bands 

for both the validation periods. However, the model overestimates the concentration of HCO3 and 
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underestimated the concentration of SO4 at peak conditions observed on 4 November 2021, and 22 

November 2022. The not accurate prediction of NO3 for November 2022 results from the fact that the 

distribution used as calibration period (October 2021) is characterized by a narrower variability, more 

similar to that observed in November 2021. The overestimation in the estimates of Cl and Na for 

November 2022 is due to a shift in the mean weight factors between the calibration and validation 

periods. 

The same analyses were done for Kerschbaum considering the years 2000–2016 as calibration period. 

Fig. B.2 (rigth side) and B.3 (rigth side) show the prediction for the period 2018–2019 and 23 January 

2022–28 January 2022, respectively. Overall, the prediction of the observed concentrations is accurate 

although the spring displays a small discharge variability and hence the variability in ion concentration 

is also small. 

 

5.4 Discussion  

When comparing the contributions of the solute species present as free ions and as part of complexes to 

the total concentration, complexation processes are particularly significant for SO4, followed in order 

by Ca, Mg, HCO3, and Na (Fig. 5.2a-c). As for the case of SO4 (Fig. 5.2e, f), for some solute species 

complexes represent a significant percentage of the total concentration and therefore have a pivotal role 

when deriving the total solute species concentration from the measured EC. Being our aim to derive 

high resolution time series for the ion concentration from the EC measurements, and not vice versa, we 

can conclude that karst system studies require to account for the role of complexation processes when 

applying EC decomposition methods to retrieve the concentrations of those solute species which form 

complexes.  

The uncertainty quantification was investigated for both watersheds. Due to the lack of EC and 

concentration measurements at high flow conditions for Kerschbaum, the analysis of this spring is to 

some extent limited. The inclusion of Kerschbaum in the present work was chosen to investigate the 

relevance of complexes in karst systems with different geologies. Moreover, the available data show 

that for catchments with stationary and homogeneous geology the method performs well both for 

interpolation and prediction purposes. 

The results of both the uncertainty quantification during interpolation (Fig. 5.5 and B.2a, Table B.1 in 

the supplementary material) and of the predictive model (Fig 5.6 and B.2b) show a positive correlation 

between the width of the uncertainty band and the relative variation in concentration. As already 

observed by Benettin and van Breukelen. (2017), the information contained in continuous 𝐸𝐶 time series 

better represents the dynamics of those solute species with higher contribution to EC and lower relative 

variation in concentration. Indeed, due to the use of a linear interpolation for the weight factors 𝑓𝑖, the 

larger the relative variation of an ion the wider the frequency distribution of its weight factor (Eq. 5.3) 

and consequently the wider the uncertainty in the computed concentration (Eq. 5.4).  
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Further interpretations of the results need to consider the different geologies of the study areas, which 

lead to diverse ion content, temporal variability, and transport processes. Kerschbaum is a dolomitic 

karst system with a single water contribution to the spring and whose EC comes almost entirely from 

Ca2+, Mg2+ and HCO3
- (Fig. 5.2b). On the contrary, Baget is a limestone system (lower contribution of 

Mg2+) characterized by an outcrop impermeable formation of black flysch (Fig. 5.1c), which affects the 

hydrochemistry of the spring discharge due to pyrite oxidation and thus increasing the concentration of 

SO4
2- (Ulloa-Cedamanos et al. 2020). The area also includes a gypsum clay formation (Fig. 5.1c), which 

we do not consider significantly impacting the hydrochemistry of the system due to its minor extension. 

Due to the black flysch, Baget is not a completely karst system and shows varying contributions of water 

from different geological formations during different events. This leads to significant changes in the 

frequency distribution of the weight factors observed between successive events (Fig. 5.4) and 

consequently affects the performance of the EC decomposition method in both the interpolation and 

prediction of the individual solutes.  

The discharge at Las Hountas shows large variability in solute species concentrations within a 

precipitation event and between successive events, due to the chemical compositions and response times 

of the different water contributions. This explains the relevant shifts in the frequency of occurrence of 

the weight factors 𝑓𝑖 observed at the spring between the events in October 2021 and November 2022 on 

one side and November 2021 on the other (Fig. 5.4). Despite being close in time, the events in October 

2021 and November 2021 show different hydrological and geochemical conditions (Fig. 5.7a, Fig. B4a) 

and thus different ion signatures. Consequently, as Fig. 5.6 shows for Ca, Mg and Cl, the dynamic 

behavior of the system causes the EC decomposition method to not satisfactory predict solute species 

concentrations for November 2021. On the contrary, being the frequency of occurrence of 𝑓𝑖 similar 

between October 2021 and November 2022 (Fig. 5.4), the method well predicts Ca and Mg for 

November 2022 (Fig. 5.6). The similar frequency of occurrence of the weight factors results from the 

similar response of the system during the events in October 2021 and November 2022, which are 

characterized by a sharp increase in water level and piston effect (Fig. 5.7a, Fig. B.5a). This indicates 

that to sample the variability of the weight factors in catchments with heterogeneous geology, it is 

necessary to collect multiple events.  

Fig. B.1 shows the dissolution processes characterizing the limestone and black flysch. According to the 

stoichiometry of the reactions, the dissolution of CaCO3 by both H2CO3 and H2SO4 leads to a lower 

alkalinity than what we would observe in the case of only dissolution by H2CO3. The reduction in 

alkalinity explains why the method overestimates HCO3 and underestimates SO4 at flow peak 

conditions, both when used to interpolate (Fig. 5.5) and predict (Fig. 5.6) the major solute species 

concentrations. Fig. 5.8 correlates the percentage reduction in alkalinity (Eq. 5.8) with the tendency of 

the method to overestimate and underestimate HCO3 and SO4, respectively. The time series of the 

equivalent ratio SO4
 over HCO3

 follows the same behavior of the reduction in alkalinity (Fig. 5.8a), 

proving the correlation between the dissolution of CaCO3 by H2SO4 and the decrease in HCO3
-. 
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Fig. 5.8b, c show the concentrations of HCO3 and SO4 (black lines) obtained by running the model with 

only few input concentrations (red points) and using the remaining observations to evaluate the results 

(gray points). The computed concentrations do not represent properly the increase in HCO3 and SO4 on 

October 4, if no measured solute concentrations representing the peak condition are given as input. This 

results from the fact that during flow peak conditions the weight factors of HCO3
- and SO4

2- are not 

adequately predicted by the linear interpolation and consequently the model has no information about 

the increase in the alkalinity reduction and in the equivalent ratio SO4
 over HCO3. Thus, the application 

of the EC decomposition method at peak conditions requires high-resolution ionic measurements or a 

better method to estimate the weight factors during such conditions. However, the linear interpolation 

of the weight factors of the other free ions seems to capture the peak conditions. This is the case for Ca 

(Fig. 5.8d), whose estimated peak concentration well represents the observations. 

To investigate the contributions from calcareous rocks and black flysch at different flow conditions, we 

compare the EC, water level (m) and weight factors 𝑓𝑖 of the free ions HCO3
- and SO4

2-, which were 

observed at Las Hountas during the event in October 2021 (Fig. 5.7), November 2021 (Fig. B.4) and 

November 2022 (Fig. B.5). As shown in Fig. 5.7a and B.5a, the first increase in water level on October 

4 and on November 22, respectively, is characterized by piston and flushing effects, which come with 

the simultaneous increase in both EC and water level. 

 

Fig. 5.7 Correlation between electrical conductivity EC (μS/cm), water level wl (m) and the weight 

factors 𝑓𝑖 (-) of HCO3
- and SO4

2- observed at Las Hountas for the period 4/10/2021 – 14/10/2021. a Time 

series of EC (black line) and water level (red line). b 3D scatter plots of 𝐸𝐶, water level and weight 

factor of HCO3
-. c 3D scatter plots of EC, water level and the weight factors of SO4

2-. 

High values of EC and water levels correspond to low values of 𝑓𝐻𝐶𝑂3
− and large vales of 𝑓𝑆𝑂4

2− 

(Fig. 5.7b, c, Fig. B.5b, c). Indeed, during high flow conditions, due to its faster response time, we 



  

104 
 

observe an increase in the relative contribution from the black flysch and a lower relative contribution 

from the calcareous rocks, which may even be under-estimated due to the existence of surface waters 

bypassing the spring during flood events (Mangin, 1975; Ulloa-Cedamanos et al., 2021). The second 

rise in water level on 6–7 October 2021 shows dilution processes and thus increase in water level and 

decrease in EC (Fig. 5.7a). The corresponding increase in 𝑓𝐻𝐶𝑂3
−  and decrease in 𝑓𝑆𝑂4

2− (Fig. 5.7b, c) are 

explained by the larger contribution of water coming from the karst calcareous formations, which had 

the time to get activated. Finally, during base flow conditions, the constant 𝐸𝐶 comes with high values 

of 𝑓𝐻𝐶𝑂3
−  and low values of 𝑓𝑆𝑂4

2− (Fig. 5.7b, c, Fig. B.5b, c), indicating that the water mainly comes 

from calcareous rocks. Therefore, from the comparison of 𝑓𝐻𝐶𝑂3
−  and 𝑓𝑆𝑂4

2−we can understand the 

dynamics of the system. This allows us to predict when the method is not able to represent the temporal 

variability in alkalinity reduction. This is the case of 4 October 2021, when the increase in 𝑓𝑆𝑂4
2− (Fig. 

5.7c) indicates a larger contribution from the black flysch and a consequent increase in the alkalinity 

reduction, which is not captured by the method (Fig. 5.8). 

 

Fig. 5.8 Correlation between the reduction in alkalinity due to the carbonate dissolution by sulfuric acid 

and the model performance (overestimation and underestimation of HCO3 and SO4, respectively) at the 

Las Hountas spring for the event 4/10/2021 – 14/10/2021. a Time series of the reduction in alkalinity 

(%) (black line) and the equivalent molar ratio SO4 /HCO3 (-) (red line). b, c, d Concentrations of HCO3, 

SO4 and Ca (mg/L) obtained by running the model with only few input concentrations (red points). 
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5.5 Summary 

This study investigates how a decomposition of electrical conductivity (EC) signals can be used to 

retrieve individual solute species concentrations time series in the case of karst systems. Starting from 

continuous EC and low-frequency water samples, the presented method estimates the concentrations of 

the major solute species at the same temporal resolution of the observed EC. Due to the large ionic 

content and complex speciation characterizing the discharge of karst springs, it was necessary to 

compute the distribution of solute species occurring as free ions and as part of aqueous complexes. The 

concentrations of the free ions, i.e. Ca2+, Mg2+, HCO3
-, SO4

2-, NO3
-, Cl-, Na+ and K+, are derived based 

on the linear interpolation of the weight factors 𝑓𝑖, which represent the relative contribution of each ion 

to the total measured 𝐸𝐶. Conversely, the concentrations of the solute species involved in complexes 

are obtained by means of speciation calculations with PHREEQC as difference between the total 

molality of a solute (mol/kgw) and the molality of the solution (mol/kgw). 

To investigate the relevance of complexation processes, we performed speciation calculations 

considering two karstic catchments with different geologies and temporal resolution of the available 

hydrochemical datasets, that is the Kerschbaum dolostone system in Austria and the Baget limestone 

system in France. The results of the uncertainty quantification performed within this work show that our 

method can successfully be applied in case of karst systems with a homogeneous geology, as in the case 

of Kerschbaum. For the latter the EC signal can be used to interpolate and predict with less uncertainty 

the temporal dynamics of those solute species with large contribution to the total 𝐸𝐶 and low variability 

of the weight factor 𝑓𝑖. In case of heterogeneous systems as Baget, the method cannot represent the 

mixing of the water contributions from the different geological areas of the catchment. The results 

further show that the correlation between EC, water level and the weight factors of HCO3
- and SO4

2- can 

support the investigation of the system functioning, allowing us to distinguish the response of the black 

flysch formation from that of the calcareous rocks.  

The possibility to interpolate high-resolution solute species concentrations time series, without 

performing continuous -and costly- ionic measurements, has a huge potential in the improvement of 

hydrochemical data availability and, consequently, supports the understanding of internal transport 

processes mechanisms and temporal scales. 
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Chapter 6 

High-resolution hydrochemical data to constrain event-based 

hydrological karst model concepts 

Richieri, B., Bittner, D., Sivelle, V., Hartmann, A., Labat, D., and Chiogna, G. (2024). On the value of 

hydrochemical data for the interpretation of flow and transport processes in the Baget karst system, 

France. Hydrogeology Journal. https://doi.org/10.1007/s10040-024-02801-2 

 

Abstract 

Continuous hourly time series of hydrochemical data can provide insights into the subsurface dynamics 

and main hydrological processes of karst systems. This study investigates how high-resolution 

hydrochemical data can be used for the verification of robust conceptual event-based karst models. To 

match the high temporal variability of hydrochemical data, the LuKARS 2.0 model was developed on 

an hourly scale. The model concept considers the interaction between matrix and conduit components 

to allow a flexible conceptualization of binary karst systems characterized by a perennial spring and 

intermittent overflow as well as possible surface water bypassing the spring. The model was tested on 

the Baget karst system, France, featuring a recharge area defined by the coexistence of karst and non-

karst areas. The Morris screening method was used to investigate parameter sensitivity, and to calibrate 

the model according to the Kling-Gupta Efficiency (KGE). Model verification was performed by 

considering additional hydrochemical constraints with the aim to represent the internal dynamics of the 

systems i.e., water contributions from the various compartments of the conceptual model. The 

hydrochemical constraints were defined based on high-temporal resolution time series of SO4
2- and 

HCO3
-. The results of this study show that the simulation with the highest KGE among 9000 model 

realizations well represents the dynamics of the spring discharge but not the variability of the internal 

fluxes. The implementation of hydrochemical constraints facilitates the identification of realizations 

reproducing the observed relative increase in the flow contribution from the non-karst area. 

 

Keywords: Karst, conceptual models, rainfall-runoff, hydrochemistry, France 
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6.1 Introduction 

Karst systems cover 10-15% of the Earth surface and 35% of the European continental area 

(Goldscheider et al., 2020), representing a major worldwide source of freshwater providing drinking 

water to 10-25% of the world´s population (Ford and Williams 2007; Stevanović, 2019). Hydrological 

models support the understanding of the system functioning and are fundamental to ensure the 

sustainable water management of karst water resources (Hartmann et al., 2014). However, modelling of 

karst systems is still a difficult task, due to the complex interaction between matrix and conduit domains 

(Hartmann et al., 2013a) and the difficulty in observing and measuring flow and transport processes in 

the subsurface (Berthelin and Hartmann, 2020). Sivelle et al. (2022b) investigated the relevance of 

excess air and thus hydrostatic pressure for the assessment of matrix-conduit exchange. As a result, large 

uncertainty characterizes the internal dynamics of karst systems i.e., fast discharge through the conduit, 

infiltration into the matrix and water contributions from different geological formations inside the 

recharge area (Chang et al., 2017). 

Hence, hydrological models need to be calibrated due to the lack of knowledge in model parameter 

values and in process understanding (Le Moine et al., 2008). Moreover, model validation is necessary 

to assess model reliability and utility for further applications (Andréassian, 2023; Klemeš, 1986). 

Typically, model calibration and validation are done using measured discharge time series at a 

monitoring site and computing performance metrics. Among the several existing metrics (Bennett et al., 

2013; Ferreira et al., 2020; Moriasi et al., 2007), the Kling-Gupta Efficiency (KGE) is considered 

suitable for capturing the entire flow regime (Gupta et al., 2009). However, a single metric is generally 

unable to properly evaluate all model characteristics and solely relying on optimal values of an objective 

function to assess a model has been criticized (Gupta et al., 2008; Leins et al., 2023). Indeed, acceptable 

values of a model performance indicator do not necessarily mean that the hydrological model is reliable 

due to the problem of equifinality (Cinkus et al., 2022), i.e., the existence of multiple optimal parameter 

sets that reproduce the observed values (Chiogna et al., 2024). Different models, characterized by 

different structures or parameter values, can result in satisfactory simulated spring discharge (Mudarra 

et al., 2019). Previous works have shown that models validated with a single spring monitoring site may 

not capture the internal functioning of karst system and result in large equifinality (Hartmann et al., 

2017). 

The use of hydrochemical data allows for a better understanding of the internal dynamics of karst 

systems. Beside the use of conservative tracers such as stable water isotopes (Wang et al., 2021; Winston 

and Criss, 2004), major ions and electrical conductivity (EC) are also used to investigate the spatial and 

temporal variability in the hydrological response of karts systems (Barbieri et al., 2005; Chang et al., 

2021; Gil-Márquez et al., 2017; Hartman et al., 2013). However, to take full advantage of the benefits 

of hydrochemical data to better capture the variability of the internal response of a system, the 

hydrochemical data should be at a resolution at least as detailed as the resolution of discharge 
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observations, in particular for event-based models. Nevertheless, hydrochemical data are typically 

collected at weekly or coarser temporal resolutions due to high analysis cost and time constraints. 

The aim of this study is to further contribute to ongoing research into the coupling of hydrological (e.g., 

spring discharge) and hydrochemical (e.g., high resolution ion concentration time series) information 

for the verification of conceptual event-based models. The method proposed by Richieri et al. (2023) is 

used to retrieve high resolution hydrochemical information from continuous measurements of electrical 

conductivity (EC). Moreover, the semi-distributed LuKARS 2.0 (Land use change modelling in KARSt 

systems) model, based on the original model from Bittner et al. (2018), is further developed by using it 

for the first time at an hourly timescale. LuKARS represents the discharge observed at the spring as the 

sum of water contributions draining different geological areas (hydrotopes) characterized by different 

response times. In this work, this approach is validated considering that different parts of the catchment 

can be characterized by different chemical signatures. The new version of the model represents the 

different compartments of a karst system as buckets, i.e., epikarst, matrix and conduits, and aims to 

provide an adaptable representation of binary karst systems with a perennial spring and intermittent 

overflow. In particular, the model provides an updated conceptualization of the interaction between 

matrix and conduit in comparison to Bittner et al. (2018) to allow a more flexible and consistent 

conceptualization of the subsurface system following the approach proposed in KarstMod (Mazzilli et 

al., 2019; Sivelle et al. 2023). To constrain model parameters, the KGE performance criteria is combined 

with the conceptual information derived from high-resolution hydrochemical data i.e., major ion 

concentrations. The hypothesis of the present work is that high temporal resolution hydrochemical data 

can support the verification of the conceptual model, whereas model structures simulating the spring 

discharge without consideration of hydrochemistry may feature a comparable KGE but may not match 

the internal dynamics of a system.  

The model was tested on the Baget system, an intensively studied karst watershed in France (Labat et 

al., 1999; Sivelle et al., 2022a) which is characterized by an absence of interbasin groundwater flow 

(Mangin, 1975; AL Khoury et al., 2023). Baget shows a heterogeneous geology combining limestone 

bedrock and an extensive outcrop formation of black flysch (karst and non-karst areas) (Ulloa-

Cedamanos et al., 2020). Time series at hourly resolution of the contributions of HCO3
- and SO4

2- to the 

total EC, called weight factors and derived by Richieri et al. (2023), contribute to the description of the 

internal dynamics of the Baget system, i.e., the response of water contributions from different geological 

areas in the catchment to different flow conditions.  

The manuscript is structured as follows. First the study area and the available dataset are presented. 

Then the new features of LuKARST 2.0 are described in detail, whereas the components of the model 

that remain unchanged are provided in the supplementary material. Finally, the Morris method is used 

for the sensitivity analysis of the model parameters and an envelope of behavioral simulations is defined 
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based on KGE. Finally, this study shows that only a limited subset of behavioral simulations can explain 

the observed hydrochemical dynamics. 

 

6.2 Materials and methods 

This section provides information about the Baget karst watershed and the hydrochemical dataset used 

to select an appropriate conceptual model and parameter values. The hydrochemical data were collected 

at Las Hountas spring for the period 30/03/2022 – 7/04/2022. This section also describes the previous 

investigations into the internal dynamics of the Baget karst system based on hydrochemical data at high 

temporal resolution (Richieri et al., 2023). 

6.2.1 Study area  

The Baget karst system is a binary karst system characterized by a perennial spring and intermittent 

overflow, located 10 km southwest of the city of Saint-Girons, in the Ariege administrative department, 

France (Fig. 6.1a, b). It has a recharge area of approximately 13 km2 and does not receive water from 

adjacent catchments (Mangin, 1975; AL Khoury et al., 2023). The vegetation of the recharge area is 

dominated by fir-beech forest, with only a small agricultural plot covering 3% of the recharge area 

(Sivelle et al., 2022a). Vegetation is particularly dense along the north-facing slope, whereas grassland 

occupies some of the south-facing slope. The Baget system is under the influence of the Atlantic oceanic 

climate with a mean annual air temperature of 12.3 °C, an average annual rainfall close to 1700 mm, 

and no influence of snow melt processes (Padilla et al., 1994). The annual precipitation distribution is 

bimodal, with peaks occurring in December and February (Ulloa-Cedamanos et al., 2020). 

The catchment features heterogeneous geology, dominated by calcareous lithologies originating from 

the Jurassic and Lower Cretaceous. In addition to the limestone bedrock, a large outcrop of relatively 

impermeable black flysch partially covers the south-facing slope (Fig. 6.1c – Fig. 6.1e). The extent of 

the black flysch was obtained using the BD Charm-50 geology map (French Geological Survey) by 

measuring the corresponding covered area. Its estimation of approximately 30% of the catchment is 

comparable to the 25.2% estimated by Ulloa-Cedamanos et al. (2020). Spring flow contributions derived 

from different geological areas of the catchment have undergone different dissolution processes. 

Calcium carbonate (CaCO3) associated with the limestone is dissolved by carbonic acid (H2CO3) 

resulting in water typified by elevated Ca2+ and HCO3
-. The black flysch contains pyrite, where oxidation 

processes release sulfuric acid (H2SO4), which in turn dissolves CaCO3 with the products SO4
2-, Ca2+ 

and HCO3
-. Consequently, the water contributions from the limestone bedrock and black flysch provide 

different components to the chemical signature at the spring (Richieri et al., 2023). A more detailed 

overview of the different sources affecting the chemical composition at the spring is given below in 

Subsection 6.2.3.  
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Fig. 6.1 Overview of the study site. a The location of the study area in Europe. b The location of the 

Antichan rain gauging station in relation to the study area. c Geological map of the Baget catchment 

with the location of the Las Hountas spring (modified after the BD Charm-50 geology map from the 

French Geological Survey). d Zoomed in area of the geological map showing the locations of the Las 

Hountas spring, at which the water samples were collected, and the outlet of the recharge area. e 

Geological subsurface cross-section in the location indicated in Fig. 1d with a black line. Elevation is 

provided in meters above mean sea level (m AMSL). Modified from Debroas (2009). 

The karstic watershed is characterized by one perennial spring, called Las Hountas. Las Hountas is 

situated 110 m away from the outlet of the catchment (Fig. 6.1d) and is representative of a part of the 

total response of the system. During precipitation events, the downstream part of the Baget catchment 
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recharges the Las Hountas spring. Only during high flood events, the karst conduits in the upper part of 

the catchment start to discharge water to the surface, actively contributing to the streamflow generation 

in the Lachein stream, which is usually dry (Sivelle et al., 2020). Groundwater discharge to streamflow 

in the upper part of the surface channel occurs around 50 days per year (Mangin, 1975). The surface 

water of the Lachein stream bypasses the Las Hountas spring and directly reaches the outlet of the 

catchment (Ulloa-Cedamanos et al., 2021). This is evident by comparing the measured discharge at the 

outlet and at Las Hountas spring: the discharge at the spring shows a plateau at approximately 0.6 m3/s 

(Fig. B.6 in supplementary material B.2.3).  

6.2.2 Data collection 

The hourly precipitation data used as an input for the model were recorded at the meteorological station 

of Antichan, approximately 8 km away from the spring (Fig. 6.1b). The observed discharge time series 

at the Las Hountas spring was derived by recording water level with an Aqua TROLL 200 device (In-

Situ Inc., United States) and applying the rating curve from Mangin (1975), which was adjusted to 

represent the current state of the cross section during additional field measurements performed in 2021 

and 2022. Evapotranspiration was not considered because this study focuses on the simulation of peak 

flows in response to intense precipitation events during which evapotranspiration effects are negligible. 

Table 6.1 contains information about the temporal resolution, number of samples and the statistics of 

the specific EC (μS/cm), water temperature, pH and major solute species total concentration (i.e., each 

present both as free ion and as part of complexes as described in Richieri et al. (2023)), i.e., Ca, Mg, 

HCO3, SO4, NO3, Cl, Na and K (mg/L), which were measured at Las Hountas spring during the event-

based sampling campaign from 30/03/2022 to 7/04/2022. The specific EC was measured with a time 

interval of 15 minutes by means of the In-Situ Aqua TROLL 200 device and reported at the standard 

temperature of 25°C. The water samples were collected by a 6712 ISCO sampler (Teledyne ISCO, 

United States), which was connected to the EC probe to automatically start sampling above a water level 

threshold (30 cm). The sampling frequency was hourly during the rising curve of the hydrograph, every 

two hours during the recession curve and then every three hours near baseflow conditions. The ISCO 

sampler was installed inside a shelter that always provided shade. The samples were collected every day 

in plastic vials with zero headspace, filtered through a 0.22 μm membrane and stored in a refrigerator at 

4 °C for approximately one week prior to analysis. For each sample, an aliquot for cation analysis was 

acidified with nitric acid (HNO3) to prevent complexation and precipitation (Weiss, 2020; Ulloa-

Cedamanos et al., 2020). The solute concentrations, provided at the standard temperature of 25°C, were 

analyzed by the laboratory Geosciences Environment Toulouse, France. The ICP – OES (inductively 

coupled plasma optical emission spectrometry) was used to quantify Ca, Mg, Na and K; ion 

chromatography was used to quantify NO3, SO4 and Cl; titration analysis was used to quantify HCO3. 
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To verify the accuracy of chemical quantification, the charge balance of each sample was computed 

using the software PHREEQC. The charge mass balance error ranged from 0.8 to 4.9% with a median 

of 2.4%. Since all the samples show a charge error lower than ±5%, the results of the laboratory analysis 

were considered reliable (Parkhurst and Appelo, 2013). Fig. B.7 in supplementary material B.2.4 shows 

the time series of the computed charge balance (%) together with the sum of cations (TC) and anions 

(TA) (mEq/L).  

Table 6.1 Statistics of the used datasets, including: temporal resolution (TR), number of samples 

(n), mean, standard deviation (SD), minimum (MIN) and maximum (MAX) values of the specific 

electrical conductivity EC (μS/cm), major solute species (mg/L), pH and water temperature T (°C) 

measured at the Las Hountas spring for the events 30/03/2022–7/04/2022. 

Statistic 𝐄𝐂  

(μS/cm) 

Ca 

(mg/L) 

Mg 

(mg/L) 

Na 

(mg/L) 

K 

(mg/L) 

HCO3
-
 

(mg/L) 

SO4  

(mg/L) 

NO3 

(mg/L) 

Cl 

(mg/L) 

pH T  

(°C) 

TR quarter-

hour 

event-

based 

event-

based 

event-

based 

event-

based 

event-

based 

event-

based 

event-

based 

event-

based 

event-

based 

quarter-

hour 

n  830 122 122 122 122 122 122 122 122 122 830 

mean 332.2 64.5 4.5 1.1 0.6 193.6 10.8 1.6 1.5 8.2 9.9 

SD 7.6 1.9 0.3 0.1 0.1 4.4 2.5 0.2 0.08 0.2 0.2 

MIN 316.5 61.1 3.7 0.9 0.3 185.5 7.9 1.2 1.3 7.2 5.7 

MAX 358.2 68.9 5.2 1.4 1.0 205.6 19.4 1.9 1.9 8.3 10.2 

 

6.2.3 Prior investigation into hydrochemical signals 

Richieri et al. (2023) previously investigated the hydrological functioning of the Baget karst system by 

comparing continuous water level recordings and EC measurements, with high-temporal resolution 

major solute concentrations for multiple precipitation events, occurring in October 2021, November 

2021 and November 2022. EC dynamics confirmed the complex hydrological response behavior of the 

Las Hountas spring, which is characterized by a simultaneous increase in water level and EC (flushing 

and piston effects) during precipitation events that followed dry periods, and by dilution processes 

during peak spring discharge periods. Richieri et al. (2023) also used the individual contributions of 

individual major ions i to the total observed EC, called weight factors fi, to identify the varying 

contributions of water derived from different areas of the watershed, i.e., limestone and black flysch, at 

different flow conditions. The individual contributions of each ion to the total EC were computed for 

each sample with PHREEQC, by considering ion molar conductivity, molar concentration and the 

electrochemical activity coefficient as well as pH and temperature of the sample (Table 6.1). A complete 

description of the equations used to compute the weight factors is provided in Richieri et al. (2023). Eq. 

6.1 describes the dissolution process characterizing the limestone formation. The dissolution of one mole 
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of calcium carbonate (CaCO3) by carbonic acid (H2CO3) produces one mole of Ca2+ and two moles of 

HCO3
-. Eq. 6.2 describes the dissolution process characterizing the black flysch containing pyrite, whose 

oxidation releases strong acids, i.e., sulfuric acid (H2SO4). The reaction between one mole of CaCO3 

and half mole of H2SO4 produces one mole of Ca2+, one mole of HCO3
- and half mole of SO4

2-. Thus, 

the dissolution of CaCO3 by both H2CO3 and H2SO4 leads to a lower alkalinity (HCO3
-) than what we 

would observe in the case of only dissolution by H2CO3. Consequently, it was shown that the increase 

and decrease in the weight factors of SO4
2- and HCO3

- (𝑓SO4
2− and 𝑓HCO3

−), respectively, indicate a 

relative increase in the water draining the black flysch, which was observed to be simultaneous to 

flushing and piston effects. On the contrary, the increase in 𝑓HCO3
−  indicates a larger water contribution 

from the limestone bedrocks during dilution processes and baseflow conditions (Richieri et al., 2023).  

CaCO3 + H2CO3 →  Ca2+ +  2HCO3
−                                                                                                             (6.1) 

 

CaCO3 +  0.5H2SO4 →  Ca2+ +  HCO3
− +  0.5SO4

2−                                                                                   (6.2) 

 

It is pertinent to note, that despite the black flysch containing Na silicate minerals (Na2SiO3) (Ulloa-

Cedamanos et al., 2021), the origin of HCO3
- is considered to be dominated by CaCO3 dissolution due 

to the low Na+ content of water samples (Table 6.1). The variability in silicate weathering input could 

be further investigated by means of isotopes (Hagedorn and Whittier, 2015; Spence and Telmer, 2005), 

which were not available for the present study. The role of Na silicate weathering by H2CO3 (Ulloa-

Cedamanos et al., 2021) is therefore considered negligible in the Baget catchment. In addition, a minor 

contribution of SO4
2- might be related to a gypsum formation within the catchment. However, as the 

area of gypsum bedrock only represents 0.2% of the recharge area (Ulloa-Cedamanos et al., 2020), the 

present study considers the mass flux of SO4
2- to be controlled by the discharge from the black flysch 

formation, which covers 30% of the catchment. 

Despite being often considered a conservative tracer, Cl- is not used in this study for the investigation 

of system dynamics for two reasons. Firstly, the computation of the weight factors fi at high temporal 

resolution is affected by high uncertainty in case of ions with low concentration, such as Cl- (Table 6.1) 

(Richieri et al., 2023). Second, this work focuses on the investigation of water draining different 

geological formations in the catchment, which does not contain any halite deposit or other geogenic 

sources of Cl- (Ulloa-Cedamanos et al., 2021). 

The Baget catchment is relatively unpolluted with an absence of SO4
2-, NO3

- and Cl- originating from 

anthropogenic activities. NO3
- was observed to be associated with organic decomposition and to increase 

in autumn. Indeed, the seasonal increase in precipitation causes the leaching of NO3
- from the soil 

(Ulloa-Cedamanos et al., 2020); whereas the observed SO4
2- and Cl- are entirely derived from geogenic 

sources and precipitation, respectively (Ulloa-Cedamanos et al., 2021). 
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6.3 Model development 

This section describes the LuKARS 2.0 model concept, together with the modifications done within this 

study with respect to the original model from Bittner et al. (2018). Subsequently, the Morris screening 

sensitivity analysis and the calibration procedure are presented. Finally, the use of high-resolution 

hydrochemical data for the selection of the model structure and parameters is described. The model was 

tested for the Las Hountas spring and calibrated and validated for the periods 1/03/2022– 29/03/2022 

and 30/03/2022 – 30/04/2022, respectively.  

6.3.1 Description of LuKARS 2.0 model concept 

LuKARS is a semi-distributed model developed by Bittner et al. (2018). The model divides the 

catchment into hydrotopes, which are defined as independent units exhibiting similar hydrological 

behavior and soil characteristics. The original model from Bittner et al. (2018) was later modified by 

Sivelle et al. (2022) to be coupled with KarstMod (Mazzilli et al., 2019). In this study, LuKARS 2.0 was 

developed and applied to the Baget catchment starting from the original model (Bittner et al., 2018) 

considering two hydrotopes in the upper compartment, which represent the main geological formations 

within the studied catchment, i.e., limestone and black flysch. LuKARS 2.0 adds three new features to 

LuKARS: (1) the model was modified from a daily to an hourly time step and the parameters adjusted 

accordingly; (2) a transfer between the matrix and conduit was implemented in the lower compartment 

of the model; and (3) a drainage from the conduit was implemented to represent water bypassing the 

spring at high flow conditions (Fig. B.6 in supplementary material B.2.3). Fig. 6.2 and Table 6.2 show 

the model concept and provide a description of the model parameters, respectively. The model concept 

was developed based on the understanding of system functioning, more precisely on the dynamics of 

the water contributions draining the different geological formations (Richieri et al., 2023). Since the 

hydrological response of the contribution from the black flysch was observed to be fast with no apparent 

influence on the baseflow, hydrotope 2 was defined as such to provide only fast flow to the conduit but 

no infiltration to the matrix. On the contrary, hydrotope 1 represents the limestone karst formation, 

which contributes to both the discharge to the conduit and infiltration in the matrix. The fast flow Qhyd 

(m3/s) from a certain hydrotope gets active when the water level in that hydrotope reaches the upper 

storage threshold Emax (mm) and continues until the water level goes down to the lower storage threshold 

Emin (mm) (hysteresis). On the contrary, the infiltration Qis (m3/s) is always active and linearly correlated 

with the water level in the hydrotope. Finally, the water in the conduit will be transferred to the spring 

with the linear function from Mazzilli et al. (2019) (supplementary material B.2.2, Eq. B.13). The 

implemented modifications to LuKARS are described here, whereas the model equations from the 

original model (Bittner et al., 2018) are reported in the supplementary material B.2.1.  
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Fig. 6.2 LuKARS 2.0 model concept including the implemented transfer between the matrix bucket and 

the conduit bucket and the drainage from the conduit bucket for the case of Las Hountas spring. The 

two hydrotopes are defined based on the main geological formations present in the recharge area i.e., 

karst bedrock and black flysch, and their response to rainfall. 

Transfer between matrix and conduit A transfer between matrix and conduit QMC (m3/s) was 

implemented in the lower compartment of the model to represent the dual behavior typical of karst 

systems. The transfer was defined based on the approach of Mazzilli et al. (2023) as function of the 

recharge area Ra (km2) the discharge coefficient kMC (mm/h), exponent aMC (-) and dimensionless water 

levels in the matrix M and conduit C (-). QMC (m3/s) was implemented as shown in Eq. 6.3, with t 

indicating the current time step, abs the absolute value and sgn the sign of the subtraction of the 

dimensionless water level in the conduit C from that in the matrix M (-). Positive values of QMC (m3/s) 

means that the current direction of flow is from the matrix to the conduit. To avoid numerical 

instabilities, Eq. 6.3 is solved using the analytical solution for the inter-compartment coupling (Mazzilli 

et al., 2023). 

𝑄MC,𝑡 = Ra ×  𝑘MC × sgn(𝑀𝑡 − 𝐶𝑡) × abs(𝑀𝑡 − 𝐶𝑡)𝑎MC                                                                          (6.3) 

Discharge from the conduit A drainage QCloss (m3/s) from the conduit was used to represent the plateau 

in discharge and the water bypassing the spring (Fig. B.6 in supplementary material B.2.3), which results 

from the natural drainage through the conduits at high flow conditions. The drainage was implemented 

to start when the water level in the conduit Ct (where the subscript t indicates the time step at which a 

quantity is computed) gets higher than the storage threshold Closs (mm) and to remain active as long as 

the water level does not drop below it. Eq 6.4 shows the implementation of the drainage QCloss,t (m3/s), 
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with Ra (km2) the recharge area and dt (h) the hourly time step. The water level is checked at each time 

step t and the excess water exits immediately from the system without reaching the spring.  

if 𝐶𝑡 > 𝐶loss ∶   𝑄Closs,𝑡 = (𝐶𝑡 − 𝐶loss) ∗
Ra

𝑑𝑡
   and   𝐶𝑡 = 𝐶loss,      

 else : 𝑄𝐶𝑙𝑜𝑠𝑠,𝑡 = 0                                                                                                                                               (6.4) 

Table 6.2 Overview of the model parameters of LuKARS 2.0, including symbol, unit, description, 

and range used for the Morris analysis. 

Area Symbol  Unit Description  Range 

Catchment  Ra (km2) Total recharge area  9 – 15  

Karst (HYD1) lhyd_1 (m) Mean distance of hydrotope 1 to the spring 1500 – 6500  

khyd_1 (mm2/h) Discharge coefficient for the fast flow from 

hydrotope 1 to the conduit (Qhyd_1) 

1 – 10000  

Emin_1 (mm) Lower storage threshold for hydrotope 1 8 – 20  

Emax_1 (mm) Upper storage threshold for hydrotope 1 21 – 200  

α _1 (-) Exponent for the fast flow from hydrotope 1 to 

the conduit (Qhyd_1) 

0 – 2  

kis_1 (1/h) Discharge coefficient for the infiltration from 

hydrotope 1 to the matrix (Qis_1) 

10-7– 10-3 

 

Black flysch 

(HYD2) 

lhyd_2 (m) Mean distance of hydrotope 2 to the spring 1000 – 4000  

khyd_2 (mm2/h) Discharge coefficient for the fast flow from 

hydrotope 2 to the conduit (Qhyd_2) 

1 – 1000  

Emin_2 (mm) Lower storage threshold for hydrotope 2 1 – 5  

Emax_2 (mm) Upper storage threshold for hydrotope 2 6 – 30  

α _2 (-) Exponent for the fast flow from hydrotope 2 to 

the conduit (Qhyd_2) 

0 – 2  

Lower 

compartment  

kMC (mm/h) Discharge coefficient for the transfer between 

matric and conduit (QMC) 

10-5 – 10-1  

aMC (-) Exponent for the transfer between matric and 

conduit (QMC) 

1 – 3  

Closs (mm) Storage threshold for the conduit 10-2 – 100 

kCS (mm/h) Discharge coefficient for the flow from the 

conduit to the spring (QCS) 

10-3 – 101 

aCS (-) Exponent for the flow from the conduit to the 

spring (QCS) 

1 – 4  
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6.3.2 Sensitivity analysis (Morris screening) 

The identification of the most sensitive model parameters and potential nonlinear interactions was done 

with the elementary effects method, also known as Morris screening (Campolongo et al., 2007; Morris, 

1991). The Morris screening is a one-at-a-time (OAT) method to perform global sensitivity analysis 

which is widely applied in literature and it is often used in case of models characterized by a large 

number of input parameters for which variance based sensitivity analysis would be computationally 

demanding (Campolongo et al., 2007; Jaxa-Rozen and Kwakkel, 2018; Merchán-Rivera et al., 2022; 

Smith, 2013). The Morris method considers that each model parameter set q = [q1,…,qn] varies across a 

discrete number l of values, called levels, forming a n-dimensional l-level grid Γl. The method relies on 

the average of the elementary effects over the parameter space to provide a measure of global sensitivity. 

The elementary effect di(q) of the ith input parameter quantifies the approximate local sensitivity at the 

point q and is defined as in Eq. 6.5 (Smith, 2013) 

𝑑𝑖(𝑞) =
𝑓(𝑞1, … ,  𝑞𝑖−1,  𝑞𝑖 + 𝛥, 𝑞𝑖+1, … , 𝑞𝑛) − 𝑓(𝑞)

𝛥
=  

𝑓(𝑞 +  𝛥𝑒𝑖) − 𝑓(𝑞)

𝛥
                                      (6.5) 

where ei is a vector of zeros with one on the ith components and 𝛥 is the stepsize which is chosen from 

the set shown in Eq. 6.6 (Smith, 2013) 

𝛥 ∈  {
1

𝑙 − 1
, … , 1 − 

1

𝑙 − 1
}                                                                                                                              (6.6) 

To obtain a global sensitivity measure, Campolongo et al. (2007) and Morris (1991) proposed the mean 

µ* and variance σ, respectively, of the finite-dimensional distribution Gi associated with the absolute 

value of the elementary effect di(q), which is derived from randomly sampling q within Γl. Considering 

r sampling trajectories, these metrics associated with the ith parameter can be expressed, as shown in Eq. 

6.7 and Eq. 6.8, as function of the elementary effect associated to each defined trajectory j.  

𝜇𝑖
∗ =  

1

𝑟
 ∑|d𝑖

𝑗
(𝑞)|

𝑟

𝑗=1

                                                                                                                                             (6.7) 

𝜎𝑖
2 =  

1

𝑟 − 1 
 ∑(d𝑖

𝑗(𝑞) − µ𝑖)
2

 𝑤𝑖𝑡ℎ 

𝑟

𝑗=1

𝜇𝑖 =  
1

𝑟
 ∑ d𝑖

𝑗(𝑞)                                                                          (6.8)

𝑟

𝑗=1

 

Where 𝑑𝑖
𝑗
 is the elementary effect associated with the ith parameter and jth trajectory.   

High values of σ indicate possible interactions between the model parameters and/or of parameter 

nonlinearity. The parameters with σ/μ* smaller than 0.1 or between 0.1 and 1 are almost linear or 

monotonic, respectively. The parameters with σ/μ* larger than 1 are characterized by marked 

nonmonotonic nonlinearities or interactions with other parameters (Sanchez et al., 2012). µ* and σ are 

constructed by considering r trajectories of n+1 points in the parameter space. The total number of 
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realizations accounted in the metrics calculations is defined by (n+1)*r. For a detailed explanation of 

the method, one can refer to the works of Morris (1991) and Campolongo et al. (2007) as well as to the 

book of Smith (2013).  

In this study, Morris was run for the calibration period (1/03/2022 – 30/03/2022) by using the sensitivity 

analysis library in Python (SALib) and considering the 17 model parameters reported in Table 6.2, 500 

trajectories and 100 grid levels, for a total of 9000 realizations. The length of the calibration period was 

selected considering the aim of building an event-based model. The number of realizations was 

considered sufficient since the method with 1000 trajectories and 200 grid levels showed convergence 

of the results. Table 6.2 shows the parameter ranges used for the Morris analysis. Since it was the first 

application of LuKARS at hourly scale, it was required to initially investigate the parameter ranges by 

means of an independent set of 10000 Monte Carlo simulations. In addition, the parameter ranges for 

the two hydrotopes were selected to be consistent with the observations of the water contribution from 

the two different geological formations. A lower upper storage threshold was set for the black flysch, 

i.e., hydrotope 2, to represent its faster activation and thus the relative increase in the water contribution 

at beginning of heavy precipitation events (Richieri et al., 2023). The extends of hydrotope 1 and 

hydrotope 2 were taken fixed and equal to 70% and 30% of the entire catchment, respectively. Each 

realization performed for the Morris method was evaluated by computing the Kling-Gupta Efficiency 

(KGE). Eq. 6.9 shows the equation for the computation of KGE, with rc the linear correlation between 

the observations and simulations, σsim the standard deviation in simulations, σobs the standard deviation 

in observations, μsim the simulation mean and μobs the observation mean (Knoben et al., 2019).  

KGE = 1 − √(𝑟c − 1)2 + (
𝜎sim

𝜎obs
− 1)

2

+ (
𝜇sim

𝜇obs
− 1)

2

                                                                           (6.9) 

Among the 9000 model realizations used for the sensitivity analysis, the realization with the highest 

KGE was considered as the selected one, while the subset of realizations with a KGE larger than 0.5 

was defined as behavioral (e.g., Beven and Freer, 2001). To assess the uncertainty of the model, each 

flow component (Qhyd_1, Qhyd_2, Qis_1, QMC, QCloss and QCS (m3/s)) derived by using the selected 

parameters values was compared to the distribution of the behavioral simulations, i.e., interquartile and 

10-90 percentile envelopes.  

6.3.3 Model selection considering hydrochemical constraints 

Once the selected and behavioral parameter sets were found, they were used to validate the model for 

the period 30/03/2022 – 30/04/2022. Thereafter, it was necessary to check if the selected simulation 

represented not only the discharge at the spring but also the internal dynamics of the system, i.e., water 

contributions from the limestone and black flysch. For this purpose, the flows from hydrotope 1 

(limestone) and 2 (black flysch) to the conduit together with the transfer between the matrix and conduit 

were compared to the observed hydrochemical data recorded during the increase in water level – 
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occurred in the two days 30/03 and 1/04/2023 – for the event 30/03/2022 – 7/04/2022. Therefore, three 

additional criteria were defined to constrain among the multiple Morris realizations with KGE larger 

than 0.5 those also matching the hydrochemical information. The criteria were identified based on the 

weight factors (Richieri et al., 2023) computed for the time series of HCO3
- and SO4

2- observed during 

the event in April 2022 (Table 6.1) and are described in detail in the result (Subsection 6.4.3). It is 

important to note that the weight factors were computed using PHREEQC by considering for each water 

sample the measured pH (Table 6.1). In addition, despite HCO3
- not being a conservative species, the 

alkalinity in case of pH between 7.2 and 8.3 (Table 6.1) is typically considered to derive from HCO3
- 

alone (Boyd, 2020). The hydrochemical constraints were defined based on HCO3
- and SO4

2- as these 

ions were previouslyused for the investigation of the internal dynamics of the Baget system (Richieri et 

al., 2023). In addition, both HCO3
- and SO4

2- were proved to be present at Las Hountas spring at 

sufficiently high concentration to be retrieved at high temporal resolution by applying the EC 

decomposition method from Richieri et al. (2023). Indeed, the EC decomposition method (Richieri et 

al., 2023) allows to retrieve accurate concentration time series at high temporal resolution for those 

solutes present with a sufficiently high concentration and thus significantly contributing (approximately 

>6%) to the total EC. Whereas the reconstructed time series of solutes with low concentration, e.g., Cl- 

(Table 6.1), are subject to large uncertainty. 

6.4 Results 

This section presents the results of the investigation. Firstly, the results of the Morris analysis are 

presented both in terms of sensitivity and non-linear interaction among the model parameters. Secondly, 

the results of the model calibration and validation considering the KGE of the spring discharge are 

shown together with the respective uncertainty bands. Finally, it is shown how the hydrochemical 

criteria were used to further constrain the model by considering not only the discharge at the spring but 

also the expected internal flow dynamics. 

6.4.1 Sensitivity analysis  

The results of the sensitivity analysis based on the Morris screening method are evaluated by comparing 

the mean µ* and standard deviation σ of the distribution function of each parameter. Fig. 6.3a shows the 

value of µ* for each parameter in descending order, while Table 6.3 contains the corresponding 

sensitivity ranking. Among the model parameters, the discharge coefficient for the flow from the conduit 

to the spring kCS is the most sensitive, followed in order by the upper storage threshold for hydrotope 1 

Emax_1 and by the storage threshold for the conduit Closs. On the contrary, the discharge coefficient kMC 

and the exponent aMC, which are both related to the transfer between matrix and conduit (QMC), are the 

least sensitive. In between the most and least sensitive parameters, the parameters related to the flow 

components from the hydrotope 1, i.e., limestone, are more sensitive than those from the hydrotope 2, 

i.e., black flysch. 
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Fig. 6.3b shows the scatter plot of the computed σ and µ*, delineating the areas of the graph 

corresponding to monotonic and/or linear interactions and nonlinear nonmonotonic interactions 

(Sanchez et al., 2012). Most of the parameters fall above the bisector, indicating strong nonlinear 

nonmonotonic interaction among most of the model parameters.  

 

Fig. 6.3 Results of the Morris screening sensitivity analysis. a Mean of the absolute values of the 

elementary effects (μ*) for each model parameter as index of their sensitivity. b Mean of the distribution 

of the absolute values (μ*) against the standard deviation of the distribution (σ) for each model 

parameter; the areas of the graph corresponding to monotonic and/or linear interactions and nonlinear 

interactions (Sanchez et al. 2012) are shown with a dashed gray line. 
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Table 6.3 Overview of the results of the Morris analysis, including for each parameter the 

sensitivity ranking, the selected parameter value and the median and standard deviation for the 

behavioral simulations based on KGE.  

Area Parameter  Sensitivity 

ranking 

Selected 

parameter value 

Behavioral 

median 

Behavioral 

stand.dev. 

Catchment  Ra (km2) 8 12.9 12.0 1.78 

Karst 

(HYD1) 

lhyd_1 (m) 6 6050 4430  1350 

khyd_1 (mm2/h) 5 4140 3640  2990 

Emin_1 (mm) 10 8.24 12.5  3.54 

Emax_1 (mm) 2 124 142 45 

α _1 (-) 4 1.19 1.39 0.46 

Log(kis_1) (1/h) 9 -5.34 -4.74  -3.65 

 

Black flysch 

(HYD2) 

lhyd_2 (m) 13 3300 2610 900 

khyd_2 (mm2/h) 11 274 405 287 

Emin_2 (mm) 15 2.58 2.94  1.19 

Emax_2 (mm) 12 27.8 18.61  6.46 

α _2 (-) 14 1.8 1.03 0.58 

Lower 

compartment  

Log(kMC) (mm/h) 16 -4.03 -3.14 -1.69 

aMC (-) 17 2.33 2.01 0.59 

Closs (mm) 3 0.37 0.69  0.6 

kCS (mm/h) 1 0.56 1.42  2.46 

aCS (-) 7 1.48 2.39  0.94 

 

The sensitivity of the parameters was investigated by considering the distribution of the performance of 

the Morris model realizations over the parameter ranges (Table 6.2, Fig. 6.4).  

 

Fig. 6.4 Distribution of occurrence of the Kling-Gupta Efficiency (KGE) of the model realizations 

obtained by means of the Morris screening sensitivity analysis for a the most sensitive parameter i.e., 

the recession coefficient of the flow from the conduit to the spring (kCS), and b for the least sensitive 

parameter i.e., the exponent of the flow transfer between the matric and the conduit (aMC). 
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Fig. 6.4 shows the distribution of occurrence of the metric KGE of the model realizations for the 

most and least sensitive parameters, which are the discharge coefficient of the flow from the conduit to 

the spring kCS and the exponent of the transfer between matrix and conduit aMC, respectively (Fig. 6.3a, 

Table 6.3). The distribution of the realizations with KGE lower than zero, larger than zero and larger 

than 0.5 confirms the sensitivity rank obtained with the Morris analysis (Table 6.3). Indeed, for the 

exponent aMC, all the three distributions of KGE are uniform over the parameter range (Fig. 6.4b). On 

the contrary, for the discharge coefficient kCS the realizations with KGE larger than 0 and larger than 0.5 

show a probability of occurrence skewed towards the right side of the parameter range (Fig 6.4a).  

 

6.4.2 Model Calibration and validation 

Among the 9000 Morris realizations, the parameter sample corresponding to the highest KGE was 

chosen as the selected parameter set and the corresponding realization as selected discharge. The 

selected parameters, calibrated for the period 1/03/2022 – 30/03/2022, are shown in Table 6.3 and lead 

to a KGE of 0.89. The model was then validated with the same selected parameter values for the period 

30/03/2022 – 30/04/2022 leading to a KGE of 0.8. Fig. 6.5a shows the calibrated and validated discharge 

time series together with the observed discharge at the spring. Overall, the simulated discharge matches 

the rising and falling limbs of the observed hydrograph, with the exception of the recession phase 

between April 4 and April 18 which is underestimated by 0.08 m3/s on average. For a better 

visualization, Fig. B.8 in supplementary material B.2.5 shows the time series of the observed discharge, 

selected discharge among the Morris´ realizations based on KGE and difference between the observed 

and selected discharges at the Las Hountas spring. 

To account for the uncertainty in the model results, the distribution of the Morris behavioral simulations 

with a KGE greater than 0.5 were considered for both the calibration and the validation periods. Fig. 6.5 

shows, for each flow component, i.e., Qspring, Qhyd_1, Qhyd_2, Qis_1, QMC, and QCloss, the interquartile and 

10-90% percentile envelopes as well as the median of the 448 selected simulations. For each flow 

component, the selected simulated discharge falls inside the interquartile range. The simulated discharge 

at the spring Qspring and the flow from the hydrotope 1 to the conduit Qhyd_1 show the lowest relative 

width of the interquartile uncertainty band (Fig. 6.5a, b, Table 6.4). On the contrary, the flow 

components characterized by larger uncertainty are the infiltration from hydrotope 1 to the matrix Qis_1 

and the transfer between the matrix and conduit QMC (Fig. 6.5d, e , Table 6.4). The relative width of the 

10-90% percentile ranges follows the same behavior as the interquartile ranges: Qspring and Qhyd_1 show 

the narrowest bands (Fig. 6.5a, b, Table 6.4). Whereas Qis_1, QMC and QCloss are characterized by the 

largest uncertainty (Fig. 6.5d-f, Table 6.4). The drainage from the conduit QCloss is active only during 

high peak discharges, whereas is null at low flow conditions (Fig. 6.5f). 
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Fig. 6.5 Simulated (red lines) flow components (Qspring, Qhyd_1, Qhyd_2, Qis_1, QMC and QCloss) of the 

selected simulation together with their uncertainty bands computed from the distribution of the 

behavioral simulations with a KGE larger than 0.5 (gray bands). The dark grey and grey areas of the 

bands represent the interquartile and the 10-90% percentile ranges of the behavioral simulations, 

respectively, while the black line is the median of the distribution. The blue line is the discharge 

observed at the spring. 
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Table 6.4 Relative width of the uncertainty bands computed from the distribution of the behavioral 

simulations (KGE > 0.5) and of the constrained simulations (hydrochemical constrains) for the flow 

components Qspring, Qhyd_1, Qhyd_2, Qis_1, QMC and QCloss. Both the relative with of the interquartile and 10-

90% percentile ranges were normalized considering the mean of the behavioral and constrained 

simulations. 

Flow 

component 

Behavioral simulations Constrained simulations 

 Relative width 

interquartile 

range 

Relative width 10-

90% percentile 

range 

Relative width 

interquartile 

range 

Relative width 10-

90% percentile 

range 

Qspring 0.345 0.613 0.185 0.555 

Qhyd_1 0.386 0.774 0.336 0.941 

Qhyd_2 0.822 1.44 0.396 0.844 

Qis_1 2.66 1.99 0.942 1.57 

QMC 2.66 2.00 0.967 1.64 

QCloss 0.39 2.41 0.962 3.1 

 

6.4.3 Model selection using hydrochemical constraints 

After validating the model by only considering the KGE metric, it was investigated whether the internal 

dynamics of the system, i.e., water contributions from the limestone and black flysch, were represented 

or not. The observed temporal dynamics of the system show high temporal variability, justifying the 

high-temporal resolution of hydrochemical data collection. Here, daily sampling frequencies or 

averaged daily values would be unsuitable to represent the variability of the water contributions. For 

this purpose, the high-temporal resolution hydrochemistry data collected in April 2022 (Table 6.1) were 

used together with the understanding of the system functioning. Richieri et al. (2023) found out that it 

is possible to distinguish the water contributions from the two main geological formation present in the 

Baget catchment by looking at the contribution to the total EC, called weight factor 𝑓𝑖, of HCO3
- and 

SO4
2-. More precisely, a simultaneous increase in 𝑓SO4

2− and decrease in 𝑓HCO3
−  indicated an increase in 

the relative contribution from the black flysch (Richieri et al. 2023). Fig. 6.6 shows water level wl (m), 

EC (μcm/S) and weight factors 𝑓HCO3
−  (-) and 𝑓SO4

2− (-) time series observed at the spring during the 

increase in water level, which occurred between 30/03 and 1/04/2023, for the event 30/03/2022 –

7/04/2022. Three peaks in 𝑓SO4
2−, simultaneous to low point in 𝑓HCO3

− were observed on May 30 at 8pm, 

May 31 at 9.30am and May 31 at 10pm. However, the simulation selected among the 9000 Morris 

realizations (highest KGE) does not represent the observed varying relative water contributions. Indeed, 

the flow from the limestone to the conduit Qhyd_1 and the flow from the black flysch to the conduit Qhyd_2 

are almost parallel lines with a null transfer between matrix and conduit QMC (Fig. 6.7a).  
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Fig. 6.6 Water level wl (m), electrical conductivity EC (μcm/S) and weight factors 𝑓𝐻𝐶𝑂3
− (-) and 𝑓𝑆𝑂4

2− (-

) time series observed at the Las Hountas spring during the increase in water level – occurred in the two 

days 30/03 and 1/04/2023 – for the event 30/03/2022 –7/04/2022. The weight factors are computed as 

the contribution of the individual free ion to the total EC (Richieri et al. 2023). The three green panels 

indicate the times at which there is a simultaneous increase in 𝑓𝑆𝑂4
2− (-) and decrease in 𝑓𝐻𝐶𝑂3

− (-). 

 

Fig. 6.7 Simulated discharge time series for the transfer between matrix and conduit QMC, the flow from 

hydrotope 1 (limestone) to conduit Qhyd_1 and the flow from hydrotope 2 (black flysch) to the conduit 

Qhyd_2 during the increase in water level – occurred in the two days 30/03 and 1/04/2023 – for the event 

30/03/2022 –7/04/2022. a Discharge time series from the Morris´ simulation selected based on the KGE 

of the spring discharge. b Median and interquartile range of the behavioral Morris ‘simulations 

respecting the three hydrochemical constraints. The three green arrows indicate the times at which the 

increase in the contribution from the black flysch Qhyd_2 is larger than that from the limestone Qhyd_1. 
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Based on the observed hydrochemical data (Fig. 6.6), three hydrochemical constraints were used 

to identify among the Morris realizations with KGE larger than 0.5 those also respecting the internal 

dynamics of the system. The first criterion defines that the standard deviation of the transfer between 

matrix and conduit QMC needs to be significant. Here, the presented conceptual model requires that an 

exchange between matrix and conduit exists. To define a threshold value to consider significant the 

exchange, it is considered a standard deviation computed over the calibration period which has to be 

larger than the mean standard deviation of the behavioral Morris simulations (0.004). In fact, many 

behavioral simulations lead to zero or minimal exchange between the two compartments. Other 

thresholds for the minimum accepted standard deviation were also tested: smaller thresholds (e.g., 

0.002) had limited impact on the selected simulations respecting all three criteria, whereas larger 

thresholds (e.g., 0.01) led to no simulation respecting all three criteria. The second criterion states that 

the increase in the flow from the black flysch to the conduit (Qhyd_2) during the rising limb of the 

hydrograph must be larger than the increase in the flow from the limestone to the conduit (Qhyd_1) in the 

same period. Finally, the third criterion defines that, on April 1, the flow from the black flysch to the 

conduit (Qhyd_2) must be lower than the flow from the limestone to the conduit (Qhyd_1). Fig. 6.7b shows 

the median and interquartile ranges of Qhy_1, Qhyd_2 and QMC for the seven Morris realizations respecting 

the three defined hydrochemical constrains. The median of the flow from the limestone (Qhyd_1) and 

black flysch (Qhyd_2) to the conduit captures the relative increases in water contribution from the black 

flysch observed on May 30 at 8pm, May 31 at 9.30am and May 31 at 10pm, with the first peak 

anticipated of about 12 hours (Fig. 6.7b, Fig. 6.6). The median of the transfer between matrix and conduit 

(Fig. 6.7b) is positive during the entire rising limb of the hydrograph, indicating flow direction from the 

matrix to the conduit.  

Fig. 6.8 shows the distribution of the constrained Morris simulations, i.e., the simulations respecting 

both the constraint on the spring discharge (acceptable simulations with KGE larger than 0.5) and the 

three hydrochemical constrains. The relative interquartile ranges of the constrained simulations (Table 

6.4) are reduced in comparison to the distribution of the simulations considered behavioral based on the 

discharge KGE (Fig. 6.5) for all the flow components except QCloss. As observed in Fig. 6.5, Qspring (Fig. 

6.8a) and Qhyd_1 (Fig. 6.8b) are characterized by the lowest relative width of the interquartile band, 

whereas Qis_1 (Fig. 6.8d), QMC (Fig. 6.8e) and QCloss (Fig. 6.8f) by the largest (Table 6.4). The relative 

width of the 10-90% percentile ranges is less significantly reduced than the interquartile ranges (Fig. 

6.5, Fig. 6.8). Qspring (Fig. 6.8a) shows the lowest relative width of the percentile band, while QMC (Fig. 

6.8e) and QCloss (Fig. 6.8f) show the largest (Table 6.4). Despite the reduction in the uncertainty bands, 

the median of the distribution of Qspring does not respect the plateau of 0.6 m3/s (Fig. B.6 in 

supplementary material B.2.3). Qhyd_1 and QCloss are the only flow components displaying larger relative 

width of the percentile band (Fig. 6.8b, Fig. 6.8f) in comparison to what observed without considering 

the hydrochemical constraints (Fig. 6.5, Table 6.4). Finally, the 10-90% percentile bands for Qhyd_2 and 

QCloss are characterized by a relative width which increases proportionally with the discharge.  
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Even if the 10-90% percentile range for Qspring is overall decreased (Fig. 6.8a), the percentile band is 

reduced for the calibration and increased for the validation period (Fig. 6.5a, Fig. 6.8a). On the contrary 

of what was observed before applying the hydrochemical constraints (Fig. 6.5a), the observed discharge 

at the spring falls outside the 10-90% percentile band for the calibration and inside the percentile band 

for the validation period (Fig. 6.8a). This results from the fact that the 10-90% percentile range of Qspring 

respecting the hydrochemical constraints (Fig. 6.8a) includes realizations which were excluded from the 

10-90% percentile range of the realizations selected based only on KGE (Fig. 6.5a).  

To compare the performance of the model in simulating the discharge at the spring before and after 

considering the hydrochemical constraints, Fig. B.8 in supplementary material B.2.5 shows the time 

series of the difference between observed discharge and constrained discharge. The constrained 

discharge corresponds to the realization with the highest KGE among the subset of realizations 

respecting the hydrochemical constraints. 

6.5 Discussion 

This section reports the novelties of the new LuKARS 2.0 conceptual model and on the use of 

hydrochemical criteria for the verification of model concept and parametrization. 

 

6.5.1 New LuKARS conceptual model 

LuKARS 2.0 was developed at hourly scale starting from the original LuKARS model at daily scale 

(Bittner et al., 2018). When comparing the values of the parameters which are in common to both 

models, the discharge coefficient of the fast flow khy and of the infiltration to the matrix kis are the 

parameters showing the largest variation between daily (reported in Bittner et al., 2018) and hourly 

simulations (this study). This difference in magnitude can be explained by the fact that the karst system 

in which Bittner et al. (2018) tested LuKARS, i.e., Kesrchbaum, does not show relevant concentrated 

recharge processes and thus is characterized by a more pronounced infiltration than the Baget system, 

which shows a natural subsurface drainage rapidly recharged by sinkholes along the Lachein stream 

(Mangin, 1975; Sivelle and Labat, 2019). Thus, the response of Kerschbaum can be described by means 

of lower khy and larger kis than the Baget system.  

To represent the plateau in the discharge time series at the Las Hountas spring (Fig. B.6 in 

supplementary material B.2.3), a drain is implemented from the conduit out of the catchment. 

The sensitivity analysis indicates that the parameter controlling the activation of the drainage 

(Closs) is the third most sensitive parameter (Table 6.3). 
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Fig. 6.8 Uncertainty bands computed from the distribution of the behavioral simulations with a KGE 

larger than 0.5 and respecting the three hydrochemical constrains for the flow components Qspring, Qhyd_1, 

Qhyd_2, Qis_1, QMC and QCloss (gray bands). The dark grey and grey areas of the bands represent the 

interquartile and the 10-90% percentile ranges of the behavioral simulations, respectively, while the 

black line is the median of the distribution. The blue line is the discharge observed at the spring 

The selected Morris´ simulation as well as the interquartile range of the behavioral simulations 

(Fig. 6.5) confirm the relevance of the drain to discharge out of the system the excess water (Fig. 6.5f) 

and thus respect the maximum threshold of 0.6 m3/s at the spring (Fig. B.6 in supplementary material 

B.2.3). However, the median of the behavioral simulations coincides with the 25% quartile and is 

constantly null throughout the calibration and validation periods, meaning that QCloss does not play a role 
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for 50% of the realizations (Fig. 6.5f). The behavioral simulation respecting the hydrochemical data 

show the same behavior (Fig. 6.8f): the median of the QCloss is constantly null while the interquartile and 

10-90% percentile bands show the large impact that the drainage from the conduit has for a share of the 

realizations. This indicates, as discussed below, that further data at high temporal resolution, such as 

solutes and isotopes time series, should be considered to constrain the model parameters. In addition, 

time series collected in different points of the catchment would give more insight into the role of the 

conduits as natural drain as well as into the dynamics of the water draining from the different recharge 

areas. 

To represent the characteristic dual response behavior of karst systems, the original LuKARS model 

(Bittner et al., 2018) was further modified by implementing two buckets in the lower compartment, i.e., 

matrix and conduit, and a transfer QMC between these two. The sensitivity analysis indicates that the 

parameters controlling the transfer between matrix and conduit QMC, i.e., the discharge coefficient kMC 

and exponent aMC, are the least sensitive parameters (Table 6.3, Fig. 6.3a). The selected Morris 

simulation and the median of the realizations with KGE larger than 0.5 are characterized by no and little 

influence of QMC on the simulated discharge at the spring, respectively (Fig. 6.5e). The role of the 

transfer between matrix and conduit becomes more relevant after applying the hydrochemical 

constraints: the realizations respecting the hydrochemical data (Fig. 6.6) present an increase in the width 

of the interquartile range and a median larger than the mean standard deviation of the behavioral Morris 

simulations i.e., 0.004 (Fig. 6.8e). 

Overall, the selected Morris realization well represents the dynamics of the spring discharge Qspring for 

both the calibration and validation, with exception for the period between April 4 and April 18 in which 

the simulated discharge is lower than the observed discharge (Fig. 6.5a). The model cannot represent 

the increase in discharge at the spring on April 4 due to the input data, which do not show significant 

precipitation on April 4 that could cause the increase in simulated discharge (Fig. B.6 in supplementary 

material B.2.3). The hourly precipitation data were recorded at the Antichan gauging station, 

approximately 8 km north-east from the Las Hountas spring, and used as spatially homogeneous input 

for the presented conceptual model. Due to the heterogeneity of the precipitation field, it might be that 

the data are not always accurate for the Baget catchment during this specific rainfall event. 

Consequently, the entire recession curve until April 18 systematically underestimates the observed 

discharge of 0.08 m3/s on average. The raster daily E-OBS precipitation data (Cornes et al., 2018) were 

used as comparison with the Antichan gauging station and showed consistent observations. However, 

due to the daily temporal resolution and the coarse spatial resolution of the grid (0.25o) of E-OBS that 

dataset could not be used for the present study. 

6.5.2 Sensitive parameters  

The results of the sensitivity analysis can be qualitatively compared to those obtained by Bittner et al. 

(2020) by applying the active subspaces on the daily LuKARS. In the present paper, the parameters 
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related to hydrotope 1 i.e., limestone, are more sensitive than those from hydrotope 2 i.e., black flysch, 

probably since the limestone represents 70% of the entire catchment area and thus, assuming spatially 

homogeneous precipitation rate, contributes with a larger extent to the total recharge to the spring. This 

observation agrees with the results from Bittner et al. (2020), where the parameters related to the 

hydrotope with larger area are generally more sensitive. On the contrary, the sensitivity of the other 

parameters differs between the present study and the previous investigation, due to the different 

representation of the lower compartment in the model concept and the different study area. Indeed, 

according to Bittner et al. (2020), the discharge coefficient regulating the infiltration to the matrix kis is 

the most sensitive parameter, whereas in the present study kis shows a sensitivity ranking of 9 out of 17 

(Table. 6.4). 

The parameters regulating the transfer between matrix and conduit, i.e., discharge coefficient kMC and 

exponent aMC, are the least sensitive parameters of the presented model concept (Table 6.3, Fig. 6.3a). 

This is also due the model structure. In fact, the matrix-conduit interaction can be merged as a single 

compartment as for example in the original version of LuKARS. While this choice can be satisfactory 

to reproduce discharge time series, it can lead to erroneous hydrochemical interpretation of the results. 

Therefore, since the sensitivity is a function of the used objective function, the results of the sensitivity 

analysis performed with respect to KGE and only against the discharge at the spring may not capture 

the importance of all the parameters, especially when non-linearities are present (Fig. 6.3b). Indeed, the 

selection of the Morris´ realizations respecting the hydrochemical constrains show the relevance of the 

transfer between matrix and conduit. Those realizations characterized by a transfer between matrix and 

conduit QMC with a standard deviation larger than the mean standard deviation of the behavioral Morris´ 

simulations (Fig. 6.7b) well represent the observed hydrochemical dynamics (Fig. 6.6).  

 

6.5.3 Impact of hydrochemical information on model selection 

The model was calibrated and validated considering the discharge and the hydrochemical signal at the 

spring, respectively, over a time period of 9 days. The short period of time was chosen in line with the 

performed analyses such to have an event-based model. In addition, despite the limitations related to a 

calibration over a short period of time (Leins et al., 2023), the length of the calibration and validation 

periods were chosen based on the collected high-resolution hydrochemical data (Table 6.1). Indeed, the 

interpretation of the internal fluxes of a longer simulated period may require the consideration of reactive 

transport i.e., chemical reaction with soil and aquifer materials, seasonal variation in background 

concentrations, coexistence of water with different ages. 

Based on the previous investigation into the system functioning of Richieri et al. (2023), the parameter 

ranges (Table 6.2) for the hydrotope 1 and hydrotope 2, i.e., limestone and black flysch, respectively, 

were defined to enhance a faster reaction of the black flysch in case of strong precipitation event. In 

fact, it was observed that when the water level at the spring rises simultaneously to the EC, the relative 
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contribution to EC of SO4
2- , which originated from the pyrite contained in the black flysch (Eq. 6.2), 

increases. The faster response of the black flysch was considered by defining lower upper and lower 

threshold for the activation of the fast flow to the conduit (Table 6.2). However, when investigating the 

internal flow component of the selected Morris´ realization, the increase in fast flow from hydrotope 2, 

i.e., black flysch, observed during the precipitation event from 30/03/2022 to 7/04/2022 (Fig. 6) is not 

captured (Fig. 6.7a). Hydrochemical constraints were thus implemented to constrain those realizations 

respecting the dynamics of 𝑓SO4
2− and 𝑓HCO3

− (Fig. 6.6). The constrained simulations (Fig. 6.7b) capture 

the larger relative increases in the contribution from the black flysch and the lower relative increases in 

the contribution from the limestone occurred on May 30 at 8pm, May 31 at 9.30am and May 31 at 10pm. 

The first relative faster increase in black flysch on May 30 at 8pm (Fig. 6.7b) is anticipated respect to 

the observed hydrochemcial data (Fig. 6.6) of about 12 hours, probably due to the initial water content 

in the soil before the rise in water level and the need of a larger storage.  

The verification of the model by considering hydrochemical constraints resulted in the overall reduction 

of the interquartile uncertainty bands respect to the case in which the Morris realizations were evaluated 

based only on the KGE (Fig. 6.5, Fig. 6.8). This is due to the application of the hydrochemical 

constraints, which reduce the selected simulations from 448 to 8. Therefore, the hydrochemical criteria 

may be too stringent for the validation of the parameter sets, but they can be used to verify whether the 

conceptual model applies to simulations and can therefore be used to test the plausibility of the 

conceptual model. Despite the reduction of the uncertainty bands, the median of the realizations 

respecting the hydrochemical constraints of Qspring underestimates the baseflow and exceeds the plateau 

of 0.6 m3/s (Fig. B.6 in supplementary material B.2.3), which is respected by both the selected Morris 

realizations and the median of the Morris realizations with a KGE larger than 0.5. Finally, the relevance 

of the hydrochemical constraints is also seen by the fact that the percentile range for Qspring of the 

realizations selected based only on KGE (Fig. 6.5a) does not contain some realizations which are 

included in the percentiles of the realizations respecting the hydrochemical dynamics (Fig. 6.8a). 

Therefore, without considering the hydrochemical constraints, some parameter sets representing the 

hydrochemical dynamics would have been excluded.  

An alternative to the approach demonstrated in this study, hydrochemical data could be used during the 

model calibration process. Here, the sensitive parameters of the simulations respecting the 

hydrochemical dynamics could be further investigated and constrained. Among the most sensitive 

parameters (Fig. 6.3, Table 6.3), patterns can be identified for α _1 (-), khyd_1 (mm2/h), Emax_1 (mm), 

kis_1(1/h) and khyd_2 (mm2/h), whose values fall in ranges narrower than those initially defined for the 

Morris analysis (Table 6.2). 
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6.6 Conclusion 

This study presents the development of LuKARS 2.0 on an hourly scale for the Baget karst catchment. 

The model concept was modified in comparison to the original daily LuKARS from Bittner et al. (2018) 

to represent the plateau of 0.6 m3/s, which characterizes the discharge at Las Hountas spring. Thus, a 

drain from the conduit was implemented to discharge the excess water out of the system as soon as the 

water level in the conduit rises above a defined threshold. The interaction between matrix and conduit 

is here updated in comparison to Bittner et al. (2018) to allow a more flexible conceptualization of karst 

systems. The sensitivity analysis performed using the Morris method with a total of 9000 realizations 

was used to investigate the parameter sensitivity and to calibrate the model. The model was calibrated 

and validated for the periods 1/03/2022– 29/03/2022 and 30/03/2022 – 30/04/2022, respectively, 

considering KGE as performance metric. Among the Morris realizations, the behavioral simulations 

were first defined based on the KGE value of the simulated discharge at the spring. Then, three 

additional hydrochemical constraints were considered to represent the internal dynamics of the systems, 

i.e., water contributions from the limestone and black flysch present in the catchment. The 

hydrochemical constraints were defined based on SO4
2- and HCO3

- time series at high resolution and the 

previous work from Richieri et al. (2023).  

The results of the present investigation show that the selected Morris realizations can represent the 

dynamics of the spring discharge but does not sufficiently account for the temporal variation of the 

contribution from the limestone and black flysch, which was observed during the rising limb of the event 

30/03/2022–7/04/2022. The implementation of hydrochemical constraints leads to the representation of 

the relative increase in black flysch, while still providing a good match of the spring discharge. The 

uncertainty quantification performed on those realizations respecting the hydrochemical data show a 

reduction in the relative width of the interquartile bands in comparison to before the implementation of 

the hydrochemical constraints. The selected simulation and the interquartile range of the behavioral 

simulations show the relevance of the implemented drainage from the conduit to represent a plateau in 

the spring discharge. However, the 10-90% percentile range of the spring discharge exceed the defined 

threshold, indicating that further constrains in the parameter ranges would be required. In addition, 

further validation using other datasets would allow to investigate to which extent the information 

contained in hydrochemical data time series lead to a better representation of the system internal 

dynamics. 

In conclusion, this study highlights the importance of considering the internal dynamics of a system 

when selecting hydrological models. Indeed, even if different model realizations simulated the spring 

discharge with a comparable KGE, not all of them were consistent with the dynamics of the measured 

SO4
2- and HCO3

- time series. Hence, hydrochemical data at high temporal resolution need to be collected 

to conceptualize and select hydrological models as well as to properly constrain the model parameter 

ranges.  
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Chapter 7 

Conclusions, final remarks, and outlook  

7.1 Summary and conclusions 

In this dissertation, uncertainties in karst models were investigated by considering different sources of 

unknowns: input, structural, and parametric uncertainties. The research focused on hydrological 

conceptual karst models and potential multi-objective approaches to constrain model output 

uncertainties. Input uncertainties were examined through their propagation to the model output (Chapter 

3). Structural uncertainties were addressed by analyzing the impact of model structures with different 

degrees of complexity on model performance (Chapter 4). Parametric uncertainties were addressed by 

using hydrochemical data, i.e., EC and major solutes, at hourly scale to constrain the parametrization of 

the hourly conceptual flow model LuKARS 2.0 (Chapter 6). To obtain high temporal resolution solute 

concentrations, a method was developed based on the decomposition of the EC signal measured at a 

karst spring (Chapter 5). 

The first step of this dissertation was to investigate the temporal variability of input uncertainties for the 

LuKARS model (Chapter 3). To make possible the comparison between model input and parametric 

uncertainties, the study focused on the Kerschbaum karst system in Austria, for which parametric 

uncertainties had been previously investigated by Teixeira Parente et al. (2019). Being Kerschbaum a 

pre-alpine recharge area, interception, evapotranspiration, and snowmelt were identified as critical 

processes for groundwater recharge. A total of nine different input modelling approaches were 

considered, three for each considered hydrological process, i.e., interception (DVWK, Gash and Liu), 

evapotranspiration (Thornthwaite, Hamon and Oudin), and snowmelt (Martinec, Girons Lopez and 

Magnusson). To study the uncertainty propagating to the spring discharge, the groundwater recharge 

time series obtained by considering all possible model combinations were used as input for LuKARS. 

To focus on model input uncertainties, the parameters of the LuKARS model were taken constant and 

equal to those derived by Bittner et al. (2018), while varying the parameters of the input models. The 

uncertainties were analyzed considering both each individual process and the combination of more 

uncertain hydrological input time series. It was found out that the input uncertainties of 

evapotranspiration and snowmelt are higher than the interception uncertainties, and that uncertainties 

related to snow processes can be larger than parametric uncertainties. Moreover, the results highlight 

that input model uncertainties show a seasonal variability, while parametric uncertainties computed for 

the same model in previous studies do not show pronounced temporal variations. Input uncertainties 

vary over time as function of the importance of a specific process, such as snowmelt and 

evapotranspiration, for the groundwater recharge and thus spring discharge. This implies that the 

significance of a particular process for groundwater recharge can be inferred from its associated input 
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uncertainties. Finally, it was found out that including more uncertain hydrological input time series does 

not necessarily result in larger model output uncertainties, suggesting that uncertainties in different 

processes can offset each other. 

The next step of this dissertation focused on structural model uncertainties, which were investigated by 

considering model structures with different levels of complexities (Chapter 4). More precisely, this 

investigation examined the impact on model performance of considering a semi-distributed recharge 

which is conceptualized with an increased number of land cover and land use (LCLU), and thus 

hydrotopes, in the upper model compartment (unsaturated zone). Hydrotopes are defined, following the 

definition of Bittner et al. (2018), as individual catchment units characterized by homogeneous LCLU 

and soil. Each hydrotope shows a specific response to precipitation events and thus contributes 

differently to the groundwater recharge and spring discharge. To account for different flow processes 

conceptualization, two hydrological conceptual models were selected, i.e., LuKARS and KarstMod, and 

a multi-model calibration was performed by testing different configurations in the upper level of the 

model structure (ranging from 1 to 4 hydrotopes). The study considered three recharge areas with similar 

LCLU (forest-dominated): Baget, Oeillal, and Kerschbaum. The performance of the model was first 

evaluated by considering the combination of seven numerical performance metrics, i.e., NSE, KGE, 

KGENP, BE, VE, Rp, and Rs (pag. 68). Then, following a multi-objective approach, the outputs of the 

different models were investigated by further analyzing the discharge time series. Therefore, as 

introduced in subsection 1.5.2, auto-correlation analysis, cross-correlation analysis and Wavelet 

multiresolution analysis were used to evaluate the ability of the models to capture different aspects and 

time scales of the hydrological processes. The results indicate that incorporating a semi-distributed 

recharge approach can reduce the uncertainty in quantifying internal fluxes between the upper and lower 

levels of the model structure. However, incorporating LCLU does not necessarily enhance the 

performance of hydrological conceptual models. Specifically, the semi-distributed recharge approach 

improved the performance of hydrological models for the Kerschbaum and Oeillal catchments, but not 

for the Baget catchment. The Kerschbaum and Oeillal karst springs exhibit slower recession dynamics 

compared to the Baget spring, which is characterized by a high degree of karstification, significant 

variability in spring discharge, and important matrix-conduit exchanges. The heterogeneities and high 

temporal variability in recharge processes at the Baget catchment are challenging to capture with a daily 

lumped parameter hydrological model. Therefore, a more detailed investigation using higher frequency 

data may be necessary to capture the dynamics of the recharge processes especially of heterogeneous 

and highly transient karst systems. 

The subsequent steps of this dissertation focused on investigating the hydrological processes of karst 

systems at an hourly scale by integrating hydrological data (e.g., spring discharge) and hydrochemical 

data (e.g., high temporal resolution solute concentration time series). As discussed in subsection 1.3, 

solute concentrations are often unavailable at high temporal resolution due to the high analysis cost and 
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time requirements, whereas discharge and EC are commonly measured continuously at karst springs. 

To address the challenge of limited availability of hydrochemical data and to support the investigation 

of karst system dynamics at an hourly scale, this dissertation developed a method to retrieve high 

temporal resolution solute concentrations at a karst spring without the need for costly sampling 

campaigns and laboratory analyses (Chapter 5). The method is based on the decomposition of the EC 

signal measured at a karst spring into the individual solutes that conduct electrical current in water. 

Starting from continuous EC and point ionic measurements, the methods allows to obtain the 

concentrations of the major solutes (i.e., Ca, Mg, HCO3, SO4, NO3, Cl, Na and K) at the same temporal 

resolution as the measured EC. Due to the high solute concentrations and complex speciation 

characterizing karst springs, the concentrations of each solute species occurring as free ion and as part 

of aqueous complexes need to be computed separately. The concentrations of the free ions, i.e., Ca2+, 

Mg2+, HCO3
-, SO4

2-, NO3
-, Cl-, Na+ and K+, were computed as linear interpolation of the relative 

contribution of each ion to the total measured EC, which are called weight factors fi and were derived 

using PHREEQC. On the contrary, the concentrations of species occurring as aqueous complexes were 

obtained from speciation calculations as difference between the total molality of a solute (mol/kgw) and 

the molality of the solution (mol/kgw). The method was tested in two karstic watersheds with different 

types of bedrock and temporal resolution of the available hydrochemical datasets, i.e. the Kerschbaum 

dolostone system in Austria and the Baget limestone system in France. The results show that 

complexation processes need to be considered for the solutes SO4, Ca, Mg and HCO3, whose neglection 

would lead to an underestimation of the total concentrations. The method was tested first by accounting 

for the uncertainty derived by considering the weight factors fi as random variables, then by applying it 

to reconstruct ion content for periods in which only EC data are available. The uncertainty quantification 

results demonstrate that the method can be effectively applied to karst systems with rather homogeneous 

geology, such as Kerschbaum. In such cases, the EC signal can be used to interpolate and predict the 

temporal dynamics of solutes that significantly contribute to the total EC and characterized by low 

temporal variability of weight factors fi, i.e., HCO3, Ca and Mg. Conversely, in heterogeneous systems 

like Baget, the method fails to accurately represent the mixing of water contributions from different 

geological areas within the catchment. Furthermore, the results indicate that the correlation between EC, 

water level, and the weight factors of the free ions HCO3
- and SO4

2- can support the understanding of 

the system's functioning, more precisely the identification of the varying contributions of water draining 

different areas of the watershed, i.e., limestone and black flysch, at different flow conditions. Due to 

dissolution processes, water draining from limestone and black flysch impacts the chemical signature at 

the spring differently (Fig. B.1). For three sampling campaigns (October 2021, November 2021 and 

November 2022) it was observed that an increase in the weight factor of SO4
2- (𝑓𝑆𝑂4

2−) and a decrease 

in the weight factor of HCO3
- (𝑓𝐻𝐶𝑂3

−), indicate a relative increase in water draining from the black 

flysch, simultaneous to flushing and piston effects. Conversely, an increase in 𝑓𝐻𝐶𝑂3
− suggests a larger 

contribution of water from the limestone bedrocks during dilution processes and baseflow conditions. 
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Understanding the internal flow dynamics of a karst system can contribute to reduce the problem of 

equifinality, by enhancing the development of hydrological model structures that accurately capture the 

functioning of specific recharge areas as well as constraining model parameters. 

The final step of this dissertation focused on the use of hydrochemical data at high temporal resolution 

for the verification of consistent hydrological conceptual event-based karst models (Chapter 6). The 

study focused on the Baget karst systems and considered the understanding of the system functioning 

developed during the previous step of the dissertation, i.e., temporal variability of water contributions 

from different geological areas within the Baget catchment. Hourly solute concentrations were used for 

the selection of proper model parametrization, based on the observed transient water contributions from 

the different geological areas within the Baget recharge area. To represent the high temporal variability 

of the spring discharge and chemical signature at the Las Hountas spring, the LuKARS 2.0 model was 

developed on an hourly scale. The model concept was modified in comparison to the original LuKARS 

(Bittner et al., 2018) by implementing a transfer between the matrix and the conduit which allows a 

flexible representation of karst systems. Additionally, to represent the water bypassing the spring at high 

flow conditions, a drain was added to the conduit compartment to discharge excess water during high 

flow conditions, preventing the water level in the conduit from exceeding a certain threshold. LuKARS 

2.0 was developed for the Baget karst system considering two hydrotopes in the upper compartment, 

which represent the main geological formations within the studied catchment, i.e., limestone and black 

flysch. The Morris screening was used to generate 9000 realizations, corresponding to 9000 parameter 

combinations, to perform a global sensitivity analysis and to calibrate the model. Calibration and 

validation of the model were carried out for the periods 1/03/2022– 29/03/2022 and 30/03/2022 – 

30/04/2022, respectively, using the Kling-Gupta Efficiency (KGE) as the performance metric. Initially, 

behavioral simulations were identified from the Morris realizations based on the KGE values of the 

simulated spring discharge (KGE>0.5). The results show that the realization with the highest KGE 

accurately represents the dynamics of the spring discharge but fails in capturing the temporal variability 

of the observed internal fluxes. Therefore, three additional hydrochemical constraints (pag.126) were 

used to constrain those realizations capturing the temporal variability of the water contributions from 

the limestone and black flysch, which was observed during the rising limb of the event 30/03/2022–

7/04/2022. These hydrochemical constraints were derived from high-resolution time series of the weight 

factors 𝑓𝑆𝑂4
2− and 𝑓𝐻𝐶𝑂3

− . This approach successfully represents the relative increase in water 

contribution from the black flysch while still providing a good match of the spring discharge. The results 

of the uncertainty analysis show a reduction and increase in the interquartile and 10-90 percentile range, 

respectively, after applying the hydrochemical constraints. The increase in the percentile range 

highlights the importance of considering hydrochemical constraints: when selecting simulations based 

on only the computed spring discharge, there is the risk to exclude model parameter sets which would 

capture the internal fluxes of the system. The role of drainage from the conduit is evident from the 

selected simulations and the interquartile range of behavioral simulations. However, the 10-90% 
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percentile range of the spring discharge exceeds the defined threshold, indicating the need to further 

constrain the parameter range. In conclusion, although various model realizations produce similar KGE 

values, not all are consistent with the observed dynamics of the of 𝑓𝑆𝑂4
2− and 𝑓𝐻𝐶𝑂3

−. This highlights the 

significance of accounting for system's internal dynamics when selecting hydrological conceptual 

models.  

In summary, this dissertation presents a comprehensive study of uncertainties in hydrological conceptual 

karst models and explores possible approaches to constrain them, with particular attention to the use of 

additional hydrochemical data at high temporal resolution. It was demonstrated that model input 

uncertainties exhibit seasonal variations and can be larger than parametric uncertainties. Furthermore, 

the significance of specific processes for groundwater recharge can be inferred from the respective input 

uncertainties. The study also found that considering a semi-distributed recharge does not necessarily 

enhance model performance. To address the issue of hydrochemical data availability, a method was 

developed to derive continuous solute concentrations from EC measurements. Additionally, to take full 

advantage of the information provided by high temporal resolution hydrochemical data, the LuKARS 

2.0 model was developed at an hourly scale. The model parametrization of LuKARS 2.0 was 

successfully constrained using hourly solute concentration time series observed at the Baget karst 

system. Ultimately, the combined use of hydrological and hydrochemical data for the selection of 

appropriate model concepts for the Baget system highlighted the necessity of a more complex model 

structure, including the transfer between matrix and conduit compartments, although calibration based 

solely on spring discharge did not lead to this conclusion. 

7.2 Outlook 

7.2.1 Lower and Upper Benchmarks (LUB) 

The investigation of the time dependency of model input uncertainties, which was the topic of Chapter 

3, highlighted that the performance of hydrological models is strongly dependent on the input time 

series, and not only on the choice of the model parameters. It would be therefore required to 

quantitatively assess how much the model performance of a hydrological and hydrogeochemical lumped 

parameter karst model depends on the quality and quantity of the driving input boundary conditions, 

such as precipitation P and evapotranspiration ET. As discussed in subchapter 1.5, a single metric is not 

enough to consider different aspects of model performance (Cinkus et al., 2022). In addition, model 

results are affected also by limitation in data availability, such as precipitation data not representative of 

the specific area of interest due to sparse data collection. Therefore, when evaluating model results, bad 

performing and good performing reference models should be considered as Lower and Upper 

Benchmark (LUB), repectively. Despite the use of LUB have been already widely recommended 

(Pappenberger et al., 2015; Schaefli and Gupta, 2007; Seibert, 2001), hydrological model performance 

is still often solely assessed based on the value of some performance metrics (Seibert et al., 2018). The 
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upper benchmark represents what could be possible with a given model; the lower benchmark represents 

what should be expected given the available data (and their uncertainty) and the characteristics of the 

catchment (Seibert et al., 2018). To contribute to the discussion about the use of LUB, an evaluation of 

the performance of conceptual karst models could be done by accounting for LUB and their dependency 

on the quality and amount of available model input time series, without accounting for parametric 

uncertainties. In addition, it would be of relevance to extend the definition of LUB to hydrogeochemical 

time series, such as EC and major solutes, which are of fundamental importance for the investigation of 

karst systems (e.g., Wang et al., 2022, Winston and Criss, 2004). Fig. 7.1 provides an example of how 

uncertainties in precipitation time series (a) could affect the LUB of spring discharge Q (m3/s) (b) and 

concentration of Ca (mg/L) (c). This example considers LuKARS 2.0 and its implementation for the 

Baget karst catchment (Chapter 6, Fig. 6.2). 

 

Fig.7.1 Example of how uncertainties in precipitation time series could affect the model LUB a 

Observed precipitation for the Baget karst catchment together with low (5-20%) and high error 

precipitation time series (30-120% of the observed precipitation). b, c Computed upper (UB) and lower 

(LB) benchmarks for discharge Q (b) and concentration Ca (c) for the case of low precipitation error 
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(blue) and high precipitation error (black). The UB and LB are compared with synthetic time series 

(red), which are obtained considering LuKARS model output. 

To include different errors in the precipitation input, Fig. 7.1a shows two scenarios, i.e., low 

precipitation error and high precipitation error. The deviations from the observed precipitation were 

computed as random percentage of the observed precipitation: the deviations are in the range 5-20% and 

30-120% for the low and high precipitation error scenario, respectively. For each scenario, 100 Monte 

Carlo realizations were run, by considering a model realization of LuKARS 2.0 with observed input 

precipitation as synthetic observed discharge. Fig. 7.1b shows the synthetic observed discharge together 

with the upper (UB) and lower (LB) benchmarks for the spring discharge (Q) for both the high and low 

error precipitations. The UB is defined as the Monte Carlo realization better representing the synthetic 

observed discharge (highest KGE), whereas the LB as the mean of the Monte Carlo realizations. Fig. 

7.1.c shows the synthetic observed concentration Ca with the corresponding LUB for both the high and 

low error precipitations. Ca was derived from the computed internal fluxes of LuKARS 2.0, considering 

perfect mixing of the spring water contributions from different compartments of the model (Fig. 6.2). 

The percentage fluxes from hydrotope 1 (X1), hydrotope 2 (X2) and conduit (XC) were obtained for each 

time t with Eq. (7.1 – 7.3) and considering null the loss of water from the conduit compartment.  

𝑋1,𝑡 =
𝑄hyd_1,𝑡

𝑄hyd_1,𝑡 +  𝑄hyd_2,𝑡 +  𝑄MC,𝑡 +  𝐶𝑡−1Ra
                                                                                      (7.1) 

𝑋2,𝑡 =
𝑄ℎ𝑦𝑑_2,𝑡

𝑄hyd_1,𝑡 + 𝑄hyd_2,𝑡 +  𝑄MC,𝑡 +  𝐶𝑡−1Ra
                                                                                      (7.2) 

𝑋C,𝑡 =
𝐶𝑡−1𝑅𝑎

𝑄hyd_1,𝑡 +  𝑄hyd_2,𝑡 +  𝑄MC,𝑡 +  𝐶𝑡−1Ra
                                                                                      (7.3) 

 

Where 𝑄hyd_1and 𝑄hyd_2 (m3/s) are the fast flow from hydrotope 1 and 2, respectively, to the conduit, 

𝑄MC the transfer between matrix and conduit, 𝐶 (m) the water level in the conduit, Ra (m2) the recharge 

area and 𝑡 the time.  

 The time series of Ca was then computed at each time 𝑡 by mixing the water contributions (Eq. 7.4), 

assuming that each compartment is characterized by a constant chemical signature. The concentration 

of Ca for each compartment of the epikarst was computed by using PHREEQC and assuming 

instantaneous equilibrium between the rainwater and the specific solid phase representative for the 

corresponding geological formation. Therefore, the rainwater was assumed in equilibrium with calcite 

for hydrotope 1 (Ca = 44.61 mg/L) and in equilibrium with pyrite for hydrotope 2 (Ca = 0.22 mg/L). The 

mean Ca concentration observed during the baseflow in November 2022 was assigned to the water from 

the conduit (Ca = 60.51 mg/L). 
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𝐶𝑎𝑡 =  44.61 𝑋1,𝑡 +  0.22 𝑋2,𝑡 +  60.51  𝑋C,𝑡                                                                                               (7.4) 

For both the precipitation error scenarios, the UB for the Ca concentration was obtained by considering 

the X1, X2 and XC corresponding to the Monte Carlo realization best representing the synthetic observed 

spring discharge, whereas the LB was computed by considering the mean X1, X2 and XC of all the Monte 

Carlo realizations.  

This example shows that the LUB can be significantly impacted by model input uncertainties, and thus 

underlines the need to further investigate how much the performance of conceptual karst models relies 

on the quality of input data. A comprehensive investigation considering different karst catchments with 

varying climate conditions and resolution of the available datasets is the objective of the RoCKaT-Bench 

project (project proposal under review). 

 

7.2.2 Further develeopment of LuKARS REACT (coupling LuKARS 2.0 and IPHREEQC) 

A coupled flow and transport model, called LuKARS REACT, is currently being implemented on 

Python by coupling LuKARS 2.0 and IPHREEQC, which is a python interface for the PHREEQC 

geochemical modeling software, developed by the U.S. Geological Survey (USGS). In the framework 

of the ROCKAT project, LuKARS REACT is being specifically applied to the Baget karst catchment. 

It consists of an instantaneous and complete mixing approach in each bucket based on equilibrium 

(similar to Hartmann et al., 2017), which could be extended with newly developed routines that 

conceptually account for advection and dispersion (Özdemir Calli et al., 2023). Fig. 7.2 shows the 

conceptual model of LuKARS (a) and of LuKARS REACT (b). Each bucket of LuKARS represents a 

solution on PHREEQC, whose chemical composition is updated at each time step by means of speciation 

calculations. The compartments representing the epikarst (PHREEQC SOLUTIONs 2 and 3) result from 

the equilibrium between rainwater (PHREEQC SOLUTION 1) and the specific solid phase 

representative for the corresponding geological formation. Thus, the limestone bedrock is represented 

by means of the equilibrium phase of rainwater with calcite (PHREEQC SOLUTION 2), while the black 

flysch by means of the equilibrium with pyrite (PHREEQC SOLUTION 3). At each time step, LuKARS 

provides the internal fluxes, which are then used to determine the mixing percentages of PHREEQC 

SOLUTIONs in each compartment. To represent dilution in each epikarst bucket, the water remaining 

from the previous time step (t-1) is mixed with the rainfall from the current time step (t). Then, based 

on the internal fluxes computed by LuKARS, a portion of this mixed water will move to the lower level 

of the model (before equilibrium), while the rest will stay in the bucket and go in equilibrium with the 

specific solid phase.  
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Fig. 7.2 Conceptual model of a LuKARS and b LuKARS REACT for the Baget catchment. SOLUTION 

refers to the PHREEQC software as defined in Parkhurst and Appelo (2013).  

The water infiltrating from hydrotope 1 (𝑄is_1) is mixed and routed through the matrix. When the 

water level in the epikarst reaches a certain threshold, there is the activation of the quickflow (𝑄hyd_1 and 

𝑄hyd_2), which results from the mixing (PHREEQC SOLUTION 5) of the water contributions from the 

different hydrotopes (PHREEQC SOLUTIONs 2 and 3). The water in the matrix and conduit buckets at 

the time step t results from the mixing between the flows from the upper level of the model concept at 

time step t, the water from the conduit and matrix at time step t, respectively, and the water left in the 

respective bucket from the previous time step t-1. Finally, the chemical composition at the spring results 

from the mixture between the baseflow a the mixed quickflow. 
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The evaluation of the coupled flow and transport model could be done by defining a new multi-objective 

function (MOF), which accounts for the residuals of both the computed discharge and chemical 

signature at the spring. An idea of possible multi-objective function is shown in Eq. 7.5.  

MOF =  ∑(𝑄𝑖
𝑜𝑏𝑠 −  𝑄𝑖

𝑠𝑖𝑚)2 + 

𝑛

𝑖=1

 ∑ 𝑧𝑗  ∑(𝐶𝑗,𝑖
𝑜𝑏𝑠 − 𝐶𝑗,𝑖

𝑠𝑖𝑚)2

𝑛

𝑖=1

𝑚

𝑗=1

                                                                (7.5) 

Where 𝑄𝑜𝑏𝑠 is the observed discharge at the spring, 𝑄𝑠𝑖𝑚 the computed discharge at the spring, 𝐶 the 

solute concentration, n the total number of time steps, 𝑖 the current time step, m the number of 

considered solute species, 𝑗 the specific solute (e.g., Ca, Mg, HCO3). For each solute 𝑗, the weight 𝑧𝑗 

allows to define the importance of that individual solute on the overall model performance. 

After successfully implementing LuKARS REACT on Python based on perfect instantaneous mixing, 

other approaches will be tested. These include non-instantaneous equilibrium in the epikarst buckets and 

the implementation of the one-dimensional advection-diffusion equation. 
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Article appendices 

A.1 Appendix to Chapter 3  

 

Table A.1 Overview of all model parameters used for the LuKARS model in the Kerschbaum spring 

recharge area (Bittner et al. 2018). Parameters highlighted with an asterisk (*) indicate those parameters 

which were considered in the parameter uncertainty study in Teixeira Parente et al. (2019). 

 

A.2 Appendix to Chapter 4 

A.2.1 LuKARS model 

In a LuKARS model, areas with homogeneous infiltration conditions are implemented as distinct 

hydrological response units, called hydrotopes. A hydrotope is analogous to a bucket that has three 

discharge components: the quickflow component (𝑄ℎ𝑦𝑑 [L3T-1]), a secondary spring discharge (𝑄𝑠𝑒𝑐 

[L3T-1]), and the recharge (𝑄𝑖𝑠 [L3T-1]). 𝑄ℎ𝑦𝑑 is considered a hydrotope-specific quickflow occurring in 

preferential flow paths (e.g., subsurface conduits). The quickflow bypasses the baseflow storage B and 

is directly transferred to the spring outlet. The quickflow starts, once a hydrotope-specific storage 

threshold (𝐸𝑚𝑎𝑥) has been reached and stops after the hydrotope storage fall below a lower storage 

Parameter Hyd 1 Hyd 2 Hyd 3 Hyd 4 Parameter description 

Hydrotope-specific parameters 

Eini [mm] 0 1 1 1 Initial value of hydrotope storage 

Emin [mm]* 0  23 60 90 Hydrotope storage under dry conditions 

Emax [mm]* 1 31  120  200  Hydrotope storage under saturated 

conditions 

Esec [mm]* 0 35 180 380 Activation level for secondary springs 

khyd [m2d-1]* 0 90 85 77 Discharge parameter for quickflow 

kis [m mm-1d-1]* 0 0.02 0.0055 0.0025 Discharge coeff. for recharge 

ksec [m mm-1d-1]* 0.9 0.095 0.026 0.022 Secondary spring discharge coeff. 

α [-]* 0 0.9 0.8 0.55 Quickflow exponent 

lhyd [m] 550 1600 900 960 Mean hydrotope distance to spring 

F [mm d-1°C-1] 4 4 4 4 Melt factor in degree-day method 

Tf [°C] 0.5 0.5 0.5 0.5 Temerature. threshold for snow melt  

Imax [mm] 0 5 5 5 Max. interception of land use 

Baseflow storage parameters 

kb [m mm-1d-1] = 0.00043 Baseflow discharge coefficient 

Eb_ini [mm] = 2900 Initial value of baseflow storage 
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threshold (𝐸𝑚𝑖𝑛). 𝑄𝑠𝑒𝑐 integrates all flow components that do not arrive at the simulated karst spring 

and that are transferred outside the regarded recharge area, i.e. secondary spring discharge and overland 

flow (Tritz et al., 2011). 𝑄𝑖𝑠 is the discharge from one hydrotope to the underlying baseflow storage B 

that represents the process of groundwater recharge. Each hydrotope has 7 physical parameters, with 

length units L and time units T, that are as follows: 

• 𝑘ℎ𝑦𝑑 [L2T-1] is the discharge parameter for 𝑄ℎ𝑦𝑑, 

• 𝐸𝑚𝑖𝑛 [L] is the minimum storage capacity of a hydrotope, 

• 𝐸𝑚𝑎𝑥 [L] is the maximum storage capacity of a hydrotope, 

• 𝛼 [-] is the hydrotope-specific quickflow exponent, 

• 𝑘𝑖𝑠 [LT-1] is the discharge parameter for 𝑄𝑖𝑠, 

• 𝑘𝑠𝑒𝑐 [LT-1] is the discharge parameter for 𝑄𝑠𝑒𝑐, 

• 𝐸𝑠𝑒𝑐 [L] is the activation level for 𝑄𝑠𝑒𝑐 

Following the conceptual sketch from Bittner et al., (2018), the model solves the following discrete 

balance equations for each hydrotope i and for each time step n : 

𝐸𝑖,𝑛+1 = 𝑚𝑎𝑥 [0, 𝐸𝑖,𝑛 + (𝑆𝑖,𝑛 −
𝑄ℎ𝑦𝑑,𝑖,𝑛 + 𝑄𝑠𝑒𝑐,𝑖,𝑏 + 𝑄𝑖𝑠,𝑖,𝑛

𝑎𝑖
) ∆𝑡]                                                          (A. 1) 

Where 𝐸𝑖 indicates the water level [L] in hydrotope i. 𝑆𝑖 is the hydrotope-specific sink and source term 

as a mass balance of precipitation, evapotranspiration, and interception. Then, evapotranspiration is 

considered using the formula from Oudin et al., (2005). 𝑄ℎ𝑦𝑑,𝑖 [L3T-1] represents the quickflow 

component (e.g., conduit flow), 𝑄𝑠𝑒𝑐,𝑖 [L
2T-1] refers to the secondary spring discharge, and 𝑄𝑖𝑠,𝑖 [L

2T-1] 

is the groundwater recharge. The absolute area covered by a respective hydrotope is given by 𝑎𝑖 [L
2]. 

𝐸𝑏,𝑛+1 = 𝑚𝑎𝑥 [0, 𝐸𝑏,𝑛 + (
∑(𝑄𝑖𝑠,𝑖,𝑛)−𝑄𝑏,𝑛−𝑄𝑝𝑢𝑚𝑝𝐵,𝑛

𝐴
) ∆𝑡]                                                                            (A. 2)          

is the balance equation for the baseflow storage B, where 𝐸𝑏 indicates the water level [L] in the baseflow 

storage, ∑(𝑄𝑖𝑠,𝑖,𝑛) [L3T-1] indicates the cumulative flows from all hydrotopes to the baseflow storage, 

𝑄𝑏 [L3T-1] indicates water that is transferred from the storage B to the spring, hence simulates the 

baseflow contribution from the phreatic aquifer system to the spring discharge, and 𝑄𝑝𝑢𝑚𝑝𝐵 [L3T-1] 

indicates the groundwater abstraction in the aquifer. The variable 𝐴 [L2] stands for the entire recharge 

area. The discharge terms are computed as follows: 

𝑄ℎ𝑦𝑑,𝑖,𝑛 = 𝑎𝑖
𝑘ℎ𝑦𝑑,𝑖

𝑙ℎ𝑦𝑑,𝑖
𝜀𝑛 [

𝑚𝑎𝑥(0,𝐸𝑖,𝑛−𝐸𝑚𝑖𝑛,𝑖)

𝐸𝑚𝑎𝑥,𝑖−𝐸𝑚𝑖𝑛,𝑖
] 𝛼𝑖  (A.3) 

𝑄𝑠𝑒𝑐,𝑖,𝑛 = 𝑎𝑖𝑘𝑠𝑒𝑐,𝑖𝑚𝑎𝑥(0, 𝐸𝑖,𝑛 − 𝐸𝑠𝑒𝑐,𝑖)    (A.4) 
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𝑄𝑖𝑠,𝑖,𝑛 = 𝑎𝑖𝑘𝑖𝑠,𝑖𝐸𝑖,𝑛  (A.5) 

𝑄𝑏,𝑛 = {
[𝑘𝑏 ∗ 𝐸𝑏,𝑛 + 0.2 ∗ 𝑘𝑏 ∗ (𝐸𝑏,𝑛 − 𝑐𝑒𝑖𝑙𝐵)] ∗ 𝐴𝑖𝑓𝐸𝑏,𝑛 ≥ 𝑐𝑒𝑖𝑙𝐵

𝑘𝑏 ∗ 𝐸𝑏,𝑛 ∗ 𝐴𝑖𝑓𝐸𝑏,𝑛 < 𝑐𝑒𝑖𝑙𝐵
  

 

(A.6) 

𝐸𝑚𝑎𝑥,𝑖 [L] and 𝐸𝑚𝑖𝑛,𝑖 [L] represent the upper and lower storage thresholds of the hydrotope i. 𝐸𝑠𝑒𝑐,𝑖 [L] 

is the hydrotope-specific activation level for a secondary spring discharge. 𝑘𝑠𝑒𝑐,𝑖 [LT−1], 𝑘𝑖𝑠,𝑖 [LT−1] and 

𝑘𝑏 [LT−1] are the specific discharge parameters for 𝑄𝑠𝑒𝑐,𝑖 [L3T−1], 𝑄𝑖𝑠,𝑖 [L3T−1] and 𝑄𝑏 [L3T−1], 

respectively. 𝑘ℎ𝑦𝑑,𝑖 [L
2T−1] represents the specific discharge parameter for the quickflow of a hydrotope 

and 𝑙ℎ𝑦𝑑,𝑖 [L] is the mean distance of hydrotope 𝑖 to the adjacent spring, thus accounting for the relative 

location of the same hydrotope types in a specific recharge area. The ratio between 𝑘ℎ𝑦𝑑,𝑖 and 𝑙ℎ𝑦𝑑,𝑖 

represents the hydrotope discharge coefficient and 𝛼𝑖 is a hydrotope-specific exponent of the quickflow. 

The dimensionless connectivity/activation indicator 𝜀 is defined as follows: 

𝜀𝑛+1 = 0𝑖𝑓{𝜀𝑛 = 0 ∧ 𝜀𝑖,𝑛+1 < 𝐸𝑚𝑎𝑥,𝑖 ∨ 𝜀𝑛 = 1 ∧ 𝜀𝑖,𝑛+1 ≤ 𝐸𝑚𝑖𝑛,𝑖 (A.7) 

𝜀𝑛+1 = 1𝑖𝑓{𝜀𝑛 = 0 ∧ 𝜀𝑖,𝑛+1 ≥ 𝐸𝑚𝑎𝑥,𝑖 ∨ 𝜀𝑛 = 1 ∧ 𝜀𝑖,𝑛+1 > 𝐸𝑚𝑖𝑛,𝑖  (A.8) 

To account for groundwater abstraction, the original equation for the baseflow compartment in the 

LuKARS model is modified as follows: 

𝐵𝑛+1 = 𝑚𝑎𝑥 [0, 𝐵𝑛 + (
𝑄𝑖𝑠,𝑛 − 𝑄𝑏,𝑛 − 𝑄𝑝𝑢𝑚𝑝𝐵

𝐴
) ∗ ∆𝑡] (A.9) 

𝑄𝑏,𝑛 = {
[𝑘𝑏𝑑𝑜𝑤𝑛

∗ 𝐸𝑏,𝑛 + 𝑘𝑏𝑢𝑝
∗ (𝐸𝑏,𝑛 − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐵)] ∗ 𝐴𝑖𝑓𝐸𝑏,𝑛 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐵

𝑘𝑏𝑑𝑜𝑤𝑛
∗ 𝐸𝑏,𝑛 ∗ 𝐴𝑖𝑓𝐸𝑏,𝑛 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐵

 (A.10) 

where 𝐵𝑛 is the water level [L] in the baseflow compartment at the time step n, 𝑄𝑖𝑠,𝑛 is the total flow 

from all hydrotropes to the baseflow compartment [L3T-1], 𝑄𝑏𝑑𝑜𝑤𝑛
 is the flow from the linear baseflow 

compartment to the spring [L3T-1],𝑄𝑏𝑢𝑝
 is the flow from the linear baseflow compartment corresponding 

to the overflow when the water level 𝐵𝑛 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐵, 𝑄𝑝𝑢𝑚𝑝𝐵 is the groundwater abstraction 

discharge [L3T-1], 𝐴 is the total recharge area [L2]. 

 

A.2.2 KarstMod model  

The model is based on a structure available within the KarstMod modeling platform (Jourde et al., 2015; 

Mazzilli et al., 2019). The model consists of a two-level structure: (1) compartment E (higher level) and 
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(2) compartments M and C (lower level). The mass-balance equations provided by Mazzilli et al. (2019) 

are applied. 

𝑑𝐸

𝑑𝑡
= 𝑃 − 𝐸𝑇 − 𝑄𝐸𝑀 − 𝑄𝐸𝐶   𝑖𝑓  𝐸 ≥ 0 (A.11) 

𝑑𝐶

𝑑𝑡
= 𝑄𝐸𝐶 + 𝑄𝑀𝐶 (A.12) 

𝑑𝑀

𝑑𝑡
= 𝑄𝐸𝑀 − 𝑄𝑀𝐶 (A.13) 

where 

𝑄𝐸𝑀  =  𝑘𝐸𝑀  ×  𝐸(𝑡)𝑎𝐸𝑀  𝑖𝑓 𝐸(𝑡)  >  0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑄𝐸𝑀 =  0 (A.14) 

𝑄𝐸𝐶  =  𝑘𝐸𝐶  × 𝐸(𝑡)𝑎𝐸𝐶  𝑖𝑓 𝐸(𝑡)  >  0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑄𝐸𝐶 =  0 (A.15) 

𝑄𝑀𝐶  =  𝑘𝑀𝐶  × [𝑀(𝑡)  −  𝐶(𝑡)]𝑎𝑀𝐶 (A.16) 

𝑄𝐶𝑆  =  𝑘𝐶𝑆  × 𝐶(𝑡)𝑎𝐶𝑆 (A.17) 

Where P and ET are respectively rainfall and evapotranspiration [L], E(t), M(t) and C(t) are the water 

levels in the compartments E (epikarst), M (matrix) and C (conduit), 𝑘𝐴𝐵 is the recession coefficient 

associated with the flow from compartment A (either E, M, or C) to compartment B (either M, C, or L) 

or to the outlet S and 𝑄𝐴𝐵 [L3T-1] is the discharge from A to B. Discharge in [L3T-1] is computed by the 

product of 𝑄𝐴𝐵 [L3T-1] with the total surface of the recharge area [L2]. To reproduce the different flow 

behavior between epikarst (E) and the deeper compartments conduit (C) and matrix (M), emptying 

exponents are fixed as 𝑎𝐸𝑀 = aMC = 1, 𝑎𝐸𝐶 = 2 and 𝑎𝐶𝑆 = 4 (Sivelle et al., 2019). 

 

Article supplementary material 

B.1 Supplementary material to Chapter 5 

B.1.1 Specification of laboratory analysis for the Kerschbaum spring 

According to the information provided by the waterworks of Waidhofen a.d. Ybbs, for the years 2000–

2016 and 2018–2019, the sampling analysis methods and detection limits changed over the investigated 

period. However, since 2005, the ionic chromatography method (ISO 14911:1998) was applied to 
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analyze Ca2+, Mg2+, Na+ and K+, with a minimum detection limit of 0.5 mg/L for Ca2+ and Mg2+, and of 

0.1 mg/L for Na+ and K+. Additionally, NO3
-, SO4

2-, and Cl- were analyzed via dissolved anions by ion 

chromatography (ISO 10304–1:2007), with a minimum detection limit of 0.1 mg/L (Narany et al. 2019). 

Finally, the concentration of HCO3
- was calculated from the carbonate hardness by subtracting the 

contribution of water dissociation between pH values of 7 and 4.3. The carbonate hardness, in turn, was 

computed from the results of the acid capacity analysis according to DIN 38409-7. The samples 

collected during the event 23/1/2022–28/1/2022 were analyzed in the Erftverband laboratory, Bergheim, 

Germany. The concentrations were obtained with the ionic chromatography method ISO 11885: 2009 

for Ca2+ and Mg2+, ISO 10304 - 1: 2009 for Na+ and K+ and ISO 10304 - 1: 2009 for NO3
-, SO4

2-, and 

Cl-. Finally, HCO3
- was derived from the acid capacity (DIN 38409 - 7: 2005). 

 

B.1.2 Specification of laboratory analysis for the Las Hountas spring 

The analyses of the solute concentrations of the three recorded events were done in two different 

laboratories. The samples collected during the first event (4/10/2021–14/10/2021) and third event 

(20/11/2022–26/11/2022) were analyzed at the Laboratoire Gosciences Environnement Toulouse, 

France. The ICP – OES (inductively coupled plasma optical emission spectrometry) was used to 

quantify Ca2+, Mg2+, Na+ and K+ with a minimum detection limit of 0.168 mg/L for Ca2+, 0.003 mg/L 

for Mg2+, 0.017 mg/L for Na+ and 0.035 mg/L for K+. NO3
-, SO4

2-, and Cl- were analyzed via ion 

chromatography (ISO 10304–1:2007), with a minimum detection limit of 0.1 mg/L, and HCO3
- was 

derived by means of titration analyses. The samples of the second event (1/11/2021–7/11/2021) were 

analyzed in the Erftverband laboratory, Bergheim, Germany. The ionic chromatography method was 

used to derive the concentrations of Ca2+ and Mg2+ (ISO 11885: 2009), Na+ and K+ (ISO 10304 - 1: 

2009), NO3
-, SO4

2-, and Cl- (ISO 10304 - 1: 2009). Finally, HCO3
- was obtained from the acid capacity 

(DIN 38409 - 7: 2005). 

 

B.1.3 Calculation of the contribution of the solute i to the total EC 

The total electrical conductivity 𝐸𝐶 (μS/cm) of water results from the sum of the contributions 

𝐸𝐶𝑖 (μS/cm) of the individual solutes 𝑖 and can be derived using the following equations (Parkhurst and 

Appelo 2013): 

 

𝐸𝐶 =  ∑ ECi 

i

                                                                                                                                                    (B. 1) 

𝐸𝐶𝑖 =  Λm 
° ∗  𝑚 ∗  𝛾EC                                                                                                                                       (B. 2) 
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with 𝛬m 
°  the molar conductivity (μS m2/mol), 𝑚 the molar concentration (mol/m3) and 𝛾EC the 

electrochemical activity coefficient (-) of the individual solute. The molar conductivity of a solute 

species and its diffusion coefficient 𝐷W (m2/s) at 25 °C can be related through: 

 

Λm 
° =  

𝑧2 ∗  F2

R ∗  𝑇
 𝐷W                                                                                                                                           (B. 3) 

 

where 𝑧 is the charge number (-) of the ion, F the Faraday´s constant (96485.333 Coulomb/mol), R the 

gas constant (8.315 J/°K/mol) and 𝑇 the absolute temperature (°K). 

For temperatures different from 25 °C, the diffusion coefficient needs to be corrected based on the 

viscosity of water 𝜂 (Pa s) at the specific temperature: 

 

(𝐷W)𝑇 =  (𝐷W)298 ∗
𝑇

298
∗  

η298

η𝑇
                                                                                                                  (B. 4) 

 

The electrochemical activity coefficient 𝛾EC  (-) of the individual ionic species i is function of the charge 

number 𝑧 (-) and the Debye-Hückel activity coefficient 𝛾DH (-). PHREEQC calculates 𝛾EC considering 

an ionic strength 𝐼 < 0.36 |𝑧|, as: 

 

log(𝛾EC) = log(𝛾DH) ∗  
0.6

|𝑧|0.5
                                                                                                                         (B. 5) 

 

To remove the temperature effect on 𝛬m 
°  and 𝛾EC, 𝐸𝐶  measurements are normally given at the standard 

temperature of 25◦C. 

The chemical properties of each solute 𝑖 can be grouped in a single coefficient 𝑎𝑖 ((μS/cm) /(mg/L)) as: 

 

𝑎𝑖 =  
Λ° ∗  𝛾EC

𝑀
                                                                                                                                                    (B. 6) 

 

where 𝑀 indicates the solute molar mass (g/mol). 𝑎𝑖 is function of time since 𝛬m 
°  and 𝛾EC can change 

in time. In our case, 𝛬m 
°  is constant because all computations are referred to a fixed temperature of 25 

°C, whereas 𝛾EC changes with the ionic strength 𝐼 of the solution (𝐸𝐶 decreases for increasing 𝐼). 

However, as typical in natural freshwater systems, the total ion concentration varies within a relatively 

narrow range of values, which makes 𝛾EC to only have minor variations in time. Therefore, the 

coefficients 𝑎𝑖 can be approximated to be constant (Benettin and van Breukelen 2017).  

Eq (B.1) and (B.2) can be written as function of the coefficients 𝑎𝑖, concentration 𝐶𝑖 (mg/L) and time 𝑡 

as: 
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𝐸𝐶(𝑡) =  ∑ 𝐸𝐶𝑖(𝑡) = 

𝑖

∑ 𝑎𝑖(𝑡) ∗  𝐶𝑖(𝑡) 

𝑖

                                                                                                   (B. 7) 

 

B.1.4 PHREEQC file 

DATABASE C:\Program Files (x86)\USGS\Phreeqc Interactive 3.6.2-15100\database\phreeqc.dat 

#DATABASE C:\(path to phreeqc.dat file) 

# ---------------------- 

 

# PHREEQC file to compute 

# 1) the Electrical Conductivity (EC) of the individual solute species present as free ions 

# 2) the Electrical Conductivity (EC) of the individual solute species as aqueous complexes 

# 3) the chemical coefficients ai 

# 4) concentration of each solute species as aqueous complexes ( = the difference between the total 

concentration of each solute species and its concentration as free ion) 

# The solute concentrations are given as input in the SOLUTION_SPREAD block 

# Outputs are printed to file as defined in the SELECTED_OUTPUT and USER_PUNCH blocks 

# ---------------------- 

 

SOLUTION_SPREAD #Offers a matrix-type input format for solute concentrations  

# default temperature is 25 °C 

-units mg/l 

Description Ca Mg Alkalinity S(6) N(5) Cl Na K pH 

   as HCO3       

A1 56.06 5.349 185.49 16.10 3.51 1.42 0.98 0.38 8.31 

A2 57.38 5.44 186.10 16.60 3.49 1.42 1.01 0.43 8.27 

# ... 

# An 

# ---------------------- 

 

SELECTED_OUTPUT 1 # this block allows writing an output file. Here we print the result of EC 

computed for the major free ions 

-reset false  

-file output_EC_freeions.dat  

USER_PUNCH 1 # print user-defined quantities to the selected_output file 

-headings Sample_ID EC_freeions EC_Ca EC_Mg EC_HCO3 EC_SO4 EC_NO3 EC_Cl EC_Na EC_K 

charge_error[%] 
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-start 

 

# definition of constants  

10 F = 96485.33289 # Faraday´s constant (C/mol) 

20 R = 8.3144621 # gas constant (J/K/mol) 

30 ff1 = 0.6 / 1^0.5 # group together some constants 

40 ff2 = 0.6 / 2^0.5 # group together some constants 

50 temp25_corr = 1 # no temperature correction required for default EC at 25 °C 

#50 temp25_corr = TK/298 * (viscosity298) / (viscosityTK) # temperature correction required for TK 

different from 25 °C 

 

# EC computation for each free ion  

# lg("species") is the log10 of the Debye-Huckel activity coefficient (-) 

# DIFF_C("species") is the diffusion coefficient at 25 °C (m2/s)  

# since the molar conductivity is in S/m / (mol/m3 = mmol/L), multiply mol("species") by 1000 to get 

mmol/L 

# multiply by 10000 to get EC is in uS/cm 

120 EC_Ca = ((2^2 * F^2)/(R*TK)) * (DIFF_C("Ca+2") * temp25_corr) * mol("Ca+2") * 1000 

*10^(lg("Ca+2") * ff2) * 10000 

130 EC_Cl = ((1^2 * F^2)/(R*TK)) * (DIFF_C("Cl-") * temp25_corr) * mol("Cl-") * 1000 *10^(lg("Cl-

") * ff1) * 10000 

140 EC_K = ((1^2 * F^2)/(R*TK)) * (DIFF_C("K+") * temp25_corr) * mol("K+") * 1000 * 

10^(lg("K+") * ff1) * 10000 

150 EC_NO3 = ((1^2 * F^2)/(R*TK)) * (DIFF_C("NO3-") * temp25_corr) * mol("NO3-") * 1000 

*10^(lg("NO3-") * ff1) * 10000 

160 EC_Na = ((1^2 * F^2)/(R*TK)) * (DIFF_C("Na+") * temp25_corr) * mol("Na+") * 1000 

*10^(lg("Na+") * ff1) * 10000 

170 EC_Mg = ((2^2 * F^2)/(R*TK)) * (DIFF_C("Mg+2") * temp25_corr) * mol("Mg+2") * 1000 

*10^(lg("Mg+2") * ff2) * 10000 

180 EC_SO4 = ((2^2 * F^2)/(R*TK)) * (DIFF_C("SO4-2") * temp25_corr) * mol("SO4-2") * 1000* 

10^(lg("SO4-2") * ff2) * 10000 

190 EC_HCO3 = ((1^2 * F^2)/(R*TK)) * (DIFF_C("HCO3-") * temp25_corr) * mol("HCO3-") * 1000 

* 10^(lg("HCO3-") * ff1) * 10000 

195 EC_freeions = EC_Ca + EC_Cl + EC_K + EC_NO3 + EC_Na + EC_Mg + EC_SO4 + EC_HCO3 

 

# print results to output 

198 PUNCH DESCRIPTION 
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205 PUNCH EC_freeions #total EC by considering major free ions 

220 PUNCH EC_Ca 

230 PUNCH EC_Mg 

240 PUNCH EC_HCO3 

250 PUNCH EC_SO4 

260 PUNCH EC_NO3 

270 PUNCH EC_Cl 

280 PUNCH EC_Na 

290 PUNCH EC_K 

300 PUNCH PERCENT_ERROR # Percent charge-balance error: 100*(cations-

|anions|)/(cations+|anions|) 

-end 

# ---------------------- 

 

SELECTED_OUTPUT 2 # this block allows writing an output file. Here we print the result of EC 

computed for the aqueous complexes  

-reset false  

-file output_EC_solution_complexes.dat  

 

USER_PUNCH 2 # print user-defined quantities to the selected_output file 

-headings Sample_ID EC_complexes EC_CaOH EC_CaHSO4 EC_CaHCO3 EC_NaSO4 EC_NaCO3 

EC_MgHCO3 EC_MgOH EC_HSO4 EC_CO3 

-start 

 

# define some useful constant for the computations 

10 F = 96485.33289 # Faraday´s constant (C/mol) 

20 R = 8.3144621 # gas constant (J/K/mol) 

30 ff1 = 0.6 / 1^0.5 # group together some constants 

40 ff2 = 0.6 / 2^0.5 # group together some constants 

50 temp25_corr = 1 # no temperature correction required for default 25 °C 

#50 temp25_corr = TK/298 * (viscosity298) / (viscosityTK) # temperature correction required for TK 

different from 25 °C 

 

# EC computation for solute species as aqueous complexes  

# lg("species") is the log10 of the Debye-Huckel activity coefficient (-) 

# DIFF_C("species") is the diffusion coefficient at 25 °C (m2/s)  
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# since the molar conductivity is in S/m / (mol/m3 = mmol/L), multiply mol("species") by 1000 to get 

mmol/L 

# multiply by 10’000 to get EC is in uS/cm 

110 EC_CaOH = ((1^2 * F^2)/(R*TK)) * (DIFF_C("CaOH+") * temp25_corr) * mol("CaOH+") * 1000 

* 10^(lg("CaOH+") * ff1) * 10000 

120 EC_CaHSO4 = ((1^2 * F^2)/(R*TK)) * (DIFF_C("CaHSO4+") * temp25_corr) * 

mol("CaHSO4+") * 1000 *10^(lg("CaHSO4+") * ff1) * 10000 

130 EC_CaHCO3 = ((1^2 * F^2)/(R*TK)) * (DIFF_C("CaHCO3+") * temp25_corr) * 

mol("CaHCO3+") * 1000 *10^(lg("CaHCO3+") * ff1) * 10000 

140 EC_NaSO4 = ((1^2 * F^2)/(R*TK)) * (DIFF_C("NaSO4-") * temp25_corr) * mol("NaSO4-") * 

1000 * 10^(lg("NaSO4-") * ff1) * 10000 

150 EC_NaCO3 = ((1^2 * F^2)/(R*TK)) * (DIFF_C("NaCO3-") * temp25_corr) * mol("NaCO3-") * 

1000 *10^(lg("NaCO3-") * ff1) * 10000 

160 EC_MgHCO3 = ((1^2 * F^2)/(R*TK)) * (DIFF_C("MgHCO3+") * temp25_corr) * 

mol("MgHCO3+") * 1000 *10^(lg("MgHCO3+") * ff1) * 10000 

170 EC_MgOH = ((1^2 * F^2)/(R*TK)) * (DIFF_C("MgOH+") * temp25_corr) * mol("MgOH+") * 

1000 *10^(lg("MgOH+") * ff1) * 10000 

180 EC_HSO4 = ((1^2 * F^2)/(R*TK)) * (DIFF_C("HSO4-") * temp25_corr) * mol("HSO4-") * 1000* 

10^(lg("HSO4-") * ff1) * 10000 

190 EC_CO3 = ((2^2 * F^2)/(R*TK)) * (DIFF_C("CO3-2") * temp25_corr) * mol("CO3-2") * 1000 * 

10^(lg("CO3-2") * ff2) * 10000 

195 EC_complexes = EC_CaOH + EC_CaHSO4 + EC_CaHCO3 + EC_NaSO4 + EC_NaCO3 + 

EC_MgHCO3 + EC_MgOH + EC_HSO4 + EC_CO3 

 

# print results to output 

198 PUNCH DESCRIPTION 

205 PUNCH EC_complexes #total EC by considering aqueous complexes only 

210 PUNCH EC_CaOH 

220 PUNCH EC_CaHSO4 

230 PUNCH EC_CaHCO3 

240 PUNCH EC_NaSO4 

250 PUNCH EC_NaCO3 

260 PUNCH EC_MgHCO3 

270 PUNCH EC_MgOH 

280 PUNCH EC_HSO4 

290 PUNCH EC_CO3 

-end 
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# ---------------------- 

 

SELECTED_OUTPUT 3 # this block allows writing an output file. Here we print the result of the 

computed chemical coefficients 

USER_PUNCH 3 # print user-defined quantities to the selected_output file 

-headings Sample_ID a_Ca a_Mg a_HCO3 a_SO4 a_NO3 a_Cl a_Na a_K 

-start 

 

# define some useful constant for the computations 

10 F = 96485.33289 # Faraday´s constant (C/mol) 

20 R = 8.3144621 # gas constant (J/K/mol) 

30 ff1 = 0.6 / 1^0.5 # group together some constants 

40 ff2 = 0.6 / 2^0.5 # group together some constants 

50 temp25_corr = 1 # no temperature correction required for default 25 °C 

#50 temp25_corr = TK/298 * (viscosity298) / (viscosityTK) # temperature correction required for TK 

different from 25 °C 

 

# calculate the variable a = molar_conductivity*electrochemical_activity_coefficient/ molar_mass 

[uS/cm / (mg/L)] for the individual species 

# lg("species") is the log10 of the Debye-Huckel activity coefficient (-) 

# GFW("species") is the molar mass (g) 

# DIFF_C("species") is the diffusion coefficient at 25 °C (m2/s)  

# multiply by 10’000 to get EC is in uS/cm 

120 a_Ca = ((2^2 * F^2)/(R*TK)) * (DIFF_C("Ca+2") * temp25_corr) * 10^(lg("Ca+2") * ff2)/ 

GFW("Ca+2") * 10000 

130 a_Cl = ((1^2 * F^2)/(R*TK)) * (DIFF_C("Cl-") * temp25_corr) * 10^(lg("Cl-") * ff1) /GFW("Cl-

") * 10000 

140 a_K = ((1^2 * F^2)/(R*TK)) * (DIFF_C("K+") * temp25_corr) * 10^(lg("K+") * ff1) / GFW("K+") 

* 10000 

150 a_NO3 = ((1^2 * F^2)/(R*TK)) * (DIFF_C("NO3-") * temp25_corr) * 10^(lg("NO3-") * ff1)/ 

GFW("NO3-") * 10000 

160 a_Na = ((1^2 * F^2)/(R*TK)) * (DIFF_C("Na+") * temp25_corr) * 10^(lg("Na+") * ff1) 

/GFW("Na+") * 10000 

170 a_Mg = ((2^2 * F^2)/(R*TK)) * (DIFF_C("Mg+2") * temp25_corr) * 10^(lg("Mg+2") * ff2)/ 

GFW("Mg+2") * 10000 

180 a_SO4 = ((2^2 * F^2)/(R*TK)) * (DIFF_C("SO4-2") * temp25_corr) * 10^(lg("SO4-2") *ff2) / 

GFW("SO4-2") * 10000 
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190 a_HCO3 = ((1^2 * F^2)/(R*TK)) * (DIFF_C("HCO3-") * temp25_corr) * 10^(lg("HCO3-") *ff1) 

/ GFW("HCO3-") * 10000 

 

# print results to output 

198 PUNCH DESCRIPTION 

220 PUNCH a_Ca 

230 PUNCH a_Mg 

240 PUNCH a_HCO3 

250 PUNCH a_SO4 

260 PUNCH a_NO3 

270 PUNCH a_Cl 

280 PUNCH a_Na 

290 PUNCH a_K 

-end 

# ---------------------- 

 

SELECTED_OUTPUT 4 # this block allows writing an output file. Here we print the difference between 

the total concentration of each solute species and its concentration as free ion  

-file Diff_mol_tot.dat     

 

USER_PUNCH 4 # print user-defined quantities to the selected_output file 

-headings Sample_ID  gl_Ca gl_Mg gl_HCO3 gl_SO4 gl_NO3 gl_Cl gl_Na gl_K  

-start 

 

# computation of concentration of each solute species as aqueous complexes 

# tot() returns the total molality (mol/kgw) of a solute  

# mol() return the molality (mol/kgw) of a SOLUTION 

# tot() - mol() represents the difference between the total concentration of each solute and its 

concentration as free ion (= concentration of each species as aqueous complexes) 

10 A = mol("HCO3-") + mol("CaHCO3+") + mol("MgHCO3+") + 2*(mol("CO3-2") + mol("CaCO3") 

+ mol("MgCO3")) 

 

110 gl_Ca = (tot("Ca") - mol("Ca+2")) * GFW("Ca+2") *1000 

120 gl_Mg = (tot("Mg") - mol("Mg+2")) * GFW("Mg+2") *1000 

130 gl_SO4 = (tot("S(6)") - mol("SO4-2")) * GFW("SO4-2") *1000 

140 gl_HCO3 = (A - mol("HCO3-")) * GFW("HCO3-") *1000 

150 gl_Cl = (tot("Cl") - mol("Cl-")) * GFW("Cl-") *1000 
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160 gl_K = (tot("K") - mol("K+")) * GFW("K+") *1000 

170 gl_NO3 = (tot("N(5)") - mol("NO3-")) * GFW("NO3-") *1000 

180 gl_Na = (tot("Na") - mol("Na+")) * GFW("Na+") *1000 

 

200 PUNCH DESCRIPTION 

210 PUNCH gl_Ca 

220 PUNCH gl_Mg 

230 PUNCH gl_HCO3 

240 PUNCH gl_SO4 

250 PUNCH gl_NO3 

260 PUNCH gl_Cl 

270 PUNCH gl_Na 

280 PUNCH gl_K 

    -end 

END 

 

B.1.5 Dissolution processes in the Baget catchment 

The dissolution of one mole of calcium carbonate (CaCO3) by carbonic acid (H2CO3) produces one mole 

of Ca2+ and two moles of HCO3
-. The black flysch formation contains pyrite, whose oxidation release 

strong acids, i.e., sulfuric acid (H2SO4). The reaction between one mole of CaCO3 and half mole of 

H2SO4 produces one mole of Ca2+, one mole of HCO3
- and half mole of SO4

2-. Consequently, the 

dissolution of CaCO3 by both H2CO3 and H2SO4 leads to a lower alkalinity than what we would observe 

in the case of only dissolution by H2CO3. 

 

 

Fig. B.1 Dissolution processes and stochiometric relationships characterizing the two main geological 

areas of the Baget springshed, i.e., calcareous rocks and black flysch. 
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B.1.6 Additional supplementary material 

 

Fig. B.2 Interpolated and predictive uncertainties for the Kerschbaum spring for the period 2018–2019. 

a Interpolated experimental uncertainty on the individual solute species concentrations (dashed lines) 

together with their interpolated uncertainty based on the frequency of occurrence of the weight factors 

observed in the period 2018–2019. b Uncertainty bands for the predicted individual solute species based 

on the frequency of occurrence of the weight factors observed in 2000–2016. The black, gray and light 

gray areas of the bands represent the interquartile, the 10–90% percentile and full ranges of the computed 

solute species concentrations (mg/L), respectively. The red points are the observed solute concentrations 

(mg/L). 
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Fig. B.3 Interpolated and predictive uncertainties for the Kerschbaum spring for the period 23/1/2022–

28/1/2022. a Interpolated experimental uncertainty on the individual solute species concentrations 

(dashed lines) together with their interpolated uncertainty based on the frequency of occurrence of the 

weight factors observed in the period 23/1/2022–28/1/2022. b Uncertainty bands for the predicted 

individual solute species based on the frequency of occurrence of the weight factors observed in 2000–

2016. The black, gray and light gray areas of the bands represent the interquartile, the 10–90% percentile 

and full ranges of the computed solute species concentrations (mg/L), respectively. The red points are 

the observed solute concentrations (mg/L). 
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 Fig. B.4 Correlation between EC (μS/cm), water level wl (m) and the weight factors fi (-) of HCO3
- and 

SO4
2- observed at Las Hountas for the period 1/11/2021–7/11/2021. a Time series of EC (black line) and 

water level (red line). b 3D scatter plot of EC, water level and weight factor of HCO3
-. c 3D scatter plot 

of EC, water level and the weight factor of SO4
2-. 

 

 

 

 

 

Fig. B.5 Correlation between EC (μS/cm), water level wl (m) and the weight factors fi (-) of HCO3
- and 

SO4
2- observed at Las Hountas for the period 20/11/2022–26/11/2022. a Time series of EC (black line) 
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and water level (red line). b 3D scatter plot of EC, water level and weight factor of HCO3
-. c 3D scatter 

plot of EC, water level and the weight factor of SO4
2-. 

 

Table B.1 Relative variation in measured concentrations (-) and relative width of the uncertainty bands 

(-) for Kerschbaum (2018–2019) and Las Hountas (4/10/2021–14/10/2021). 

 Kerschbaum  Las Hountas  

 Relative 

variation in 

measured 

concentration (-) 

Relative width 

of the 

uncertainty 

band (-) 

Relative 

variation in 

measured 

concentration (-) 

Relative width 

of the 

uncertainty 

band (-) 

Ca  0.14 0.11 0.23 0.1 

Mg 0.1 0.08 0.3 0.07 

HCO3 0.05 0.08 0.1 0.21 

SO4 0.41 0.34 1.93 1.19 

NO3 0.22 0.23 0.2 0.19 

Cl 1.2 1.07 0.38 0.19 

Na 0.84 0.72 0.36 0.12 

K+ 15.5 15.46 1.39 1.02 

 

B.2 Supplementary material to Chapter 6 

B.2.1 LuKARS model from Bittner et al. (2018) 

The modifications done within this study respect to the original version of LuKARS (Bittner et al. 2018) 

are presented in the text (Subsection 6.3). The equation from Bittner et al. (2018) which were directly 

applied without further adjustments are here presented.  

LuKARS (Bittneret et al. 2018) solves the following discrete balance equation (Eq. B.8) for each 

hydrotope i and for each time step t.  

𝐸𝑖,𝑡+1  =  max [0,  𝐸𝑖,𝑡 + (𝑆𝑖,𝑡 − 
𝑄hyd,𝑖,𝑡+𝑄𝑖𝑠,𝑖,𝑡

𝑎𝑖
) × 𝑑𝑡]                                                                             (B. 8)                                                                   

Where Ei (mm) is the water level in hydrotope i, Si (mm) the hydrotope-specific sink and source term, 

Qhyd,i (m3/s) the fast flow from hydrotope i, Qis,i (m3/s) the groundwater recharge from hydrotope i, ai the 

area of hydrotope i and dt the time step. In the present study, the evapotranspiration is not considered 
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and thus the sink and source term Si is equal to the precipitation. The discharge term Qhyd,i is computed 

as shown in Eq. B.9. 

𝑄hyd,𝑖,𝑡 =  𝜀𝑡 ∗ [
max(0, 𝐸𝑖,𝑡 − 𝐸min,𝑖)

𝐸max,𝑖 −  𝐸min,𝑖
]

𝛼𝑖

∗  
𝑘hyd,𝑖

𝑙hyd,𝑖
∗ 𝑎𝑖                                                                             (B. 9) 

 Where Emax,i and Emin,i (mm) are the upper and lower storage threshold of hydrotope i, αi (-) is an 

exponent, khyd,i (mm2/h) the discharge coefficient, and lhyd,i (m) the mean distance of hydrotope i from 

the spring. ε (-) specifies whether the fast flow component from a hydrotope is active at time step t 

(B.10, B.11). 

𝜀𝑡+1 = 0 if { 𝜀𝑡 = 0 & 𝐸𝑖,𝑡+1 < 𝐸max,𝑖 or 𝜀𝑡 = 1 & 𝐸𝑖,𝑡+1 ≤ 𝐸min,𝑖}                                                 (B. 10)  

𝜀𝑡+1 = 1 if { 𝜀𝑡 = 0 & 𝐸𝑖,𝑡+1 ≥ 𝐸max,𝑖 or 𝜀𝑡 = 1  & 𝐸𝑖,𝑡+1 >  𝐸min,𝑖}                                               (B. 11)  

The discharge term Qis,i is computed as function of the discharge coefficient kis,i (1/h) (Eq. B.12).  

𝑄is,𝑖,𝑡 = 𝑘is,𝑖 ∗ 𝐸𝑖,𝑡 ∗ 𝑎𝑖                                                                                                                                   (B. 12) 

 

B.2.2 KarstMod model from Mazzilli et al. (2019) 

In the present study, the flux from to conduit to the spring Qcs is computed with the linear function from 

Mazzilli et al. (2019) as function of the dimensionless water level in the conduit C (-), the discharge 

coefficient kCS (mm/h), the exponent aCS (-) and the recharge area 𝑅𝑎 (km2) (Eq. B.13). 

𝑄cs,𝑡 = 𝑅𝑎 ∗ 𝑘cs ∗ 𝐶𝑡
𝑎CS                                                                                                                                  (B. 13)     
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B.2.3 Hydrographs at Las Hountas spring and at the outlet of the catchment 

 

Fig.B.6 Precipitation time series and discharge hydrograph showing the different responses observed at 

the Las Hountas spring (black) and at the outlet of the Baget catchment (red) in March-April 2022. 

 

 

B.2.4 Water samples collected at Las Hountas spring 

 

Fig. B.7 Time series of the charge balance (%), sum of cations TC and anions TA (meq/L) of the samples 

collected at the Las Hountas spring for the period 30/03/2022–7/04/2022. The charge balance was 

computed by using the software PHREEQC. 
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B.2.5 Observed and selected discharge time series at Las Hountas spring 

 

Fig. B.8 Time series at Las Hountas spring for the period 30/03/2022–7/04/2022. a Observed discharge 

(Q observed), selected discharge among the Morris realizations (Q selected) and difference between the 

observed and selected discharges (ΔQ). b Observed discharge (Q observed), discharge constrained by 

hydrochemical observations (Q constrained) and difference between the observed and constrained 

discharges (ΔQ). The constrained discharge corresponds to the realization with the highest KGE among 

the subset of realizations respecting the hydrochemical constraints.  

 

 

 

 

 

 

 

 

 


