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Abstract

Autoencoders are an unsupervised learning technique that leverage representation
learning to reconstruct the original data as closely as possible. Traditionally, an
autoencoder network is trained to minimize the reconstruction loss between the
training data and the data generated as the output of the network, using iterative
gradient-based methods. There has been research in the realm of neural networks
with sampled weights and biases, instead of iteratively trained ones. The weights
and biases are sampled either using a data-agnostic or data-driven approach, which
need not be updated during the training process, resulting in much shorter training
times. The thesis aims to extend the use of data-driven sampling in neural networks
to an autoencoder setting. The "Sampling Where It Matters (SWIM)" [1] algorithm is
used to sample the weights and biases of the network that are then fixed and need
not be iteratively trained. However, simply sampling points from the input space
does not necessarily consider the intrinsic structure and complexities in the data.
Hence, kernel representation learning using a contrastive loss function is combined
with data-driven sampling to learn an embedding that can be used to reconstruct
the data accurately. The approach is tested on benchmark image datasets including
MNIST and CIFAR-10 and shown to have promising results. The approach is also
shown to have a form similar to kernel canonical correlation analysis.
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Kurzfassung

Autoencoder sind eine unbeaufsichtigte Lerntechnik, die das Repräsentationslernen
nutzt, um die Originaldaten so genau wie möglich zu rekonstruieren. Traditionell
wird ein Autoencoder-Netzwerk mithilfe iterativer, auf Gradienten basierender Me-
thoden trainiert, um den Rekonstruktionsverlust zwischen den Trainingsdaten und
den als Ausgabe des Netzwerks generierten Daten zu minimieren. Es gibt Forschun-
gen im Bereich neuronaler Netze mit abgetasteten Gewichten und Verzerrungen
anstelle von iterativ trainierten. Die Gewichtungen und Verzerrungen werden ent-
weder mit einem datenunabhängigen oder datengesteuerten Ansatz erfasst, der
während des Trainingsprozesses nicht aktualisiert werden muss, was zu deutlich
kürzeren Trainingszeiten führt. Ziel der Arbeit ist es, den Einsatz datengesteuerter
Abtastung in neuronalen Netzen auf eine Autoencoder-Umgebung auszudehnen.
Der Algorithmus „Sampling Where It Matters (SWIM)“ [1], wird verwendet, um die
Gewichte und Verzerrungen des Netzwerks abzutasten, die dann festgelegt werden
und nicht iterativ trainiert werden müssen. Das einfache Abtasten von Punkten aus
dem Eingaberaum berücksichtigt jedoch nicht unbedingt die intrinsische Struktur
und Komplexität der Daten. Daher wird das Lernen der Kernel-Repräsentation unter
Verwendung einer kontrastiven Verlustfunktion mit datengesteuerter Stichprobenzie-
hung kombiniert, um eine Einbettung zu erlernen, die zur genauen Rekonstruktion
der Daten verwendet werden kann. Der Ansatz wird an Benchmark-Bilddatensätzen
wie MNIST und CIFAR-10 getestet und zeigt vielversprechende Ergebnisse. Es
wird auch gezeigt, dass der Ansatz eine ähnliche Form wie die kanonische Kernel-
Korrelationsanalyse hat.
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1 Introduction

An autoencoder is a type of neural network that is commonly used for unsupervised
learning tasks, particularly in deep learning. Autoencoders are categorized as
generative models and are used to obtain effective data representations, also known
as embeddings, by identifying key elements or patterns in the input. The ultimate
goal of an autoencoder is to reconstruct the data as closely as possible to the input
using these embeddings. The encoder part of the network embeds the data in a low-
dimensional space, while the decoder reconstructs it from that space. Traditionally,
an autoencoder network is trained to minimize the reconstruction loss between the
training data and the data generated as the output of the network, using iterative
gradient-based methods. However, recent studies have explored neural networks
with sampled weights and biases instead of iteratively trained ones [1, 2, 3, 4, 5].
The weights and biases are sampled either using a data-agnostic or a data-driven
approach and do not need to be updated during the training process, resulting in
much shorter training times.

The aim of this thesis is to extend the use of sampled neural networks to an
autoencoder setting. However, simply sampling points from the input space does
not necessarily take into account the intrinsic structure of the data. To overcome this
limitation, kernel representation learning is used in combination with data-driven
sampling. The input data is first mapped to a higher-dimensional feature space
using a sampled linear network. The linear network comprises of a single dense
layer with a non-linear activation function. The weights and biases of this layer are
sampled via a data-driven scheme. Mapping the data to a higher-dimensional space
using a sampled network not only provides us with a good feature representation for
the input data, but the use of a non-linear activation function introduces nonlinearity
in an otherwise linear regime. The input data is then mapped from this high-
dimensional feature space into the kernel space using contrastive kernel learning.
The method does not expect the kernel to reveal the underlying structure of the data
in the feature space, but rather just finds a linear transformation that preserves the
distances between the neighbors and pulls the non-neighbors apart. The kernel space
can be reduced to a lower dimension, which allows us to find a low-dimensional
embedding of the original data. A modified version of the closed-form solution for a
lower-dimensional embedding suggested in [6] is used, along with an explanation
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1 Introduction

suggesting its semantic similarity to Kernel canonical correlation analysis [7]. The
encoder comprises of the linear network followed by the contrastive kernel paradigm
mapping the data from the input to a low-dimensional kernelized embedding. The
kernelized embedding is then used as the input data to the decoder network with
weights and biases sampled again using a data-driven scheme that samples these
parameters close to the target function that reconstructs the data points [1].

The proposed approach is validated on benchmark datasets, including MNIST
and CIFAR10. The performance is evaluated using metrics tailored to the nature
of these datasets, including pixel-wise error, visual inspection of the reconstructed
images, and classification accuracy on the reconstructed images.

The remainder of this thesis is structured in the following way: Section 2 dis-
cusses the state of the art, focusing mainly on the SWIM method used to sample
the parameters of the network in this study. We also discuss other variations of
sampled and kernel autoencoders and representation learning frameworks. Section 3
provides an overview of the methodology used in this study along with a theoretical
explanation of its link to kernel canonical correlation analysis, and Section 4 presents
the experiments conducted and their results. We wrap up with a discussion section
where we offer critical insights, address limitations, and suggest avenues for future
research.
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2 Related Work

2.1 Sampling in feed-forward networks

2.1.1 Data Agnostic Methods

Sampling weights and biases in neural networks using a data agnostic distribution
such as a normal distribution, has been studied extensively, with the most common
frameworks being the extreme learning machine (ELM) and the random projection
networks [2, 8, 9]. The weights between the input and hidden layers as well as the
hidden layer’s biases are randomly assigned by the network, and these parameters
are frozen during training. This approach prioritizes random or uniform sampling
methods, enabling the network to effectively handle various data distributions
without extensive pre-processing. Non-linearity is introduced in the network via the
hidden layer’s nonlinear activation functions. The input x ∈ RNxd is mapped onto
the hidden layer by linearly combining l nonlinear transformations of the original
input, where l is the number of hidden layers. For a network with only one hidden
layer, the hidden layer representation is calculated as

hm(x) = g(aT
m(x) + bm), (2.1)

where g is a non-linear activation function and a and b are the sampled weights and
biases respectively.

An illustration of a basic model can be seen in Figure 2.1 with two input points, a
single hidden layer, and a single output.

Figure 2.1: An architecture of a sampled network with two inputs, three hidden
nodes, and one output [10].

The matrix H is the matrix of hidden layer representations and is denoted as
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2 Related Work

H =

 h1(x1) . . . hB(x1)
...

. . .
...

h1(xN) . . . hB(xN)

 .

The weights between the output layer and hidden layer are the sole parameters that
need to be learned and can be formulated as a standard regularized least-squares
problem that in closed form can be written as

β∗ = (HT H + λI)−1HTy, (2.2)

where I is the identity matrix, y are the labels of the dataset and λ is the regularization
parameter. Because such networks learn without iteration, they have much faster
convergence than standard algorithms. Furthermore, random hidden nodes claim
to be able to approximate any function universally [2]. According to theoretical
research, sampled networks are less likely to get stuck at the local optimum and
hence more likely than traditional networks to attain the globally optimal solution
[10]. By treating each sample equally during the training phase, they can learn robust
representations that are not overly tailored to specific datasets or biases present in the
training data. As a result, the trained model can perform well on unseen data from
various sources, making them highly versatile. Such networks are frequently used
in a range of learning problems, including classification, regression, clustering, and
feature mapping, because of their excellent generalization capabilities and superior
training time. To increase the stability and generalizability for particular applications,
several modifications have been proposed [10, 11].

2.1.2 Data Driven Method (SWIM)

The SWIM (Sampling Where It Matters) algorithm [1] is a data-driven sampling
strategy for fully connected neural networks. It is founded on the principle of
random feature models, but rather than using a data-agnostic distribution, it samples
the network parameters using the data points in the input and output training
data. The algorithm samples the network’s weights and biases using pairs of data
points from the input space. Each weight and bias pair in the neural network is
entirely characterized by two input space points. The weights are determined by the
difference between the two points, while the bias is the inner product of the weight
and one of the two points. More specifically the weights and biases of the sampled
network are defined as
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2.1 Sampling in feed-forward networks

wl,i = s1
x(2)l−1,i − x(1)l−1,i

∥x(2)l−1,i − x(1)l−1,i∥2
, bl,i = ⟨wl,i, x(1)l−1,i⟩+ s2, (2.3)

where (x(1)0,i , x(2)0,i )
Nl
i=1 are pairs of points sampled over X× X, s1, s2 ∈ R are constants

related to the activation function, and x(j)
l−1,i = Φ(l−1)(x(j)

0,i ) for j = 1, 2, assuming

x(1)l−1,i ̸= x(2)l−1,i [1].
This data-driven sampling technique guarantees that the network parameters

are built based on particular attributes of input data, leading to precise and width-
efficient approximations with no need for gradient-based optimizations. The sampled
networks formed using the SWIM method have shown to be universal approxima-
tors, which means they can estimate any continuous function accurately provided
that the layers of the network are composed of a very large number of neurons.
Moreover, this method also has several advantages over the data-agnostic sampling
methods. They are more accurate because the weights and biases are derived from
data points and as such incorporate information about the specific data in the net-
work parameters as shown in Figure 2.2. Knowing which points were sampled for
constructing the weights and biases also leads to the model being more interpretable.
The SWIM method demonstrates robustness to changing random seeds, ensuring
consistent performance across different runs. This robustness is valuable in practical
applications where reproducibility and stability are important factors.

Figure 2.2: Random feature models choose weights in a data-agnostic way, sampling
them where it matters: at large gradients. The arrows illustrate where
the network weights are placed [1].

The paper by Bolager et al. [1] presents examples and experiments that demon-
strate the effectiveness of SWIM. These experiments include approximating Barron
functions, constructing deep neural architectures for PDE solution operators, and
transfer learning in image classification tasks. The results show that SWIM provides
higher accuracy and robustness to changing random seeds, and is much faster than
iterative training. These features make it a promising approach for various applica-
tions in machine learning and scientific computing. The SWIM method stands out
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2 Related Work

for its accuracy, interpretability, efficiency, and robustness, making it a promising
method for training neural networks in various machine learning tasks.

2.2 Sampling in Autoencoders

When applying sampled weights and biases to networks, it can enhance the network’s
ability to learn meaningful representations of the input data, which is vital for various
applications such as data denoising, dimensionality reduction, and feature learning.
Autoencoders are used extensively for these tasks and hence many studies have been
conducted in the realm of autoencoders with sampled network parameters.

2.2.1 Sampled Autoencoders

The paper by Kasun et al. [12] draws inspiration from the works of Geoffrey Hinton
and Pascal Vincent, who demonstrated the effectiveness of restricted Boltzmann
machines and autoencoders for feature engineering. The paper emphasizes the
importance of orthogonal random weights and biases in extreme learning machine
(ELM) autoencoders to project input data into a different or equal dimension space, as
per the Johnson-Lindenstrauss lemma. The representation capability of an extreme
learning machine based autoencoder is suggested to offer a promising solution
compared to traditional deep networks, showcasing better performance in various
applications.

The paper by Sun et al. [4] discusses the concept of integrating the principles of
extreme learning machines with an autoencoder like architecture to create a new
variant called generalized extreme learning machine autoencoder (GELM-AE). The
GELM-AE is designed to extract meaningful features from unlabeled data by incor-
porating manifold regularization, and it outperforms other unsupervised learning
algorithms. Additionally, the paper introduces a new deep neural network called
multilayer generalized extreme learning machine autoencoder (ML-GELM), which
stacks several GELM-AEs to detect more abstract representations. The experiments
conducted on real-world datasets demonstrate the superior performance of GELM-
AE and ML-GELM compared to other techniques, with lower time complexity.

There have also been studies conducted in the realm of using sampled autoen-
coders for learning sparse representations of the input data which can be used for
other downstream tasks such as clustering or initialization of deep neural networks.
The paper by Ding et al. [13] introduces the notion of using an extreme learning
machine as an autoencoder for feature learning. The embedded characteristics
are employed in an unsupervised extreme learning machine for clustering. The
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paper proves that the features extracted using the extreme learning machine autoen-
coder recover the principal components that represent original samples and that
the method outperforms various traditional clustering algorithms. Such works lay
the foundation for using extreme learning machine autoencoders to capture lower
dimensional embeddings of high dimensional datasets, which is essential to obtain a
good reconstruction.

The work done by Zhu et al. [14] discusses the implementation of a novel
unsupervised representation model, the hierarchical extreme learning machine
network, for learning representations from massive unlabelled data. The proposed
network utilizes the weights sampled using a uniform distribution to learn local
receptive fields at each layer and uses the outputs from each subsequent layer to
form a more comprehensive representation. Additionally, the method reduces rapid
information loss in multi-layer unsupervised learning and incorporates local contrast
normalization and whitening to enhance performance. The resulting trans-layer
representations are processed into block histograms with binary hashing to produce
translation and rotation invariant representations, used for high-level tasks such as
classification and detection. Experimental results demonstrate the effectiveness of
the hierarchical ELM network, achieving 65.97% accuracy on the Caltech 101 task
and 99.45% accuracy on the standard MNIST data set.

The main problem associated with all of the approaches discussed in this section
is that the sampling for the weights and biases of the network is done using a data-
agnostic distribution and does not incorporate any aspect of the training data. As a
result of sampling these network parameters independently from the distribution of
the input data, the network will require a very large number of samples before it
can find a useful embedding space.

2.2.2 Kernel Autoencoders

Traditionally sampled networks may not capture complex data representations
effectively, especially in cases where the data is highly non-linear or when a deeper
hierarchy of features is necessary. Kernel methods allow sampled networks to
model non-linear relationships between input and output variables. By using a
kernel function, sampled networks can implicitly map the input data into a higher-
dimensional feature space where linear separation might be possible. Furthermore,
they can handle a wide range of data types and structures, including non-linear,
non-parametric, and even non-stationary data. This makes them suitable for various
machine learning tasks where linear methods may not be effective.

In theory, the kernels compute a measure of similarity or distance between pairs of
data points in a high-dimensional space, known as the feature space. The choice of
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kernel function determines how this similarity is computed. Data points are mapped
to a Reproducing Kernel Hilbert Space (RKHS) using a kernel through a process
called the kernel trick. Given a dataset x ∈ RNxd, the kernel function is applied to
pairs of data points to compute a symmetric positive semi-definite kernel matrix K
where

Kij = K(xi, xj). (2.4)

The kernel trick exploits the property of Mercer’s theorem [15], which states that
any positive semi-definite kernel corresponds to an inner product in some (possibly
infinite-dimensional) feature space. Instead of explicitly computing the transformed
feature vectors ϕ(xi) in the high-dimensional feature space, the kernel function
K(xi, xj) implicitly captures the inner product of the feature vectors ϕ(xi) and ϕ(xj)

in the RKHS. As a result of this property, any algorithm that relies on the inner
products can be implicitly mapped to the RKHS simply by evaluating the kernel K
[6]. Hence HT H in Equation 2.2 can be replaced by the kernel matrix Φ such that

Φ = HT H,

where,
Φk,j = K(xk, xj), k, j = 1 to N. (2.5)

As demonstrated above, kernels can naturally be applied to the randomly sam-
pled network regime. Owing to this, there has been research conducted in the
domain of incorporating kernel methods in various sampled networks. The paper
by Wong et al. [16] suggests incorporating kernel methods into the extreme learning
machine framework to enhance its representational power. Kernel methods allow
for nonlinear transformations of the input data into a higher-dimensional space,
where linear operations can be performed efficiently. By combining kernel methods
with multi-layer structures, the proposed approach aims to learn more expressive
and discriminatory feature representations from the data. An added benefit of this
approach is that it eliminates the need to manually determine the number of hidden
nodes needed for each layer, reducing the number of hyperparameters in the model.
As kernel matrices are guaranteed to be invertible, it also allows for the exact inverse
to be computed, instead of the pseudo inverse, further improving the performance.

A major drawback of using kernel methods is the storage and computational
issues that arise as kernels have a time and space complexity of O(N2) where N is
the size of the data. This issue is addressed in the paper by Vong et al. [17]. The
paper proposes a new method called ML-EKM-ELM that encodes every hidden layer
in the form of an approximate empirical kernel map with a much smaller size, which
is very efficient for learning representations from large-scale data. The Nyström
method is adopted in the work to generate the approximate empirical kernel map
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2.3 Representation Learning

due to its efficiency in many large-scale machine learning problems. The paper also
compares ML-EKM-ELM with other existing deep neural networks over benchmark
datasets and concludes that ML-EKM-ELM is a compact model with a faster solution
that maintains satisfactory accuracy.

The paper by Kuss et al. [18] proposes a novel kernel-based framework for building
autoencoders based on vector-valued reproducing kernel Hilbert spaces (vv-RKHSs)
that learns an optimal kernel embedding. The proposed algorithms rely on the form
taken by the minimizers, revealed by a dedicated representer theorem. The paper
provides a theoretical analysis of the model, including a generalization bound and a
strong connection with kernel principal component analysis (KPCA). The proposed
kernel autoencoder’s performance is tested on both simulated data and real labeled
graphs and shows promising results.

We draw inspiration from these works but incorporate a different flavor of kernel
learning in our work, namely contrastive kernel representation learning

2.3 Representation Learning

Representation learning is a type of machine learning technique where the algorithm
learns to automatically discover and create meaningful representations of the data. In
this context, representation refers to a transformation of the raw data into a different
format that captures important features or characteristics of the data in a more useful
and informative way. To be able to reconstruct the data as closely as possible to
the input, the representations learned by the network must encapsulate the relevant
features of the data in the lower dimensional space. Hence, it is imperative to
understand the domain of representation learning to be able to construct a network
that captures useful representations.

2.3.1 Manifold Learning

Manifold learning is a technique that aims to uncover the underlying structure of
high-dimensional data. The theoretical concept of manifold learning is based on
the premise that high-dimensional data is frequently found on or near a lower-
dimensional manifold within the high-dimensional space [19]. A manifold is es-
sentially a lower-dimensional surface embedded in a higher-dimensional space.
Manifold learning algorithms seek to uncover the underlying manifold and represent
the data in a more compact and understandable way. By finding and capturing this
structure, manifold learning algorithms can minimize the dimensionality of the data
while maintaining its significant properties.

Some popular manifold learning algorithms are:
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• Isomap (Isometric Mapping) [20]: It aims to preserve the geodesic distances
between all pairs of points in the dataset. It constructs a neighborhood graph
and then approximates the geodesic distances along this graph.

• Locally Linear Embedding (LLE) [21]: LLE seeks to represent each data point
as a linear combination of its nearest neighbors, aiming to preserve local
relationships within the data. It then seeks a low-dimensional embedding
where these local relationships are maintained.

• t-Distributed Stochastic Neighbor Embedding (t-SNE) [22]: Primarily used
for visualization, t-SNE minimizes the divergence between the distributions of
pairwise similarities in the high-dimensional space and the low-dimensional
embedding.

• Principal Component Analysis (PCA) [23]: While not exclusively a manifold
learning technique, PCA is widely used for dimensionality reduction. It
identifies the directions (principal components) along which the data varies the
most and projects the data onto a lower-dimensional subspace while preserving
as much variance as possible.

• Linear Spectral embedding [24]: Spectral embedding is a dimensionality
reduction technique that aims to uncover the underlying structure of data by
leveraging the eigenvalues and eigenvectors of a similarity or affinity matrix
computed from the data. The basic idea is to represent high-dimensional data
points in a lower-dimensional space while preserving pairwise relationships or
similarities between the data points.

• Diffusion Maps [25]: This method is based on the concept of diffusion pro-
cesses, where similarity between data points is measured by their probability of
transitioning from one point to another over a series of steps. By constructing
a diffusion matrix from pairwise similarities and then computing its eigenvec-
tors, diffusion maps generate a low-dimensional embedding of the data that
preserves the underlying geometric and topological relationships.

The swiss roll dataset is a popular dataset used to test various manifold learning
techniques. It is a two-dimensional manifold that is embedded in three-dimensional
space and resembles a rolled-up sheet of paper or a spiral-like structure. The
figure 2.3 shows the swiss roll in three dimensions and the figure 2.4 shows a
comparison of each of these manifold learning techniques on the swiss roll dataset.
Each subplot illustrates a distinct technique in its attempt to unfold the inherently
nonlinear structure of the swiss roll into a lower-dimensional representation. Each
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method reduces the swiss roll from three dimensions to two dimensions and, where
needed, the number of neighboring points is specified as twelve. Differences in the
unwrapped shapes highlight the varying capabilities of each method in capturing
and preserving the underlying geometric properties of the dataset.

Figure 2.3: The Swiss Roll manifold in 3 dimensions

2.3.2 Kernel Representation Learning

Kernel representation learning is aimed at learning feature representations of data
using the concept of kernels. The key idea behind kernel representation learning is
to find a suitable kernel function, given by Equation 2.4 that maps the input data
into a higher-dimensional space where the data becomes linearly separable or more
amenable to analysis. This can be especially useful in scenarios where the original
data lies on a complex, nonlinear manifold, making traditional linear methods less
effective. Some common kernel functions include:

• Linear Kernel: It computes the inner product between two data points in
the original feature space, effectively measuring their similarity without any
nonlinearity. It is given by the form k(x, y) = xTy.

• Polynomial Kernel: It computes the similarity between two data points as
the polynomial of their inner product, often with an additional user-defined
degree parameter. It is defined as k(x, y) = (xTy + c)d.

• Gaussian Radial Basis Function (RBF) Kernel: It measures the similarity
between two data points based on the Euclidean distance between them in
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(a) Isomap Embedding (b) LLE Embedding

(c) TSNE Embedding (d) PCA Embedding

(e) Spectral Embedding (f) Diffusion Maps

Figure 2.4: Two-dimensional Embeddings of the Swiss Roll Dataset
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2.3 Representation Learning

the original feature space. It is defined as k(x, y) = exp(−γ(x − y)2)). The
similarity decreases exponentially with distance, resulting in a smooth and
continuous kernel.

• Sigmoid Kernel: It computes the similarity between two data points using the
hyperbolic tangent function, given by k(x, y) = tanh(αxy + β).

The success of kernel representation learning methods can be attributed to several
factors. They capture complex, nonlinear relationships between data points by
implicitly mapping them to a higher-dimensional space. They can easily deal with
very high dimensional data and even an infinite dimensional feature space. Kernel
methods, particularly those based on regularization techniques are often less prone
to overfitting compared to other complex models [26]. Many kernel methods come
with strong theoretical guarantees, such as convergence properties and performance
bounds, which provide insights into their behavior and hence make them more
interpretable.

A common principle of these methods is to construct nonlinear variants of linear
algorithms by substituting the linear inner product with kernel functions. Examples
include kernel principle component analysis (kPCA) and kernel linear discriminant
analysis (kLDA) which are non-linear extensions of these linear dimensionality
reduction algorithms. Significant for our work is the kernel version of canonical
correlation analysis. Linear canonical correlation analysis (CCA) is used to explore
the relationship between two sets of variables by identifying linear combinations of
variables (canonical variates) that have maximum correlation across the two sets [26].
The goal of CCA is to find linear combinations of the canonical variates from each set
that maximize their correlation. This is achieved by finding weights for each variable
such that the correlation between the resulting canonical variates is maximized.

The objective is to find two vectors vj ∈ L(X′) and wj ∈ L(Y′) where L(X′) is
the row space of the input data X such that the variates aj = Xvj and bj = Yvj are
maximally correlated. This objective is given by

corr(aj, bj) =
⟨aj, bj⟩
∥aj∥∥bj∥

. (2.6)

The objective can be formulated as the optimization problem of the form

argmaxvj∈L(X′), wj∈L(Y′) v′jX
′Ywj

subject to v′jX
′Xvj = w′jY

′Ywj = 1.

(2.7)
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Once the canonical variates are obtained, CCA computes the canonical correlations,
which measure the strength of the relationship between the sets of canonical variates.
The canonical correlation coefficients indicate how well the two sets of variables are
related to each other. The kernel version of canonical correlation analysis (KCCA)
differs from the linear version in how it operates on the data. While linear canonical
correlation analysis works directly with the original data in the feature space, KCCA
operates in a higher-dimensional space implicitly defined by a kernel function.

2.3.3 Contrastive Representation Learning

The dimensionality reduction approaches described earlier achieve the goal of
obtaining low-dimensional features from high-dimensional data. However, those
methods have significant limitations, which drove the development of contrastive
learning. Linear spectral embedding and PCA are linear techniques and cannot
handle non-linear data or manifolds, Isomap, LLE and Diffusion maps have a high
computational cost and are sensitive to their parameters, while TSNE does not
generalize to new data. Contrastive learning overcomes the flaws mentioned above
by learning characteristics from data using neural networks. The sole assumption
made about the data structure is that similar inputs are close to each other in latent
space. Contrastive learning, like manifold learning, aims to map similar points to
close together while mapping dissimilar points far apart. Unlike multidimensional
scaling or kernel approximation, it is not required to specify a similarity measure
(or kernel) between every pair of points in the data. Instead, all that remains to
be done is to determine pairs of similar inputs (positive samples) and dissimilar
inputs (negative samples). The desired representations are then learned via the
minimization of a loss function, called contrastive loss, which depends on a notion
of similarity such as the Euclidean distance between two points. It encourages this
similarity to be as high as possible for positive samples and as low as possible for
negative samples [27].

Two of the most popular contrastive learning losses are the Barlow Twins loss
and the Triplet loss. For Barlow Twins, the input data X is used to construct
another matrix Y where Y is an augmentation of each data point from the input X.
Augmenting the input creates points that are semantically similar to the input points
and hence should be mapped identically in the feature space. In other words, the
representations or features learned from the augmented points should be identical
to the ones learned from their corresponding input point. The objective function
measures the cross-correlation matrix between the embeddings of two identical
networks fed one fed with X and the other fed with Y and tries to make this matrix
close to the identity [28]. The algorithm is detailed in Figure 2.5.
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2.3 Representation Learning

Figure 2.5: The Barlow Twins algorithm uses distorted versions YA and YB of the
original Data X, constructed via augmentations and fed into identical
neural networks. The objective function then tries to map the cross-
correlation matrices of the embeddings of YA and YB to an identity
matrix [28].

The Triplet loss is another popular contrastive loss. Triplet loss requires three
inputs: anchor, positive, and negative. The positive point here refers to a data point
that is semantically similar to the anchor. This could be based on class labels or
some distance measure. We can also generate positive points from the data using
augmentations. The negative, in contrast, refers to a data point that is dissimilar to
the data. The objective of triplet loss is to reduce the distance between the anchor
and the positive example while increasing the gap between the anchor and the
negative example. The work by Esser et al. in the paper [6] combines kernel methods
and the triplet loss for non-parametric representation learning models, focusing
on contrastive self-supervised learning models. It presents kernel variants of a
single hidden layer network that minimize the simple and spectral contrastive loss
functions, which are both variants of the triplet loss. The formulation of the two
losses is shown in Figure 2.6. Here x denotes the original data points, x+ denotes
positive pairs of the data, and x− denotes negative pairs of the data.

The paper also presents a closed-form solution for an optimal embedding using
contrastive kernel learning. This is very important for our work as a closed-form
solution enables us to compute an optimal embedding without the need for iterative
gradient descent. It emphasizes the suitability of kernel methods for small data
problems and their interpretability. The authors also extend the existing representer
theorem under orthogonal constraints and derive generalization error bounds for the
proposed kernel models, showing that model predictions improve with an increased
number of unlabelled data. Furthermore, the paper compares the proposed kernel
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Figure 2.6: Kernel contrastive loss using a Triplet setting [6]. The simple and spectral
contrastive losses are optimized by decreasing the distance between the
embedding of the anchor z and the positive z+ and increasing the distance
between embedding of anchor z and the negative z−.

contrastive method to neural network models for classification and de-noising tasks,
demonstrating that the approach suggested performs on par with or outperforms
the neural network counterparts.

2.3.4 Autoencoders for Representation Learning

Much like these manifold learning algorithms, autoencoders also aim to learn a
lower dimensional representation of the input data. The embedding space in an
autoencoder is usually lower dimensional compared to the input dimension and
aims to encapsulate the most meaningful features or representations of the input
data. Hence, it forms a compressed and informative representation of the input
data. This is why the embedding space can be thought of as a lower dimensional
representation of the data allowing autoencoders to be used for dimensionality
reduction and representation learning.

In recent times, the concept of feature learning for dimensionality reduction
has gained significant attention and has been applied to various real-world tasks.
As sampled networks gain more attention and praise, the focus has also been on
using sampled autoencoders to study the representations they create, especially
in a low-dimensional setting, and to try to ascertain if such networks can be used
for dimensionality reduction. Researchers have been inspired by the hierarchical
architecture of deep neural networks and have focused on constructing multilayer
ELM feature extractors, the most prominent of which were discussed in Section 2.2.1
and the kernel variants which were discussed in Section 2.2.2.
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The paper by Esser et al. [6] has also touched upon the use of kernel methods with
the autoencoder network. The paper presents the concept of a kernel autoencoder
(kAE), in which both the encoder and decoder represent kernel machines. It defines
the kernel autoencoder as a model that requires transferring the input to a lower-
dimensional latent space (encoding) and then returning to the reconstruction of the
original data (decoding). The work provides a formal specification of the kernel
autoencoder and defends its design, which includes norm regularization on both
the encoder and decoder. The data from the input space is first mapped to a feature
space by computing a kernel function over the input data points. This feature space
is then used as the input to an encoder that maps it to an embedding space by
multiplying it with a weight matrix. A kernel is computed over the embedding
space before it is fed to a decoder network which multiplies it by its weight matrix
to reconstruct the data. The approach is shown in Figure 2.7, compared against the
traditional autoencoder network. and the kernel PCA regime.

In this approach, both weight matrices for the encoder and decoder are learned
using iterative gradient descent. Furthermore, the paper examines the relationship
between kernel AE and kernel PCA, emphasizing the contrasts and similarities
between the two methodologies. Although different from our purpose of learning
reconstructions using sampled weights and biases, this method does provide a good
baseline for our work.
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(a) The Kernel Autoencoder where the data is first mapped to a kernel space before it is mapped to a
lower dimensional space. The lower dimensional data is also first mapped to a kernel space before
it is reconstructed.

(b) A traditional neural network where the data is mapped to a lower dimensional space using one or
more layers and reconstructed from that space.

(c) Kernel PCA that performs PCA in the RKHS
and therefore computes distances in the feature
space

Figure 2.7: Kernel Autoencoder compared against the neural network autoencoder
and kernel PCA [6].
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3.1 Auto Encoder Network

A traditional autoencoder consists of an encoder and a decoder, which work together
to learn a compact representation of the input data. It comprises of three parts.

1. Encoder: The encoder takes the input data and maps it to a lower-dimensional
representation. The encoder can consist of one or more layers of neurons,
each performing transformations on the input data to gradually reduce its
dimensionality.

2. Embedding Space: This is the compressed representation of the input data
learned by the encoder. It has a lower dimensionality compared to the input
data and captures the most salient features. The dimensionality of the embed-
ding space is a hyperparameter that needs to be defined before training the
autoencoder.

3. Decoder: The decoder takes the compressed representation generated by the
encoder and attempts to reconstruct the original input data from it. Like the
encoder, the decoder can consist of one or more layers of neurons, which
gradually expand the dimensionality of the embedding space back to the
dimensionality of the original input data.

The structure of our autoencoder also consists of the encoder, the embedding
space, and the decoder. It differs from a traditional autoencoder in two respects.
Firstly, the weights for both the encoder and decoder are not trained using gradient
descent but are sampled using the data-driven sampling from [1]. Secondly, the
output of the encoder is not inherently the embedding space. Rather, the output
of the encoder is a high-dimensional feature map that is then mapped to a lower-
dimensional embedding space using a modified version of the kernel representation
learning scheme from [6], which uses the feature map from the encoder as well as a
similarity map which specifies which points are positive pairs (have identical labels)
of each other. Each of the parts is discussed in detail in the following subsections. A
visual representation is shown in Figure 3.1
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3 Data Driven Sampling in Autoencoders

Figure 3.1: The autoencoder network with the encoder that maps the data into a high
dimensional feature space, the embedding space which is constructed
from the encoded feature space and a similarity graph, and the decoder
which maps the points from the embedding space to the reconstruction.

3.1.1 Computing the Similarity Map

The similarity map is a matrix denoting which points from the input space are
related to each other. Given the input X ∈ RNxd of the form

X =


x1

x2
...

xN


where each xm is a d dimensional data point, the matrix for the similarity map is
demoted by G ∈ {0, 1}NxN where each row of the matrix corresponds to one data
point and each point in the row denotes its similarity to each of the other points.
Hence the matrix G represents a pairwise positive relation between the samples in
the data where Gi,j = 1 ⇔ xi and xj are semantically related and i ̸= j. We can also
restrict the matrix G to identify a limited number of positive samples for each point.
We do this by randomly sampling any z points from each pairs(i) where pairs(i) are
positive samples for each data sample xi, and then setting Gi,j = 1 ⇔ Gi,j ∈ pairs(i)
for each i.

There are several ways to determine whether two points are semantically related
to each other. The most commonly used method for image datasets is to compute
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3.1 Auto Encoder Network

augmentations of each data sample. Some common methods of augmentations
include rotation, scaling, translation, contrast and brightness adjustments among
others. These augmentations can be applied individually or in combination, and
they are often used with parameters randomly sampled from predefined ranges to
increase variability. Another method is to use any notion of similarity to compute
closeness. For example, the Euclidean distance or cosine distance between two points
can be a measure of similarity with points having a smaller distance being more
similar to each other. These are both examples of unsupervised approaches.

However, for our work, we used a supervised approach for computing the similar-
ity map. As the class labels were available for all the datasets used, the similarity map
was defined based on these labels, with Gi,j = 1 if xi and xj had the same label. The
use of class labels to determine the positive pairs simplifies the process of positive
selection while avoiding potential false negatives [29]. The approach also results
in a better and more varied selection of positive pairs that contain semantically
relevant features and generalize better on unseen data. An illustration of how using
a supervised approach harnessing class labels for generating a similarity map can be
helpful to more closely align images that have similar semantic properties can be
seen in Figure 3.2

Figure 3.2: Embeddings found using data augmentations labels to generate positive
pairs vs using class labels. As demonstrated by the photo of the black
and white puppy, taking class label information into account results in
an embedding space where elements of the same class are more closely
aligned than in the self-supervised case [29].
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3.1.2 Sampling the Encoder

The encoder part of the network comprises of a single dense layer that maps the
input space to a feature map. Given the input X ∈ RNxd, the encoder maps the
input to a feature space E ∈ RNxm where m is the width of the dense layer. The layer
width m can be smaller or larger compared to the dimensionality of the data space d
and is chosen as a hyperparameter. The mapping has the form

ei(x) = ϕ(wT
i (x) + bi), (3.1)

where w and b are sampled from the data X using the form given in 2.3 and ϕ is a
non linear activation function. The activation functions that can be used with this
data-driven sampling scheme are rectified linear unit (ReLU) and Tanh. The scalars
in the equation 2.3 are used to fix what values the points x1 and x2 take on when the
activation function is applied. For ReLU, s1 is set to 1 and s2 is set to 0, to let x1 be
mapped to zero and x2 to 1. For tanh, s1 = 2s2 and s2 = ln(3)/2 , which implies that
x1 and x2 are mapped to +1/2 and −1/2 respectively, and the midpoint between
the two points is assigned to zero [1].

The output of the encoder is a m dimensional, non-linear map of the input space. It
is important to note that either m < d or m >= d, but in either case, the mapping E(x)
does not represent the embedding, which is the case for a traditional autoencoder,
where the embedding is given by the output of the encoder. In our case, the output of
the encoder is a feature map from which the embedding will be calculated in the next
step. The feature map is constructed only to obtain a non-linear, high-dimensional
representation of the input, similar to constructing a kernel over the data space.

3.1.3 Optimal Embedding for the Latent Space

For this section, we take inspiration from the Barlow Twins loss [28] which is based
on the covariance and cross-covariance matrices. This loss aims to encourage the
learned representations to be invariant to certain differences in data points the
having same class label while still preserving useful information. It achieves this
by penalizing the cross-covariance matrix of the representations obtained from the
positive pairs of the data samples.

To extend into the non-linear regime, instead of using the original data samples, we
use the feature map E(x), which is the output of the encoder. Once the feature map
is constructed, the optimal embedding is computed. We compute the embedding by
finding the optimal weights W ∈ Rmxk where k is the dimension of the embedding
space such that the embedding can be obtained using

z∗ = E(x)W. (3.2)
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To compute the optimal weights, first, we construct two matrices Xa and Xb as
follows

Xa = [e1, e1, ...e1, ......eN , eN , ...eN ]
T, (3.3)

where each point ei is the feature map of the input point xi obtained from the encoder
and is repeated z number of times where z is the number of positive pairs chosen
for each point.

Xb = [ê1,1, ê1,2, ...ê1,z, ......êN,1, êN,2, ...êN,z]
T, (3.4)

where êi,ẑ is the feature map of the positive pair for xi based on the similarity graph
G. We then compute the covariance and cross-covariance matrices as follows

Caa = XT
a Xa,

Cbb = XT
b Xb,

Cab = XT
a Xb,

Cba = XT
b Xa,

(3.5)

and then the matrix C is calculated as

C = Caa
−1CabCbb

−1Cba. (3.6)

The optimal weights W are then given by the top k eigenvectors of C and using
these the optimal embedding can be calculated using Equation 3.2. Hence we have a
closed-form solution for our latent space.

As computing the eigen values and eigen vectors of a high dimensional matrix can
be very computationally expensive, we solve them using the lobpcg function from
the library scipy.sparse.linalg. It is a solver for large-scale eigenvalue problems
for symmetric positive definite generalized eigenvalue problems. It requires a block
preconditioner, which is an approximation to the inverse of the matrix being solved.
The block preconditioner is used to accelerate the convergence of the iterative solver
by reducing the condition number of the problem. As the block preconditioner, we
use the variance matrix Caa. It iteratively refines an initial guess for the eigenvectors
and eigenvalues of the problem. At each iteration, it constructs a subspace spanned
by the current approximation to the eigenvectors and solves a small generalized
eigenvalue problem within this subspace. lobpcg is designed to handle large-scale
problems efficiently by working with sparse matrix representations, which reduces
memory requirements and computational cost for operations like matrix-vector
product. This greatly helps us to speed up the computation of the eigenvalue
problem.
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3.1.4 Sampling the Decoder

From the embedding constructed using Equation 3.2 in the previous subsection,
the original image can now be reconstructed using the decoder. The decoder of
our network consists of two layers. The first dense layer maps the embedding to a
high-dimensional non-linear feature map. This is done based on the equation

di(z) = ϕ(wT
i (zi) + bi), (3.7)

where z ∈ RNxk is the embedding and ϕ is a non linear activation function. The
weights w and biases b are again sampled using the data-driven sampling method
from [1], but this time, the samples are derived from the points in the embedding
space and not the original dataset. Although this has changed our sample space, the
construction of the sampling scheme, based on the two activation functions ReLU
and Tanh, is invariant to the sample space, so that the sampling is also valid when
the sample space changes from the original data space.

The next part of the decoder is the linear layer where the output weights are
calculated analytically. The network solves a simple linear regression problem to
determine the output weights. This involves solving the following equation

D(z)β = Y, (3.8)

where D(z) is the feature space obtained from the dense layer of the decoder, β

are the weights to be solved and Y is the target matrix which in the case of an
autoencoder is simply the input matrix X. In this way, the last linear layer learns
a matrix representation that exactly maps the feature map of the decoder D(z) to
the target X. The equation is solved using linear least squares, where if D(z) has
full rank then we get the exact solution, otherwise β minimizes the Euclidean norm
∥D(z)β−Y∥.

Moreover, to prevent the weights β from overfitting on the train set and hence
exhibit poor performance on the test set, we can introduce regularization to the
Equation 3.8 to penalize large weights and encourage smoother solutions, helping
to prevent overfitting. This is especially useful when the model’s capacity is large
relative to the size of the training dataset or when dealing with noisy data.

The full algorithm for the autoencoder is given in Algorithm 2.

3.1.5 Hyperparameters for the network.

In an autoencoder, hyperparameters are the parameters that are set before the train-
ing process begins and are not learned from the data. These parameters control
various aspects of the autoencoder’s architecture, optimization, and regularization.
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Algorithm 1 The SWIM algorithm, for activation function ϕ, and norms on input,
output of the hidden layers, and output space, ∥·∥X0 , ∥·∥X1 , ∥·∥Y respectively, taken
from [1], and amended to sample only for one layer.

Constants: ϵ ∈ R>0, ς ∈N>0, N ∈N>0, and s1, s2 ∈ R

Data: X = {xi : xi ∈ RD, i = 1, 2, . . . , M}, Y = {yi : f (xi) = yi ∈ RN , i =

1, 2, . . . , M}
Φ(x) = x
M̃← ς · ⌈Nl

M ⌉ ·M
P ∈ RM̃; Pi ← 0 ∀i
X̃ = {(x(1)i , x(2)i ) : Φ(x(1)i ) ̸= Φ(x(2)i )}M̃

i=1 ∼ Uniform(X× X)

for i = 1, 2, . . . , M̃ do

x̃(1)i , x̃(2)i ← Φ(x(1)i ), Φ(x(2)i )

ỹ(1)i , ỹ(2)i = f (x(1)i ), f (x(2)i )

Pi ←
∥ỹ(2)i −ỹ(1)i ∥Y

max{∥x̃(2)i −x̃(1)i ∥X ,ϵ}

end for
W ∈ RN,D, b ∈ R

for k = 1, 2, . . . , N do
Sample (x(1), x(2)) from X̃, with replacement and with probability proportional

to P
x̃(1), x̃(2) ← Φ(x(1)), Φ(x(2))
W(k,:) ← s1

x̃(2)−x̃(1)
∥x̃(2)−x̃(1)∥2 ; b(k)l ← ⟨W(k,:), x̃(1)⟩+ s2

end for
Φ(·)← ϕ(WX− b)
return {W, b, Φ(·)}
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Algorithm 2 The full algorithm for the data-driven sampled autoencoder. L is a loss
function, which in our case is always L2 loss, and arg minL(·, ·) becomes a linear
optimization problem.

Constants: num_positives ∈N>0, k ∈N>0, ϕ ∈ {ReLU, Tanh}

Data: X = {xi : xi ∈ Rd, i = 1, 2, . . . , N}, Y = {yi : f (xi) = yi ∈ Z+, i =

1, 2, . . . , N}

for i = 1, 2, · · · , N do
pairs(i) = {xj | ∀j where yj = yi and i ̸= j}
pairs(i) = sample num_positives points from pairs(i)

end for

find E = ϕ(·) using Algorithm 1 with Inputs X and X

find Xa using Equation 3.3
find Xb using Equation 3.4

Caa = XT
a Xa

Cbb = XT
b Xb

Cab = XT
a Xb

Cba = XT
b Xa

cov = C−1
aa CabC−1

bb Cba

W = top k eigen vectors of cov in descending order

z∗ = E ·W

find D = ϕ(·) using Algorithm 1 with Inputs Z and X

W, b = arg minL(D, X);

X̂ = WX− b
return X̂, W, b
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Hyperparameters significantly influence the performance, generalization, and con-
vergence speed of the autoencoder. Proper tuning of these hyperparameters is
crucial to achieve the desired performance and prevent issues like overfitting or slow
convergence. By design, our network does not require some of the hyperparameters
required by traditional autoencoders such as the learning rate, dropout rate, opti-
mizer amongst others. The hyperparameters used in the work are given in Table
3.1. All these hyperparameters are tuned manually to find optimal values for best
results.

Table 3.1: Hyperparameters required for the network.

Hyperparameter Description

Positive pairs
The number of samples taken as the positive pairs
for each input data sample

Encoder width
Number of neurons in the encoder. This also speci-
fies the dimensionality for the feature space of the
encoder

Decoder width
Number of neurons in the decoder. This also speci-
fies the dimensionality for the feature space of the
decoder

Activation function

The function to introduce non-linearity into the net-
work, enabling it to learn complex patterns in the
data and make the network capable of approximat-
ing any arbitrary function. The choice is between
ReLU and Tanh

Embedding dimension
The dimension of the embedding space which the
input is reduced to

Regularization constant
The constant that controls the degree of regulariza-
tion for the linear layer
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3.2 Association to Kernel Canonical Correlation Analysis

Canonical correlation analysis (CCA) is a statistical technique used to analyze the
relationship between two sets of variables. CCA is formulated as an optimization
problem, where the goal is to find the optimal linear transformation of the input
variables, usually represented by a matrix of weights denoted as W, such that the
correlation between the transformed variables is maximized. In simpler terms, CCA
seeks to find linear combinations of the original variables from each set in such a
way that the correlation between these combinations is maximized. This is achieved
by adjusting the weights W in the transformation matrices. The optimization process
involves searching for the set of weights that yields the highest correlation between
the transformed variables, and captures the most meaningful relationship between
the two sets of variables. There are numerous approaches to framing the CCA
problem. Essentially, the basic objective is to iteratively discover pairs of filters that
generate features with the highest correlation possible as in

max
wa,wb

⟨XaWa, XbWb⟩
∥XaWa∥2∥XbWb∥2

. (3.9)

Inspired by the work in [30], we now show that this has a natural translation to
Equation 3.6 which we use to find the optimal weights for the embedding. Equation
3.9 can be reformulated as a constrained optimization problem of the form

max
wa,wb
⟨XaWa, XbWb⟩ s.t. ∥XaWa∥2 = 1 and ∥XbWb∥2 = 1. (3.10)

Because adjusting the scale of the weights doesn’t affect the learned filters, they can
be converted into a Lagrangian function, thus

L = ⟨XaWa, XbWb⟩ − λ1( ∥XaWa∥2 − 1)− λ2(∥XbWb∥2 − 1). (3.11)

Computing the partial derivatives gives us

∇waL = XaXbwb − 2λ1XaXawa

∇wbL = XbXawa − 2λ2XbXbwb

δL
δλ1

= wT
a XaXawa

δL
δλ2

= wT
b XbXbwb

(3.12)
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Replacing XaXa = Σaa, XaXb = Σab, XbXa = Σba, XbXb = Σbb, we get

∇waL = Σabwb − 2λ1Σaawa

∇wbL = Σbawa − 2λ2Σbbwb

δL
δλ1

= wT
a Σaawa

δL
δλ2

= wT
b Σbbwb

(3.13)

Setting the first two equations to 0 will give us

Σabwb − 2λ1Σaawa = 0⇒ wT
a Σabwb − 2λ1wT

a Σaawa = 0

λ1 =
1
2

wT
a Σabwb

Σbawa − 2λ2Σbbwb = 0⇒ wT
b Σbawa − 2λ1wT

b Σbbwb = 0

λ1 =
1
2

wT
b Σbawa

(3.14)

From this equation, it is clear that λ1 = λ2. Hence these both can be replaced by a
single variable λ and the equations can then be reformulated as

Σabwb − 2λΣaawa = 0

wa =
1

2λ
Σ−1

aa Σabwb

Σbawa − 2λ2Σbbwb = 0

(
1
2

Σ−1
bb ΣbaΣ−1

aa Σab − λ2I)wb = 0

(3.15)

From the last equation, we know that we can obtain wb by solving the generalized
eigenvalue problem. Note that this also has the same form as the Equation 3.6 whose
eigenvalues give the optimal weights for embedding.

While the proof of equivalence to CCA has been constructed using the input data
X, we can also extend this proof to the kernel version where the input data X is
replaced by some kernel version ϕ(x). Since in our work, we have not constructed
the embedding from the input space but rather from the feature space obtained from
the encoder, we can equate the feature space equal to ϕ(x). Hence, our work would
more closely align with kernel canonical correlation analysis.
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3.3 Details of datasets used experiments conducted by
varying hyperparameters

We conduct a number of experiments using the two benchmark image datasets:
MNIST and CIFAR-10. For each experiment, we change one of the three hyper-
paramaters, length of the encoder and decoder, the embedding dimension or the
number of positive pairs while keeping all others constant. We use the same subset
of training and test samples, for each experiment, to prevent any discrepancies that
could arise based on a different selection of training and test data. We monitor
the train and test reconstruction error which is denoted by the mean squared error
between the original image and the reconstructed image, averaged over the training
and test set respectively. We also record the training time for each experiment and
the classification error on the original datasets vs the reconstructed datasets.

3.3.1 Datasets

MNIST

The MNIST dataset is a large collection of handwritten digits that is used to evaluate
and compare different machine learning algorithms. It consists of a total of 70,000
images, which are divided into training and testing sets of 60,000 and 10,000, respec-
tively. Each image is a grayscale square that measures 28x28 pixels, resulting in a
total of 784 pixels per image. Additionally, each image is associated with a label that
indicates the digit it represents, with the digits ranging from 0 through 9. While
the MNIST dataset is relatively simple by modern standards, it provides a useful
benchmark for assessing machine learning algorithms. However, achieving high
accuracy on MNIST is not considered a significant achievement in itself, but rather
serves as a baseline for more difficult tasks.

CIFAR-10

The CIFAR-10 dataset is a widely used benchmark dataset in the fields of machine
learning and computer vision research. This dataset comprises a total of 60,000
images, with 50,000 images in the training set and 10,000 images in the test set. Each
image in the CIFAR-10 dataset is a 32x32 pixels color image. These images are RGB
(Red, Green, Blue) images, meaning they have three color channels. The dataset
includes 10 classes or categories, where each category represents a distinct object or
classification. The categories include airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck. The CIFAR-10 dataset is more challenging than MNIST as it
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includes higher resolution color images, more diverse objects and backgrounds, and
a broader range of object categories.

3.3.2 Preprocessing the data

Preprocessing data is a critical step in machine learning. Scaling or standardizing
features (for example, subtracting the mean and dividing by the standard deviation)
can improve optimization and algorithm convergence and prevent certain features
from dominating others. It can increase the robustness of machine learning models
by making them less susceptible to fluctuations in input data.

For our experiments, we do not use the full datasets with 50,000 train images and
10,000 test images. Instead, we randomly choose 20,000 train images and 2,500 test
images to prevent running out of memory on the machine. The data is normalized
by dividing the pixel values by 255 and centered by subtracting the column-wise
mean of the training images from both the training and test sets.

3.3.3 Network structure and Hyperparameters used for the experiments

A range of experiments were conducted with both datasets with varying values
for the number of positive pairs, the encoder and decoder layer width, and the
embedding dimension to uncover insights into their performance, robustness, and
generalization. The structure of the network is shown in Figure 3.1. It consists of the
encoder, which includes a single dense layer to map the data to a high dimensional
feature space, the embedding space constructed using the linear weights found
using the eigenvalue decomposition of the kernel correlation matrix, and a single
dense layer followed by a linear layer as the decoder. The details of the experiments
conducted with the varying hyperparameters are shown in Table 3.2.

3.4 Results

To assess the performance of the model, we have used different measures to evaluate
the reconstruction. Firstly, the plots of the reconstructed images were constructed to
visualize the reconstruction quality. The second measure used was the mean squared
error given by the Equation 3.16. Lastly, a very basic classifier was used that was
trained on the original training set and then was used to predict the labels for the
reconstructed training set, the original test set and the reconstructed test set. The
classification error on the original data was compared to the classification error on
the reconstructed data.
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Table 3.2: Experiments conducted on MNIST and CIFAR-10 and the configurations
for their hyperparameters.

MNIST CIFAR10

Train Samples 20000 20000

Test Samples 2500 2500

Activation Function Tanh Tanh

Encoder Width
[500, 1000, 1500, 2000,
300, 3500, 4000, 4500]

[2000, 2500, 3000, 3500,
4000]

Embedding Dimension
[50, 100, 150, 200, 250,
300]

[400, 450, 500, 550, 600]

Decoder Width
[500, 1000, 1500, 2000,
300, 3500, 4000, 4500]

[2000, 2500, 3000, 3500,
4000]

Regularization parameter 1e−10 1e−10

Positive Pairs [2, 6, 10, 14, 18, 22] [2, 6, 10, 14, 18, 22]
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We evaluate the difference in the mean squared error, classification accuracy, and
the training time across the different combinations of hyperparameters used. The
hyperparameters we varied to test the network were: the number of positive pairs,
the layer width of the encoder and decoder, and the embedding dimension. Overall,
what is observed is that the mean squared error and classification accuracy do not
change with the number of positive pairs. The mean squared error increases and the
classification accuracy decreases on the test set as the layer width for the encoder
and decoder is increased. The reconstruction error decreases and the classification
accuracy increases with an increase in the embedding dimension. The training time
correlates most strongly with the width of the encoder and decoder, increasing as
the width is increased.

3.4.1 Reconstruction

The first step to assess the quality of the reconstructed images is to plot them to
visualize the reconstruction. This is a form of qualitative evaluation that involves
visually inspecting the reconstructed images to assess the quality of reconstructions,
including sharpness, clarity, and preservation of details.

Layer width for encoder and decoder

Figure 3.3 shows a sample of images from the test set of MNIST together with
their reconstructed counterparts using different layer widths for the encoder and
decoder. Figure 3.4 shows the same for CIFAR-10. While, visually there is not
much difference for MNIST, the difference between the reconstructions in CIFAR-10
is clear. Surprisingly, increasing the layer width does not improve the quality of
reconstruction, rather it makes it worse. This is due to the fact that as the layer
width is increased, the network tends to overfit on the training set and has worse
generalization for samples on the test set. If the layer width is too small, the sampled
parameters are too few and cannot accurately capture all the intrinsic information
in the data, but a layer width that is too large tends to lead to poor generalization.
Hence, it is best to have a moderately large layer width.

Embedding Dimension

Not surprisingly, our experiments show that as the encoding dimension is increased,
the quality of reconstruction also increases. A larger embedding dimension allows
the autoencoder to capture more complex patterns and relationships in the input
data. With a higher-dimensional embedding space, the autoencoder has more ca-
pacity to represent diverse variations and nuances present in the data. The model
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(a) Images from Test Set

(b) Reconstructed Images with layer width = 1000

(c) Reconstructed Images with layer width = 3000

Figure 3.3: Reconstructed MNIST Test Set Images with the widths of the encoder and
decoder = [1000, 3000]. The number of positive pairs for this experiment
was set to 2 and the encoding dimension is set to 50.
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(a) Images from Test Set

(b) Reconstructed Images with layer width = 2000

(c) Reconstructed Images with layer width = 4000

Figure 3.4: Reconstructed CIFAR10 Test Set Images with the widths of the encoder
and decoder = [2000, 4000]. The number of positive pairs for this experi-
ment was set to 2 and the encoding dimension is set to 400.
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can better preserve important features and details from the input when mapping
it to the latent space and decoding it back to the original space. It also facilitates
better generalization to unseen data by learning more robust and informative repre-
sentations. With a larger embedding dimension, the autoencoder can compress the
input data into a lower-dimensional space with less information loss and enables
smoother interpolation between different data points in the latent space. The results
for varying the embedding dimension for MNIST and CIFAR-10 are shown in Figure
3.5 and 3.6 respectively. What is very promising is that even when the dimension
of the data is reduced to as low as approximately one-fifth of the original data
dimension, the reconstruction is visually very similar to the original data.

(a) Images from Test Set

(b) Reconstructed Images with encoding dimension = 50

(c) Reconstructed Images with encoding dimension = 300

Figure 3.5: Reconstructed MNIST Test Set Images with the encoding dimension =
[50, 300]. The number of positive pairs for this experiment was set to 2
and the layer width is set to 3000.

Number of positive pairs

The number of positive pairs is the number of samples chosen as the similar points for
a single data sample, the embeddings of which are used to calculate the covariance
matrix. While it may seem that increasing the number of positive pairs, would lead
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(a) Images from Test Set

(b) Reconstructed Images with encoding dimension = 400

(c) Reconstructed Images with encoding dimension = 800

Figure 3.6: Reconstructed CIFAR-10 Test Set Images with the encoding dimension =
[400, 800]. The number of positive pairs for this experiment was set to 2
and the layer width is set to 2000.
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to better reconstruction and better generalization, that does not seem to be the case
as can be seen by the results of the experiments in Figures 3.7 and 3.8. Even when
the number of positive pairs is changed from 2 to 15, there is visually very little
difference in the reconstruction. It can be argued that this small improvement does
not justify the additional cost associated with using a larger number of positive pairs.

(a) Images from Test Set

(b) Reconstructed Images with number of positive pairs = 2

(c) Reconstructed Images with number of positive pairs = 15

Figure 3.7: Reconstructed MNIST Test Set Images with number of positive pairs = [2,
15]. The encoding dimension for this experiment was set to 100 and the
layer width is set to 1000.

3.4.2 Reconstruction Error

The primary metric used to assess the performance of the autoencoder is the re-
construction error, quantifying the discrepancy between the input images and their
reconstructions. Lower reconstruction error values indicate better reconstruction
fidelity. We have used the mean squared error to measure the reconstruction error.
The form of the error is given by

MSE =
1
N

=
N

∑
i=1

(Xi − X̂i)
2. (3.16)
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(a) Images from Test Set

(b) Reconstructed Images with number of positive pairs = 2

(c) Reconstructed Images with number of positive pairs = 15

Figure 3.8: Reconstructed MNIST Test Set Images with number of positive pairs = [2,
15]. The encoding dimension for this experiment was set to 400 and the
layer width is set to 2000.
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Layer width for encoder and decoder

Having a larger layer width means that there are more neurons in the encoder
and the decoder. For our experiments, the layer width was set to be the same
for the encoder and the decoder. More neurons allow the model to capture more
complex patterns and relationships in the data. This can help discover underlying
structures and features crucial for constructing a good latent space representation.
With more neurons, the model can better approximate intricate decision boundaries
between classes, leading to more accurate dimensionality reduction. This would
lead us to believe that increasing the layer width should reduce the reconstruction
error. However, as seen in Figure 3.9, increasing the layer width does decrease the
reconstruction error on the training set, but a considerablly large layer width leads to
a higher reconstruction error on the test set. This is reflective of the model overfitting
on the training set due to a large layer width. On MNIST, the optimal layer width
was 1500 with a reconstruction error of 0.0042 on the standardized images. On
CIFAR-10, as the layer width was increased beyond 2000, the test error constantly
increased and a layer width of less than 2000 is too small to be used with the eigen
solver and a larger embedding dimension like 800. Hence the most optimal layer
width to be used is 2000 with a test error of 0.0033.

(a) MNIST
Embedding Dimension = 200
Number of positive pairs = 2

(b) CIFAR
Embedding Dimension = 650
Number of positive pairs = 2

Figure 3.9: Train and Test Reconstruction Error for MNIST and CIFAR-10 for different
layer widths.
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Embedding Dimension

The results of this section are consistent with expectations. A larger embedding
dimension would lead to more data from the original images being preserved, which
would ultimately lead to better reconstruction and hence, a lower reconstruction error.
This is seen in Figure 3.10 where the train and test reconstruction error decreases
as the encoding dimension is increased. The rate of decrease of the error, however,
is not linear but also decreases. When the embedding dimension is set to almost a
quarter of the original dimension, the reconstruction errors are very low, reaching
0.003 and 0.0035 for MNIST and CIFAR-10 respectively. This goes to show that
even when the input samples are reduced to a quarter of their original size, enough
information is preserved by the network to reconstruct them accurately enough.

(a) MNIST
Layer Width = 1000

Number of positive pairs = 2

(b) CIFAR
Layer Width = 2000

Number of positive pairs = 2

Figure 3.10: Train and Test Reconstruction Error for MNIST and CIFAR for different
embedding dimensions.

Number of positive pairs

Experiments conducted by keeping constant the layer width and embedding di-
mensions and varying the number of samples used as positive pairs for each data
sample revealed surprising results. While the hypothesis was that increasing the
number of positive pairs would improve the network performance, the results re-
vealed otherwise. Having more similar samples was believed to lead to clearer
interpretations of the correlations and canonical variates. This is because the patterns
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of association between the two sets of variables become more pronounced when
more similar samples are associated to each other. This was especially believed to
be true for the CIFAR-10 dataset, where samples that belong to the same class can
still be very different from each other, so using a larger number of positive pairs
would uncover specific patterns of association that may be obscured in more diverse
samples. However, as shown in figure 3.11, the reconstruction error for both the
training and test set on both datasets remained relatively constant when using a
different number of positive pairs.

(a) MNIST
Layer Width = 1000

Embedding Dimension = 200

(b) CIFAR
Layer Width = 2000

Embedding Dimension = 650

Figure 3.11: Train and Test Reconstruction Error for MNIST and CIFAR for different
numbers of positive pairs.

3.4.3 Accuracy of classification on Reconstructed Images

We initialized a classification model again using the SWIM algorithm to compare the
classification of the reconstructed images against the original images. This is used as
a metric to judge the reconstruction because if a classifier assigns the same labels to
both the original and reconstructed images, the reconstruction can be considered a
good one. The model is comprised of a single dense layer which is a fully connected
layer followed by a linear linear that analytically computes the weights and is trained
on the training set. Figure 3.12, Figure 3.13 and Figure 3.14 show the classification
accuracy on the training, test, reconstructed training, and reconstructed test sets
based on varying the layer width for the encoder and decoder, the embedding
dimension and the number of positive pairs respectively.
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Two important deductions can be made from these figures. Firstly, for all three
hyperparameters: the layer width, embedding dimension, and the number of positive
pairs, the values used have a very small impact on the classification accuracy. In
the previous subsection, we saw that changing the layer width and embedding
dimension did impact the reconstruction error, so the reconstruction is indeed
affected by these parameters. However, it is not affected to the extent that it would be
classified differently. Even when using suboptimal values of these hyperparameters,
the reconstruction is good enough that a decent classifier can correctly identify the
class that the sample belongs to. What these two hyperparameters do is control the
amount of detail preserved in the reconstruction.

The second important point concerns the accuracy values of the classification.
For the MNIST dataset, the classification accuracy on the test set is in the range of
97%, which for a simple classifier that we have experimented with is good enough.
However for CIFAR10, although the the classification accuracy on the training sets
is approximately 60%, the accuracy on the test sets falls within the range of 48% to
50%. However, it is not the absolute accuracy values that are important here but the
difference between the accuracy in the training and reconstructed training set and
the test and reconstructed test set. We can see from the figures that the accuracy on
the reconstructed sets is very close to the accuracy on the original training and test
sets, suggesting that the reconstructed images were very similar to the original ones.

(a) MNIST
Embedding Dimension = 200
Number of positive pairs = 2

(b) CIFAR
Embedding Dimension = 650
Number of positive pairs = 2

Figure 3.12: Classification Accuracy on the original training and test sets and the
reconstructed sets for MNIST and CIFAR-10 for different layer widths.
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(a) MNIST
Layer Width = 1000

Number of positive pairs = 2

(b) CIFAR
Layer Width = 2000

Number of positive pairs = 2

Figure 3.13: Classification Accuracy on the original training and test sets and the
reconstructed sets for MNIST and CIFAR-10 for different embedding
dimensions.

(a) MNIST
Layer Width = 1000

Embedding Dimension = 200

(b) CIFAR
Layer Width = 2000

Embedding Dimension = 650

Figure 3.14: Classification Accuracy on the original training and test sets and the
reconstructed sets for MNIST and CIFAR-10 for different numbers of
positive pairs.
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3.4.4 Timing

Layer width for encoder and decoder

The training time increase almost linearly as the layer width of the encoder and
decoder is increased. Increasing the layer width typically increases the computational
complexity of the network. This is because the number of parameters (weights and
biases) to be sampled grows linearly with the number of neurons in the layer. Con-
sequently, training the model may require more computational resources and time.
Morover, solving the weights of the last linear layer involves matrix multiplication
and inversion, so as the layer width increases, the size of the weight matrices also
increases, leading to larger matrix operations. These operations can be computa-
tionally intensive and contribute to longer training times. Figure 3.15 confirms this
hypothesis.

(a) MNIST
Embedding Dimension = 200
Number of positive pairs = 2

(b) CIFAR
Embedding Dimension = 650
Number of positive pairs = 2

Figure 3.15: Training time (in seconds) for MNIST and CIFAR-10 for different layer
widths.

Embedding Dimension

The size of the embedding space shows no significant relationship to the training
time as shown in figure 3.16. While a larger embedding dimension means that there
are more neurons in the second hidden layer of the network which, in turn, would
imply that sampling more weights and biases would take more time, the results
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are not consistent with this assumption. A possible explanation for this could be
that for a larger embedding dimension, the lobpcg method takes fewer iterations to
converge to a solution, which is why for some embedding dimensions, the training
time dips. Nevertheless, the difference in training times is just a few seconds so we
can conclude that the embedding dimension does not influence the training time.

(a) MNIST
Layer Width = 1000

Number of positive pairs = 2

(b) CIFAR
Layer Width = 2000

Number of positive pairs = 2

Figure 3.16: Training time (in seconds) for MNIST and CIFAR-10 for different em-
bedding dimensions.

Number of positive pairs

The number of positive pairs used also impacts the training time. The two are
directly proportional; an increase in the number of positive pairs leads to an increase
in training time. The reason for this could be attributed to the fact that as the number
of positive pairs increases, the size of the covariance matrix from which the weights
for the embedding are calculated also increases. The size of the covariance matrix
also affects the performance and convergence of the lobpcg method. While lobpcg
is designed for large-scale problems, its computational cost can become significant
for very large sets of eigenvalues. The algorithm involves iterative matrix-vector
multiplications and preconditioning steps, which can become time-consuming as the
problem size grows. For smaller sets, it may converge faster and more reliably, as
the iterations are performed on a smaller-dimensional subspace.
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(a) MNIST
Layer Width = 1000

Embedding Dimension = 200

(b) CIFAR
Layer Width = 2000

Embedding Dimension = 650

Figure 3.17: Training Time (in seconds) for MNIST and CIFAR-10 for different num-
bers of positive pairs.

3.5 Comparison to other approaches

To determine how our approach compares to other approaches in the domain, we
carried out experiments comparing our network with the following:

• A network with the same architecture as ours, shown in Figure 3.1, but with
weights and biases sampled using a normal and uniform distribution respec-
tively, as opposed to our approach in which the network parameters are
sampled using the SWIM algorithm.

• A fully connected network, with an encoding layer, a latent space layer and a
decoding layer, trained iteratively using gradient descent. The optimizer used
was the Adam optimizer. The loss function used was the mean squared error
loss and we trained the network for 100 epochs with an early stopping criteria
set on the loss with a patience of 3.

The train and test set of 20,000 and 2,000 samples is used for all experiments. The
embedding dimension for MNIST is set to 100, while for CIFAR-10 it is set to 650.
The results for the test reconstruction error, classification accuracies, and training
times are shown in Table 3.3 for MNIST and Table 3.4 for CIFAR10. Figure 3.18
shows a few of the test samples of MNIST and Figure 3.19 shows their equivalent
reconstructed samples using our approach. Figure 3.20 and Figure 3.21 show the
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same for CIFAR-10. The following subsections show the reconstruction of the same
test set using other approaches, along with a brief discussion.

Table 3.3: Hyperparameters and Results for comparison experiment on MNIST.

Our ap-
proach

Random
sampling
with Tanh
Activation

Random
sampling
with ReLU
Activation

Fully con-
nected
network
trained
iteratively

Activation Function Tanh Tanh RelU Tanh

Encoder Width 1000 1000 1000 1000

Decoder Width 1000 1000 1000 784

Positive Pairs 2 2 2 -

Learning Rate - - - 0.01

Test Reconstruction Error 0.0045 0.0105 0.0098 0.0029

Train Reconstruction
Classification Accuracy

0.9845 0.9299 0.922 0.9847

Test Reconstruction Clas-
sification Accuracy

0.9785 0.90 0.918 0.98

Train Time 7.12 5.48 5.84 65.6

3.5.1 Data-agnostic sampling

A visual inspection of the reconstructed images in Figures 3.22 and 3.23 shows that
the approach is not viable as the quality of the images is very poor and in the case
of the CIFAR-10 data, it is not visually possible to identify the classes of the image
samples. Using the ReLU activation function shows slightly better performance
but the reconstruction is still considerably worse than our approach. The values in
table 3.3 and 3.4 show that the reconstruction error is higher and the train accuracy
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Figure 3.18: Subset of images from the MNIST Test set.

Figure 3.19: Reconstructed MNIST images using the SWIM Algorithm for parameter
sampling.

Figure 3.20: Subset of images from the CIFAR-10 Test set.

Figure 3.21: Reconstructed CIFAR-10 images using the SWIM Algorithm for parame-
ter sampling.
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Table 3.4: Hyperparameters and Results for comparison experiment on CIFAR-10.

Our ap-
proach

Random
sampling
with Tanh
Activation

Random
sampling
with ReLU
Activation

Fully con-
nected
network
trained
iteratively

Activation Function Tanh Tanh ReLU Tanh

Encoder Width 2000 2000 2000 2000

Decoder Width 2000 2000 2000 3072

Positive Pairs 2 2 2 -

Learning Rate - - - 0.01

Test Reconstruction Error 0.0031 0.01345 0.0195 0.0035

Train Reconstruction
Classification Accuracy

0.6149 0.5553 0.5874 0.6083

Test Reconstruction Clas-
sification Accuracy

0.507 0.474 0.4935 0.5025

Train Time 45.35 47.25 38.02 103.16
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is lower for the data agnostic sampling approach compared our our data-driven
approach. The training time for our approach is slightly longer since data-agnostic
sampling is simpler than data-driven sampling. However, a few extra seconds of
training time is an acceptable trade-off for better reconstruction quality.

(a) Reconstructed MNIST images using Tanh as the activation function.

(b) Reconstructed images using ReLU as the activation function.

Figure 3.22: Reconstructed MNIST images using the data agnostic sampling method,
where the random and uniform distributions are used for sampling
weights and biases respectively.

3.5.2 Iteratively trained fully connected networks

The reconstructions of the subset of images is shown in Figure 3.24 for MNIST
and figure 3.25 for CIFAR-10. Visually, the reconstructions look better and clearer
than the ones we get using our approach and more detail seems to be preserved.
This is further confirmed for the MNIST dataset in Table 3.3 where it can be seen
that the reconstruction error is lower and the classification accuracy on the train-
ing and test set is higher for the iteratively trained network as compared to our
approach. For CIFAR-10, Table 3.4 shows that the iteratively trained network has
slightly higher reconstruction error and slightly lower training and test classification
accuracy compared our our approach, but the difference is minimal. However,
the iteratively trained network has a train time almost thrice the train time of the
sampled network and requires tuning more hyperparameters such as the learning
rate, the optimizer, the number of epochs, etc. Overall, our network performs on par,
has fewer hyperparameters, and saves considerable train time.
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(a) Reconstructed images using Tanh as the activation function.

(b) Reconstructed images using ReLU as the activation function.

Figure 3.23: Reconstructed CIFAR-10 images using the data agnostic sampling
method, where the random and uniform distributions are used for
sampling weights and biases respectively.

Figure 3.24: Reconstructed MNIST images with parameters trained via gradient
descent, and Tanh used as the activation function.

Figure 3.25: Reconstructed CIFAR-10 images with parameters trained via gradient
descent, and Tanh used as the activation function.
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3.6 Limitations

Although our approach demonstrated good results, it does have its limitations. These
include the memory requirements when dealing with large, high-dimensional data,
the computational complexity of calculating the eigenvalues and eigenvectors of a
large data matrix and its inability to be used with low-dimensional manifolds like
the swiss roll.

3.6.1 Scalability

Scalability issues primarily arise when dealing with large-scale datasets or models
with a high number of parameters. The model requires storing the entire training
dataset in memory to compute the hidden layer activations and solve the output
weights analytically. Hence, for datasets having a very high dimension or a very
large number of samples, this can become impractical due to memory limitations.
Storing and processing large matrices representing the input data and hidden layer
activations exhausts available memory resources, leading to memory overflow or
slowdowns. Moreover, the computational cost of computing the output weights
analytically scales quadratically with the number of hidden neurons, which can
become prohibitive for large neural networks. To overcome this, one approach is to
store the data on disk, but reading the data from the disk each time also results in
longer training time. We did encounter this issue in our experiments as well and had
to sub-sample the training and test sets to 20,000 and 2,500 images respectively. In
resource-constrained environments, such as embedded systems or IoT devices, the
memory and computational overhead of this model may limit their practical utility.

3.6.2 Computational complexity of computing Eigenvectors

Our approach requires us to compute the eigenvectors of the covariance matrix of
the feature space to determine the optimal weights for the embedding. However,
computing the eigenvectors can be computationally expensive, especially for large
matrices. We have used the lobpcg function from scipy to compute the eigenvectors.
Although it is designed to be efficient for large-scale eigenvalue problems, it may still
exhibit computational challenges for extremely large matrices. It has a computational
complexity of O(n2) for dense matrices and O(nnz) for sparse matrices, where n
is the size of the matrix and nnz is the number of non-zero entries. For very large
matrices, this computational cost may become prohibitive. Another problem with
this approach is that it requires the number of eigenvectors to be much larger than
the dimensionality of the data on which they are computed. This, in our case, can
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be achieved by having a large with for the encoder but that drastically increases the
training time.

3.6.3 Poor reconstruction for globally non-linear, low dimensional
manifolds

Whilst our approach shows good results with high dimensional data, it fails where
data is low dimensional and globally non-linear. An example of this is the swiss roll
manifold which can be described as can be described as a two-dimensional surface
embedded in three-dimensional space shown in Figure 2.4. The approach relies on
finding linear combinations of the data in a high-dimensional feature space. While
the kernel trick allows us to implicitly map the data into a higher-dimensional space,
it still assumes that the underlying relationships between the variables are linear.
For datasets with globally nonlinear manifolds, linear transformations may not
adequately capture the complex nonlinear relationships. Moreover, the low dimen-
sionality of the data does not allow for a good translation into a high-dimensional
feature space via the sampling algorithm.

Figure 3.26 shows the two-dimensional embedding of the Swiss Roll and S Curve
dataset. It can be seen that the embeddings fail to unwarp both datasets and
capture the intrinsic structure of the manifolds, the way that some manifold learning
algorithms, such as Isomap, do. Owing to the poor embeddings that are captured,
the reconstruction, shown in Figure 3.27 is also far from perfect.

(a) Swiss Roll (b) S Curve

Figure 3.26: Two dimensional embeddings for the swiss roll and s curve datasets
using our method. The figure shows how our method fails to "unwrap"
the manifolds.
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(a) Swiss Roll (b) S Curve

Figure 3.27: Reconstruction of the swiss roll and s curve data using our method.
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4.1 Conclusion

In this thesis, we presented a novel strategy for extending the use of sampled
neural networks to the autoencoder setting. We addressed the challenge of cap-
turing the intrinsic structure of data by combining kernel representation learning
with data-driven sampling from the SWIM algorithm. We were able to obtain a
low-dimensional embedding of the original data by first mapping it to a higher-
dimensional feature space with a sampled linear network and then translating it into
a lower-dimensional space using contrastive kernel learning. This lower dimensional
space was representative enough to reconstruct the original data accurately, again by
using a linear sampled network.

Through our experimental results, we demonstrated the effectiveness of our
approach in capturing meaningful data representations and reconstructing input
data accurately. To validate our proposed approach, we conducted experiments
on benchmark image datasets, including MNIST and CIFAR-10. We evaluated the
performance using various metrics tailored to the nature of the datasets, such as
pixel-wise error, visual inspection of reconstructed images, and classification error
on reconstructed images. The approach also reduces the number of hyperparameters
that require manual tuning.

The results for the approach are very promising, showing a very low reconstruction
error and visually appearing to have accurately reconstructed the data. Classification
of the original images vs the reconstructed images also shows that the classification
error is similar in both sets of images. The reconstruction works best when the
encoder and decoder have a sufficiently large width and the activation function
used is Tanh. Not surprisingly, the quality of the reconstructed data improves as
the dimension of the encoding space is increased. However, a sufficiently good
reconstruction can be obtained with the encoding space having a size of a third
of the original data. We also prove how our approach has ties to kernel canonical
correlation analysis, with the two having the same functional form.

In conclusion, our study contributes to the advancement of autoencoder models by
introducing a novel framework that combines sampled neural networks with kernel
representation learning. We believe that our findings provide valuable insights
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and pave the way for further research in the field of data-driven sampling and
representation learning.

4.2 Future Work

The domain of sampled networks is a relatively unexplored one and there remains
a lot of potential for research and advancements. One area for future research
could be to develop a novel approach for using sampled networks for nonlinear
dimensionality reduction and manifold learning. These networks could leverage their
simplicity and efficiency while incorporating nonlinear transformations to capture
complex data structures more effectively. In this regard, future work could also be
directed towards different forms of sampling techniques that allow the sampling
scheme to accurately capture globally non-linear manifolds.

We mentioned the issues of sampled networks concerning scalability to very large
datasets. To address scalability issues, future research could explore areas such as
mini-batch training, distributed computing, model compression, and approximation
methods. These approaches aim to reduce memory usage, improve computational
efficiency, and enable the training of sampled networks on large-scale datasets while
mitigating scalability challenges.

Another interesting area of research could be the shift from semi-supervised or
supervised dimensionality reduction approaches (as we have used in our work) to
unsupervised approaches for reconstruction in sampled autoencoders. The current
approaches that work with sampled autoencoders usually involve using either
the data labels or some information about the data, such as semantic similarities
between data samples, thus belonging to the supervised or semi-supervised class of
algorithms respectively. A big leap will be to shift from such a supervised or semi-
supervised setting into a completely unsupervised setting so that the autoencoders
can be used for further downstream tasks such as anomaly detection, denoising or
domain adaptations.
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