
School of Computation, Information and
Technology - Informatics

Technische Universität München

Master’s Thesis in Informatics

Iterative Sampling of Deep Operator
Networks

Osman Utku Özbudak

School of Computation, Information and
Technology - Informatics

Technische Universität München

Master’s Thesis in Informatics

Iterative Sampling of Deep Operator Networks

Iteratives Abtasten von tiefen Operatornetzwerken

Author: Osman Utku Özbudak
Examiner: Dr. Felix Dietrich
Advisor: Iryna Burak, M.Sc.
Submission Date: January 15th, 2024

I confirm that this master’s thesis is my own work and I have documented all sources and
material used.

January 15th, 2024 Osman Utku Özbudak

Acknowledgments

I am grateful to my supervisor, Dr. Felix Dietrich, and my advisor, Iryna Burak, for their
insights and assistance throughout the process of writing this thesis.

iv

Abstract

The advancement of neural network models for effectively solving partial differential equa-
tions is essential in accurately representing physical systems. While conventional training
methods primarily use gradient-based optimizers, the Sampling Where It Matters (SWIM)
technique offers an innovative weight sampling approach to training neural networks.
This sampling approach associates weights and biases in hidden layers with specific points
in input data. This thesis focuses on adapting SWIM sampling for DeepONet, a neural net-
work model that combines neural networks with integral operators for efficient learning
from a variety of datasets. In particular, the thesis aims to apply SWIM for weight sam-
pling in DeepONet, in the context of partial differential equations. To achieve this, Deep-
ONet is restructured to be a fully-connected network, based on the assumption of the or-
thogonality of its components. An iterative sampling method is then utilized for adjusting
DeepONet’s weights, aiming to evaluate the efficiency and applicability of SWIM in this
context. The study includes the derivation, testing, and analysis of this iterative sampling
approach using SWIM on DeepONet, with its performance assessed on one-dimensional
Burgers’ and Wave equation datasets.

v

Contents

 Acknowledgements iv

 Abstract v

 1. Introduction 1

 2. State of the Art 4
 2.1. PDEs and Neural Networks . 4

 2.1.1. Partial Differential Equations . 4
 2.1.2. Physics-Informed Neural Networks (PINNs) 6

 2.2. Deep Neural Operators . 7
 2.2.1. DeepONet . 8
 2.2.2. Extensions of DeepONet . 9
 2.2.3. Fourier Neural Operators . 10

 2.3. Weight Sampling . 11
 2.3.1. Extreme Learning Machines . 11
 2.3.2. Sampling Where It Matters (SWIM) 13

 3. Iterative Sampling of Deep Neural Operators 15
 3.1. Sampled POD-DeepONet . 16
 3.2. Iterative Sampling of DeepONet . 17
 3.3. Experiments . 20

 3.3.1. Burgers’ Equation . 20
 3.3.2. Wave Equation . 30

 4. Conclusion 40
 4.1. Summary . 40
 4.2. Discussion . 40
 4.3. Outlook . 41

 Bibliography 41

vi

Contents

 Appendix 46

 A. Technical Specifications and Dataset Generation Details 46
 A.1. Technical Specifications . 46
 A.2. Dataset Generation Details . 46

 A.2.1. Burgers’ Dataset . 46
 A.2.2. Wave Dataset . 47

 List of Figures 49

 List of Tables 50

vii

1. Introduction

The concept of neural networks has its roots in the 1940s when McCulloch and Pitts first
introduced a computational model for neural networks based on mathematics and al-
gorithms [22]. This was a milestone in the evolution of the artificial intelligence, which
marked the inception of neural networks that we know today. Their model set the founda-
tion for subsequent developments in the field, making it possible for the advanced neural
network architectures.

Today, neural networks have become influential across applications of artificial intelli-
gence. Inspired by the human brain’s interconnected neural structure, these sophisticated
computational models have demonstrated remarkable success across numerous fields.
Their application ranges from image and speech recognition tasks to more complicated
challenges like natural language processing [17]. These advancements have propelled the
field of artificial intelligence into a new era, where machines can perform complex tasks
that were once thought to be exclusive to human intelligence.

Stochastic gradient descent (SGD) [27] is a pivotal optimization algorithm in the successful
implementation of neural networks. Its simplicity and effectiveness have made it a pre-
ferred choice, especially in large-scale dataset applications. However, SGD is not flawless.
It is known to be sensitive to the learning rate, and the necessity for manual fine-tuning
often becomes a challenge to its performance. Furthermore, SGD utilizes backpropaga-
tion [28], which is an algorithm that calculates the gradient of the loss function with respect
to the network’s weights. While backpropagation is crucial for optimizing the weights of
the network during training, it can be computationally expensive, particularly in com-
plex and deep network structures. This computational demand is an important drawback
in scenarios involving large and complex models. Additionally, SGD may struggle with
non-convex functions or datasets with irregular patterns. Adam [16], another widely used
gradient-based optimization algorithm, offers improvements over SGD, such as adaptive
learning rate adjustments. However, besides the burden of backpropagation, Adam also
has some other drawbacks, such as increased memory consumption for storing the first
and second moments of the gradients [2]. Given these challenges, the search for more ef-
ficient and robust optimization methods continues to be an active area of research in deep
learning. These methods aim to enhance model performance while mitigating computa-
tional and memory demands. These methods not only enhance the performance of neu-

1

1. Introduction

ral networks but also broaden their applicability in solving real-world problems, ranging
from intricate scientific computations to everyday applications in technology and industry.

Although neural networks have proven to be powerful tools in the field of machine learn-
ing, traditional training methods such as SGD and Adam may still face limitations, es-
pecially when dealing with large-scale and complex data. To address these challenges,
researchers have explored alternative neural network training approaches, such as weight
sampling. A recent study in this area is the SWIM algorithm (Sampling Where It Mat-
ters) [6]. This method differs from earlier sampling approaches like Extreme Learning
Machines (ELMs) [15], as it directly associates weights and biases in hidden layers with
specific points in the input data, therefore creating a stronger link between the network
and the data. The SWIM algorithm’s distinctive approach aims to improve the neural net-
work’s capabilities by sampling its weights. According to experiments discussed in the
SWIM study, SWIM sampling has the potential to reduce computational complexity while
preserving efficiency in neural network training.

The primary focus of this thesis is to explore and assess the efficiency of an iterative sam-
pling approach using SWIM sampling for DeepONet [20]. DeepONet is a neural network
model that uniquely combines integral operators with neural networks to effectively learn
from datasets, which shows particular proficiency in handling tasks related to partial dif-
ferential equations (PDEs).

While the original SWIM study has explored weight sampling for variants like POD-
DeepONet [21], this thesis concentrates on implementing and testing the iterative sam-
pling approach directly on the standard DeepONet model. The aim is to investigate whether
this iterative sampling approach using SWIM is effective for DeepONet. To comprehen-
sively test and evaluate this methodology, datasets based on Burgers’ and Wave equations
are used. The iterative sampling process is applied to train and test DeepONet on these
specific problems, providing insights into the practical applicability and potential benefits
of iterative sampling in complex PDE scenarios. This investigation will also explore how
the iterative SWIM sampling method impacts the accuracy and learning efficiency of sam-
pled DeepONet.

The structure of the remainder of this thesis is as follows: Section 2 explores PDEs and ex-
amines some of the state-of-the-art neural network solutions for solving these equations,
including a comprehensive review of neural operators such as DeepONet, its extensions,
and other advanced models like Fourier Neural Operators. This section also discusses the
principles of weight sampling with a focus on the SWIM methodology. Section 3 provides
a detailed analysis of the weight sampling method, specifically concentrating on the im-
plementation and details of iterative sampling using SWIM for DeepONet. In addition,
this section presents and discusses the experimental results obtained using Burgers’ and
Wave equation datasets, offering a thorough examination of their significance. Finally,

2

1. Introduction

Section 4 concludes the thesis with a discussion on the outcomes of the study and their
broader implications.

3

2. State of the Art

In this chapter, the examination focuses on the core concepts and techniques that sup-
port this thesis. The exploration begins with PDEs and current state-of-the-art neural
network approaches for solving them. Subsequent investigation covers deep neural op-
erators. Lastly, attention turns to the sampling weights of deep neural networks. This
exploration provides the necessary background to comprehend the significance and im-
plications of the work presented in this thesis.

2.1. PDEs and Neural Networks

PDEs stand as a fundamental mathematical tool that possesses a range of applications
across scientific domains, including the field of artificial neural networks. In essence, PDEs
are equations that involve rates of change with respect to continuous variables. Thus,
this makes them an ideal tool for modelling systems that display spatial and temporal
variability. These systems can range from fluid flow and heat conduction to data-driven
domains like image processing.

2.1.1. Partial Differential Equations

PDEs are used to describe various events in physics and they involve functions of several
variables and their partial derivatives. At their core, they express the relation between an
unknown function and its partial derivatives. A PDE can be expressed generally in the
form

F

(
x1, x2, ..., xn, u,

∂u

∂x1
, ...,

∂u

∂xn
,
∂2u

∂x21
, ...,

∂2u

∂x2n
, ...,

∂ku

∂xkn

)
= 0, (2.1)

where F is a given function, u is the unknown function which depends on n indepen-
dent variables x1, x2, ..., xn and the equation involves up to k-th order partial derivatives
of u [29]. Finding a solution to the PDE in Equation 2.1 means determining a function
u(x1, x2, ..., xn) that makes the equation true for all applicable values of x1, x2, ..., xn. Since
PDEs can describe a variety of concepts, the solutions to these equations can also represent
different outcomes or states.

4

2. State of the Art

The conventional methods of solving PDEs, while efficient for lower-dimensional prob-
lems, encounter substantial challenges when applied to high-dimensional PDEs. These
classical techniques include finite difference methods, finite element methods, and spec-
tral methods.

Finite difference methods involve discretizing the continuous problem by replacing deriva-
tives with approximate finite differences. This method is straightforward and intuitive for
problems with a small number of dimensions. However, as the number of dimensions
increases, the number of grid points required for a precise approximation grows expo-
nentially, which leads to a significant increase in computational cost and memory require-
ments.

Finite element methods decompose the domain into smaller, simpler parts known as finite
elements. The PDE is then reconstructed as a system of algebraic equations over these ele-
ments. Finite element methods is highly flexible and can be applied to complex geometries
and irregular domains. Nevertheless, similar to finite difference methods, finite element
methods also suffers from the curse of dimensionality [4 , 5] in higher-dimensional spaces,
where the complexity and computational demand increase rapidly.

Spectral methods use global basis functions, typically trigonometric polynomials or or-
thogonal polynomials, to approximate the solution. These methods are known for their
high accuracy in smooth problems and are particularly effective for periodic domains.
However, they are less effective for problems with sharp gradients or discontinuities.
Moreover, their performance degrades in higher dimensions due to the exponential in-
crease in the number of basis functions required.

All these methods face the common challenge of the curse of dimensionality, which refers
to the exponential growth in computational resources and time required as the number
of dimensions in the problem space increases. Additionally, the accuracy of these tradi-
tional methods tends to decrease with the increase in dimensionality. Consequently, these
problems necessitate the exploration of more computationally efficient and accurate alter-
natives and thereby allowing the usage of neural networks in this domain. Neural net-
works have the ability to learn representations in high-dimensional spaces efficiently, and
they can potentially overcome the curse of dimensionality that impedes traditional PDE
solving methods.

5

2. State of the Art

2.1.2. Physics-Informed Neural Networks (PINNs)

In the context of the challenges faced by traditional PDE solving methods, as previously
discussed, the domain of scientific machine learning has been evolving to address these
limitations. Traditional techniques in machine learning, such as convolutional and recur-
rent neural networks, often struggle to effectively handle complex physical or engineering
systems. The primary reason for this struggle lies in the fact that these techniques typi-
cally do not incorporate the underlying principles or governing laws of these systems. As
a result, the outcomes achieved by these models tend to be less precise and robust, partic-
ularly when dealing with problems characterized by complex physical phenomena.

Physics-informed neural networks (PINNs) [25 , 26] have been developed to overcome this
challenge and improve the handling of PDEs. The important advantage of PINNs is that
they can work with small datasets, and they can be used to solve a wide range of engineer-
ing problems, making them a flexible tool for various applications. Unlike the traditional
PDE solving methods that try to fit models to many pairs of states and values, PINNs use
a different approach. They take into account the mathematical principles of the physical
or engineering systems under study to find solutions to PDEs. This is a way of letting the
basic physics of the problem guide the solution. The general form of the PDEs considered
by PINNs is

ut +N [u;λ] = 0, x ∈ Ω, t ∈ [0, T],

where u(t, x) is the latent solution, N [.;λ] is a nonlinear differential operator parameter-
ized by λ, and Ω ∈ RD.

The process works by constructing a loss function that considers both the PDE and the
boundary conditions associated with it. In PINNs, the MSE (mean-squared error) loss
function is composed of two parts: the data loss, denoted as MSEu, and the PDE residual
loss, denoted as MSEf .

The data loss MSEu measures how well the predicted solution matches the known values
at initial and boundary points. For the data loss, let u(tiu, xiu) be the neural network’s
solution at the i-th initial or boundary location, ui is the actual solution at that location
and tiu and xiu represent the time and space coordinates at i-th initial or boundary points,
respectively. The sum is taken over Nu, which is the total number of initial and boundary
points. The data loss MSEu is then defined as

MSEu =
1

Nu

Nu∑
i=1

|u(tiu, xiu)− ui|2,

whose resulting value measures the difference between the known and the predicted so-
lution at these points.

6

2. State of the Art

The PDE residual loss is represented as MSEf and it is used to maintain the PDE’s structure
at selected points within the domain. For this purpose, the residual f(t, x) is defined as

f := ut +N [u;λ],

where ut denotes the partial derivative of the function u with respect to time t, andN [u] is
a nonlinear operator acting on the function u. The parameter of the differential operator,
denoted as λ, is transformed into a parameter of the network. The residual f measures the
difference between the temporal dynamics of u and its nonlinear interactions. Given this,
the PDE residual loss MSEf is then defined as

MSEf =
1

Nf

Nf∑
i=1

|f(tif , xif)|2,

where f(tif , x
i
f) is the PDE residual at the i-th collocation point, tif and xif are its time and

space coordinates, and Nf is the total number of these points. The overall loss function
used to train the neural network is a combination of these two loss measurements:

MSE = MSEu + MSEf .

By reducing MSE loss, PINNs can find an approximate solution to the PDE that respects
both the given boundary conditions and the physics of the problem as captured by the
PDE.

2.2. Deep Neural Operators

After exploring PINNs and their ability to incorporate physical laws directly into the
learning process, it becomes evident that neural networks hold significant potential in
representing complex systems governed by PDEs. The Universal Function Approxima-
tion Theorem [9 , 11] is a fundamental theorem in deep learning, stating their ability of
neural networks to approximate functions accurately. Yet, their capabilities extend even
further. Another theorem says that a single-layer neural network can approximate nonlin-
ear continuous operators [7 , 8]. These operators act as mappings, transitioning from one
functional space to another function space. Deep neural operators are built to learn those
nonlinear operators from data.

In essence, PDEs are inherently operator equations, and neural operators specialize at ap-
proximating these operators. Therefore, these networks provide a powerful tool for un-
derstanding and solving PDEs, which is crucial in scientific machine learning.

7

2. State of the Art

2.2.1. DeepONet

DeepONet [20] was introduced in 2019 and it is the first published neural network for
learning nonlinear operators. Throughout this thesis, DeepONet serves as a baseline model.
Specifically, it is employed to expand the weight sampling methodology discussed in Sec-
tion 2.3 , which is the main focus of this thesis. Therefore, understanding the specifics of
DeepONet is critical to subsequent work.

The underlying structure of DeepONet involves an operator G, which accepts an input
function u. The operator generates an output function which is denoted as G(u). For any
specific point y within the domain of G(u), the output G(u)(y) represents a real number.
To represent the input functions discretely for the network, DeepONet uses function val-
ues at a finite number of locations named as ”sensors”. These sensors ensure a consistent
representation for the network by evaluating the values of the function at specific points.
Consequently, the input to network consists of two elements: the input function u and the
grid y. The output of the network is G(u)(y).

In the DeepONet architecture, there is a trunk network. The trunk network operates on
the grid y, generating a vector [t1, . . . , tk]⊤ ∈ Rp. In parallel, there are p branch networks,
each processing the input function u. These networks output a series of scalar values, each
denoted as bk for k = 1, 2, . . . , p, where each bk ∈ R. Furthermore, the DeepONet includes
a bias term represented as b0 ∈ R. The prediction is then constructed by the combination
of the outputs from the trunk and branch networks, integrated with the bias term:

G(u)(y) =

p∑
k=1

bk(u)tk(y) + b0.

In practical applications, the inclusion of p branch networks can lead to challenges such as
increased computational cost. To address this challenge, the authors introduced two vari-
ations of DeepONet: the stacked and unstacked versions. The stacked DeepONet is the
configuration we have discussed so far, which includes p branch networks. In contrast, the
unstacked DeepONet simplifies the architecture by employing just a single branch net-
work. Stacked and unstacked DeepONet architectures are illustrated in Figure 2.1 and
Figure 2.2 , respectively.

One of the key advantages of DeepONet over traditional networks is its significant reduc-
tion in generalization error. This error measures difference between the training data and
unseen test data. DeepONet has demonstrated low generalization error across different
ordinary and partial differential equation problems [20]. The success of DeepONet in per-
forming a small generalization error is related to its inductive bias. Inductive bias refers to
the prior knowledge encoded into machine learning systems to ensure a reduced general-
ization error. In the case of DeepONet, the output G(u)(y) incorporates two independent

8

2. State of the Art

inputs u and y. This structure leads to the use of two distinct networks (the branch net-
work and the trunk network). In essence, G(u)(y) can be interpreted as a function of y that
is conditioned on u.

Figure 2.1.: Stacked DeepONet architecture includes p branch networks and a trunk net-
work.

2.2.2. Extensions of DeepONet

An important variant of DeepONet is called POD-DeepONet, which is presented in [21].
This approach applies proper orthogonal decomposition (POD) to the training data to de-
termine the basis. With this setup, the computed POD basis acts as the trunk network,
leaving only the branch network to learn the coefficients for the POD basis. The resulting
output can be expressed as:

G(u)(y) =

p∑
k=1

bk(u)ψk(y) + ψ0(y) (2.2)

where ψ0(y) represents the mean of the solutions at y, [b1, b2, ..., bp] is the p branch network
outputs, and [ψ1, ψ2, ..., ψp] denote the p previously computed POD components for y.

Besides POD-DeepONet, DeepONet can be adjusted to better solve different problems
by adding prior knowledge. There are two main ways to do this. In the trunk network,

9

2. State of the Art

Figure 2.2.: Unstacked DeepONet architecture includes one branch network and one trunk
network.

feature expansions help capture system behaviors more clearly. For instance, in [10], for
the problems with oscillating solutions the authors proposed expanding the input y using
harmonic features to capture prior knowledge

y 7→ (y, cos(y), sin(y), cos(2y), sin(2y), . . .) ,

and then expanded input can then be used in the trunk network. In the branch network,
extra input functions can be added to handle information that changes with time and
space. An example of this is a study on fluid flow where an extra input helped to include
periodic boundary conditions [19].

2.2.3. Fourier Neural Operators

Besides DeepONet, Fourier Neural Operator (FNO) [18] is another significant study in
the area of neural operators, especially recognized for their way of learning continuous
functions. FNOs innovative is to use of the Fourier transform in learning functions in the
frequency domain.

The Fourier transform is a fundamental concept in signal processing and applied mathe-
matics, which transforms a function of time (or space) into a function of frequency. This

10

2. State of the Art

transformation is particularly useful for examining functions that are easier to understand
in terms of frequency, rather than time or space. FNOs utilize this technique to offer a new
perspective on handling complex functions, which makes it especially useful in situations
where the frequency aspects of a function are key.

FNOs start by applying a Fourier transform to the input functions, which converts them
into the frequency domain. This is an important step as it helps the FNO understand
and learn the complex interactions between different frequencies. After this, the network
learns to map these frequency relationships. The process concludes with an inverse Fourier
transform, turning the output back into its original space. This method allows FNOs to ef-
fectively approximate complex functional mappings.

In general, FNOs represent an important study in the field of neural operators. Their use
of the Fourier transform to map functions makes them a powerful tool for solving complex
PDE problems.

2.3. Weight Sampling

Optimizing neural networks iteratively through gradient-based optimizers often intro-
duces a time-intensive challenge, especially when dealing with high-dimensional datasets
containing vast amounts of data. The training speed of these neural networks is often con-
strained by the available computational resources such as CPU or GPU. This constraint
arises from the inherent characteristics of backpropagation. Using weight sampling as
a training methodology for neural networks offers an alternative to gradient-based opti-
mization.

2.3.1. Extreme Learning Machines

A notable study in weight sampling domain is Extreme Learning Machines (ELMs) [15].
ELMs operate on single-layer feedforward neural networks (SLFN) and the primary dis-
tinction of ELMs from traditional neural networks is that they sample input weights and
biases from a distribution that is independent of the provided dataset, in other words, they
are determined in a data-agnostic manner. Only the output weights are adjusted during
the training process.

In ELMs, given a training dataset consisting of N arbitrary distinct samples (xi, ti), where
xi = [xi1, xi2, . . . , xin]

⊤ ∈ Rn represents the input vector and ti = [ti1, ti2, . . . , tim]⊤ ∈
Rm is the corresponding target output, the standard SLFNs with L hidden neurons and
activation function g(x) are modeled as

11

2. State of the Art

L∑
i=1

βig(wi · xj + bi) = tj , j = 1, . . . , N,

where wi = [wi1, wi2, . . . , win]
⊤ is the weight vector connecting the i-th hidden neuron to

the input neurons, βi = [βi1, βi2, . . . , βim]⊤ is the weight vector connecting the i-th hidden
neuron to the output neurons, and bi is the bias of the i-th hidden neuron. This equation
can be written compactly as

Hβ = T,

where H(w1, . . . , wL, b1, . . . , bL, x1, . . . , xN) = g(w1 · x1 + b1) . . . g(wL · x1 + bL)
...

. . .
...

g(w1 · xN + b1) . . . g(wL · xN + bL)

N×L

,

β =

β⊤1
β⊤2

...
β⊤L

L×m

, T =

t⊤1
t⊤2
...
t⊤N

N×m

.

The training objective of ELMs is to find the best β that minimizes the difference between
the predicted output and the actual target. This optimization problem can be denoted as

||Hβ −T|| = min
β
||Hβ −T||.

A common approach to solve this optimization problem is using the Moore-Penrose pseu-
doinverse, leading to the solution:

β∗ = H†T,

where H† is the pseudoinverse of the hidden layer output matrix H.

ELMs offer a convenient approach to neural network training by fixing input weights and
biases and adjusting only the output weights. This methodology results in rapid train-
ing times while maintaining competitive performance. According to the previously held
studies, ELMs can outperform support vector machines in classification and regression
tasks [14 , 13 , 12]. However, one of the inherent limitations of ELMs is that the input
weights and biases are sampled in a data-agnostic manner, which might not always cap-
ture the underlying patterns or nuances of the dataset effectively.

12

2. State of the Art

2.3.2. Sampling Where It Matters (SWIM)

Recently, a new weight sampling method known as SWIM sampling was introduced [6].
SWIM stands for ”Sampling Where It Matters”. These networks are based on the idea of
random feature networks [24 , 23]. Random feature networks transform input data into a
lower-dimensional space using predetermined functions and select weights without con-
sidering the specific attributes of the data. However, SWIM sampling differentiate them-
selves from ELMs and standard random feature networks. While ELMs and random fea-
ture networks are generally limited to use in SLFNs, SWIM sampling offer the flexibility
to be applied across a varying number of hidden layers. Moreover, in contrast to ELMs
and random feature networks, SWIM sampling utilize both input and output data to sam-
ple weights, especially in areas with larger gradients. In SWIM sampling, every weight
and bias in hidden layers is associated with two specific points from the input space. The
weight is determined by the difference between these points, and the bias is influenced by
the interaction between this weight and one of the points. Building on SWIM sampling, the
primary objective of this thesis is to apply SWIM methodology for sampling the weights
of DeepONet in an iterative approach.

For the mathematical representation of the SWIM sampling, let Φ be a neural network with
L hidden layers. The input space is denoted as X ⊆ RD. The weights and biases for each
layer l, where l = 1, . . . , L + 1, are represented by Wl and bl respectively. The activation
function is given by g : R 7→ R. The output for the l-th layer of the neural network can
be expressed as Φl(x) = g(WlΦ

l−1(x) − bl), with Φ0(x) = x for all x ∈ X . The number of
neurons in the lth layer is represented by Nl. Here, N0 = D signifies the input dimension,
and NL+1 denotes the output dimension. The notation wl,i refers to the i-th row of Wl, and
similarly, bl,i stands for the ith entry of bl.

Given a neural network Φ withL layers, for every layer l, from 1 toL, two points, (x(1)0,i , x
(2)
0,i)

for i = 1, . . . , Nl, are selected from the set X ×X to determine a weight for that layer. The
weight and bias are defined by:

wl,i = s1
x
(2)
l−1,i − x

(1)
l−1,i

||x(2)l−1,i − x
(1)
l−1,i||2

, bl,i = ⟨wl,i, x
(1)
l−1,i⟩+ s2

where s1 and s2 are constants in R. The values for s1 and s2 are determined based on
the chosen activation function. Two activation functions are considered: ReLU and tanh.
For the ReLU activation, the values are assigned as s1 = 1 and s2 = 0. This assignment
ensures that x(1) maps to zero, while s(2) maps to one. In contrast, for the tanh activation,
the values are assigned as s1 = 2s2 and s2 = ln(3)

2 . With this setting, x(1) and x(2) map to
±1

2 , respectively. With ReLU, these values help predict points between x(1) and x(2). For
classification tasks with the tanh activation function, they determine if x(1) and x(2) are in
different classes. After setting the weights and biases of the hidden layers, the only task

13

2. State of the Art

left is to solve an optimization problem to find the coefficients of a linear layer. This layer
changes the output of the last hidden layer to the final output.

In the construction of SWIM sampling, a probability distribution is initially established
over pairs of input data points, informed by known function values. Consequently, SWIM
sampling offer a more data-centric weight sampling methodology, when compared to
ELMs and random feature models. According to the evaluations, the SWIM method out-
performs random feature models in accuracy on numerous cases. Moreover, since SWIM
sampling do not optimize weights in a gradient-based manner, they achieve faster training
speeds compared to conventional gradient-based training methods. Eliminating gradient-
based optimization also removes the need for various hyperparameters, such as the learn-
ing rate, number of epochs, optimizer selection, and scheduling.

14

3. Iterative Sampling of Deep Neural
Operators

DeepONet has shown its effectiveness in addressing partial differential equations [30].
There are extensions of DeepONet, like POD-DeepONet, which offer different approaches
to standard DeepONet model. As discussed in Section 2 , POD-DeepONet uses only the
branch network during its training process. Instead of using a trunk network, it integrates
a POD component that uses solutions of PDEs for computing POD. The outcomes from
the branch network are combined with the results from the POD component. This inte-
gration effectively replaces the role of the trunk network found in the standard DeepONet
framework.

DeepONet and POD-DeepONet, like many neural network architectures, are typically
trained using gradient-based optimization algorithms such as SGD or Adam, which in-
volve iterative weight adjustments. However, this standard training approach can en-
counter difficulties with high-dimensional datasets, a common scenario in neural network
training. This situation highlights the need to address computational challenges in this
area. Section 2 discussed the use of the SWIM algorithm as an innovative method for
weight sampling in neural networks. This section is dedicated to implementing the SWIM
methodology for training DeepONet via iterative sampling. The primary goal of this part
of the thesis is to investigate how effective iterative sampling is, particularly when using
SWIM, in the training process of DeepONet.

In the forthcoming discussion of iterative sampling in DeepONet and the sampled POD-
DeepONet, the following notations will be used for dataset: let ξ ∈ Rm represent the grid
of m points. Consider vi ∈ Rm for i = 1, . . . , N as the initial conditions and ui ∈ Rm for
i = 1, . . . , N as the solutions, with N being the number of data samples. The initial condi-
tions and the solutions can be expressed in matrix notation as follows: V = (v1, . . . , vN)⊤ ∈
RN×m, and U = (u1, . . . , uN)⊤ ∈ RN×m, respectively.

For the DeepONet model, let b(v) ∈ Rp represent the branch network and t(ξj) ∈ Rp

denote the trunk network, while b0(ξ
j) ∈ R is the bias component. When expressed

in matrix form, these components are represented as: B := b(V) ∈ RN×p, indicating
the branch network matrix; T := t(ξ) ∈ Rm×p, showing the trunk network matrix; and
b0 := b0(ξ) ∈ Rm, which is the bias vector. In the context of the POD-DeepONet, in
addition to the previously established notation, the POD components are represented as

15

3. Iterative Sampling of Deep Neural Operators

Φ(ξ) = [ψ1(ξ), . . . , ψp(ξ)] ∈ Rm×p, where these components correspond to the p largest
POD modes, and ψ0(ξ) ∈ Rm represents the mean of the solutions at grid ξ.

3.1. Sampled POD-DeepONet

In the study of SWIM, researchers conducted experiments using the SWIM algorithm
to sample weights in different neural network architectures, including POD-DeepONet.
The primary goal was to train POD-DeepONet by sampling its weights with the SWIM
method. To facilitate sampling, the POD-DeepONet was transformed into a fully-connected
network, utilizing the orthogonality of its components. An orthogonal matrix, sometimes
known as an orthonormal matrix, is a square matrix composed of real numbers. Its unique
feature is that its rows and columns are orthogonal, meaning they are perpendicular to
each other. In cases where it’s referred to as orthonormal, the rows and columns are
also of unit length. The orthogonality feature that is used to restructure the DeepONet
is Q⊤Q = Ip, where Q represents the matrix, Q⊤ is its transpose, and I stands for the iden-
tity matrix of size p.

The standard POD-DeepONet equation in matrix notation is

G(V)(ξ) = BΦ⊤ + ψ0(ξ).

To derive the formulation for B, we start with the property of orthogonality of Φ, which
states that Φ⊤Φ = Ip. This property allows us to manipulate the original equation. We
start by subtracting ψ0(ξ) from both sides:

G(V)(ξ)− ψ0(ξ) = BΦ⊤.

Next, we multiply both sides of the equation by Φ:

(G(V)(ξ)− ψ0(ξ))Φ = BΦ⊤Φ.

Since Φ⊤Φ = Ip, we replace it in the equation:

(G(V)(ξ)− ψ0(ξ))Φ = BIp.

The identity matrix Ip does not change the matrix it multiplies, so BIp = B. Therefore, the
equation simplifies to

B = (G(V)(ξ)− ψ0(ξ))Φ.

This restructured equation for the branch network B allows the transformation of training
data to facilitate the sampling of a fully-connected network representing B. This approach
to sampling POD-DeepONet using the SWIM method is elaborated in Section 2.3 .

16

3. Iterative Sampling of Deep Neural Operators

3.2. Iterative Sampling of DeepONet

This thesis concentrates on applying the SWIM sampling approach to the DeepONet ar-
chitecture. In the POD-DeepONet framework, the focus is on training (or sampling) exclu-
sively the branch network, while substituting the trunk network with a POD component.
This approach is feasible thanks to a key modification: the revised equation for B facili-
tates the sampling process within a fully-connected network.

In the iterative sampling process for DeepONet, the original framework is maintained,
meaning that both the trunk and branch networks are transformed into a fully-connected
network configuration. This is achieved by assuming the orthogonality of the components
under consideration for sampling. The process involves fixing one network at a time (ei-
ther the trunk or the branch) while sampling the other network.

In the iterative sampling setting, the branch network B is sampled using the approach
that is used in POD-DeepONet, as explained in previous subsection. The derivation for
making the trunk network T a fully-connected network is again begins with the original
DeepONet equation in matrix form

G(V)(ξ) = BT⊤ + b0.

To derive the formulation for T , we utilize the property of orthogonality of B, which im-
plies B⊤B = I , where I is the identity matrix. This property is essential for manipulating
the original equation. We begin by subtracting b0 from both sides:

G(V)(ξ)− b0 = BT⊤.

Next, we multiply both sides of the equation by B⊤:

B⊤(G(V)(ξ)− b0) = B⊤BT⊤.

Given that B⊤B = I , we substitute it into the equation:

B⊤(G(V)(ξ)− b0) = IT⊤.

Since multiplying by the identity matrix I does not change the matrix, the equation sim-
plifies to:

T⊤ = B⊤(G(V)(ξ)− b0).

Taking the transpose of both sides, we arrive at the final expression for T :

T = (G(V)(ξ)− b0)⊤B.

This formulation of T allows for the transformation in the context of the given equation,
assuming the orthogonality of matrix B.

17

3. Iterative Sampling of Deep Neural Operators

After restructuring the trunk network T and the branch network B, the DeepONet equa-
tion has been suitably adjusted for adaptation to SWIM sampling. The implemented it-
erative sampling algorithm primarily focuses on developing fully-connected structures
within both T and B. This restructuring is crucial for the adaptation of SWIM sampling in
the DeepONet framework.

The iterative sampling algorithm for DeepONet, as outlined in Algorithm 1 , involves sev-
eral steps to sample DeepONet effectively. Initially, the algorithm starts by defining two
key elements: b(0) and T(0). Here, b(0) is the bias, which represents the mean of the solu-
tions. Once set, b0 remains fixed for the remainder of the process. T(0) signifies the p largest
POD modes of the solutionsU . For the POD computation, the solutionsU are first centered
by subtracting their mean. Then, the POD is computed using the numpy.linalg.svd()
function, which yields the right singular matrix. From this matrix, the largest p modes are
obtained as T(0).

After initializing b(0) as the mean of the solutions U and setting T(0) as the p largest POD
modes of U , the iterative sampling process of the DeepONet algorithm begins. The pro-
cess starts with an iteration counter k, beginning at 1. In each iteration, the branch network
B(k) is first sampled using the previously updated trunk network T(k−1). After sampling
B(k), its transformed version, B̂(k) := B(k)(V), is computed with the new weights, orthog-
onalized, and then reassigned to update B(k). The orthogonalization process is executed
using the function numpy.linalg.qr(). This updated branch network is then used to
sample the trunk network in the same iteration.

Proceeding within the same iteration, the trunk network T(k) is then sampled using the
newly updated branch network B(k). Following its sampling, T(k) is subjected to a similar
transformation and orthogonalization process, which leads to an updated version of T(k)
that is prepared for the subsequent iteration. This procedure is carried out iteratively, with
each cycle involving the sampling and orthogonalization of both the branch and trunk net-
works. The algorithm continues in this sequence until it satisfies a predefined convergence
criterion or until it reaches the maximum number of iterations denoted as K.

In the iterative sampling process, the algorithm sets a maximum of K = 10 iterations and
incorporates a patience mechanism to determine convergence. Convergence is achieved
if there is no notable improvement in the network’s performance across three consecutive
iterations, which is measured against a predetermined tolerance level. The performance
of the network is evaluated using the relative L2 mean loss. If the absolute difference in
loss between successive iterations is smaller than a tolerance value of 10−6 for three con-
secutive iterations, the model is considered to have converged. Upon completion of the
iterative sampling process, a final step is conducted where the branch network undergoes
one last sampling update. This final step updates the branch network to its concluding

18

3. Iterative Sampling of Deep Neural Operators

state, thus finalizing the iterative sampling process for the DeepONet, as outlined in Algo-
rithm 1 .

To summarize, the iterative sampling approach involves sampling the weights of both the
trunk and branch networks through iterative processes. Initially, in the first iteration, the
branch network is sampled using the POD modes from the solutions U , and this sampled
branch is then used to sample the trunk network. In the following iterations, this cycle con-
tinues, using the continuously updated versions of both networks. Each iteration includes
the sampling of both the trunk and branch networks. As hypothesized in this thesis, this
method is expected to lead to the model’s consistent improvement over time.

Algorithm 1 Iterative Sampling Algorithm for DeepONet. The process involves iteratively
updating the branch and trunk networks of the DeepONet using the initial conditions V
and PDE solutions U , respectively. The variable last iter is initialized to track the last
iteration index, providing a reference point in case the algorithm converges before reaching
the maximum number of iterations K.

b(0) ← 1
N

∑N
i=1 U

i;
T(0) ← POD(U), retaining p largest components;
last iter← 0; ▷ Track the last iteration index in case of convergence
for k = 1, 2, . . . , K do

last iter← k; ▷ Update last iteration index
Sample B(k) using T(k−1);
B̂(k) ← B(k)(V);
B(k) ← orthogonalize(B̂(k));
Sample T(k) using B(k);
T̂(k) ← T(k)(ξ);
T(k) ← orthogonalize(T̂(k));
if converged then

break;
end if

end for
Sample B(last iter+1) using T(last iter);

19

3. Iterative Sampling of Deep Neural Operators

3.3. Experiments

This section of the thesis is dedicated to evaluating the performance of the proposed iter-
ative sampling algorithm for DeepOnet through a series of designed experiments. These
experiments were conducted using a variety of hyperparameters, carefully selected to span
a comprehensive search space. The objective was to determine the optimal set of hyper-
parameters that yield the best performance for the algorithm. A thorough comparison of
the results obtained with different hyperparameters was carried out to determine the most
effective configurations.

The datasets for these experiments were created using Python programming. The upcom-
ing subsections will provide detailed results of the addressed problems and explain the
implementation techniques for dataset generation. A thorough analysis of these methods
is significant for evaluating the iterative sampling method’s effectiveness. This examina-
tion will analyze the method’s practical use and performance across different experiments.
The focus of this analysis is to assess the utility of SWIM sampling through the iterative
sampling method for the DeepONet architecture, which offers key insights into its perfor-
mance.

3.3.1. Burgers’ Equation

For the experiments, the one-dimensional Burgers’ equation [3] is one of the PDEs that is
focused on. The Burgers’ equation is a fundamental equation in fluid dynamics and it is
used to describe systems with a viscous fluid that has both spatial and temporal properties.
For example, in a system like a tube with a viscous fluid flowing inside, the equation
can describe the speed of the fluid at different locations as time progresses. The Burgers’
equation is described as

∂u

∂t
+ u

∂u

∂x
= η

∂2u

∂x2
,

where x and t represent the spatial and temporal coordinates, respectively. The term u(x, t)
denotes the fluid’s speed at these coordinates and η is the viscosity coefficient. The viscos-
ity coefficient η is a physical property of the fluid, and it acts to smooth out rapid changes
in the fluid’s speed, thus preventing discontinuities in the solution.

Burgers’ equation is one of the equations used to generate a dataset for training and testing
purposes in this thesis. Our dataset for the Burgers’ equation is generated within the spa-
tial interval [0, 2π]. The equation is solved under periodic boundary conditions, meaning
u(0, t) = u(2π, t) for all t. Various initial conditions are denoted as u(x, t = 0) and they are
formed using an inverse Fourier transform of normally distributed coefficients. Therefore,
variety of different scenarios are produced. The Burgers’ equation is then evolved from
t = 0 to t = 1 with a viscosity coefficient of 0.1. The initial conditions u(x, t = 0) and

20

3. Iterative Sampling of Deep Neural Operators

the corresponding solutions at t = 1, denoted as u(x, t = 1), are plotted for a selection of
samples in Figure 3.1 . The different colors in the graphs correspond to different samples in
the dataset. This variety in data allows for extensive and rigorous training and testing of
the models. It also introduces a challenge for the DeepONet model to effectively represent
the data.

The generated dataset contains 15000 samples, where each sample includes an initial con-
dition and its corresponding evolved state, distributed over a grid of 256 points. Each
initial condition is evolved in accordance with the Burgers’ equation.

Figure 3.1.: The left figure displays the initial conditions u(x, t = 0), while the right figure
displays the solutions at t = 1 after the Burgers’ equation has evolved the
system. Each line in the graph corresponds to a distinct sample. Matching
colors between the two figures indicate the progression of the same sample
from its initial state at t = 0 to its evolved state at t = 1.

The iterative sampling approach in DeepONet involves a unique configuration for both
the branch and trunk networks, each including a dense layer and a linear layer. The dense
layer is characterized by various hyperparameters, including its width, activation func-
tion, and parameter sampler. On the other hand, the linear layer’s primary hyperparame-
ter is the regularization scale. Another important aspect of this iterative sampling method
for DeepONet is the number of POD modes used in the initial iteration. This choice plays
an important role in the algorithm’s performance. The list of the hyperparameters, along
with their respective search spaces, is shown in Table 3.1 .

21

3. Iterative Sampling of Deep Neural Operators

Table 3.1.: The list of the hyperparameters and their values for tuning in DeepONet, appli-
cable to both the trunk and branch networks. Each network is configured with
layers that share the same hyperparameters and value ranges. Specifically, the
dense layers in both branch and trunk networks employ matching activation
functions and parameter samplers (e.g., ’relu’ or ’tanh’ for both hyperparame-
ters). Furthermore, the width of the dense layers and the regularization scale for
the linear layers are chosen to be the same across both networks. For instance,
if a dense layer width of 1024 is selected, it will be 1024 for both the trunk and
branch networks, and similarly, a chosen regularization scale like 10−4 will be
applied equally to both networks’ linear layer.

Hyperparameter Values
Dense Layer Width 256, 512, 1024, 2048
Dense Layer Activation tanh, relu
Dense Layer Parameter Sampler tanh, relu
Linear Layer Regularization Scale 10−4, 10−6, 10−8, 10−10

In Figure 3.2 , we explore the impact of activation functions, layer width, and the number
of POD modes on the relative L2 loss on training and test sets. Each graph within the
figure corresponds to a distinct combination of activation function and layer width. For
each of these combinations, the figure illustrates the lowest training loss achieved across
various POD mode scenarios. For the corresponding experiments with the lowest training
loss, their test performance is also shown. It is important to note that the term ’width’ in
this context refers to the width of both the branch network and the trunk network. Ad-
ditionally, the ’activation’ mentioned represents the functions utilized for both activation
and parameter sampler hyperparameters.

The examination of the results shows a clear difference in performance based on the num-
ber of POD modes used. In particular, using only 2 or 4 of the largest POD modes in the
initial iteration results in poorer performance of the sampled DeepONet. The training loss
is significantly higher—about 103 times greater with 2 POD modes and 102 times higher
with 4 POD modes—compared to cases where at least 8 largest POD modes are utilized.
The observed poorer performance of the sampled DeepONet with only 2 or 4 of the largest
POD modes can be related to the limited data representation capacity of such a low num-
ber of modes. When only a few modes are used, the model may not capture enough of the
essential characteristics and complexities in the dataset. This leads to a significant loss in
the ability to accurately model the PDEs, which results in a higher training loss. In contrast,
using a larger number of POD modes, such as 8 or more, allows for a more comprehensive
representation of the data, which in turn leads to improved model performance and lower
training loss. The test loss results follow the same pattern with the training loss, but it is
observed that test loss is higher than the training loss for the experiments, which indicates
overfitting.

22

3. Iterative Sampling of Deep Neural Operators

Figure 3.2.: The figure shows the various configurations tested using the Burgers’ dataset,
focusing on the interaction between activation functions, layer width and num-
ber of POD modes. Each individual plot corresponds to a unique combination
of activation function and layer width. The x-axis shows the number of POD
modes, while the y-axis, which is on logarithmic scale, indicates the lowest
training loss achieved in each specific setting (blue line). For the correspond-
ing experiments with the lowest training losses, their test loss is shown with
orange line. Notably, there are gaps in the data where results are absent, which
indicates that in those particular combinations of settings, the experiments did
not to converge.

23

3. Iterative Sampling of Deep Neural Operators

A noticeable trend appears when the number of largest POD modes used is 16 or higher:
the tanh activation function consistently outperforms the relu activation across all config-
urations. The lowest training loss is observed when the dense layers of both networks
have a width of 2048, the model employs 128 largest POD modes with tanh activation and
parameter sampler, and regularization scale of 10−10 is applied to the linear layer.

Particularly, the combination of tanh activation and parameter sampler results in more ef-
fective performance than relu in cases where the number of POD modes is 16 or more.
While there are exceptions, the training loss tends to decrease as the layer width increases,
except in scenarios with 2 or 4 POD modes. The training performance improves with an
increasing number of POD modes, but the optimal performance is observed with 128 POD
modes, rather than the maximum of 256 POD modes. Figure 3.3 illustrates these trends,
showing the impact of the number of POD modes and layer width on training perfor-
mance for different activation functions and the parameter sampler. This figure offers a
clearer visualization of the effects and comparison of different POD modes. Understand-
ing the influence of POD modes is crucial, as it directly affects the performance of the
sampled DeepONet. For the relu activation function, an enhancement in training perfor-
mance is observed with an increase in layer width, particularly when utilizing 8 or more
POD modes. On the other hand, with tanh activation, there is a general trend of improved
training performance with 16 or more POD modes, although exceptions to this pattern do
occur.

Figure 3.3.: The x-axis shows the layer width, and the y-axis displays the best relative L2
training loss on a logarithmic scale for the Burgers’ dataset. Each line repre-
sents a different number of POD modes. The left part illustrates results for the
relu activation, and the right part for the tanh activation.

24

3. Iterative Sampling of Deep Neural Operators

In Figure 3.4 , the relationship between the number of POD modes and the total training
time of the model is shown. The graph shows that, with a few exceptions, the overall train-
ing time generally increases as the number of POD modes increases. Notably, the training
time for 8 POD modes is greater than for 16 and 32, but beyond these points, the trend of
increasing time with more POD modes continues. This pattern suggests a trade-off inher-
ent in sampled DeepONet training. While incorporating more POD modes can potentially
boost model performance, it concurrently escalates computational demands. The graph
displays a clear trend of escalating training time with the increase in modes, which shows
the balance between computational efficiency and model complexity. This trend indicates
that the choice of the number of POD modes is a critical decision point in the design of the
network, as it directly impacts the practicality of the model in terms of both efficiency and
resources.

Figure 3.4.: Cumulative training time for the same number of experiments across different
POD mode settings for Burgers’ dataset. The number of POD modes is shown
on the x-axis and the total time in seconds is shown on the y-axis.

The influence of the regularization scale in the linear layer on training performance is
shown in Figure 3.5 . The results show that for configurations using 2, 4, or 8 POD modes
during the initial iteration, the regularization scale has little to no impact on the training

25

3. Iterative Sampling of Deep Neural Operators

performance, suggesting these settings are insensitive to this hyperparameter. However,
as the number of POD modes increases, choosing the right regularization scale becomes
important. With some exceptions, a scale of 10−4 generally leads to the poorest training
results, showing that this level of regularization might be insufficient for model general-
ization. On the other hand, scales of 10−8 or 10−10 tend to produce the most favorable
training results. The optimal scale, however, seems to depend on the number of POD
modes used, which shows the relationship between model complexity and the need for
effective regularization.

Figure 3.5.: Impact of the regularization scale in the linear layer on training performance
for Burgers’ dataset. The x-axis denotes the tested regularization scale values,
while the y-axis shows the minimum training loss achieved for each respective
POD mode setting, which is displayed on a logarithmic scale. Each line in the
graph represents a different setting of the number of POD modes as established
in the initial iteration.

The analyses conducted so far have primarily focused on the best training performance of
DeepONet through iterative sampling. Figure 3.6 illustrates the network’s best test per-
formance using the one-dimensional Burgers’ equation dataset. The best training results
were obtained with a setup of 128 POD modes, a layer width of 2048, ’tanh’ as the ac-
tivation function and parameter sampler, and a regularization scale of 10−10. However,

26

3. Iterative Sampling of Deep Neural Operators

the network demonstrated its most effective performance in testing with a different con-
figuration: 16 POD modes while maintaining a layer width of 2048, ’tanh’ activation and
parameter sampling, and a regularization scale of 10−10 in the linear layer. The test per-
formance analysis indicates varied optimal configurations depending on the number of
POD modes. Specifically, a layer width of 1024 yielded the lowest test loss for 64 and 256
POD modes. In contrast, a wider layer of 2048 was optimal for the remaining POD mode
settings. Regarding the regularization scale in the linear layer, a scale of 10−8 was most
beneficial for setups with 32 and 64 POD modes. For other configurations with different
POD mode settings, the best test performance observed when a regularization scale of
10−10 was applied.

Figure 3.6.: Model performance assessment on the one-dimensional Burgers’ test dataset.
The x-axis indicates the number of POD modes employed during the initial
iteration of iterative sampling, while the y-axis shows the lowest test loss
achieved among all experiments and configurations, shown on a logarithmic
scale.

As stated previously, the main goal of this thesis is to explore the effectiveness of the it-
erative sampling approach in the context of the DeepONet. This necessitates a thorough

27

3. Iterative Sampling of Deep Neural Operators

review of each iteration to understand the dynamics of this method. As discussed, Fig-
ure 3.6 displayed the best test performances across various POD mode configurations. To
assess the efficiency of the iterative approach for the sampled DeepONet, these results are
analyzed in detail. Figure 3.7 represents the training and testing losses at each iteration for
the experiments that achieved the most optimal test performance.

This figure reveals that the iterative sampling approach improves the network’s efficiency
multiple times, particularly with 32 and 128 POD modes in the initial iteration. Notably,
in the scenario using 32 POD modes, the iterative method reduces the loss measurement
multiple times beyond the initial iteration. Similarly, with 128 POD modes, the approach
improves the learning performance of the network multiple times. For other scenarios, the
iterative sampling decreased the loss only once (in the second iteration). For some scenar-
ios, the figure additionally shows that after several iterations, the training loss becomes
lower than the test loss, suggesting an instance of overfitting. This indicates that while
the iterative sampling method may improve learning, it may lead to the model becoming
too finely tuned to the training data. As a result, the network’s ability to generalize to
new, unseen data could be compromised, which denotes the importance of monitoring for
overfitting in such iterative training processes.

To summarize, the first experiment involved using the iterative sampling method with the
one-dimensional Burgers’ equation on sampled DeepONet. An extensive search is carried
out for the best hyperparameters to properly evaluate this iterative sampling. In this pro-
cess, a series of experiments were conducted. For the majority of these experiments, the
iterative sampling improved the network performance only once, which happened in the
second iteration. For these cases, doing more iterations did not improve the performance
of the model. However, in some specific cases, like in experiments involving 32 or 128
POD modes, the performance of the sampled DeepONet did improve multiple times.

28

3. Iterative Sampling of Deep Neural Operators

Figure 3.7.: Iterative sampling performance on the Burgers’ dataset. This figure plots the
evolution of training and test losses over the course of iterative sampling for
the experiments shown in 3.6 . The x-axis shows the iteration count, while the y-
axis shows the loss values on logarithmic scale. The training loss is represented
by the blue line, and the test loss during training is represented by the orange
line. The final test loss, observed at the completion of training, is represented
by a red star for each case of POD settings.

29

3. Iterative Sampling of Deep Neural Operators

3.3.2. Wave Equation

The second experiment uses the Wave equation, which is an important equation in physics
for examining wave motion. This equation is useful in understanding various wave types,
including sound and light, and proves beneficial in diverse fields ranging from engineer-
ing to the study of natural phenomena like earthquakes [1]. The Wave equation in its
fundamental form is

∂2u

∂t2
= c2∇2u.

Here, u is a function that shows the position of the wave at any place and time, and c is the
speed at which the wave travels. The term ∇2u describes the wave’s shape and its spatial
variations.

In this particular experiment, we focus on a one-dimensional version of this equation,
which is

∂2u

∂t2
= c2

∂2u

∂x2
.

By simplifying the equation to one dimension, we are able to scrutinize the wave move-
ments along a single line. This experiment uses reflective boundary conditions in the one-
dimensional Wave equation to create a variety of wave patterns, each originating from
distinct initial conditions. Reflective boundaries cause the wave to reflect back into the
medium when it reaches the boundary, which simulates the effect of waves in a confined
space.

In the experiment, a dataset is generated by computing solutions to the one-dimensional
wave equation under various initial conditions. These solutions are obtained using the
py-pde library, which is an effective solver for partial differential equations. The ini-
tial conditions for the wave equation are generated using a Gaussian function defined as
u0(x) = Ae−(x+S)2×scale. This formula ensures a rich variety of wave patterns by varying
the amplitudeA and the position shift S within set limits. And the scale parameter controls
the spread of the Gaussian function. The initial wave state u0 is determined by applying
this Gaussian function to a range of values. Alongside u0, the initial velocity of the wave,
denoted as v0, is calculated as v0(x) = x× u0(x), which represents the initial speed of each
point in the wave. This approach to generating initial conditions allows examining wave
behaviors under various scenarios, and makes it challenging for the neural network model
to learn. The representations of the initial wave and initial speed are shown in Figure 3.8 ,
and the solutions are shown in Figure 3.9 .

The dataset contains 1500 samples, where each sample includes an initial condition and its
corresponding evolved state, distributed over a grid of 256 points. Each initial condition
is evolved in accordance with the Wave equation.

30

3. Iterative Sampling of Deep Neural Operators

Figure 3.8.: Visualization of initial wave and speed parameters. On the left, the initial wave
amplitude (y-axis) is plotted against the spatial domain (x-axis), showing the
amplitude variations. On the right, the initial speed of the wave (y-axis) is
shown, correlating to the same spatial domain (x-axis). The plots display the
first 10 samples from a total of 1500. Each line in the plot represents a distinct
sample, with color coding consistent across both visualizations.

Figure 3.9.: Evolution of wave solutions derived from initial conditions. This plot presents
the solutions of the wave equations based on the initial wave and speed con-
ditions shown in Figure 3.8 . The solutions are visualized over the same spatial
domain on the x-axis, with the y-axis representing the amplitude of the wave
over time. The color scheme is maintained from the initial conditions.

31

3. Iterative Sampling of Deep Neural Operators

In the Wave equation experiment, a hyperparameter search similar to the one conducted
for the Burgers’ dataset was conducted. This search was aimed at evaluating iterative
sampling in various settings. The hyperparameters and search space used are identical
to those in the Burgers’ experiment. The list and the range of these hyperparameters are
detailed in Table 3.1 .

In these experiments, the main goal is to investigate the effects of layer width, activation
functions, and parameter samplers on the training efficiency of the sampled DeepONet.
This investigation considers different numbers of POD modes used in the first iteration.
Figure 3.10 demonstrates these connections. Each plot in the figure shows a combination
of an activation function and layer width. Similar to the Burgers’ experiment, ’width’ here
refers to the size of both the branch network and the trunk network. The term ’activation’
is used to describe the functions for both activation and parameter sampling. It is noted
that for cases with 2 or 4 POD modes, changes in layer width or activation functions have
minimal impact on training results, likely due to the limited data representation capacity
with such a small number of modes. However, for a higher number of POD modes, the
relu activation demonstrates improved performance with increased layer width. On the
contrary, the performance with tanh activation remains fairly uniform across various layer
widths. The best training loss was achieved using 16 POD modes, unlike in the Burgers’
experiment where the optimal training loss was reached with 128 POD modes. This was
achieved with a layer width set at the maximum of 2048, using tanh activation and a pa-
rameter sampler, along with a regularization scale of 10−10 for the linear layer. Despite this
variance in the number of POD modes, the other hyperparameters associated with the best
training performance were consistent in both experiments. The pattern of test loss results
mirrors that of the training loss, yet it is noticeable that the test loss exceeds the training
loss in the experiments, which indicates overfitting.

The Burgers’ experiment highlights the critical importance of the number of POD modes
used in the initial iteration. This significance is also evident in the Wave experiment. To
analyze the impact of the number of POD modes, Figure 3.11 offers insightful observa-
tions. With the relu activation function, the best training loss was achieved with 32 POD
modes in the first iteration. Conversely, using the tanh activation function led to the lowest
training loss with 16 POD modes. In both scenarios, the optimal training outcomes were
reached with a layer width of 2048, the largest value in the considered range for layer
width. These findings suggest that the number of POD modes chosen initially plays a crit-
ical role in the subsequent performance of the iterative sampling process. This conclusion
is supported by results from both experiments across different datasets. It is important to
note, however, that there is no straightforward formula linking an increase in POD modes
to better training performance. Generally, performance tends to improve when using more
than a minimal number of POD modes, such as 2 or 4. Nevertheless, for optimal results, it
is crucial to fine-tune the number of POD modes for each specific problem and dataset.

32

3. Iterative Sampling of Deep Neural Operators

Figure 3.10.: The figure represents the various configurations tested using the Wave
dataset, which focuses on the interaction between activation functions, layer
width and number of POD modes. Each plot corresponds to a unique combi-
nation of activation function and layer width. The x-axis shows the number
of POD modes, while the y-axis, which is on logarithmic scale, indicates the
lowest training loss achieved in each specific setting. For the corresponding
experiments with the lowest training losses, their test loss is shown with or-
ange line. The gaps in the data where results are absent indicates that in those
particular combinations of settings, the experiments did not to converge.

33

3. Iterative Sampling of Deep Neural Operators

Figure 3.11.: The x-axis shows the layer width, and the y-axis displays the best relative L2
training loss on a logarithmic scale for Wave dataset. Each line represents a
different number of POD modes. The left part illustrates results for the relu
activation, and the right part for the tanh activation.

Figure 3.12.: Total training time for the same number of experiments across various POD
mode settings for the Wave dataset. The number of POD modes is shown on
the x-axis and the total time (in seconds) is shown on the y-axis.

34

3. Iterative Sampling of Deep Neural Operators

As it is observed, the number of POD modes is s a critical hyperparameter for the iterative
sampling of DeepONet. However, it is important to note that increasing the number of
POD modes, while beneficial, also comes with a cost in terms of computational resources.
Using a relatively larger number of modes tends to increase training time, making it more
computationally demanding. As illustrated in Figure 3.12 , the aggregate training time for
all experiments escalates with the increase in the number of POD modes, starting from
4 POD modes. An exception occurs when only 2 POD modes are used, where the total
training time exceeds that of experiments with 4, 8, and 16 modes.

The significance of the regularization scale in the linear layers of the branch and trunk net-
works is a critical aspect of the sampling process. Figure 3.13 illustrates the lowest training
loss results for each regularization scale value within the search space, relative to the num-
ber of POD mode settings. When employing a small number of POD modes, such as 2 or
4, it becomes apparent that the regularization scale has little or no impact on the model’s
performance. This observation highlights once again the essential role of POD modes in
determining model efficiency. In contrast, with an increased number of POD modes, the
importance of the regularization scale escalates. Optimal training performances are typi-
cally achieved with a regularization scale of 10−10. In some scenarios, using a scale of 10−8

yields performance nearly comparable to that achieved with a scale of 10−10.

The analysis of the sampled DeepONet’s hyperparameters is further extended to its per-
formance on the test set to offer additional insights into the model. Figure 3.14 displays
the model’s performance on the test set for the Wave dataset. The optimal training per-
formance was observed with 16 POD modes. Yet, when it comes to predicting unseen test
data, the model demonstrates its best performance with 256 POD modes in the initial iter-
ation. The additional hyperparameters contributing to this optimal performance include
a layer width of 2048, the use of tanh activation and parameter sampler, and a regular-
ization scale of 10−10 in the linear layer. Different configurations of POD modes reveal
that the model’s effectiveness on unseen data diminishes when a smaller number of POD
modes, such as 2, 4, and 8, are used. The range between 16 and 128 POD modes also deliv-
ers promising results for unseen data. However, in cases where accuracy on unseen data
is critical, utilizing the maximum number of POD modes provides the best performance
for unseen data.

35

3. Iterative Sampling of Deep Neural Operators

Figure 3.13.: Impact of regularization scale in the linear layer on training efficiency for the
Wave dataset. The x-axis represents the various regularization scale values
tested, while the y-axis, using a logarithmic scale, displays the lowest training
loss achieved for each respective POD mode setting. Each line in the graph
corresponds to a distinct setting of POD modes number as determined in the
initial iteration.

In the context of the results shown in Figure 3.14 , which highlights the experiments yield-
ing the best test results, it is essential to closely examine the behavior of the iterative sam-
pling process throughout its iterations. This analysis is important for the main goal of the
thesis, which aims to evaluate the practicality and effectiveness of applying iterative sam-
pling to a DeepONet model using SWIM sampling. Figure 3.16 illustrates the trajectories
of both training and test losses during the sampling process. The final loss value on the
test dataset is highlighted with a red star on the graph. A significant observation from
this analysis is that additional iterations after the first one do not appear to enhance the
model’s performance. In other words, iterative sampling was able to improve the perfor-
mance only once, which occured in the second iteration. Additional iterations beyond this
point did not reduce the loss. This lack of improvement might be related to the relative
simplicity of the Wave equation for the network, even though the dataset was designed to
be challenging. The network’s rapid adaptation and learning of the appropriate weights
for this dataset supports this hypothesis. This conclusion is further supported by the com-
parison with results from an earlier experiment using the Burgers’ dataset, where iterative

36

3. Iterative Sampling of Deep Neural Operators

sampling improved the model’s performance multiple times in certain conditions.

Figure 3.14.: Model performance assessment on the one-dimensional Wave test dataset.
The x-axis shows the number of POD modes used during the initial iteration
of iterative sampling, while the y-axis shows the lowest test loss achieved
among all experiments and configurations, shown on a logarithmic scale.

In the experiments resulting in the best test performances, it was observed that iterative
sampling contributed to an improvement in the model’s performance only once. How-
ever, this observation does not imply an absence of multiple improvements across other
experiments. In a specific instance, iterative sampling did indeed improve the model’s
performance multiple times, despite the fact that this particular experiment was not the
most successful in terms of training or testing outcomes. The experiment utilized hyperpa-
rameter configurations of 128 POD modes, tanh as the activation function and parameter
sampler, and a regularization scale of 10−6 in the linear layer. Details of this experiment
are presented in Figure 3.15 . The figure reveals that iterative sampling decreased both the
training and test losses during the training phase. However, the final test loss after training
did not align with these improvements seen during training.

37

3. Iterative Sampling of Deep Neural Operators

Figure 3.15.: Experiment showing iterative sampling’s multiple improvement in Wave
dataset. The x-axis shows the number of iterations, while the y-axis shows
the logarithmically scaled loss values. The red star shows the final test loss.

In the experiment with the Wave equation dataset, the best results were primarily achieved
through the iteration following the initial sampling and further iterations did not enhance
the model’s performance in most cases. Specifically for the Wave dataset, the model
quickly adapted to the appropriate weights during the second sampling. The absence
of further improvement in subsequent iterations could be related to the relative simplicity
of the Wave equation dataset for the model to learn.

38

3. Iterative Sampling of Deep Neural Operators

Figure 3.16.: Iterative sampling performance on the Wave dataset. This figure plots the
evolution of training and test losses over the course of iterative sampling for
the experiments shown in 3.14 . The x-axis shows the iteration count, while
the y-axis shows the loss values on logarithmic scale. The training loss is
represented by the blue line, and the test loss during training is represented
by the orange line. The final test loss, observed at the completion of training,
is represented by a red star for each case of POD settings.

39

4. Conclusion

4.1. Summary

The final section of this thesis offers a detailed summary of the work conducted, discusses
the results obtained, and presents an outlook on the implications. The primary aim of
this thesis was to investigate the effectiveness of an iterative sampling approach for Deep-
ONet, utilizing SWIM sampling. In Section 2 , the thesis begins by introducing PDEs as the
foundation for creating test benchmarks. It then explores various state-of-the-art methods
for solving PDEs using neural networks. Subsequently, a detailed introduction of Deep-
ONet and its variations, such as POD-DeepONet, is provided. The thesis also comprehen-
sively introduces and discusses SWIM sampling, the principal sampling strategy used in
this study. In Section 3 , the proposed iterative sampling approach is thoroughly derived
and elaborated. This is followed by two main experimental investigations using the one-
dimensional Burgers’ and Wave equations. The thesis thoroughly analyzes and discusses
the performance of iterative sampling on these datasets, which highlights the approach’s
efficiency and potential use cases.

4.2. Discussion

The DeepONet was restructured into a fully-connected network by effectively utilizing the
orthogonality of its branch and trunk networks. This restructured version was then trained
and tested in various experiments under a range of hyperparameter settings. An extensive
search was conducted to find the optimal hyperparameters for the model. This process
allowed for a thorough analysis of the sampled DeepONet and offered insights into the
SWIM sampling methodology. The experiments showed that for the Burgers’ equation,
iterative sampling improved DeepONet’s performance. Notably, in certain scenarios, the
network’s performance improved multiple times across iterations, not just once. This re-
peated enhancement was most significant when using 32 and 128 POD modes, leading
to the best test loss outcomes. However, in other settings with varying POD modes, the
improvement due to iterative sampling was observed only once, immediately after the
first iteration. It is important to mention that there were also experiments where iterative
sampling led to multiple improvements in the model’s performance, although these did
not necessarily result in the best overall performance. In the second experiment, which
focused on the Wave equation, the optimal model performance was achieved without
the need for iterations beyond the second one. Iterative sampling reduced the loss only

40

4. Conclusion

once, following the initial sampling. The model rapidly adapted its weights to the Wave
data through this sampling process, and no further improvements were noted afterward.
Nonetheless, there were instances where iterative sampling did lead to multiple improve-
ments in the model’s performance, although these instances did not yield the best overall
performance.

4.3. Outlook

The primary conclusion of this thesis is the demonstrated potential of iterative sampling
in conjunction with SWIM sampling. The experiments revealed that for relatively complex
equations, such as the Burgers’, iterative sampling can enhance the model’s performance
multiple times. Conversely, for relatively simpler datasets like the Wave equation, the sam-
pled DeepONet quickly adapted in the second iteration, and no subsequent improvements
were occurred. This suggests that iterative sampling might be particularly beneficial for
more complex problems, where more sampling rounds may be useful for better learning.
Looking ahead, there is scope for further exploration of iterative sampling with various
neural network architectures. Such research could provide a more comprehensive under-
standing of its effectiveness across a spectrum of complexities and applications. This ex-
ploration could offer new insights into optimizing sampled neural networks using SWIM
for a wide range of complex and challenging problems.

41

Bibliography

[1] D. A. Angus. The one-way wave equation: A full-waveform tool for modeling seismic
body wave phenomena. Surveys in Geophysics, 35(2):359–393, 03 2014.

[2] Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory-efficient adap-
tive optimization. arXiv preprint arXiv:1901.11150, 2019.

[3] C. Basdevant, M. Deville, P. Haldenwang, J. Lacroix, J. Ouazzani, R. Peyret, P. Or-
landi, and A. Patera. Spectral and finite difference solutions of the burgers equation.
Computers & Fluids, 14:23–41, 1986.

[4] Richard Ernest Bellman. Dynamic Programming. Princeton University Press, 1957.

[5] Richard Ernest Bellman. Adaptive Control Processes: A Guided Tour. Princeton Univer-
sity Press, 1961.

[6] Erik Lien Bolager, Iryna Burak, Chinmay Datar, Qing Sun, and Felix Dietrich. Sam-
pling weights of deep neural networks. arXiv preprint arXiv:2306.16830, 2023.

[7] T Chen and H Chen. Approximation capability to functions of several variables, non-
linear functionals, and operators by radial basis function neural networks. IEEE Trans-
actions on Neural Networks, 6(4):904–910, 1995.

[8] T Chen and H Chen. Universal approximation to nonlinear operators by neural net-
works with arbitrary activation functions and its application to dynamical systems.
IEEE Transactions on Neural Networks, 6(4):911–917, 1995.

[9] G Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals and Systems, 2(4):303–314, 1989.

[10] P. C. Di Leoni, L. Lu, C. Meneveau, G. Karniadakis, and T. A. Zaki. Deeponet pre-
diction of linear instability waves in high-speed boundary layers. arXiv preprint
arXiv:2105.08697, 2021.

[11] K Hornik, M Stinchcombe, and H White. Multilayer feedforward networks are uni-
versal approximators. Neural Networks, 2(5):359–366, 1989.

[12] GB Huang. An insight into extreme learning machines: Random neurons, random
features and kernels. Cogn Comput, 6:376–390, 2014.

42

Bibliography

[13] GB Huang. What are extreme learning machines? filling the gap between frank rosen-
blatt’s dream and john von neumann’s puzzle. Cogn Comput, 7:263–278, 2015.

[14] Guang-Bin Huang, Hongming Zhou, Xiaojian Ding, and Rui Zhang. Extreme learning
machine for regression and multiclass classification. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 42(2):513–529, 2012.

[15] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine:
A new learning scheme of feedforward neural networks. In 2004 IEEE International
Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), volume 2, pages 985–
990, Budapest, Hungary, 2004. IEEE.

[16] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[17] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[18] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for para-
metric partial differential equations. arXiv preprint arXiv:2010.08895, 2020.

[19] L. Lu, X. Meng, S. Cai, Z. Mao, S. Goswami, Z. Zhang, and G. E. Karniadakis. A com-
prehensive and fair comparison of two neural operators (with practical extensions)
based on fair data. Computer Methods in Applied Mechanics and Engineering, 393:114778,
2022.

[20] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis.
Learning nonlinear operators via DeepONet based on the universal approximation
theorem of operators. Nature Machine Intelligence, 3(3):218–229, 2021.

[21] Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang
Zhang, and George Em Karniadakis. A comprehensive and fair comparison of two
neural operators (with practical extensions) based on fair data. Computer Methods in
Applied Mechanics and Engineering, 393:114778, April 2022.

[22] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[23] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines.
In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information
Processing Systems, volume 20. Curran Associates, Inc., 2007.

[24] Ali Rahimi and Benjamin Recht. Uniform approximation of functions with random
bases. In 2008 46th Annual Allerton Conference on Communication, Control, and Comput-
ing, pages 555–561, Monticello, IL, USA, Sep 2008. IEEE.

43

Bibliography

[25] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics informed deep
learning (part i): Data-driven solutions of nonlinear partial differential equations.
arXiv preprint arXiv:1711.10561, 2017.

[26] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics informed deep
learning (part ii): Data-driven discovery of nonlinear partial differential equations.
arXiv preprint arXiv:1711.10566, 2017.

[27] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals
of Mathematical Statistics, 22(3):400–407, 1951.

[28] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning represen-
tations by back-propagating errors. Nature, 323(6088):533–536, 1986.

[29] Walter A. Strauss. Partial Differential Equations: An Introduction. John Wiley & Sons,
2007.

[30] Min Zhu, Handi Zhang, Anran Jiao, George Em Karniadakis, and Lu Lu. Reliable
extrapolation of deep neural operators informed by physics or sparse observations.
arXiv:2212.06347 [cs.LG], 2022.

44

Appendix

45

A. Technical Specifications and Dataset
Generation Details

A.1. Technical Specifications

The implementation of the datasets (one-dimensional Burgers’ and Wave datasets) and
the iterative sampling for DeepONet was conducted using Python version 3.9.12. The ex-
periments were executed on a 2.3 GHz Dual-Core Intel Core i5 CPU with 8 GB of RAM.
The complete code for these implementations, including the scripts for dataset genera-
tion and model training, is available in a GitHub repository: https://github.com/
utkuozbudak/thesis .

A.2. Dataset Generation Details

A.2.1. Burgers’ Dataset

The Python script developed for generating the Burgers’ dataset combines numerical meth-
ods and random Fourier features to create a comprehensive dataset suitable for training
and evaluating the performance of sampled DeepONet. To numerically solve Burgers’
equation, we implement a function that computes these derivatives and applies the equa-
tion’s dynamics. The spatial derivatives are calculated using NumPy’s gradient() func-
tion.

The initial conditions for the Burgers’ equation are generated using random Fourier fea-
tures. This involves creating random coefficients following a normal distribution, which
are then used in an inverse real Fourier transform to obtain the initial state of the system.
These coefficients are scaled by the square of their respective mode numbers, and the first
coefficient is set to be real.

The parameters for the dataset generation are carefully chosen to ensure a diverse and
comprehensive dataset. These parameters and their values are shown in the Table A.1 .

46

https://github.com/utkuozbudak/thesis
https://github.com/utkuozbudak/thesis

A. Technical Specifications and Dataset Generation Details

Table A.1.: Parameters for Burgers’ Equation Dataset Generation
Parameter Description Value
n_samples Number of data samples to generate 15000
x_bounds Spatial domain bounds (0, 2π)
space_resolution Number of spatial points (resolution) 256
n_coeffs Number of Fourier coefficients 5
coeff_mean Mean for generating random coefficients 0
coeff_scale Scale for generating random coefficients 5
random_state Seed for reproducibility 42
visc Viscosity for the Burgers’ equation 0.1
t_bounds Time interval for solving the equation (0, 1)

Utilizing these parameters, a series of initial conditions is generated, each of which is then
evolved over time using a numerical solver. The solver, employing the solve ivpmethod
from the SciPy package, integrates the Burgers’ equation from t = 0 to t = 1, thereby
simulating the temporal evolution of each initial state. This process results in a pair of
data for each sample: the initial condition and its corresponding state at t = 1.

A.2.2. Wave Dataset

The process of generating a Wave dataset involves creating initial conditions and numeri-
cally solving the Wave equation using Python tools.

The simulation begins by defining a one-dimensional grid within specified spatial and
temporal bounds. The spatial domain is set between −1 and 1, with a resolution of 256
spatial points. Temporally, the simulation spans from t = 0 to t = 1, divided into 20,000
time points. This grid serves as the foundation for solving the Wave equation.

The initial conditions for the wave profiles and their corresponding speeds are generated
using a formula based on Gaussian functions. Specifically, the initial wave profile, u0, is
calculated as u0(x) = Ae−(x+S)2×scale, where A represents the amplitude, S represents the
shift, and scale parameter controls the spread of the Gaussian function. The initial speed,
v0, is derived by multiplying x with u0(x). Amplitude and shift parameters are randomly
sampled within the bounds of 1 to 2 and−0.3 to 0.3, respectively, for each of the 1500 wave
functions generated.

Once the initial conditions are established, they are converted into field objects suitable for
processing by the numerical solver. The solver then tackles the Wave equation, employing
the parameters of wave speed (set to 0.5) and boundary conditions (value set to 0), to
simulate the wave dynamics over the defined grid. Table A.2 shows all the parameters
and their values used during the process.

47

A. Technical Specifications and Dataset Generation Details

Table A.2.: Parameters for Wave Equation Dataset Generation
Parameter Description Value
n_fns Number of data samples 1500
amplitude_bounds Bounds for the amplitude of initial waves (1, 2)
shift_bounds Bounds for the shift of initial waves (-0.3, 0.3)
scale Scale factor for Gaussian functions 20
x_bounds Spatial domain bounds (-1, 1)
x_resolution Number of spatial points 256
t_bounds Temporal domain bounds (0, 1)
t_resolution Number of time points 20000
speed Speed of wave propagation 0.5

As a result of this process, each data point in the dataset comprises an initial condition and
its corresponding solution.

48

List of Figures

 2.1. Stacked DeepONet architecture . 9
 2.2. Unstacked DeepONet architecture . 10

 3.1. Initial conditions and solutions for Burgers’ dataset 21
 3.2. The relationship between layer width, activation and loss in different POD

mode settings for Burgers’ experiment. 23
 3.3. Layer width vs. training loss by POD modes and activation types for Burgers’ 24
 3.4. Total training time vs. POD modes for Burgers’ dataset 25
 3.5. Impact of regularization scale on training loss across POD mode settings . . 26
 3.6. Model performance on Burgers’ test dataset 27
 3.7. Iterative sampling performance on Burgers’ dataset 29
 3.8. Initial wave and initial speed examples of the Wave dataset 31
 3.9. Example solutions of the Wave dataset . 31
 3.10. The relationship between layer width, activation and loss in different POD

mode settings for Wave experiment. 33
 3.11. Layer width vs. training loss on Wave dataset: Comparison of POD modes

and activations . 34
 3.12. Total training time versus number of POD modes for Wave dataset 34
 3.13. Effect of regularization scale on training performance in Wave dataset ex-

periments . 36
 3.14. Model performance on the test set of the Wave dataset 37
 3.15. Experiment in which iterative sampling improved performance multiple

times on the Wave dataset . 38
 3.16. Iterative sampling performance on Wave dataset 39

49

List of Tables

 3.1. List of hyperparameters and search space for DeepONet 22

 A.1. Parameters for Burgers’ Equation Dataset Generation 47
 A.2. Parameters for Wave Equation Dataset Generation 48

50

	Acknowledgements
	Abstract
	Introduction
	State of the Art
	PDEs and Neural Networks
	Partial Differential Equations
	Physics-Informed Neural Networks (PINNs)

	Deep Neural Operators
	DeepONet
	Extensions of DeepONet
	Fourier Neural Operators

	Weight Sampling
	Extreme Learning Machines
	Sampling Where It Matters (SWIM)

	Iterative Sampling of Deep Neural Operators
	Sampled POD-DeepONet
	Iterative Sampling of DeepONet
	Experiments
	Burgers' Equation
	Wave Equation

	Conclusion
	Summary
	Discussion
	Outlook

	Bibliography
	Appendix
	Technical Specifications and Dataset Generation Details
	Technical Specifications
	Dataset Generation Details
	Burgers' Dataset
	Wave Dataset

	List of Figures
	List of Tables

