
School of Computation, Information and
Technology - Informatics

Technische Universität München

Master’s Thesis in Informatics

Scalable Sampling of Deep Neural Operators

Onur Eker

School of Computation, Information and
Technology - Informatics

Technische Universität München

Master’s Thesis in Informatics

Scalable Sampling of Deep Neural Operators

Skalierbares Abtasten von tiefen Operatornetzwerken

Author: Onur Eker
Examiner: Dr. Felix Dietrich
Advisor: Iryna Burak, M.Sc.
Submission Date: January 15th, 2024

I hereby declare that this thesis is entirely the result of my own work except where other-
wise indicated. I have only used the resources given in the list of references.

January 15th, 2024 Onur Eker

Acknowledgments

I extend my gratitude to my supervisor, Dr. rer. nat. Felix Dietrich, and my advisor, Iryna
Burak, for their invaluable guidance and support during the creation of this thesis.

iv

Abstract

Maps between functions are important in many areas of science, serving as a fundamen-
tal tool for understanding complex relationships in data. Fourier Neural Operators (FNO)
are a popular recent machine learning technique used to encode these maps, offering a
powerful and efficient approach for learning and generalizing across diverse functional
spaces in a way traditional neural networks cannot. This thesis delves into the scalability
of two-dimensional Fourier Neural Operators (FNO2D) within the framework of Sampling
Where It Matters (SWIM). It primarily focuses on enhancing the FNO2D model’s efficiency
and accuracy by comparing it with FNO1D. The research systematically explores various
hyperparameters, including the number of modes, hidden channels, and layer width, to
optimize the performance of FNO2D models, particularly in the context of complex partial
differential equations. A series of experiments are conducted to assess the impact of these
hyperparameters on model scalability and performance. The study demonstrates that
while FNO2D models show great promise in handling multi-dimensional data, strategic
hyperparameter tuning is crucial for balancing computational efficiency with predictive
accuracy. This thesis contributes insights into the scalability and applicability of FNO2D
models with its experiments results.

v

Contents

 Acknowledgements iv

 Abstract v

 1. Introduction 1

 2. State of the Art 3
 2.1. Partial Differential Equation . 3
 2.2. Neural Operators . 5

 2.2.1. DeepONet . 5
 2.2.2. Fourier Neural Operator (FNO) . 6
 2.2.3. Physics-Informed Neural Network (PINN) & Physics Informed Neu-

ral Operator (PINO) . 7
 2.3. Sampled Networks . 10

 2.3.1. Extreme Learning Machine (ELM) . 10
 2.3.2. Sampling Where It Matters (SWIM) 11

 3. Scalable Sampling of Deep Neural Networks 13
 3.1. Model . 15
 3.2. Dataset . 16
 3.3. Experiments . 18

 3.3.1. Experiment Setup . 18
 3.3.2. Method . 19
 3.3.3. Results . 20

 3.4. Discussion of Results . 36

 4. Conclusion 38
 4.1. Summary . 38
 4.2. Discussion . 39
 4.3. Future Work . 39

 Bibliography 40

vi

Contents

 Appendix 44

 A. Technical Specifications 44

 List of Figures 45

 List of Tables 46

vii

1. Introduction

Neural networks, inspired by the intricate workings of the human brain, have emerged as
a powerful and versatile class of machine learning models. Over the years, these artificial
neural networks have proven their prowess across a myriad of domains, revolutionizing
fields such as computer vision, natural language processing, robotics, and many others.
The foundation of neural networks lies in their ability to learn complex patterns and
representations from vast amounts of data, enabling them to tackle challenging tasks that
were once considered beyond the realm of computational capabilities. Through inter-
connected layers of neurons, these networks can capture hierarchical features, leading
to remarkable advancements in areas like image recognition, speech synthesis, and even
decision-making systems [17].

Classical optimization techniques such as Gradient Descent and Stochastic Gradient
Descent face challenges in scalability when dealing with extensive datasets. Recent
research indicates that addressing this concern could involve utilizing sampling methods
for weights and biases. An illustrative instance is the Sampling Where It Matters (SWIM)
[3] algorithm, which suggests sampling weights and biases using data points from
the dataset. The upcoming chapters of this thesis will delve into the examination and
exploration of this study and algorithm.

The application of neural networks to partial differential equations (PDEs) has emerged
as a promising avenue that bridges the fields of physics, engineering, and machine
learning. PDEs play a fundamental role in describing a wide range of phenomena,
including heat conduction, fluid dynamics, electromagnetism, and quantum mechanics.
Traditionally, solving PDEs involves analytical or numerical methods, which can be
computationally intensive and challenging for complex systems. However, by harnessing
the expressive power of neural networks, researchers have devised innovative techniques
that approximate solutions to PDEs with remarkable accuracy and efficiency. PDEs are
employed as a means of application in conducting experiments and evaluations within
this thesis [1].

The Fourier Neural Operator (FNO) represents an advancement at the intersection of
deep learning and scientific computing, offering a popular machine learning approach to
solving partial differential equations [10]. FNO harnesses the expressive power of neural
networks alongside the inherent efficiency of Fourier analysis to tackle complex PDEs
with high accuracy and speed. By incorporating ideas from both fields, FNO leverages

1

1. Introduction

the Fourier transform to learn an efficient spectral representation of the underlying PDEs,
significantly reducing computational costs compared to traditional numerical methods.
This methodology enables FNO to capture intricate spatial and temporal patterns in
the data, leading to highly accurate and generalizable solutions for a wide range of
physical systems. In this thesis, a comprehensive exploration is undertaken to analyze the
utilization of sampling methods within FNO networks, as opposed to classical optimizers.

The subsequent structure of the thesis is outlined as follows: Section 2 presents an inves-
tigation into existing literature concerning deep neural operators, the application of PDEs
to neural networks, and the utilization of weight sampling methods. In Section 3 , a com-
prehensive analysis of the weight sampling technique and scalable sampling for FNOs is
presented. Finally, Section 4 draws the thesis to a close by discussing the findings and their
potential ramifications.

2

2. State of the Art

In this chapter, we will dive into the main ideas and methods that form the backbone of
this thesis. The section start by looking closely at Partial Differential Equations (PDEs)
and especially Burgers’ Equation which is testbed for this thesis. Then, we will shift our
focus to neural operators and what they involve. Finally, we will dig into how deep neural
networks use sampling weights and biases. This exploration will give us the background
we need to really grasp the results of the work presented in this thesis.

2.1. Partial Differential Equation

In the realm of mathematics and science, Partial Differential Equations (PDEs) stand as
powerful tools for modeling and understanding a wide array of complex physical phe-
nomena. PDEs are mathematical equations that involve multiple independent variables
and their respective partial derivatives, making them indispensable in describing how
physical quantities evolve and interact in continuous systems. From fluid dynamics and
heat transfer to quantum mechanics and electromagnetism, PDEs serve as a unifying
language that bridges the gap between theory and reality, enabling us to explore and
analyze the intricate dynamics of the natural world. In this section, we will focus on the
fundamental principles of Partial Differential Equations (PDEs), with a special emphasis
on Burgers’ Equation, a notable class of PDEs, examining its properties and applications.

A general form of a partial differential equation is given by [9]:

F (x1, x2, . . . , xn, u,
∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xm
,
∂2u

∂x21
,

∂2u

∂x1∂x2
, . . .) = 0,

where u is the unknown function, x1, x2, . . . , xn are the independent variables, and
∂ku

∂xi1
∂xi2

...∂xik
denotes the partial derivative of u with respect to the specified variables

xi1 , xi2 , . . . , xik .

The function F represents a mathematical expression involving u and its partial
derivatives, which encapsulates the physical or mathematical behavior being described.
The specific form of F depends on the context and the nature of the problem being
addressed. PDEs are often classified based on their order, linearity, and whether they are
elliptic, parabolic, or hyperbolic. The order of a PDE is determined by the highest order of
the partial derivatives involved. For instance, the heat equation and wave equation are

3

2. State of the Art

examples of second-order PDEs.

Among the various classes of PDEs, Burgers’ Equation stands out as a fundamental
model in fluid dynamics, nonlinear acoustics, and several other fields. This equation is
particularly notable for its use in this thesis, where the dataset employed is based on solu-
tions to Burgers’ Equation. Burgers’ Equation is expressed in its simplest form as:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (2.1)

where u is the velocity field as a function of space x and time t, and ν represents the
viscosity coefficient. This equation models the dynamics of a fluid, capturing the interplay
between nonlinear advection (represented by u∂u

∂x) and diffusion or viscosity (represented
by ν ∂2u

∂x2). The nonlinearity of the advection term makes Burgers’ Equation a quintessential
example for studying shock waves and turbulence phenomena, while the diffusion term
accounts for the dissipative effects in the fluid [4].

Burgers’ Equation is particularly valuable in areas where understanding the balance
between nonlinear advection and diffusion is crucial. For example, in meteorology and
oceanography, it helps in modeling the movement of atmospheric fronts and ocean
currents. In traffic flow analysis, a modified form of Burgers’ Equation can describe
the flow and density of vehicles, providing insights into traffic patterns and potential
congestions [16].

In the context of this thesis, Burgers’ Equation serves as a testbed for demonstrating the
capabilities of Fourier Neural Operators (FNOs). The complex interplay of nonlinear and
dissipative effects in the Burger’s Equation provides a challenging yet insightful scenario
for FNOs to learn and predict the evolution of fluid dynamics. By using a dataset derived
from Burgers’ Equation, the thesis aims to showcase the potential of FNOs in capturing
and predicting the behavior of such complex systems governed by PDEs [10]. The ability of
FNOs to efficiently learn from this data and generalize to new scenarios offers a promising
avenue for advancing the application of neural networks in solving and understanding
the intricacies of PDE-based phenomena.

4

2. State of the Art

2.2. Neural Operators

Traditional advancements in neural network research have predominantly concentrated
on exploring relationships within bounded Euclidean spaces or finite sets. The seminal
work by Kovachki et al. (2021) marked a paradigm shift with the introduction of ”neu-
ral operators,” a class of neural networks architected to learn mappings between infinite-
dimensional function spaces. This innovative concept amalgamates the principles of linear
integral operators with the transformative power of non-linear activation functions, forg-
ing a pathway for neural networks to comprehend and model complex functional map-
pings [8].

A cornerstone of this novel approach is the establishment of a universal approximation
theorem for neural operators. This theorem rigorously demonstrates the neural opera-
tor’s capacity to approximate any non-linear continuous operator, reflecting its potential
to model a diverse range of phenomena with high fidelity. One of the profound impli-
cations of neural operators is their invariance to discretization. Unlike traditional neural
network models that are intricately tied to the discretization of the input space, neural
operators transcend this limitation. They maintain the ability to operate across varying
discretizations of the function spaces, implying that a single set of model parameters is
applicable across different resolutions of input data.

Building upon the foundational concept of neural operators, this section delves into
three specific architectures that exemplify the application and versatility of neural operator
networks:

1. Deep Operator Network (DeepONet) [12].

2. Fourier Neural Operator (FNO) [10].

3. Physics Informed Neural Network (PINN) & Physics Informed Neural Operator
(PINO) [13], [14], [11].

The exploration of these neural operator networks in the subsequent subsections will
provide an in-depth analysis of their structures, theoretical underpinnings, practical ap-
plications, and the challenges they address in the field of machine learning.

2.2.1. DeepONet

Deep Operator Networks (DeepONets) represent a significant stride in machine learning,
especially in learning operators between infinite-dimensional function spaces. Introduced
by [12], DeepONets are designed to surpass the limitations of traditional neural networks
in approximating complex functional mappings. They offer a more generalizable and
efficient approach to a range of problems.

5

2. State of the Art

The architecture of DeepONets is composed of two sub-networks: a branch net and
a trunk net. The branch net learns representations of input functions, while the trunk
net focuses on points where the output function is evaluated. This bifurcation allows
DeepONets to effectively learn the operator by approximating the mapping from a set of
function samples to corresponding output function values.

In practical applications, DeepONets have demonstrated remarkable capabilities,
particularly in solving differential equations, learning dynamical systems, and modeling
physical phenomena. They have been successfully applied to fluid dynamics problems,
exemplifying their proficiency in handling complex, high-dimensional data [7].

DeepONets differ from traditional neural networks in their ability to handle irregular
or unstructured data without requiring a grid-like data structure. This flexibility positions
them as a more versatile solution compared to conventional methods, which often
struggle with such data formats [12].

Future research in DeepONets aims at enhancing their efficiency, robustness, and
capacity to generalize from limited data. Integrating DeepONets with other machine
learning approaches for tackling more complex, real-world problems is an area of growing
interest [12].

In conclusion, DeepONets mark a pivotal development in the field of neural operators.
Their unique architecture and promising results across various applications underscore
their significance in the advancement of machine learning techniques.

2.2.2. Fourier Neural Operator (FNO)

Fourier Neural Operators (FNOs) are at the forefront of this thesis due to their novel
machine learning approach in learning continuous mappings in function spaces, espe-
cially for solving partial differential equations (PDEs). Introduced by [10], FNOs are
distinct in their use of the Fourier transform to learn mappings in the spectral domain.
This approach allows for the efficient learning of complex, high-dimensional PDEs, a core
focus of this thesis.

The working principle of FNOs lies in their unique treatment of function space map-
pings. FNOs first apply a Fourier transform to input functions, converting them into the
frequency domain. This transformation facilitates the learning of relationships between
different frequencies, allowing the FNO to capture both local and global dependencies
in the data. The network then learns a mapping in this spectral space, which is followed
by an inverse Fourier transform to convert the output back to the spatial domain. This
process enables FNOs to efficiently approximate complex functional mappings, a key
advantage over traditional neural network approaches [10] [8].

6

2. State of the Art

Figure 2.1.: Architecture of Fourier Neural Operator and one single Fourier layer. Taken
from Li et al. [10].

A significant challenge in the application of Fourier Neural Operators (FNOs) is their
reliance on data produced by numerical solvers. FNOs, designed to learn mappings in
function spaces, particularly for solving partial differential equations (PDEs), depend
heavily on the quality and quantity of data generated by these solvers. This reliance poses
a constraint, as the accuracy and generalizability of FNOs are directly tied to the fidelity
of the solver-generated data. Numerical solvers, while effective, may introduce errors or
approximations that can propagate through the FNO, potentially impacting its learning
efficacy and prediction accuracy. This dependency also raises concerns regarding the
FNO’s performance in scenarios where high-quality numerical solver data is scarce or
computationally expensive to generate. Addressing this challenge is crucial for enhancing
the robustness and applicability of FNOs, especially in complex real-world scenarios
where solver data may be imperfect or limited [10].

In conclusion, FNOs, which is the primary model of this thesis, represent a significant
advancement in neural operators. Their innovative use of the Fourier transform for func-
tion space mappings positions them as a powerful tool for solving complex problems in
PDEs and various domains in science and engineering.

2.2.3. Physics-Informed Neural Network (PINN) & Physics Informed Neural
Operator (PINO)

Physics-Informed Neural Networks (PINNs) represent a notable advancement in
integrating deep learning with scientific computing, specifically for solving Partial Dif-
ferential Equations (PDEs) in accordance with physical laws. Introduced by Raissi et al.
[13] [14] [15], PINNs uniquely integrate physical principles into neural network training,

7

2. State of the Art

ensuring that solutions are both data-driven and physically accurate.

PINNs represent a paradigm shift in computational science by embedding physical laws
into the structure of neural networks. This integration is achieved through a custom-
designed loss function, which is the cornerstone of PINNs. The loss function in PINNs,
denoted as L, is a combination of two distinct components:

L = Ldata + Lphysics, (2.2)

where Ldata targets data fidelity and Lphysics enforces physical consistency.

The data fidelity term, Ldata, is defined as the mean squared error between the predic-
tions of the neural network and the observed data:

Ldata =
1

Ndata

Ndata∑
i=1

∥u(xi, ti)− uobsi ∥2, (2.3)

where Ndata represents the number of data points, u(xi, ti) is the prediction of the neural
network, and uobsi is the observed value at the point xi and time ti.

The physics-informed term, Lphysics, is what distinguishes PINNs from traditional neu-
ral networks. It penalizes the network for deviations from the governing PDEs, ensuring
that the predictions adhere to the physical laws:

Lphysics =
1

Ncol

Ncol∑
i=1

∥F(u(xi, ti))∥2, (2.4)

where Ncol is the number of collocation points used to enforce the physics, and F is the
differential operator representing the PDE.

The architecture of PINNs usually involves a deep fully connected neural network,
which is trained to learn the solution of a PDE over a given domain. This architecture
allows PINNs to approximate complex functions and capture intricate patterns in the
data. The training process involves optimizing the network parameters to minimize both
the data fidelity loss and the physics-informed loss, thereby embedding the physics of the
problem into the learning process [7].

PINNs have found applications in various scientific domains, including fluid dynamics,
heat transfer, materials science, and even in biomedical engineering. Their ability to
incorporate physical laws makes them particularly useful for problems where data is
sparse, noisy, or expensive to obtain. Moreover, PINNs can be employed in solving
inverse problems, where they can identify unknown parameters or governing laws from

8

2. State of the Art

observed data [15].

In addition to PINNs, the field of neural operators also encompasses Physics-Informed
Neural Operators (PINO), which represent an advancement in the modeling and solu-
tion of complex differential equations. PINO combines the principles of physics-informed
learning with the flexibility of neural operator frameworks to offer a more generalized and
efficient approach to solving PDEs.

Similar to PINNs, PINO employs a specialized loss function that integrates physical
laws into the learning process. However, PINO extends this concept by incorporating
neural operator architectures, such as Fourier Neural Operators (FNOs), which enable
the learning of mappings in function spaces. This integration allows PINO to handle a
broader range of problems and achieve higher levels of accuracy and efficiency. [11]

The architecture of PINO typically involves a combination of a neural network, such
as a deep fully connected network or a convolutional network, coupled with a neural
operator. The neural network component focuses on learning spatial-temporal features,
while the neural operator component generalizes the solution across different geometries
and boundary conditions. This dual-component architecture enables PINO to learn
complex dynamics more effectively than traditional neural networks or standalone
physics-informed models.

PINO has shown potential in various applications where traditional methods fall
short, particularly in problems with complex geometries, varying boundary conditions,
and high-dimensional spaces. Its ability to generalize across different scenarios without
the need for retraining makes it a powerful tool in computational physics and engineering.

The research in PINO is ongoing, with efforts directed towards enhancing its computa-
tional efficiency, improving its generalization capabilities, and exploring its application in
a wider array of scientific problems. The combination of physics-informed principles and
neural operator architectures in PINO marks a significant step forward in the field of sci-
entific machine learning, pushing the boundaries of what is possible in the computational
understanding of complex systems.

9

2. State of the Art

2.3. Sampled Networks

Sampled Networks represent an innovative direction in the field of neural network
research, focusing on efficient learning mechanisms and strategic data utilization. This
section will explore the core concept of Sampled Networks, emphasizing how they
diverge from traditional neural network paradigms in their architecture and learning
processes.

Central to the philosophy of Sampled Networks is the strategic sampling of data
and network parameters to optimize learning efficiency. This approach is particularly
beneficial in scenarios with limited data availability, computational resources, or where
rapid model development and deployment are crucial. By employing strategic sampling
methods, Sampled Networks aim to achieve a balance between model performance and
computational efficiency, a key challenge in machine learning and artificial intelligence [2].

The adaptability and versatility of Sampled Networks enable their application across a
variety of fields, including image processing, natural language processing, and predictive
modeling. These networks are particularly adept at extracting valuable insights from
sparse or unevenly distributed datasets, making them a valuable tool in data-driven
disciplines.

Furthermore, the development of Sampled Networks aligns with the growing need for
models that can function effectively under constraints like limited labeled data, real-time
processing, and dynamic environments. This need makes Sampled Networks a significant
asset in the rapidly evolving landscape of machine learning.

This subsequent subsection delves into two different weight sampling method: Extreme
Learning Machine (ELM) [6] and Sampling Where It Matters (SWIM) [3].

2.3.1. Extreme Learning Machine (ELM)

Extreme Learning Machines (ELMs) offer an innovative approach in neural network re-
search, characterized by their simplicity and efficiency in training. Developed initially by
[6], ELMs are single-layer feedforward neural networks that stand out due to their unique
training methodology, which significantly reduces computational time and resources.

In ELMs, the input weights and biases of the hidden layer are randomly assigned and
remain fixed. The core of ELM training involves adjusting only the output weights, a
process that is significantly faster than the iterative weight adjustments employed in
traditional neural networks. This approach not only accelerates the training process but
also avoids issues like local minima, which are common in backpropagation algorithms.

10

2. State of the Art

Mathematically, an ELM can be expressed through its output function:

Hβ = Y, (2.5)

where H is the hidden layer output matrix for the input data X, β represents the output
weights, and Y denotes the target outputs. The hidden layer output matrix is computed
as:

H = g(WX+ b), (2.6)

with g being the activation function, W the randomly assigned input weights, and b the
biases. The training of ELMs involves finding the optimal output weights β, typically
through a least-squares method.

The random initialization of weights and biases in ELMs introduces an element of
diversity in the feature mapping capability of the hidden layer. This diversity often leads
to better generalization performance, despite the randomness involved. ELMs have been
effectively utilized in various domains, including classification, regression, and clustering,
particularly where fast training is crucial.

However, the randomness in ELMs can also lead to variability in model performance.
Determining the optimal number of hidden nodes and managing the randomness in
weight initialization are among the challenges in ELMs. Research efforts continue to focus
on enhancing the stability and scalability of ELMs, making them more adaptable to a wide
range of applications [5].

In conclusion, Extreme Learning Machines provide a fast, efficient, and often effective
alternative to traditional neural network training methods. Their ability to handle large-
scale and complex problems rapidly makes them a valuable tool in the field of machine
learning.

2.3.2. Sampling Where It Matters (SWIM)

SWIM [3] introduces a new approach for constructing neural networks by sampling
weights and biases based on input and output training data. This method contrasts
with traditional iterative gradient-based optimization, offering a more efficient way to
train both shallow and deep networks without the need for iterative optimization or
gradient computations. The core concept of SWIM is the use of a data-driven probability
distribution for determining the weights and biases, which are then informed by the
training data.

Mathematically, SWIM defines each pair of weight and bias in all hidden layers based on
two points from the input space. For a given layer l, pairs of points (x(1)0i , x

(2)
0i) are sampled,

11

2. State of the Art

and the weights wli and biases bli are derived as follows:

wli =
s1(x

(2)
l−1,i − x

(1)
l−1,i)

∥x(2)l−1,i − x
(1)
l−1,i∥2

, bli = ⟨wli, x
(1)
l−1,i⟩+ s2, (2.7)

where s1 and s2 are constants. The last layer of weights and biases WL+1, bL+1 is opti-
mized to minimize a suitable loss function, usually L2 loss. This approach effectively
links the network parameters directly to the training data, facilitating an efficient network
construction process.

The constants s1 and s2 are chosen depending on the activation function used. For
ReLU activation, s1 = 1 and s2 = 0 are set, allowing linear interpolation between points.
In the case of tanh activation, these constants are set to ensure that the points x(1) and x(2)

map to ±1
2 , respectively, which is particularly useful for classification tasks.

The SWIM algorithm proceeds by randomly selecting pairs of input points and comput-
ing a probability distribution based on these points. This probability is proportional to the
output difference and input space distance, focusing the network on the most informative
aspects of the data. After determining the weights and biases for all hidden layers, the
final step involves solving a linear optimization problem for the output layer’s coefficients.

SWIM offers several advantages, including its efficiency in constructing networks and
its invariance to rigid body transformations and scaling of the input data. This reduces the
need for common pre-processing techniques. Moreover, SWIM has been shown to achieve
comparable accuracy to iteratively trained networks but can be constructed much faster.
However, a key challenge in SWIM is developing effective mechanisms for accurately
identifying the most informative data points. Also, it is important to note that the SWIM
methodology is not yet suitable for application in convolutional neural networks and
transformers, as its sampling approach is primarily designed for fully-connected network
architectures.

In conclusion, SWIM represents a significant advancement in neural network training
methodologies. Its novel sampling algorithm, underpinned by a robust mathematical
framework, aligns with the objectives of this thesis to develop efficient and effective so-
lutions for neural network training.

12

3. Scalable Sampling of Deep Neural
Networks

Fourier Neural Operators (FNO) represent a significant advancement in computational
modeling, providing an efficient approach for understanding and learning mappings
within function spaces. This method shows promise in addressing problems typically
governed by partial differential equations (PDEs). The core advantage of FNOs lies
in their utilization of the Fourier transform, which aids in converting functions into a
spectral space. This conversion is useful for identifying broad correlations within data, an
attribute that is particularly relevant for PDEs occurring in high-dimensional spaces.

When FNOs apply the Fourier transform to input functions, they effectively shift the
representation of these functions into the frequency domain. Within this domain, the
FNOs are designed to carry out linear operations, harnessing the spectral space’s inherent
properties to perform computations that might be challenging or less efficient in the
original spatial representation. Subsequent to these operations, FNOs utilize inverse
Fourier transforms, a process that reconverts the frequency-domain data back into the
spatial domain, thus producing the final output functions.

The proficiency of FNOs in efficiently handling complex PDEs is fundamentally
attributed to their intrinsic architecture, which is adept at parameterizing the functional
mappings. This neural network structure is tailored to operate proficiently across various
frequencies, effectively learning the intricate patterns and behaviors dictated by the PDEs.
It is this capacity to work across different frequencies, leveraging the nuances of the
spectral space, that empowers FNOs to offer a potent solution for modeling and solving
high-dimensional PDEs with remarkable efficiency.

Sampling Where It Matters (SWIM), on the other hand, introduces a methodology for
sampling weights and biases in neural networks based on input-output training data,
avoiding the need for iterative, gradient-based optimization. SWIM’s strategy is to select
weights and biases that are most informative given the training data, thereby constructing
neural networks that are finely tuned to the specifics of the data and the task at hand.
SWIM’s approach can be particularly beneficial for networks where the input space is
high-dimensional and complex, making traditional training methods computationally
expensive or infeasible.

13

3. Scalable Sampling of Deep Neural Networks

When combining FNO and SWIM, the goal is to leverage the strengths of both methods
to create a sampling-based approach that is both scalable and effective for learning
operators over function spaces. In this integration, SWIM can be utilized to initialize
the FNO architecture by selectively sampling weights and biases that are crucial for
capturing the underlying dynamics of the problem space, as indicated by the training
data. This can lead to a more data-efficient learning process and can potentially improve
the generalization of the FNO model.

In practice, this means using SWIM to inform the initial parameters of the FNO’s layers
(see Figure 3.1). The spectral coefficients that the FNO learns might be initialized or
constrained based on the significance of the corresponding frequencies in the training
data, as determined by SWIM’s sampling algorithm. This hybrid approach aims to reduce
the computational burden of training FNOs while enhancing their capacity to learn more
accurate representations of the operators governing the data.

The integration of FNO and SWIM thus proposes a novel direction for scalable sampling
in deep neural networks. It offers the promise of constructing networks that are not only
computationally efficient but also capable of learning complex functional mappings with
a high degree of accuracy. This method could be particularly impactful in fields such
as computational fluid dynamics, climate modeling, and other areas where PDEs play a
critical role, and where data efficiency and scalability are of utmost importance.

The FNO architecture from [3] combines linear operations in the Fourier space with
skip connections in the signal space. The process involves lifting an input signal to a
higher dimensional channel space, applying a discrete Fourier transform to keep only the
lowest frequencies, and then using a spectral convolution followed by a 1x1 convolution
with bias. Several Fourier blocks are stacked, and the output signal is projected to the
target dimension, with both the projection and lifting operators typically parameterized
by neural networks.

[3] discusses the adaptation of the FNO concept within the framework of sampled
deep neural operators, where traditional convolution kernels are not used, and instead,
a fully-connected network is trained for each channel in Fourier space. This approach
involves appending grid coordinates to the input signal, normalizing the input data,
applying Fourier transform to both input and target data, and employing skip connections
by subtracting the input data from the lifted target function during training, then adding
it back before moving to the output of the block.

The results of the experiments show that sampled models, while not directly following
the original FNO architecture, are comparable to those trained with gradient-based meth-
ods like Adam. Although the sampled models only involve fully-connected layers, they
demonstrate the advantage of sampled networks in terms of training speed, with signif-

14

3. Scalable Sampling of Deep Neural Networks

icant speed-ups observed even when sampling is run on a CPU compared to gradient-
based training on a GPU.

3.1. Model

This thesis extends the methodologies developed in the SWIM paper to two-dimensional
Fourier Neural Operators (FNO2D). The FNO2D model is specifically tailored to address
the complexities associated with multi-dimensional data spaces, which pose unique
challenges in terms of spatial data representation and computational efficiency.

The FNO architecture commences with a sophisticated lifting pipeline. This stage
is pivotal in transforming the low-dimensional input data into a higher-dimensional
channel space. The lifting pipeline is essential in equipping the model with the capability
to encode complex patterns and interactions inherent in the input data. This step is
particularly crucial when dealing with multi-dimensional spatial data, as it ensures the
preservation of intricate spatial structures and relationships, foundational for accurately
modeling and predicting complex phenomena.

Figure 3.1.: Architecture of FNO2D: Weights and biases of Fully Connected Neural Net-
works (FCNNs) are sampled using the SWIM algorithm.

The heart of the FNO’s functionality is the Fourier pipeline, which applies Fourier
transforms to both the input and the target data. This transformation into the spectral
domain allows the model to efficiently capture and learn the intrinsic patterns of the data.
In this spectral space, the model employs a fully connected network for each channel,
ensuring a comprehensive learning process across the spectrum. The inclusion of skip
connections refines this process further. By selectively removing and reintegrating the
input data from the lifted target function during training, the model enhances its ability to
preserve essential information throughout the learning process. The application of inverse

15

3. Scalable Sampling of Deep Neural Networks

Fourier transforms at the end of this pipeline is a critical step, converting the processed
spectral data back into a meaningful spatial representation.

The culmination of the FNO’s processing occurs in the projection pipeline. This stage
functions as an advanced fully connected network, adept at mapping the transformed
signals to a solution space that aligns with the model’s intended output. This pipeline
synthesizes the model’s learned spectral and spatial representations, generating predictive
outputs that provide solutions to the underlying complex PDEs.

A key pat in the FNO2D model that this thesis proposes is the integration of the
SWIM algorithm for sampling all weights and biases. This integration ensures that the
model’s parameters are optimally initialized based on insights drawn from the training
data. The application of SWIM facilitates a more informed and efficient optimization
process, potentially reducing extensive training requirements and enhancing the model’s
generalization capabilities from limited data sets.

A methodological enhancement in this thesis is the implementation of a meshgrid-
based lifting procedure within the context of FNO2D. This approach represents a
strategic departure from traditional linear interpolation methods, which often fall short in
multi-dimensional domains. The meshgrid function creates a two-dimensional array of
coordinates, ensuring the fidelity of spatial relationships in the input data. This nuanced
representation is critical for the Fourier and projection pipelines to operate effectively,
enabling the FNO2D model to perform spectral operations with increased precision and
deliver more accurate predictions for PDEs modeled in two-dimensional spaces.

The enhancements introduced in the FNO2D model – particularly the meshgrid-based
lifting procedure and the integration of SWIM for parameter sampling – collectively el-
evate the model’s capability to address the challenges of multi-dimensional data spaces.
These improvements not only ensure the integrity of spatial information in the model’s
input but also enrich the data representation, crucial for the effective functioning of the
Fourier and projection pipelines. The implications of these advancements are far-reaching,
offering a blueprint for future developments in neural operator models, especially in solv-
ing complex scientific problems that involve high-dimensional data.

3.2. Dataset

The empirical evaluation of Fourier Neural Operators in one and two dimensions
(FNO1D and FNO2D) is facilitated by datasets generated from the Burgers’ equation, a
fundamental partial differential equation used to model various physical phenomena, as
mentioned in the 2.1 . For a thorough comparative analysis, distinct datasets for 1D and
2D scenarios have been curated.

16

3. Scalable Sampling of Deep Neural Networks

1D Burgers’ Dataset: The 1D Burgers’ dataset comprises 1000 simulation instances
with a spatial resolution of 64 points across the domain [0, 2π]. These simulations are
generated by solving the 1D Burgers’ equation with a viscosity (ν) of 0.1, ensuring an
accurate representation of diffusion phenomena. The temporal resolution is within the
interval [0, 1].

Figure 3.2.: 5 different samples from 1D dataset. Each color represents a distinct sample.
u0 represents the sample at t=0 while u1 represents the sample at t=1

2D Burgers’ Dataset: In parallel, the 2D Burgers’ dataset includes 1000 simulation
instances as well, each resolved on a 64×64 grid, covering the spatial domain [0, 1]× [0, 1].
These simulations address the additional complexity introduced in two dimensions and
are generated with a reduced viscosity (ν) of 0.01, maintaining consistency with the
physical realism of higher-dimensional flows. The temporal resolution mirrors that of the
1D case, with 1000 time steps within the interval [0, 1].

17

3. Scalable Sampling of Deep Neural Networks

Figure 3.3.: 2 different sample from 2D dataset. u0 represents the sample at t=0 while u1
represents the sample at t=1

Of these 1000 data points, a significant portion, comprising 900 data points, is allocated
for the training phase. The remaining 100 data points are reserved exclusively for testing
purposes.

3.3. Experiments

3.3.1. Experiment Setup

In the experimental evaluation, the performance of Fourier Neural Operators is fine-tuned
through a series of hyperparameter optimizations. Six critical hyperparameters are con-
sidered: the number of modes (n modes), which determines the resolution in the spectral
domain of the FNO, the number of hidden channels n hidden channels), the width of
each layer (layer width), the number of blocks in the FNO architecture (n blocks),
the regularization scale (regularization scale), which is vital for controlling model
complexity and avoiding overfitting, and the type of parameter sampler combined with
the activation function used (Parameter Sampler & Activation). These hyperpa-
rameters are selected based on their potential impact on the model’s capacity to capture
the dynamics of the Burgers’ equation in both one and two-dimensional domains.

18

3. Scalable Sampling of Deep Neural Networks

The following table shows the hyperparameters to be tuned and its set of values. For
FNO2D, n modes is used for both dimension.

Hyperparameter Description Values
n modes Number of Fourier modes 1, 2, 4, 8, 16, 32
n hidden channels Number of hidden channels 1, 2, 4, 8, 16, 32, 64
layer width Width of each layer 2, 4, 8, 16, 32, 64, 128, 256
n blocks Number of blocks in FNO 1, 2, 3, 4, 5, 6, 7, 8
regularization scale Regularization Scale 10−8, 10−7, ..., 10−2, 10−1

activation Activation function tanh, ReLU

Table 3.1.: Hyperparameter tuning for FNO models, with a distinction between FNO1D
and FNO2D in terms of the number of modes.

Continuing with the experimental setup, it is crucial to address the methodological
decisions regarding the model’s architecture. One such decision is the alignment of the
parameter sampler function with the activation function within the neural network. This
alignment is implemented to ensure consistency in the network’s processing mechanism.
Utilizing the same function for both parameter sampling and activation guarantees
that the model’s approach to introducing non-linear transformations remains uniform
throughout its architecture. This uniformity is particularly important as it helps in
maintaining the integrity of the network’s learning dynamics, ensuring that the sampling
of parameters harmonizes with their subsequent activation during the model’s operation.
Such a consistent approach is essential for preserving the coherence and predictability of
the neural operator’s behavior.

Furthermore, the experimental configuration places a constraint on the number of hid-
den channels, largest value at 64 (n hidden channels). This limitation is imposed due
to the memory capacity of the computational device used for conducting the experiments.
Expanding the number of hidden channels beyond this threshold leads to an exponen-
tial increase in the computational memory requirement, surpassing the capabilities of the
available hardware.

3.3.2. Method

The experimental methodology in this study is designed to evaluate the performance
of Fourier Neural Operator (FNO) models under various hyperparameter settings. The
default parameters for these experiments are established as: number of blocks (n blocks)
at 1, number of hidden channels (n hidden channels) at 16, number of modes (n modes
at 2, regularization scale at 10−8 and layer width (layer width) also at 16. These serve
as a baseline against which the impact of hyperparameter variations is measured.

19

3. Scalable Sampling of Deep Neural Networks

Hyperparameter Tuning: Each hyperparameter configuration undergoes testing using
both tanh and relu activation functions to evaluate the impact of these distinct non-linear
transformations on model performance. In this experimentation, the emphasis is on
altering one of three key aspects — the number of hidden channels, the width of each
layer, or the number of blocks within the FNO architecture — while maintaining the other
parameters at their default settings. This focused approach aims to isolate and understand
the influence of each individual hyperparameter on the evaluation metrics described
below.

Evaluation Metrics: Performance evaluation of each model configuration is based on
three key metrics:

1. Fit Time (Train): Time required for the model to train on the dataset, indicative of
the computational efficiency under different hyperparameter setups.

2. Transform Time (Predict): Time taken for the model to transform the training data,
reflecting operational efficiency during the predicting phase.

3. Relative L2 Error: A measure of model accuracy, calculated as the L2 norm of the
difference between predicted and actual values, normalized by the L2 norm of the
actual values. It is given by:

Relative L2 Error =
∥ypred − ytrue∥2

∥ytrue∥2
, (3.1)

where ypred and ytrue denote the predicted and true values, respectively.

Experimental Procedure: The models, trained on datasets derived from the Burgers’
equation in both 1D and 2D forms, undergo a process of fitting and subsequent perfor-
mance evaluation on a validation set using the defined metrics. Each hyperparameter
configuration is iteratively tested to ensure the reliability and reproducibility of the results.

This methodological framework is designed to offer comprehensive insights into the
effects of various hyperparameters on FNO model performance, facilitating an in-depth
understanding of optimal configurations for neural operators in complex PDE solutions.

3.3.3. Results

The results section presents the outcomes of the experiments conducted to evaluate the
performance of FNO models under different configurations and activation functions. The
following table delineates the performance metrics — fit time, transform time, and relative
L2 error — for default configuration with both tanh and ReLU activation functions.

20

3. Scalable Sampling of Deep Neural Networks

Dimension Activation Fit Time (s) Transform Time (s) Relative L2 Error
1D tanh 0.40 0.02 0.240
1D relu 0.47 0.02 0.262
2D tanh 23.68 1.68 0.418
2D relu 23.08 1.11 0.391

Table 3.2.: Baseline performance metrics for FNO models with default parameters

Number of Blocks (n blocks):
The experimental analysis conducted on FNO1D and FNO2D models offers insights

into the nuanced behavior of neural operators as the number of blocks (n blocks)
is varied. Notably, an increase in n blocks does not uniformly lead to a decrease in
the relative L2 error 3.4 . This outcome suggests that adding complexity to the model,
in terms of depth, does not inherently enhance its predictive accuracy. In terms of
activation functions, tanh generally exhibits marginally superior performance over
ReLU when evaluating the relative L2 error across different configurations. How-
ever, an exception is observed in the case of FNO2D with a single block, where ReLU
marginally outperforms tanh. This indicates that the effectiveness of activation functions
may be context-dependent, varying with the dimensionality and architecture of the model.

Regarding the computational time, a linear increase in fit time is observed as n blocks
is augmented, which aligns with the expected growth in computational workload with
deeper models 3.5 . Conversely, transform times do not exhibit significant changes with
increasing n blocks, suggesting that the computational expense during the transform
phase remains relatively stable. When comparing the time efficiency of tanh and ReLU,
the results show no substantial difference, implying that the choice of activation function
does not critically impact the temporal aspect of model training and transformation.

A stark contrast in time consumption of fitting is noted when comparing FNO2D to
FNO1D; the former requires approximately 75 times more time than the latter. This
considerable disparity underscores the complexity introduced by higher-dimensional
data and the associated increase in computational resources required for processing.

In summation, the findings from the experiments elucidate that while model depth, as
controlled by n blocks, is a pivotal factor in the architecture of FNOs, its optimization
for enhanced performance is not straightforward and warrants a balanced consideration
of accuracy and computational efficiency. The comparative slight edge of tanh in accu-
racy and the substantial time demands of FNO2D models are salient points that must be
factored into the design and application of neural operators.

21

3. Scalable Sampling of Deep Neural Networks

Figure 3.4.: For both FNO2D and FNO1D, figure shows the graphs of n blocks vs relative
L2 error

22

3. Scalable Sampling of Deep Neural Networks

Figure 3.5.: For both FNO2D and FNO1D, figure shows the graphs of n blocks vs time

23

3. Scalable Sampling of Deep Neural Networks

Number of Hidden Channels (n hidden channels):
Building upon the previous observations, the experimental focus shifted to tuning

the number of hidden channels (n hidden channels) within the FNO1D and FNO2D
models. The impact of this hyperparameter on the relative L2 error and computational
times offers further insights into the neural operators’ performance characteristics.

For FNO1D models, the tanh activation function consistently outperforms ReLU in
terms of error minimization across various settings of n hidden channels. In contrast,
for FNO2D models, the trend is reversed, with ReLU achieving slightly better error
metrics compared to tanh. However, incrementally increasing the number of hidden
channels does not translate into substantial gains in performance for either model, in
terms of error reduction. This plateau in performance improvement, despite increasing
the number of channels, may be attributed to limitations such as a relatively small dataset
size and a primitive default setup of other hyperparameters, which could be restricting
the models’ ability to fully leverage the increased complexity.

In terms of computational time, there is a clear linear relationship between the number
of hidden channels and the fit time for both FNO1D and FNO2D models, irrespective of
the activation function employed. This linear trend highlights the direct impact of model
capacity on the resources required during the training phase. Notably, FNO2D models
exhibit a drastically large fit time compared to their 1D counterparts, underscoring the
heightened computational demands when dealing with two-dimensional data. Despite
the variations in fit time, transform times remain largely unaffected by the number of
hidden channels, indicating a consistent performance during the data transformation
phase of the models

The absence of significant variations in transform times, akin to the observations in
the tuning of n blocks, points to a stable transformation phase that is less sensitive to
changes in model depth and capacity. This stability in transform times, despite the linear
rise in fit times, reinforces the importance of a judicious choice of hyperparameters to
balance accuracy against computational efficiency, particularly when working with the
more resource-intensive FNO2D models.

The exploration into the scaling of the number of hidden channels
(n hidden channels) within FNO models has brought to light the primary chal-
lenge associated with this hyperparameter: memory constraints. For FNO2D models,
increasing n hidden channels leads to the creation of a huge multi-dimensional array
during training, the dimensions of which are directly proportional to the number of data
points, the number of hidden channels, and the spatial resolution in both the x and y
directions.

24

3. Scalable Sampling of Deep Neural Networks

Figure 3.6.: For both FNO2D and FNO1D, figure shows the graphs of n hidden channels
vs relative L2 error

25

3. Scalable Sampling of Deep Neural Networks

Figure 3.7.: For both FNO2D and FNO1D, figure shows the graphs of n hidden channels
vs time

26

3. Scalable Sampling of Deep Neural Networks

Concretely, for FNO2D, the training process necessitates the instantiation of an ar-
ray with shape (Number of Data Points,Number of Hidden Channels,x resolution,y
resolution). This requirement for high-dimensional arrays significantly escalates the
memory usage, especially as the resolution and the number of hidden channels grow.
The problem is exacerbated when dealing with 2D data, where the resolution along two
spatial dimensions compounds the memory demands.

This memory bottleneck presents a substantial challenge, as it not only limits the
potential depth and complexity of the models that can be trained but also restricts the
scalability of the approach to larger datasets or higher resolutions. As such, careful
consideration must be given to the balance between model complexity and available com-
putational resources, with memory efficiency becoming a critical factor in the design and
optimization of neural operator models, particularly in the context of two-dimensional
domains.

Layer Width (layer width Another hyperparameter examined is the layer width
(layer width), which has demonstrated a considerable influence on the performance
of both FNO1D and FNO2D models. Diverging from the patterns observed with other
hyperparameters, increasing the layer width has resulted in exponential improvements in
error reduction. This is a significant finding, suggesting that layer width plays a crucial
role in the model’s ability to capture and represent the complexities of the underlying
functions.

For FNO2D models, in particular, the increase in layer width to 256, paired with the
tanh activation function, has led to a notable decrease in error, achieving values as low
as 0.2. This improvement is compelling, considering that other hyperparameters were
assigned basic, default values, indicating the potent impact of layer width on model
accuracy.

Another salient observation is the superior performance of the tanh activation func-
tion over ReLU, especially at higher layer widths. This trend is consistent across both
FNO1D and FNO2D models and becomes more pronounced as the layer width expands.
The tanh function’s ability to outperform ReLU under these conditions may be attributed
to its smoother gradient behavior, which could facilitate better learning in networks with
a larger capacity.

27

3. Scalable Sampling of Deep Neural Networks

Figure 3.8.: For both FNO2D and FNO1D, figure shows the graphs of layer width vs rela-
tive L2 error

28

3. Scalable Sampling of Deep Neural Networks

Figure 3.9.: For both FNO2D and FNO1D, figure shows the graphs of layer width vs time

29

3. Scalable Sampling of Deep Neural Networks

Contrary to the linear relationships observed with the number of blocks and hidden
channels, the increase in layer width does not correspond to a uniform rise in time
consumption. This departure indicates that while larger layer widths significantly boost
model accuracy, they do not necessarily lead to proportionally higher computational
costs. This non-linear scaling of time with respect to layer width presents a more complex
picture, where the additional computational overhead is not as predictable as with other
hyperparameters. It underscores the potential for achieving higher accuracy without a
straightforward increase in computational burden, emphasizing the importance of layer
width as a hyperparameter in the design of efficient and effective neural operator models.

Number of Modes (n modes)
The comprehensive analysis of the n modes hyperparameter within the context of

Fourier Neural Operators (FNO) has yielded insightful observations. For both FNO1D
and FNO2D models, the increment in the number of Fourier modes, which essentially
determines the resolution in the spectral domain, has not consistently translated into
improved accuracy, as measured by the relative L2 error.

In the FNO2D models, the alteration of n modes across a range of values revealed no
discernible enhancement in error reduction. This was consistent across the spectrum, sug-
gesting that for FNO2D, the complexity added by increasing n modes does not necessarily
equate to better model performance in terms of accuracy. Similarly, the FNO1D models
largely mirrored this trend, with one notable exception. When n modes was set to 2, the
FNO1D models demonstrated a marginal improvement in error metrics. This specific
configuration appears to be an optimal setting for the one-dimensional case, suggesting a
potential sweet spot where the model is able to leverage the spectral resolution for a more
accurate representation of the underlying functions.

Regarding computational time, although a linear relationship between increased
n modes and time consumption was not observed, the general trend indicates that higher
n modes generally lead to greater time requirements. This is likely due to the additional
computational effort needed to process the larger spectral representation of the data. Even
though this increase is not strictly linear, the overall impact on time consumption is clear,
with higher n modes contributing to longer training and transformation times for both
FNO1D and FNO2D models.

These results suggest that while increasing n modes may intuitively seem like a straight-
forward approach to enhancing model fidelity by capturing more detailed frequency infor-
mation, the benefits in terms of error reduction are not as clear-cut. This nuanced finding
underscores the complexity of neural network optimization, where not all increases in
model parameters lead to direct improvements in performance, and highlights the impor-
tance of identifying parameter settings that are both time-efficient and effective in error
minimization.

30

3. Scalable Sampling of Deep Neural Networks

Figure 3.10.: For both FNO2D and FNO1D, figure shows the graphs of n modes vs relative
L2 error

31

3. Scalable Sampling of Deep Neural Networks

Figure 3.11.: For both FNO2D and FNO1D, figure shows the graphs of n mode vs time

32

3. Scalable Sampling of Deep Neural Networks

Regularization Scale
The comprehensive study focused on exploring the influence of varying regularization

scales on the performance metrics of Fourier Neural Operators, specifically the FNO1D
and FNO2D models. These models are integral components in the field of neural network
architectures and are particularly noted for their efficiency in handling complex spatial-
temporal data. The research meticulously analyzed the impact of different regularization
scales, which are critical parameters in machine learning that contribute to preventing
overfitting and ensuring that the models generalize well to new, unseen data.

Throughout the span of the study, a broad spectrum of regularization scales was
scrutinized. The findings revealed a consistent and interesting pattern across both FNO1D
and FNO2D models. It was discovered that when the regularization scale was set to a
lower value, there was a significant enhancement in the performance of the models. This
improvement was quantitatively measured in terms of error metrics, a crucial criterion in
assessing the accuracy and reliability of neural network predictions. Lower regularization
scales effectively reduced the error rates, indicating a more precise and dependable model
performance.

In stark contrast, an increase in the regularization scale led to a notable escalation in
error rates. This trend was uniformly observed in both models and across various scale
settings. Such a rise in error rates is indicative of the models’ decreasing ability to accu-
rately predict and represent the data. This phenomenon underscores the delicate balance
required in setting the appropriate regularization scale to optimize model performance.

Furthermore, this trend was consistent regardless of the choice of activation function
in the neural networks. Both the tanh and ReLU activation functions were considered in
this study. These functions play a pivotal role in introducing non-linearity to the models,
enabling them to learn and represent more complex data patterns. The observation that
the choice of activation function did not significantly alter the influence of regularization
on model error is a notable insight. It suggests that the impact of regularization scale
is a more dominant factor in influencing model performance than the specific type of
activation function used.

Another aspect of the study was examining the impact of regularization scale on the time
efficiency of the FNO1D and FNO2D models. Time efficiency, in this context, refers to the
computational time required for the models to fit to the training data and subsequently
transform new data. Interestingly, it was found that the computational time remained
largely unaffected by changes in the regularization scale. This observation is significant as
it indicates that adjusting the regularization scale mainly affects the model’s generalization
capabilities and complexity control, rather than its computational efficiency. This insight is
crucial for practitioners in the field, as it allows them to fine-tune the regularization scale to
optimize model performance without concerns about increased computational demands.

33

3. Scalable Sampling of Deep Neural Networks

Figure 3.12.: For both FNO2D and FNO1D, figure shows the graphs of regularization scale
vs relative L2 error

34

3. Scalable Sampling of Deep Neural Networks

Figure 3.13.: For both FNO2D and FNO1D, figure shows the graphs of regularization scale
vs time

35

3. Scalable Sampling of Deep Neural Networks

Best Hyperparameter Setups and Their Results The numerical results obtained from
the experimental evaluation of the FNO models are pivotal in demonstrating the efficacy
of the chosen hyperparameter configurations. Two distinct setups are highlighted to il-
lustrate the performance differences between the FNO1D and FNO2D models under opti-
mized hyperparameters.

Model n blocks nhc* layer width Activation Fit Time (s) Relative L2 Error
FNO2D 2 4 256 tanh 19.19 1.980× 10−1

FNO1D 3 8 256 tanh 5.46 6.029× 10−2

Table 3.3.: Results for best hyperparameter setup in the range. The hyperparameters that
does not appear in the table is same as its default (*nhc: n hidden channels)

These findings reinforce the hypothesis that layer width is a highly influential hyper-
parameter, especially when coupled with the tanh activation function. The numerical
results underscore the delicate interplay between model architecture, dimensionality,
and activation function, shaping the performance and computational efficiency of FNO
models. These insights contribute significantly to the understanding of neural operator
scalability and optimization.

3.4. Discussion of Results

The extensive experimental analysis conducted in this thesis offers a deep dive into
the structural intricacies and operational capabilities of Fourier Neural Operator (FNO)
models. This section aims to investigate and reflect upon the key outcomes derived from
meticulous evaluations of the models, the distinct characteristics of the datasets used, and
the comprehensive process of systematic experimentation that was undertaken.

FNO models, in their one-dimensional and two-dimensional variants, have showcased
a commendable proficiency in learning and mapping complex functional relationships.
The process of hyperparameter tuning, a pivotal aspect of this research, has shed light on
the delicate equilibrium that exists between the complexity of the model, its computational
demands, and its ability to accurately predict outcomes. The layer width has emerged
as a particularly influential hyperparameter, with its adjustments showing a substantial
impact on the model’s error reduction capabilities. This effect is even more pronounced
in the context of two-dimensional models, where the multifaceted nature of interactions
within the data sets a higher bar for accuracy and complexity.

In the realm of experimental design, a strategic approach was adopted to evaluate
how different hyperparameters influence the performance of FNO models. The findings
from these experiments paint a comprehensive picture. On one hand, FNO1D models

36

3. Scalable Sampling of Deep Neural Networks

are characterized by their rapid training and transformation capabilities. On the other
hand, FNO2D models, while more computationally demanding, exhibit a strong potential
in achieving lower error rates. This potential is particularly evident when the models
are configured with an adequate layer width and an optimal count of hidden channels,
highlighting the significance of these parameters in enhancing model accuracy.

Furthermore, the research indicates that the effectiveness of FNO2D models could be
significantly amplified with the availability of larger datasets and more precise hyperpa-
rameter tuning. Such advancements, however, hinge on the provision of enhanced com-
putational resources. With access to more powerful computing infrastructure, it becomes
feasible to process larger volumes of data and to delve into more complex and deeper net-
work architectures. This progression holds immense promise, especially for applications
that necessitate a precise and detailed representation of two-dimensional spaces. The im-
plications of such improvements are far-reaching, potentially leading to groundbreaking
advancements in fields that rely heavily on accurate two-dimensional data modeling.

37

4. Conclusion

4.1. Summary

This thesis presented an in-depth exploration of Fourier Neural Operators (FNO), a
novel approach in the field of computational science for learning mappings of function
spaces, particularly those governed by partial differential equations (PDEs). The study
extended the principles of the Sampling Where It Matters (SWIM) methodology to both
one-dimensional and two-dimensional FNO models (FNO1D and FNO2D), thereby
addressing the challenges posed by multi-dimensional data spaces.

Key to the advancement of FNO models was the systematic tuning of several critical
hyperparameters, including the number of modes (n modes), the number of hidden chan-
nels (n hidden channels), the layer width (layer width), the number of blocks in the
FNO architecture (n blocks), and the regularization scale. Each of these parameters was
carefully evaluated for its impact on the model’s performance, with particular emphasis
on their ability to capture the dynamics of the Burgers’ equation.

The study demonstrated that while FNO1D models were efficient in terms of training
and transformation times, FNO2D models showed a promising potential in achieving
lower error rates with the right configuration of layer width and hidden channels. A
significant observation was the limited impact of increasing the number of modes on
the models’ accuracy, suggesting that this parameter does not linearly correlate with
improved performance.

An innovative aspect of this research was the integration of the meshgrid-based lifting
procedure in the FNO2D models. This methodology enhanced the model’s capacity to
process and learn from two-dimensional spatial data with higher fidelity. It was observed
that the integration of SWIM for parameter sampling and the adjustment of layer width
were crucial in optimizing the FNO models’ accuracy and efficiency.

Throughout the research, the balance between model complexity, computational effi-
ciency, and predictive accuracy was a recurring theme. The results indicated that while
larger layer widths and optimal hyperparameter settings could significantly improve
model performance, they also increased the computational burden, especially for FNO2D
models.

38

4. Conclusion

4.2. Discussion

The findings from this thesis contribute to a deeper understanding of FNO models
and their potential applications. One of the key observations is the interplay between
model complexity and computational efficiency. While FNO1D models exhibited swifter
training and transformation capabilities, FNO2D models, with their enhanced complexity,
demonstrated a stronger proficiency in error reduction, albeit at the cost of increased
computational resources.

The integration of the meshgrid-based lifting procedure and the SWIM algorithm for pa-
rameter sampling in FNO2D models marked a significant methodological advancement.
This integration underscored the importance of spatial integrity in data representation,
especially for complex multi-dimensional problems.

However, the study also highlighted the limitations of increasing certain hyperparam-
eters, such as the number of modes, which did not linearly correlate with performance
improvement. This observation is critical in guiding future model optimization strategies,
where the focus might shift from simply increasing model complexity to optimizing
hyperparameter configurations.

Nevertheless, the general performance of the models, with a relative error around 20%,
indicates room for improvement. This suboptimal result could be due to constraints such
as limited dataset size and inadequate computational resources during the research. To
enhance the models’ performance, future research should consider using larger datasets,
which would provide a richer training ground for the models to learn from more diverse
and complex patterns. Additionally, overcoming the hyperparameter limitation due to
memory and computational time constraints is essential. Utilizing more powerful compu-
tational hardware could allow for more extensive hyperparameter tuning and experimen-
tation, potentially leading to significant improvements in model accuracy and efficiency.
These steps could greatly advance the utility of FNO models in various complex compu-
tational tasks, driving them closer to achieving lower error rates and higher reliability in
practical applications.

4.3. Future Work

Looking ahead, there are several promising directions for future research:

Enhanced Computational Resources: With the advancement of computational tech-
nologies, future work could explore the performance of FNO models on larger datasets
and more complex PDEs. Enhanced computational resources could allow for deeper and
more intricate network architectures, potentially leading to breakthroughs in accuracy

39

4. Conclusion

and efficiency.

Advanced Hyperparameter Optimization: Further research could focus on more
sophisticated hyperparameter optimization techniques, possibly employing automated
machine learning (AutoML) approaches to identify the most effective configurations.

Expansion to Other PDEs: While this study focused on the Burgers’ equation,
applying the findings to a broader range of PDEs could offer insights into the versa-
tility and adaptability of FNO models across various scientific and engineering disciplines.

The research conducted lays a foundation for future investigations that could signifi-
cantly advance our understanding and application of machine learning techniques in solv-
ing higher dimensional PDEs.

40

Bibliography

[1] Christian Beck, Martin Hutzenthaler, Arnulf Jentzen, and Benno Kuckuck. An
overview on deep learning-based approximation methods for partial differential
equations. arXiv preprint arXiv:2012.12348, 2020.

[2] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A
review and new perspectives. IEEE transactions on pattern analysis and machine intelli-
gence, 35(8):1798–1828, 2013.

[3] Erik Lien Bolager, Iryna Burak, Chinmay Datar, Qing Sun, and Felix Dietrich. Sam-
pling weights of deep neural networks. arXiv preprint arXiv:2306.16830, 2023.

[4] Johannes Martinus Burgers. A mathematical model illustrating the theory of turbu-
lence. Advances in applied mechanics, 1:171–199, 1948.

[5] Shifei Ding, Xinzheng Xu, and Ru Nie. Extreme learning machine and its applications.
Neural Computing and Applications, 25:549–556, 2014.

[6] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine:
theory and applications. Neurocomputing, 70(1-3):489–501, 2006.

[7] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang,
and Liu Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–
440, 2021.

[8] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Neural operator: Learning maps
between function spaces. arXiv preprint arXiv:2108.08481, 2021.

[9] Harold Levine. Partial differential equations, volume 6. American Mathematical Soc.,
1997.

[10] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for para-
metric partial differential equations. arXiv preprint arXiv:2010.08895, 2020.

[11] Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede
Liu, Kamyar Azizzadenesheli, and Anima Anandkumar. Physics-informed neural
operator for learning partial differential equations. arXiv preprint arXiv:2111.03794,
2021.

41

Bibliography

[12] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis.
Learning nonlinear operators via DeepONet based on the universal approximation
theorem of operators. Nature Machine Intelligence, 3(3):218–229, 2021.

[13] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics informed deep
learning (part i): Data-driven solutions of nonlinear partial differential equations.
arXiv preprint arXiv:1711.10561, 2017.

[14] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics informed deep
learning (part ii): Data-driven discovery of nonlinear partial differential equations.
arXiv preprint arXiv:1711.10566, 2017.

[15] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neu-
ral networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations. Journal of Computational physics,
378:686–707, 2019.

[16] Gerald Beresford Whitham. Linear and nonlinear waves. John Wiley & Sons, 2011.

[17] Zhi-Hua Zhou. Machine learning. Springer Nature, 2021.

42

Appendix

43

A. Technical Specifications

The research utilizes a device with 16GB RAM and an Intel(R) Core(TM) i7-7700HQ CPU
(2.80GHz, 4 cores, 8 logical processors) and Python 3.10.11. This setup is employed for
data generation and experimentation in the thesis.

44

List of Figures

 2.1. Fourier Neural Operator architecture . 7

 3.1. FNO2D architecture . 15
 3.2. 1D Burger Data . 17
 3.3. 2D Burger Data . 18
 3.4. NUMBER OF BLOCKS vs ERROR . 22
 3.5. NUMBER OF BLOCKS vs TIME . 23
 3.6. NUMBER OF HIDDEN CHANNELS vs ERROR 25
 3.7. NUMBER OF HIDDEN CHANNELS vs TIME 26
 3.8. LAYER WIDTH vs ERROR . 28
 3.9. LAYER WIDTH vs TIME . 29
 3.10. NUMBER OF MODES vs ERROR . 31
 3.11. NUMBER OF MODES vs TIME . 32
 3.12. REGULARIZATION SCALE vs ERROR . 34
 3.13. REGULARIZATION SCALE vs TIME . 35

45

List of Tables

 3.1. Hyperparameter tuning for FNO models, with a distinction between
FNO1D and FNO2D in terms of the number of modes. 19

 3.2. Baseline performance metrics for FNO models with default parameters . . . 21
 3.3. Best Hyperparameter Setup . 36

46

	Acknowledgements
	Abstract
	Introduction
	State of the Art
	Partial Differential Equation
	Neural Operators
	DeepONet
	Fourier Neural Operator (FNO)
	Physics-Informed Neural Network (PINN) & Physics Informed Neural Operator (PINO)

	Sampled Networks
	Extreme Learning Machine (ELM)
	Sampling Where It Matters (SWIM)

	Scalable Sampling of Deep Neural Networks
	Model
	Dataset
	Experiments
	Experiment Setup
	Method
	Results

	Discussion of Results

	Conclusion
	Summary
	Discussion
	Future Work

	Bibliography
	Appendix
	Technical Specifications
	List of Figures
	List of Tables

