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Zusammenfassung

Das dynamische System oder die Dynamik ist ein mathematisches Konzept, das zur Modellierung und
Analyse des Verhaltens von Systemen verwendet wird, die sich im Laufe der Zeit entwickeln. Seine breite
Anwendbarkeit erstreckt sich über verschiedene Bereiche, darunter Physik, Biologie, Wirtschaft, Technik,
Informatik und Mathematik. Das zentrale mathematische Konzept der Analyse dynamischer Systeme ist
der Koopman-Operator, ein linearer Operator, der häu�g auf in�nite-dimensionalen Funktionsräumen
de�niert wird und nichtlineare Dynamik in einem linearen Kontext erfassen kann.

Auf der Grundlage der Koopman-Modus-Analyse haben sich die Dynamic Mode Decomposition (DMD)
und ihre Varianten als datengesteuerte Algorithmen herauskristallisiert, die die Entwicklung vieler dy-
namischer Systeme anhand gegebenerDaten, in der RegelMomentaufnahmen vonBeobachtungen, vorher-
sagen können. Sie approximieren den Koopman-Operator durch die Matrixdarstellung im endlich dimen-
sionalen Raum, und ihre spektrale Information wird zur Vorhersage der Entwicklung der Dynamik ver-
wendet.

Der Koopman-Operator hat eine bemerkenswerte Eigenschaft: Das Produkt oder die Potenzierung von
Eigenpaaren bildet ein weiteres Eigenpaar. Diese Eigenschaft bedeutet, dass man, sobaldman einige Eigen-
paare erfasst hat, ohne weiteres weitere Eigenpaare durch ihr Produkt oder ihre Potenzierung ableiten
kann. Diese einzigartige Eigenschaft kann die E�zienz des gesamten Prozesses der Eigenwertzerlegung
in DMD-Algorithmen erhöhen oder sogar Eigenpaare liefern, deren Informationen nicht im projizierten
Raum enthalten sind.

In dieser Arbeit wird ausschließlich auf ergodische Systeme konzentriert, in denen zusätzliche Eigen-
schaften nachgewiesen werden können, die zur Weiterentwicklung von Algorithmen beitragen. Durch
die Einbeziehung dieser Eigenschaften in den Eigenlöser werden in dieser Arbeit zwei exponentielle Al-
gorithmen zur Berechnung der Eigenvektoren der Matrixdarstellung des Koopman-Operators oder der
Eigenfunktionen des Koopman-Operators mit ihren numerischen Experimenten vorgestellt.
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Abstract

The dynamical system, or dynamics, is a mathematical concept used to model and analyze the behavior
of systems that evolve over time. Its broad applicability spans diverse domains, including physics, biol-
ogy, economics, engineering, computer science, and mathematics. The central mathematical concept of
dynamical system analysis is the Koopman operator, which is a linear operator often de�ned on in�nite-
dimensional function spaces and can capture non-linear dynamics in a linear context.

Based on the Koopman mode analysis, dynamic mode decomposition (DMD) and its variants emerged
as data-driven algorithms that can predict the evolution of many dynamical systems just by given data,
typically snapshots of observations. They approximate the Koopman operator by thematrix representation
on �nite-dimensional space, and their spectral information is used to forecast the evolution of dynamics.

The Koopman operator has a remarkable property: the product or exponentiation of eigenpairs forms
yet another eigenpair. This property implies that once some eigenpairs are acquired, one can readily derive
other eigenpairs through their product or exponentiation. This unique property can potentially enhance
the e�ciency of the entire eigendecomposition process performed in DMD-type algorithms or even yield
eigenpairs whose information is not contained within the projected space.

In this thesis, our focus is exclusively directed towards ergodic systems, where additional properties can
be demonstrated, contributing to the advancement of algorithms. By incorporating these attributes into
the eigensolver, this thesis introduces two exponential algorithms designed to compute the eigenvectors of
the Koopman operator’s matrix representation or the eigenfunctions of the Koopman operator with their
numerical experiments.
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1 Introduction

The dynamical system, also referred to as dynamics, is a mathematical concept used to model and analyze
the behavior of systems that evolve over time. At its core, a dynamical system is characterized by its state
variables and the rules or equations governing their evolution. This system can be discrete or continuous
and may represent anything from simple mechanical systems, like a swinging pendulum [Str15], to com-
plex phenomena like population dynamics [BCC14], weather patterns [Han22], economic trends [BCS14],
and numerical algorithms [Chu08]. Researchers use the dynamical system theory in various �elds, such
as physics, biology, economics, engineering, computer science, and mathematics, to gain insights into the
behavior of dynamic phenomena. It provides a powerful framework for understanding and predicting the
evolution of systems, making it a vital concept in both theoretical and applied mathematics.

For a long time, the dynamical system has been analyzed through the concept of “dynamics of states”
rooted in the contributions of Poincaré [Via01], in which dynamics are analyzed directly at the state space
trajectories. However, this type of analysis showed di�culties in handling high-dimensional, ill-described,
and uncertain systems [Jon01; MB12]. Later in the stage, an alternative aspect called “dynamics of observ-
ables” arose, in which dynamics are analyzed through some so-called observable functions, which are
de�ned on the state space, and the evolution of these functions’ values [MB12]. In this framework, the
central of the mathematical concept is the so-called Koopman operator, originally introduced by Koop-
man and von Neumann [Koo31; KN32], which is a linear operator often de�ned on in�nite-dimensional
function spaces and is able to capture non-linear dynamics in a linear sense.

The Koopman mode analysis generalizes linear mode analysis from linear system to nonlinear system
without neglecting the global nonlinear feature of the system, unlike other methodologies such as Tylor
and Fourier expansion [MB12; Mez05; ROW+09]. These analyses showed, with the help of the spectral
theory [Bor20], that if the observable function is spanned by the eigenfunctions of the Koopman operator,
then the evolution of systems can be decomposed into just three terms: the eigenvalues, the eigenfunc-
tions, and the so-called Koopman modes of the Koopman operator. Even if they are not exactly spanned
by the eigenfunctions, this decomposition works as the approximation of the Koopman operator while
ignoring the continuous part of the spectrum. These results motivate researchers to study algorithms
for approximating these three terms just by some parts of the dynamical systems’ data. Typically, the
dataset is a sequence of observations through a vector-valued observable along a trajectory. The Dynamic
Mode Decomposition (DMD) and its variants [AM17; Col23; SCH10; WKR15], the detail is explained in
the state of the arts section (section 2), are the commonly used algorithms that approximate the Koopman
operator by its matrix representation on the �nite-dimensional space and by eigenvalues and eigenvec-
tors of the matrix. Thus, the calculation cost, the quality, and the quantity of the eigenpairs of the matrix
representation are critical for the algorithms. These data-driven algorithms are successfully used in the
above-mentioned wide range of application areas, such as �nance [MK16], brain networks [Par+23], and
numerical algorithms [DTK20].

Here, the Koopman operator has a remarkable property: for pairs of eigenvalues and eigenfunctions of
the Koopman operator, denoted as (_1,i1) and (_2,i2), their product (_1_2,i1i2) de�ned as [i1i2] (G) :=
i1(G)i2(G) forms yet another eigenpair. Moreover, by natural extension from product to power, for any
real positive number ? 2 í+, (_?1 ,i

?
1 ) also represents an eigenpair. If the eigenfunction i1 vanishes

nowhere, then i�11 := 1
i1

is well de�ned and the same holds with ? 2 í. This property implies that once
some eigenpairs are acquired, one can readily derive other eigenpairs through their product or exponenti-
ation. This unique property holds the potential to enhance the e�ciency of the entire eigendecomposition
process performed in the DMD-type algorithms because �nding eigenvectors is often computationally
costly, whereas taking exponential or combinations is not. Furthermore, it enables us to obtain the eigen-
pairs (eigenvalues and eigenfunctions) of the Koopman operator, whose information is neglected on the
projected �nite-dimensional space, i.e., there does not exist any corresponding eigenvalues and eigenvec-
tors of the matrix representation.

In this thesis, we further restrict our attention only to ergodic systems, which are dynamical systems
that, over time, explore and visit all possible states within their phase space (state space) with equal prob-
ability. These systems are essential in various �elds, such as statistical mechanics and information theory.
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Examples of such systems are Brownian motion [Ugb80] and certain chaotic systems, like the Lorenz
system [ER85]. Under ergodic settings, one can further show more useful theorems, for example, the
well-known Birkho�’s ergodic theorem [Bir31], and other properties of the spectral information of the
Koopman operator, such as all eigenvalues lie on the unit circle, and each eigenvalue is of multiplicity
1. These theorems and properties can also be integrated into our algorithm to enhance the quality and
e�ciency of the eigensolver.

To summarize, this thesis aims to integrate these special properties into the eigendecomposition pro-
cesses performed inside the DMD-type algorithms and to enhance the e�ciency of the entire calculation
procedure, surpassing the current methodologies in the sense of the number of computational arithmetic
operations or the reconstruction error quality. The remainder of the thesis is organized as follows. We
introduce the related state of the arts in the section 2, in the section 3, we explain our algorithms, which
we call the real-exponential algorithm and the integer-exponential algorithm, and lastly, we state our con-
clusion of this thesis in the section 4.
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2 State of the art

2.1 Dynamical systems, Koopman operator, and Ergodic theory

We �rst introduce the mathematical formulation of the dynamical systems, the Koopman operator, and
Ergodic theory with their notation for the entire thesis. Note that we basically use the same notation as
Budišić, Mohr, and Mezić [MB12].

Dynamical systems The dynamical system (or dynamics) is de�ned by a set M called the state space
or the phase space and a map ) : M ! M called the evolution function. Typically, one considers the
case whereM is a measurable space, with a f-algebraB, and) isB-measurable. In this thesis, we further
assume that the evolution function ) is invertible and measure-preserving, i.e., there exists an invariant
measure ` such that for any ( 2 B,

` (() = ` () �1(),

where ) �1( is understood as the pre-image of the set ( 2 B, i.e.,

) �1( := {G 2M | ) (G) 2 (} .

Moreover, we assume that the measure is normalized and complete, i.e., ` (M) = 1, and (1 ⇢ (2 2
B, ` ((2) = 0 implies (1 2 B. In total, we denote the dynamical system as (M,B, `,) ).

An example of such space (M,B, `) is, for instance, given by Cornfeld, Fomin, and Sinai [CFS12], which
is<-dimensional torus, where ` is a normalized Harr measure,M = S1⇥ · · ·⇥S1, andB is the completion
of the f-algebra of Borel sets of the spaceM, on which the natural cyclic coordinates G1, . . . , G< have been
introduced. In these coordinates 3` = 3G1 . . .3G< .

A dynamical system can be either discrete or continuous. In the discrete case, the state evolution is
written as the form

?=+1 = ) (?=),

where ?= 2M is the state at time =. In the continuous case, it is represented as

§? = ) (?) .

Throughout this thesis, we only consider a discrete-time dynamical system.
When one considers approximating the dynamics by a given dataset, one typically does not have direct

access to the state evolution data {?0, ?1, ?2, . . . }, ?= 2 M of the dynamics. Instead, one observes the
evolution of state through some observable, de�ned as a complex-valued function 5 2 F where F is a
set of complex-valued functions de�ned as F := {5 | 5 : M ! É}. In other words, for the initial state
?0 2M and its evolution

{?0, ?1, ?2, . . . , ?=} =
�
?0,) (?0),) 2(?0), . . . ,)= (?0)

 
,

one obtains the dataset of the dynamics as a trace data, denote as - 2 É= , de�ned by

- := {5 (?0), 5 (?1), 5 (?2), . . . , 5 (?=�1)} =
�
5 (?0), 5 () (?0)), 5 () 2(?0)), . . . , 5 ()=�1(?0))

 
.

Note, if one has direct access to the state evolution dataset, one can simply de�ne the observable function
5 as the identity function 5 (G) := G . In this case, it is easy to see that the trace data - coincides with the
state evolution data.

Koopman operator Here, the Koopman operator *) comes in, which is based on the contributions of
Koopman and von Neumann [Koo31; KN32]. The Koopman operator is simply a composition operator and
is de�ned as

*) : F ! F ,*) 5 := 5 �) .
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With this concept, 5 (): (G)) = [*) 5 ] ():�1(G)) = · · · = [* :) 5 ] (G), and therefore, the trace data - is equal
to

- =
�
[* 0
) 5 ] (?0), [* 1

) 5 ] (?0), [* 2
) 5 ] (?0), . . . , [* =�1) 5 ] (?0)

 
,

where* 0
) is understood as an identity operator. In other words, each data point of the trace data - can be

represented as the evolution of the Koopman operator. From now on, we denote the Koopman operator as
*) = * wherever the evolution function is clear.

An important property of the Koopman operator is that it is always linear, although the evolution func-
tion ) of the underlying dynamics might be non-linear. Because for 51, 52 2 F and _ 2 É,

* (_51 + 52) = (_51 + 52) �) = _51 �) + 52 �) = _* 51 +* 52.

This property enables us to analyze non-linear dynamics in a linear sense. In this thesis, we further assume
* is bounded and thus continuous. Furthermore, for eigenpairs {(_ 9 ,q 9 )} 9 of the Koopman operator * ,
assuming 5 2 F is spanned by the eigenfunctions {q 9 } 9 i.e. 5 (G) =

Õ
9 E 9q 9 (G) where E 9 2 É, then

[* 5 ] (?) = 5 () (?)) =
’
9

E 9q 9 () (?)) =
’
9

E 9 [*q 9 ] (?) =
’
9

_ 9E 9q 9 (?) .

Analogously,

[* : 5 ] (?) =
’
9

E 9 [* :q 9 ] (?) =
’
9

E 9_ 9 [* :�1q 9 ] (?) = · · · =
’
9

_:9 E 9q 9 (?).

Hence, the trace data - can be represented as

- =

(’
9

_09E 9q 9 (?0),
’
9

_19E 9q 9 (?0),
’
9

_29E 9q 9 (?0), . . . ,
’
9

_=9 E 9q 9 (?0)
)
.

In other words, the =-th trace data can be expressed just by three terms: eigenvalues {_ 9 } 9 , eigenfunctions
{i 9 } 9 , and the coe�cients {E 9 } 9 of the observable function with respect to the eigenfunctions. Therefore,
the coe�cients E 9 are de�ned and called the Koopman modes.

Now, for notational convenience, we de�ne vector-valued observables � :=
�
51 . . . 5 

�) 2 F  and
an extension of the Koopman operator* : F  ! F  , where

[* � ] (G) =
©≠≠
´

[* 51] (G)
...

[* 5 ] (G)

™ÆÆ
¨
.

Note that the same results hold as the single element case since the operator is applied to each vector
element. For eigenfunctions {q 9 }, observable function 5: 2 F spanned by these eigenfunctions, and the
Koopman modes E 9: with respect to the q 9 ,

[* = � ] (G) =
©≠≠
´

[* = 51] (G)
...

[* = 5 ] (G)

™ÆÆ
¨
=

©≠≠
´

Õ
9 _
=
9 E 91q 9 (G)
...Õ

9 _
=
9 E 9 q 9 (G)

™ÆÆ
¨
=

’
9

_=9 q 9 (G)
©≠≠
´

E 91
...
E 9 

™ÆÆ
¨
.

Thus, in this notation, the Koopman modes are also vector-valued. Note that we denote * = * if it is
clear by input whether it is vector-valued or single-valued.

Lastly, as it is explained in the introduction section (section 1), the following proposition 2.1 of the
Koopman operator is shown by Budišić, Mohr, and Mezić [MB12].

Proposition 2.1. Assume the function space F forms a vector space which is closed under pointwise products
of functions, i.e., 851, 52 2 F , 51 52 2 F . Then, the set of eigenfunctions forms an Abelian semigroup under
pointwise products of functions. In particular, if i1,i2 2 F are eigenfunctions of * with eigenvalues _1 and
_2 , then i1i2 where [i1i2] (G) := i1(G)i2(G) is an eigenfunction of * with eigenvalue _1_2 i.e. * (i1i2) =
_1_2i1i2. Furthermore, if ? 2 í+ and q is an eigenfunction with eigenvalue _, then q? is a eigenfunction
with eigenvalue _? , where q? (G) := (q (G))? .
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Proof. First of all, for eigenfunctions i1,i2 2 F of the Koopman operator* with corresponding eigenval-
ues _1, _2, de�ne their product i1i2 as [i1i2] (G) := i1(G)i2(G), then,

[*i1i2] (G) = i1() (G))i2() (G)) = [*i1] (G) [*i2] (G) = (_1_2) [i1i2] (G),

i.e., (_1_2,i1i2) is also an eigenfunction of* . Therefore, one can consider for =,< 2 é, the integer power
i=1 , the rational power i

=
<
1 such that

⇣
i
=
<
1

⌘<
= i=1 , and lastly for irrational power, take the limit of rational

numbers such that they squeeze the irrational number. In the end, q? , ? 2 í+ is also an eigenfunction
with the corresponding eigenvalue _?1 . Note that constant function i (G) := 2 2 É is also an eigenfunction
with eigenvalue 1 since

[*i] (G) = i () (G)) = 2 = i (G) .
Furthermore if i1 vanishes nowhere, i�11 = 1

i1
is well de�ned and therefore one can extend ? 2 í since

for ?0 2 í+, a function i
�?0
1 is an eigenfunction with eigenvalue _�?01 by

[*i�11 ] (G) = 1
i1() (G))

=
1

_1i1(G)
= _�11 i�11 (G) .

⇤

Under measure-preserving systems, we have more useful properties. In general, a Koopman operator
does not necessarily commute with its adjoint. However, if F = !2(M, `), then a Koopman operator
* : F ! F of a measure-preserving dynamical system has a unitary extension, denote as * 0, de�ned on
an extended Hilbert spaceH with F ⇢ H [SN+10]. Moreover, if the evolution function) is invertible and
measure-preserving, which we assume in this thesis, then* 0 = * andH = F , i.e., the Koopman operator
* is unitary and* �1 is the adjoint operator of* [Col23]. Since the operator* is unitary, the spectrum of
* , denote it as f (* ), satis�es

f (* ) ✓ {I 2 É | |I | = 1} = î,

and the spectral theorem [Bor20] ensures that the existence of a projection-valued spectral measure ⇢
supported on f (* ) such that

* =
π
î
I3⇢ (I) .

Now, remember that the spectrum can be decomposed into three disjoint parts: point spectrum, contin-
uous spectrum, and residual spectrum, and since * is unitary, especially normal, the residual part of the
spectrum is empty. Thus, ⇢ can be decomposed into two measures, ⇢p and ⇢c, that are supported on the
point spectrum and the continuous part of the spectrum, respectively,

⇢ = ⇢p + ⇢c.

Therefore, for any 5 2 !2(", `), the spectral resolution becomes

* : 5 =
’
9

482cl 9:% 9 5 +
✓π 1

0
482c\:3⇢2 (\ )

◆
5

where % 9 : !2(", `) �! !2(", `) is the orthogonal projection onto the eigenspace corresponding to the
eigenvalue _ 9 = 482cl 9 and ⇢2 is the projection valued measure corresponding to the continuous part of
the spectrum. In some later-introduced DMD-type algorithms, such as DMD [MB12] and EDMD [WKR15],
they only consider the point spectrum part by assuming there does not exist a continuous part. In this
case, by de�nition of the Koopman mode, % 9 5 (?) = q 9 (?)⇠ 9 (5 ), and get’

9

482cl 9:% 9 5 =
’
9

482cl 9:q 9⇠ 9 (5 ) .

Note that this is the same as saying F is spanned by the eigenfunctions of the Koopman operator * . The
continuous part of the spectrum is not understood at the same level as the point spectrum part. However,
the algorithms, such as Hankel DMD [AM17; KPM20] and mpEDMD [Col23], which assume the ergodic
or measure-preserve systems, showed the relationship with the continuous part.
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Ergodic theory Ergodic theory is a branch of mathematics that deals with the statistical properties of
dynamic systems and their long-term behavior. Intuitively, ergodic theory considers the case where the
system explores its entire phase space uniformly over time. Mathematically, the theory is developed in the
context of measure-preserving transformations in measure theory. As it is explained in the introduction
section, it has applications in various �elds, including physics, probability theory, and information theory.
We introduce the results from the ergodic theory based on Cornfeld, Fomin, and Sinai [CFS12].

A measure-preserving function 6 is called invariant (with respect to ) ) if for all G 2M,

6() (G)) = 6(G) = 6() �1(G)) .

If this is true for almost everywhere instead of for all G 2M, i.e., if it is true for G 2M\{⌫ 2 B | ` (⌫) = 0},
then it is said to be invariant mod 0. Analogously, a set � 2 B is called invariant, or invariant mod 0, if
the indicator function

j� (G) :=
(
1 if G 2 �
0 if G 8 �

is an invariant function or invariant mod 0 function, respectively.
A dynamical system (M,B, `,) ) is said to be ergodic if the measure ` (�) of any invariant set � equals

0 or 1. There are several equivalent conditions of ergodicity, and we use the following de�nition (De�ni-
tion 2.1). Furthermore, under the ergodic settings, the well-known Birkho�-Khinchin’s ergodic theorem
(Theorem 2.1) can be shown.

De�nition 2.1. (Equivalent de�nition of ergodic system) A dynamical system (M,B, `,) ) is said to be
ergodic if any function 5 2 !2(M,B, `) invariant with respect to the Koopman operator *) , is a constant
almost everywhere.

Theorem 2.1. (The Birkho�-Khinchin Ergodic Theorem) Suppose (M,B, `) is a space with normalized
measure and 5 2 !1((M,B, `)). Then, for almost every (in the sense of the measure `) G 2M, the following
limit exists and holds

lim
=!1

1
=

=�1’
:=0

5 ():�1G) = lim
=!1

1
=

=�1’
:=0

[* :�1 5 ] (G) := 5̄ (G) .

Furthermore,

5̄ (G) 2 !1(M,B, `) and
π
M
5̄ (G)3` =

π
M
5 3` =

1
` (M)

π
M
5 3`

Proof. Check Cornfeld, Fomin, and Sinai [CFS12]. ⇤

In the Birkho�-Khinchin Ergodic Theorem, the limits lim=!1
1
=

Õ=�1
:=0 5 ():�1G) represents the time av-

erage and the integral 1
` (M)

Ø
M 5 3` represents the space average. Since any invariant function is constant

on any set of full measures when the dynamical system is ergodic, 5̄ is constant almost everywhere. There-
fore, one can state the ergodic theorem as follows:

For almost every point G 2M, the time means equals to the space means.

Lastly, under the ergodic setting, one can further show that every eigenvalue of the Koopman operator
*) is of multiplicity 1, and the absolute value of every eigenfunction of*) is constant almost everywhere.
For detailed proof, please refer to chapters 1 and 12 of the Cornfeld, Fomin, and Sinai [CFS12].

2.2 Dynamic Mode Decomposition (DMD) and its variants

Now, we introduce the data-driven algorithms to approximate eigenvalues, eigenfunctions, and Koopman
modes of dynamical systems.
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Dynamic Mode Decomposition (DMD) Based on the Koopman mode analysis, the data-driven method
Dynamic Mode Decomposition (DMD) was originally introduced by Schmid and Sesterhenn [SCH10] in
the �uid mechanics community as a powerful tool for analyzing the dynamics of nonlinear systems. The
DMD can be seen as a variant of a standard Arnoldi method [ROW+09], and it approximates the Koopman
operator by considering the projection onto the �nite-dimensional space and a matrix representation of
them. The matrix representation is calculated as the companion matrix, where the last columns are the co-
e�cients of the least-squares approximation of the last data points. Even though this does not approximate
eigenfunctions, it is still powerful tool for understanding the underlying dynamics by data.

In detail, for �xed 58 2 F i.e. 58 : M ! É, and vector-valued observables � : M ! É< , � =
(51, · · · , 5<)) , consider the cyclic subspace K1 and the Krylov subspace KA with A < 1,

K1 = span{* :� }1:=0,KA = span{* :� }A�1:=0 .

Suppose {* :� }A�1:=0 are linearly independent so that these functions form a basis for KA . For �xed initial
point ?0 2 M, assume input data is the

�
* :�

 A
:=0 which is the trace observations through the vector-

valued observables � . This means that the input trace data - is

- = {G0, G1, · · · , GA�1} = {� (?0), � () (?0)), · · · , � () A (?0))} 2 É<⇥ (A+1) .

Here, consider approximating the projection %A : F< ! KA as the minimizer of the É< norm of the
residual [A de�ned as

[A := GA � %A (GA ) 2 É< .

Since %A (GA ) 2 KA , one can represent %A (GA ) as a linear combination of elements of KA , that is, %A (GA ) =ÕA�1
:=0 2:G: with some coe�cients 2: 2 É. Thus, �nding the projection %A is equivalent to �nding the

coe�cients 2 = (20, · · · , 2A�1)) 2 ÉA such that

2 = argmin
20 2ÉA

�����GA �
A�1’
:=0

2:G:

�����
É<

= argmin
20 2ÉA

kGA � %A (GA )kÉ< = argmin
20 2ÉA

k[A kÉ<

= argmin
20 2ÉA

k [* A� ] (?0) � %A [* A� ] (?0)kÉ< .

For the eigenvalues and Koopman mode on the space KA , since %A* |KA : KA ! KA is a �nite-dimensional
linear operator, it has a matrix representation �A : ÉA �! ÉA in the {* :� }A�1:=0 basis. Write

 A =
�
G0 G1 · · · GA�1

�
2 É<⇥A ,

then GA =  A2 + [A 2 É< . Since*G: = G:+1,

* A =
�
*G0 *G1 . . . *GA�1

�
=

�
G1 G2 . . . GA

�
=

�
G1 G2 . . .  A2 + [A

�
=  A�A + [A4)A ,

where

4A =

©≠≠≠≠≠≠
´

0
0
...
0
1

™ÆÆÆÆÆÆ
¨
2 É<,�A =

©≠≠≠≠≠≠
´

0 0 · · · 0 20
1 0 · · · 0 21
0 1 · · · 0 22
...

... · · ·
...

...
0 0 · · · 1 2A�1

™ÆÆÆÆÆÆ
¨
2 ÉA⇥A .

Since �A is a matrix, consider eigenvalue decomposition �A = + �1⇤+ , then

* A =  A+ �1⇤+ + [A4)A =) * A+
�1 =  A+ �1⇤ + [A4)A + �1.

De�ne ⇢ :=  A+ �1, then
*⇢ = ⇢⇤ + [A4)A + �1.
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Since we are minimizing k[A kÉ< , it is natural to suppose for large A ,
��[A4)A + �1�� is small. Then, *⇢ ⇡

⇢⇤, the columns of ⇢ approximate some eigenvectors of * , and the diagonal elements of ⇤ approximate
some eigenvalues of * . This means, for the 8-th columns of ⇢, F8 , and the 8-th diagonal element of ⇤, _8 ,
F8 approximates q8 (?)⇠8 (� ) and _8 approximates the corresponding eigenvalue of * . Even though {F8}
are not exactly the 8-th Koopman mode ⇠8 (� ), they are considered as the Koopman mode approximation
generated by DMD. A summary of Dynamic Mode Decomposition (DMD) is given in algorithm 1.

Algorithm 1 Dynamic Mode Decomposition (DMD) by Schmid and Sesterhenn [SCH10]

Input: - = (G0, G1, · · · , GA ) where G: = * :� (?0) 2 É< with some initial point ?0 2M .
Output: (⇢,⇤) where ⇢ 2 É<⇥A are the Koopman modes and ⇤ 2 ÉA⇥A are the eigenvalues.
1:  A  

�
G0 G1 · · · GA�1

�
2 É<⇥A .

2: 2  argmin20 2ÉA
��GA �ÕA�1

:=0 2
0
:G:

��

3: �A  

©≠≠≠≠≠≠
´

0 0 · · · 0 20
1 0 · · · 0 21
0 1 · · · 0 22
...

...
...

...
...

0 0 · · · 1 2A�1

™ÆÆÆÆÆÆ
¨
2 ÉA⇥A

4: �A = + �1⇤+ ù eigenvalue decomposition
5: ⇢   A+ �1 2 É<⇥A

The introduced DMD algorithm is comprehensible but is numerically unstable if the inputs are ill-
conditioned [SCH10]. Therefore, DMD is often implemented with the slite modi�cation by using Sin-
gular Value Decomposition (SVD) to make the algorithm numerically stable, and this approach is called
SVD-enhanced DMD [AM17; CTR12]. For calculating matrix representation �A , by de�ning for - =
(G0, G1, · · · , GA�1) and . = (G1, G2, · · · , GA ), �A to be the minimizer of the k�A- � . k. Thus, by using
SVD, one can obtain �A by

�A = * ⇤.+(�1 where - = *(+ ⇤,

and the dynamic mode is E 9 = *F 9 .

Hankel DMD The Hankel DMD is a DMD-type algorithm that was introduced by Arbabi and Mezić
[AM17] and is used when the dynamical system is ergodic. The key idea of the Hankel DMD is the dy-
namic eigenvalues and dynamic modes obtained by applying DMD to the Hankel matrix converge to the
eigenvalues and eigenfunctions of the Koopman operator * . Also, it combines the idea of SVD-enhanced
DMD mentioned above.

Assume F is the Hilbert space !2(M, `). For observables 5 ,6 2 F , denote their trace data from point
I0 2M as

5̃< (I0) =
�
5 (I0) 5 �) (I0) · · · 5 �)<�1(I0)

�) 2 É<
6̃< (I0) =

�
6(I0) 6 �) (I0) · · · 6 �)<�1(I0)

�) 2 É< .
Then, by ergodicity and Birkho�’s theorem (Theorem 2.1), for almost every I0 2 " ,

lim
<!1

1
<
h 5̃< (I0), 6̃< (I0)i = lim

<!1
1
<

<�1’
:=0

5 (): (I0))6(): (I0)) = lim
<!1

1
<

<�1’
:=0

(5 6⇤) (): (I0)) =
π
M
5 6⇤3`

= h5 ,6iF,

where h·, ·i is the vector inner product and h·, ·iF is the functional inner product of the Hilbert space F .
This means, the vector inner product converges to the functional inner product as the number of the
sampled sequence< goes to in�nity.
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Now, consider the Hankel matrix �̃ de�ned as

�̃ :=
©≠≠≠≠
´

5 (I0) * 5 (I0) · · · * = 5 (I0)
* 5 (I0) * 2 5 (I0) · · · * =+1 5 (I0)

...
...

...
...

*<�1 5 (I0) *< 5 (I0) · · · *<+=�1 5 (I0)

™ÆÆÆÆ
¨
=

⇣
5̃< (I0) * 5̃< (I0) · · · * = 5̃< (I0)

⌘
,

where
* : 5̃< (I0) :=

⇣
5 �): (I0) 5 �):+1(I0) · · · 5 �):+<�1(I0)

⌘)
.

In the same way as the DMD, de�ne Krylov subspace along an observable 5 as F= := [5 ,* 5 , · · · ,* = 5 ],
and let : be the dimension of the minimal Koopman-invariant subspace, denoted by F , which contains 5 .
Then the �rst : iterates of 5 under the action of the Koopman operator span F , i.e.,

F = spanF= . (8= � : � 1)

Now apply DMD to the �rst : + 1 columns of �̃ . Since F is a Hilbert space and the last column 2 of the
matrix representation was obtained by the coe�cients of the projection onto F ,

2 =
©≠≠≠≠
´

21
22
...

2:�1

™ÆÆÆÆ
¨
= ⌧�1

©≠≠≠≠
´

h5 ,* : 5 iF
h* 5 ,* : 5 iF

...
h* :�1 5 ,* : 5 iF

™ÆÆÆÆ
¨
,

where ⌧ is the Gramian matrix of the basis given by ⌧8 9 = h* 8�1 5 ,* 9�1 5 iF . Since vector inner product
convergeced to functional inner product, i.e., lim<!1 1

< h 5̃< (I0), 6̃< (I0)i = h5 ,6iF , consider numerical
calculation of 2 denote as 2̃ , which is given by

2̃ =
©≠≠≠≠
´

2̃1
2̃2
...
˜2:�1

™ÆÆÆÆ
¨
= ⌧̃�1

©≠≠≠≠
´

1
< h 5̃<,* : 5̃<i
1
< h* 5̃<,* : 5̃<i

...
1
< h* :�1 5̃<,* : 5̃<i

™ÆÆÆÆ
¨
, ⌧̃8 9 =

1
<
h* 8�1 5̃<,* 9�1 5̃<i.

As it is shown, the averaged inner product converges to the Hilbert space inner product i.e.,
1
<
h 5̃< (I0), 6̃< (I0)i ! h5 ,6iF, ⌧̃8 9 ! ⌧8 9 , lim

<!1
⌧̃�1 =

⇣
lim
<!1

⌧̃
⌘�1

= ⌧�1.

Thus the last column 2 of the matrix representation given by DMD can be calculated as the limit of 2̃ . To
summarize, the Hankel DMD is shown as algorithm 2.

Algorithm 2 Hankel Dynamic Mode Decompotision by Arbabi and Mezić [AM17]

Input: (58 (I8),* 58 (I8), · · · ,*<+=�1 58 (I8)) for 8 2 {1, 2, . . . , ;}.
Output: (⇤,�) eigenvalues and eigenfunctions

1: � 8  
©≠≠≠≠
´

58 (I8) * 58 (I8) · · · * = 58 (I8)
* 58 (I8) * 2 58 (I8) · · · * =+1 58 (I8)

...
...

...
...

*<�1 58 (I8) *< 58 (I8) · · · *<+=�1 58 (I8)

™ÆÆÆÆ
¨

2: U8  k
� 8=+1k
k� 1

=+1k where �
8
=+1 is n+1-th columns of � 8

3: -  (�1,U2�2, · · · ,U;�; )
4: .  (*�1,U2*�2, · · · ,U;*�; )
5: perform SVD; - =,(+̃ ⇤

6: �̃ , ⇤.+̃(�1

7: perform eigenvalue decomposition; �̃ = ⌅�1⇤⌅
8: � ,⌅
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Extended Dynamic Mode Decomposition (EDMD) As introduced, the DMD or Hankel DMD returns
only two terms: dynamic eigenvalues and dynamicmodes. This means that they cannot capture the desired
three terms: eigenvalues, eigenfunctions, and Koopman modes. The Extended Dynamic Mode Decompo-
sition (EDMD), which was introduced by Williams, Kevrekidis, and Rowley [WKR15], addresses this issue
by considering state space observables and approximates not only the eigenvalues and Koopman modes
but also the eigenfunctions of Koopman operator. Note that the Koopman modes correspond to the state
space observable function.

For D = {q1,q2, · · · ,q }, q8 2 F , de�ne, in the same way as the DMD and Hankel-DMD, that FD :=
span{q8} 8=1, and a vector-valued function � as

� : " ! É1⇥ ,�(G) :=
�
q1(G) q2(G) · · · q (G)

�
.

Then, any function 5 2 FD can be written in the form of linear combinations {q8} 8=1, i.e.,

5 =
 ’
8=1

08q8 = �0,

where 0 = (01, · · · ,0 )) 2 É . Thus,

* 5 = * (�0) = (� �) )0.

Note � �) : " ! É1⇥ , [� �) ] (G) = �() (G)) =
�
q1() (G)) q2() (G)) · · · q () (G))

�
. Now, consider

a �nite-dimensional approximation of* , denote it as  ⇢⇡"⇡ 2 É ⇥ . for some residual [ 2 F , we have

* 5 = �( ⇢⇡"⇡0) + [ .

As we did in the DMD,  ⇢⇡"⇡ is de�ned as a minimizer of the residual term [< with !2 loss for each data
(G<,~<), i.e.

 ⇢⇡"⇡ := argmin
 

1
2

"’
<=1

|[< |2 = argmin
 

1
2

"’
<=1

| [* 5 � �( 0)] (G<) |2 .

Here, for the objective � := 1
2
Õ"
<=1 |[< |2,

� =
1
2

"’
<=1

|[< |2 =
1
2

"’
<=1

| [* 5 � �( 0)] (G<) |2 =
1
2

"’
<=1

| [� �) ] (G<)0 � �(G<) ( 0) |2

=
1
2

"’
<=1

| (�() (G<)) � �(G<) ) 0 |2 =
1
2

"’
<=1

| (�(~<) � �(G<) ) 0 |2 .

Since � is convex, it has either a unique global minimum or a continuous family of minimizers, and the
closed form of the solution is well-known as

 ⇢⇡"⇡ = ⌧†�,

where † denotes the pseudo-inverse and ⌧,� 2 É ⇥ are de�ned as

⌧ =
1
"

"’
<=1

�(G<)⇤�(G<),� =
1
"

"’
<=1

�(~<)⇤�(G<) .

Note that ⌧,� can be calculated by �, {G<}"<=1, {~<}"<=1, i.e., by snapshots of states {G<}"<=1, {~<}"<=1
with ~< = ) (G<) and dictionaries of observables D which spans the function space F of the observable
functions 5 2 F .

For approximating eigenvalues and eigenfunctions of * , the eigenvalues and eigenvectors of  ⇢⇡"⇡
can be used. Let _8 , b8 be 8-th eigenvalue and eigenvector of  ⇢⇡"⇡ , respectively, then de�ne

i8 := �b8 .
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With this de�nition, _8 and i8 are approximations of an eigenvalue and the corresponding eigenfunction
of* , respectively, because

*i8 = (� �) )b8 ⇡ �( ⇢⇡"⇡b8) = �(_8b8) = _8 (�b8) = _8i8 .

For the Koopman modes, assumeM ⇢ í# and de�ne the full state observables, 6 : " ! í# , 6(G) = G ,
i.e.,

6(G) =
�
61(G) . . . 6# (G)

�)
=

�
4⇤1G . . . 4⇤#G

�)
,

and consider approximating Koopman modes of this function. Note that if 6 is spanned by the eigenfunc-
tions {i: } :=1 with coe�cients {E: } :=1 where E: 2 í

# , then {E: } :=1 are the Koopman modes with respect
to the function 6 and for the evolution function ) : M !M can be written as

) (G) = ) (6(G)) = 6 �) (G) = [*6] (G) =
 ’
:=1

E: [*i: ] (G) =
 ’
:=1

_:E:i: (G),

i.e., the underlying evolution function) is de�ned only by eigenfunctions, eigenvalues, and the Koopman
modes with respect to the full state observables 6. For notational convenience, de�ne  : M ! É1⇥ such
that

 (G) :=
�
i1(G) i2(G) · · · i (G)

�
,

and denote the corresponding Koopman modes as +6 = (E1, E2, · · · , E ) 2 í#⇥ . Then, by the de�nition
of the Koopman modes,

6 =
 ’
:=1

E:i: = +6 ) .

Further assume that 68 2 FD so that they can be written as the linear combinations of the each element of
the vector-valued observables, namely, 68 =

Õ 
:=1 q:1:,8 = �18 , 18 2 É . Also, de�ne ⌫ = (11,12, · · · ,1 ) 2

É ⇥# and ⌅ = (b1, b2, · · · , b ) 2 É ⇥ . Then, since  = �⌅ =) � =  ⌅�1,

6 = (�⌫)) = ⌫)⌅�) ) ,

By combining the results,
+6 = ⌫)⌅�) .

Note that for obtaining ⌫, one can use the equation G = 6(G) = ⌫)�(G)) . For the input data - =�
G1 G2 · · · G"

�
2 í#⇥" ,

- = ⌫)�(- )) 2 É#⇥" .
Note that the Koopman modes computed using EDMD are equivalent to DMD modes if the dictionary of
observablesD used in EDMD is the scalar observables of the form q8 (G) = 4⇤8 G for 8 = 1, . . . ,# . For details,
please refer to Williams, Kevrekidis, and Rowley [WKR15]. Lastly, a summary of Extended Dynamic Mode
Decomposition (EDMD) is given as algorithm 3.

Algorithm 3 Extended Dynamic Mode Decomposition by Williams, Kevrekidis, and Rowley [WKR15]

Input: (- ,. ,D) where - =
�
G1 G2 · · · G"

�
, . =

�
~1 ~2 · · · ~"

�
,~: = ) (G: ), and D =

{q1,q2, · · · ,q },q: 2 F
Output: ( ,⇤,+6)
1: �(G) :=

�
q1(G) q2(G) · · · q (G)

�
2: ⌧  1

"

Õ"
<=1 �(G<)⇤�(G<)

3: � 1
"

Õ"
<=1 �(G<)⇤�(~<)

4:   ⌧†�
5: ⇤,⌅ eigendecomposition( ) such that  = ⌅�1⇤⌅
6: ⌫  argmin⌫

��⌫)�(- )) � -��
7: +6  (⌅�1⌫))
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measure-preserving extended dynamic mode decomposition (mpEDMD) As mentioned in [Col23],
spectral pollution is a major concern of the EDMD because, for a large number of data snapshot " , the
eigenvalues computed by EDMD corresponds to the �nite selection method [BS83], which can su�er from
spectral pollution. This is problematic, especially if the dynamical system is measure-preserving, such as
Hamiltonian �ows [Arn89], geodesic �ows [DFN85], and ergodic systems [CFS12]. Colbrook introduced
themeasure-preserving extended dynamicmode decomposition (mpEDMD) to overcome the issue [Col23].

Recall, in EDMD, one chooses the matrix representation  ⇢⇡"⇡ as a solution of

argmin
⌫2É ⇥ 

✓π
⌦
k�() (G)) � �(G)⌫k22 3l (G)

◆
,

and it is numerically calculated by the input data (- ,. ,D) where

- =
�
G1 G2 · · · G"

�
,. =

�
~1 ~2 · · · ~"

�
,~: = ) (G: ),D = {q1,q2, · · · ,q },q: 2 F ,

and by quadrature rule

 ⇢⇡"⇡ 2 argmin
⌫2É ⇥ 

 
"’
<=1

F< k�(~<) � �(G<)⌫k22

!
.

Note that in the original EDMD,F< are de�ned to be the equal weight, i.e. F< = 1
" for all< 2 {1, 2, . . . ,"}.

The solution is given by  ⇢⇡"⇡ = ⌧†� where ⌧ = 1
"

Õ"
<=1 �(G<)⇤�(G<),� = 1

"

Õ"
<=1 �(G<)⇤�(~<),

with �(G) :=
�
q1(G) q2(G) · · · q (G)

�
. By de�nition, (⌧):,; = 1

"

Õ"
<=1 q: (G<)q; (G<). Therefore, if

quadrature approximation converges, then similar to the Hankel-DMD case,

lim
"!1

(⌧):,; = lim
"!1

1
"

"’
<=1

q: (G<)q; (G<) = lim
"!1

1
"

"’
<=1
hq; (G<),q: (G<)i = hq; ,q:iF .

Analogously, lim"!1(�):,; = h*q; ,q:iF . In this case, for any function 5 2 F , with k 5 k = 1, its EDMD
approximation is given by 5 0 2 FD with 5 0 =

Õ 
8=1 08q8 = �0 where 0 = (01, · · · ,0 )) 2 É and k 5 0 k = 1.

Now, for the matrix representation of the Koopman operator ⌫ 2 É ⇥ , k 5 0 k2 = k�0k2 ⇡ 0⇤⌧0 =
���⌧ 1

20
���2

and k�⌫0k ⇡ 0⇤⌫⇤⌧⌫0. Since ⌫ is an isometry on the space !2(M, `), mpEDMD considers the matrix
representation  <?⇢⇡"⇡ which satis�es

0⇤⌧0 = 0⇤ ⇤<?⇢⇡"⇡⌧ <?⇢⇡"⇡0,80 2 É ,  ⇤<?⇢⇡"⇡⌧ <?⇢⇡"⇡ = ⌧ .

Thus, the  <?⇢⇡"⇡ is de�ned as the solution of

argmin
⌫2É ⇥ ,⌫⇤⌧⌫=⌧

✓π
⌦

����() (G))⌧� 1
2 � �(G)⌫⌧� 1

2

���2
2
3l (G)

◆
,

and by the quadrature rule,

 <?⇢⇡"⇡ 2 argmin
⌫2É ⇥ ,⌫⇤⌧⌫=⌧

 
"’
<=1

F<
����(~<)⌧� 1

2 � �(G<)⌫⌧�
1
2

���2
2

!
.

By letting ⌫ = ⌧�
1
2⇠⌧

1
2 for some ⇠ 2 É ⇥ ,  <?⇢⇡"⇡ = ⌧�

1
2⇠⌧

1
2 with

⇠ 2 argmin
⇠2É=⇥=,⇠⇤⇠=�

���, 1
2�(. )⌧� 1

2 �, 1
2�(- )⌧� 1

2⇠
���2
�
,

where

, =
©≠≠≠≠
´

F1 0 . . . 0
0 F2 . . . 0
...

...
. . .

...
0 0 . . . F"

™ÆÆÆÆ
¨
2 É"⇥" ,�(- ) =

©≠≠≠≠
´

�(G1)
�(G2)

...
�(G" )

™ÆÆÆÆ
¨
2 É"⇥ ,�(. ) =

©≠≠≠≠
´

�(~1)
�(~2)

...
�(~" )

™ÆÆÆÆ
¨
2 É"⇥ .
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This problem is known as the orthogonal Procrustes problem [Sch66]. Recall for

' = argmin
&,&⇤&=�

k&� � ⌫k2� ,

the solution is given by ' = *+ ⇤ with the singular value decomposition ⌫�⇤ = * ⌃+ ⇤. Noting that

k�k2� = k�⇤k2� , ⇠ 2 argmin⇠2É ⇥ ,⇠⇤⇠=�
���⇠⇤ ⇣, 1

2�(G<)⌧�
1
2

⌘⇤
�

⇣
,

1
2�(~<)⌧�

1
2

⌘⇤���2
�
. Thus, ⇠⇤ = *1* ⇤2

with singular value decomposition

*1⌃*
⇤
2 =

⇣
,

1
2�(~<)⌧�

1
2

⌘⇤ ⇣
,

1
2�(G<)⌧�

1
2

⌘
= ⌧�

1
2�(~<)⇤,�(G<)⌧�

1
2 = ⌧�

1
2�⇤⌧�

1
2 .

Note that since  <?⇢⇡"⇡ is unitary similar to a unitary matrix, it is also a unitary matrix, and thus its
eigenvalues have absolute value 1. To summarize, we get the algorithm 4, measure-preserving Extended
Dynamic Mode Decomposition.

Algorithm 4 measure-preserving Extended Dynamic Mode Decomposition by Colbrook [Col23]

Input: (- ,. ,D) where - =
�
G1 G2 · · · G"

�
, . =

�
~1 ~2 · · · ~"

�
,~: = ) (G: ), and D =

{q1,q2, · · · ,q },q: 2 F .
Output: ( ,⇤,+6)
1: �(G) :=

�
q1(G) q2(G) · · · q (G)

�
2: ⌧  1

"

Õ"
<=1 �(G<)⇤�(G<)

3: � 1
"

Õ"
<=1 �(G<)⇤�(~<)

4: *1, (,*2  svd(⌧�1/2�⇤⌧�1/2) i.e. *1(* ⇤2 = ⌧�1/2�⇤⌧�1/2 ù Singular Value Decomposition
5: +̄ ,⇤ eig(*2* ⇤1 ) i.e. *2* ⇤1 = +̄⇤+̄ ⇤ ù Eigenvalue Decomposition
6:   ⌧�1/2*2* ⇤1⌧

1/2

7: +  ⌧�1/2+̄

2.3 Eigenvalue problem

As it is introduced, DMD-type algorithms approximate the eigenvalues and eigenfunctions of the Koopman
operator by the eigenvalues and eigenvectors of the matrix representation of them. Therefore, we review
the methods for �nding eigenvalue and eigenvectors of a matrix. Recall, for a square matrix� 2 É=⇥= , the
eigenvalue problem is the determination of nontrivial solutions of

�E = _E,

where E 2 É= and _ 2 É. Since the above equation has a nonzero solution E if and only if the determinant of
(��_� ) is zero with some _, the eigenvalues _ are calculated by the solution of the characteristic equation
de�ned as

det (� � _� ) = 0.

If the matrix � is diagonalizable, then � can be factorized as

� = +⇤+ ⇤,

where ⇤ is a diagonal matrix whose diagonal elements are eigenvalues, and each column vector of + are
eigenvectors corresponding to the eigenvalues. Note that the following explanation is mainly based on
Stoer and Bulirsch [SB10].

Power iteration The power iteration (or power method) is one of the most intuitive methods for �nding
the eigenvector of amatrix. Since the foundation is back in a century, it is di�cult tomentionwho invented
this approach. Nonetheless, Golub and van der Vorst mention the algorithm stems from the contribution
of Müntz [GV00].
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For detail, write the eigenpair of� 2 É=⇥= as (_1, E1), (_2, E2), . . . (_=, E=) and assume |_1 | > |_2 | � · · · �
|_= |. Then for @ =

Õ=
8=1 28E8 2 É= , its easy to see that

1
|_1 |<

�<@ =
=’
8=1

28
�<E8
|_1 |<

=
=’
8=1

✓
_8
|_1 |

◆<
28E8 ! 21E1(< !1).

Note that
⇣
_8
|_1 |

⌘<
! 0 if 8 < 1 due to |_8 |

|_1 | < 1. Therefore, the convergence of this algorithm is linear with

respect to the ratio |_2 |
|_1 | . Also, note that the initial vector @ should not be orthogonal to E1. If this happens,

the power iteration �nds the eigenvector with respect to the second-largest eigenvalue (again, if they are
not orthogonal to each other). In the numerical algorithm, the initial vector @ is chosen to be a random
vector, which has a small chance of being orthogonal to the largest vector. Note that one uses k�<@k as
the denominator as we often do not know the largest eigenvalue _. The power iteration is summarized in
the algorithm 5.

Algorithm 5 Power iteration

Input: A matrix � 2 É=⇥= and number of iteration # 2 é
Output: E 2 É such that �E = _E with largest eigenvalue _.
1: De�ne E 2 É be some random vector.
2: :  1
3: while k < N do
4: E:  �E
5: E  E:

kE: k
6: :  : + 1
7: end while

However, in our case, since the matrix representation is unitary and all eigenvalue has absolute value
1, i.e., |_1 | = |_2 | = · · · = |_= |, the assumption |_1 | > |_2 | � · · · � |_= | does not hold. One way to overcome
this issue is the so-called shift technique.

Eigenvalue shift For � 2 É=⇥= and its eigenpair (_, E), consider the eigenpair of � � f� , then

(� � f� )E = �E � fE = _E � fE = (_ � f)E .

This means that (_ � f, E) is the eigenpair of � � f� . In other words, the matrix � � f� has the same
eigenvector as � while having a di�erent eigenvalue. By using this technique, one can enforce |_8 | <
|_ 9 |, 8 < 9 for the eigenvalues of a unitary operator, and it allows us to �nd the eigenvector of a unitary
matrix with power iteration. For the fast convergence, one needs to set f such that |_�f | � |_0 �f |,8_0 <
_, however, this is di�cult since one does not know the exact value of all eigenvalues. Instead, assume
one can obtain the smallest eigenvalue, i.e., _= of |_1 | > |_2 | � · · · � |_= |, then one can set f as a good
approximation of _ and can make |_ � f | ⌧ |_0 � f |,8_0 < _. To obtain the eigenvector corresponding to
the smallest eigenvalue _= , the inverse iteration is used.

Inverse iteration The inverse iteration is simply the power iteration for the inverse of the originalmatrix.
Again, assume a matrix � 2 É=⇥= has its eigenpairs {(_8 , E8)}=8=1 such that |_1 | � · · · � |_=�1 | > |_= |. If
��1 exists, then

�E8 = _8E8 =) ��1�E8 = _8��1E8 =) 1
_8
E8 = ��1E8 .

Therefore ��1 has eigenvalues 1
_=
, 1
_=�1

, . . . , 1
_1

and corresponding eigenvectors E=, E=�1, . . . , E1. One can
observe 1

|_= | > 1
|_=�1 | � · · · � 1

|_1 | , and therefore, by the same way as the power iteration, for some
E =

Õ=
8=1 28E8 2 É= , especially 2= < 0,

|_= |<��<E ! E= (< !1).
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This means the inverse iteration converges to the eigenvector corresponding to the eigenvalue with the
smallest absolute value. Thus, as it is explained in the shift technique, one can consider the shift with f
which is a good approximation of one eigenvalue _ such that |_ � f | ⌧ |_0 � f |, i.e. 1

|_�f | �
1

|_0�f | and
�nd the eigenvector of unitary matrix corresponding to the eigenvalue. There is also a variant of inverse
iteration called Rayleigh quotient iteration [SB10], which updates f each step. Rayleigh quotient iteration
can be used if the matrix is Hermitian and converses faster than the inverse iteration.

Algorithm 6 Inverse iteration with shift technique

Input: A matrix � 2 É=⇥= , eigenvalue approximation f , and number of iteration # 2 é
Output: E 2 É such that �E = _E with eigenvalue _ which closest to f .
1: De�ne E 2 É be some random vector.
2: :  1
3: while k < N do
4: E:  (� � f� )�1E
5: if kE: k < Y then
6: :  # ù �nish iteration if the norm is almost 0
7: else
8: E  E:

kE: k
9: :  : + 1
10: end if
11: end while

Lanczos algorithm The Lanczos algorithm is introduced by Lanczos [Lan50], and is an adaptation of
power methods to �nd �rst <  = di�erent eigenvectors and eigenvalues. This algorithm also works
for converting a Hermitian matrix to be tri-diagonal form, which is desirable for later-introduced QR
decomposition (Algorithm 9) for the eigendecomposition.

For a matrix � 2 É=⇥= , assume there exists an unitary matrix * =
�
D1 D2 . . . D=

�
2 É=⇥= and

tri-diagonal matrix ⌫ 2 É=⇥= such that
⌫ = * ⇤�* .

Since � is Hermitian, ⌫ is also Hermitian as it is unitary similar to �. Thus, ⌫ can be represented as

⌫ =

©≠≠≠≠≠≠≠
´

U1 V1 0 . . . 0
V1 U2 V2 . . . 0

0 V2 U3
. . .

...
...

...
...

. . . V=�1
0 0 . . . V=�1 U=

™ÆÆÆÆÆÆÆ
¨

.

Now, rewrite the relationship as �* = *⌫, then
�
�D1 �D2 . . . �D=

�
= �* = *⌫ =

�
U1D1 + V1D2 V1D1 + U2D2 + V2D3 . . . V=�1D=�1 + U=D=

�
.

This implies 8>>><
>>>:

�D1 = U1D1 + V1D2,
�D8 = V8�1D8�1 + U8D8 + V8D8+1 (1 < 8 < =),
�D= = V=�1D=�1 + U=D= .

Since D⇤8 D 9 =

(
1 if 8 = 9

0 if 8 < 9
, by multiplying D⇤8 from left side to the 8-th equation,

D⇤8�D8 = V8�1D
⇤
8 D8�1 + U8D⇤8 D8 + V8D⇤8 D8+1 = U8 .
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Further, assuming D8�1,D8 ,U8 , V8�1 is known, by

E8+1 := V8D8+1 = �D8 � V8�1D8�1 � U8D8 , kD8+1k = 1 =) V8 = kE8+1k.

Note that V1 = k�D1 � U1D1k by the �rst equation. Lastly, by the above equation,

D8+1 =
1
V8
E8+1.

Thus, starting from some vector D1 2 É= such that kD1k = 1, the terms D8 ,U8 , V8 can be calculated one
after another, and therefore, the unitary matrix* and the tri-diagonal matrix ⌫ can be obtained. Also, note
that since V8D8+1 = �D8 � V8�1D8�1 � U8D8 , each column vector corresponds to each step of power iteration
vectors, namely, they correspond to the Krylov subspaceK= = span

�
D1,�D1,�2D1, . . . ,�=�1D1

 
while they

are modi�ed to be orthogonal to each other. Furthermore, the Krylov subspace stores mid-term results of
the power iteration, whereas that information is ignored in the power iteration. This enables e�cient
eigenvector calculation. Moreover, the iteration can be stopped in the desired step<  =. Although the
algorithm does not produce tri-diagonal factorization if < < =, it works for �nding < di�erent useful
eigenvectors. A summary of the Lanczos algorithm is shown in the algorithm 7.

Algorithm 7 Lanczos algorithm

Input: A matrix � 2 É=⇥= , and number of iteration # 2 é
Output: ⌫ 2 É=⇥= and* 2 É=⇥= where ⌫ = * ⇤�* and ⌫ is tri-diagonal and* is unitary.
1: Initialize D1 2 É= as random vector with kD1k = 1.
2: U1  D⇤1�D1.
3: E2  �D1 � U1D1
4: :  2
5: while :  # do
6: V:�1  kE: k
7: D: = 1

V:�1
E:

8: U:  D⇤:�D:
9: E:+1  �D: � V:�1D:�1 � U:D:
10: end while
11: *  

�
D1 D2 . . . D=

�

12: ⌫ =

©≠≠≠≠≠≠≠
´

U1 V1 0 0 . . . 0
V1 U2 V2 0 . . . 0

0 V2 U3
. . .

. . .
...

...
...

. . .
. . .

. . . V=�1
0 0 . . . 0 V=�1 U=

™ÆÆÆÆÆÆÆ
¨

Arnoldi iteration The Arnoldi iteration is introduced by Arnoldi [Arn51] and is an extension of the
Lanczos algorithm for the non-Hermitian matrix. As it is introduced in the DMD section, this algorithm
plays a crucial role in the DMD algorithm derivation.

Consider a similar technique as the Lanczos algorithm, but let� 2 É=⇥= be the upper Hessenbergmatrix
instead of the tri-diagonal matrix as the matrix � is non-Hermitian.

� =

©≠≠≠≠≠≠≠
´

U1 V1 W1 . . .
⌫1 U2 V2 W2 . . .

0 ⌫2 U3 V3 . . .
...

...
...

. . .
... . . . V=�1

0 0 . . . 0 ⌫=�1 U=

™ÆÆÆÆÆÆÆ
¨
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Similar to the Lanczos algorithm, for a unitary matrix * =
�
D1 D2 . . . D=

�
2 É=⇥= , the relationship

�* = *⌫ implies 8>>>>>><
>>>>>>:

�D1 = ⌫1D2 + U1D1
�D2 = ⌫2D3 + U2D2 + V1D1

...

�D= = U=D= + V=�1D=�1 + W=�2D=�2 . . . .

Again, starting with random vector D1 2 É= with kD1k = 1, by orthonormality of each column vectors of
* , D⇤1�D1 = U1, E2 := ⌫1D2 = �D1 �U1D1, and ⌫1 = kE2k. For : > 1,�D: = ⌫:D:+1 +U:D: + V:�1D:�1 + . . . , by
considering (⌫) 9,: = D 9�D: for 1  9  : , and E:+1 := ⌫:D:+1 = �D: + U:D: + V:�1D:�1 + . . . , ⌫: = kE:+1k.
Thus, each variable can be calculated iteratively. A summary of the Arnoldi iteration is given in algorithm
8.

Algorithm 8 Arnoldi iteration

Input: A matrix � 2 É=⇥= , and number of iteration # 2 é
Output: * 2 É=⇥# and � 2 É#⇥# where � = &⇤�& and � is upper Hessenberg.
1: Initialize � 2 É#⇥# with zero matrix.
2: Initialize D1 with random vector with kD1k = 1.
3: :  1
4: while : < # do
5: 9  1
6: while 9  : do
7: � 9,:  D⇤9�D:
8: end while
9: E:+1  �D: �

Õ:
;=1�:,;D;

10: �:+1,:  kE:+1k
11: D:+1  1

kE:+1 k E:+1
12: end while
13: *  

�
D1 D2 . . . D=

�

QR algorithm As introduced in [Wat08] and [Wat82], the QR algorithm is one of the most useful algo-
rithms to �nd eigenvalues (and eigenvectors) of a matrix. This algorithm is closely related to the power
iteration (algorithm 5) or inverse iteration (algorithm 6). Note that this algorithm produces an upper tri-
angular matrix whose diagonal elements are the eigenvalue of the original matrix. However, the column
vectors of the corresponding unitary matrix are not eigenvectors. In other words, this algorithm produces
Schur decomposition, not eigendecomposition. Also, note that we often refer to this algorithm later in the
main part.

Before introducing the QR algorithm, we introduce QR decomposition as it is the core of the QR algo-
rithm. The QR decomposition states that for any square matrix � 2 É=⇥= , it can be decomposed as

� = &',

where& is an unitary matrix and ' is an upper triangular matrix. If� is invertible, then the factorization is
unique if the diagonal elements of ' is enforced to be positive. To perform such decomposition, the Gram-
Schmidt process or Householder transformation (Householder re�ection) can be used, and the latter is
often used due to its numerical stability.

First, we introduce the QR decomposition with the Gram-Schmidt process, which is numerically unsta-
ble but intuitive. Remember that the vector projection of 0 onto D, denoted as projD (0), is de�ned as

projD (0) =
hD,0i
hD,DiD .
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For a matrix � =
�
01 02 . . . 0=

�
2 É=⇥=,08 2 É= , consider applying Gram-Schmidt process to 08 :

D1 = 01 41 =
D1
kD1k

D2 = 02 � projD1 (02) 42 =
D2
kD2k

...

D= = 0= �
=�1’
:=1

projD: (0=) 4= =
D=
kD= k

.

Note {D8} are orthogonal and {48} are orthonormal. Also, note that h48 ,08i = kD8 k because h48 ,08i =
1
kD8 k (hD8 ,D8 �

Õ8
:=1 projD: (08)i) = 1

kD8 k hD8 ,D8i = kD8 k. Now, by using orthonormal basis {48}, 08 can be
written as

08 =
8’
:=1

h4: ,08i4: .

Therefore,

� = &', where & =
�
41 42 . . . 4=

�
,' =

©≠≠≠≠
´

h41,01i h41,02i . . . h41,0=i
0 h42,02i . . . h42,0=i
...

... . . .
...

0 0 . . . h4=,0=i

™ÆÆÆÆ
¨
.

However, as introduced, this algorithm is not numerically stable if the columns of the matrix � are nearly
linearly dependent. For details, please refer to Stoer and Bulirsch [SB10] (p229). Therefore, QR decompo-
sition is often done with Householder transformation thanks to its numerical stability.

Householder transformation was introduced by Householder [Hou58] and is a linear transformation of
a re�ection at a hyperplane. The hyperplane can be represented as the normal vector, which is a vector
F 2 É= with kF k = 1 and orthogonal to the hyperplane. Now, the Householder matrix � 2 É=⇥= is
de�ned as

� := � � 2FF⇤.

This matrix is Hermitian and unitary, since � ⇤ = � � 2(FF⇤)⇤ = � � 2(FF⇤) = � and �� ⇤ = � 2 =
(� � 2(FF⇤))2 = � � 4FF⇤ + 4(FF⇤) (FF⇤) = � . The idea of the QR decomposition with Householder
transformation is de�ning the Householder matrix such that it transforms (projects) the �rst column of
the given matrix onto the �rst coordinate. By repeating this procedure, since the Householder matrix is
Hermitian and unitary, the resulting matrix is upper triangular with the corresponding unitary matrix.

For detail, for a vector G =
�
G1 G2 . . . G=

�) 2 É= , consider de�ning the hyperplane (= the parameter
F ) such that

�G = U41,

where U 2 É and 41 =
�
1 0 . . . 0

�) . In other words, de�ning the hyperplane transforms the vector G
onto the �rst coordinate. Such parameters can be determined as

F =
G � U41
kG � U41k

,U = �48arg(G1 ) kG k .

For detail, check Stoer and Bulirsch [SB10] (p225). Therefore, de�ne �1 for 01, then

�1� =
©≠≠≠≠
´

U1 G . . . G
0 G . . . G
...

... . . .
...

0 G . . . G

™ÆÆÆÆ
¨
:=

✓
U1 G
0 �̄2

◆
.
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Note that G just represents some number and does not mean they are the same. For �̄2 2 É(=�1)⇥ (=�1) ,
one can again consider the Householder transformation �̄2 2 É(=�1)⇥ (=�1) such that

�̄2�̄2 =
©≠≠≠≠
´

U2 G . . . G
0 G . . . G
...

... . . .
...

0 G . . . G

™ÆÆÆÆ
¨
:=

✓
U2 G
0 �̄3

◆
.

Therefore, de�ne �2 :=
✓
�1 0
0 �̄2

◆
, then

�2�1� =

©≠≠≠≠≠≠
´

U1 G G . . . G
0 U2 G . . . G
0 0 G . . . G
...

...
... . . .

...
0 0 G . . . G

™ÆÆÆÆÆÆ
¨
.

By repeating procedure with�: :=
✓
�:�1 0
0 �̄:

◆
,�= . . .�1� := ' becomes an upper triangular matrix. Since

�: are Householder matrices, they are unitary. Thus,& := (�= . . .�1)⇤ is also unitary, and one obtains the
QR decomposition � = &' where & is unitary and ' is an upper triangular matrix. A summary of the QR
decomposition with Householder transformation is given in algorithm 9.

Algorithm 9 QR decomposition with Householder transformation

Input: A matrix � =
�
01 02 . . . 0=

�
=

©≠≠
´

01,1 01,2 . . . 01,=
...

...
...

...
0=,1 0=,2 . . . 0=,=

™ÆÆ
¨
2 É=⇥=,08 2 É= .

Output: An unitary matrix & 2 É=⇥= and an upper triangle matrix ' 2 É=⇥= such that � = &'.
1: :  1
2: while :  = do
3: �̄: =

�
0̄: 0̄:+1 . . . 0̄=

�
2 É(=�: )⇥ (=�: ) where 0̄; =

�
0:,; 0:+1,; . . . 0=,;

�)
,:  ;  =

4: U  �48arg(0:,: ) k0̄: k
5: D:  0̄: � U4̄1
6: F:  D:

kD: k
7: �̄:  �=�:+1 � 2FF⇤

8: �:  
✓
�:�1 0
0 �̄:

◆
9: :  : + 1
10: end while
11: &  (�= . . .�1)⇤
12: '  �= . . .�1�

Now, we introduce the QR algorithm. For the initial matrix �1, de�ne a matrix �2 as �2 = '1&1 where
�1 = &1'1 is the QR decomposition given by one of the above-mentioned algorithms. By de�nition,
�2 = '1&1 = &⇤1�1&1, and as & is unitary, �1 and �2 are unitary similar. Thus, they have the same
eigenvalues. By repeating this procedure,

�=+1 = %⇤=�1%=, where %= = &1&2 . . .&= .

Since %= is a product of unitary matrices, it is again a unitary matrix. Hence,�=+1 and�1 are again unitary
similar, and they have the same eigenvalues. Note that for *= = '='=�1 . . .'1, by �=+1 = %⇤=�1%= =)
%=�=+1 = �1%= . Therefore,

%=*= = &1 . . .&=�1�='=�1 . . .'1 = �1&1 . . .&=�1'=�1 . . .'1 = · · · = (�1)= .
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Now, we introduce a brief sketch of the convergence analysis. For detailed proof, please check Stoer and
Bulirsch [SB10] (p422). Assuming �1 has = distinct eigenvalues _: with |_1 | > |_2 | > · · · > |_= | and has
the eigendecomposition �1 = +⇡+ ⇤ where+ is unitary and ⇡ is diagonal (and thus has inverse). The key
of the proof is the LR decomposition of !' = + ⇤ with a lower triangular matrix ! and an upper triangular
matrix ' where the diagonal element of ! is 1, which introduces

(�1)8 = +⇡8+ ⇤ = +⇡8!' = + (⇡8!⇡�8)⇡8'.

Here, the term (⇡8!⇡�8) is a multiplication of lower triangular matrices, thus again lower triangular with
the values

(⇡8!⇡�8) =

©≠≠≠≠≠≠≠≠
´

⇣
_1
_1

⌘8
;11 0 . . . 0⇣

_2
_1

⌘8
;21

⇣
_2
_2

⌘8
;22 . . . 0

...
...

. . .
...⇣

_=
_1

⌘8
;=1

⇣
_=
_2

⌘8
;=2 . . .

⇣
_=
_=

⌘8
;==

™ÆÆÆÆÆÆÆÆ
¨

=

©≠≠≠≠≠≠
´

1 0 . . . 0 0⇣
_2
_1

⌘8
;21 1 . . . 0 0

...
...

. . .
...

...⇣
_=
_1

⌘8
;=1

⇣
_=
_2

⌘8
;=2 . . .

⇣
_=
_=�1

⌘8
;==�1 1

™ÆÆÆÆÆÆ
¨
.

By the same reason as power iteration and inverse iteration, since |_: | > |_ 9 | for : < 9 ,
⇣
_=
_=�1

⌘8
! 0

as 8 ! 1, and thus lim8!1 ⇡8!⇡�8 = � . Combined with the property (�1)= = %=*= , one can show
�8 converges to the upper triangular matrix. Therefore, the convergence determined by the ratio |_: |

|_ 9 | is
equivalent to the power iteration and inverse iteration. Note that the QR algorithm is, in fact, equivalent
to the simultaneous iteration starting with 41, 42, . . . , 4= where 48 is the 8-th unit vector. Remember that
simultaneous iteration is an extension of the power iteration applied to the :-dimensional subspace S:
and �nds : eigenvectors corresponding to the : largest eigenvalues. Therefore, one can observe the QR
algorithm to be an extension of power iteration. If �1 is a symmetric (Hermitian) matrix, �= converges
to the diagonal matrix, and therefore &�=&⇤ converges to the eigendecomposition. For a non-Hermitial
matrix, if �1 is non-singular and the eigenvalues satisfy |_1 | > |_2 | > · · · > |_= |, it converges to the upper
triangularmatrix. Thus,&�=&⇤ converges to the Schur form of thematrix. Note that theQR decomposition
is unique up to rescaling of the columns/row vector of & by phase factor f = 48q , |f | = 1.

Algorithm 10 QR Algorithm

Input: A matrix � 2 É=⇥= , eigenvalue approximation f , and number of iteration # 2 é
Output: ⇤ 2 É=⇥= and + 2 É=⇥= where +⇤+ ⇤ = � and diagonal elements of ⇤ are eigenvalues.
1: :  1
2: while not converge do
3: &: ,':  QR decomposition(�: )
4: �:+1  ':&:
5: :  : + 1
6: end while
7: ⇤ �:
8: + = &:&:�1 . . .&1

Note, however, that this method is expensive for the dense matrix. Completing the 8-th step for = ⇥ =
matrix, it requires O(=3) operations. Moreover, the convergence is very slow if | _8_ 9 | ⇡ 1 by the same reason
as power iteration or inverse iteration. As for the remedy of the �rst issue, the QR algorithm is applied only
for the Hessenberg matrix or the tri-diagonal matrix for the Hessenberg matrix. For such matrices, the 8-th
step of the QR algorithm only takes O(=2) operations. Di�erent algorithms are used to make the original
matrix in such adequate form, such as the Arnoldi iteration and the Lanczos algorithm introduced above.
For the second issue, remember that the column vectors of the QR decomposition can be interpreted as
the inverse iteration, as mentioned in the convergence analysis of the QR algorithm. Therefore, the shift
techniques make the convergence faster. This is the idea of an implicit shifted QR algorithm.
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Implicit shifted QR algorithm Now, one considers QR decomposition for �8 � :8� = &8'8 and de�ne
�8+1 := '8&8 + :8� with some parameter :8 . By de�nition,

�8+1 = '8&8 + :8� = (&⇤8�8 � :8&⇤8 )&8 + :8� = &⇤8�8&8 ,

i.e., �8+1 is unitary similar to �8 . Again, de�ne %= = &1&2 . . .&= and *= = '='=�1 . . .'1, then %= is an
unitary matrix and �=+1 = %⇤=�1%= implies �=+1 and �1 are unitary similar having the same eigenvalues.
Furthermore, by �=+1 = %⇤=�1%= =) %=�=+1 = �1%= , one obtains

%=*= = &1 . . .&=�1&='='=�1 . . .'1

= &1 . . .&=�1(�= � :=� )'=�1 . . .'1
= �1&1 . . .&=�1'=�1 . . .'1 � :=&1 . . .&=�1'=�1 . . .'1 (* %=�1�=*=�1 = �1%=�1*=�1)
= (�1 � :=� )&1 . . .&=�1'=�1 . . .'1
...

= (�1 � :=� ) (�1 � :=�1� ) . . . (�1 � :1� ) .

Now, one needs to consider how the 8-th shift parameter :8 should be determined. Remember, with
the inverse iteration, the shift parameter is chosen as the good approximation of the eigenvalue such that
| _;�:8_9�:8 | ⌧ 1 for all ; < 9 . There are three well-known strategies to choose shift parameter :8 : (1) The
Rayleigh shift (R-shift), (2) The Wilkinson shift (W-shift), and (3) The mixed shift (M-shift). Recall in the
convergence analysis, the last diagonal element converges to the smallest eigenvalue as 8 becomes large.
Therefore, the R-shift set

:8 := 08=,=
where 08=,= is the last diagonal element of �8 . The W-shift also takes into account the case where a matrix
having eigenvalues |_8 |  |_8+1 | instead of strict inequality by de�ning :8 to be the eigenvalue of the 2 ⇥ 2
matrix  

0 (8 )=�1,=�1 0 (8 )=�1,=
0 (8 )=,=�1 0 (8 )=,=,

!
,

for which |0 (8 )=,= � _ | is the smallest. The M-shift is the combination of the R-shift and the W-shift, which
uses one of the shift strategies based on the parameter and the 2⇥2matrix values. With the shift technique,
one can prove that the convergence is cubic. For detailed proof, check Stoer and Bulirsch [SB10] (p430). A
summary of the implicit shifted QR algorithm is given in algorithm 11.

Algorithm 11 implicit shifted QR Algorithm

Input: A matrix � 2 É=⇥= , eigenvalue approximation f , and number of iteration # 2 é
Output: ⇤ 2 É=⇥= and + 2 É=⇥= where +⇤+ ⇤ = � and diagonal elements of ⇤ are eigenvalues.
1: :  1
2: while not converge do
3: _:  Shi� technique
4: &: ,':  QR decomposition(�: � _: � )
5: �:+1  ':&: + _: �
6: :  : + 1
7: end while
8: ⇤ �:
9: + = &:&:�1 . . .&1

Implicit shifted QR algorithm for unitary Hessenberg matrix Recall that the 8-th step of the QR algo-
rithm for a Hessenberg matrix � 2 É=⇥= takes O(=2) operations. Gragg [Gra86; WG02] introduced for a
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unitary Hessenberg matrix, one can perform this process just in O(=) operations by using the so-called
Schur parametrization of �, which is based on Schur’s work [Sch18].

Assume that� is transformed to upper Hessenberg matrix* 2 É=⇥= with positive subdiagonal element
{f8}=8=1 by, for example, the Householder transformation. Then, * can be factorized into a product of =
unitary matrices called Schur parametric form of* :

* = * (W1,W2, . . .W=) = ⌧1(W1)⌧2(W) . . .⌧3(W),

where 8>>>>>>>>>>><
>>>>>>>>>>>:

⌧: := ⌧: (W: ) =
©≠≠≠≠≠
´

�:�1 0 0

0

"
�W: f:
f: W̄:

#
0

0 0 �=�:�1

™ÆÆÆÆÆ
¨
, |W: |2 + f2: = 1 for 1  : < =

⌧= := ⌧= (W=) =
 
�=�1 0
0 �W=

!
, |W= |2 = 1.

For detailed proof, check Gragg [Gra86]. By using this parameterization, one can represent the original
matrix* as

* =

©≠≠≠≠≠≠≠
´

�W̄0W1 �W̄0f1W2 . . . �W̄0f1f2 · · ·f=�1W=
f1 �W̄1W2 . . . �W̄1f2 · · ·f=�1W=
0 f2 . . .

...
...

. . .
. . .

...
0 . . . . . . �W̄=�1W=

™ÆÆÆÆÆÆÆ
¨

,

where W0 := 0 and (* ):; := D:; = �W̄:�1f:f:+1 · · ·f;�1W; for : < ; .
Now, consider the 8-th step of the implicit shifted QR algorithm with shift _8 , let �8 be an upper Hes-

senberg matrix with positive subdiagonal element, and consider the QR decomposition �8 � _8� = &8'8
with unitary matrix &8 and upper triangular matrix '. Recall the 8-th step of the shifted QR algorithm is
�8+1 = &⇤8�8&8 . By the relationship and upper triangularity of '8 , the unitary matrix &8 is also an upper
Hessenberg matrix with positive subdiagonal elements. Thus, it can be represented in the Schur paramet-
ric form. Therefore, �8+1 is also an upper Hessenberg matrix with positive subdiagonal elements except
the last subdiagonal element, which can be zero. In both cases, the resulting matrix �8+1 can be repre-
sented in the Schur parametric form, and Gragg showed their parameters can be determined by the Schur
parameters of �8 and the shift parameter _8 in O(=) operation.
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3 Exponential algorithms for mpEDMD

Summary of the settings of this thesis Now, we introduce our approach. Again, the main idea of our
approach is integrating the proposition 2.1 of the Koopman operator into eigensolver for the Koopman
matrix representation, especially for DMD-type algorithms. Recall this proposition allows us to obtain
eigenpair just by taking the product (_1_2,i1i2) or exponential (_

?
1 ,i

?
1 ) with ? 2 í+ (or ? 2 í if the

eigenfunction vanish nowhere) of some already found eigenpairs (_1,i1), (_2,i2) of the Koopman operator
* . Note that this proposition is valid for the eigenpairs (eigenvalues and eigenfunctions) of the original
Koopman operator* but it might not be true for the eigenpairs (eigenvalue and eigenvectors) of the matrix
representation because the eigenvector, which corresponds to the eigenfunction i? , might not be on the
projected space.

We consider the ergodic systems, where the time average equals the space average. The ergodic system
is denoted as (M,B, `,) ) and is de�ned by the state space M which is measurable with a f-algebra B,
the normalized invariant measure ` s.t. ` (M) = 1, and the evolution function ) : M ! M which is
measure-preserving and we also assume ) is invertible. Furthermore, the system is discrete, i.e., the state
evolution {?=}=2é, ?= 2M is written in the form

?=+1 = ) (?=) .

For using the DMD-type algorithm, we assume that we are given an ergodically sampled state evolution
dataset through some vector-valued observable function

� : M ! É<, � (G) =
�
51(G) 52(G) . . . 5< (G)

�)
, 58 2 F := !2(M, `),

and de�ne the Koopman operator* as

* : F ! F , [*� ] (G) := � () (G)) =
�
[* 51] (G) [* 52] (G) . . . [* 5<] (G)

�)
,

i.e., for an initial state ?0 2M, the dataset - is

- =
�
� (?0), � () (?0)), . . . , � ()=�1(?0))

 
=

�
� (?0), [*� ] (?0), . . . , [* =�1� ] (?0)

 

=
©≠≠≠≠
´

51(?0) [* 51] (?0) . . . [* =�1 51] (?0)
52(?0) [* 52] (?0) . . . [* =�1 52] (?0)

...
...

. . .
...

5< (?0) [* 5<] (?0) . . . [* =�1 5<] (?0)

™ÆÆÆÆ
¨
.

The set of observable functions F is de�ned as the Hilbert space

F = !2(M, `) :=
⇢
5 : M ! É |

π
M

|5 |2 3` < 1
�
,

whose inner product is de�ned by h51, 52i :=
Ø
M 51(G) 52(G)3` (G). Recall under the measure-preserving

setting with invertible evolution function) , the Koopman operator* is unitary, and therefore, the eigen-
values of* lie on the unit circle î := {I 2 É | |I | = 1}.

Since the dynamical system is measure-preserving, we choose mpEDMD to obtain the Koopman oper-
ator’s matrix representation from datasets. Remember that in mpEDMD, we assume the dataset to be the
pair of snapshots of the state

- = (x1, x2, · · · , xM),. = (y1, y2, · · · , yM), yk = ) (xk),

and dictionaries of observables
D = {51, 52, · · · , 5 }, 5: 2 F .

Note since we assumed the dataset is ergodically sampled, we de�ne - ,. as

- = (x0, x1, · · · , xM�1),. = (x1, x2, · · · , xM) .
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The output of the mpEDMD algorithm is the matrix representation  of the underlying Koopman oper-
ator * , the eigenvalues ⇤, and eigenvectors + of the matrix. Further, remember that we reconstruct the
eigenpair (_ 9 ,i 9 ) of the Koopman operator by

i 9 (G) =
A’
8=1

E8 9q8 (G),

where (_ 9 , E 9 ) is the 9-th eigenpair of the matrix representation  2 ÉA⇥A given by the algorithm. One
knows that the eigenvalues and eigenfunctions converge to the real eigenpair as ", !1. As the algo-
rithm for �nding eigendecomposition, mpEDMD uses Schur decomposition due to its numerical stability.
Note, however, that the Schur decomposition is not exactly the same as the eigendecomposition. For in-
put matrix �, the Schur decomposition produces a unitary matrix / 2 É=⇥= and upper triangular matrix
) 2 É=⇥= such that � = /)/ ⇤ whereas the eigendecomposition produces a unitary matrix + 2 É=⇥=

and diagonal matrix ⇡ 2 É=⇥= such that � = +⇡+ ⇤. Thus, the diagonal elements of both ) and ⇡ are
the eigenvalues of �, and the column vectors of + are the eigenvectors of �, but the column vectors of /
are not eigenvectors. If one wants to calculate the “true” eigenvectors with respect to the eigenvalues, as
explained by Stoer and Bulirsch [SB10](p435), one should use an eigenvector algorithm, such as inverse
iteration (algorithm 6) after the mpEDMD algorithm. The algorithm for this case is summarized as the
algorithm 12.

Algorithm 12 Eigenfunction reconstruction with inverse iteration

Require: The matrix representation 2 ÉA⇥A and eigenvalues ⇤ =
�
_1 _2 . . . _A

�
given by mpEDMD

with the number of dictionaries A .
Ensure: Eigenfunctions � := {i1,i2, . . . ,iA } where (_: ,i: ) is the eigenpair of* .
:  1
while :  A do

E  Inverse iteration( , _: )
i:  

ÕA
8=1(E)8q8

:  1
end while
� {i1,i2, . . . ,iA }

So the goal of this section is to derive algorithms to �nd eigenvectors from the mpEDMD matrix repre-
sentation, which can be represented as the power or combination of some other already found eigenvectors
and possibly numerically show the ratio of the number of such vectors in the matrix.

3.1 Real-exponential algorithm

Now, assume eigenfunction i is given by the mpEDMD algorithm, i.e., i =
ÕA
8=1 E8q8 with eigenvector

E of the matrix representation and the dictionaries of observables {q8}A8=1 where A 2 é is the number of
dictionaries. By using this vector E 2 ÉA , we consider obtaining the vector E (? ) 2 ÉA which corresponds
to the vector of the eigenfunction i? , i.e.,

i? =
A’
8=1

E (? )8 q8 .

Note the eigenfunction i? is obtained by

i? (G) :=
 
A’
8=1

E8q8 (G)
!?

.

Note that by the proposition 2.1, one can take ? 2 í+ in general, and ? 2 í if the (eigen)function i
vanishes nowhere. For convenience, we call E (? ) and i? as “power vector with ?”, “power function with
?” or simply “power vector”, “power function” if the power value ? is clear, respectively.
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Recall from functional analysis, for orthonormal basis {4: }:2⌫ of the Hilbert space F = !2(M, `), any
element 5 2 F can be expressed as

5 =
’
:2⌫
h5 , 4:i4: ,

where the inner product is de�ned by h51, 52i :=
Ø
M 51(G) 52(G)3` (G). Therefore, if the dictionaries of

observables q8 is an orthonormal basis of !2(M, `), one obtains

i? =
’
8

hi? ,q8iq8 .

By comparing with i? =
ÕA
8=1 E

(? )
8 q8 , E (? ) can be expressed as

E (? ) =
©≠≠≠≠
´

hi? ,q1i
hi? ,q2i

...
hi? ,qA i

™ÆÆÆÆ
¨
.

Note that the dictionaries of the observables are �nite, whereas the equation holds for the in�nite number
of basis elements. Therefore, there is a reconstruction error, and increasing the degree of dictionaries will
reduce such errors. Also, recall that an example of such dictionary of the observables is the Fourier basis
{4: : [�c, c] ! É | 4: (G) = 1p

2c
48:G }:2ö which is an orthonormal basis of !2( [�c, c], `) since

h4: , 4; i =
π c

�c
4: (G)4; (G)3G =

1
2c

π c

�c
48 (:�; )G3G =

8>><
>>:
1 if : = ;
1
2c

h
1

8 (:�; ) 4
8 (:�; )G

ic
�c

= 0 if : < ;
.

Also, recall that since the functional inner product is de�ned as integral, one can use a numerical integra-
tion method, such as the quadrature rule [SB10], for calculating them. As a summary, we obtain a lemma
3.1 and an algorithm 13.

Lemma 3.1. Assume the given observables {q}: are the orthonormal basis of F , then all eigenfunctioni 2 F
can be represented as i =

Õ
: hi,q:iq: . Especially, for eigenfunction iE8 =

Õ
: (E8):q: , (E8): = hiE8 ,q:i.

Algorithm 13 obtain power vector from an eigenvector

Require: An eigenvector E 2 ÉA of the Koopman matrix  , the dictionaries {q8}A8=1, and a power ? 2 í+
(or ? 2 í).

Ensure: The power vector E (? ) such that i? =
ÕA
8=1 E

(? )
8 q8 .

i? (·)  
�ÕA

8=1 E8q8 (·)
�? .

E (? )  
©≠≠≠≠
´

hi? ,q1i
hi? ,q2i

...
hi? ,qA i

™ÆÆÆÆ
¨
.

3.1.1 Choice of power values

Now, one needs to consider what ? to choose. Note that since the eigenfunction approximation i =ÕA
8=1 E8q8 includes some error, for large ? value, the error for power functioni? increases respectively. Also,

note that we want to �nd the power vector E (? ) which is not only i? =
ÕA
8=1 E

(? )
8 q8 is an eigenfunction of*

but also is an eigenvector of the matrix representation  . Thus, we �rst consider the necessary conditions
for the power ? so that the power vector with ? is again an eigenvalue of the matrix representation  .



31

Here, remember that the exponential of the complex number is de�ned by

(4G )~ := 4~ log(4
G ) , G,~ 2 É,

where the complex logarithm of non-zero complex number I, denoted as log(I), is de�ned by

4 log(I ) := I 2 É.

For details, check Lang [Lan93], for example. Note if I is given by the polar form I = A48\ with A > 0 and
\ 2 í, then the complex logarithm is of the form

log(I) = ln(A ) + 8 (\ + 2c:),: 2 ö,

where ln(·) is the natural logarithm, i.e., ln(·) := log4 (·). Also remember the principal value of the log(I)
is de�ned as the logarithm whose imaginary part lies in the (�c, c], i.e., the principal value is ln(A ) + 8\ 0
such that \ 0 = \ + 2c: 2 (�c, c],: 2 ö. The log(I) is generally meant for the principal value without any
speci�cation. Also note that in NumPy [Har+20], which we use for numerical experiments, log(I) returns
the principal value. (See numpy.log documentation for details.) Also, in this thesis, log(I) indicates the
principal value from now on.

Now, assume there exists an eigenpair (_,i) of the Koopman operator* where the eigenvalue _ is not
equal to 1. Note that since the eigenvalues lie on the unit circle, they can be written in the form _ = 48G

where G 2 (�c, c] \ {0}. For an arbitrary _0 2 S1, one can write it as 48~ where ~ 2 (�c, c], and one can
consider the power ? := ~

G 2 í so that

_? = 4? log(_) = 48?G = 48
~
G G = 48~ = _0.

Thus, by proposition 2.1, (_? ,i?) = (_0,i?) is also an eigenpair. In other words, any value on the unit
circle S1 is an eigenvalue of the Koopman operator* . Conversely, remember that the Koopman operator
is unitary in the ergodic settings. Therefore, from functional analysis results, the eigenvalues lie on the
unit circle S1. Thus, if one obtains an eigenvalue not equal to 1, then simply taking the above-mentioned
power will produce a new eigenpair.

Lemma 3.2. In the ergodic settings, if there exists an eigenvalue of the Koopman operator * which is not
equal to 1, then _ is an eigenvalue of* if and only if _ 2 S1.

Now, we know that any values on the unit circle are eigenvalues of the Koopman operator* . Since the
Koopman operator * is unitary, especially normal, recall that the eigenfunctions of a normal operator )
have the following properties (Lemma 3.3) from Muscat [Mus14].

Lemma 3.3. For a normal operator ) ,

1. If (_,i) is an eigenpair of ) , then (_̄,i) is also an eigenpair of ) ⇤.

2. If the eigenpairs (_1,i1), (_2,i2) satis�es _1 < _2, then hi1,i2i = 0.

Proof. 1). Since ) is normal, k)G k = k) ⇤G k for all G , and () � _� ) is also normal. For an eigenpair (_,i),
it follows that

0 = k () � _� )i k = k () � _� )⇤i k = k () ⇤ � _̄� )i k .
2). Without loss of generality, assume _1 < 0 (since one of them should be non-zero. Otherwise, the

equation clearly holds),

hi1,i2i =
1
_1
h_1i1,i2i =

1
_1
h)i1,i2i =

1
_1
hi1,) ⇤i2i =

1
_1
hi1, _̄2i2i =

_2
_1
hi1,i2i

Since _1 < _2,
hi1,i2i = 0.

⇤
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Furthermore, we have the following property for the functional inner product of the eigenfunction
reconstructed by the mpEDMD and the corresponding eigenvector.

Lemma 3.4. For eigenvector E,F of thematrix representation of the Koopman operator* and eigenfunction
reconstruction iE =

Õ
E8q8 ,iF =

Õ
F8q8 by mpEDMD where {q8} are the basis dictionary, one has

hiE,iFi = hE,Fi.

Proof.
hiE,iFi = h

’
8

E8q8 ,
’
9

F 9q 9 i =
’
8

’
9

E8F̄ 9 hq8 ,q 9 i =
’
8

E8F̄8 = hE,Fi.

Therefore
hiE,iFi = 0, hE,Fi = 0.

⇤

Since, in our setting, the Koopman operator * is unitary, especially normal, the Lemma 3.3 ensures
the eigenspaces are orthogonal to each other. Combined with the lemma 3.4, the eigenvectors, which
correspond to the di�erent eigenvalues, are orthogonal to each other. Thus, if power eigenvalue _? does
not exactly coincide with any of the eigenvalues of matrix representation  , then the power vector E (? ) is
not the eigenvector of the  and orthogonal to all of the eigenvectors of  . In other words, the condition
that _? is an eigenvalue of  is a necessary condition for the power vector E (? ) to be an eigenvector of  .

Theorem 3.1. (Necessary condition for power vector to be an eigenvector) For an eigenpair (_, E) of the matrix
representation  , the power vector E (? ) is also an eigenvector of  only if _? is the eigenvalue of  .

Remember that by lemma 3.2, all values on the unit circle S1 are the eigenvalues of * , i.e., there are
in�nitely many eigenvalues of* . Therefore, the simple integer choice of power ? = 2, 3, 4 . . . may not �nd
the desired eigenvalues because it is almost impossible to obtain the same value as the eigenvalue of  
just by taking integer power of one eigenvalue. Therefore, except for some special case, the power vectors
E (? ) with integer power is almost always not eigenvector of  and orthogonal to them. Note, however,
due to approximation error of the eigenfunctions, it is often true that hiE,iFi = hE,Fi < 0 even if they
correspond to the di�erent eigenvalues.

Hence, we need to �nd a way to obtain powers such that the exponentials of an eigenvalue with the
powers are exactly the eigenvalues of the matrix representation  , and consequently, orthogonalizing
eigenvectors to the power vectors for accelerating eigendecomposition process. Recall, that in the eigen-
value algorithms, such as the QR algorithm, they ensure the orthogonality of eigenvectors by applying the
Gram-Schmidt-like process with the previously found vectors in each step. However, by theorem 3.1, we
need to obtain the exact power value such that _? is an eigenvalue of  , which, without any knowledge
of eigenvalues of  , is di�cult to achieve during the eigendecomposition process. Therefore, calculating
power vectors in between the eigendecomposition process will just increase the number of computations
or even delete some meaningful information. Thus, we consider a post-processing algorithm that is ap-
plied after Schur decomposition by QR algorithm, which is performed in the original mpEDMD procedure
as well. Namely, we will further assume all eigenvalues and an eigenvector is given. Recall the Schur
decomposition transforms  to be

 = /)/ ⇤

where / 2 ÉA⇥A is unitary and ) 2 ÉA⇥A is upper triangular. Note the diagonal elements of the ) are the
eigenvalues of  . By denoting

/ =
�
I1 I2 . . . IA

�
, I8 2 ÉA ,) =

©≠≠≠≠
´

C11 C12 . . . C1A
0 C22 . . . C2A
...

...
. . .

...
0 0 . . . CAA

™ÆÆÆÆ
¨
,



33

one obtains

 / = /) =)  
�
I1 I2 . . . IA

�
=

�
C11I1 C12I2 + C22I2 . . .

ÕA
:=1 C:2I:

�
.

Therefore,  I1 = C11I1, meaning (C11, I1) is an eigenpair of  . Hence, we can obtain all eigenvalues and an
eigenvector by Schur decomposition.

Now, assume we have an eigenpair (_1, E1) with _1 < 1 and the eigenvalues _2, _3, . . . _A . Remember the
eigenvalues lies on the unit circle S1 and therefore can represented as _: = 48\: , \: 2 (�c, c]. Consider
determining the powers ?2, ?3, . . . , such that

_?:1 = _: , 2  :  A .

Here, because \: 2 (�c, c], the principal value of the eigenvalue _: = 48\: is given by log(_: ) = 8\: .
Therefore by de�ning ?: := \:

\1
, one can obtain

_?:1 = 4?: log(_1 ) = 48?:\1 = 48\1
\:
\1 = 48\: = _: .

Note \1 < 0 since _1 < 1.
In this way, we can obtain the powers such that the exponential of an eigenvalue with the powers are

truly the eigenvalues of matrix representation  . Remember that obtaining the same eigenvalues is a
necessary condition for power vector E (? ) to be an eigenvector of matrix representation  (Lemma 3.1). In
other words, there might be the case where for eigenpair (_1,i1) of the Koopman operator* , the powers
are given by the above way and the (_?:1 ,i?:1 ) is another eigenpair of* , but the corresponding eigenvector
E?:1 is not eigenvector of thematrix representation . Therefore, we now need to check if the power vectors
E?:1 with ?: = \:

\1
provided by the algorithm 13 are truly the eigenvectors.

Here, through an analysis of the ergodic system, as explained by, for instance, Cornfeld, Fomin, and
Sinai [CFS12], it exhibits the following properties (Lemma 3.5).

Lemma 3.5. Assume for Koopman operator * of an ergodic system, there exists eigenfunctions i8 ,i 9 with
the same eigenvalue _ i.e. (_,i8), (_,i 9 ) are both eigenpair of* . Assume further i 9 vanish nowhere, then

i8 = Ui 9 0.4 . where U 2 É.

In other words, the eigenvalues are of multiplicity 1. Especially if eigenfunctions are given by the mpEDMD
algorithm, then

U = hi 9 ,i8i = hE 9 , E8i, |U | = 1.

Proof. Recall under the ergodic setting, the eigenfunction of the Koopman operator * corresponding to
the eigenvalue 1 is constant almost everywhere [CFS12]. Here, assuming i 9 vanishes nowhere,

i8
i 9

is well-
de�ned and an eigenfunction with eigenvalue 1 because

*
i8
i 9

=
*i8
*i 9

=
_i8
_i 9

=
i8
i 9

.

Thus, i8i 9 = U 0.4 . for some constant U 2 É and hence

i8 = Ui 9 0.4 .

Especially, in mpEDMD, one de�nes i8 =
ÕA
:=1(E8):q: where E8 2 ÉA is the corresponding eigenvector

with kE8 k = 1 and {q: }: are the dictionaries of observables which is orthonormal. Thus,

U = U hi8 ,i8i = hi 9 ,i8i = hE 9 , E8i.

and ’
:

(E8):q: = U
’
:

(E 9 ):q: =
’
:

(UE 9 ):q: 0.4 .

) E8 = UE 9 , =) 1 = kE8 k = |U |kE 9 k = |U |
⇤
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The lemma 3.5 ensures the eigenvalues are of multiplicity 1, the eigenfunctions are unique up to scalar
multiplication, and the corresponding eigenvectors are also unique up to scalar multiplication. Especially,
for eigenpairs (_1 = 48\1,i1), (_2 = 48\2,i2) of the Koopman operator * and corresponding eigenvectors
E1, E2 of the matrix representation  , respectively, by de�ning ? := \2

\1
, _?1 = _2 and (_?1 ,i

?
1 ) = (_2,i?1 ) is

an eigenpair. Thus, there exists some constant U 2 É such that

i?1 = Ui2 0.4 .,

which ensures the power vector E (? )1 provided by the algorithm 13 to be exactly eigenvectors, since

E (? )1 =
©≠≠≠≠
´

hi?1 ,q1i
hi?1 ,q2i

...
hi?1 ,qA i

™ÆÆÆÆ
¨
=

©≠≠≠≠
´

hUi2,q1i
hUi2,q2i

...
hUi2,qA i

™ÆÆÆÆ
¨
= UE2 =)  E (? )1 = U E2 = U_2E2 = _2E

(? )
1 .

Note that E2 is the eigenvector of  corresponding to the eigenvalue _2. As a summary, we obtain the
su�cient condition for the power vector E (? )1 to be an eigenvector of the matrix representation (theorem
3.2).
Theorem 3.2. Assume (_1,i1) is an eigenpair of the Koopman operator* and {_1, _2, . . . , _=} are the eigen-
values of the matrix representation  . Then,

E (?: ) :=
©≠≠≠≠
´

hi?:1 ,q1i
hi?:1 ,q2i

...
hi?:1 ,qA i

™ÆÆÆÆ
¨
, ?: :=

\:
\1

is the eigenvector of  corresponding to the eigenvlaue _: for all 1  :  =.
In total, by combining this theorem 3.2 with the algorithm 13 for obtaining power vector, we obtain the

following algorithm 14, which we call the real-exponential algorithm.

Algorithm 14 Eigensolver with real-exponential

Require:  2 ÉA⇥A is the matrix representation of Koopman operator* on the basis {q8}A8=1, some small
number Y (= 10�9 by default), number of dictionaries A .

Ensure: Eigenvalues ⇤ and Eigenvectors + .
() ,/ )  QRAlgorithm( ) such that  = /)/ ⇤.
⇤ =

�
_1 _2 . . . _A

�
 diag() )

E1  I1.
:0  1
:  2
if |arg(_1) | < Y then ù Rarely happens, but if the �rst eigenvalue is close to 1, run inverse iteration

E2  Inverse iteration( ,U) ù U 2 É is chosen s.t. |U | = 1 and |arg(U) | � 0
:0  2
:  : + 1

end if
while k<=N do

?  arg(_: )/arg(_:0) ù arg(48G ) := G for G 2 (�c, c]

E:  E?:0 =
©≠≠≠≠
´

hi? ,q1i
hi? ,q2i

...
hi? ,qA i

™ÆÆÆÆ
¨
where i =

ÕA
9=1(E8) 9q 9

:  : + 1
end while
+  

�
E1, E2, . . . , EA

�
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Note that if the angle of eigenvalue _1 is 0 or too small, then the powers can not be de�ned or become
too large. Therefore, in the algorithm 14, we add additional inverse iteration if the angle of the eigenvalue
is too small.

Now, consider the complexity of the algorithm 14. For obtaining the power vector, we take the power
function and calculate the inner product by the quadrature rule

π 1

0
5 (G)3G =

1 � 0
#

#’
:=1

5 (1 � 0
#

:),

thus, the total calculation for getting power vector from mpEDMD results is O(#A ) where A is the number
of dictionaries given as input and # is the number of subdomains for the quadrature rule. Note that,
usually, if one wants to obtain eigenvectors, one uses inverse iteration for each column, which requires
O(A 3) iteration for calculating the inverse of the matrix with eigenvalue shift, and O(A# 0) iteration for
�nding vector where # 0 is the parameter of the number of iteration, which is given by the user. Thus, the
new algorithm is faster than the combination of mpEDMD and inverse iteration if # < A 2 + # 0 because
of no inverse calculation while returning the same eigenfunctions (up to scalar multiplication), which are
often better approximation of the true eigenfunction than reconstruction with Schur vectors.

Also note that the uniqueness of eigenfunctions with respect to an eigenvalue implies if one is only
interested in obtaining the eigenfunctions, one can use the following algorithm 15.

Algorithm 15 Eigenfunction reconstruction with real-exponential

Require:  2 ÉA⇥A is the matrix representation of Koopman operator* on the basis {q8}A8=1, some small
number Y (= 10�9 by default), number of dictionaries A .

Ensure: Eigenfunctions � := {i?1,i?2, . . . }.
() ,/ )  QRAlgorithm( ) such that  = /)/ ⇤.
⇤ =

�
_1 _2 . . . _A

�
 diag() )

E1  I1.
:0  1
if |arg(_1) | < Y then ù Rarely happens, but if the �rst eigenvalue is close to 1, run inverse iteration

E2  Inverse iteration( ,U) ù U 2 É is chosen s.t. |U | = 1 and |arg(U) | � 0
:0  2
:  : + 1

end if
:  1
while 1  :  A do

?:  arg(_: )/arg(_:0)
:  : + 1

end while
i  ÕA

8=1(E:0)8q8
� {i?1,i?2, . . . }

3.1.2 Issue of real-exponential algorithm

However, this approach does not work well in numerics. One reason for this is the real exponential of
the complex number. Recall that the real-exponential of a complex number is de�ned for U 2 í and
I = A48\ 2 É, A , \ 2 í as

IU := 4U log(I ) , log(I) = ln(A ) + 8 (\ + 2c=),= 2 ö.
Take (48:G )U , for example, the logarithm (principle value) of 48:G is log(48:G ) = 8 (:G+2=c), where:G+2=c 2
(�c, c], thus

(48:G )U = 48U (:G+2=c ) .

However, if = < 0 and U 8 ö, then there is no guarantee that 48U:G = 48U (:G+2=c ) = (48:G )U .
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Now, we show a small numerical experiment for calculating 48:UG , where 8 is the imaginary unit, : 2 ö,
and U 2 í \ ö. As an example, consider for : = 4 2 ö and U = 0.5 2 í \ ö, de�ne the following three
functions in Python (1) original function 41(G) = 48:UG , (2) integer powered function 42(G) = (48UG ): , and
(3) real powered function 43(G) = (48:G )U . Figure 1 shows the real part of these function values within
the domain G 2 [�2c, 2c], and the red vertical dot lines represent the G-values where 48:G = �1, i.e.,
G = c+2c<

: ,< 2 ö. One can observe the function 43(G), which does real power later, takes a di�erent value
than the other two functions 41(G) and 42(G). Note that the functions 41(G) and 42(G) take the same values.

Figure 1 Exponential order di�erence with 41 (G), 42 (G), and 43 (G).

Furthermore, consider the function 5U (G) = 43(G) = (48:G )U with small U > 0 and positive integer
: 2 é. Since 48:G is 2c

: periodic function (with respect to G ), 5U (G) is also 2c
: periodic. By de�nition,

5U (G) = 4U log(48:G ) = 48U (:G+2=c ) with = 2 ö,:G + 2=c 2 (c, c]. Here, restrict our attention for the 5U (G)
values in one period, i.e., for some< 2 ö, consider the 5U (G) value within 2c

: < < G  2c
: (< + 1), then

2c
:
< < G  2c

:
(< + 1)

) 2c< < :G  2c (< + 1)
) 2c (< + =) < :G + 2c=  2c (< + = + 1)
) 2c (< + =)U < (:G + 2c=)U  2c (< + = + 1)U

Here, for small U > 0, both 2c (< + =)U and 2c (< + = + 1)U are close to 0, and thus,

0 = lim
U!0

2c (< + =)U < lim
U!0

(:G + 2c=)U  lim
U!0

2c (< + = + 1)U = 0.
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Note that for negative : 2 ö and U 2 í, the same holds while only the direction of the inequality is
changed. Hence, for small U , the angle of 5U (G), (:G + 2c=)U , is close to 0, and therefore whose real part
Re(5U (G)) is almost 1 and the imaginary part Im(5U (G)) is almost 0 for all values in one period, i.e.,

Re(5U (G)) ⇡ 1, Im(5U (G)) ⇡ 0,8G 2 [2c
:
<,

2c
:
(< + 1)] .

Figure 2 is the numerical example of this phenomena with U, U10 ,
U
100 where U =

p
50. Note that the G-axis is

the values in [�2c, 2c] and ~-axis is the real part of 5U (G) = (48:G )U , and the red vertical dot line represent
the G-values where 48:G = �1, i.e., G = c+2c<

: ,< 2 ö. One can observe that for small power U
100 , the

function 5U (G) takes values close to 1 for almost all G .

Figure 2 Real exponential with small values U, U10 ,
U
100 where U =

p
50.

3.2 Integer-exponential algorithm

To �x real-exponential errors, one can only consider the integer power. Note that in the case U is integer,
remember that the principal value is log(48:G ) = 8 (:G + 2c=) with some = 2 ö, and the exponential
(48:G )U ,U 2 ö is calculated by

(48:G )U = 4U log(48:G ) = 48U (:G+2c=) = 48 (U:G+2c=U ) = 48U:G482c=U = 48U:G .

Thus, there is no exponential order di�erence like the real-exponential case, i.e., the case where U 2 í\ö.
To see this, for : = 4 and U = 3, 2, 1, 12 , we show a numerical example in �gure 3 where, again, the G-axis is
the values in the domain [�2c, 2c] and the ~-axis is the value of 5U (G) = (48:G )U , and the red vertical dot
line represent the G-values where 48:G = �1, i.e., G = c+2c<

: ,< 2 ö. In this �gure, one can observe if U is an



38

integer, the function 5U (G) takes 1 or �1 on the red line (where 48:G = �1), and the value is continuous in
the sense of derivative. One can also observe that if U = 1

2 , then the function takes value 0 on the red line, as
in the period is 2c (<+=)U  (:G+2c=)U < 2c (<+=+1)U , therefore c (<+=)  (:G+2c=) 12 < c (<+=+1)
and 5U (c (< + =)) = 5U (c (< + = + 1)) = 8 , i.e., Re(5U (c (< + =))) = Re(5U (c (< + = + 1))) = 0.

Figure 3 integer power property

Therefore, we now consider taking integer power only. Recall the set of the integer powers of an irra-
tional angled value on the unit circle S1 form a dense subset of the unit circle S1 (Lemma 3.6).

Lemma 3.6. For irrational number W 2 í \ ë, if : < ;,:, ; 2 {0, 1, 2, . . . }, then 48:W < 48;W . Also, the set
PW := {48:W |: 2 {0, 1, 2, . . . }} is dense in S1.

By the lemma 3.2, _ is an eigenvalue if and only if it is on the unit circle, by lemma 3.6, one can get a dense
subset of the unit circle by taking integer power of an irrational eigenvalue where the integer powered
eigenvalues are all di�erent, and by lemma 3.5 the eigenfunctions are unique up to scalar multiplication.
Hence, one can �nd one eigenpair (48W ,iW ) with irrational angle W and take integer power of them

{(48:Wc ,i:W ) | : 2 {0, 1, 2, . . . }}
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to get in�nitely many eigenfunctions while their corresponding eigenvalues are all di�erent, and therefore
they are orthogonal to each other by lemma 3.3. Furthermore, they form a dense subset of all eigenvalues.
Since all eigenvalues have amultiplicity of one, an integer-powered eigenpair represents the corresponding
eigenspace. Note that the found eigenpairs are often not the eigenpair of the matrix representation, but
it is still an eigenpair of the original Koopman operator, allowing us to obtain the eigenpair outside the
projected space. Further, note, in a computer, that the irrational numbers are truncated and represented
as rational numbers. Thus, the above dense subset produced by the integer powers of an irrational angled
eigenvaluewill not exactly produce a dense subset. Still, if the denominator of the rational representation is
large enough, then the number of elements in the above set will be large enough. In detail, for an eigenvalue
482cU of the matrix representation, assume U is approximated by a rational number @ = =

< ,<,= 2 ö
where<,= are co-prime and< < 0, then one can obtain< � 1 di�erent eigenfunctions by taking powers
1, 2, . . . ,< � 1 since for : 2 {1, 2, . . . ,< � 1}, @: 8 ö. (If @: 2 ö, then it contradicts that<,= are co-prime.)
Since, in our setting, constant functions are always eigenfunctions, one can also take the power 0. As a
summary, we obtain the following algorithm 16, which we call the integer-exponential algorithm.

Algorithm 16 Eigenfunction reconstruction with integer-exponential

Require:  2 ÉA⇥A is the matrix representation of Koopman operator* on the basis {q8}A8=1, some small
number Y (= 10�9 by default), number of dictionaries A , maximum power ?<0G .

Ensure: Eigenfunctions � := {1,i,i2, . . . ,i?<0G }.
E  Inverse iteration( ,U)
:  1
i  ÕA

8=1(E)8q8
� {1,i,i2, . . . ,i?<0G }

Furthermore, remember that the products of the eigenfunctions are also eigenfunctions, and it is natural
to guess that having more “true” eigenvectors will produce more eigenfunctions with small errors. Thus,
we also developed the algorithm 17, which we call the integer-combination algorithm.

Algorithm 17 Eigenfunction reconstruction with integer-combinations

Require:  2 ÉA⇥A is the matrix representation of Koopman operator* on the basis {q8}A8=1, some small
number Y (= 10�9 by default), number of dictionaries A .

Ensure: Eigenfunctions � := {i?1,i?2, . . . }.
:  1
while :  # do

E  Inverse iteration( ,U: )
i:  

ÕA
8=1(E)8q8

:  : + 1
end while
� {1,i1,i2, . . . ,i# , (i1i2), . . . , (i?11 i

?2
2 . . .i?## ), . . . }

Note that in this case, one should setU: to be not only irrational but also rationally independent, i.e., U:U 9 2
í \ ë so that the combination of the eigenvalues does not coincide with the already existing eigenvalues
to avoid unnecessary e�ort. Also note that for large power, the error increases drastically.

Also, recall that in most cases, the integer power eigenvalues are not eigenvalues of the matrix repre-
sentation, as in�nitely many eigenvalues exist that are orthogonal to each other. The integer exponential
algorithm will speed up the eigensolver only if there exists some eigenvalues that are integer exponential
of the other eigenvalue. An example of such a system is, for instance, given by Bevanda, Sosnowski, and
Hirche [BSH21]. For the state spaceM := í2, de�ne the evolution function as

) (x) =
✓

0G1
1G2 + (1 � 02)G21

◆
, x =

✓
G1
G2

◆
2M,
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where 0,1 2 [0, 1] . As is introduced in the paper, take the following dictionaries of observables q1(x) =
G1,q2(x) = G2 + G21,q3(x) = G21 = q2

1 (x) and de�ne vector-valued observables � =
�
q1 q2 q3

�) . Then,

[*� ] (x) = ©≠
´
[*q1] (x)
[*q2] (x)
[*q3] (x)

™Æ
¨
= ©≠

´
0q1(x)
1q2(x)
02q3(x)

™Æ
¨
= ©≠

´
0 0 0
0 1 0
0 0 02

™Æ
¨
� (x) .

Thus, q1,q2,q3 are all the eigenfunctions of this system with corresponding eigenvalues 0,1,02, respec-
tively. Therefore, in this case, the integer-exponential algorithm can be used for eigensolver, and it re-
quires 2 inverse iteration, not 3. Furthermore, based on these results, one can consider a special setting
where the dictionaries of observables are all eigenfunctions and the integer power of an eigenfunction, i.e.,
the dictionaries of observables is

�
i,i2,i3, . . .

 
with corresponding eigenvalues

�
_, _2, _3, . . .

 
. Then, the

eigenvalues of the matrix representation are exactly
�
_, _2, _3, . . .

 
, thus the integer-exponential algorithm

for eigensolver requires just one inverse iteration and the rest can be obtained through integer-exponential
of an eigenfunction. Note, however, that this is a special case. Therefore, we generally consider using the
integer-exponential algorithm not for the eigensolver of DMD-type algorithms but for �nding eigenfunc-
tions whose corresponding power vectors are not eigenvectors of the matrix representation  .

3.3 Error calculation criteria

Before we come to the numerical experiments part, we consider the way to measure the reconstruction
error of our algorithms. For the real-exponential algorithm (Algorithm 14), which is designed for replacing
the eigenvectors reconstruction, we check if the power vector E (?: )1 is truly an eigenvector corresponds to
the same eigenvalue or not. Note that we normalize the eigenvectors and thus

���E (?: )1

��� = kE: k = 1. Also
recall by Lemma 3.5, the eigenvectors corresponding to di�erent eigenvalues are all orthogonal to each
other, and eigenvectors corresponding to the same eigenvalues are unique up to complex scalar multipli-
cation. In other words, for E (?: )1 = UE: for U 2 É, if the reconstruction is correct, then |U | = 1 and if not,
U = 0. Thus, the absolute value of

hE (?: )1 , E:i = hUE: , E:i = U hE: , E:i = U

should be close to 1 if the reconstruction is correct and be close to 0 if they are orthogonal. Therefore,
we can calculate the reconstruction error by the following criterion (lemma 3.7), which we call the power
vector error of the real-exponential algorithm and denote it as ⇢1.

Lemma 3.7. (real-power vector error of real-exponential algorithm) For eigenvector reconstruction E (?: )1 by
the real-exponential algorithm (algorithm 14) and the true eigenvector E: both corresponding to the same
eigenvalue, de�ne

⇢1(E (?: )1 , E: ) := 1 � |hE (?: )1 , E:i | 2 [0, 1],

then which measures the error of the power vector given by the real-exponential algorithm.

If one has direct access to the explicit form of the eigenfunction with respect to an eigenvalue, for the
algorithms of eigenfunction reconstruction (algorithm 15 and algorithm 16), we can check the norm of the
functional di�erence between the reconstructed eigenfunction i?:1 and the true eigenfunction i: , i.e.,

ki?:1 � i: k
2
2 =

π
M
(i?:1 (G) � i: (G)) (i?:1 (G) � i: (G))3` (G) .

To numerically calculate the functional inner products, we can consider, for example, the Newton-Cotes
formulas, π 1

0
5 (G)3G =

1 � 0
=

=’
:=1

5 (1 � 0
=

:) .
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However, since reconstructed eigenfunction may include complex scalar multiplication U , one should in-
stead consider

ki?:1 � Ui: k
2
2.

One way to determine U is by taking the average of the ratio

U :=
1
#

#’
8=1

i?:1 (G8)
i: (G8)

,

with some G8 such that i: (G8) < 0. Thus, if we have direct access to the explicit form of the eigenfunction
with respect to an eigenvalue, we can calculate the eigenfunction reconstruction error by the following
criterion (lemma 3.8), which we call power function reconstruction error and denote it as ⇢2.

Lemma 3.8. (power function reconstruction error criterion) For eigenfunction reconstruction 5 (?: )1 by the
algorithm 15 or the algorithm 16, and the true eigenfunction i: both corresponding to the same eigenvalue,
de�ne

⇢2(5 (?: )1 , 5: ) := ki?:1 � Ui: k
2
2

with

U =
1
#

#’
8=1

i?:1 (G8)
i: (G8)

,

then which measures the error of the power function.

However, we can not always have direct access to the explicit form of the eigenfunction. Remember
that the power functions given by the algorithm 15 and 16 should be an eigenfunction of the Koopman op-
erator* . Therefore, we can consider another criterion of power function, which checks the eigenfunction
property

* 5 = _5 , (* � _� ) 5 = 0.

Since we are given the snapshot of the state information dataset - ,. with ~8 = ) (G8) for ~8 2 . , G8 2 - ,
we have [* 5 ] (G8) = 5 () (G8)) = 5 (~8). Thus, we can calculate the average error of it by

1
#

#’
:=1

k [* 5 ] (G: ) � _5 (G: )k22 =
1
#

#’
:=1

k 5 (~: ) � _5 (G: )k22.

Thus, we have the following criterion (lemma 3.9), which we call eigenfunction property error and denote
as ⇢3.

Lemma 3.9. (eigenfunction property error) For eigenfunction reconstruction 5 (?: )1 by the algorithm 15 or the
algorithm 16 and the corresponding eigenvalue _: , de�ne

⇢3(5 (?: )1 ) := 1
#

#’
:=1

k 5 (?: )1 (~: ) � _: 5 (?: )1 (G: )k22,

then which measures the error of the eigenfunction property of the power function.

Lastly, recall the purpose of obtaining eigenvalues, eigenfunctions, and Koopman modes is obtaining
the underlying dynamical system’s information, especially reconstructing the trajectory by the identity

[* =� ] (G) =
©≠≠
´

[* = 51] (G)
...

[* = 5 ] (G)

™ÆÆ
¨
=

©≠≠
´

Õ
9 _
=
9 E 91q 9 (G)
...Õ

9 _
=
9 E 9 q 9 (G)

™ÆÆ
¨
=

’
9

_=9 q 9 (G)
©≠≠
´

E 91
...
E 9 

™ÆÆ
¨
.

Recall in mpEDMD, given inputs

- = (x1, x2, · · · , xM),. = (y1, y2, · · · , yM), yk = ) (xk),D = {51, 52, · · · , 5# }, 5: 2 F ,
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de�ne

�(G) :=
�
51(G) . . . 5# (G)

�
2 É1⇥# ,�- :=

©≠≠
´

�(G1)
...

�(G" )

™ÆÆ
¨
2 É"⇥# ,�. :=

©≠≠
´

�(~1)
...

�(~" )

™ÆÆ
¨
2 É"⇥# ,

and the approximation of for 6 2 !2(M, `) and states G (0) , G (=) 2M, G (=) = )= (G (0) ) is given by

6(G (=) ) ⇡ [�(G (0) )+ ]⇤= [+ �1(
p
,�- )†

p
,

�
6(G1) . . . 6(G" )

�) ],
where the �rst term [�(G (0) )+ ] is the approximation of eigenfunction, the second term ⇤= is the eigen-
values, and the last term+ �1(

p
,�- )†

p
,

�
6(G1) . . . 6(G" )

�) is the Koopman modes. Since the power
vectors of the real-exponential algorithm (algorithm 14) approximate the corresponding eigenvectors, de-
�ne

+? :=
⇣
E (?1 )1 E (?2 )1 . . . E (?A )1

⌘
,

and replace the eigenvector matrix+ of the 6(G=) approximation with mpEDMD by the real-power vector
matrix +? ,

6(G (=) ) ⇡ [�(G (0) )+?]⇤= [+ �1? (
p
,�- )†

p
,

�
6(G1) . . . 6(G" )

�) ] .
This suggests us to consider the function reconstruction error

���6(G (=) ) � [�(G (0) )+?]⇤= [+ �1? (
p
,�- )†

p
,

�
6(G1) . . . 6(G" )

�) ]���
2
.

One can further consider averaging the reconstruction error along the trajectory to have stable results.
Thus, for input � = {(G (0)

1 ,=1,61), (G (0)
2 ,=2,62), . . . , (G (0)

 ,= ,6 )}where G (0)
: 2M,=: 2 é,6: 2 !2(⌦,l),

de�ne the reconstruction error as

1
 

 ’
:=1

���6: (G (=: )
: ) � [�(G (0)

: )+?]⇤=: [+ �1? (
p
,�- )†

p
,

�
6(G1) . . . 6(G" )

�) ]���
2
.

Thus, we obtain the following criterion (lemma 3.10), which we call function trajectory reconstruction
error and denote as ⇢4. Note that this criterion can be used for not only the real-exponential algorithm
(algorithm 14) but also the integer-exponential algorithm (algorithm 16) where the power vectors are given
by the same way as the real-exponential algorithm, i.e., by algorithm 13. Also note that the function
6 2 !2(M, `) is often set as the identity function 6(G) = G in EDMD and mpEDMD to obtain the original
trajectory - ,. as they are given as the inputs.

Lemma 3.10. (Function trajectory reconstruction error) For power vectors +? =
⇣
E (?1 )1 E (?2 )1 . . . E (?A )1

⌘
and state, power, and function tuples � = {(G (0)

1 ,=1,61), (G (0)
2 ,=2,62), . . . , (G (0)

 ,= ,6 )}, de�ne

⇢4(� ,+?) :=
1
 

 ’
:=1

���6: (G (=: )
: ) � [�(G (0)

: )+?]⇤=: [+ �1? (
p
,�- )†

p
,

�
6(G1) . . . 6(G" )

�) ]���
2
.

then which measures the Koopman mode decomposition error of function 6 2 !2(⌦,l) with the power vec-
tors. This criterion can be used for power vectors that are not eigenvectors of matrix representation, but the
corresponding power function is the eigenfunction of the Koopman operator* .

3.4 Numerical examples

Now, we show the numerical experimental results of our algorithms. Note the algorithms are implemented
by using Python 3.9 with main libraries NumPy 1.21.6 [Har+20] and SciPy 1.7.3 [Vir+20]. As explained,
we use mpEDMD to obtain the matrix representation of the Koopman operator. Note that the original
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mpEDMD is implemented with Matlab (see Colbrook [Col23] and their GitHub repository https://
github.com/MColbrook/Measure-preserving-Extended-Dynamic-Mode-Decompositi
on). Therefore, there are some di�erences in how functions work. The following is a list of important
di�erences I noticed:

• Eigendecomposition function inNumPy (numpy.linalg.eig) returns a one-dimensional array of eigen-
values, whereas in Matlab (eig) returns a matrix (two dimensional) whose diagonal elements are
eigenvalues and 0 elsewhere.

• Singular Value Decomposition (SVD) function in NumPy (numpy.linalg.svd) returns * , (,+⌘ where
*(+⌘ equals to the given matrix (one does not need to take the conjugate transpose of+⌘), whereas
in Matlab (svd) returns * , (,+ where *(+ ⇤ is equals to the given matrix (one needs to take the
conjugate transponse of + to reconstruct the original matrix).

• There are some operand di�erences. For example, to get the conjugate transpose, NumPy needs to
call the .) operator and the .2>= 9 () operator, whereas Matlab has its operand 0 for a matrix. Also,
there are some other syntax di�erences between these languages, but they can be interpreted one
by one.

The original mpEDMD accepts having di�erent weights, for the quadrature rule. However, we set
them as an identity matrix and treat them equally. Also, they calculate the inverse of eigenvectors of the
Hermitian matrix ⌧ by the conjugate transpose as it should be unitary. Note that in this setting, ⌧ is
de�ned as

⌧ :=
1
"

"’
<=1

 (G<)⇤ (G<).

However, this calculation shows worse performance than simply using =D<?~.;8=0;6.8=E function, in the
sense of if eigenvalues lie on the unit circle. Therefore, we use =D<?~ .;8=0;6.8=E function for obtaining
the inverse of⌧ . For more detailed code, check my GitHub repository https://github.com/skyhaji
me/master_thesis.

Now, for reconstructing the matrix representation of the Koopman operator from data with mpEDMD,
we assume we obtain the snapshot of the state evolution, i.e., the ergodic sampling of the states such that

G8+1 = ) (G8) = ~8 , G8 2 - ,~8 2 . .

To numerically calculate the inner products, especially integral, we use the Newton-Cotes formulas with
the same weight for all values:

π 1

0
5 (G)3G =

1 � 0
=

=’
:=1

5 (1 � 0
=

:) .

3.4.1 Irrational rotation on unit circle

One of the most simple examples of the ergodic system is the irrational rotation on the unit circle where
the state space M and evolution function ) : M !M are de�ned as

M := [0, 1),
) (G) = G +F (mod 1),F 2 í \ ë.

For details, check, for example, Budišić, Mohr, and Mezić [MB12]. Note that the evolution function ) is
invertible with the inverse ) �1(G) = G �F (mod 1). As it is shown in the �gure 4, one can observe the
state G 2M as the point on the unit circle î = í/2cö with an observable 482cG where 8 is the imaginary
unit. (Also 2c-periodic functions on í.) It is well known that if F is rational, then every initial condition
is periodic, and if it is irrational, then the trajectory starting from any initial condition densely �lls M.
Note that this dynamical system preserves the Lebesgue measure and is ergodic.

https://github.com/MColbrook/Measure-preserving-Extended-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Measure-preserving-Extended-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Measure-preserving-Extended-Dynamic-Mode-Decomposition
https://github.com/skyhajime/master_thesis
https://github.com/skyhajime/master_thesis
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Figure 4 Irrational rotation on unit circle through an observable 482cG .

Now, let F := !1(M) =
n
5 : M ! É |

Ø
M|5 |3` < 1

o
, the space of Lebesgue integrable É-valued

functions on M, and consider observable i= (G) = 482c=G with = 2 ö. Then

[*i=] (G) = i= () (G)) = 482c= (G+F ) = 482c=F482c=G = 482c=Fi= (G) .

Therefore, i= is an eigenfunction with eigenvalue 482c=F . Note that for 5: (G) 2 !1(î), by Fourier trans-
form, one can write 5: (G) =

Õ
=2ö 5̂: (=)482c=G with Fourier coe�cients 5̂: (=) and thus

[* 5: ] (G) =
’
=2ö

5̂: (=)482c=) (G ) =
’
=2ö

5̂: (=)482c=Fi= (G) .

This implies that the Fourier coe�cients are the Koopman mode of the system with the Fourier basis {i: }.
Remember that the Fourier basis is an orthonormal basis of !2( [�c, c]). Therefore, we set the Fourier
basis as the dictionaries of the observables for the mpEDMD with degree 3 , i.e.,

D := {4: : [�c, c] ! É | 4: (G) =
1
p
2c
48:G }:2{ö | |: |3 } .

Now, consider applying our algorithm to this setting. As for the parameters, we de�ned F =
p
2/10 as

the irrational number, the initial state is 0 2M, the dictionaries of the observablesD are the �nite length of
the Fourier basis with maximum degree 3 = 100which implies the number of dictionaries A = 23 +1 = 201,
and the number of dataset " = 104. By applying mpEDMD, we obtain the unitary matrix representation
 2 ÉA⇥A of the Koopman operator * , eigenvalues ⇤ 2 ÉA that are all lie on the unit circle, and the
eigenvectors + 2 ÉA⇥A which is approximated by Schur vectors.

power vector error ⇢1 of real-exponential algorithm First, we compare the eigenvector reconstruction
error of the algorithm 14 by using the error ⇢1(E (?: )1 , E: ). As it is introduced in Lemma 3.7, ⇢1 is de�ned as

⇢1(E (?: )1 , E: ) := 1 � |hE (?: )1 , E:i | 2 [0, 1] .

Note that the algorithm 14 produces the power vectors+ ? 2 ÉA⇥A , whose :-th column vector corresponds
to E (?: )1 , which should coincide with the eigenvectors E: calculated by the inverse iteration. Figure 5 is
the scatter plot of the results of this experiment, where the G-axis represents the power value ?: and the
~-axis represents the error ⇢1(E (?: )1 , E: ).
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Figure 5 The ⇢1 error of the real-exponential vectors and the eigenvectors in the ~-axis, where the G-axis is the
corresponding power value.

One can observe the ⇢1(E (?: )1 , E: ) errors are almost always 1, which means the power vector E (?: )1 is
almost always orthogonal to the desired eigenvector. It means that the algorithm 14 is failing to obtain the
“true” eigenvector. One can hypothesize that the reason for this is the truncation of an irrational number
in a computer. Recall that given an eigenvalue _1 (with corresponding eigenvector E1) the :-th power ?:
is de�ned so that _?:1 = _: holds. However, since the real number ?: 2 í is represented as the truncated
number ?0: 2 ë in computer, they are not exactly the same, i.e., ?: < ?0: . Also, remember from Lemma 3.3
that the eigenfunctions of a normal operator are orthogonal to each other if the corresponding eigenval-
ues are di�erent. Therefore, the truncation of the power produces a di�erent eigenvalue from the desired
value, and therefore, the power function is orthogonal to the desired eigenfunction, and projecting them
onto the vector space will keep the orthogonality as it is introduced in the Lemma 3.4. As a clue of this,
one can observe the power 1 produces the ⇢1 error 0 since the power 1 is for the �rst vector \1\1 which is the
�rst column vector of Schur decomposition and therefore is a “true” eigenvector. For the other two points
having zero errors, we do not �nd a promising explanation because the index of these vectors is [0, 82, 199]
and the power values are [1.0, 1.2442258436554148,�0.0019138144317270129]. They are not integers nor
any frequency (

p
2/10 ⇡ 0.1414213562373095) related values. Therefore, we further conducted the same

experiment with di�erent settings, especially di�erent frequencies
p
3/10,

p
5/20,

p
7/20 2 [0, 1). These ex-

periments showed the ⇢1 error is zero with the powers [1.0,�0.1268923926307155,�0.9199383957078294],
[1.0,�0.9322282970998922,�0.5941234612333683], and [1.0,�0.6491015381236813, 0.14910128206605464],
respectively. Since the error always becomes 0 with two other powers except 1, it seems there exists some
rule for it. However, these powers are not integer or frequency-related values. Therefore, we could not
�nd any promising explanations for this phenomenon.

Eigenfunction reconstruction error ⇢2 of real-exponential algorithm Now, we check the eigenfunc-
tion reconstruction error of the real-exponential algorithm. For this, we compare the four functions, (1)
the true eigenfunction given by the above formula, i.e., given eigenvalue _ = 482c=F , the corresponding
eigenfunction i is i (G) = 482c=G = (482c=F)G/F = _G/F , (2) the eigenfunction reconstruction by mpEDMD,
i.e., eigenfunction reconstruction with Schur vectors, (3) the eigenfunction reconstruction with eigenvec-
tors by inverse iteration (Algorithm 12), and (4) the eigenfunction reconstruction by the algorithm 15, i.e.,
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the real-exponential from one eigenvector. The error is calculated by ⇢2(5 (?: )1 , 5: ). As it is introduced in
Lemma 3.8, which is de�ned as

⇢2(5 (?: )1 , 5: ) := ki?:1 � Ui: k
2
2,U :=

1
#

#’
8=1

i?:1 (G8)
i: (G8)

.

Note that we de�ned the # to be simply the length of the dataset, i.e., # = " . Also, in the unit circle
rotation setting, the eigenfunction has the form i: (G) = 482c:G and the eigenfunction is unique up to
some complex scalar U 2 É, which is normalized, i.e., |U | = 1. Therefore, the scalar can be expressed as
U = 482c0,0 2 í, and it works as the translation of the eigenfunction, i.e.,

Ui: (G) = 482c (:G+0) .

Thus, one can focus on the frequency of the reconstructed eigenfunction when checking the plot of the
functions.

We �rst show the plot of the function values. Figure 6 is the �rst 15 values of the four functions plotted
on the unit circle because the “true” eigenfunction i= (G) = 482c=G only takes values on the unit circle.
Figure 7 is the four function value’s evolution plotted with the domain [�0.5, 0.5] because some of the
eigenfunction’s frequency is so high that the plot is di�cult to see with the whole domain [�c, c]. Note
that for both �gures, each row is the four function values corresponding to the same eigenvalue. Also note
that each function is called (1) “True”, (2) “mpEDMD”, (3) “QR+EIG”, and (4) “QR+Power”, respectively. In
both �gures, we can observe the eigenfunction reconstructed by the true eigenvector (“QR + EIG”) often
performs better than mpEDMD eigenfunction reconstruction (“mpEDMD”) in the sense of frequency. The
reason would be that there is little error for the eigenvectors with (“QR + EIG”), whereas the mpEDMD
uses Schur vectors as eigenvectors. Also, the frequencies of the eigenfunctions by the real-exponential al-
gorithm (“QR + Power”) are similar to the true eigenfunction (“True”). However, their amplitudes decrease
as the power closes to 0, as explained in the theoretical section. (Check �gure 2.)

Figure 8 shows the ⇢2 errors of each eigenpair, where the eigenfunction reconstruction is given by (1)
mpEDMD (Schur decomposition), (2) inverse iteration (Eigendecomposition), and (3) the real-exponential
algorithm (algorithm 15). One can observe that the real-exponential algorithm, however, has a larger ⇢2
error than the other two algorithms, which means the real-exponential algorithm is, again, not able to
obtain a more accurate approximation of the true eigenfunction than mpEDMD or QR algorithm + inverse
iteration.

Figure 6 The function values on the unit circle where the functions are the reconstruction given by the formula
(“True”), mpEDMD (“mpEDMD”), QR algorithm + inverse iteration (“QR+EIG”), and our real-exponential algorithm
(“QR+Power”).
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Figure 7 The function values evolution where the functions are the reconstruction given by the formula
(“True”), mpEDMD (“mpEDMD”), QR algorithm + inverse iteration (“QR+EIG”), and our real-exponential algorithm
(“QR+Power”).
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Figure 8 The ⇢2 error of the eigenfunction reconstruction given by mpEDMD (“mpEDMD”), QR algorithm + inverse
iteration (“EIG”), and our real-exponential algorithm (“Power”).

Eigenproperty error ⇢3 of integer-exponential algorithm Now, check if the power functions given by
the integer-exponential algorithm (algorithm 16) satisfy the eigenfunction property by the error ⇢3(5 (?: )1 ).
Recall from Lemma 3.9, the error ⇢3(5 (?: )1 ) is de�ned as

⇢3(5 ) :=
1
#

#’
:=1

k 5 (~: ) � _: 5 (G: )k2,~: = ) (G: ) .

In this experiment, we simply de�ned # as the number of trajectory datasets, i.e., # = " and ⇢3 is the
average error over the whole trajectory.

The table 1 shows if the power eigenvalue _? , ? 2 é is an eigenvalue of the matrix representation (the
column “is eigenvalue of matrix”), and the ⇢3 error of the power function i

?
1 (the column “⇢3(i?1 ) error”)

with corresponding power values. One can observe that the smaller the power, the smaller the ⇢3 error.
The error is 0 if the power is 0. The reason for this is the constant function 1(G) := 1 is an eigenfunction
with eigenvalue 1 in this setting. Note that the power 1 is an eigenfunction reconstruction produced by
the mpEDMD and has an error 0.000024. Moreover, even for the large power 20, the ⇢3 error is 0.000478,
which is small, i.e., the power function given by the integer-exponential algorithm almost satis�es the
eigenfunction property with eigenvalue _? . Also note that the �gure 9 shows that ⇢3 error is almost
proportional to the power, i.e., if power increases by 1, then the ⇢3 error increases by around 0.000024.
Furthermore, the table 1 shows _? is not the eigenvalue of the matrix representation when ? < 1. Note
that the _? is considered as the eigenvalue of thematrix representation if there is an eigenvalue _0 of matrix
representation that is given by the QR algorithm, such that the di�erence |_? � _0 | is less than 10�5, which
is the default value of numpy.allclose function. This coincides with the necessary condition of the power
vector to be an eigenvector of the matrix representation from theoretical results (Lemma 3.1) as it rarely
happens that the integer-powered eigenvalues are also an eigenvalue of the matrix representation even
allowing machine epsilon or pre-de�ned small precision di�erence.

In �gure 10, we also plot the eigenfunction given by the algorithm 16 and compare it with the true
eigenfunction and integer exponential of the true eigenfunction. Again, the plot domain is restricted to
[�0.1, 0.1] due to the high frequency. One can observe that even the original reconstruction “QR+Power”
with power 1 does not coincide with the true eigenfunction due to reconstruction errors, which are the
same for all mpEDMD, QR + inverse iteration, and our exponential algorithms. Also, even for the power of
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the true eigenfunction, it does not coincide with the true eigenfunction. This will be due to the numerical
error of the true eigenfunction calculation, as it includes irrational numbers, while the computer truncates
irrational numbers to rational numbers, as already explained.

Table 1 The results of ⇢3 error of the power function given by integer-exponential algorithm (algorithm 16). The
eigenvalue _? given by the integer-exponential algorithm is considered to be the eigenvalue of the matrix if there
exists an eigenvalue _0 of the matrix s.t. |_? � _0 | < 10�5.

power value is eigenvalue of matrix ⇢3 error
0 FALSE 0.00E+00
1 TRUE 2.67E-04
2 FALSE 5.33E-04
3 FALSE 7.98E-04
4 FALSE 1.06E-03
5 FALSE 1.33E-03
6 FALSE 1.59E-03
7 FALSE 1.85E-03
8 FALSE 2.12E-03
9 FALSE 2.38E-03
10 FALSE 2.64E-03
11 FALSE 2.90E-03
12 FALSE 3.16E-03
13 FALSE 3.42E-03
14 FALSE 3.68E-03
15 FALSE 3.94E-03
16 FALSE 4.20E-03
17 FALSE 4.46E-03
18 FALSE 4.72E-03
19 FALSE 4.98E-03
20 FALSE 5.24E-03

Figure 9 The plot of ⇢3 error of the power function given by integer-exponential algorithm, where the x-axis rep-
resents the power values and the y-axis represents the ⇢3 values.
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Figure 10 The function values evolution where each row corresponds to an eigenvalue with shown power. “True”
represents the eigenfunction given by the formula, “True+Power” represents the function given by taking the power
of the true eigenfunction of the original eigenvalue, and “QR+Power” represents the function given by the integer-
exponential algorithm.

Original trajectory reconstruction error ⇢4 by integer-exponential algorithm Lastly, we check the
original trajectory reconstruction error of the integer-exponential algorithm 16 by using Lemma 3.10.
Recall that the reconstruction error of function 6 2 !2(⌦,l) is de�ned as

⇢4(� ,+?) :=
1
 

 ’
:=1

���6: (G (=: )
: ) � [�(G (0)

: )+?]⇤=: [+ �1? (
p
,�- )†

p
,

�
6(G1) . . . 6(G" )

�) ]���
2
,

where � = {(G (0)
1 ,=1,61), (G (0)

2 ,=2,62), . . . , (G (0)
 ,= ,6 )} and +? =

⇣
E (?1 )1 E (?2 )1 . . . E (?A )1

⌘
. In this nu-

merical experiment, we only consider reconstructing the original trajectory given as the inputs, and there-
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fore, we de�ne the state as the input data G (0)
: = G1, the function is full state observable 6: (G) := G . The

power values are simply the integer power =: = :,8: 2 {1, 2, . . . , }, = " . In total, we calculate the ⇢4
error as

⇢4(+?) :=
1
"

"’
:=1

���G: � [�(G1)+?]⇤: [+ �1? �†
--

) ]
���
2
.

Table 2 shows the ⇢4 error of the integer exponential algorithm, and �gure 11 shows the plot of the ⇢4
error with respect to the number of inverse iterations conducted during the integer-exponential algorithm
(algorithm 17). Note that for a large number of iterations, the ⇢4 error should decrease as they have more
access to the “true” eigenvectors. One can observe that there are cases where the error is larger even if
the number of inverse iterations is higher, for example, where the number of inverse iterations is 21 or
181. Note that in the case where the number of inverse iterations is 201, this algorithm coincides with
the eigenvalue decomposition with inverse iteration. Also, note that none of the cases outperform the
mpEDMD reconstruction, nor are they even not competitive with the mpEDMD unless it coincides with
the QR algorithm + inverse iteration.

Table 2 The results of ⇢4 errors on unit circle setting
with respect to some number of inverse iterations.

number of inverse iteration ⇢4 error
1 102368.5
21 455982.23
41 170.59
61 633.69
81 5752.7
101 3793.65
121 1237.7
141 245.29
161 204.02
181 13806.42
201 0.03
mpEDMD 1.5E-03

Figure 11 The plot of ⇢4 errors with tunit circle settings.
The x-axis is the number of inverse iterations, and the y-
axis is the ⇢4 errors.

3.4.2 Irrational flow on n-dimensional torus

Irrational �ow on the n-dimensional �at torus is also an easy example of the ergodic system [CFS12]. For
the case = = 2, consider for the state space M = [0, 1)2 and an irrational number F1,F2 2 í \ ö, the
evolution function ) : M !M as

) (\1, \2) = (\1 +F1C, \2 +F2C)) mod 1, C 2 í.

Again, the evolution function ) is invertible with the inverse ) �1(\1, \2) = (\1 �F1C, \2 �F2C)) mod 1,
and the system is ergodic. The evolution of the irrational �ow on the �at torus can be viewed in �gure 12
where the color indicates the time step of the data, i.e., the darker color plots are the =-th data with small =
and the brighter color plots are =-th data with large =. Note that the states visit and explore the entire state
spaceM = [0, 1)2, which represents the ergodicity of the system. Also, note that the two-dimensional �at
torus can be viewed through the three-dimensional observable 5 : M = [0, 1)2 ! í3 de�ned as

5 (\1, \2) =
�
1 + ' cos(2c\2)) cos(2c\1) (1 + ' cos(2c\2)) sin(2c\1) sin(2c\1)

�)
.

Figure 13 shows the irrational �ow on a two-dimensional torus through a three-dimensional observable.
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Figure 12 Irrational �ow on 2D �at torus where the color
represents the time step of the data. Figure 13 Irrational �ow on 2D torus through

3D observable.

Now, for : = (:1,:2),:8 2 ö and \ = (\1, \2), \8 2 í, consider, similar to the unit circle case, that an
observable i: (\ ) := 482c (:1\1+:2\2 ) , then

[*i: ] (\ ) = i: () (\ )) = i:1,:2 (\1 +F1C, \2 +F2C) = 482c (:1 (\1+F1C )+:2 (\2+F2C ) )

= 482c (:1F1+:2F2 )C482c (:1\1+:2\2 ) = 482c (:1F1+:2F2 )Ci: (\ ) .

Thus, i: is an eigenfunction with eigenvalue 482c (:1F1+:2F2 )C . This can be extended to the =-dimensional
case where the state space M := [0, 1)= , the frequencies F := (F1,F2, . . . ,F=),F8 2 í \ ë, the evolution
function for \ := (\1, \2, . . . , \=), \8 2 í,

) (\ ) := (\1 +F1C, \2 +F2C, . . . , \= +F=C) mod 1, C 2 í,

with the inverse ) �1(\ ) = (\1 � F1C, \2 � F2C, . . . , \= � F=C) mod 1, and for : := (:1,:2, . . . ,:=), the
observable function

i: (\ ) := 482c
Õ=
8=1 :8\8 ,

is an eigenfunction with eigenvalue
_: = 482c

Õ=
8=1 :8F8C .

Now, consider applying our algorithms to this setting. In the following numerical examples, as the
dictionaries of the observables, we again take the Fourier basis

{4: : [�c, c]= ! É | 4: (G) =
1
p
2c
42c8

Õ=
9 : 9G 9 },

where G = (G1, G2, . . . , G=) 2 M,: = (:1,:2, . . . ,:=),: 9 2 ö, |: 9 |  3 with maximal degree 3 . Note that
since we take all possible combinations of |: 9 |  3 , with maximal degree 3 , the number of dictionaries is
(23 + 1)= . Thus, even for = = 3 and 3 = 10, it is 113 = 1331, which is already large enough. Also note that
the number of dictionaries A coincides with the size of the matrix representation  , and inverse iteration
requires O(A 3) operation for calculating the inverse of the matrix. Therefore, we only consider the case
where = = 2. We de�ned the number of data is # = 105 and the maximum degree is 3 = 10, which implies
the number of dictionaries A = (23 + 1)= = 212 = 441. The initial state ?0 2M and frequencies F1,F2 are
randomly chosen and de�ned as ?0 = (0.06908747, 0.65315924) and F1,F2 = 0.77080411, 0.9886656. Note
that the ratio F1

F2
is 0.77080411

0.9886656 = 0.7796408714938601 and “as_integer_ratio()” function of Python returns
the integer ratio is 0.7796408714938601 ⇡ 722063162674695

562949953421312 , which is almost irrational and almost satis�es our
requirements.
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power vector error ⇢1 of the real-exponential algorithm In the same way as the unit circle case, we
�rst compare the eigenvector reconstruction error of the real-exponential algorithm (algorithm 14) by
using ⇢1 error (Lemma 3.7). The results are shown in the �gure 14.

Figure 14 ⇢1 error of the irrational �ow on 2D torus. The x-axis represents the power values, and the y-axis is the
⇢1 error.

On the one hand, similar to the one-dimensional case, the ⇢1 errors are almost 1 for all powers, ex-
cept the case where power is one, which corresponds to the original vector given by the mpEDMD. This,
again, indicates the power vectors given by the real-exponential algorithm are almost always orthogonal
to the desired eigenvector, and it fails to obtain the true eigenvector. On the other hand, unlike the unit
circle case, there are some cases that the ⇢1 error is between [0, 1], especially around 0.8, and there is
no other case where the ⇢1 error is zero except the power is one. This result supports the results of the
one-dimensional case that the real-exponential algorithm cannot obtain the desired eigenfunction and cor-
responding eigenvector due to the rational approximation of irrational numbers on the computer and the
orthogonality of the eigenfunctions with respect to the di�erent eigenvalues. Also, we can hypothesize
the results of the one-dimensional case, in which there exists three powers with ⇢1 error become zero,
might be just a coincidence. The values, not zero nor one, can be understood as the limitation of the �nite-
dimensional approximation of the in�nite-dimensional eigenfunction. In the in�nite-dimensional case,
the ⇢1 error should be 0 or 1. However, in the �nite-dimensional case, it fails to obtain some information,
which cancels some of the information in the projected space.

Eigenfunction reconstruction error ⇢2 of real-exponential algorithm To calculate the eigenfunction
reconstruction error ⇢2, we need to calculate the true eigenfunction given eigenvalues. However, it is
di�cult to obtain such eigenfunction from eigenvalues due to the number of unknown variables and the
combination of irrational numbers. Recall for the eigenvalue eigenvalue 482c (:1F1+:2F2 )C , the correspond-
ing eigenfunction is given by i: (\ ) := 482c (:1\1+:2\2 ) . Thus, given only an eigenvalue _ 2 î, one can not
determine the : = (:1,:2), and consequently, the eigenfunction i: . Therefore, we just plot the eigen-
function reconstruction evolution by (1) mpEDMD (“mpEDMD”), (2) QR algorithm and inverse iteration
(“QR+EIG”), and (3) real-exponential algorithm (algorithm 15) (“Power”) in �gure 15 and ignore calculating
“True” eigenfunctions and ⇢2 error of two-dimensional case. Similar to the one-dimensional case, the real-
exponential algorithm �nds eigenfunctions that are similar to the eigenfunction reconstruction given by
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mpEDMD and QR algorithm + inverse iteration. However, it contains a real-exponential error of complex
numbers, especially if the power is far from 1.

Figure 15 The eigenfunction reconstruction by the real-exponential algorithm (algorithm 15) of irrational �ow on
2D torus.
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Eigenfunction property error ⇢3 of integer-exponential algorithm We now check the eigenfunction
property error ⇢3 (Lemma 3.9) of the integer-exponential algorithm (algorithm 16). ⇢3 errors are shown in
the table 3 and the plot is in the �gure 16. Even in the two-dimensional case, the integer-exponential algo-
rithm is able to obtain the power functions that satisfy the eigenfunction property while the corresponding
eigenvalues are not eigenvalues of the matrix representation. As shown in the table 3, the ⇢3 error is less
than 0.001 (= 1.00E-03) even if the power is large (20). Also, one can observe in �gure 16 that ⇢3 error in-
creases linearly with respect to the power value. This means that once one obtains an eigenfunction with
some error, one can obtain several eigenfunctions with eigenvalues while the ⇢3 error is easily predicted.

Table 3 The results of ⇢3 errors with two-dimensional setting.

power value is eigenvalue of matrix ⇢3 error
0 FALSE 0.00E+00
1 TRUE 4.49E-05
2 FALSE 8.97E-05
3 FALSE 1.35E-04
4 FALSE 1.79E-04
5 FALSE 2.24E-04
6 FALSE 2.69E-04
7 FALSE 3.14E-04
8 FALSE 3.59E-04
9 FALSE 4.04E-04
10 FALSE 4.49E-04
11 FALSE 4.94E-04
12 FALSE 5.38E-04
13 FALSE 5.83E-04
14 FALSE 6.28E-04
15 FALSE 6.73E-04
16 FALSE 7.18E-04
17 FALSE 7.63E-04
18 FALSE 8.08E-04
19 FALSE 8.53E-04
20 FALSE 8.98E-04

Figure 16 The plot of ⇢3 errors with two-dimensional setting. The x-axis is the power value (= in the table), and the
y-axis represents the ⇢3 errors.
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Original trajectory reconstruction error ⇢4 of integer-exponential algorithm Lastly, the original tra-
jectory reconstruction error ⇢4 is shown in the table 4 and whose plot is in the �gure 17. Note the number
of iterations is simply chosen such that the total plot is 10, i.e., number of inverse iterations of the =-th
plot is 1 + = ⇥ A//10 = 1 + 44=. Also note that in the case the number of inverse iterations is 441, it is the
same as performing the QR algorithm and inverse iteration for all column vectors (algorithm 12).

Figure 17 shows that the ⇢4 error decreases as the number of inverse iterations increases although
there are some irregular increases in between. This trend is natural as they have more access to the true
eigenvectors. Note, however, that even if the number of inverse iteration is 397, which is quite close
to performing inverse iteration for all column vectors, the ⇢4 error is high (2.6 ⇥ 1012). This e�ect can
be understood as due to their corresponding vectors’ information not existing in the projected �nite-
dimensional space, which causes inaccurate eigenvectors reconstruction and the corresponding Koopman
modes.

Table 4 The results of ⇢4 errors with two-
dimensional setting.

number of inverse iteration ⇢4 error
1 NaN
45 3.58E+15
89 2.58E+15
133 5.15E+15
177 1.48E+15
221 3.83E+15
265 6.93E+14
309 8.73E+14
353 5.23E+13
397 2.60E+12
441 1.13E-02

Figure 17 The plot of ⇢4 errors with two-dimensional setting.
The x-axis is the number of inverse iterations and the y-axis is
the ⇢4 errors.
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4 Conclusion

Summary of our approach and results We introduced two algorithms: the real-exponential algorithm
for �nding eigenvectors of the matrix representation of the Koopman operator obtained by DMD-type al-
gorithms and the integer-exponential algorithm for avoiding the real-exponential error of complex num-
bers and �nding eigenfunctions of a Koopman operator outside the projected �nite-dimensional space.
We assumed the underlying dynamical system is ergodic and used the unique properties of the Koop-
man operator and ergodic systems, especially the property 2.1, which states that the combinations and
exponentiations of some eigenfunctions form yet another eigenfunction.

The real-exponential algorithm is developed by the combination of the property 2.1 and the multiplic-
ity of eigenvalues on the ergodic system for obtaining eigenvectors of the matrix representation of the
Koopman operator and for accelerating the eigendecomposition process performed during the DMD-type
algorithms. The power values {?1, ?2, . . . , ?=} are de�ned such that the powered eigenvalues coincide with
the true eigenvalues so that the power vectors with {?1, ?2, . . . , ?=} satisfy the necessary condition of being
the eigenvectors of thematrix representation. Themultiplicity of eigenvalues of the Koopman operator en-
sured the eigenfunction corresponding to an eigenvalue is unique up to complex scalar multiplication, and
consequently, the power vectors with {?1, ?2, . . . , ?=} are truly eigenvectors of the matrix representation of
the Koopman operator. However, the theoretical and numerical results showed that the real-exponential
algorithms perform worse than the original mpEDMD or the true eigendecomposition due to the real-
exponential error of complex numbers and the rationally truncated representation of irrational numbers
on a computer.

The integer-exponential algorithm is introduced to avoid the real-exponential error of complex num-
bers. The set PW =

�
48W= | = 2 é

 
, which consists integer-powered values of an irrational angled value

48W ,W 2 í \ ë, is dense subset of the unit circle (Lemma 3.6) and all values are di�erent. This ensures
the integer-exponential algorithm produces di�erent eigenfunctions of the Koopman operator, and they
are orthogonal to each other. The numerical study showed the integer-exponential algorithm successfully
�nds eigenfunctions that have small eigenfunction property errors (⇢3 error) while the corresponding
power vectors are not the eigenvectors of the matrix representation. The eigenfunction property error
was small with a small integer power, and the error increases as the power value increases almost linearly.
Moreover, even for relatively large power 20, the numerical results showed the error is still small (under
0.001). However, once we project such eigenfunctions onto the �nite-dimensional space where the matrix
representation is considered, the reconstruction error of the original trajectory (⇢4 error) is large even if
half of the eigenvectors are provided by the inverse iteration.

Discussion and outlook Based on the numerical and theoretical results, there will be a small room for
improvement of the real-exponential algorithm (algorithm 14) since the property 2.1 of Koopman opera-
tor will not precisely work for complex case due to real power of complex numbers, and the relationship
between the eigenvalues of the matrix representation will often be real power not integer. Furthermore,
the real-exponential algorithm will not work if there exists any small number of di�erences due to the or-
thogonality of eigenfunctions corresponding to di�erent eigenvalues (Lemma 3.3). Since the real numbers
are truncated in the computer, there will almost always be some truncation error of reconstructed eigen-
values. Note, however, that if the observable function 5 is de�ned to be a real-valued function, namely,
5 : M ! í, then there is no real-exponential error, and the algorithm might work up to truncation error
of the irrational number. Also, if it is possible to obtain the eigenfunction corresponding to an eigenvalue
without any error, then the ergodicity assures the power functions are truly eigenfunctions and the power
vector given by algorithm 13 will provide the corresponding eigenvector of the matrix representation.

On the contrary, the integer-exponential algorithm showed potential to be further investigated since
there is no exponential error like the real-exponential case. The results showed the power functions given
by the integer-exponential algorithm almost satisfy the eigenfunction property, i.e., ⇢3 errors were small.
Although the trajectory reconstruction error (⇢4 error) was large even with a large number of inverse
iterations, it is likely that only the Koopman modes reconstruction is not working well since the other
terms, eigenvalues and eigenfunctions, were ensured satisfying the eigenproperty correctly by the small ⇢3
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errors. We interpret this phenomenon as natural since the Koopman modes are reconstructed by using the
power vectors projected onto the �nite-dimensional space where the information of these power functions
(=eigenfunctions) is neglected.

Hence, one possible future research will be studying the integer-exponential algorithm for reconstruct-
ing the original trajectory. Since the cause of the large ⇢4 error of the integer-exponential algorithm might
be the Koopman modes reconstruction error due to projecting the obtained functions onto the �nite-
dimensional space, one can consider an algorithm for obtaining the Koopman modes without projecting
back to the �nite-dimensional space. Since the Koopman modes are de�ned as the coe�cients of the (full-
state observable) function, one can obtain such value, for example, by using the inner product of the func-
tion and eigenfunctions obtained by the integer-exponential algorithm. If this is achieved, then one can
approximate the information of the underlying dynamical system just by one (or a small number of) inverse
iterations. Another possibility will be considering the case where the observable functions are real-valued.
In this case, the real-exponential algorithm will work without su�ering from the real-exponential error of
complex numbers and possibly fasten the eigendecomposition process performed during the DMD-type
algorithms. Lastly, the numerical results of ⇢1 error with unit circle showed there are some cases where the
real-exponential algorithm �nds “true” eigenvectors while the power is not 1 (�gure 5). This phenomena
is not fully understood yet since this did not happen with two-dimensional torus experiments (�gure 14).
Therefore, it can be further investigated.

In conclusion, the discoveries and contributions of this thesis highlighted both the potential and the limi-
tations of the exponential algorithms concerning the enhancement of e�ciency and quantity in computing
the spectral information of the Koopman operator. Through continued exploration of the aforementioned
future research topics and others, it is conceivable that the exponential algorithms may play a pivotal
role in accelerating the eigendecomposition process or augmenting the quantities of spectral information
associated with the Koopman operator.
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