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Abstract

Ab-initio molecular dynamics simulations are the primary computational tool to ana-
lyze natural phenomena that are inexplicable using macroscopic modeling. However, this
comes with the caveat that one should solve for the ground state of a many-body electronic
Hamiltonian several times during the course of a simulation for evaluating the forces. Ma-
chine learning potentials have emerged as a popular alternative in the last decade, with
efforts to train large machine learning models on massive chunks of data underway. The
hope is that these models would generalize, at least for most practical purposes.

This work adds to the toolbox of machine learning potentials by using function approx-
imators based on random features for approximating the forces and energies of molecular
systems. Additionally, it investigates inference schemes for learning functions on sets.
Lastly it demonstrates that higher order (interaction) representation is necessary for some
molecules that are considered here.
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1 Introduction

Richard Feynman begins his famous lectures on physics with the atomic hypothesis.

Postulate 1 (Atomic hypothesis). All things are made of atoms – little particles that move
around in perpetual motion, attracting each other when they are a little distance apart, but
repelling upon being squeezed into one another [ 34 ].

It suffices to say that the study of all natural sciences concerns the study of atoms – on
how they are composed; on how they interact with each other; on how in the limit of large
numbers, groups of atoms exhibit emergent behaviour.

The scientific collective has spent the last century coming up with ”the” universal law
of nature (may gravity pass over in silence) and to quote Feynman:

Postulate 2 (Law of nature). “Quantum mechanics” is the description of the behavior of
matter and light in all its details and, in particular, of the happenings on an atomic scale
[ 35 ].

Clearly, the contemporary consensus is to model all atomic interactions using quantum
mechanics. This viewpoint is rightly justified, as molecular dynamics has played a pivotal
role in understanding a wide variety of physical systems ranging from transient behaviour
of non-ideal gases [ 89 ], modeling spike proteins of viruses [ 11 ] and even electronic energy
transitions in atto-second lasers [  8 ]. Scientific curiosity aside, modeling atomic interac-
tions is crucial in the field of medicine, where computational models can exponentially
accelerate a drug development cycle [ 10 ]. In lieu of this, there is an ever increasing need
to improve the computational models, from the perspective of both accuracy and compu-
tational efficiency.

Statistical models based on deep neural networks – ”machine learning potentials” [ 16 ],
have catalyzed this progress in the last two decades. They have enabled molecular dynam-
ics enabled investigations of systems that were previously not possible [ 101 ]. Yet, there is
much frailty in their constitution, the way they are trained and their predictive accuracy
for out-of-sample distributions and the costs incurred in re-training the models [ 33 ]. This
work investigates, if alternative training strategies could be adopted for such statistical
models, whilst maintaining the accuracy of the state of the art training methods.
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1 Introduction

More precisely, I am interested in the following questions:

1. Can function approximators based on random features [ 73 ], faithfully approximate
high dimensional functions such as a) Inter-atomic potentials and b) Force fields of
molecular systems?

2. By what means can inductive bias [ 52 ] be incorporated into these empirical models?

3. Do higher order interactions [ 88 ] improve the predictive accuracy of such empirical
models?

In Part 2, I will briefly introduce the ideas that are central to this work. One should be
wary that the sections therein are research disciplines on their own. A more interested
reader should seek out the listed references, for a wholesome understanding of the subject
matter. Part 3 describes the methods, lists the algorithms that were used, developed in this
work. The results from the numerical experiments are presented and also interpreted here.
Part 4, summarizes the findings and provides a future outlook.
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2 Background and State of the art

2.1 On the quantum many body problem

Molecular systems are modelled atomistically using the laws of quantum mechanics. When
such laws are used to model complex systems, it constitutes a many body problem. There
exist several coarse-grained versions of its formulation [ 97 ,  60 ,  41 ]. This section builds up
the foundation to understand one of them.

2.1.1 Objects of Quantum Mechanics

When modelling a physical system, there are three questions that we should concern our-
selves with, namely:

1. Which mathematical object best represents the state of the system?

2. How to extract physically meaningful observables from this object?

3. What are the set of equations that best model the evolution of this system?

With classical mechanics, systems are represented on a manifold M, observables are
inferred as functions defined on M and most systems can be faithfully modelled using
Lagrangian mechanics [  63 ]. The quantum mechanical counterparts to these entities are the
wavefunction, the measurement operator and the time dependent Schrodinger’s equation
respectively [ 90 ].

Definition 1 (Wavefunction). A wavefunction for a physical system S is an element of a Hilbert
spaceH, consisting of anti-symmetric functions [ 90 ].

Definition 2 (Measurement operator). Quantum measurement is described by a set of measure-
ment operators {Mm} acting on the wavefunction Ψ. The probability of a measurement result m
occuring is ⟨Ψ|M †

mMm|Ψ⟩ and the state of the system after measurement is Mm|Ψ⟩√
⟨Ψ|M†

mMm|Ψ⟩
.

Definition 3 (Schrödinger’s equation). The evolution of a quantum mechanically described sys-
tem is postulated to evolve according to

iℏ
∂|Ψ⟩
∂t

= H |Ψ⟩, (2.1)

H = − ℏ2

2m
∇2 + V. (2.2)

This is the time dependent Schrödinger’s equation [ 90 ].

3



2 Background and State of the art

Similar to classical mechanics, there are alternative formulations of quantum mechanics
such as the density matrix formulation and the Wigner formulation. Here, other mathe-
matical objects are used to describe the system’s state.

2.1.2 A many-body problem

For a molecular system eq. ( 2.1 ), can be formulated as follows:

[Many Body Problem] Consider a molecular system S with Ne electrons and Na

atoms such that N = Ne + Na. Let the position of an electron/atom be denoted
by rik, its charge number Zi

k, where k = {e, a} and i ∈ N. Let t ∈ R+ be time and
r ∈ Ω ⊂ R3N .

|Ψ⟩ : Ω× R+ 7→ C , represents the many-body wavefunction for S.

Its evolution is prescribed by:

ih̄
∂|Ψ⟩
∂t

= (H + Vext) |Ψ⟩, (2.3)

H = −1

2

Ne∑
j=1

∇2
rje
− 1

2

Na∑
i=1

∇2
ria
−

Na∑
i=1

Ne∑
j=1

Vae(r
i
a, r

j
e) +

Ne∑
i,j=1

Vee(r
i
e, r

j
e) +

Na∑
i,j=1

Vaa(r
i
a, r

j
a),

(2.4)

Vkl(p, q) =
ZkZle

2

|p− q|
k, l ∈ {e, a}, (2.5)

Vext : Ω× R+ 7→ R. (2.6)

|Ψ⟩ is postulated to contain all the relevant information about the state of S. Conse-
quently, it depends on a number of parameters. It is easy to see that, in the macroscopic
limit, the wavefunction |Ψ⟩ of an arbitrary system S has a very high dimensional domain
Ω. This has four intertwined consequences.

1. Analytical solutions to eq. ( 2.1 ) rarely exist.

2. Numerical approximations of |Ψ⟩ suffers from the curse of dimensionality [ 22 ].

3. Measuring observables O are infeasible due to the cubic scaling of most numerical
algorithms for solving eigenproblems [ 93 ].

4. Ignoring 2, time integration of eq. ( 2.1 ) is extremely inefficient due to the stiffness
of the ODE system ensuing from the spatial discretization of this parabolic partial
differential equation [ 49 ].
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2.1 On the quantum many body problem

2.1.3 Born-Oppenheimer approximation

Bearing these limitations in mind, several simplifications have been proposed. Chronolog-
ically, the first simplification of eq. ( 2.3 )-eq. ( 2.6 ) is due to Born and Oppenheimer. Based
on the observation that the mass of an electron and the mass of a hydrogen nucleus vary
by a factor of about 1800, the Born-Oppenheimer approximation [ 20 ] posits that:

1. Electrons evolve at a faster timescale than nuclei.

2. The evolution of nuclear centers can be approximated with Hamiltonian dynamics,
i.e. as governed by a potential energy surface induced by a sea of fast moving elec-
trons.

Its principal implication is an effective decoupling of the electronic and nuclear dynam-
ics, meaning eq. ( 2.3 ) can be effectively dropped and substituted by Newton’s equations
of motion. That is

dva(t)

dt
= −∇raEP (ra) + VE(ra, t), (2.7)

dra(t)

dt
= va(t), (2.8)

H−
Na∑

i,j=1

Vaa(r
i
a, r

j
a) = −

1

2

Ne∑
j=1

∇2
rje
−

Na∑
i=1

Ne∑
j=1

Vae(r
i
a, r

j
e)+

Ne∑
i,j=1

Vee(r
i
e, r

j
e)+Vext(re, ra). (2.9)

This shifted operator in eq. ( 2.9 ) is the electronic Hamiltonian. The potential energy
surface EP is obtained by evaluating its lowest eigenenergy.

HE |Ψ⟩ = EP |Ψ⟩. (2.10)

HE = −1

2

Ne∑
j=1

∇2
rje
−

Na∑
i=1

Ne∑
j=1

Vae(r
i
a, r

j
e) +

Ne∑
i,j=1

Vee(r
i
e, r

j
e) + Vext(re, ra). (2.11)

The Cauchy’s problem eq. (  2.7 )-eq. ( 2.8 ) can be solved numerically : given initial con-
ditions [ra(0), va(0)] and the closure external forcing potential VE ; using symplectic time
stepping methods due to Stromer and Verlet [ 39 ]. In addition, the influence of external en-
vironment in the simulations can be accounted for, by formulating stochastic counterparts
to eq. ( 2.7 ). [ 64 ] provides a detailed exposition of a litany of methods to solve such models.
The eigenproblem in eq. (  2.10 ) represents another physically motivated approximation, as
for most practical purposes, higher energy levels (higher eigenvalues) are almost always
inconsequential. This facilitates the use of Krylov subspace methods and other tricks that
can sometimes elude its cubic complexity wall.

For all practical purposes in chemical systems, it can be assumed that the Born-Oppenheimer
approximation is as good a model as the time dependent Schrödinger’s equation. And
henceforth in this thesis, this is my assumption as well.

5



2 Background and State of the art

2.2 Numerical methods for the many body problem

Despite the simplifications of the BO approximation, the resulting model still need to be
simulated numerically. Here, the algorithmic details of two common numerical methods
that approximate EP – a) Exact diagonalization (ED) and b) Density functional theory
(DFT) are discussed. Each section ends with a discussion on their convergence and scaling
properties.

2.2.1 Exact digonalization

Exact diagonalization (ED) is a family of methods that is used to estimate the potential
energy surface of a many body system. While the host of methods constituting ED have
their differences; their underlying computational philosophy is common, viz:

1. Define a suitable linear bases set B, whose coefficients represent a discretized Ψ, say
Ψ̂ ∈ Cd.

2. Write down the transformed version of HE – HB
E for the chosen B.

3. Discretize the operators in HB
E appropriately (easier said than done).

4. Solve the resulting matrix-eigenvalue problem using a numerical algorithm N .

Depending upon (B,N ), there exist different flavours of ED. The simplest case is where
B is the Euclidian bases and N is either an Lanczos/Ritz method [ 93 ]. Iterative methods
such as LOBPCG [ 75 ] have been used in recent works [ 46 ].

Algorithm 1 Exact diagonalization

Require: Electronic Hamiltonian HE , ”Eigen” algorithm N
1: Call a suitable eigenvalue-solver EP = N (HE). (Lanczos, LOBPCG)
2: Evaluate quantities of interests F (EP ),Σ(EP ).
3: return Energy EP , Forces F , Stress tensor Σ

The Lanczos method is a Krylov subspace method that presents significant advantages
over a direct solver (QR method for instance). A Lanczos solver requires two vectors v, w ∈
Rd to be stored in memory. The Hamiltonian HE need not necessarily be assembled, rather
a function that performs the action of HE on the vectors is sufficient. The most significant,
computational cost incurred in the Lanczos iteration is matrix multiplication O(d2). Over
the course of m iterations, the overall computational cost is of the order ofO(md2), making
it a suitable alternative to a direct solver O(d3).

When d becomes very large, matrix multiplication is no-longer data efficient. As a result,
the computational complexity component of the Lanczos iteration becomes prohibitively
large. The locally-optimal-blocked-preconditioned-conjugate-gradient (LOBPCG) method

6



2.2 Numerical methods for the many body problem

Element Atomic number d

Be 4 q12

Mg 12 q36

Ca 20 q60

Sr 38 q114

Ba 56 q168

Ra 88 q264

Table 2.1: Second group elements and the size of their discretized wavefunctions (q points
per dimension). Note that this representation for |Ψ⟩ suffers from the curse of
dimensionality.

[ 58 ] is used in such scenarios, as this method allows for trivial parallelization of the eigen-
computations. Thanks to its favourable scaling, LOBPCG has become a mainstay in several
mainstream electronic structure software [ 45 ,  38 ].

A discussion on how the quantities of interest in algorithm  1 are evaluated can be found
in [ 69 ] and references therein. [ 93 ] give a more detailed exposition of the Lanczos iteration
concerning numerical stability and convergence. Different choices of preconditioners in
LOBPCCG for electronic structure calculations is addressed in [ 44 ]. Recently, there is also
work addressing the use of operator-adapted wavelet (”gamblets”) based precondtioners
for eigenproblems [ 77 ].

However, for larger electronic systems; using ED to estimate EP is not favourable. For
instance, consider elements from the second group of the periodic table in table  2.1 . Here
d scales exponentially with the atomic number of the elements. Consequently, HE has
a memory requirement of O(d2). This motivates the need for coarse grained electronic
structure computations. Density functional theory is most widely used coarse-graining
scheme.

2.2.2 Density functional theory

Exact diagonalization belongs to the family of wave-function based methods. Parallel to
this, the density function approach [  54 ] has been developed over the past 50 years very
successfully. Here the object of interest is the electron density ρ:

ρ(r) = N

∫
dr2 ...

∫
drN ⟨Ψ(r, r2, ..., rN )|Ψ(r, r2, ..., rN )⟩. (2.12)

From the property of the wave function,∫
dr1

∫
dr2 ...

∫
drN ⟨Ψ(r, r2, ..., rN )|Ψ(r, r2, ..., rN )⟩ = 1, (2.13)

7



2 Background and State of the art

it follows that: ∫
drρ(r) = N. (2.14)

Unlike |Ψ⟩, which depends on 3N coordinates; ρ depends on three input coordinates.
As a result, systems that were previously intractable with ED can now be approximated
with density functional theory (DFT). The basic tenets of DFT are the Hohenberg-Kohn
theorems [ 51 ].

Theorem 1. Hohenberg-Kohn Theorems

1. The external potential V := Vae +Vext is a unique functional of ρ(r) up to a constant. Since
V in turn determines HE , the many body ground state EP is a unique functional of the
ground state density ρ0(r).

2. For a positive density function ρ̂0 satisfying eq. ( 2.14 ), EP (ρ̂0) ≥ EP (ρ0).

Consequently, one can evaluate the energy functional as,

EP (ρ̂0(r)) = T (ρ̂0(r)) + EV (ρ̂0(r)) + Eee(ρ̂0(r)); (2.15)

EV (ρ̂0(r)) =

∫
dr V (r) ρ̂0(r); (2.16)

Eee(ρ̂0(r)) =

∫
dr′ dr

ρ̂0(r
′)ρ̂0(r)

∥r′ − r∥
. (2.17)

Notice, that the functions ρ̂0, T are still to be defined. Depending upon their modelling
choices, there are different formulations of DFT.

2.2.3 Kohn-Sham DFT

Kohn-Sham DFT (KSDFT) is argubaly the most popular version [ 65 ]. Here, ρ̂0, T are
implicitly defined based on the following assumption – Electrons in a system are non-
interacting. This assumption is non-physical. As a result, closure terms can be introduced
in the energy functional that corrects for this modeling error. The closure term EXC in
the energy functional is the exchange correlation energy, while Vxc is the corresponding
correction to the potential.

Consequently, one may write down the Kohn-Sham energy functional and its depen-

8



2.2 Numerical methods for the many body problem

Figure 2.1: Jacob’s ladder of exchange correlation functionals. Ascending the ladder, one
finds families of exchange correlation functionals that increase the accuracy of
DFT computations. Taken from [ 65 ].

dencies based on the non-interacting orbital functions ϕi:

ρ̂0(r) =
N∑
i=1

⟨ϕi(r)|ϕi(r)⟩; (2.18)(
−1

2
∇2

ri + V (r) + Vee(ρ̂0(r)) + Vxc(ρ̂0(r))

)
ϕi(r) = ϵiϕi(r); (2.19)

Vee(ρ̂0(r)) =

∫
dr′

ρ̂0(r
′)

∥r − r′∥
; (2.20)

Vxc(ρ̂0(r)) =
δExc

δρ̂0
; (2.21)

EKS(ρ̂0(r)) = TNI(ρ̂0(r)) + Eee(ρ̂0(r)) + EV (ρ̂0(r)) + EXC(ρ̂0(r)); (2.22)

TNI(ρ̂0(r)) = −
1

2

N∑
i=1

⟨ϕi(r)|∇2
ri |ϕi(r)⟩. (2.23)

Eee, EV are evaluated with expressions in eq. ( 2.15 ). There are different families of EXC

in literature. Depending upon their complexity, they are placed on Jacob’s ladder (fig.  2.1 ).
Each model on this ladder, provides an explicit expression for EXC in terms of the electron
density ρ̂0(r), effectively closing the system of equations in eq. ( 2.18 )-eq. ( 2.23 ). An ap-
proximation to EP say EKS can in-turn be obtained with the self-consistent field iterations
in Algorithm  2 .

There are several details that are pushed under the rug in algorithm  2 . For instance,
solving the eigenproblem in Step 4, requires one to choose a suitable bases for representing
the orbitals. A common choice is plane wave bases representations [ 24 ]. Furthermore, the

9



2 Background and State of the art

Algorithm 2 KSDFT - Self consistent field iterations

Require: Initial guess for density ρ̂
[0]
0 (r), Exchange correlation functional EXC and its cor-

responding potential Vxc, Convergence threshold ϵ, Density mixing scheme g.

1: ρ̂old
0 (r)← ρ̂

[0]
0 (r)

2: Evaluate Vee(ρ̂
[old]
0 (r)) using eq. ( 2.20 ) , Vxc(ρ̂

[old]
0 (r)).

3: Assemble the pseudo-Hamiltonian in eq. ( 2.19 ).
4: Solve the eigen-problem in eq. ( 2.19 ) to obtain {ϕ[new]

i }Ni=1.
5: Estimate new density ρ̂

[old]
0 using eq. ( 2.18 ).

6: if ∥ρ̂[old]
0 − ρ̂

[new]
0 ∥ < ϵ then

7: return EKS(ρ̂
[new]
0 (r))

8: else
9: ρ̂

[old]
0 (r)← g(ρ̂

[new]
0 (r), ρ̂

[old]
0 (r))

10: Go to Step 2.
11: end if

ensuing matrix eigenvalue problem is solved using a LOBPCG algorithm. Preconditioning
the eigenproblem is another open question that is actively being investigated [ 44 ]. Lastly,
the density mixing scheme is another modeling choice that has to be considered. For a
more detailed exposition of these different questions see [ 65 ].

With the KSDFT algorithm in algorithm  2 , electronic systems of the order of 1000 is
tractable. This has been leveraged, to simulate several chemical systems over the last
three decades [ 23 ]. However, with the end of Dennard scaling [ 30 ] and the stagnation
of Moore’s law; investigation of larger molecular systems (as in systems, relevant for solid
state physics) remains out of reach.

2.3 Empirical force fields

Electronic structure computations (PES solvers) discussed in section  2.2.1 , section  2.2.2 

can be used to solve the Cauchy problem in eq. ( 2.7 )-eq. ( 2.8 ). However there are two
difficulties that prevent their application for practical purposes.

1. Many body systems can be chaotic [ 64 ]. Therefore their numerical integration is not
feasible, unless very small time steps of the order of 10−15s are used.

2. Generally, phenomena of interest such as phase transitions occur over 10−3s − 100s
[ 57 ]; implying several calls to a PES solver over the course of a single MD simulation.

Additionally, there is also increasing need for uncertainty quantification of such simu-
lations, which pose further computational issues. This necessitates the need for surrogate
models that are orders of magnitude cheaper than first principle calculations. Empirical

10



2.3 Empirical force fields

Figure 2.2: Bonding interactions: Force fields typically used for a bonded molecule. From
left: harmonic potential, bending potential, torsional potential. Note that the
torsional potential needs to be represented in the Fourier bases for convenience.

Figure 2.3: Non-bonding interactions exist between any two atoms in a molecule. Shown
here are the Lennard-Jones potential (representing van der Wall’s interaction)
and a Coulombic potential for electrostatic exchange.

potentials [ 54 ] (force fields – used interchangeably) are such models. Formally, they may
be represented as:

EE = Estr + Ebend + Etors + Evdw + Eel (2.24)

Each of the terms to the right, are factors of the total energy. They are based on physi-
cal considerations such as bond length, bond angles (three atoms), torsional angles (four
atoms), electrostatic interactions, van der Waals interactions and so on. A pictorial descrip-
tion of the different forces and their generic expressions are shown in Figure  2.2 , Figure  2.3 .

It is obvious that the parameters (k, l, Vn, ϵ, υ) of empirical potentials depend on the
molecular system under consideration. Experimental observations or results from first
principle calculations are usually used as reference to tune the parameters of the specific
molecular system. For a complete overview of empirical force field potentials see [ 54 ,  25 ].

It should be noted that the ensuing models are only as accurate as the expressivity of
the inference ansatz in Equation ( 2.24 ). And rightly so, this is the main drawback of using
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2 Background and State of the art

empirical force fields for chemical discovery. This search for explicit feature functions
that improves the accuracy of the potentials is an open ended problem. In recent times,
machine learning algorithms are used to learn these representations. This is discussed in
Section  2.4 .

2.4 Machine Learning Potentials

Machine learning potentials (MLPs) are glorified empirical force field models. Contrary
to empirical force fields, machine learning potentials are not crafted based on physical
assumptions. Instead, ab-initio electronic structure calculations are used as a reference
to train regression models. Staples in machine learning are favourable representations of
input data and inference schemes that learn the correlation among the representations. In
the MLP community, such a representation is called a descriptor and the inference scheme
is called the regressor. Depending upon the choice of descriptor or regressor there are
different flavours of MLPs.

Figure 2.4: Workflow for machine learning potentials – Coordinates of molecules in con-
figuration space (1) is transformed into suitable intermediate representations
(2). Predictors for energies and forces (3) are obtained using regression mod-
els. Taken from [ 31 ].

Since physical considerations are side-stepped to enable ”human-out-of-loop” discov-
ery, there are a number of hyperparameters that have to be tuned to guarentee adequate
performance of MLPs (See fig.  2.5 ). After all, typical machine learning algorithms also
require tuning of such parameters.

12



2.4 Machine Learning Potentials

Figure 2.5: Overview of modeling choices in machine learning potentials – Sampling infor-
mative parts of E,F , suitable choices of descriptors, regressors are crucial for
obtaining a good estimate of the interatomic forces. Taken from [ 31 ].

Crucial to quantum chemistry applications is the choice of training data points. Trivially,
one would train on all the available points. However, there are a number of complications
that speak against this strategy. Active learning methods [ 92 ] have been proposed that
helps one address this issue. Further, suitable descriptors are instrumental in simplifying
the inference procedure. A good descriptor regularizes the already ill-conditioned prob-
lem of inference. As a result, the descriptor and regressor are highly dependent entities.
Lastly the regressor determines the overall computational cost of the inference procedure.
Different approaches exist in the machine learning community [ 66 ]. Several of these have
been adpoted for MLPs [  14 ,  59 ], but for random feature models [  73 ]; which is the subject
of this thesis. The rest of this section, discusses each of these components in more detail.

2.4.1 Descriptors

Dictionaries [ 16 ] (Koopman operator theory), representations, embeddings, feature maps,
(deep learning), descriptors [  80 ,  72 ] (quantum chemistry) are different names for suitable
inputs to regression models. Regardless, their main purpose is to facilitate learning. There
exists no universal descriptor. Its optimality depends on the function underlying data,
availability of data, the regression algorithm and so on. Naturally, there are countless de-
scriptors that have been proposed in literature, each tailored for a specific function class.
It is safe to say that a complete reference of all the descriptors in literature does not exist.
However, there are a few that seem to work well for large function classes that recur in
quantum chemical applications. Figure  2.6 illustrates some of the common descriptors.

Notice that these are invariant to isometries of the input Cartesian coordinates, and/or
invariant to permuting coordinates of identical atoms. This is on account of the fact that
the energy/forces are invariant/equivariant to such transformations. As a result, charac-
terizing these features in the representations can facilitate the learning process. A few of
these are explicit descriptors include:
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2 Background and State of the art

Figure 2.6: Phylogenetic tree of descriptors for materials and molecules. Arrows indicate
the relationship between different groups of features. Lists of names, in gray,
indicate the most common implementations for each class. Classes that appear
as “leaves” of the tree are fully symmetric. Taken from [ 72 ].

Coulomb matrix

For atomic configuration coordinates R ⊂ Rnd and atomic numbers Z ∈ Nn, the Coulomb
matrix [ 87 ] is given by the map:

ϕCM : R× Z 7→ K ⊂ Rn×n (2.25)

Kij =

{
ZiZj

∥Ri−Rj∥ i ̸= j

(ZiZj)
0.24 i = j.

(2.26)

Behler-Parrinello two body descriptor

For similar parameters, the Behler Parrinello two body descriptor [ 15 ] is given by:

ϕBP : R 7→ G ⊂ Rn (2.27)

Gi
R =

∑
j

exp

(
− 1

σ2
(∥Ri −Rj∥ −RC)

2

)
. (2.28)

Notice the Coulomb matrix representation is isometry invariant, while the BP descriptor
is isometry and permutation invariant. In principle, one can encode more prior knowl-
edege into the descriptors, as they do in [ 21 ]. However, this comes at the increased cost
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2.4 Machine Learning Potentials

of pre-processing the data. For ”big” datasets this can be quite tedious. As a result, one
needs to judiciously strike a balance between the costs incurred in pre-processing and the
costs incurred during inference.

Alternatively, one can learn descriptors that are specific to the inference procedure &
dataset [ 16 ,  76 ]. This approach has yielded better results in recent works [ 100 ], resulting in
increasing proliferation of graph based neural network representations [  37 ] that are seem-
ingly better at representing molecular data, albeit at the cost of reduced interpretability [ 9 ].
A more detailed discussion of descriptors can be found in [ 72 ,  47 ].

2.4.2 Regressors

Assuming that an oracle provides a suitable descriptor for the function that one is trying to
approximate, the task of the regressor is to fit the available datapoints using a-prior chosen
bases-sets. In other words, let xi ∈ Ω ⊂ Rd, yi ∈ ∆ ⊂ R, such that there exists f : Ω 7→ ∆.
GivenD := (X,Y ) := {(xi, yi) : i ∈ [1,M ]}, estimate an approximator f̂ : Ω 7→ ∆; such that
∀i ∈ [1,M ], f̂(xi) = yi. The three regressors that follow handles this regression problem
differently.

Kernel machines

Kernel machines [ 50 ] use non-linear feature maps ϕi : Ω 7→ ∆ which constitutes the bases-
set to approximate f , i.e

f̂(x) =
F∑

j=1

aj ϕj(x). (2.29)

ϕi are generally evaluated from a kernel function κ such that ϕi(x) = κ(x, xi). a is
estimated by solving a linear least squares problem. Formally,

argmin
a∈A

1

M
∥Y − ΦX a∥22 + λ2∥a∥22. (2.30)

Generally, the inference problem (inverse problem) is ill-posed. As a result it is conven-
tional to regularize it. Here Tikhonov regularization [ 56 ] with a constant λ ∈ R is used.
Equation ( 2.30 ) has an analytical solution, viz:

B := (ΦT
XΦX + λI) (2.31)

a∗ = B−1ΦT
X Y. (2.32)

Subsequently, predictions can be made using the estimator in eq. ( 2.29 ). Kernel machines
defined in this form has a complexity of O(F 3), stemming mostly from matrix inversion.
Their expressivity depends directly on the choice of the feature maps ϕi. If f is spanned
by {ϕi}Fi=1, then the approximator is exact. This is rarely the case.
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While radial bases kernels are very effective, they suffer from curse of dimensionality
when approximating higher dimensional functions, meaning one requires a large number
of feature maps F . Nevertheless, kernel machines were used to approximate inter-atomic
energies and forces in the early days of the field. See [  70 ,  87 ] for an exposition on their
limitations as machine learning potential regressors.

Gaussian processes

Gaussian processes [ 42 ] offer an elegant solution to the curse of dimensionality issue with
kernel regression by reformulating the problem in a Bayesian framework. Consider the
ansatz in eq. ( 2.29 ). The three participating variables are a ∈ A ⊂ RF , x ∈ Ω ⊂ Rd, y ∈ ∆ ⊂
R. Denoting all (x, y)i as (X,Y ) and if p(X,Y, a) is the joint probability distribution over
these variables, then from Bayes rule

p(a|X,Y ) =
p(X,Y |a)
p(X,Y )

p(a) ∝ p(X,Y |a)p(a). (2.33)

Assuming that the prior and likelihood are Gaussian,

p(a) = N (a;µa,Σa) (2.34)
p(X,Y |a) = P (Y |X, a) = N (Y ; ΦXa,Λ). (2.35)

Then posterior over the a, conditioned by X,Y is:

p(a|X,Y ) = N (µ̂, Σ̂) (2.36)

Σ̂ = (Σ−1
a +ΦT

XΛ−1ΦX)−1 (2.37)

µ̂ = Σ̂(ΦT
XΛ−1Y +Σ−1

a µa). (2.38)

And since eq. ( 2.29 ) is a linear map,

p(f̂x) = N (f̂x,Φxµ̂,ΦxΣ̂Φ
T
x ). (2.39)

Notice that the final distribution in eq. ( 2.39 ) only implicitly depends on F . Mckay
showed in [  67 ] that limF 7→∞, certain ϕ : Ω 7→ R correspond to a positive definite function
κ : Ω× Ω 7→ R. In other words, κ - the covariance kernels are infinite dimensional feature
maps; which can be evaluated by taking the inner product of the input space with itself.
That is, for a given GP prior – GP (f, µ, κ), the posterior over its parameters is given by
[ 43 ],

µ̂(x) = µ(x) +KxX(KXX + Λ)−1(Y − µX) (2.40)

κ̂(x, x′) = κ(x, x′)−KxX(KXX + Λ)−1KXx′ . (2.41)

Using Gaussian processes to approximate energies/forces is relatively new. Bartok [ 13 ]
introduced this first in his thesis. The initial models included a single GP supported over
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a class of possible E : Ω 7→ R. Later, this was work was expanded in the GDML ecosystem
[ 28 ,  26 ,  27 ], where different aspects of inference was examined and improvements were
suggested. One significant contribution of GDML was to learn the forces and energies
together using a single statistical model. In effect, they write down the following:

argmin
θ∈H

1

M

M∑
i=1

∥Ei − Êθ(Ri)∥22 + λ ∥Fi −∇RÊθ(Ri)∥22. (2.42)

where the forces regularize the energy model. Recently, larger atomic systems with hun-
dreds of atoms have also been investigated with GDML [ 29 ], with focus on scaling & effi-
cient inference. However, the fact remains that Gaussian process regression does not scale
well for large datasets since the inversion of G := (KXX + Λ) in eq. ( 2.40 ), has cubic com-
plexity. As a result, their applicability is restricted to learning functions over a smaller
domain Ω′. Fortunately, neural network approximators trained with stochastic gradient
descent can be artfully trained on huge datasets at a lower cost.

Neural networks

Formally, a shallow neural network approximating a function f is represented as:

f̂(x, θ) =

N∑
i=1

ai σ(Wix+ bi). (2.43)

Its parameters – θ are obtained by solving a fixed point problem (training)

θ∗ = argmin
θ∈H

1

M

M∑
i=1

∥yi − f̂(xi, θ)∥22. (2.44)

Typical training algorithms include first order methods such as Adam [ 55 ], Nesterov [ 74 ].
Second order Hessian based Newton methods [ 85 ] are generally more expensive for large
models but offer quadratic convergence. Neural networks can approximate high dimen-
sional functions without the curse of dimensionality [ 12 ]. Additionally, universal approxi-
mation theorems for neural networks guarantee their approximation prowess over a large
class of functions. These attributes make them a suitable candidate to learn the interaction
potentials and forces of many body systems.

This was realized as early as 1995 when a multilayer perceptron (the other MLP) ap-
proximator for the energies was proposed [ 17 ]. Since then, incremental modifications to
the approximator in eq. (  2.43 ) has been proposed; incorporating more physical information
(inductive-bias). Of note, is the idea from [ 100 ] where the learning problem in eq. ( 2.42 ) is
augmented with the virial tensor of a molecule, i.e.
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θ∗ = argmin
θ∈H

1

M

M∑
i=1

∥Ei − Êθ(Ri)∥22 + λ ∥Fi −∇RÊθ(Ri)∥22

+ η ∥(Ri × Fi)− (Ri ×∇RÊθ(Ri))∥22. (2.45)

For a detailed review on the different neural network approximators for potentials see
[ 59 ]. Training neural networks with first order optimizers has been made viable, thanks
to the proliferation of GPU devices into mainstream computing [ 62 ]. This is especially
relevant for functions in quantum chemistry, where databases with billions of reference
datapoints have be created with first principle calculations. Owing to its versatility, neural
network potentials are arguably the most common machine learning potentials today with
applications spanning material science, catalysis, protein-dynamics and the like.

Despite their successful deployment in several ab-initio MD simulations, the brittleness
concerning neural network potentials are numerous. Firstly, training neural networks on
GPUs, while perfectly tangible, is not necessarily energy efficient. It’s all the more worse,
as one can seldom give guarantees on the predictions from the network; seriously ques-
tioning its deployment in scientific applications with social relevance (medicine, for in-
stance). The issue of uncertainty is addressed by training an ensemble of models on dif-
ferent cross-validation sets [ 15 ]. Depending on the variances of the predictions from this
ensemble, the decision to re-train the network is made.

2.4.3 Learning descriptors from data

The descriptor and the regressor of a machine learning potential are dependent entities.
In recent years, there is increasing work on learning representations that are specific to the
dataset and the regressor; in the inference loop [ 100 ,  51 ,  40 ]. This presents a new challenge
of customizing learning architectures to be isometry and permutation invariant.

The question of isometry invariance, can be readily addressed from the definition of an
isometric operator. Formally for an isometric operator A, ATA = I. Therefore, a neural
network architecture need only transform its input say X , with an intermediate map ϕ :
X 7→ XTX .

Permutation invariance is more involved. It connotes that the input to the network is a
set. Precisely, let x be a set with cardinality d = n(x), f : Rd 7→ Rp. It can be shown [ 99 ]
that any approximator f̂ of f , is a invariant to the permutation of its inputs, if its has the
following structure:

f̂(x) =
1

|Pk|
ρ

∑
y∈Pk

ϕ(y)

 (2.46)
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where Pk is the set of all possible subsets of x with cardinality C =: {1, 2, ..., k}. This prac-
tice of summing up evaluations of a learned function ϕ over all possible permutations of
the input is called Janossy’s pooling [ 71 ]. It has been shown that f̂ is a universal approx-
imator of all permutation invariant functions under certain assumptions [ 95 ]. Therefore,
Jannosy’s pooling is a very sound way to learn permutation invariant functions.

Alternatively, one can also rely on heuristics. Sorting the inputs based on certain order-
ing is a trivial way to ensure invariance [ 70 ]. However, the question is then : Which ordering
function is best suited for a given dataset and regressor? This question has a non-trivial answer.
Consequently, methods based on heuristics remain far from being competitive with archi-
tectures based on Janossy’s pooling.

Interestingly, self-attention [ 94 ] (fig.  2.7 ) based on scalar products generalizes Janossy’s
pooling with k = 1. More precisely when ρ = Id, ϕ(y) = Wvys((Wky)

TWqy), s is a suitably
normalized softmax function.

Figure 2.7: Computation graph of self-attention to an input set X . K,Q, V are the query,
key and feature vectors respectively. s is a normalized softmax function. S is
the summation operation over all elements of X as in eq. ( 2.46 ).

In addition, message passing neural networks [ 35 ] (MPNN) and its improvements are
inherently invariant to permutations and isometries. Promptly, all modern end-to-end ma-
chine learning potential are all based on MPNNs [ 36 ,  61 ]. Adjacent to this, kernel learning
for data-specific representations is also common [ 76 ,  91 ]. Feature learning with kernels is
relatively less explored for machine learning potentials.

2.4.4 Benchmarks and FAIR datasets

Machine learning potentials is a well established field with several FAIR datasets/benchmarks
[ 98 ]. I mention of a few of them as a reference for posterity.

1. QM7 dataset [ 18 ] - Small organic molecules with DFT computed energies
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2. GDB17 dataset [ 86 ] - Organic molecules with several properties besides the DFT com-
puted energies.

3. MD17 dataset [  28 ] - Small/Medium sized organic molecules with DFT computed
energies and forces.

4. Open catalyst [ 102 ] datasets - DFT simulations of surfaces occuring in different cat-
alytical applications such as carbon capture with energies, forces and several other
properties.

5. The websites Quantum machine [  7 ], NOMAD from FAIRMAT [ 6 ] have an assort-
ment of DFT simulated properties for different molecular and material systems.

2.5 Random Feature Models

Random feature models espouse ideas from linear algebra and random network theory for
the purpose of function approximation (statistical inference). It is based on the notion that
randomization is inherently cheaper than optimization [ 82 ].

For an intuitive understanding, consider the following. Given a dataset D = {(xi, yi) :
i ∈ [1,m] ⊂ N}; all xi can be regarded as the vertices V of a graph – G . Its weighted
edges W denote the correlation between xi and xj . The function approximators discussed
in section  2.4.2 a), section  2.4.2 b), section  2.4.2 c); either directly or indirectly learn this
correlation. The connectedness of G directly influences the computational complexity of
inferring a function y ≈ f̂(x). In the case of a kernel machine, Gaussian process (with
isotropic covariance kernel); G is fully connected and their inference procedure has com-
plexity O(m3).

Figure 2.8: Conceptual difference between a kernel machine/GP with a random feature
model – Random feature models have sparse support over the available refer-
ence datapoints. This sparsity accelerates the inference process at the cost of
expressivity.

If G were not fully connected but followed a power law distribution, the corresponding
covariance matrix would be K ∈ Rr×m, inducing a complexity of O(r3). Therefore, the
function f can be now approximated with fewer parameters than before.
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A random feature model [ 82 ] is a type of kernel machine. Here, the feature maps ϕi are
chosen apriori. However the parameters of these maps are sampled from a probability
distribution. Note that the RFMs have the same problem that is innate to kernel machine,
i.e. the class of functions that can be efficiently approximated by these models depends
on the choice of the feature map functions ϕi. This issue has been addressed with random
feature counterparts of neural networks [ 83 ].

2.5.1 Random feature neural networks

Random feature neural networks are single hidden layer networks, whose weights and
biases are sampled from a suitably chosen probability distribution. The last layer is solved
using a linear least-squares procedure – inheriting its favourable convergence properties.
One explanation on why random feature networks work; comes from the experiments
with neural tangent kernels. It has been observed that, for a randomly initialized extremely
wide neural network trained with gradient descent; the magnitudes of weights and biases
do not deviate much from their initially assigned values. Furthermore, it can be proved
that the neural tangent kernel of an infinitely wide network is constant [ 53 ].

Recently, [  19 ] proved that the weights and biases of a neural network can be sampled
from a distribution that can be learned from data. This marks a departure from sampling
these weights from a normal distribution [ 96 ]. A modified version of their method is pre-
sented in algorithm  3 .

Algorithm 3 Random feature neural networks

Require: Input observations X ∈ Rdin×M , Output observations fX ∈ Rdout×M , Sampling
heuristic H , Number of feature maps K, Feature model M , Activation function σ.

1: P ← 2K.
2: Sample P pairs (p1, p2)Pj=1 uniformly from X ×X .
3: it← 1, ρXs×Xs ← 0
4: while it < P do
5: ρXs×Xs ← ρXs×Xs +H((p1, p2)it)
6: it← it+ 1
7: end while
8: Sample K instances {(z1, z2)i : i ∈ [1,K]} from pXs×Xs

proportional to ρXs×Xs .
9: Evaluate {(Wi, bi) = M((z1, z2)i) : i ∈ [1,K]}.

10: Evaluate the feature vectors {ϕiX = σ(WiX + bi) : i ∈ [1,K]}.
11: Assemble matrix Φ = [ϕ1 ϕ2 ... ϕK ] ∈ RM×K .
12: Solve for A = pseudoinv(Φ, fT

X) with suitable regularization.
13: return Prediction map x 7→ Aσ([W1,W2, ...,WK ]Tx+ [b1, b2, ..., bK ]T )

Here the feature model M evaluates (Wi, bi)
K
i=1. Notice that M,H are modeling choices

for this inference procedure. A suitable choice of M improves the expressivity of the
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underlying model. Bolager et al. [ 19 ] suggested using a linear model. That is, for any
(z1, z2) ∼ pXs×Xs :

Wi = α
z1i − z2i
∥z1i − z2i ∥2

; bi = −β − ⟨Wi|z1i ⟩. (2.47)

One should be wary that, there can be no universal definition for W, b. For relu activation
functions, (α, β) = (1, 0) is optimal. On the other hand, tanh functions require (α, β) =
(2 log (1.5), log (1.5)) [ 19 ]. It is entirely possible to provide an alternative definition for W, b
that works just as well for a different σ. Similarly, the optimality of H is again an open
question. Bolager et al. [ 19 ] provide a definition based on finite differences eq. ( 2.48 ).

H(x, y) =
∥fx − fy∥2
∥x− y∥2

. (2.48)

It is also common to sample the space uniformly, i.e H(x, y) = 1. For more details
concerning the complexity and applicability of random feature neural networks, see [ 19 ].

2.5.2 Comparing SLNNs, RFNNs, GPs, Kernel machines

A systematic, generic comparison of the different regressors discussed in this section is not
trivial. However, one can make qualitative statements about them. This could facilitate
users in making a judicious choice depending on their applications. Such a comparison
is attempted in table  2.2 . The nomenclature of the symbols used in table  2.2 is given in
section  2.5.2 .

Symbol Description
F1 Number of neurons in a single layer neural network
Θ Hyperparameters of the training algorithm
q Number of epochs in the training algorithm
F2 Number of neurons in a random feature neural network
F3 Number of feature maps in a kernel machine
M Number of training points
N Number of evaluation points
FM Feature model of a RFNN (See algorithm  3 )
H Heuristic function for sampling density in a RFNN
κ Covariance kernel function of a GP

ϕ := {ϕi : i ∈ [1, F3]} Feature maps of a kernel machine.

22



2.5 Random Feature Models

Comparison criteria SLNN RFNN GP Kernel machine
Training complexity O(qMF1) O(MF2 + F 3

2 ) O(M3) O(MF3 + F 3
3 )

Evaluation complexity O(NF1) O(NF2) O(N2) O(NF3)
Uncertainty of estimates No No Yes No

Hyper-parameters Θ, q FM , H κ ϕ

Table 2.2: A qualitative comparison of the different regressors used in machine learning
potentials. For high dimensional functions, it is generally true that F1 < F2 ≤
F3 which make SLNN seem very viable. However, one has to reckon with the
memory footprint of automatic differentiation which can make inference very
tedious. In addition, training usually involves a grid search over Θ.

Clearly, RFNNs trade-off computational complexity for reduced expressivity. This leads
to the conjecture – ”Machine learning potentials with RFNN regressors can accelerate
learning without compromising on accuracy”. In the rest of this thesis, this conjecture
is put to test.
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3 Random feature potentials

3.1 Outline

Intuitively, it is clear that the coordinate system that we choose to represent a molecule,
should have no influence in either the predictions of the energies or the forces. In other
words, the energy and forces are isometric functions. More precisely,

E(T R) = E(R); E(RR) = E(R). (3.1)
F (T R) = F (R); F (RR) = F (R). (3.2)

Here T ,R are the translation and rotation operators for our chosen coordinate system.
Further if one uses a different ordering for similar atoms in a molecule, the energy should
be invariant to this permutation and the forces should be equivariant to the same.

E(PR) = E(R). (3.3)
F (PR) = PF (R). (3.4)

Therefore merely from a geometric standpoint, one can identify that these isometry /in-
variant /equivariant properties should be satisfied by any inference model. This chapter
examines how such invariances and other physical properties can be leveraged to design
physically meaningful statistical models.

Section  3.2 details several inference procedures, in the increasing order of inductive bias.
It begins with a baseline RFNN with no descriptors. Isometry and permutation invariant
descriptors are subsequently used. Lastly, two models based on physical considerations
are discussed. Section  3.3 applies two higher order descriptors and investigates the im-
provements they offer. Motivated by the shortcomings of existing permutation invariant
descriptors for higher order representations, Section  3.4 proposes methods for sampling
permutation invariant representations from data. The numerical experiments in each sec-
tion, have been tested for reproducibility. This entails performing the inference at least five
times and ensuring that the variance for the prediction is with a tolerance of 10−3. A full
statistical analysis of the predictions remains out of scope of this work.
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3.2 Descriptor based models

3.2.1 Black box model

One can approximate the forces and energies using a simple random feature neural net-
work. For a point R ∈ Rnd in the input space, these models can be described as:

E(R) =
K∑
i=1

aEi σ
(
W i

ER+ biE
)
. (3.5)

F (R) =

K∑
i=1

aFi σ
(
W i

FR+ biF
)
. (3.6)

Even though F depends on E, two separate statistical models are chosen for simplicity.
The models are trained using algorithm  3 . As I demonstrate later, this model is in-adequate
when the input space is subject to isometric transformations or when the enumeration
order of points in the input vector space is permuted (See tables  3.2 ,  3.7 ,  3.12 ,  3.17 and  3.22 ).

3.2.2 Black box model with isometry invariance

This problem can be rectified by projecting points in the input space using a isometric ker-
nel κ : R1×R2 7→ R. Such kernels are commonly used as covariance functions in Gaussian
process regression. The simplest covariance kernel is the inner product κdot(R1, R2) =
RT

1 R2. A list of more-expressive kernels commonplace is GP literature is provided in ta-
ble  3.1 .

Covariance kernel κ(R1, R2)

Linear RT
1 AR2

Polynomial β ∥R1 −R2∥γ

Squared exponential α exp
(
−∥R1−R2∥2

σ2

)
γ-exponential α exp

(
−∥R1−R2∥γ

σγ

)
Table 3.1: A list of covariance kernels used in Gaussian process regression. Taken from

[ 84 ].

Notice that the Coulomb matrix representation is a special case of a polynomial kernel;
while the Behler Parinello descriptor is exactly equal to the squared exponential kernel. It
is amusing that ideas that were mainstream in GP literature in the 2000s, were reinvented
much later in the machine learning potential community.

If K ∈ Rn2
where

K(i−1)n+j = κ(Ri, Rj) ∀(i, j) ∈ [1, n]2. (3.7)
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Then,

E(K) =
L∑
i=1

aEi σ
(
W i

EK + biE
)
. (3.8)

F (K) =

L∑
i=1

aFi σ
(
W i

FK + biF
)
. (3.9)

are isometry invariant models; whose parameters can be estimated with algorithm  3 . In
addition to inducing inductive bias, kernel projections can implicitly linearize the learning
problem – allowing the use of less sophisticated regressors (a RFNN with fewer neurons,
for instance).

3.2.3 Black box model with permutation invariance

Permutation invariance can be explicity structured into a descriptor using different means.
Let ϕ : K 7→ d be the generic notation for all such descriptors. Note that ϕ acts on a
isometry invariant input. This bootstrapping allows us sufficient flexibility to use different
combinations of representations. Here, I consider three versions of ϕ:

1. The sorted Coulomb matrix ϕS [ 70 ]

2. Eigenvalues of the Coulomb matrix ϕE [ 87 ]

3. Singular values of the Coulomb matrix ϕΣ

ϕS sorts the rows and columns of the Coulomb matrix K such that the row sum of K is
in the ascending order. Note that ”row-sum” and ”ascending order” are heuristics; which
ensure permutation invariance by definition. Permutation invariance of the eigenvalues
and singular values of K, on the other hand, is not immediately apparent. Consider the
following.

Definition 4. Permutation matrix
A permutation matrix Pn ∈ Bn×n is a square binary matrix that has exactly one entry of 1 in each
row and column and 0 elsewhere, where B := {1, 0}.

Definition 5. Permutation transformation
Let A ∈ Rn×n be an arbitrary square matrix, Pn be a permutation matrix. A permutation trans-
formation is defined by the following map P : A 7→ PAP T .

Theorem 2. Permutation invariance of eigenvalues and singular values
The eigenvalues and singular values of a symmetric positive definite matrix K is invariant to a
permutation transformation P .
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3 Random feature potentials

Proof. From the spectral theorem for real hermitian matrices, K = UΛUT . Here Λ =
diagm([λ1, λ2, ..., λn]). Let L := P(K) = PKP T be the permutation transformed matrix.
By substitution, L = (PU)Λ(UTP T ). Notice that L is real and hermitian. Then it follows
that the column space of L is spanned by the eigenvectors [PU1, PU2..., PUn] but has the
same eigenvalues diag(Λ) of K.

A similar argument can be made for the singular values of K.

Succinctly let d = {ϕS(K), ϕE(K), ϕΣ(K)}. Then,

E(d) =
L∑
i=1

aEi σ
(
W i

Ed+ biE
)
. (3.10)

F (d) =

L∑
i=1

aFi σ
(
W i

Fd+ biF
)
. (3.11)

are permutation and isometry invariant. These models are inferred using algorithm  3 .
While permutation invariance can be guaranteed with these representations, there does
not exist a proof of universal approximation. Furthermore, these transformations result in
a loss of information available in the Coulomb matrix. These artifacts are reflected in the
accuracy of their predictions (See tables  3.4 ,  3.9 ,  3.14 ,  3.19 and  3.24 ).

3.2.4 Extensive model

Energy of any thermodynamic system is an extensive quantity. It follows that the total
energy of a molecular system is a superposition of energies of individual atoms. Promptly,
the inference model can be written down as:

E(d) =

n∑
k=1

Ek(d) =

n∑
k=1

L∑
i=1

aEi,k σ
(
W i,k

E dk + bi,kE

)
. (3.12)

F (d) =
n∑

k=1

Fk(d) =
n∑

k=1

L∑
i=1

aFi,k σ
(
W i,k

F dk + bi,kF

)
. (3.13)
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3.2 Descriptor based models

Figure 3.1: Overview of extensive model: A coulomb matrix representation of the molecule
is partioned into smaller units such that each partition is specific to an atom in
the molecule. This partition is then used to learn a local energy Ei. The sum of
all Ei constitutes the total energy E.

Sampling W i,k
E ,W i,k

F , bi,kE , bi,kF is similar to algorithm  3 , only every dk belongs to a smaller
vector space that corresponds to the kth atom (See fig.  3.1 ). All a := {aF (or)E

i,k : i ∈ [1, L], k ∈
[1, n]} is still obtained from solving a least squares problem. This is detailed in algorithm  4 .

Algorithm 4 Extensive random feature potential

Require: Input d ∈ Rkin×m, Output F ∈ Rkout×m, Partition factor n,
Number of neurons L, Activation function σ.

1: q ← kin/n.
2: t← L/n.
3: Partition input d into local representations P ← [d1, d2, ..., dn] where di ∈ Rq×m.
4: Evaluate [W 1,1, ...,WL,1, ...,W 1,n, ...,WL,n], [b1,1, ..., bL,1, ..., b1,n, ..., bL,n] using

eq. ( 2.47 ) and the corresponding di from P .
5: Evaluate feature vectors s← [s1, s2, ..., sn], where si ← σ(W :,idi + b:,i) ∈ Rt×m.
6: Y ← hstack(s1, s2, ..., sn)
7: A← pinv(Y T , F T ).
8: W ← hstack(W :,1,W :,2, ...,W :,n).
9: b← hstack(b:,1, b:,2, ..., b:,n).

10: return Prediction map F̂ : d 7→ ATσ(Wx+ b)

Here hstack, pinv are subroutines that perform horizontal concatenation and pseudo-
inversion respectively.
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3 Random feature potentials

3.2.5 Conservative model

Conservative models leverage the fact that forces F is a derived quantity from energy E.
Systems with F (R) = −∇RE(R) are called conservative. Forces and energies computed
from first principle calculations have this property. As a result, one may write down a
single inference model:

E(dR) =
L∑
i=1

aEi σ
(
W i

EdR + biE
)
, (3.14)

F (dR) = −
L∑
i=1

aEi σ′ (W i
EdR + biE

)
W i

E ∇RdR. (3.15)

Notice that the permutation-isometry invariant descriptors dR can still be used in this
model provided the descriptors’ gradient with respect to the coordinates of the atoms
∇RdR is well-defined. Whence eq. ( 3.14 )’s parameters a := {ai}Li=1 can be trained by
considering the energies and forces together. Notice that the forces implicitly regularize
the energy predictor. The training method is detailed in algorithm  5 .

Algorithm 5 Conservative random feature potential

Require: Input d ∈ Rkin×m, Energy E ∈ R1×m, Force F ∈ Rnd×m,
Jacobian J := ∇Rd ∈ Rkin×nd×m Number of neurons L,
Differentiable activation function σ and its derivative σ′.

1: Sample WE , bE using eq. ( 2.47 ).
2: Evaluate feature maps Φ← σ(WEd+ bE) ∈ RL×m, Ψ← −σ′(WEd+ bE) ∈ RL×m.
3: Compute tensor contraction T ←WE ∗ J ∈ RL×nd×m.
4: Compute point-wise product along first and third indices Q← Ψ⊙ T ∈ RL×nd×m.
5: Y ← flatten(hstack(E,F )).
6: B ← hstack(reshape(Φ, (L,m)), reshape(Q, (L,m× nd)))
7: A← pinv(BT , Y T )
8: return Prediction maps for a) Energy Ê : x 7→ ATσ(WEx+ bE)

b) Forces F̂ : x 7→ reshape(AT (−σ′(WEx+ bE)⊙ (WE ∗ ∇Rx)), nd, 1)

A drawback of this training method is its reliance on a for the accuracy of both the en-
ergies and the forces; implying the need for an extremely wide network to get sufficiently
accurate results. Additionally, differentiable activation functions need to be used.

3.2.6 Numerical experiments

Description of experimental setup

The results for fifteen separate statistical models that predict the forces and energy of five
molecular systems (5× 15 = 75) is presented. Accuracy is measured in terms of the mean

30



3.2 Descriptor based models

absolute error (MAE) and the root mean squared error (RMSE). Relative error is a less
commonly used metric for accuracy for machine learning potentials. However they may
be computed from the raw-difference logs in the repository [ 68 ].

Five molecules from the MD17 dataset [ 28 ] is considered. Training data for these molecules
are generated by sampling the trajectories of an AIMD simulation and logging the energies
and forces at that instance. Density functional theory with a GGA exchange-correlation
functional is used to obtain the energies and forces. More details concerning the data gen-
eration workflow can be found in [ 28 ]. The models are trained on 2700 atomic snapshots
comprising – the positions of atoms R, their atomic numbers Z as inputs; and forces F ,
energies E as the outputs. Validation is done on 300 different snapshots.

Description of experiments

The following numerical experiments were carried out; to incrementally test the utility of
(unless stated otherwise) tanh activated-RFNNs to approximate high dimensional func-
tions.

1. Bolager et al. [ 19 ] showed that RFNNs could be used in image classification and
approximating PDE solution maps. The first experiment uses two vanilla RFNNs
to predict the energies and forces. (Effectively re-purposing [ 19 ]’s experiments for
machine learning potentials.)

2. As an example of isometry-invariant descriptor, the Coulomb matrix is chosen. Note
that the Coulomb matrix is symmetric. However, this symmetry was not leveraged
while performing the second experiment.

3. The third experiment consisted of three permutation invariant descriptors discussed
in section  3.2.3 and RFNN predictors for the energies and forces.

4. The extensive model from section  3.2.4 was used in experiment four, with the Coulomb
matrix (CM) and sorted CM as descriptors.

5. The fifth experiment uses a conservative model with no descriptors.

Results

The results from these experiments are presented for five molecules from the MD17 dataset.
The presentation of the results follows a template, on which I will briefly elaborate. It be-
gins with a ball-and-stick representation of the molecule. Chemical composition, nomen-
clature, properties of the molecule are not discussed. Instead appropriate references are
cited. Violin plots [ 48 ] for the energy and force reference dataset is provided; should a
need for a back of the envelope estimation of relative error arise. The tables in each section
(that follows) presents the results of the experiments (described above) in order. For exper-
iments 1 and 2, the inputs are transformed via translation, rotation, permutation; and the
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3 Random feature potentials

predictions from the models are presented (for sanity check and didactic purposes). For all
the 75 models, the mean absolute error (MAE) and the root-mean-squared-error (RMSE)
over the validation points are shown. Care was taken to ensure that the predictions from
the models are sound. This entailed looking at a similarity plot between the ground truth
and the predictions, every time a model was inferred and evaluated.

Figure 3.2: Molecular structure of Benzene [ 1 ] (left). Violin plots of reference data used in
training the inference models (right).

Transformation to the inputs
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
None 0.0221 0.0322 0.0123 0.0223

*Translation (T) 170132.6540 184559.5941 96158.3846 171916.8738
* Translation (T) and Rotation (R) 195020.5170 199247.4964 100379.8709 180733.8588

*Permutation (P) and TR 221848.1623 222008.0762 97107.3713 172127.9988

Table 3.2: Benzene – black box model

Transformation to the inputs
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
None 0.0185 0.02879 0.0026 0.0042

Translation (T) 0.0185 0.02879 0.0026 0.0042
Translation (T) and Rotation (R) 0.0185 0.02879 0.0026 0.0042

*Permutation (P) and TR 2.0012 ×106 2.0012 ×106 10899.5915 16439.6504

Table 3.3: Benzene – models with isometry invariant inputs
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Descriptor type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Eigenvalues 0.05468 0.1696 0.3252 1.3239

Singular values 0.0483 0.1192 0.3569 1.2279
Sorted Coulomb matrix 0.6022 1.6420 7.0384 19.5596

Table 3.4: Benzene – models with permutation invariant input

Descriptor type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Coulomb matrix 0.0259 0.0561 0.0017 0.0048

Sorted Coulomb matrix 0.3037 0.8914 3.2005 10.5000

Table 3.5: Benzene – extensive models with permutation invariant inputs

Descriptor type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
No descriptors 0.5998 0.7352 5.4359 7.1974

Table 3.6: Benzene – conservative model

Figure 3.3: Molecular structure of Uracil [ 2 ] (left). Violin plots of reference data used in
training the inference models (right).
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Transformation to the inputs
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
None 0.0862 0.2503 0.0427 0.1704

*Translation (T) 3.9774× 106 3.9776× 106 87500.9885 146041.5868
* Translation (T) and Rotation (R) 3.9571× 106 3.9572× 106 82744.4946 137157.1087

*Permutation (P) and TR 3.9571× 106 3.9572× 106 77875.8595 130568.2542

Table 3.7: Uracil – black box model

Transformation to the inputs
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
None 0.0204 0.0369 0.0197 0.1011

Translation (T) 0.0204 0.0369 0.0197 0.1011
Translation (T) and Rotation (R) 0.0204 0.0369 0.0197 0.1011

*Permutation (P) and TR 14763.2457 14772.1628 2527.0183 4284.1704

Table 3.8: Uracil – models with isometry invariant inputs

Descriptor type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Eigenvalues 1.1640 1.6392 3.5249 7.1756

Singular values 1.1930 1.6985 4.0401 7.6203
Sorted Coulomb matrix 1.5011 28.1465 0.8344 8.5308

Table 3.9: Uracil – isometry-Permutation preserving models

Descriptor type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Coulomb matrix 0.0107 0.04091 0.0066 0.0564

Sorted Coulomb matrix 0.4891 2.9036 0.8974 9.0985

Table 3.10: Uracil – extensive models

Descriptor type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
No descriptors 1.2548 1.5597 5.1951 6.7914

Table 3.11: Uracil – conservative model
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Figure 3.4: Molecular structure of Paracetamol [ 3 ] (left). Violin plots of reference data used
in training the inference models (right).

Transformation to the inputs
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
None 0.9529 3.4998 0.7689 2.4458

*Translation (T) 265278.6765 265299.4869 133535.1394 200159.7804
* Translation (T) and Rotation (R) 264677.8583 264689.7260 137258.3965 202921.7452

*Permutation (P) and TR 276248.3042 276253.5043 126694.6834 182643.5324

Table 3.12: Paracetamol – black box model

Transformation to the inputs
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
None 0.3133 1.0688 0.8501 3.0006

Translation (T) 0.3133 1.0688 0.8501 3.0006
Translation (T) and Rotation (R) 0.3133 1.0688 0.8501 3.0006

*Permutation (P) and TR 13800.8706 13802.0823 3330.4107 5442.1886

Table 3.13: Paracetamol – models with isometry invariant inputs
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Descriptor type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Eigenvalues 2.4059 4.2221 7.8715 18.0509

Singular values 2.5003 3.8092 8.1050 17.9362
Sorted Coulomb matrix 5.7812 20.6717 12.1061 35.2996

Table 3.14: Paracetamol – models with isometry and permutation invariant inputs

Descriptor type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Coulomb matrix 0.3373 0.8387 0.8279 2.6854

Sorted Coulomb matrix 7.8740 23.9068 11.7423 34.8863

Table 3.15: Paracetamol – extensive models

Descriptor type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
No descriptors 4.0176 4.9413 17.9926 24.4580

Table 3.16: Paracetamol – conservative model

Figure 3.5: Molecular structure of Toluene [ 4 ] (left). Violin plots of reference data used in
training the inference models (right).
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Transformation to the inputs
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
None 0.1850 0.4233 0.1073 0.2887

*Translation (T) 69497.5651 69518.5747 29682.8295 40032.7038
* Translation (T) and Rotation (R) 65410.3052 65423.4323 29361.2698 41313.1159

*Permutation (P) and TR 78350.6672 78355.8013 28048.1117 37406.8804

Table 3.17: Toluene – black box model

Transformation to the inputs
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
None 0.0107 0.0365 0.0168 0.0594

Translation (T) 0.0107 0.0365 0.0168 0.0594
Translation (T) and Rotation (R) 0.0107 0.0365 0.0168 0.0594

*Permutation (P) and TR 10158.9147 10338.0666 463552.2690 671876.6283

Table 3.18: Toluene – model with isometry invariant inputs

Descriptor type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Eigenvalues 1.9905 2.7833 7.5728 11.6187

Singular values 1.8161 2.5220 6.7016 10.9791
Sorted Coulomb matrix 5.9646 14.4071 16.6189 64.9533

Table 3.19: Toluene – models with isometry and permutation invariant inputs

Descriptor type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Coulomb matrix 0.0114 0.0401 0.2116 1.7623

Sorted Coulomb matrix 3.5160 17.9604 11.8112 33.1520

Table 3.20: Toluene – extensive models

Descriptor type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
No descriptors 2.7661 3.4611 10.6605 14.3088

Table 3.21: Toluene – conservative model
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Figure 3.6: Molecular structure of Ethanol [ 5 ] (left). Violin plots of reference data used in
training the inference models (right).

Transformation to the inputs
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
None 0.0463 0.0851 0.0654 0.1952

Translation (T) 176138.1227 176850.6669 393966.8690 762423.5326
Translation (T) and Rotation (R) 172538.0114 172771.6819 410544.9175 769435.9447

Permutation (P) and TR 218656.9709 218738.7264 385678.5848 731734.6559

Table 3.22: Ethanol – black box model

Transformation to the inputs
Energy (kcal/mol Forces (kcal/molA)

MAE RMSE MAE RMSE
None 0.0381 0.1358 0.0970 0.7782

Translation (T) 0.0381 0.1358 0.0970 0.7782
Translation (T) and Rotation (R) 0.0381 0.1358 0.0970 0.7782

Permutation (P) and TR 953.3074 956.2869 3933.4958 6114.7740

Table 3.23: Ethanol – model with isometry invariant inputs
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Descriptor type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Eigenvalues 1.6929 2.5820 11.2146 23.7170

Singular values 1.8610 4.9771 10.1783 16.3523
Sorted Coulomb matrix 1.5380 2.9769 7.2620 60.2630

Table 3.24: Ethanol – models with isometry and permutation invariant inputs

Descriptor type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Coulomb matrix 0.01897 0.06176 0.2944 1.1314

Sorted Coulomb matrix 8.2278 28.6926 12.2748 36.5995

Table 3.25: Ethanol – extensive models

Descriptor type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
No descriptors 0.9866 1.2523 5.5677 8.2440

Table 3.26: Ethanol – conservative model

3.2.7 Observations

The findings from these experimental runs & results can be summarized as:

1. Vanilla RFNNs can approximate Ê, F̂ , provided the input coordinates are not subject
to any transformations (See tables  3.2 ,  3.7 ,  3.12 ,  3.17 and  3.22 ). In an idealized setting
where one has access to infinite data, RFNNs may learn these invariance properties.

2. Coulomb matrix representations which ”lifts” the input coordinates; improves on
the accuracy of the black-box RFNN models (See tables  3.3 ,  3.8 ,  3.13 ,  3.18 and  3.23 ).

3. Eigenvalue (EV), Singular-value (SV) descriptors are expensive to evaluate. For
molecules with N atoms, their complexity isO(N3). In the examples above, N is suf-
ficiently small. However for larger molecules, they have sub-optimal scaling prop-
erties. The sorted Coulomb matrix descriptor, on the other hand, scales as O(N2).
However, it performs worse with respect to EV, SV (See tables  3.4 ,  3.9 ,  3.14 ,  3.19 

and  3.24 ).

4. Sampling local bases functions with extensive models, improve the energy mod-
els. Force models do not improve; signalled by the stagnating error with increas-
ing width of the RFNN regressor. This leads one to conclude that while the energy
function has local support, forces do not (See tables  3.5 ,  3.10 ,  3.15 ,  3.20 and  3.25 ).
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5. Conservative models with no descriptors perform worse than all other models con-
sidered thus far (See tables  3.6 ,  3.11 ,  3.16 ,  3.21 and  3.26 ). This is counter-intuitive as
they have more inductive bias. This contradiction is due to technological issues. The
current implementation of conservative models in [ 68 ] is not optimized for memory
allocation. Consequently, RFNNs with width K > 10, 000 is too tedious to train.
However it can be shown that the errors for this model decay with increasing K. See
fig.  3.7 for a scaling experiment performed for the Uracil molecule. Notice the decay
of the log-errors. A similar trend is also observed for the other molecules. There-
fore, it should be expected that with increasing K arbitrarily accurate models can be
obtained. This is currently being pursued.

3.2.8 Issues

Recall that F̂ models from the experiments above, need to be eventually deployed in an
AIMD simulation. Such many body systems tend to be chaotic. As a result the errors
from the forces should be as low as required. Notice that the force predictions using the
Coulomb matrix (CM) representation for paracetamol is an order of magnitude greater
than the other molecules (Compare table  3.13 with tables  3.3 ,  3.8 ,  3.18 and  3.23 ). Consider-
ing that paracetamol is more involved than the other molecules, it leads to the conjecture
that the CM representation is not suitable as the complexity of the molecule increases. This
motivates the need for higher order descriptors.

Another issue concerns permutation invariant descriptors. Clearly, they are less expres-
sive than CM (See observation 3). This is another avenue that needs to be improved.

3.3 Higher order descriptor based inference models

So far, statistical models that learn EP from pairwise coordinates is considered. It would
seem that augmenting the inputs of these models with coordinates that depend on more
than the pairwise interactions (higher order interactions), can increase their accuracy. The
N-body decomposition of a many body interaction potential is formally given by [ 80 ]:

EP (R1) = V1(R1) +
N∑
j=1

V2(R1, Rj) + ...+
N∑

j1,...,jN=1

VN (R1, Rj1 , ..., RjN−1). (3.16)

Notice that all Vi where i > 2, have a complexity ofO(N i). Here two third-order descrip-
tors are considered – a) Angles between the different atoms in a molecule (section  3.3.1 )
and b) a generalized Coulomb matrix representation (section  3.3.2 ).
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Figure 3.7: Uracil – Decay of MAE and RMSE with increasing K using a conservative
model. Notice that the MAE and RMSE for the forces and energies have similar
magnitudes. This is a departure from the trend seen in all the previous models,
where the RMSE was substantially higher – indicating that model used is im-
plicitly regularized.
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3.3.1 Angles

A molecular system can also be completely defined by the angles between the different
atoms (fig.  3.8 ). In this case, α is given by the cosine formula:

α = arccos

(
a2 − b2 − c2

2bc

)
. (3.17)

A system with N atoms is completely determined by NC3 coordinates. The angles based
descriptor A ∈ RNC3 contains all such α.

Figure 3.8: A synthetic molecular system with angular degrees of freedom.

3.3.2 Generalized Coulomb matrix

A generalized Coulomb matrix augments the CM (say K) of a molecule with a higher
order interactions G ∈ RNC3 defined as:

GN2(i−1)+N(j−1)+k = Ĝ(Ri, Rj , Rk;σ) := exp

(
− 1

σ2
(∥Ri −Rj∥2 + ∥Rj −Rk∥2 + ∥Rk −Ri∥2)

)
.

(3.18)

The complete descriptor is defined as GCM = [KG]T . This descriptor is sensitive to the
choice of σ; which implicitly defines the cut-off radius for higher order interactions.

3.3.3 Numerical experiments

In the following, the descriptors discussed above are put to test. RFNNs are used as regres-
sors. Unless stated otherwise, tanh activation functions were used. Table  3.27 –table  3.31 

lists the MAE and RMSE of the same molecules from section  3.2 . Comparisons are made
with the Coulomb matrix descriptor.
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Descriptor/Model type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Coulomb matrix 0.0082 0.0124 0.0029 0.0049

Angles 0.0096 0.01703 0.0022 0.0040
CM + Angles 0.0088 0.0156 0.0022 0.0037

Generalized CM 0.0084 0.0125 0.0028 0.0045

Table 3.27: Benzene – Higher order descriptors

Descriptor/Model type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Coulomb matrix 0.0215 0.0556 0.0159 0.0741

Angles 0.1053 0.4232 0.0466 0.2201
CM + Angles 0.0285 0.0833 0.0299 0.2246

Generalized CM 0.0266 0.1096 0.0273 0.1982

Table 3.28: Uracil – Higher order descriptors

Descriptor/Model type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Coulomb matrix 0.4601 1.4452 0.8081 3.5656

Angles 0.6357 2.4357 0.7743 3.2254
CM + Angles 0.4413 1.3831 0.5448 2.3379

Generalized CM 0.6729 2.1980 0.7345 2.7222

Table 3.29: Paracetamol – Higher order descriptors

Descriptor/Model type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Coulomb matrix 0.0370 0.2398 0.0199 0.1447

Angles 0.1033 0.3024 0.1025 0.4671
CM + Angles 0.0412 0.0863 0.0477 0.1195

Generalized CM 0.2002 1.8283 0.0159 0.0905

Table 3.30: Toluene – Higher order descriptors
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Descriptor/Model type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Coulomb matrix 0.0391 0.2168 0.1040 0.8240

Angles 0.1015 0.5647 0.1046 0.2840
CM + Angles 0.0204 0.0543 0.0815 0.4321

Generalized CM 0.0935 0.8915 0.0816 0.6351

Table 3.31: Ethanol – Higher order descriptors

3.3.4 Observations

Notice that the Coulomb matrix descriptor performs better than the higher order descrip-
tors for benzene and uracil (See tables  3.27 and  3.28 ). On the other hand, models for parac-
etamol, toluene and ethanol definitely seem to improve with higher order information (See
tables  3.29 ,  3.30 and  3.31 ). This can be explained based on symmetries. One could infer
that the CM representations is sufficient to encode the primitive symmetries for the former,
while angular information is required for the latter. The generalized Coulomb matrix, on
the other hand, is not a suitable three-body descriptor, as indicated by the sub-optimal
predictions (See table  3.27 –table  3.31 ).

3.3.5 Issues

Despite the improvements that higher order descriptors offer for some of the molecules,
it is still not permutation invariant. Further, the descriptors are now tensors; meaning
the eigen/singular value representations are no longer uniquely defined. While sorting
the tensors based on some heuristics is still a viable option, their limitations was already
demonstrated for the pairwise cases (section  3.2 ). This provides additional motivation for
section  3.4 .

3.4 Random feature shallow sets

The want of expressivity of eigenvalue and sorting based descriptors motivates the need
for better permutation invariant descriptors. A common permutation invariant descrip-
tor with guarentees on universal approximation is based Jannousey’s k pooling. Here, I
examine a special case of k = 1 pooling, also know as Deep-Sets [ 99 ].

Definition 6 (Deep-Sets). : Let X = {x1, x2, ..., xd} and f : X 7→ y ∈ Rp. Here xi ∈ Rq. For
maps Φ : xi 7→ I ∈ Rr, ρ : I 7→ y ∈ Rp a permutation invariant approximation of f is given by

f̂p(x) = ρ

 1

n(PX)

∑
z∈PX

Φ(z)

 . (3.19)
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3.4 Random feature shallow sets

f̂p can be shown to be a universal approximator of permutation invariant functions [ 99 ].

In this chapter, I examine if such permutation invariant functions can be approximated
with random feature neural network (RFNNs).

3.4.1 Sampling permutation invariant descriptors

In [ 99 ]; Φ, ρ were assumed to be neural networks and trained using back propagation.
However, training nested random feature neural networks remains an open problem. As
a result, assumptions need to be made for Φ, ρ. In this chapter, I consider the following.

1. A random normal linear projection Φ1(x) := sWx where W ij ∼ N (0, 1), s ∈ R is a
scaling factor and ρ is a RFNN.

2. An activated input space sampled projection Φ3(x) := σ (Wx+ b) where W, b are
evaluated using eq. ( 2.47 ) and ρ is a RFNN. This corresponds to a sampled two hid-
den layer neural network.

3.4.2 Numerical experiments

Flattened sets as inputs

For machine learning potentials, the inputs to the random feature shallow sets are simi-
larity matrices. A permutation transformation in this context permutes both the rows and
columns of the matrix – necessitating a two step procedure since xi itself is a set. Trivially,
we can avoid all of this by flattening the matrix – making it a single set with higher cardi-
nality.

In the following, the predictive accuracy for the two descriptors approximated with a
RFNN for the five molecules in section  3.3 is presented. The predictions from the sorted
Coulomb matrix is also provided for reference. Comparisons with either the eigenvalue/singular
value descriptors make little sense, as they have a different computational complexity.

Descriptor/Model type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Sorted Coulomb matrix 0.6022 1.6420 7.0384 19.5596

Random normal projection 0.7010 1.0258 7.3960 12.2338
Sampled-activated projection 0.6599 1.0347 7.6668 15.3476

Table 3.32: Benzene – Random feature shallow sets (flattened)
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3 Random feature potentials

Descriptor/Model type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Sorted Coulomb matrix 1.5011 28.1465 0.8344 8.5308

Random normal projection 2.6899 4.2427 12.9872 24.2042
Sampled-activated projection 2.7627 5.4885 15.4538 33.8480

Table 3.33: Uracil – Random feature shallow sets (flattened)

Descriptor/Model type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Sorted Coulomb matrix 5.7812 20.6717 12.1061 35.2996

Random normal projection 3.8723 5.4715 16.6822 26.1975
Sampled-activated projection 3.6830 5.7893 17.0345 32.4314

Table 3.34: Paracetamol – Random feature shallow sets (flattened)

Descriptor/Model type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Sorted Coulomb matrix 5.9646 14.4071 16.6189 64.9533

Random normal projection 2.9743 4.3371 14.5249 23.7986
Sampled-activated projection 3.0402 4.3193 17.2807 29.6717

Table 3.35: Toluene – Random feature shallow sets (flattened)

Descriptor/Model type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Sorted Coulomb matrix 1.5380 2.9769 7.2620 60.2630

Random normal projection 1.9259 3.1354 13.0709 20.7168
Sampled-activated projection 3.0617 5.8329 21.0088 48.4880

Table 3.36: Ethanol – Random feature shallow sets (flattened)

It is clear from the experiments that introduced descriptors for flattened input sets, do
not improve upon sorted Coulomb matrix (CM) descriptors (See table  3.32 – table  3.36 ).
One argument for this, is that upon flattening spatial information is lost.

Nested sets as inputs

This is rectified by considering the CM representation as a nested set. More precisely, the
elements of a row of the CM constitute a internal set. There are as many internal sets as
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3.4 Random feature shallow sets

rows of a CM. The internal sets are made permutation invariant by sorting them in their
ascending orders. The descriptors from section  3.4.1 can then be used by treating the sorted
sets as vectors. With this modification, the same descriptors have now spatial reasoning
properties.

Descriptor/Model type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Sorted Coulomb matrix 0.6022 1.6420 7.0384 19.5596

Random normal projection 35.6962 105.7146 0.1953 0.6534
Sampled-activated projection 16.6882 36.2270 2.4789 5.8013

Table 3.37: Benzene - Random feature shallow sets (nested)

Descriptor/Model type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Sorted Coulomb matrix 1.5011 28.1465 0.8344 8.5308

Random normal projection 218.5019 525.5273 1.0613 3.0019
Sampled-activated projection 72.3769 141.2698 5.4790 12.3095

Table 3.38: Uracil - Random feature shallow sets (nested)

Descriptor/Model type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Sorted Coulomb matrix 5.7812 20.6717 12.1061 35.2996

Random normal projection 745.8752 1517.1842 3.7557 8.4689
Sampled-activated projection 48.7088 101.7172 12.0371 24.4677

Table 3.39: Paracetamol - Random feature shallow sets (nested)

Descriptor/Model type
Energy (kcal/molA) Forces (kcal/molA)

MAE RMSE MAE RMSE
Sorted Coulomb matrix 5.9646 14.4071 16.6189 64.9533

Random normal projection 209.5065 454.7082 1.0842 3.1677
Sampled-activated projection 20.3953 41.8933 7.5691 16.4324

Table 3.40: Toluene - Random feature shallow sets (nested)

47



3 Random feature potentials

Descriptor/Model type
Energy (kcal/mol) Forces (kcal/molA)

MAE RMSE MAE RMSE
Sorted Coulomb matrix 1.5380 2.9769 7.2620 60.2630

Random normal projection 35.1209 71.8083 2.9710 7.2626
Sampled-activated projection 6.4901 13.653 9.5293 20.3130

Table 3.41: Ethanol - Random feature shallow sets (nested)

Notice, that the energy predictors with the random normal projection descriptor are
worse than the sorted Coulomb matrix. However, the force predictions improve consider-
ably (See table  3.37 – table  3.41 ). These results are no anomaly. They have been reproduced
several times with several random number initializations. An exact explanation of this odd
behaviour needs further investigation.
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4 Conclusion

4.1 Summary

This work investigated the use of random feature neural networks as function approxima-
tors for machine learning potentials. The findings from this work can be summarized as
follows.

1. Random feature neural networks (with sampling) are cheap to train, provided the
size of the dataset is sufficiently small. With increasing dataset size M , the number of
neurons K required for approximating a function upto a certain accuracy increases.
When K > M , approximation with random feature neural networks is as expensive
as an approximation with Gaussian processes albeit without the uncertainty esti-
mates.

2. A-priori defined permutation invariant descriptors based on averaging, pooling; lose
information often resulting in worse models than when a Couloumb matrix descrip-
tor is used.

3. Extensive RFNNs are not more expressive than vanilla RFNNs. This belies intuition,
as extensive models are based on physical considerations. The why of this artifact
needs more investigation.

4. Learning permutation invariant descriptors from data using random feature shallow
sets seems promising; but needs more testing & investigation before any conclusive
statements can be made.

5. Higher order descriptors improve the surrogate model for certain chemicals. For
molecules where the Coulomb-matrix descriptor is sufficiently expressive; no signfi-
cant gains are noticed.

4.2 Future work

It is safe to conclude that in their present state; random feature neural networks are not a
viable competition to potentials based on other neural network, kernel machine architec-
tures. There are several extensions to this work that can enable this.
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4 Conclusion

1. Random feature networks cannot be trained efficiently on datasets with millions of
reference points. An active learning approach based on [  92 ] needs to be adopted; if
this method is to scale.

2. Higher order descriptors used in this work, have inherent symmetries. Taking them
into consideration can reduce the dimensionality of the input space.

3. Random feature shallow sets with self-attention [  79 ] as feature maps has been shown
to work for large language models. This is a promising avenue to further explore in
the context of machine learning potentials.

4. When used for an AIMD simulation, confidence over the estimates of the model is
necessary [ 15 ]. Training an ensemble of RFNNs can aid in this front.

5. In natural science it is not uncommon to have several models for the same phenom-
ena. Embodying this approach, a multi-fidelity inference framework [ 78 ] for training
the potentials and forces can be adopted.

Once improvements to the model have been carried out, one can deploy them in AIMD
simulations. Here, it is certainly possible that the trajectories generated from the learned
force fields do not correspond to the ground truth. This is in-fact a known problem in
dynamical systems, fluid dynamics, etc. Learning time-intergrator specific force-fields [ 81 ,
 32 ] is known to remedy this. To the best of my knowledge, such an approach has not been
adopted in the machine learning potential community. This is a direction that is certainly
worth investigating.
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teratomic potentials as emerging tools for materials science. Advanced Materials,
31(46):1902765, 2019.

[32] Felix Dietrich, Alexei Makeev, George Kevrekidis, Nikolaos Evangelou, Tom Berta-
lan, Sebastian Reich, and Ioannis G. Kevrekidis. Learning effective stochastic differ-
ential equations from microscopic simulations: linking stochastic numerics to deep
learning, 2022.

[33] Marco Eckhoff and Markus Reiher. Lifelong machine learning potentials. Journal of
Chemical Theory and Computation, 19(12):3509–3525, 2023. PMID: 37288932.

[34] R.P. Feynman, R.B. Leighton, and M. Sands. The Feynman Lectures on Physics, Vol.
I: The New Millennium Edition: Mainly Mechanics, Radiation, and Heat. Number v. 1.
Basic Books, 2015.

[35] R.P. Feynman, R.B. Leighton, and M. Sands. The Feynman Lectures on Physics, Vol. III:
The New Millennium Edition: Quantum Mechanics. Number v. 3. Basic Books, 2015.

55



Bibliography

[36] Johannes Gasteiger, Florian Becker, and Stephan Günnemann. Gemnet: Universal
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Ewald-based long-range message passing for molecular graphs, 2023.

[62] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 25.
Curran Associates, Inc., 2012.

[63] L D Landau and E M Lifshitz. Mechanics. Elsevier, January 1982.

[64] Ben Leimkuhler and Charles Matthews. Molecular dynamics. Interdisciplinary Ap-
plied Mathematics. Springer International Publishing, Basel, Switzerland, 2015 edi-
tion, May 2015.

[65] Lin Lin, Jianfeng Lu, and Lexing Ying. Numerical methods for kohn–sham density
functional theory. Acta Numerica, 28:405–539, 2019.

[66] Christopher M. Pattern Recognition and Machine Learning. Information Science and
Statistics. Springer, New York, NY, August 2016.

[67] David John Cameron MacKay. Introduction to gaussian processes. 1998.

[68] Rahul Manavalan. RandomFeaturePotentials.jl - A julia package for force field sur-
rogates based on random features., January 2023.

[69] Benoit Minisini, Patrick Bonnaud, Qiuping A. Wang, and François Tsobnang. Dft
evaluation of thermomechanical properties of scheelite type mlif4 (m=la, ce, pr, nd,
pm, sm, gd, tb, dy, ho, er, tm, lu). Computational Materials Science, 42(1):156–160, 2008.
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Appendix

Implementation and Experiments

A complete implementation of the work in this thesis is made available here [ 68 ]. This
includes implementations of algorithm  4 , algorithm  5 along with a re-implementation of
vanilla RFNN from [ 19 ]. Furthermore, the reults of the experiments can be reproduced
from the scripts provided there.

It is natural to enquire why a re-implementation was necessary. This is based on the con-
sideration that [ 19 ]’s implementation used numpy; which is less flexible when compared
with the least squares solvers used in the Julia ecosystem. As detailed in section  4.1 , there
may be applications where a large number of neurons are needed to approximate certain
functions. In this case, Julia’s GPU ecosystem tools can be seamlessly interchanged; while
the implementation from [ 19 ] needs to be re-implemented using different libraries.

Miscellaneous

Figure 1: A frequency based wordcloud for the text in this thesis.
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