
Department of Mathematics
TUM School of Computation, Information and Technology
Technical University of Munich

Fast Eigensolvers for Koopman Operator

Approximation

Saksham Malhotra

Thesis for the attainment of the academic degree

Master of Science

at the TUM School of Computation, Information and Technology of the Technical University of Munich

Supervisor:

Prof. Dr. Hans-Joachim Bungartz

Advisor:

Dr. Felix Dietrich

Submitted:

Munich, 10. Oktober 2023

I hereby declare that this thesis is entirely the result of my own work except where otherwise indicated. I
have only used the resources given in the list of references.

Munich, 10. Oktober 2023 Saksham Malhotra

v

Zusammenfassung

Der Koopman-Operator ist ein beliebter Rahmen für die Untersuchung dynamischer Systeme. Datenges-
teuerte numerische Algorithmen, die auf der dynamischen Moduszerlegung basieren, approximieren
Eigenfunktionen des Operators, die für die Systemanalyse nützlich sind. Die Eigenfunktionen des
Koopman-Operators bilden bei punktweiser Multiplikation eine abelsche Gruppe. Das Hauptziel dieser
Arbeit ist die Entwicklung von Eigensolvern für Koopman-Operator-Approximationen, die diese algebrais-
che Struktur der Koopman-Eigenfunktionen ausnutzen. Ein e�zienter Eigenlöser-Algorithmus für den
Koopman-Operator, der die Eigenfunktionen erweitert, würde die numerische Analyse von hochdimen-
sionalen nichtlinearen dynamischen Systemen verbessern. Wir stellen einen theoretischen Rahmen mit
einem Fehlermaß und Schranken vor, der diese multiplikative Eigenschaft zur Erweiterung von Eigenfunk-
tionen nutzt. Wir entwickeln einen iterativen Algorithmus zur Ermittlung von Eigenwerten und Eigen-
vektoren der Koopman-Matrix und verwenden diese zusammenmit den Fehlergrenzen zur Approximation
und Erweiterung von Eigenfunktionen. Wir demonstrieren die E�zienz des Eigenlösers, indem wir ihn
auf nichtlineare Systeme anwenden.

Abstract

The Koopman operator is a popular framework for the study of dynamical systems. Data-driven numerical
algorithms based on dynamic mode decomposition approximate eigenfunctions of the operator that are
useful for system analysis. The eigenfunctions of the Koopman operator form an Abelian group under
pointwise multiplication. The main goal of this thesis is to develop eigensolvers for Koopman operator ap-
proximations that exploit this algebraic structure of the Koopman eigenfunctions. An e�cient eigensolver
algorithm for the Koopman operator that extends eigenfunctions would improve the numerical analysis
of high-dimensional non-linear dynamical systems. We present a theoretical framework with an error
measure and bounds, using this multiplicative property to extend eigenfunctions. We develop an iterative
algorithm for �nding eigenvalues and eigenvectors of the Koopman matrix and use them along with the
error bounds to approximate and extend eigenfunctions. We demonstrate the e�ciency of the eigensolver
by applying it to non-linear systems.

vii

Contents

1 Introduction 1

2 Mathematical Foundations 3

2.1 Koopman operator theory . 3
2.1.1 The Koopman operator . 3
2.1.2 Spectral properties of the Koopman operator . 3

2.2 Numerical algorithms for Koopman operator approximation 6
2.2.1 Dynamic mode decomposition (DMD) . 7
2.2.2 Extended dynamic mode decomposition (EDMD) 9

2.3 General eigensolvers . 11
2.3.1 Power method . 11
2.3.2 QR algorithm . 12
2.3.3 Arnoldi method . 12
2.3.4 De�ation methods . 13

3 Fast eigensolvers for Koopman operator approximation 15

3.1 Extending eigenfunctions and trajectory error . 15
3.1.1 Extending eigenfunctions . 15
3.1.2 Trajectory error . 15
3.1.3 Finding a vector corresponding to an extended eigenfunction 16
3.1.4 Reconstructing observables using a set of eigenfunctions 16

3.2 Error anlaysis for trajectory error . 16
3.2.1 Trajectory error bound with respect to eigenvector error 16
3.2.2 Trajectory error bound with respect to integration error 17

3.3 Algorithms for computing extended eigenfunctions using error bounds 19
3.3.1 Example – discrete linear system . 20
3.3.2 Example – continuous linear system . 27

3.4 An iterative Koopman eigensolver algorithm . 38
3.4.1 De�ation based iterative algorithm for general matrices 38
3.4.2 Iterative algorithm for extending Koopman eigenpairs based on integration error . 38
3.4.3 Example – non-linear system . 41
3.4.4 Example – non-linear system constructed from linear system 41

4 Conclusion 49

Bibliography 51

A Appendix 53

A.1 Some code listings . 53
A.2 Mathematical foundations . 53

A.2.1 Relation between vector �eld and Koopman generator 53
A.2.2 Finding eigenfunctions using right eigenvectors . 54

A.3 Fast eigensolvers for Koopman operator approximation . 54
A.3.1 Upper bound calculation for spectral norm of Jacobian for RBF functions with

Gaussian kernel . 54

1

1 Introduction

The Koopman framework has become increasingly popular for studying dynamical systems. It was �rst
introduced by Koopman and Von Neumann, who showed that each system can be associated with a linear
operator [Koo31; Neu32]. The operator, when applied to complex-valued functions of the system states,
results in the functions evaluated at a future state. Therefore, the dynamics can be studied in the function
space instead of the state space. Thus, the Koopman operator framework is understood as studying the
dynamics of observables instead of the dynamics of states. The Koopman operator is formulated as an op-
erator that advances the observable’s value. Moreover, the linear nature of the operator makes it tractable
for �nite-dimensional matrix approximations. The Koopman framework addresses the challenge of deal-
ing with non-linear dynamical systems. The classical geometric perspective allows analysis techniques to
only be applied in the neighbourhood of �xed points, periodic orbits, and attractors of these non-linear
systems by using local linearisations [Gle94]. The Koopman framework presents a global analysis of the
system, thereby allowing for prediction and control away from �xed points and periodic orbits.

Several techniques have been developed to approximate the Koopman operator. These techniques either
rely on analytical methods that make use of the Koopman PDE and solve it using Laurent and Taylor series
or use data-driven approximations to compute a �nite-dimensional matrix representation. Data-driven ap-
proximations have become a reliable tool for studying complex dynamical systems where the governing
equations of the system are not known, or the available models are oversimpli�ed to describe complex
behaviour. These data-driven techniques only require the sampled states of the system to make the ap-
proximation without explicit system equations. The most common techniques are based onDynamic mode
decomposition and approximate a �nite-dimensional Koopman matrix by solving a least-squares problem
[ROW+09; Tu+14]. Several extensions have been proposed, such as the Extended Dynamic mode decom-
position that formulates the �nite-dimensional approximation as acting on a �nite set of basis functions
called the dictionary basis [WKR15]. Other techniques similar to EDMD have been developed for measure-
preserving dynamical systems [Col23], and deep-learning-based approaches for learning eigenfunctions
have also been proposed [LKB18]. The data-only approach has also led to applications of the operator
framework to complex algorithms formulated as dynamical systems [DTK20; Man+20].

The spectral properties of the operator play an essential role in system analysis. The development
of Koopman mode analysis used for studying the system’s evolution has applications in multiple areas
[Eis+10; Mez13]. The level sets of eigenfunctions have been used to extract and analyse invariant and pe-
riodic structures in the state space [BM12]. Additionally, stability analysis techniques have been developed
that use the Koopman spectrum [MM13]. Therefore, the e�cient computation of the operator’s spectrum
through �nite-dimensional matrix approximations is important.

As the Koopman operator is in�nite-dimensional, it can have an in�nite number of eigenfunctions.
The multiplicative property of the Koopman eigenfunctions structures a subset of this set by stating that
the eigenfunctions of the Koopman operator form an Abelian semigroup under pointwise multiplication.
The current techniques compute eigenfunctions by using general eigensolver algorithms on the �nite-
dimensional matrix to obtain the eigenvectors and using these eigenvectors to �nd eigenfunctions in a
�nite basis of functions. This approach does not use the multiplicative property to extend the set of eigen-
functions or develop e�cient eigensolver algorithms that reduce the computation e�ort. The need for
e�cient eigensolver algorithms for Koopman approximations becomes clear when we consider that high-
dimensional complex systems require a high-dimensional matrix approximation to capture the dynamics
accurately. Additionally, extending eigenfunctions enables us to discover eigenfunctions that do not lie
in the span of the �nite dictionary basis used for the approximation, thereby capturing the non-linear
dynamics more closely.

1 Introduction

2

This work aims to develop algorithms for e�cient computation and extension of eigenfunctions of the
Koopman operator based on their multiplicative property. We de�ne an error measure for the extended
eigenfunctions, present an error analysis and design an iterative eigensolver algorithm. The remainder of
the thesis is organised as follows: Chapter 2 lays down the mathematical background for Koopman op-
erator theory and its numerical approximation, and algorithms used for general eigenvalue computation
of matrices. Section 2.1 de�nes the Koopman operator and its spectral properties, section 2.2 introduces
two numerical algorithms (DMD and EDMD) for Koopman operator approximation and section 2.3 gives a
brief overview of algorithms used for eigenvalue and eigenvector computation of general matrices. Chap-
ter 3 develops the theory and methods for extending eigenfunctions, de�ning an error measure– trajectory
error for eigenfunctions, formulating error bounds and developing an iterative algorithm for Koopman
approximations. Section 3.1 de�nes the extended eigenfunctions based on the multiplicative property and
de�nes a measure of error for extended eigenfunctions. Section 3.2 presents the error analysis and derives
upper bounds for the trajectory error. Section 3.3 presents an algorithm for extending eigenfunctions for a
single eigenpair based on the error bounds and applies the error analysis and algorithm to continuous and
discrete linear systems. Finally, Section 3.4 develops an iterative algorithm for Koopman operators based
on the power method, Arnoldi method and trajectory error bounds. The algorithm is then applied to two
di�erent non-linear systems.

3

2 Mathematical Foundations

This chapter brie�y overviews the Koopman operator theory and general eigensolvers. We present Koop-
man operator theory and its spectral properties. Then, we describe two principal algorithms used for
its numerical approximation. We also discuss the main algorithms used for computing eigenvectors and
eigenvalues of general matrices.

2.1 Koopman operator theory

2.1.1 The Koopman operator

We de�ne the Koopman operator for discrete and continuous dynamical systems [BMM12].

De�nition 1. Given the state space " and a discrete dynamical system G=+1 =) (G=) where) : " �! " ,
" ✓ í⇡ and F is the space of observables such that 5 2 F , 5 : " �! É, the Koopman operator,K : F �! F
is de�ned as

K 5 (G=) = 5 () (G=)), = 2 é. (2.1)

De�nition 2. Given the state space " and a continuous dynamical system §G =) (G) where) : " �! " ,
" ✓ í3 and F is the space of observables such that 5 2 F , 5 : " �! É, the Koopman semigroup, {KC }C 2í+ ,
KC : F �! F is de�ned as

KC 5 (G) = 5 () C (G)), G 2 ", (2.2)

where) C : " �! " is the �ow of the system. The generator of the Koopman semigroup, AK : F �! F is
de�ned as

AK 5 = lim
C!0

KC 5 � 5
C

. (2.3)

The vector �eld of the continuous dynamical system and the Koopman generator have the following
relationship:

[AK 5] (G) = h) ,r5 (G)i, 85 2 F . (2.4)

The proof of equation 2.4 is given in Appendix A.2.1.
The Koopman operator transfers the dynamics from the state space to the observable/function space.

In the observable space, the dynamics becomes linear. For continuous systems, the �ow is induced by KC

and given by
KC = 4AKC ,

where AK is the Koopman generator. Therefore, the application of KC to an observable 5 at state G
advances the value of the observable 5 at state) C (G) for continuous systems. For discrete systems, the
application of operator K to an observable 5 at state G= advances the value of the observable 5 at state
G=+1.

2.1.2 Spectral properties of the Koopman operator

F is a vector space, and the Koopman operator is a linear operator. Therefore, the spectral properties of
the operator are critical for understanding the behaviour of the operator. Furthermore, eigenvalues and
eigenfunctions are important for Koopman mode analysis.

We assume that F is a Banach space under some norm, and thatK is a bounded, and hence continuous
operator on this space [Row].

2 Mathematical Foundations

4

De�nition 3. The eigenvalue _ 2 É and eigenfunction q : " �! É of Koopman operator K for a discrete
system is de�ned by the following relation:

(Kq) (G=) = _q (G=), = 2 é. (2.5)

De�nition 4. The eigenvalue _ 2 É and eigenfunction q : " �! É of generator AK for the Koopman
semigroup, {KC }C 2í+ for a continuous system is de�ned by the following relation:

(AKq) (G) = _q (G) . (2.6)

Then, the eigen equation for KC , C � 0 is

(KCq) (G) = 4_Cq (G) . (2.7)

The eigenfunctions are É-valued observables on" and the eigenpairs (_8 ,q8) depend on the state space
" , dynamics) , and the function space F .

The eigenpairs of the Koopman operator for both discrete and continuous systems have the multiplica-
tive property described in Proposition 1.

Proposition 1. (Multiplicative property of Koopman eigenpairs) F is a subset of all É-valued functions on
M that forms a vector space.

• If q1,q2 2 F are eigenfunctions of K with eigenvalues _1, _2 then q1q2 is an eigenfunction of K with
eigenvalue _1_2 i.e. set of eigen functions is closed under pointwise multiplication.

• If ? 2 í+ and q is an eigenfunction with eigenvalue _ then q? is an eigen function with eigenvalue _? .

• Set of eigenfunctions forms an Abelian semigroup with constant function that is one everywhere as
identity.

Proof. Assume that q1,q2 are eigenfunctions of K with eigenvalue K, then

(Kq1q2) (G) = (q1q2) ()G) = q1()G)q2()G)
= (Kq1) (G) (Kq2) (G) = _1q1(G)_2q2(G)
= _1_2(q1q2) (G) .

Let Kq (G) = _q (G), Then for ? 2 ö+,

(Kq?) (G) = q? ()G) = (q ()G))?

= (_q (G))? = _?q? (G) .

The constant function q (G) = 1 is a koopman eigenfunction with eigenvalue 1 and acts as the iden-
tity element. Combined with the closure property proved above, the set of eigenfunctions is an Abelian
semigroup under pointwise multiplication of functions.

Under the action of di�eomorphisms, the eigenfunctions of the Koopman operator of the transformed
system are related to the Koopman eigenfunctions of the original system. Proposition 2 describes the
relation formally.

Proposition 2. (Koopman operator and di�eomorphisms) Given a di�eomorphism ⌘ : " �! # . If (_,q) is
a Koopman eigenpair of a continuous system, then (_,q � ⌘�1) is a Koopman eigenpair of the transformed
system.

2.1 Koopman operator theory

5

Proof. Let {KC }C 2í+ be the Koopman semigroup of the system. Then (KCq) (G) = q () C (G)) 8G 2 " where
) C : " �! " is the �ow of the system.

Let {KC
⌘}C 2í+ be the Koopman semigroup of the transformed system and � C : # �! # be the �ow of

the transformed system. Let ~ = ⌘(G), G 2 " . Then using ⌘() C (G)) = � C (⌘(G)) and the de�nition of the
eigenfunction,

(KC
⌘ (q � ⌘�1)) (~) = q (⌘�1(� C (~)))

= q () C (G)) = KCq (G) = 4_Cq (G) = 4_Cq (⌘�1(~))
= 4_C (q � ⌘�1) (~), 8~ 2 # .

Remark Some special conditions on the dynamics can lead to the spectrum of the Koopman operator
being constrained. For example, if) is measure preserving with F = !2(", `), then all eigenvalues of K
are on the unit circle. In addition, K is guaranteed to have a complete spectral decomposition when the
system is measure-preserving.

Koopman mode decomposition

Assuming a function 5 2 F is in the span of eigenfunctions {q1, . . . ,q=} of the Koopman operator, then

5 (G) =
=’
8=1

28 (5)q8 (G),

where 21, . . . , 2= are constants that depend on 5 . The dynamics of 5 2 F (for a discrete system) is given by

K< 5 (G) =
=’
8=1

28 (5)_<8 q8 (G), < 2 é. (2.8)

This can be extended to a vector valued observable � : " �! + ⇢ É :

� =

2666664

51
...
5

3777775
59 (G) =

=’
8=1

28 (59)q8 (G), 9 = 1, . . . , .

The dynamics in this case is given by

[K<�] (G) =
=’
8=1

_<8 q8 (G)
2666664

28 (51)
...

28 (5)

3777775
=

=’
8=1

_<8 q8 (G)⇠8 (�), < 2 é. (2.9)

Similarly, the dynamics in the case of a continuous system is given by

[KC�] (G) =
=’
8=1

4<_8Cq8 (G)
2666664

28 (51)
...

28 (5)

3777775
=

=’
8=1

4<_8Cq8 (G)⇠8 (�), C � 0. (2.10)

The quantity

⇠8 (�) =
2666664

28 (51)
...

28 (5)

3777775
,

2 Mathematical Foundations

6

which is the projection of � onto span{q8} is called theKoopmanmode of the observable � corresponding to
eigenfunction q8 . The Koopman modes are de�ned with respect to the eigenfunctions and not eigenvalues
as an eigenvalue might have multiple linearly independent eigenfunctions associated with it.
The relationship between the state space and the observable space can be established using the full-

state observable, � (G) = G . By assuming G 2 span{q8}, we can reconstruct the evolution of G for a discrete
system:

G =
=’
8=1

⇠8 (G)q8 (G)

=)) (G) =
=’
8=1

_8⇠8 (G)q8 (G) .

Therefore, the non-linear dynamics in the state space becomes linear in the observable space.
Now we consider the application of Koopman operator theory to discrete linear systems.

Example 1. (Koopman spectrum of a linear system) Consider the discrete linear system

G<+1 = �G<, < 2 é, (2.11)

where � : " �! " is a linear map.
We assume that � has a complete set of eigenvectors {E1, . . . , E=} with corresponding right eigenvalues

{_1, . . . , _=}, and left eigenvectors {F1, . . . ,F=}. Then �⇤F8 = _̄8F8 where �⇤ is the adjoint of �. Consider
the observable q8 (G) = hG,F8i. Then for 8 = 1, . . . ,=:

[Kq8] (G) = q8 (�G) = h�G,F8i = hG,�⇤F8i
= hG, _̄8F8i = _8 hG,F8i = _8q8 (G).

Therefore, (_8 ,q8) is an eigenpair of the Koopman operator.
Consider the observable � (G) = G and assume that G 2 span{E8}. Then

[K�] (G) = � (�G) = �G = �
=’
8=0
hG,F8iE8 =

=’
8=0

q8 (G)_8E8

=) [K<�] (G) = � (�G) = G =
=’
8=0

_<8 q8 (G)E8 , < 2 é.

This implies that eigenvectors E8 of linear map � are the Koopman modes of the system corresponding to
the eigenfunction q8 . This is not a complete set of eigenfunctions. More eigenfunctions can be generated
using this set of eigenfunctions using Proposition 1.

2.2 Numerical algorithms for Koopman operator approximation

Eigenfunctions of the Koopman operator can be approximated using the explicit formulation, which relies
on solving the PDE for the eigenfunction. Assuming continuous and di�erentiable dynamics, and using
(2.4) with an eigenfunction q , we get

[AK 5] (G) = h) ,rq (G)i = _q (G) .

It is possible to solve this PDE for eigenfunctions using standard techniques such as Taylor or Laurent
series. Methods have been proposed that use this PDE to approximate eigenfunctions [Bol21; KKB17].
Data-driven approaches for eigenfunction approximation rely on �nding a �nite-dimensional approxi-

mation of the Koopman operator. These approximation algorithms use samples generated from the system
and do not require an explicit formulation of the dynamical system. This is particularly useful when the
system behaviour can only be ascertained using a �nite set of initial conditions.

2.2 Numerical algorithms for Koopman operator approximation

7

As the Koopman operator operates on an in�nite-dimensional function space, this poses challenges
for computation. Finding a �nite-dimensional approximation involves limiting the function space to an
invariant subspace spanned by a �nite set of functions. Then, the �nite-dimensional approximation is
the projection the Koopman operator onto this invariant subspace. The eigenfunctions of the Koopman
operator can then also be computed using the spectrum of this �nite-dimensional approximation. The
standard approach used here is EDMD (Extended dynamic mode decomposition), which is based on its
precursor DMD (Dynamic mode decomposition).

2.2.1 Dynamic mode decomposition (DMD)

Dynamic mode decomposition uses sampled data points to approximate the operator. It was �rst formu-
lated using a trajectory– a sequence of observations {):G}:2é generated by the system starting from an
initial point.

Given a vector valued observable � 2 F< , we �x A < 1 and de�ne the Krylov subspace,

 A = span{K 9� }A�19=0 . (2.12)

We assume this is a linearly independent set, and de�ne the projection %A : F< �! A from space of vector-
valued observables onto the �nite-dimensional space A . Then, K| A : A �! F< and %AK| A : A �! A is
a �nite-dimensional linear operator with matrix representation �A : ÉA �! ÉA in the basis {K:� }A�1:=0 .

If (_, E) is an eigenpair of�A where E = (E0, . . . , EA�1)) 2 ÉA , then q =
ÕA�1
9=0 E 9 [K 9�] is an eigenfunction

of %AK| A with eigenvalue _:

%AK| Aq =
A�1’
9=0

E 9%AK| A [K 9�]

=
A�1’
9=0

E 9 A�A4 9 = A�AE = _ AE

= _
A�1’
9=0

E 9 [K 9�] = _q .

Therefore, the problem of �nding eigenfunctions of in�nite-dimensionalK is reduced to �nding eigenpairs
of �nite-dimensional matrix �A .

DMD for trajectory

The propagation of �xed observable F given a �xed point G 2 " is given by the sequence {1 9 }A9=0 where
1 9 = K 9� (G) 2 É< . We de�ne

⌫A = [10, . . . ,1A�1] . (2.13)

As number of points A in the trajectory increases, the vectors 1 9 become linearly dependent for some value
of A � 1 < 1. Then 1A can be expressed as a linear combination of the columns of ⌫A :

1A =
A�1’
9=0

2 91 9 + [A ,

where 2 9 ’s are chosen to minimize the residual [A . This is equivalent to minimising the projection error of
1A = KA� (G) onto the space A = span{1 9 }A�19=0 and the �nite-dimensional approximation de�ned above is

%AK| A [KA�] (G) =
A�1’
9=0

2 91 9 =
A�1’
9=0

2 9 [K 9�] (G) .

In the practical implementation of DMD, this is computed using the least squares approximation.

2 Mathematical Foundations

8

Using the matrix representation �A of %AK| A we get

K⌫A = ⌫A�A + [A4) , (2.14)

where 4 = (0, . . . , 0, 1)) and because of the structure of ⌫A ,

�A =

266666664

0 0 . . . 20
1 0 . . . 21
...

... . . .
...

0 0 . . . 2A�1

377777775
(2.15)

is the companion matrix.
Eigenfunctions and eigenvalues can then be computed using eigendecomposition of �A = + �1⇤+ . We

de�ne
⇢ = ⌫A+ �1. (2.16)

Then
K⇢ = ⇢⇤ + [A4)+ �1. (2.17)

If
��[A4)+ �1�� is small, *⇢ ⇡ ⇢⇤. Columns of E are called empirical Ritz vectors, which approximate

q8 (?)⇠8 (�) and diagonal entries of ⇤ are the Ritz values, which approximate the corresponding eigenval-
ues. Proof is given by Rowley et al. [ROW+09]. The quantity q8⇠8 (�) is called the DMD mode.
The companion matrix in canonical basis is given by �A = (K⌫A)⌫†A . Therefore, if the trajectory

{10,11, . . . ,1A } is arranged in the data matrices - and . given by

- =
⇥
10 . . . 1A�1

⇤
. =

⇥
11 . . . 1A .

⇤
then

� = .- †, (2.18)

where ·† is the pseudoinverse of the matrix.
The practical implementation of the above algorithm tends to be ill-conditioned because K 910 con-

verges to the eigen spaces corresponding to the eigenvalues with the largest magnitude. This results in
the columns of- becoming linearly dependent. Additionally, computing the eigendecompositon of matrix
� can be di�cult as� has<2 elements, where< can be large for high-dimensitonal state spaces. If< << A ,
then the matrix � has rank<. Schmid et al. [SCH10] presents a robust implementation using SVD, which
uses a rank de�cient least squares problem using SVD. This computes a low-rank matrix �̃ with rank<
based on the non-zero singular values of - . We compute the reduced SVD, - = * ⌃, ⇤. Then

� = ., ⌃�1* ⇤

=) * ⇤�* ⇡ * ⇤., ⌃�1 = �̃

=) K* ⇡ *�̃,

where �̃ = * ⇤., ⌃�1.
* ⇤�* = �̃ implies that �̃ and � have the same non-zero eigenvalues. Now using eigendecompisiton of

�̃ = +̃ �1⇤̃+̃ , we get

K* ⇡ *+̃ �1⇤̃+̃
=) K*+̃ �1 ⇡ *+̃ �1⇤̃
=) K⇢̃ = ⇢̃⇤̃,

where
⇢̃ = *+̃ �1. (2.19)

Therefore, as described earlier, eigenvectors and eigenvalues of ⇢̃ approximate the DMD modes and DMD
eigenvalues of K respectively.

2.2 Numerical algorithms for Koopman operator approximation

9

DMD for snapshot pairs

The method described above relies on trajectories starting from a �xed point. Tu et al. [Tu+14] present a
more general method for DMD that uses data collected as a set of snapshot pairs rather than as a sequential
time-series. The snapshot pairs are {(G 9 ,~ 9)}A9=1, where ~ 9 =) (G 9) in case of a discrete system and ~ 9 =
) �C (G 9) where) C is the �ow and �C is the sampling frequency, in case of a continuous system. Thematrices
- and . are de�ned as

- =
⇥
G1 . . . GA

⇤
. =

⇥
~1 . . . ~A

⇤
.

Now we de�ne the matrix � as
� = .- †. (2.20)

We compute the SVD of - = * ⌃�1, ⇤ again and de�ne �̃ = * ⇤., ⌃�1 and compute the eigendecompo-
sition of �̃ = +̃ �1⇤̃+̃ . Then, the DMD modes and eigenvalues are given by eigenvectors and eigenvalues
of ⇢̃ = ., ⌃�1+ �1. The matrix �̃ is called the Koopman matrix. It can be shown that eigenpairs of �̃ are
eigenpairs of�. Tu et al. [Tu+14] shows the relationship between DMDmodes computed using ⇢̃ = *+ �1

called the projected DMD modes and ⇢̃ = ., ⌃�1+ �1 called the exact DMD modes. Essentially projected
DMDmodes are the orthogonal projection of exact DMDmodes onto the space spanned by the data vectors
in - .

Remark DMD only gets the approximation of the projection of an observable at a point onto the eigen
function and not the approximation of the eigen function value at the point.

2.2.2 Extended dynamic mode decomposition (EDMD)

Williams et al. [WKR15] developed an extension of DMD, that approximates Koopman eigenfunctions,
eigenvalues and Koopman modes using a dataset of snapshot pairs and a �nite dictionary of observables.
This method is called EDMD.

Given snapshot pairs {(G 9 ,~ 9)}A9=1, where~ 9 =) (G 9) in case of a discrete system and~ 9 =) �C (G 9) where
�C is the sampling frequency, in case of a continuous system. For the description of EDMD, we stick to
real-valued observables only. We de�ne a dictionary basis F3 = span{k8}38=1, F3 ⇢ F with observables
k8 : " �! í. The dictionary vector is de�ned as

 (G) =
⇥
k1(G) k (G) . . . k3 (G)

⇤
2 í3 . (2.21)

EDMD approximates a matrix representation, of the �nite-dimensional approximation of the Koop-
man operator, %AK| A with respect to the dictionary basis {k8}. This matrix representation is called the
Koopman matrix. Consider a function i 2 F3 given by

i = 0) , (2.22)

where 0 2 í3 . As F3 is generally not invariant with respect to K , we get

(Ki) (G) = i () (G)) = 0) () (G)) = 0) (G) + A (G), (2.23)

where residual A 2 F and 2 í3⇥3 . To minimize A and obtain we solve a least squares problem:

0) = argmin
0) 2í1⇥3

1
2

A’
8=1

|0) () (G)) � 0) (G8) |2

= argmin
0) 2í1⇥3

1
2

A’
8=1

|0) (~8) � 0) (G8) |2

=
✓
argmin
)02í3

�� (.))0 � (-)))0��22
◆)

= 0) (.) (-)†

2 Mathematical Foundations

10

where (-) =
⇥
 (G1) . . . (GA)

⇤
and (.) =

⇥
 (~1) . . . (~A)

⇤
.

RemarkWhen the dictionary basis dimension is greater than the number of snapshots, 3 > A , the least
squares problem to obtain is not uniquely solvable. For this reason, a truncated SVD is used to get a
unique solution for the least squares problem:

⌧ = (-) (-))

⌧ 0 = (.) (-)) .

Here ⌧,⌧ 0 2 í3⇥3 and the Koopman matrix is given by

 = ⌧ 0⌧†. (2.24)

Approximating eigenfunctions

The eigenfunction approximations are calculated using the eigenvalues and eigenvectors of the Koopman
matrix . Using left and right eigenvectors of the Koopman matrix , the eigenfunctions can be approxi-
mated in two di�erent ways.
IfF is a left eigenvector of the Koopman matrix with eigenvalue _, we de�ne

q (G) = F) (G) . (2.25)

Using (2.23) we get
Kq (G) = q () (G)) ⇡ F) (G) = _F) (G) = _q (G) . (2.26)

Therefore, (_,F)) is a Koopman eigenpair of K .
If {E 9 }39=1 are right eigenvectors of the Koopmanmatrix with eigenvalues {_ 9 }39=1, then eigenfunctions

{q 9 }39=1 on X can be approximated. We de�ne the matrix

+ =
⇥
E1 . . . E3

⇤
.

The eigenfunctions evaluated at - are given by solving the least squares problem

2666664

q1(-))
...

q3 (-))

3777775
= argmin

⌫2í3⇥A
k+⌫ � (-)k22 = + † (-). (2.27)

The proof is given in Appendix A.2.2.

Computing Koopman modes

Given the state observable 6(G) = G 2 í< , the Koopman modes for it can be approximated using the left
eigenvectors {F 9 }39=1 of . We de�ne the matrix

, =
⇥
F1 . . . F3

⇤
.

The Koopman modes ⇠8 2 í< , where G =
Õ3
8=0⇠8q8 (G) are then given by

2666664

⇠1
...
⇠3

3777775
=, †6(-) . (2.28)

Using the eigenvalue and eigenfunction approximations, approximate trajectories of the system can be
generated given an initial condition G0 2 í< . First we express G0 as a combination of the eigenfunctions,
G0 =

Õ3
9=0⇠ 9 (G0)q 9 (G0). The trajectory {G: }:2é is then given by

G: =): (G0) ⇡
3’
9=0

_ 9⇠ 9 (G0)q 9 (G0). (2.29)

2.3 General eigensolvers

11

Williams et al. [WKR15] show that EDMD is related to a Galerkin method used to approximate the
operator. In particular, the EDMD approximation converges to the Galerkin method approximation in the
large-data limit.

Relationship between DMD and EDMD

EDMD is equivalent to DMD if the dictionary of observables is chosen as the identity basis functions
k 9 (G) = G 9 . The Koopman matrix in DMD is given by equation (2.20):

 ⇡"⇡ = .- †.

By considering the identity dictionary in EDMD, (-) = - and (.) = . , the Koopman matrix for EDMD
is given by

 = (.) (-)† = .- †. (2.30)

Therefore, DMD is equivalent to EDMD with identity state dictionary and the Koopman modes approxi-
mated by EDMD are equal to the exact DMD modes. DMD can be thought of as producing approximations
of eigenfunctions using only the identity basis functions. This can result in accurate approximations in
certain cases such as in the neighbourhood of stable �xed points. For general cases, EDMD produces bet-
ter approximations compared to DMD by using a larger set of non-linear basis functions. The quality of
approximations produced by EDMD heavily depends on the choice of of the dictionary.

2.3 General eigensolvers

As approximating the eigenfunctions involves �nding the eigenpairs of a matrix, eigensolvers are used in
practice. We brie�y describe three algorithms– power method, QR algorithm and Arnoldi iteration. We
also mention de�ation methods for iteratively computing eigenpairs.

2.3.1 Power method

Power method is one of the oldest techniques for calculating the dominant eigenpair of a matrix. The
method proceeds by generating a sequence of vectors {�:E0} where E0 is a random initial vector and
normalising them appropriately. Under some assumptions on the matrix, this sequence coverges to a
dominant eigenvector (vector associated with the largest absolute eigenvalue). The pseudocode is given
in Algorithm 1.

Algorithm1 (Powermethod) Given real matrix� 2 í=⇥= , max iterations# and tolerance tol, compute the dominant
eigenpair of �

E0 random(í=) : E0 < 0= .
: 1.
while : < # and kE: � E:�1k > tol do

E: �:E0.
E:

E:
kE: k

.

: : + 1.
end while
E1 E: .

_1
h�E1, E1i
kE1k2

.

Under the assumptions that the dominant eigenvalue _1 is semi-simple (algebraic multiplicity is one and
equal to geometric multiplicity) and the initial vector E0 is not orthogonal to the dominant eigenvector, the
algorithm converges to the dominant eigenvector _1 associated with the dominant eigenvalue E1 [Saa11].

2 Mathematical Foundations

12

There exist variations of the power method such as the shifted power method and the inverse iteration
that can handle cases where the eigenvalues are close in magnitude (i.e. |_1 | ⇡ |_2 |).
In cases where the dimension of eigenspace of the dominant eigenvalue is greater than one, or the

dominant eigenvalue exists in complex conjugate pairs, the power iteration fails to converge to a single
single eigenvector and instead converges to a vector in the eigenspace or to a vector in the subspace
spanned by the conjugate pair of eigenvectors. For example, if (_1, E1) is a complex eigenpair of a real
matrix � then (_̄1, Ē1) is also an eigenpair. Then

�:G0 = 01_:1E1 + 02_̄:1 Ē:1 +
’

08_8E
:
8 .

This converges to the subspace spanned by {E1, Ē1}. For this reason, the power method is not used for
general non-Hermitian matrices.

2.3.2 QR algorithm

The QR algorithm approximates the Schur factorization of a general non-Hermitian matrix � = &*&)

where & is a unitary matrix and* is an upper triangular matrix. The eigenpairs of* can then be used to
calculate the eigenpairs of �. The pseudocode is given in Algorithm 2.

Algorithm 2 (QR algorithm) Given real matrix � 2 í=⇥= and iterations<, compute approximate Schur form

�0 �.
9 0.
while 9 < < do

� 9 & 9' 9 (QR decomposition using Gram-Schmidt orthogonalization).
� 9+1 ' 9& 9 .
9 9 + 1.

end while

For larger values of<, �< converges to the Schur form* . The eigenvalues of � are then approximated
as eigenvalues of�< and eigenvectors of� are approximated as&0 . . .&<D< whereD< is an eigenvector of
�< . For general matrices, each iteration of the QR algorithm is expensive as it requires $ (=3) operations
to compute the QR factorization. For Hessenberg matrices, QR factorization can be computed in $ (=2)
operations [TB22].

2.3.3 Arnoldi method

Advanced eigensolver algorithms use a projection method where an eigenvector E is approximated by a
vector Ẽ belonging to another subspaceK . In orthogonal projection methods, the residual vector�Ẽ�_Ẽ is
required to be orthogonal to the subspaceK . The Arnoldi method is an orthogonal projection method for
general non-Hermitian matrices where the subspace K is chosen as the Krylov subspace. These methods
involve projection onto a Krylov subspace K< de�ned as

K< (�, E) = span{E,�E, . . . ,�<�1E}. (2.31)

The algorithm proceeds by building an orthonormal basis of the Krylov subspace. This orthonormaliza-
tion process is accomplished in practice using the modi�ed Gram-Schmidt orthogonalization. By projec-
tion onto the Krylov subspace K< using this orthonormal basis, a similarity transformation results in the
Hessenburg matrix of dimension <. Finding the eigenvectors and eigenvalues of an Hessenberg matrix
through QR factorization is e�cient. The eigenvector approximations of the original matrix� can then be
obtained using the orthonormal basis. The pseudocode is given in Algorithm 3.

2.3 General eigensolvers

13

Algorithm3 (Arnoldi iteration) Given realmatrix� 2 í=⇥= andKrylov subspace dimension<, computeHessenberg
matrix � and orthonormal matrix +
E0 random(í=) : kE0k = 1.
9 0.
while 9 < < do

F �E 9 .
8 0.
while 8 < 9 do

⌘8 9 hF , E8i.
F F � ⌘8 9E8 .
8 8 + 1.

end while
⌘ 9+1, 9 kF k.
E 9+1 F/⌘ 9+1, 9 .
9 9 + 1.

end while

The matrix � =

2666664

⌘11 . . . ⌘1<
...

...
...

⌘<1 . . . ⌘<<

3777775
is a Hessenberg matrix. + =

⇥
E1 . . . E<

⇤
is an orthornormal matrix

and the following relationship holds:
+ ⇤<�+< = �< . (2.32)

If ~8 are the the eigenvectors of �< with eigenvalues _8 , then+<~8 and _8 are approximations of the eigen-
vectors and eigenvalues of � respectively. As< increases, the quality of approximation improves [Saa11].
This also leads to high storage and computational requirements. In cases where only the dominant eigen-
pair is required, a restarted version of the algorithm is used where the algorithm is stopped after< itera-
tions, the dominant eigenvalue _1 and eigenvector ~1 of the Hessenberg matrix �< is computed and the
algorithm is restarted with initial vector E1 = +<~1.

2.3.4 Deflation methods

De�ation techniques enable iterative eigenvalue algorithms to be used for �nding all the eigenpairs of a
matrix. If the dominant eigenvalue _1 and eigenvector E1 of a matrix � have been found using an algo-
rithm, de�ation techniques modify the matrix A so that the next application of the algorithm results in
the eigenvalue _2 and eigenvector E2. De�ation techniques usually involve a rank one modi�cation to the
matrix that retains the original eigenvalues and eigenvectors.

The general procedure is called Wielandt’s de�ation [Saa11]. Given the right eigenvector E1 and eigen-
value _ of matrix �, the de�ated matrix is given by

�1 = � � fE1D) (2.33)

where D is an arbitrary vector such that D) E1 = 1 and f 2 í is an appropriate shift. In this case, the
eigenvalues �1 are the same as the eigenvalues of � except the �rst eigenvalue of �1 which is _1 � f .

Choosing the vector D as the left eigenvector of � preserves both the left and right eigenvectors of �.
This de�ation technique is called Hotelling’s de�ation [Saa11]. Lemma 1 shows that eigenvectors of the
de�ated matrix are the same as the eigenvectors of the original matrix.

Lemma 1. Suppose matrix � has real eigenvalues {_1, . . . , _=} with corresponding right eigenvectors
{E1, . . . , E=} and left eigenvectors {F1, . . . ,F=}. F1 is normalized so that F)1 E1 = 1. Then, the matrix
� � _1E1F)1 has eigenvalues {0, _1, . . . , _=} with corresponding eigenvectors {E1, E2, . . . , E=}

2 Mathematical Foundations

14

Proof. Let �1 = � � _1E1F)1 . Then

�1E1 = �E1 � _1E1F)1 E1 = _1E1 � _1E1 = 0,

and for 8 2 {2, . . . ,=}.

�1E8 = �E8 � _1E1F)1 E8 = _8E8 ,

whereF)1 E8 = 0 as _1 < _8 . Similarly,

F)1�1 = F)1� � _1F)1 E1F)1 = _F)1 � _F)1 = 0,

and for 8 2 {2, . . . ,=}

F)8 �1 = F)8 � � _1F)8 E1F)1 = F)8 � = _8F)8 ,

whereF)8 E1 = 0 as _1 < _8 .

15

3 Fast eigensolvers for Koopman operator

approximation

This chapter develops methods for extending the Koopman operator’s eigenfunctions and an iterative al-
gorithm for approximating them. We de�ne a measure of error for extended eigenfunctions and formulate
upper bounds for it. We then describe an algorithm for extending eigenfunctions, given an eigenvector
based on the error bounds and apply these results to linear dynamical systems. Then, we present an it-
erative algorithm for �nding and extending eigenfunctions of the Koopman operator and apply it to two
di�erent non-linear systems.

3.1 Extending eigenfunctions and trajectory error

3.1.1 Extending eigenfunctions

Using the multiplicative property from Proposition 1, additional eigenfunctions of the Koopman operator
can be approximated. If q̄1 and q̄2 are eigenfunction approximations of the Koopman operator K with
eigenvalues _̄1 and _̄2, then

q̄?@ = q̄?1 q̄
@
2 , ?,@ 2 ö+ (3.1)

is also an eigenfunction approximation of K with eigenvalue _̄?@ = _̄? _̄@ .
Using EDMD with dictionary , if 2 í3⇥3 is the Koopman matrix, with left eigenvector {F8}38=1 and

eigenvalues {_̄8}38=1. Given 8, 9 2 {1, . . . ,3}, using Equation (2.25) the extended set of eigenfunctions is
given by

q̄?@ (G) = (F)8 (G))? (F)9 (G))@ (3.2)

with eigenvalues _̄?@ = _̄8 _̄ 9 where ?,@ 2 é. For simplicity, we will focus our analysis only on extending
powers of eigenfunctions and not combination of eigenfunctions. For an eigenfunction approximation,
q = F) of Koopman operator K with eigenvalue _̄,

q̄? (G) = (F) (G))? , ? 2 é (3.3)

is also an eigenfunction approximation of K with eigenvalue _̄? = _̄? .

3.1.2 Trajectory error

Taking powers of eigenfunction approximations accumulates errors. Therefore, we need to de�ne an error
function for an extended eigenfunction. To measure this error, we de�ne a grid G on our domain:

⌧ = {(0 + =⌘,1 + =⌘) |0,1 2 í;= 2 ö;⌘ 2 (0, 1)}, (3.4)

and a norm k·k⌧ on the grid,

kq k⌧ =

s
1
|⌧ |

’
G2⌧

(q (G))2. (3.5)

Using the relation (2.5) for discrete systems and the relation (2.6) for continuous systems, along with the
de�nition of the Koopman operator, we de�ne the trajectory error (⇢)⌧) in De�nition 5.

3 Fast eigensolvers for Koopman operator approximation

16

De�nition 5. (Trajectory error) Given an extended eigenfunction approximation q̄? with an extended
eigenvalue approximation _̄? for the Koopman operator, the trajectory error of the eigenpair approxima-
tion (_̄? , q̄?) is de�ned as

⇢)⌧ (_̄? , q̄?) =
��q̄? () (·)) � _̄?q? (·)��(1/?)⌧ (3.6)

for discrete systems and as

⇢)⌧ (_̄? , q̄?) =
��q̄? () �C (·)) � _̄?q? (·)��(1/?)⌧ (3.7)

for continuous systems.

3.1.3 Finding a vector corresponding to an extended eigenfunction

Given an extended eigenfunction q̄? with approximated eigenvalue _̄? , wewant to check if a corresponding
vectorF? 2 í3 exists in the dictionary basis so that

F)? (G) ⇡ q̄? (G).

We do this by solving the least squares problem on the grid G:

F? = argmin
F2í3

��)F � q̄?��2⌧ . (3.8)

If the residual in the above problem is large, then the extended eigenfunction does not lie in the dictionary
basis. If the residual is small, we can check if the vector obtained is another left eigenvector of the Koopman
matrix by checking if

��)F? � _̄?F?��2 ⇡ 0.

3.1.4 Reconstructing observables using a set of eigenfunctions

Given an observable 6 2 F ,6 : " �! í, sampled output on a grid⌧ , {6(G)}G2⌧ and a set of eigenfunctions
{q8}=8=1 we can approximate 6 as

6(G) ⇡
=’
8=0

28q8 (G), (3.9)

where 28 2 í are constants given by solving the least squares problem:

2 = argmin
D2í=

k6(·) � D8q8 (·)k2⌧ . (3.10)

3.2 Error anlaysis for trajectory error

The two main sources of error in eigenfunction approximation are the error in the eigenvector of the
Koopman matrix due to the eigensolver, and the error in the integration for the �ow computation in
continuous systems. Eigenvector error is present for both discrete and continuous systems. We can �nd
upper bounds for the trajectory error ⇢)⌧ with respect to these errors.

3.2.1 Trajectory error bound with respect to eigenvector error

Let F be a left eigenvector of the Koopman matrix 2 í3⇥3 . Consider a left eigenvector F2 2 í3 of
computed by an eigensolver. Let

F2 = F + XF ,

where XF 2 í3 is the error vector introduced due to the eigensolver.

3.2 Error anlaysis for trajectory error

17

We can get a posteriori upper bound on the trajectory error in (3.6) for the ?C⌘-power eigenfunction
approximation,

q̄? (G) = (F)2 (G))? . (3.11)

We assume that the true left eigenvector is normalized so that kF k = 1. Assuming that _̄ is the computed
eigenvalue corresponding to F2 and _̄? = _̄? , Proposition 3 gives the error bound for the trajectory error
with respect to the eigenvector error kXF k.

Proposition 3.

⇢)⌧ (q̄? , _̄?) ⇠)⌧ (?, _̄) (1/?) kXF k (1/?) , (3.12)

where

⇠)⌧ (?, _̄) =
�����
��k () (·)) � _̄k (·)��

?�1’
8=0
kk () (·))k?�1�8 kk (·)k8 _̄8

�����
⌧

. (3.13)

Proof. Using the identity (G? �~?)2 = (G �~)2
� Õ?�1

8=0 G
?�1�8~8

�2, and the Cauchy–Schwarz inequality, we
get

⇢)⌧ (q̄? , _̄?)2? =
��q̄? () (·)) � _̄?q̄? (·)��2⌧

=
���F)2 () (·)�? � �

_̄F)2 (·)
�?��2

⌧

=
1
|⌧ |

’
G2⌧

✓
(F)2 ()G))? � (F)2 _̄ (G))?

◆2

=
1
|⌧ |

’
G2⌧

�
F)2 ()G) �F)2 _̄ (G))2

✓ ?�1’
8=0

(F)2 ()G))?�1�8 (F)2 _̄ (G))8
◆2

=
1
|⌧ |

’
G2⌧

(XF) (()G) � _̄ (G))2
✓ ?�1’
8=0

(F)2 ()G))?�1�8 (F)2 (G))8 _̄8
◆2

 1
|⌧ |

’
G2⌧
kXF k2

�� ()G) � _̄ (G)��2
✓ ?�1’
8=0
kF2 k?�1�8 k ()G)k?�1�8 kF2 k8 k (G)k8 _̄8

◆2

=
1
|⌧ |

’
G2⌧
kXF k2

�� ()G) � _̄ (G)��2
✓ ?�1’
8=0
k ()G)k?�1�8 k (G)k8 _̄8

◆2

= kXF k2
�����
�� () (·)) � _̄ (·)��

✓ ?�1’
8=0
k () (·))k?�1�8 k (.)k8 _̄8

◆�����
2

⌧

= ⇠)⌧ (?, _̄)2 kXF k2 .

Remark To keep the trajectory error below n for a power ? we will require that the error in computed
eigenvector XF has norm such that

kXF k n?

⇠)⌧ (?, _̄)
. (3.14)

3.2.2 Trajectory error bound with respect to integration error

For a continuous system, the trajectory error will also depend on the integration error introduced while
integrating the system to get the �ow) �C . Let

) �C (G) � G�C = Y (G), (3.15)

3 Fast eigensolvers for Koopman operator approximation

18

where n (G) 2 í= is the integration error at G , G�C is the accurate �ow at C = �C , and) C (G) is the computed
�ow. We consider the upper bound of the trajectory error with respect to the quantity

n⌧ = max
G2⌧
kY (G)k . (3.16)

Using the above, Proposition 4 gives the upper bound for eigenfunction approximation q̄? and eigenvalue
approximation _̄? with respect to the integration error n⌧ .

Proposition 4.

⇢)⌧ (q̄? , _̄?)
✓ �
_̄�C" + !n⌧

�? � (_̄�C")?
◆ (1/?)

. (3.17)

where " = maxG2⌧ kk (G)k and ! is an upper bound on the spectral norm of the Jacobian of with respect
to the ;2 norm on the grid ⌧ ,

k � (G)k2 !. (3.18)

Proof. Using the de�nition of Koopman operator,

q () �C (G)) = q (G�C + Y (G))
⇡ q (G�C) + Y (G))rq (G�C)
= _̄�Cq (G) + Y (G))rq (G�C) .

Using the bound on the spectral norm on the Jacobian of the dictionary basis , we get

krq (G)k =
���k (G)F�� ���k (G)��2 kF k !, (3.19)

where k.k2 is the spectral norm. Then using the above equations, the Cauchy–Schwarz inequality and the
Binomial theorem, we get

⇢)⌧ (q̄? , _̄?)2? =
��q () �C (·))? � (_̄�Cq (·))?

��2
⌧

=
1
|⌧ |

’
G2⌧

✓
(q () �C (G)))? � (_̄�Cq (G)))?

◆2

=
1
|⌧ |

’
G2⌧

✓
(_̄�Cq (G) + Y (G))rq (G�C))? � (_̄�Cq (G)))?

◆2

=
1
|⌧ |

’
G2⌧

✓ ?’
:=0

✓
?

:

◆
(_̄�Cq (G))?�: (Y (G))rq (G�C)): � (_̄�Cq (G)))?

◆2

=
1
|⌧ |

’
G2⌧

✓ ?’
:=1

✓
?

:

◆
(_̄�Cq (G))?�: (Y (G))rq (G�C)):

◆2

=
1
|⌧ |

’
G2⌧

✓ ?’
:=1

✓
?

:

◆
(_̄�CF)k (G))?�: (Y (G))rq (G�C)):

◆2

 1
|⌧ |

’
G2⌧

✓ ?’
:=1

✓
?

:

◆
(_̄�C)?�: kF k?�: kk (G)k?�: kY (G)k:

��rq (G�C)��:
◆2

 1
|⌧ |

’
G2⌧

✓ ?’
:=1

✓
?

:

◆
(_̄�C)?�:"?�: kY (G)k: !:

◆2

 1
|⌧ |

’
G2⌧

✓ ?’
:=0

✓
?

:

◆
(_̄�C)?�:"?�: kY (G)k: !: � (_̄�C)?"?

◆2

 1
|⌧ |

’
G2⌧

✓ �
_̄�C" + ! kY (G)k

�? � (_̄�C)?"?

◆2

3.3 Algorithms for computing extended eigenfunctions using error bounds

19

=
���_̄�C" + ! kY (·)k

�? � (_̄�C")?
��2
⌧

✓ �
_̄�C" + !n⌧

�? � (_̄�C")?
◆2
.

Remark To keep the trajectory error below n for a power ? , we will require that the integration error
n⌧ has the following bound:

n⌧
1
!
[(n? + (_̄�C")?)1/? � _̄�C"] (3.20)

Remark To calculate !, we compute the maximum singular value of the matrix � (G) over the grid ⌧
and take the maximum value:

<0G (G) = max{ : � (G)E = _(G)E}
! = max

G2⌧

p
_<0G (G) � k � (G)k2 .

(3.21)

3.3 Algorithms for computing extended eigenfunctions using error

bounds

Given a left eigenvalue and eigenvector of the Koopman operator, we can de�ne an algorithm to �nd the
extended eigenfunctions based on the trajectory error and upper bounds calculated in the last section.

For a discrete system, we do not have integration error and only have error due to eigenvector. In this
case, given n > 0, to get ⇢)⌧ (q̄? , _̄?) n , we require

kXE k n?

⇠)⌧ (?, _̄)
. (3.22)

Using this relation, Algorithm 4 de�nes the algorithm to extend eigenpairs of the Koopman operator for a
discrete system.

Algorithm4Computing extended eigenpairs for discrete system. Given kXF k, left eigenpair (_̄,F2) of the Koopman
matrix , as the dictionary basis and desired trajectory error bound n

while ? 2 é do
⇠)⌧ (?, _̄)

����� () (·)) � _̄ (·)��Õ?�1
8=0 k () (·))k

?�1�8 k (·)k8 _̄8
���
⌧
.

if n?

⇠)⌧ (?, _̄)
> kXF k then

break
end if
q̄? (F)2)? .
̄? = (̄)? .

end while

For a continuous system, we have integration error in the �ow calculation. Given n > 0, to get
⇢)⌧ (q̄? , _̄?) n , we require

n⌧
1
!

✓ �
n? + (_̄")?

�1/? � _̄"
◆
. (3.23)

Using this relation, Algorithm 5 de�nes the algorithm to extend eigenpairs of the Koopman operator for a
continuous system.

3 Fast eigensolvers for Koopman operator approximation

20

Algorithm5Computing extended eigenpairs for continuous system. Given n⌧ , left eigenpair (_̄,F2) of the Koopman
matrix andk as the dictionary basis and desired trajectory error bound n

while ? 2 é do
if 1
!
((n? + (_̄")?)1/? � _̄") > n⌧ then
break

end if
q̄? (F)2 k)? .
̄? = (̄)? .

end while

3.3.1 Example – discrete linear system

Consider the discrete linear system
G=+1 = �G=, (3.24)

where � 2 í2⇥2 with left eigenpairs (_1,F1) and (_2,F2).
The Koopman eigenfunctions and eigenvalues for such a system can be written explicitly. As shown in

Example 1, the system has eigenvalues and eigenfunctions given by

_? = _?1 (3.25)
q? (G) =

�
hF1, Gi

�? (3.26)
_@ = _@2 (3.27)
q@ (G) =

�
hF2, Gi

�@ . (3.28)

We can compare the extended eigenfunction with the explicit eigenfunctions. Let q̄? be an extended eigen-
function and q? be an explicit eigenfunction. Then on a grid G, as de�ned in (3.4), the error is given by
⇢⌧ :

⌧0 = {G 2 ⌧ | |q? | < W} [{G 2 ⌧ | |q̄? | < W} (3.29)

2<>34 = mode
✓
q? |⌧/⌧0

q̄? |⌧/⌧0

◆
(3.30)

⇢⌧ (q? , q̄?) =
��q? � 2<>34q̄?��1/?⌧ , (3.31)

where W is some tolerance.
Given a set of points in grid ⌧ , the trajectory error for the computed extended eigenpair (_̄? , q̄?) is

de�ned as
⇢)⌧ (_̄? , q̄?) :=

��q̄? (�(·)) � _̄?q? (·)��1/?⌧ . (3.32)

We use
� =

0.9 �0.1
0 0.8

�
(3.33)

The matrix has left eigenpairs (0.9, [�1, 1])) and (0.8, [0, 1])). Therefore the explicit Koopman eigenfunc-
tions of the system are given by

q? (G) =
✓
G1 � G2p

2

◆?
(3.34)

q@ (G) = G@2 , (3.35)

with eigenvalues _? = (0.9)? and _@ = (0.8)@ . To approximate the eigenfunctions using DMD and EDMD,
we collect 400 snapshot pairs where the initial conditions are uniformly randomly distributed between
[�2, 2] ⇥ [�2, 2].

3.3 Algorithms for computing extended eigenfunctions using error bounds

21

Approximating eigenfunctions using DMD

DMD is equivalent to EDMD with the dictionary basis as the identity:

 (G) = [G1, G2]) . (3.36)

Figure 3.1 shows the results of the DMD approximation. The out-of-sample prediction shows that the
DMD approximation can predict trajectories accurately. Using the computed left eigenvectors F1 and F2
of the Koopman matrix, we compute the extended eigenfunctions de�ned, q̄? and q̄@ as de�ned in (3.3).

We then compare the explicit eigenfunctions of the system given by (3.34) and (3.35) with computed
eigenfunctions (3.26) and (3.28). Figure 3.2 and Figure 3.3 show that the extended eigenfunctions agree
with the explicit eigenfunctions.

We �nd a corresponding vector for the extended eigenfunction powers by solving the least squares prob-
lem de�ned in (3.8). Figure 3.4 shows that all powers of the extended eigenfunctions have a high residual,
indicating that the extended eigenfunctions do not lie in the identity dictionary space and, therefore, there
exists no vector in í3 which can make them an eigenfunction.

We reconstruct the observable 6(G) = sin(G1) cos(G2) by solving the least squares problem described in
(3.10). Then, we calculate the norm error of the reconstruction. Figure 3.5 shows the reconstruction using
the original set of eigenfunctions and sets with an increasing number of eigenfunctions. As the number
of extended eigenfunctions used for reconstruction increases, the norm error of reconstruction decreases.

We take the grid⌧ with 0 = �1,1 = 1,= = 100,⌘ = 0.01 for the trajectory error analysis. Figure 3.6 shows
the trend of the error between explicit eigenfunctions and computed eigenfunctions, the trajectory error
for the computed extended eigenfunctions and the computed upper bound constant (⇠)⌧). As the pow-
ers of the extended eigenfunctions increase, the error between the explicit eigenfunction and computed
eigenfunction increases, and the trajectory error also increases.

We can compute the trajectory error and its upper bound for the extended eigenfunctions by introducing
an explicit eigenvector error kXF k. For the Koopman operator of a discrete linear system approximated
using DMD, we know the left eigenvectors precisely as they are the left eigenvectors of the matrix�. Then
we can calculate the trajectory error and its upper bound with computed left eigenvectors F2 = F + XF
where w is the exact left eigenvector, and XF is a random error vector chosen such that kXF k = 10�6.
Figure 3.7 shows the trajectory error and its upper bound for di�erent powers of ? and @. We use a grid G
with ⌘ = 0.01, 0 = �1, 1 = 1 for this calculation.

Finally, we try Algorithm 4 described in the last section using the trajectory errors and upper bounds
with respect to eigenvector error to extend eigenfunctions q̄? and q̄@ up to powers ? and @ such that the
trajectory error stays below a desired upper bound n . Figure 3.8 shows the results of Algorithm 4 for a
desired trajectory error upper bound n = 0.1. As seen in the �gure, the powers ? and @ suggested by the
algorithms are close to the actual powers up to which the eigenfunctions can be extended.

Approximating eigenfunctions using EDMD

We take the dictionary basis as the space of polynomials with degree up to three:

 (G1, G2) = [G1, G2, G21, G1G2, G22, G31, G21G2, G1G22, G32]) . (3.37)

Figure 3.9 shows the results of the EDMD approximation. The out-of-sample prediction shows that the
EDMD approximation can predict trajectories accurately. The EDMD approximation gives a Koopman
matrix of dimension 9⇥9with nine eigenpairs. Here we take the left eigenvectorsF1 andF2 as the vectors
corresponding to eigenvalues _̄1 = 0.9 and _̄2 = 0.8. We then compute the extended eigenfunctions, de�ned
q̄? and q̄@ as de�ned in (3.3) using vectorsF1 andF2 respectively.

We then compare the explicit eigenfunctions of the system with computed extended eigenfunctions.
Figure 3.10 and Figure 3.11 show that the extended eigenfunctions agree with the explicit eigenfunctions.

We �nd a corresponding vector for the extended eigenfunction powers by solving the least squares
problem de�ned in (3.8). Figure 3.12 shows that the extended eigenfunctions up to power 3 have a low

3 Fast eigensolvers for Koopman operator approximation

22

�2 �1 0 1 2

x1

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

x
2

Training data used
during fit

�2 �1 0 1 2

x1

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

x
2

DMD model reconstruction
(Identity state dictionary)

0 50 100 150 200

n

�0.30

�0.25

�0.20

�0.15

�0.10

�0.05

0.00

x
1

out-of-sample prediction (x1)

DMD

true system

0 50 100 150 200

n

0.0

0.1

0.2

0.3

0.4

0.5

x
2

out-of-sample prediction (x2)

DMD

true system

Figure 3.1 DMD model for the discrete linear system (3.24). Top left shows the training data used for approxima-
tion, top right shows the reconstructed data, bottom shows the comparison between predicted trajectory and actual
trajectory for one initial condition.

3.3 Algorithms for computing extended eigenfunctions using error bounds

23

�1 0 1
x1

�1

0

1

x
2

�̄1,0 = 0.91

�1 0 1
x1

�1

0

1

x
2

�̄2,0 = 0.92

�1 0 1
x1

�1

0

1
x

2
�̄3,0 = 0.93

�1 0 1
x1

�1

0

1

x
2

�̄4,0 = 0.94

�1 0 1
x1

�1

0

1

x
2

�̄5,0 = 0.95

�1 0 1
x1

�1

0

1

x
2

�̄6,0 = 0.96

�1 0 1
x1

�1

0

1

x
2

�̄7,0 = 0.97

�1 0 1
x1

�1

0

1

x
2

�̄8,0 = 0.98

�1 0 1
x1

�1

0

1
x

2
�̄9,0 = 0.99

�1 0 1
x1

�1

0

1

x
2

�̄10,0 = 0.910

�1 0 1
x1

�1

0

1

x
2

�1,0 = 0.91

�1 0 1
x1

�1

0

1

x
2

�2,0 = 0.92

�1 0 1
x1

�1

0

1

x
2

�3,0 = 0.93

�1 0 1
x1

�1

0

1

x
2

�4,0 = 0.94

�1 0 1
x1

�1

0

1
x

2

�5,0 = 0.95

�1 0 1
x1

�1

0

1

x
2

�6,0 = 0.96

�1 0 1
x1

�1

0

1

x
2

�7,0 = 0.97

�1 0 1
x1

�1

0

1

x
2

�8,0 = 0.98

�1 0 1
x1

�1

0

1

x
2

�9,0 = 0.99

�1 0 1
x1

�1

0

1

x
2

�10,0 = 0.910

�1.0

�0.5

0.0

0.5

1.0

Figure 3.2 Comparison of explicit eigenfunctions with computed eigenfunctions approximated using DMD eigen-
vectors for the discrete linear system (3.24). First and second rows show computed eigenfunction contours for powers
1 ? 10, and third and fourth rows show explicit eigenfunction contours for powers 1 ? 10. The eigenfunc-
tions have been normalized such that kq k1 1.

3 Fast eigensolvers for Koopman operator approximation

24

�1 0 1
x1

�1

0

1

x
2

�̄0,1 = 0.81

�1 0 1
x1

�1

0

1

x
2

�̄0,2 = 0.82

�1 0 1
x1

�1

0

1

x
2

�̄0,3 = 0.83

�1 0 1
x1

�1

0

1

x
2

�̄0,4 = 0.84

�1 0 1
x1

�1

0

1

x
2

�̄0,5 = 0.85

�1 0 1
x1

�1

0

1

x
2

�̄0,6 = 0.86

�1 0 1
x1

�1

0

1

x
2

�̄0,7 = 0.87

�1 0 1
x1

�1

0

1

x
2

�̄0,8 = 0.88

�1 0 1
x1

�1

0

1

x
2

�̄0,9 = 0.89

�1 0 1
x1

�1

0

1

x
2

�̄0,10 = 0.810

�1 0 1
x1

�1

0

1

x
2

�0,1 = 0.81

�1 0 1
x1

�1

0

1

x
2

�0,2 = 0.82

�1 0 1
x1

�1

0

1

x
2

�0,3 = 0.83

�1 0 1
x1

�1

0

1

x
2

�0,4 = 0.84

�1 0 1
x1

�1

0

1

x
2

�0,5 = 0.85

�1 0 1
x1

�1

0

1

x
2

�0,6 = 0.86

�1 0 1
x1

�1

0

1

x
2

�0,7 = 0.87

�1 0 1
x1

�1

0

1

x
2

�0,8 = 0.88

�1 0 1
x1

�1

0

1

x
2

�0,9 = 0.89

�1 0 1
x1

�1

0

1

x
2

�0,10 = 0.810

�1.0

�0.5

0.0

0.5

1.0

Figure 3.3 Comparison of explicit eigenfunctions with computed eigenfunctions approximated using DMD eigen-
vectors for the discrete linear system (3.24). First and second rows show computed eigenfunction contours for powers
1 @ 10, and third and fourth rows show explicit eigenfunction contours for powers 1 @ 10. The eigenfunc-
tions have been normalized such that kq k1 1.

power p residual eig_eq_norm

1 4.924587e-25 2.636780e-16
2 6.938401e+02 -
3 9.603623e+01 -
4 2.406468e+02 -
5 8.279875e+01 -
6 1.237877e+02 -
7 6.167356e+01 -
8 7.656635e+01 -
9 4.639823e+01 -
10 5.272445e+01 -

power q residual eig_eq_norm

1 1.956396e-27 1.814610e-18
2 2.081347e+03 -
3 2.424390e+02 -
4 1.202693e+03 -
5 3.272690e+02 -
6 8.655758e+02 -
7 3.393607e+02 -
8 6.877325e+02 -
9 3.310601e+02 -
10 5.781470e+02 -

Figure 3.4 Residual for problem (3.8) for di�erent powers of p and q of DMD eigenfunctions of the discrete linear
system (3.24). The eigen equation norm checks if the computed vector in (3.8) is a left eigenvector of the Koopman
matrix.

3.3 Algorithms for computing extended eigenfunctions using error bounds

25

�2.0 �1.5 �1.0 �0.5 0.0 0.5 1.0 1.5 2.0

x1

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

x
2

sin(x1) cos(x2)

�2.0 �1.5 �1.0 �0.5 0.0 0.5 1.0 1.5 2.0

x1

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

x
2

sin(x1) cos(x2) reconstructed using original eigenfunctions
Norm error: 35.69

�2.0 �1.5 �1.0 �0.5 0.0 0.5 1.0 1.5 2.0

x1

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

x
2

sin(x1) cos(x2) reconstructed using 15 eigenfunctions
Norm error: 6.899

�2.0 �1.5 �1.0 �0.5 0.0 0.5 1.0 1.5 2.0

x1

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

x
2

sin(x1) cos(x2) reconstructed using 24 eigenfunctions
Norm error: 4.601

�1.00

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

�0.60

�0.45

�0.30

�0.15

0.00

0.15

0.30

0.45

0.60

�1.2

�0.9

�0.6

�0.3

0.0

0.3

0.6

0.9

1.2

�1.00

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

Figure 3.5 Reconstruction of the observable sin(G1) cos(G2) using the DMD eigenfunctions of the discrete linear
system (3.24). Top left: sin(G1) cos(G2). Top right: Observable reconstructed using original set of DMD eigenfunc-
tions. Bottom left, bottom right: Observable reconstructed using extended set of eigenfunctions.

3 Fast eigensolvers for Koopman operator approximation

26

1 2 3 4 5 6 7 8 9 10

p

�12

�10

�8

�6

�4

�2

lo
g 1

0
E

G
(�

p
,�̄

p
)

error w.r.t. explicit eigenfunction

1 2 3 4 5 6 7 8 9 10

q

�16

�14

�12

�10

�8

�6

�4

�2

lo
g 1

0
E

G
(�

q
,�̄

q
)

error w.r.t. explicit eigenfunction

1 2 3 4 5 6 7 8 9 10

p

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

E
T

G
(�̄

p
,�̄

p
)

trajectory error and upper bound constant

1 2 3 4 5 6 7 8 9 10

q

0.000

0.005

0.010

0.015

0.020

0.025
E

T
G
(�̄

q
,�̄

q
)

trajectory error and upper bound constant

0.2

0.4

0.6

0.8

1.0
C

T
G
(p

,�̄
)1

/p

0.2

0.4

0.6

0.8

1.0

C
T

G
(q

,�̄
)1

/q

Figure 3.6 Error analysis for DMD eigenfunctions of discrete linear system (3.24). Top row: log10 error between
computed and explicit eigenfunctions on grid G (⇢⌧). Bottom row: Trajectory error for computed eigenfunctions on
grid G – ⇢)⌧ (blue) and constant of the upper bound – ⇠)⌧ (red).

1 2 3 4 5 6 7 8 9 10

p

�7

�6

�5

�4

�3

�2

�1

lo
g 1

0

trajectory error: ETG(�̄p, �̄p)

upper bound: CTG(p, �̄)1/p||�w||1/p

1 2 3 4 5 6 7 8 9 10

q

�8

�7

�6

�5

�4

�3

�2

�1

lo
g 1

0

trajectory error: ETG(�̄q, �̄q)

upper bound: CTG(q, �̄)1/q||�w||1/q

Trajectory error and upper bound with respect to eigenvector error ||�w|| = 10�6

Figure 3.7 Trajectory error and upper bound calculation for DMD eigenfunctions of discrete linear system (3.24)
using kXF k = 10�6 error in the eigenvectors.

3.3 Algorithms for computing extended eigenfunctions using error bounds

27

1 2 3 4 5 6 7 8 9 10

p

�10

�8

�6

�4

�2

0

lo
g 1

0

ETG(�̄p, �̄p)

�p

CTG(p, �̄)

�

||�w||

1 2 3 4 5 6 7 8 9 10

q

�10

�8

�6

�4

�2

0

lo
g 1

0

ETG(�̄q, �̄q)

�q

CTG(q, �̄)

�

||�w||

Finding powers for extending eigenpairs given � = 0.1 with eigenvector error ||�w|| = 10�7

Figure 3.8Results of Algorithm 4 applied to theDMDapproximation of discrete linear system (3.24) with eigenvector
error kXF k = 10�7 and desired trajectory error n = 0.1. The value of ? and @ suggested by the algorithm– where the
upper bound for kXF k (orange) crosses kXF k (red line) is close to actual value of ? and @ where the trajectory error
(blue) crosses the required n (black).

residual, and the vector in the dictionary space is an eigenvector. The extended eigenfunctions for higher
powers have a high residual, indicating they do not lie in the polynomial dictionary space and therefore,
there does not exist a vector in í3 that makes them an eigenfunction in this space.

We reconstruct the observable 6(G) = sin(G1) cos(G2) and calculate the norm error of the reconstruc-
tion. Figure 3.13 shows the reconstruction for the original set of EDMD eigenfunctions and sets with an
increasing number of eigenfunctions. As the number of extended eigenfunctions used for reconstruction
increases, the norm error of reconstruction decreases.

We take the grid ⌧ with 0 = �1,1 = 1,= = 100,⌘ = 0.01 for the trajectory error analysis. Figure 3.14
shows the trend of the error between explicit eigenfunctions and computed eigenfunctions, the trajectory
error for the computed extended eigenfunctions, and the computed upper bound constants (⇠)⌧). The
error between the computed and explicit eigenfunctions, and the trajectory error increase as the powers
increase.

3.3.2 Example – continuous linear system

Consider the continuous linear system

§G = �G, (3.38)

where � 2 í2-2 with left eigenpairs (_1,F1) and (_2,F2).
Let the system be sampled with sampling interval �C . Then the Koopman eigenfunctions and eigenval-

ues of the system are given by

_? = (4_1�C)? (3.39)
q@ (G) =

�
hF1, Gi

�? (3.40)

_@ = (4_2�C)@ (3.41)
q@ (G) =

�
hF2, Gi

�@ . (3.42)

If _̄ is a computed eigenvalue of the Koopmanmatrix and _ is an eigenvalue of the Koopman generator
of the continuous system, then _̄ ⇡ 4_�C where �C is the sampling interval for the system.

3 Fast eigensolvers for Koopman operator approximation

28

�2 �1 0 1 2

x1

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

x
2

Training data used
during fit

�2 �1 0 1 2

x1

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

x
2

EDMD model reconstruction
(P3 dictionary)

0 50 100 150 200

m

�0.30

�0.25

�0.20

�0.15

�0.10

�0.05

0.00

x
2

out-of-sample prediction (x1)

EDMD

true system

0 50 100 150 200

n

0.0

0.1

0.2

0.3

0.4

0.5

x
2

out-of-sample prediction (x2)

EDMD

true system

Figure 3.9 EDMD model for the discrete linear system (3.24). Top left shows the training data used for approxima-
tion, top right shows the reconstructed data, bottom shows the comparison between predicted trajectory and actual
trajectory for one initial condition.

3.3 Algorithms for computing extended eigenfunctions using error bounds

29

�1 0 1
x1

�1

0

1

x
2

�̄1,0 = 0.81

�1 0 1
x1

�1

0

1

x
2

�̄2,0 = 0.82

�1 0 1
x1

�1

0

1
x

2
�̄3,0 = 0.83

�1 0 1
x1

�1

0

1

x
2

�̄4,0 = 0.84

�1 0 1
x1

�1

0

1

x
2

�̄5,0 = 0.85

�1 0 1
x1

�1

0

1

x
2

�̄6,0 = 0.86

�1 0 1
x1

�1

0

1

x
2

�̄7,0 = 0.87

�1 0 1
x1

�1

0

1

x
2

�̄8,0 = 0.88

�1 0 1
x1

�1

0

1
x

2
�̄9,0 = 0.89

�1 0 1
x1

�1

0

1

x
2

�̄10,0 = 0.810

�1 0 1
x1

�1

0

1

x
2

�1,0 = 0.81

�1 0 1
x1

�1

0

1

x
2

�2,0 = 0.82

�1 0 1
x1

�1

0

1

x
2

�3,0 = 0.83

�1 0 1
x1

�1

0

1

x
2

�4,0 = 0.84

�1 0 1
x1

�1

0

1
x

2

�5,0 = 0.85

�1 0 1
x1

�1

0

1

x
2

�6,0 = 0.86

�1 0 1
x1

�1

0

1

x
2

�7,0 = 0.87

�1 0 1
x1

�1

0

1

x
2

�8,0 = 0.88

�1 0 1
x1

�1

0

1

x
2

�9,0 = 0.89

�1 0 1
x1

�1

0

1

x
2

�10,0 = 0.810

�1.0

�0.5

0.0

0.5

1.0

Figure 3.10Comparison of explicit eigenfunctions with computed eigenfunctions approximated using EDMD eigen-
vectors for the discrete linear system (3.24). First and second rows show computed eigenfunction contours for powers
1 ? 10, and third and fourth rows show explicit eigenfunction contours for powers 1 ? 10. The eigenfunc-
tions have been normalized such that kq k1 1.

3 Fast eigensolvers for Koopman operator approximation

30

�1 0 1
x1

�1

0

1

x
2

�̄0,1 = 0.81

�1 0 1
x1

�1

0

1

x
2

�̄0,2 = 0.82

�1 0 1
x1

�1

0

1

x
2

�̄0,3 = 0.83

�1 0 1
x1

�1

0

1

x
2

�̄0,4 = 0.84

�1 0 1
x1

�1

0

1

x
2

�̄0,5 = 0.85

�1 0 1
x1

�1

0

1

x
2

�̄0,6 = 0.86

�1 0 1
x1

�1

0

1

x
2

�̄0,7 = 0.87

�1 0 1
x1

�1

0

1

x
2

�̄0,8 = 0.88

�1 0 1
x1

�1

0

1

x
2

�̄0,9 = 0.89

�1 0 1
x1

�1

0

1

x
2

�̄0,10 = 0.810

�1 0 1
x1

�1

0

1

x
2

�0,1 = 0.81

�1 0 1
x1

�1

0

1

x
2

�0,2 = 0.82

�1 0 1
x1

�1

0

1

x
2

�0,3 = 0.83

�1 0 1
x1

�1

0

1

x
2

�0,4 = 0.84

�1 0 1
x1

�1

0

1

x
2

�0,5 = 0.85

�1 0 1
x1

�1

0

1

x
2

�0,6 = 0.86

�1 0 1
x1

�1

0

1

x
2

�0,7 = 0.87

�1 0 1
x1

�1

0

1

x
2

�0,8 = 0.88

�1 0 1
x1

�1

0

1

x
2

�0,9 = 0.89

�1 0 1
x1

�1

0

1

x
2

�0,10 = 0.810

�1.0

�0.5

0.0

0.5

1.0

Figure 3.11Comparison of explicit eigenfunctions with computed eigenfunctions approximated using EDMD eigen-
vectors for the discrete linear system (3.24). First and second rows show computed eigenfunction contours for powers
1 @ 10, and third and fourth rows show explicit eigenfunction contours for powers 1 @ 10.. The eigenfunc-
tions have been normalized such that kq k1 1.

power p residual eig_eq_norm

1 5.141649e-25 3.293027e-16
2 5.696217e-24 3.052170e-16
3 3.080359e-24 2.865091e-15
4 3.131271e+01 -
5 5.452440e+00 -
6 3.885154e+01 -
7 1.109083e+01 -
8 3.533642e+01 -
9 1.352306e+01 -
10 3.011819e+01 -

power q residual eig_eq_norm

1 9.244998e-27 9.897038e-17
2 2.614065e-23 1.426294e-15
3 1.318227e-22 1.230384e-14
4 8.541984e+01 -
5 1.611994e+01 -
6 1.544213e+02 -
7 4.471709e+01 -
8 1.887074e+02 -
9 7.020917e+01 -
10 2.046077e+02 -

Figure 3.12 Residual for problem (3.8) for di�erent powers of p and q of EDMD eigenfunctions of the discrete linear
system (3.24). The eigen equation norm checks if the computed vector in (3.8) is a left eigenvector of the Koopman
matrix.

3.3 Algorithms for computing extended eigenfunctions using error bounds

31

�2.0 �1.5 �1.0 �0.5 0.0 0.5 1.0 1.5 2.0

x1

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

x
2

sin(x1) cos(x2)

�2.0 �1.5 �1.0 �0.5 0.0 0.5 1.0 1.5 2.0

x1

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

x
2

sin(x1) cos(x2) reconstruced using original eigenfunctions
Norm error: 8.166

�2.0 �1.5 �1.0 �0.5 0.0 0.5 1.0 1.5 2.0

x1

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

x
2

sin(x1) cos(x2) reconstruced using 15 eigenfunctions
Norm error: 6.899

�2.0 �1.5 �1.0 �0.5 0.0 0.5 1.0 1.5 2.0

x1

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

x
2

sin(x1) cos(x2) reconstruced using 24 eigenfunctions
Norm error: 4.601

�1.00

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

�1.2

�0.9

�0.6

�0.3

0.0

0.3

0.6

0.9

1.2

�1.2

�0.9

�0.6

�0.3

0.0

0.3

0.6

0.9

1.2

�1.00

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

Figure 3.13 Reconstruction of the observable sin(G1) cos(G2) using the EDMD eigenfunctions of the discrete linear
system (3.24). Top left: sin(G1) cos(G2). Top right: Observable reconstructed using original set of EDMD eigenfunc-
tions. Bottom left, bottom right: Observable reconstructed using extended set of eigenfunctions.

3 Fast eigensolvers for Koopman operator approximation

32

1 2 3 4 5 6 7 8 9 10

p

�12

�10

�8

�6

�4

�2

lo
g 1

0
E

G
(�

p
,�̄

p
)

error w.r.t. explicit eigenfunction

1 2 3 4 5 6 7 8 9 10

q

0

2

4

6

8

10

12

14

lo
g 1

0
E

G
(�

q
,�̄

q
)

error w.r.t. explicit eigenfunction

1 2 3 4 5 6 7 8 9 10

p

0.00

0.01

0.02

0.03

0.04

E
T

G
(�̄

p
,�̄

p
)

trajectory error and upper bound constant

1 2 3 4 5 6 7 8 9 10

q

0.000

0.005

0.010

0.015

0.020

0.025

0.030

E
T

G
(�̄

q
,�̄

q
)

trajectory error and upper bound constant

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

C
T

G
(p

,�̄
)1

/p

0.25

0.50

0.75

1.00

1.25

1.50

1.75

C
T

G
(q

,�̄
)1

/q

Figure 3.14 Error analysis for EDMD eigenfunctions of discrete linear system (3.24). Top row: log10 error between
computed and explicit eigenfunctions on grid G (⇢⌧). Bottom row: Trajectory error for computed eigenfunctions on
grid G – ⇢)⌧ (blue) and constant of the upper bound – ⇠)⌧ (red).

3.3 Algorithms for computing extended eigenfunctions using error bounds

33

We can compare the extended eigenfunction with the explicit eigenfunctions. Let q̄? be an extended
eigenfunction and q? be an explicit eigenfunction. Then on a grid G as de�ned in (3.4), the error given by
⇢⌧ is de�ned similarly to the discrete system:

⌧0 = {G 2 ⌧ | |q? | < Y} [{G 2 ⌧ | |q̄? | < Y} (3.43)

2<>34 = mode
✓
q? |⌧/⌧0

q̄? |⌧/⌧0

◆
(3.44)

⇢⌧ (q? , q̄?) =
��q? � 2<>34q̄?��1/?⌧ , (3.45)

where Y is some tolerance.
The trajectory error for the computed eigenpair (_̄? , q̄?) is given by

⇢)⌧ (_̄? , q̄?) :=
��q̄? () �C (·)) � _̄?q? (·)��1/?⌧ . (3.46)

.
We use

� =

�0.9 0.1
0 �0.8

�
. (3.47)

The matrix has left eigenpairs (�0.9, [1,�1])) and (0.8, [0, 1])). The system is sampled with sampling
interval �C . Therefore, the explicit Koopman eigenfunctions of the system are given by

q? (G) =
✓
G1 � G2p

2

◆?
(3.48)

q@ (G) = G@2 , (3.49)

with eigenvalues

_? = (4�0.9�C)? (3.50)
_@ = (4�0.8�C)@ . (3.51)

To approximate the eigenfunctions using DMDwe collect 400 snapshot pairs where the initial conditions
are uniformly randomly distributed between [�2, 2] ⇥ [�2, 2], and sampling interval �C = 0.2

Figure 3.15 shows the results of the DMD approximation. The out-of-sample prediction shows that the
DMD approximation is able to predict trajectories accurately.

We take the grid⌧ with 0 = �1,1 = 1,= = 100,⌘ = 0.01. On grid G, we calculate the �ow approximated
by Euler method using step size ⌘ = 0.001. Then we calculate n⌧ using (3.16) using the true solution,

G�C = 4��CG, (3.52)

and approximated solution using Euler method:

G (0) = G

=
�C

⌘
G (8+1) = G (8) + ⌘�G (8) , 8 = 0, . . . ,#

) �C (G) = G (#) .

We then compute the trajectory error for increasing powers, ? and @ and their upper bound. For DMD, as
 = � , upper bound, L for k � (G)k2 ! where L = 1. Figure 3.16 shows the trajectory error and upper
bound with respect to the euler integration error for extended eigenfunctions q̄? and q̄@ .

Assuming that �ow) �C (G) = 4��CG we can calculate the trajectory error with respect to eigenvector
error by adding a random error vector XE with kXE k = 10�6. Figure 3.17 shows the trajectory error and

3 Fast eigensolvers for Koopman operator approximation

34

the upper bound of the trajectory error due to this error in the eigenvector for extended eigenfunctions
q̄? and q̄@ .

Finally, we try Algorithm 5 described in the last section using the trajectory errors and upper bounds
with respect to integration error to extend eigenfunctions q̄? and q̄@ up to powers ? and @ such that the
trajectory error stays below a desired upper bound n = 0.2. Figure 3.18 shows the results of Algorithm 5
for a desired trajectory error upper bound n = 0.1. As seen in the �gure, the powers ? and @ suggested by
the algorithm are close to the actual powers up to which the eigenfunctions can be extended.

3.3 Algorithms for computing extended eigenfunctions using error bounds

35

�2 �1 0 1 2

x1

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

x
2

Training data used
during fit

�2 �1 0 1 2

x1

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

x
2

DMD model reconstruction
(Identity state dictionary)

0 1 2 3 4 5 6 7

t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

x
1

out-of-sample prediction (x1)

DMD

true system

0 1 2 3 4 5 6 7

t

0.0

0.2

0.4

0.6

0.8

1.0

x
2

out-of-sample prediction (x2)

DMD

true system

Figure 3.15 DMD model for the continuous linear system (3.38). Top left shows the training data used for approx-
imation, top right shows the reconstructed data, bottom shows the comparison between predicted trajectory and
actual trajectory for one initial condition.

3 Fast eigensolvers for Koopman operator approximation

36

1 2 3 4 5 6 7 8 9 10

p

�3.5

�3.0

�2.5

�2.0

�1.5

�1.0

�0.5

0.0

lo
g 1

0

trajectory error: ETG(�̄p, �̄p)

upper bound:
�
(�̄M + L�G)p � (�̄M)p�1/p

1 2 3 4 5 6 7 8 9 10

q

�3.5

�3.0

�2.5

�2.0

�1.5

�1.0

�0.5

0.0

lo
g 1

0

trajectory error: ETG(�̄q, �̄q)

upper bound:
�
(�̄M + L�G)q � (�̄M)q�1/q

Trajectory error and upper bound with respect to integration error �G

Figure 3.16 Integration error analysis for DMD eigenfunctions of continuous linear system (3.38). The trajectory
error for computed eigenfunctions (blue) and upper bound (orange) with respect to the Euler integration error n⌧
for powers ? and @.

1 2 3 4 5 6 7 8 9 10

p

�8

�7

�6

�5

�4

�3

�2

�1

lo
g 1

0

trajectory error: ETG(�̄p, �̄p)

upper bound: CTG(p, �̄)1/p||�w||1/p

1 2 3 4 5 6 7 8 9 10

q

�8

�7

�6

�5

�4

�3

�2

�1

lo
g 1

0

trajectory error: ETG(�̄q, �̄q)

upper bound: CTG(q, �̄)1/q||�w||1/q

Trajectory error and upper bound with respect to eigenvector error ||�w|| = 10�6

Figure 3.17 Eigenvector error analysis for DMD eigenfunctions of continuous linear system (3.38). The trajectory
error for computed eigenfunctions (blue) and upper bound (orange) with respect to the eigenvector error kXF k =
10�6 for powers ? and @.

3.3 Algorithms for computing extended eigenfunctions using error bounds

37

1 2 3 4 5 6 7 8 9 10

p

�8

�6

�4

�2

0

lo
g 1

0

ETG(�̄p, �̄p)
1
L [(�p + (�̄M)p)1/p � �̄M]

�

�G

1 2 3 4 5 6 7 8 9 10

q

�8

�6

�4

�2

0

lo
g 1

0

ETG(�̄q, �̄q)
1
L [(�q + (�̄M)q)1/q � �̄M]

�

�G

Finding powers for extending eigenpairs given � = 0.2 with integration error �G

Figure 3.18 Results of Algorithm 5 applied to the DMD approximation of continuous linear system (3.38) with Euler
integration error n⌧ and desired trajectory error n = 0.1. The value of ? and @ suggested by the algorithm– where
the upper bound for n⌧ (orange) crosses n⌧ (red line) is close to actual value of ? and @ where the trajectory error
(blue) crosses the required n (black).

3 Fast eigensolvers for Koopman operator approximation

38

3.4 An iterative Koopman eigensolver algorithm

Now that we have developed an algorithm for deciding powers up to which extended eigenfunctions can
be computed given a single eigenvector, we develop an iterative algorithm to �nd eigenfunctions and
extend them iteratively. Since this requires an iterative eigensolver algorithm, we develop a de�ation-
based algorithm for general non-Hermitian real matrices.

3.4.1 Deflation based iterative algorithm for general matrices

We start with the familiar power method and use the de�ation technique described in Lemma 1 to �nd all
the eigenvalues and eigenvectors of a matrix. Assuming � 2 í=G= is a non-Hermitian real matrix and it
has a complete set of eigenpairs {(_8 , E8)}=8=1 with _8 2 í then Algorithm 6 computes all the eigenpairs.

Algorithm 6 De�ation based algorithm for real non-Hermitian matrix � with real eigenvalues
8 0.
while 8 < = do

_8 , E8 power iteration(�).
_8 ,F8 power iteration(�)).
F8

F8
F)8 E8

.

� � � _8E8F)8 .
8 8 + 1.

end while

As discussed in Section 2.3.1, the power method does not converge for real matrices with dominant
eigenvalues that are complex conjugate pairs. Therefore, we develop an Arnoldi-based method to deal
with such matrices.
In every iteration, we use an Arnoldi algorithm with modi�ed Gram-Schmidt orthogonalisation and

subspace dimension < = 2 to get a 2x2 Hessenberg matrix � and orthonormal matrix + . We can then
explicitly get the eigenvector corresponding to the largest eigenvalue (_<0G) of � . Let this be ⌘. Then,+⌘
is an eigenvector of �. We then use this +⌘ eigenvector of � to restart the Arnoldi algorithm. To make
the algorithm work for a matrix with real eigenvalues, we run a few steps of power iteration before the
Arnoldi steps. The pseudocode is given in Algorithm 7.
We run a similar algorithm on�) to get the left eigenvector. We use the same algorithm as before, with

the power method replaced by this new algorithm for complex conjugate pair eigenvalues. After we get a
complex eigenpair, we run the de�ation step with (_, E) and (_̄, Ē).
Algorithm 8 describes this de�ation algorithm. It is similar to the de�ation algorithm described in Al-

gorithm 6, except we use Algorithm 7 instead of the power method.

3.4.2 Iterative algorithm for extending Koopman eigenpairs based on integration error

We combine Algorithm 8 with Algorithm 5 to develop an algorithm that extends eigenfunctions based on
the integration error bound. The resulting algorithm is given by Algorithm 9, and q̄8? is the extended ?th
power eigenfunction with eigenvalue _̄8? for the 8th eigenvalue of the Koopman matrix.

3.4 An iterative Koopman eigensolver algorithm

39

Algorithm 7 (power iteration complex) Arnoldi-based power iteration algorithm for real non-Hermitian matrix �
with complex dominant eigenvalues _<0G , _̄<0G and eigenvectors E, Ē , given tolerance and maximum iterations #

G power iteration(�,max iterations = 500).
_> 1.
8 0.
while 8 < # do

+ [:, 0] G .
⌘,+ modi�ed Gram-Schmidt(�,+ , degree = 2).
_1, _2 eigenvalue2D(⌘).
: argmax1,2{|_1 |, |_2 |}.
_<0G _:
F eigvector2D(⌘, _<0G).
E + [: 0 : 2]F .
E E

kE k .
if |_<0G � _> | < tolerance then

break.
else

_> _<0G .
end if
8 8 + 1.

end while

Algorithm 8 De�ation based algorithm for computing left eigenpairs {(_8 ,F8)} of a real non-Hermitian matrix �
with complex eigenvalues
8 0.
while 8 < = do

_8 , E8 power iteration complex(�).
_8 ,F8 power iteration complex(�)).
F8

F8
F)8 E8

.

� � � _8E8F)8 .
if imag(_8) > 10�6 then

E8+1 Ē8 .
F8+1 F̄8 .
_8+1 _̄8 .
F8+1

F8+1
F)8+1.E8+1

� � � _8+1E8+1F)8+1.
8 8 + 1

end if
8 8 + 1

end while

3 Fast eigensolvers for Koopman operator approximation

40

Algorithm 9 (Iterative Koopman eigensolver) Algorithm for computing extending eigenvalues _̄8? and extended
eigenfunctions q̄8? of a continuous system, given integration error n⌧ , desired trajectory error n , the Koopman matrix
 , as the dictionary basis and constant !
8 0.
while 8 < = do

_̄8 , E8 power iteration complex().
_̄8 ,F8 power iteration complex()).
while ? 2 é do

if 1
!
((n? + (_̄8")?)1/? � _̄8") > n⌧ then
break

end if
q̄8? (F)8 k)? .
̄8? = (̄8)? .

end while
F8

F8
F)8 E8

.

� � � _8E8F)8 .
if imag(_8) > 10�6 then

E8+1 Ē8 .
F8+1 F̄8 .
_8+1 _̄8 .
F8+1

F8+1
F)8+1E8+1

.

� � � _8+1E8+1F)8+1.
8 8 + 1.

end if
8 8 + 1.

end while

3.4 An iterative Koopman eigensolver algorithm

41

3.4.3 Example – non-linear system

We apply the algorithm developed in the previous section on a continuous non-linear system.
Consider the continuous non-linear system

§G1 = G1
§G2 = �G2 + G21 .

(3.53)

The system has the explicit solution given by

iC (G) =

G14C

(G2 � G12
3)4�C + G12

3 4
2C

�
. (3.54)

The Koopman eigenfuncions and eigenvalues of the system are given by

q1(G) = G1 (3.55)
q2(G) = G2, (3.56)

with eigenvalues (4�C , 42�C) where �C is the sampling time.
We sample the system using the exact solution with �C = 0.02, collecting 400 snapshot pairs with

uniformly randomly distributed initial conditions between [�2, 2]⇥ [�2, 2]. Then, we perform EDMDwith
%5 dictionary basis to get the Koopmanmatrix . Figure 3.19 shows the result of the EDMD approximation.
The out-of-sample prediction shows that the approximation predicts trajectories accurately. We use the
grid G with 0 = �2,1 � 2,= = 100,⌘ = 0.01. We calculate n⌧ using the exact solution and the RK23 solver
[BS89]. The desired upper bound on trajectory error is set as n = 0.1.

Then we run Algorithm 9 to get the �rst 5 eigenpairs. 3 out of the 5 eigenpairs are powers of the explicit
eigenfunctions and generate more explicit eigenfunctions. Figure shows 3.20 the extended eigenfunctions
calculated using the algorithm and the corresponding exact eigenfunctions that match them.

3.4.4 Example – non-linear system constructed from linear system

Consider the linear continuous system

§G = �G, (3.57)

where � =

�0.9 0.1
0 �0.8

�
.

We transform using the di�eomorphism ~ = ⌘(G) = ;>6(4G + 1) to get the new system

§~ =

1 � 4�~1 0

0 1 � 4�~2
�
�;>6(4~ � 1). (3.58)

Using Proposition 2, the explicit eigenfunctions of this non linear system are then given by (q � ⌘�1) with
eigenvalue _, where q is an eigenfunction of the linear system (3.57) with eigenvalue _.

As the eigenfunctions of the linear system are given by q8 (G) = F)8 G with eigenvalue _8 , (8 = 1, 2) where
F8 is left eigenvector of � with eigenvalue _8 , the eigenfunctions of system (3.58) are given by

q=>=;8=8 (~) = q8 � ⌘�1(~) = F)8 ;>6(4~ � 1) (3.59)

with eigenvalue _8 for 8 = 1, 2.
We sample the linear system using the exact solution with �C = 0.02, collecting 400 snapshot pairs

with initial conditions uniformly randomly distributed between [�2, 2] ⇥ [2, 2]. Then, we transform the
sampled data using the di�eomorphism ⌘. We use this transformed data to perform EDMD with a radial
basis function (RBF) dictionary with 40 RBF Gaussian kernel functions with centers calculated using k-
means clustering of the transformed data.

3 Fast eigensolvers for Koopman operator approximation

42

�2 �1 0 1 2

x1

�2

�1

0

1

2

x
2

training data used during fit

�2 �1 0 1 2

x1

�2

�1

0

1

2

x
2

EDMD model reconstruction
(P5 dictionary)

0 1 2 3 4

t

0

20

40

60

80

100

x
1

out-of-sample prediction (x1)

EDMD

true system

0 1 2 3 4

t

0

500

1000

1500

2000

2500

3000

3500

4000

x
2

out-of-sample prediction (x2)

EDMD

true system

Figure 3.19 EDMD model for the non-linear linear system (3.53). Top left shows the training data used for approx-
imation, top right shows the reconstructed data, bottom shows the comparison between predicted trajectory and
actual trajectory for one initial condition.

3.4 An iterative Koopman eigensolver algorithm

43

�1 0 1
x1

�1

0

1

x
2

(e�1�t)5 = 1.6487, �5
1

�1 0 1
x1

�1

0

1
(�A

1)1 = 1.6487, ((vA
1)T �)1

�1 0 1
x1

�1

0

1

x
2

(e�1�t)10 = 2.7183, �10
1

�1 0 1
x1

�1

0

1
(�A

1)2 = 2.7183, ((vA
1)T �)2

�1 0 1
x1

�1

0

1

x
2

(e�1�t)4 = 1.3771, �4
1

�1 0 1
x1

�1

0

1
(�A

2)1 = 1.3771, ((vA
2)T �)1

�1 0 1
x1

�1

0

1

x
2

(e�1�t)8 = 1.8965, �8
1

�1 0 1
x1

�1

0

1
(�A

2)2 = 1.8965, ((vA
2)T �)2

�1 0 1
x1

�1

0

1

x
2

(e�1�t)3 = 1.1972, �3
1

�1 0 1
x1

�1

0

1
(�A

3)1 = 1.1972, ((vA
3)T �)1

�1 0 1
x1

�1

0

1

x
2

(e�1�t)6 = 1.4333, �6
1

�1 0 1
x1

�1

0

1
(�A

3)2 = 1.4333, ((vA
3)T �)2

�1 0 1
x1

�1

0

1

x
2

(e�1�t)9 = 1.716, �9
1

�1 0 1
x1

�1

0

1
(�A

3)3 = 1.716, ((vA
3)T �)3

�1.0

�0.5

0.0

0.5

1.0

Figure 3.20 Eigenfunction and eigenvalues for the non-linear system (3.53). The �rst and third columns show the
explicit eigenvalues and eigenfunctions. The second and fourth columns show the extended eigenvalues(_�) and
eigenfunctions((E�))) calculated using Algorithm 9 that match the explicit eigenfunctions.

3 Fast eigensolvers for Koopman operator approximation

44

0.75 1.00 1.25 1.50 1.75 2.00

x1

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

x
2

Training data used
during fit

0.75 1.00 1.25 1.50 1.75 2.00

x1

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

x
2

EDMD model reconstruction
(RBF dictionary)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

t

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

x
1

out-of-sample prediction (x1)

EDMD

true system

0.0 0.5 1.0 1.5 2.0 2.5 3.0

t

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

x
2

out-of-sample prediction (x2)

EDMD

true system

Figure 3.21 EDMDmodel for the non-linear system (3.58). Top left shows the training data used for approximation,
top right shows the reconstructed data, bottom shows the comparison between predicted trajectory and actual tra-
jectory for one initial condition.

We take the grid ⌧ with 0 = 1,1 = 2,= = 100,⌘ = 0.01. Some of the explicit eigenfunctions on grid
⌧ are shown in Figure 3.22, and the computed EDMD eigenfunctions are shown in Figure 3.23. Then we
calculate n⌧ by integrating over the grid and using the integration method RK45 with the explicit system
(3.58) [DP80]. The calculation of upper bound, ! for the spectral norm of Jacobian for the RBF functions
is shown in Appendix A.3.1.
Then, we use the Koopman eigensolver algorithm de�ned in Algorithm 9 to extend the eigenfunctions

of the system. The desired trajectory error is set to n = 0.01. We calculate the �rst nine eigenpairs of
the Koopman matrix. We use the algorithm to get up to ? = 3 extended eigenfunctions for the �rst
nine eigenfunctions with trajectory error less than n . Figure 3.24 shows the spectrum and the powers up
to which each eigenpair can be extended. Figure 3.25 shows some of the extended eigenfunctions. The
extended eigenfunctions do not match the explicit eigenfunctions in this case. This is expected as the
EDMD eigenfunctions can di�er from the explicit eigenfunctions, as the transformed non-linear system
can have an in�nite number of independent eigenfunctions.

3.4 An iterative Koopman eigensolver algorithm

45

1.0 1.5 2.0

x1

1.0

1.5

2.0

x
2

�0,2 = 0.98410.0.98222 = 0.9646

1.0 1.5 2.0

x1

1.0

1.5

2.0

x
2

�1,1 = 0.98411.0.98221 = 0.9666

1.0 1.5 2.0

x1

1.0

1.5

2.0

x
2

�0,4 = 0.98410.0.98224 = 0.9305

1.0 1.5 2.0

x1

1.0

1.5

2.0

x
2

�2,0 = 0.98412.0.98220 = 0.9685

1.0 1.5 2.0

x1

1.0

1.5

2.0
x

2

�1,3 = 0.98411.0.98223 = 0.9324

1.0 1.5 2.0

x1

1.0

1.5

2.0

x
2

�2,2 = 0.98412.0.98222 = 0.9343

1.0 1.5 2.0

x1

1.0

1.5

2.0

x
2

�3,1 = 0.98413.0.98221 = 0.9361

1.0 1.5 2.0

x1

1.0

1.5

2.0

x
2

�4,0 = 0.98414.0.98220 = 0.9380

1.0 1.5 2.0

x1

1.0

1.5

2.0

x
2

�5,0 = 0.98415.0.98220 = 0.9231

1.0 1.5 2.0

x1

1.0

1.5

2.0

x
2

�4,1 = 0.98414.0.98221 = 0.9213

1.0 1.5 2.0

x1

1.0

1.5

2.0

x
2

�3,2 = 0.98413.0.98222 = 0.9194

1.0 1.5 2.0

x1

1.0

1.5

2.0

x
2

�2,3 = 0.98412.0.98223 = 0.9176

1.0 1.5 2.0

x1

1.0

1.5

2.0

x
2

�3,0 = 0.98413.0.98220 = 0.9531

1.0 1.5 2.0

x1

1.0

1.5

2.0

x
2

�1,4 = 0.98411.0.98224 = 0.9158

1.0 1.5 2.0

x1

1.0

1.5

2.0

x
2

�2,1 = 0.98412.0.98221 = 0.9512

1.0 1.5 2.0

x1

1.0

1.5

2.0

x
2

�0,5 = 0.98410.0.98225 = 0.9139

1.0 1.5 2.0

x1

1.0

1.5

2.0

x
2

�1,2 = 0.98411.0.98222 = 0.9493

1.0 1.5 2.0

x1

1.0

1.5

2.0

x
2

�0,3 = 0.98410.0.98223 = 0.9474

1.0 1.5 2.0

x1

1.0

1.5

2.0

x
2

�1,0 = 0.98411.0.98220 = 0.9841

1.0 1.5 2.0

x1

1.0

1.5

2.0

x
2

�0,1 = 0.98410.0.98221 = 0.9822

�1.0

�0.5

0.0

0.5

1.0

Figure 3.22 Explicit eigenfunctions for the non-linear system (3.58) computed using q � ⌘�1.

3 Fast eigensolvers for Koopman operator approximation

46

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

� = 0.99993 + 0.00000j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.98198 + 0.00032j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.98198 � 0.00032j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.97169 + 0.00000j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.96132 + 0.00000j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

� = 0.95909 + 0.01175j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.95909 � 0.01175j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.95606 + 0.03288j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.95606 � 0.03288j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.94369 + 0.00375j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

� = 0.94369 � 0.00375j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.94083 + 0.02258j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.94083 � 0.02258j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.93423 + 0.05314j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.93423 � 0.05314j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

� = 0.92944 + 0.02835j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.92944 � 0.02835j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.92899 + 0.07828j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.92899 � 0.07828j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.92532 + 0.03684j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

� = 0.92532 � 0.03684j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.92396 + 0.00000j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.91014 + 0.07986j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.91014 � 0.07986j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.90992 + 0.04540j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

� = 0.90992 � 0.04540j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.90005 + 0.09108j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.90005 � 0.09108j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.89664 + 0.06120j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.89664 � 0.06120j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

� = 0.89495 + 0.12371j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.89495 � 0.12371j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.89173 + 0.10864j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.89173 � 0.10864j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.88893 + 0.09273j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

� = 0.88893 � 0.09273j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.88685 + 0.00460j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.88685 � 0.00460j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.88525 + 0.14987j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = 0.88525 � 0.14987j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

� = 0.00000 + 0.00000j

1.0 1.5 2.0
x1

1.0

1.5

2.0

� = �0.00000 + 0.00000j

�1.0

�0.5

0.0

0.5

1.0

Figure 3.23 Eigenfunctions for the non-linear system (3.58) approximated using EDMD.

3.4 An iterative Koopman eigensolver algorithm

47

0.92 0.94 0.96 0.98 1.00 1.02 1.04

Re(�)

�0.08

�0.06

�0.04

�0.02

0.00

0.02

0.04

0.06

0.08

Im
(�

)

extendable upto power

3

Figure 3.24 Spectrum computed using Algorithm 9 for the non-linear system (3.58) and powers up to which the
eigenfunctions can be extended for �rst 9 eigenvalues.

3 Fast eigensolvers for Koopman operator approximation

48

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�1
1 = 0.99993 + 0.00000j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�2
1 = 0.99987 + 0.00000j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�3
1 = 0.99980 + 0.00000j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�1
2 = 0.98198 + 0.00032j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�2
2 = 0.96429 + 0.00062j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�3
2 = 0.94691 + 0.00092j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�1
3 = 0.98198 � 0.00032j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�2
3 = 0.96429 � 0.00062j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�3
3 = 0.94691 � 0.00092j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�1
4 = 0.97169 � 0.00000j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�2
4 = 0.94418 � 0.00000j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�3
4 = 0.91745 � 0.00000j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�1
5 = 0.96132 � 0.00000j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�2
5 = 0.92413 � 0.00000j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�3
5 = 0.88839 � 0.00000j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�1
6 = 0.95909 + 0.01175j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�2
6 = 0.91971 + 0.02253j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�3
6 = 0.88181 + 0.03241j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�1
7 = 0.95909 � 0.01175j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�2
7 = 0.91971 � 0.02253j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�3
7 = 0.88181 � 0.03241j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�1
8 = 0.95606 + 0.03288j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�2
8 = 0.91297 + 0.06287j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�3
8 = 0.87079 + 0.09013j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�1
9 = 0.95606 � 0.03288j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�2
9 = 0.91297 � 0.06287j

1.0 1.5 2.0
x1

1.0

1.5

2.0

x
2

�3
9 = 0.87079 � 0.09013j

�1.0

�0.5

0.0

0.5

1.0

Figure 3.25 Extended eigenfunctions for the �rst 9 eigenvalues computed using Algorithm 9 for the non-linear
system (3.58).

49

4 Conclusion

This thesis develops methods and analysis for extending eigenfunction approximations of the Koopman
operator using the multiplicative property. We presented a measure of error for extended eigenfunctions -
trajectory error and derived error bounds for it based on eigenvector error and integration error. We then
describe an algorithm for extending eigenfunctions based on these error bounds and apply it to discrete
and continuous linear systems. We see that as the power of eigenfunctions increases, the trajectory error
also increases, and the upper bound stays close to the trajectory error. Moreover, the extended eigenfunc-
tions of the linear system match the explicitly computed eigenfunctions. Additionally, we demonstrated
that observables can be reconstructed more accurately using the extended set of eigenfunctions. We also
showed that the powers suggested by the algorithm are close to the actual powers up to which the eigen-
function can be extended for a desired error bound. To overcome the limitations of the power method on
general non-Hermitian real matrices, we developed an iterative algorithm based on the power method and
Arnoldi iteration for computing eigenvalues and eigenvectors. This algorithm is then combined with the
upper bound algorithm suggested previously to develop an iterative eigensolver for the Koopman approx-
imation that can be used to extend eigenfunctions. We demonstrated the applicability of this algorithm on
non-linear dynamical systems and showed that the algorithm can generate extended eigenfunctions.

We list some limitations and suggest directions for future work.

• The de�ation technique used in the Algorithm 9 can be numerically unstable. De�ation techniques,
in general, are not recommended for computing more than a few eigenvalues as they accumulate
errors over every step and can cause problems if the current eigenvalue is poorly conditioned.

• The Arnoldi-based power method in Algorithm 7 can be analysed for its e�ciency and stability. The
power method can also su�er from convergence issues if the eigenvalues have similar magnitude.
The inverse iteration can be used to remedy this, although inverting a large matrix is expensive.

• The error analysis of trajectory error for extended eigenfunctions in Section 3.2 was performed only
for powers of eigenfunctions of the form q? . Similar error bounds can also be derived for extended
eigenfunctions of the form q?1q

@
2 .

• The error analysis also ignores the error in eigenvalue approximation and only considers the error
in eigenvectors. Eigenvalue error can also be taken into account to derive error bounds.

• The error analysis was performed independently for the eigenvector error and integration error.
However, for continuous systems, both errors are present simultaneously.

• The eigensolver algorithm presented in Algorithm 9 can also be improved further by discovering
new eigenvectors corresponding to an extended eigenfunction as described in Section 3.1.3, and
using these vectors to de�ate the matrix thereby leading to a smaller matrix in every iteration.

• The eigensolver algorithm presented in Algorithm 9 can also be used to in�ate the Koopman matrix
using new eigenvectors corresponding to extended eigenfunctions, thereby leading to a largermatrix
that represents a more informative �nite-dimensional approximation of the operator.

• The predictive power of the eigenfunctions generated by Algorithm 9 for the non-linear system in
Section 3.4.4 can be evaluated by computing trajectories and comparing them to explicit solutions.

• The applicability of the eigensolver algorithm can be tested on high-dimensional non-linear dynam-
ical systems.

4 Conclusion

50

This work demonstrated that the set of approximated eigenfunctions can be expanded by exploiting the
multiplicative property of the operator. Combined with iterative algorithms for eigenvalue computation
based on the power method and de�ation, this method can generate many eigenfunctions and lead to ef-
�cient eigensolvers for systems with a high-dimensional Koopman matrix. To our knowledge, no other
work exists that explicitly uses the spectral properties of the Koopman operator to design e�cient eigen-
solver algorithms. As the data-driven analysis of dynamical systems gains favour, further developments
of eigensolver algorithms for the Koopman operator are expected.

51

Bibliography

[BS89] P. Bogacki and L. F. Shampine. “A 3(2) pair of Runge - Kutta formulas”. In: Applied Mathe-
matics Letters 2 (1989), pp. 321–325.

[Bol21] E. M. Bollt. “Geometric considerations of a good dictionary for Koopman analysis of dynam-
ical systems: Cardinality, “primary eigenfunction,” and e�cient representation”. In: Commu-
nications in Nonlinear Science and Numerical Simulation 100 (2021), p. 105833. ����: 1007-5704.

[BM12] M. Budišić and I. Mezić. “Geometry of the ergodic quotient reveals coherent structures in
�ows”. In: Physica D: Nonlinear Phenomena 241.15 (2012), pp. 1255–1269. ����: 0167-2789.

[BMM12] M. Budišić, R. Mohr, and I. Mezić. “Applied Koopmanism”. In: Chaos: An Interdisciplinary
Journal of Nonlinear Science 22.4 (Dec. 2012), p. 047510. ����: 1054-1500. eprint: https://
pubs.aip.org/aip/cha/article-pdf/doi/1�.1�63/1.4772195/13471578/

�4751�_1_online.pdf.

[Col23] M. J. Colbrook. “The mpEDMD Algorithm for Data-Driven Computations of Measure Pre-
serving Dynamical Systems”. In: SIAM Journal on Numerical Analysis 61.3 (2023), pp. 1585–
1608. eprint: https://doi.org/1�.1137/22M15214�7.

[DTK20] F. Dietrich, T. N. Thiem, and I. G. Kevrekidis. “On the Koopman Operator of Algorithms”.
In: SIAM Journal on Applied Dynamical Systems 19.2 (2020), pp. 860–885. eprint: https:
//doi.org/1�.1137/19M1277�59.

[DP80] J. Dormand and P. Prince. “A family of embedded Runge-Kutta formulae”. In: Journal of Com-
putational and Applied Mathematics 6.1 (1980), pp. 19–26. ����: 0377-0427.

[Eis+10] B. Eisenhower et al. “Decomposing building system data for model validation and analysis
using the Koopman operator”. In: SimBuild 2010 (Jan. 2010).

[Gle94] P. Glendinning. Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear
Di�erential Equations. Cambridge Texts inAppliedMathematics. Cambridge University Press,
1994.

[Har+20] C. R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825 (Sept. 2020),
pp. 357–362.

[KKB17] E. Kaiser, J. N. Kutz, and S. L. Brunton. “Data-driven discovery of Koopman eigenfunctions
for control”. In: Machine Learning: Science and Technology 2 (2017).

[Koo31] B. O. Koopman. “Hamiltonian Systems and Transformations in Hilbert Space”. In: Proceedings
of the National Academy of Sciences of the United States of America 17.5 (1931), pp. 315–318.
����: 00278424.

[Leh+20] D. Lehmberg et al. “datafold: data-driven models for point clouds and time series on mani-
folds”. In: Journal of Open Source Software 5.51 (2020), p. 2283.

[LKB18] B. Lusch, J. N. Kutz, and S. L. Brunton. “Deep learning for universal linear embeddings of
nonlinear dynamics”. In: Nature Communications 9.1 (2018), p. 4950.

[Man+20] I. Manojlovic et al. “Applications of Koopman Mode Analysis to Neural Networks”. In: CoRR
abs/2006.11765 (2020).

[MM13] A. Mauroy and I. Mezic. “A spectral operator-theoretic framework for global stability”. In:
Dec. 2013.

https://doi.org/10.1137/22M1521407
https://doi.org/10.1137/19M1277059
https://doi.org/10.1137/19M1277059

Bibliography

52

[Mez13] I. Mezić. “Analysis of Fluid Flows via Spectral Properties of the Koopman Operator”. In: An-
nual Review of Fluid Mechanics 45.1 (2013), pp. 357–378. eprint: https://doi.org/1�.
1146/annurev-fluid-�11212-14�652.

[Neu32] J. v. Neumann. “Zur Operatorenmethode In Der Klassischen Mechanik”. In: Annals of Math-
ematics 33.3 (1932), pp. 587–642. ����: 0003486X.

[Row] T. Rowland. Bounded Operator. A Wolfram Web Resource, created by Eric W. Weisstein. ���:
https://mathworld.wolfram.com/BoundedOperator.html.

[ROW+09] C. W. ROWLEY et al. “Spectral analysis of nonlinear �ows”. In: Journal of Fluid Mechanics
641 (2009), 115–127.

[Saa11] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Society for Industrial and Ap-
plied Mathematics, 2011. eprint: https://epubs.siam.org/doi/pdf/1�.1137/1.
978161197�739.

[SCH10] P. J. SCHMID. “Dynamic mode decomposition of numerical and experimental data”. In: Jour-
nal of Fluid Mechanics 656 (2010), 5–28.

[TB22] L. N. Trefethen and D. Bau. Numerical Linear Algebra, Twenty-�fth Anniversary Edition.
Philadelphia, PA: Society for Industrial and Applied Mathematics, 2022. eprint: https :
//epubs.siam.org/doi/pdf/1�.1137/1.9781611977165.

[Tu+14] J. H. Tu et al. “On dynamic mode decomposition: Theory and applications”. In: Journal of
Computational Dynamics 1.2 (2014), pp. 391–421. ����: 2158-2491.

[Vir+20] P. Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scienti�c Computing in Python”.
In: Nature Methods 17 (2020), pp. 261–272.

[WKR15] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley. “A Data–Driven Approximation of the
Koopman Operator: Extending Dynamic Mode Decomposition”. In: Journal of Nonlinear Sci-
ence 25.6 (2015), pp. 1307–1346.

https://doi.org/10.1146/annurev-fluid-011212-140652
https://doi.org/10.1146/annurev-fluid-011212-140652
https://mathworld.wolfram.com/BoundedOperator.html
https://epubs.siam.org/doi/pdf/10.1137/1.9781611970739
https://epubs.siam.org/doi/pdf/10.1137/1.9781611970739
https://epubs.siam.org/doi/pdf/10.1137/1.9781611977165
https://epubs.siam.org/doi/pdf/10.1137/1.9781611977165

53

A Appendix

A.1 Some code listings

The Python code for the analysis and algorithm is available in the repository – https://gitlab.lrz
.de/���������14AE�4B/koopman-eigensolvers. The code uses the package DataFold to perform
the DMD and EDMD approximation [Leh+20].

The least squares problem is solved using the method numpy.linalg.lstsq in the Numpy package
[Har+20]. The di�erential equation integration is done using themethod scipy.integrate.solve_ivp
in the Scipy package [Vir+20]. The code for the �gures is in the following Jupyter notebooks:

1. extend_linear_system_eigenfunctions_DMD.ipynb: Analysis for discrete linear system
(3.24) using DMD.

2. extend_linear_system_eigenfunctions.ipynb: Analysis for discrete linear system (3.24)
using EDMD .

3. linear_system_continuous.ipynb: Analysis for continuous linear system (3.38).

4. new_nonlln.ipynb: Analysis for non-linear system (3.53).

5. non_linear_from_linear_system.ipynb: Analysis for non-linear system (3.58).

A.2 Mathematical foundations

A.2.1 Relation between vector field and Koopman generator

Proof of equation (2.4):
[AK 5] (G) = h) ,r5 (G)i, 85 2 F .

Using the de�niton of the Koopman generator and Koopman operator, and the �ow) C for the system
§G =) (G), we get

Proof.

[AK 5] (G) = lim
C!0

KC 5 � 5
C

=
3

3C
KC 5 (G) |C=0

=
3

3C
5 () C (G)) |C=0=

⇡’
8=0

m

mG8
5 () C (G)) 3

3C
G8 |C=0

= hr5 () 0(G)), 3
3C
Gi

= hr5 (G),) i.

https://gitlab.lrz.de/00000000014AE04B/koopman-eigensolvers
https://gitlab.lrz.de/00000000014AE04B/koopman-eigensolvers

A Appendix

54

A.2.2 Finding eigenfunctions using right eigenvectors

The EDMD eigenfunction approximations using the right eigenvectors of Koppman matrix are given by
equation (2.27): 2666664

q1(-))
...

q3 (-))

3777775
= argmin

⌫2í3⇥A
k+⌫ � (-)k22 = + † (-) .

Proof. Using the relation + = +⇤, and (2.23) we get

2666664

(Kq1(-)))
...

(Kq3 (-)))

3777775
= + † (-) ⇡ + † (-) = ⇤+ † (-) =

2666664

(_1q1(-)))
...

(_3q3 (-)))

3777775
.

where + =
⇥
E1 . . . E3

⇤
and ⇤ =

2666664

_1
. . .

_3

3777775
.

A.3 Fast eigensolvers for Koopman operator approximation

A.3.1 Upper bound calculation for spectral norm of Jacobian for RBF functions with

Gaussian kernel

We consider a two dimensional domain" 2 í2. The RBF function with Gaussian kernel centered at 2 2 í2

is given by
k2 (G) = 4

�1
2n kG�2 k

2
. (A.1)

Therefore the Jacobian matrix of the RBF dictionary basis with Gaussian kernel at a point G 2 " is given
by

� (G) =
�1
n

26666664

4
�1
2n kG�21k2 (G11 � 211) 4

�1
2n kG�21k2 (G21 � 212)

...
...

4
�1
2n kG�2" k2 (G11 � 2"1) 4

�1
2n kG�21k2 (G21 � 2"2)

37777775
. (A.2)

Now to calculate an upper bound for spectral norm of the Jacbobian,
��� (G)��2, we can calculate the maxi-

mum singular value and use it to bound the spectral norm:

<0G (G) = max{ : � (G)E = _(G)E}
! = max

G2⌧

p
_<0G (G) � k � (G)k2 .

55

List of Figures

3.1 DMD model for the discrete linear system (3.24). Top left shows the training data used
for approximation, top right shows the reconstructed data, bottom shows the comparison
between predicted trajectory and actual trajectory for one initial condition. 22

3.2 Comparison of explicit eigenfunctions with computed eigenfunctions approximated using
DMD eigenvectors for the discrete linear system (3.24). First and second rows show com-
puted eigenfunction contours for powers 1 ? 10, and third and fourth rows show
explicit eigenfunction contours for powers 1 ? 10. The eigenfunctions have been
normalized such that kq k1 1. 23

3.3 Comparison of explicit eigenfunctions with computed eigenfunctions approximated using
DMD eigenvectors for the discrete linear system (3.24). First and second rows show com-
puted eigenfunction contours for powers 1 @ 10, and third and fourth rows show
explicit eigenfunction contours for powers 1 @ 10. The eigenfunctions have been
normalized such that kq k1 1. 24

3.4 Residual for problem (3.8) for di�erent powers of p and q of DMD eigenfunctions of the
discrete linear system (3.24). The eigen equation norm checks if the computed vector in
(3.8) is a left eigenvector of the Koopman matrix. 24

3.5 Reconstruction of the observable sin(G1) cos(G2) using the DMD eigenfunctions of the dis-
crete linear system (3.24). Top left: sin(G1) cos(G2). Top right: Observable reconstructed
using original set of DMD eigenfunctions. Bottom left, bottom right: Observable recon-
structed using extended set of eigenfunctions. 25

3.6 Error analysis for DMD eigenfunctions of discrete linear system (3.24). Top row: log10 error
between computed and explicit eigenfunctions on grid G (⇢⌧). Bottom row: Trajectory
error for computed eigenfunctions on grid G – ⇢)⌧ (blue) and constant of the upper bound
– ⇠)⌧ (red). 26

3.7 Trajectory error and upper bound calculation for DMD eigenfunctions of discrete linear
system (3.24) using kXF k = 10�6 error in the eigenvectors. 26

3.8 Results of Algorithm 4 applied to the DMD approximation of discrete linear system (3.24)
with eigenvector error kXF k = 10�7 and desired trajectory error n = 0.1. The value of ?
and @ suggested by the algorithm– where the upper bound for kXF k (orange) crosses kXF k
(red line) is close to actual value of ? and @ where the trajectory error (blue) crosses the
required n (black). 27

3.9 EDMD model for the discrete linear system (3.24). Top left shows the training data used
for approximation, top right shows the reconstructed data, bottom shows the comparison
between predicted trajectory and actual trajectory for one initial condition. 28

3.10 Comparison of explicit eigenfunctions with computed eigenfunctions approximated using
EDMD eigenvectors for the discrete linear system (3.24). First and second rows show com-
puted eigenfunction contours for powers 1 ? 10, and third and fourth rows show
explicit eigenfunction contours for powers 1 ? 10. The eigenfunctions have been
normalized such that kq k1 1. 29

3.11 Comparison of explicit eigenfunctions with computed eigenfunctions approximated using
EDMD eigenvectors for the discrete linear system (3.24). First and second rows show com-
puted eigenfunction contours for powers 1 @ 10, and third and fourth rows show
explicit eigenfunction contours for powers 1 @ 10.. The eigenfunctions have been
normalized such that kq k1 1. 30

List of Figures

56

3.12 Residual for problem (3.8) for di�erent powers of p and q of EDMD eigenfunctions of the
discrete linear system (3.24). The eigen equation norm checks if the computed vector in
(3.8) is a left eigenvector of the Koopman matrix. 30

3.13 Reconstruction of the observable sin(G1) cos(G2) using the EDMD eigenfunctions of the
discrete linear system (3.24). Top left: sin(G1) cos(G2). Top right: Observable reconstructed
using original set of EDMD eigenfunctions. Bottom left, bottom right: Observable recon-
structed using extended set of eigenfunctions. 31

3.14 Error analysis for EDMD eigenfunctions of discrete linear system (3.24). Top row: log10
error between computed and explicit eigenfunctions on grid G (⇢⌧). Bottom row: Trajec-
tory error for computed eigenfunctions on grid G – ⇢)⌧ (blue) and constant of the upper
bound – ⇠)⌧ (red). 32

3.15 DMD model for the continuous linear system (3.38). Top left shows the training data used
for approximation, top right shows the reconstructed data, bottom shows the comparison
between predicted trajectory and actual trajectory for one initial condition. 35

3.16 Integration error analysis for DMD eigenfunctions of continuous linear system (3.38). The
trajectory error for computed eigenfunctions (blue) and upper bound (orange) with respect
to the Euler integration error n⌧ for powers ? and @. 36

3.17 Eigenvector error analysis for DMD eigenfunctions of continuous linear system (3.38). The
trajectory error for computed eigenfunctions (blue) and upper bound (orange) with respect
to the eigenvector error kXF k = 10�6 for powers ? and @. 36

3.18 Results of Algorithm 5 applied to the DMD approximation of continuous linear system
(3.38) with Euler integration error n⌧ and desired trajectory error n = 0.1. The value of
? and @ suggested by the algorithm– where the upper bound for n⌧ (orange) crosses n⌧
(red line) is close to actual value of ? and @ where the trajectory error (blue) crosses the
required n (black). 37

3.19 EDMDmodel for the non-linear linear system (3.53). Top left shows the training data used
for approximation, top right shows the reconstructed data, bottom shows the comparison
between predicted trajectory and actual trajectory for one initial condition. 42

3.20 Eigenfunction and eigenvalues for the non-linear system (3.53). The �rst and third columns
show the explicit eigenvalues and eigenfunctions. The second and fourth columns show
the extended eigenvalues(_�) and eigenfunctions((E�))) calculated using Algorithm 9
that match the explicit eigenfunctions. 43

3.21 EDMD model for the non-linear system (3.58). Top left shows the training data used for
approximation, top right shows the reconstructed data, bottom shows the comparison be-
tween predicted trajectory and actual trajectory for one initial condition. 44

3.22 Explicit eigenfunctions for the non-linear system (3.58) computed using q � ⌘�1. 45
3.23 Eigenfunctions for the non-linear system (3.58) approximated using EDMD. 46
3.24 Spectrum computed using Algorithm 9 for the non-linear system (3.58) and powers up to

which the eigenfunctions can be extended for �rst 9 eigenvalues. 47
3.25 Extended eigenfunctions for the �rst 9 eigenvalues computed using Algorithm 9 for the

non-linear system (3.58). 48

57

List of Algorithms

1 (Power method) Given real matrix � 2 í=⇥= , max iterations # and tolerance tol, compute
the dominant eigenpair of � . 11

2 (QR algorithm) Given real matrix � 2 í=⇥= and iterations<, compute approximate Schur
form . 12

3 (Arnoldi iteration) Given real matrix� 2 í=⇥= and Krylov subspace dimension<, compute
Hessenberg matrix � and orthonormal matrix + . 13

4 Computing extended eigenpairs for discrete system. Given kXF k, left eigenpair (_̄,F2) of
the Koopman matrix , as the dictionary basis and desired trajectory error bound n . . . 19

5 Computing extended eigenpairs for continuous system. Given n⌧ , left eigenpair (_̄,F2) of
the Koopman matrix andk as the dictionary basis and desired trajectory error bound n . 20

6 De�ation based algorithm for real non-Hermitian matrix � with real eigenvalues 38
7 (power iteration complex) Arnoldi-based power iteration algorithm for real non-Hermitian

matrix � with complex dominant eigenvalues _<0G , _̄<0G and eigenvectors E, Ē , given tol-
erance and maximum iterations # . 39

8 De�ation based algorithm for computing left eigenpairs {(_8 ,F8)} of a real non-Hermitian
matrix � with complex eigenvalues . 39

9 (Iterative Koopman eigensolver) Algorithm for computing extending eigenvalues _̄8? and
extended eigenfunctions q̄8? of a continuous system, given integration error n⌧ , desired
trajectory error n , the Koopman matrix , as the dictionary basis and constant ! 40

	1 Introduction
	2 Mathematical Foundations
	2.1 Koopman operator theory
	2.1.1 The Koopman operator
	2.1.2 Spectral properties of the Koopman operator

	2.2 Numerical algorithms for Koopman operator approximation
	2.2.1 Dynamic mode decomposition (DMD)
	2.2.2 Extended dynamic mode decomposition (EDMD)

	2.3 General eigensolvers
	2.3.1 Power method
	2.3.2 QR algorithm
	2.3.3 Arnoldi method
	2.3.4 Deflation methods

	3 Fast eigensolvers for Koopman operator approximation
	3.1 Extending eigenfunctions and trajectory error
	3.1.1 Extending eigenfunctions
	3.1.2 Trajectory error
	3.1.3 Finding a vector corresponding to an extended eigenfunction
	3.1.4 Reconstructing observables using a set of eigenfunctions

	3.2 Error anlaysis for trajectory error
	3.2.1 Trajectory error bound with respect to eigenvector error
	3.2.2 Trajectory error bound with respect to integration error

	3.3 Algorithms for computing extended eigenfunctions using error bounds
	3.3.1 Example – discrete linear system
	3.3.2 Example – continuous linear system

	3.4 An iterative Koopman eigensolver algorithm
	3.4.1 Deflation based iterative algorithm for general matrices
	3.4.2 Iterative algorithm for extending Koopman eigenpairs based on integration error
	3.4.3 Example – non-linear system
	3.4.4 Example – non-linear system constructed from linear system

	4 Conclusion
	Bibliography
	A Appendix
	A.1 Some code listings
	A.2 Mathematical foundations
	A.2.1 Relation between vector field and Koopman generator
	A.2.2 Finding eigenfunctions using right eigenvectors

	A.3 Fast eigensolvers for Koopman operator approximation
	A.3.1 Upper bound calculation for spectral norm of Jacobian for RBF functions with Gaussian kernel

