
1

Towards a copilot in BIM authoring tool using a large language model-

based agent for intelligent human-machine interaction

Changyu Du, Stavros Nousias, André Borrmann

Technical University of Munich, Germany

changyu.du@tum.de

Abstract. Facing increasingly complex BIM authoring software and the accompanying expensive

learning costs, designers often seek to interact with the software in a more intelligent and lightweight

manner. They aim to automate modeling workflows, avoiding obstacles and difficulties caused by

software usage, thereby focusing on the design process itself. To address this issue, we proposed an

LLM-based autonomous agent framework that can function as a copilot in the BIM authoring tool,

answering software usage questions, understanding the user’s design intentions from natural

language, and autonomously executing modeling tasks by invoking the appropriate tools. In a case

study based on the BIM authoring software Vectorworks, we implemented a software prototype to

integrate the proposed framework seamlessly into the BIM authoring scenario. We evaluated the

planning and reasoning capabilities of different LLMs within this framework when faced with

complex instructions. Our work demonstrates the significant potential of LLM-based agents in

design automation and intelligent interaction.

1. Introduction

Modern BIM authoring software has become increasingly complex and heavy due to its ability

to cover design requirements in various disciplines. This complexity requires designers to

undergo extensive training and gain experience to master and understand software operations,

enabling them to translate their design intentions into a stream of commands within the

software. This significantly raises the bar for using the software, creating obstacles in adopting

BIM-based model design.

An autonomous agent is a system that functions within a certain environment. It senses the

environment around it and aims to accomplish tasks through self-directed planning and actions

(Franklin and Graesser, 1997). Such agent systems are often found in reinforcement learning

scenarios, where the agent acts according to simple heuristic policy functions and learns in

isolated and restricted environments, which makes it often difficult for the agent to replicate

human-level decision-making in open environments (Wang et al., 2024). Recently, due to the

remarkable natural language understanding and almost human-like intelligence demonstrated

by Large Language Models (LLMs), increasing numbers of research in both industry and

academia have focused on LLM-based autonomous agents. The core idea is to equip LLMs

with tools that enable interaction with the external world, allowing them to behave, plan and

complete tasks like humans. Microsoft 365 Copilot1 works within Microsoft Office apps like

Word, Excel and Outlook, assisting in tasks such as drafting documents, summarizing emails

and plotting tables by leveraging LLMs and data context. GitHub Copilot2 assists programmers

by automatically completing comments and writing code. Through a chat interface embedded

in the IDE, developers can interact with it to analyze and explain the purpose of code blocks,

generate unit tests, and even receive suggestions for fixing errors. Such application of LLM-

based agents in various fields has significantly improved user efficiency, sparking our interest

in researching their use as design assistants in BIM authoring scenarios.

1 https://blogs.microsoft.com/blog/2023/03/16/introducing-microsoft-365-copilot-your-copilot-for-work/
2 https://github.blog/2023-03-22-github-copilot-x-the-ai-powered-developer-experience/

mailto:changyu.du@tum.dem
https://blogs.microsoft.com/blog/2023/03/16/introducing-microsoft-365-copilot-your-copilot-for-work/
https://github.blog/2023-03-22-github-copilot-x-the-ai-powered-developer-experience/

2

To liberate designers from the additional effort of translating design ideas into software

commands and make the interaction with BIM design software more intelligent, we propose an

autonomous agent framework based on LLMs. The agent can infer user complex intents from

natural language and autonomously execute appropriate workflows in BIM design software by

interacting with the underlying APIs, as well as answer software usage questions by accessing

external knowledge bases. In a case study, we demonstrate the seamless integration of the

proposed agent into the BIM authoring software Vectorworks, and conduct detailed

experiments to comprehensively evaluate the performance of different LLMs under this

framework for various tasks. Our research proposes a new way of interacting with design

software and lays the groundwork for implementing intelligent copilots in BIM authoring tools.

2. Related works

Recent advancements in large language models (LLMs) have shown remarkable potential in

mimicking human intelligence. This success is primarily due to extensive training datasets and

a large number of model parameters. There is increasing research in using LLMs as the main

component in autonomous agents, aiming to achieve human-like decision-making. Researchers

are focusing on integrating human-like capabilities such as memory and planning into LLMs,

enabling them to perform a range of tasks efficiently (Wang et al., 2024). HuggingGPT (Shen

et al., 2023) proposed a framework that leverages LLMs to connect various AI models in

machine learning communities to solve AI tasks. 3D-GPT (Sun et al., 2023) is a framework

that leverages LLMs for 3D modeling based on instructions, employing multiple agents to

process and execute tasks collaboratively. Their work enhances initial scene descriptions into

detailed forms and uses code generation to interface with 3D software like Blender, facilitating

asset creation. Mehta et al. introduced an interactive framework that enables human architects

and agents to collaboratively construct structures in a 3D simulation environment similar to

Minecraft (Mehta et al., 2024). The interactive agents can comprehend natural language

instructions, place blocks, seek clarifications, and incorporate human feedback.

A recent study (Jang et al., 2023) introduced using an LLM-based design assistant to detail the

exterior walls in Revit automatically. Their work builds upon their previous research (Jang and

Lee, 2022), which essentially involves converting BIM models into a textual representation in

XML/JSON format, then using LLMs to modify architectural details within the structured text,

and finally converting the modified text back into BIM models. In their latest study, an

interactive Revit plugin was developed to leverage LLMs and prompt engineering to extract

relevant information from dialogues for subsequent structured text processing. Experiments

were designed to analyze whether the generated wall details meet the designers’ requirements

and thermal engineering standards. In contrast, the method framework we propose is applicable

to more general scenarios and can be extended to a broader range of use cases.

3. Methodology

Our work was inspired by the HuggingFace Transformer Agent3. The main idea is to utilize

prompt engineering techniques to enable state-of-the-art LLMs such as GPT-4 (OpenAI, 2023)

and Mixtral-8×7B (Jiang et al., 2024) with strong in-context learning capabilities to generate

Python code that can interact with BIM authoring software. Our proposed method does not

require retraining or fine-tuning the LLM, thus saving on expensive computational costs.

3 https://huggingface.co/docs/transformers/transformers_agents

https://huggingface.co/docs/transformers/transformers_agents

3

The overall pipeline with a sample input is shown in Figure 1. The input instruction can be in

text or voice form. Incorporating the speech-to-text model Whisper (Radford et al., 2023) into

our workflow, the voice instruction is automatically converted into text for input into the

subsequent prompt template. The prompt template is designed to enable the LLM agent to

invoke suitable predefined tool functions in the generated Python code to complete tasks

specified by humans. In the predefined tool set, we provided various tool functions (create a

wall, move, delete, etc.) and textual descriptions of their functionalities. These tools

encapsulate the underlying APIs of BIM software and cover different interaction types,

complexities, and capabilities. Our framework does not restrict the choice of LLMs;

theoretically, any LLMs capable of generating Python code can be supported. Based on the

completed prompt template, the LLM agent will provide reasoning and write the appropriate

code, which is then evaluated and executed by a custom Python interpreter with syntax checking.

Finally, the returned result is displayed in the BIM software. We also implemented a memory

module to store past chat histories, code execution results, and defined variables. This allows

the agent to have comprehensive contextual information and feedback from the environment

during sessions, enabling it to refine and improve its responses in conversations with humans.

Figure 1 The proposed LLM-based tool agent pipeline with an example task

3.1 Prompt template

The details of the prompt template used in this study are shown in Figure 2. We assigned a role

to the LLM and defined specific requirements to guide the LLM in responding to user

instructions as expected. In this template, we employed prompt engineering techniques such as

chain-of-thought (Wei et al., 2024), which involves making the model infer step by step and

use intermediate steps to achieve better complex reasoning capabilities. Additionally, we used

zero-shot prompting (Wei et al., 2021), leveraging the characteristic of current LLMs being

instruction-tuned on vast amounts of code data, allowing them complete code generation tasks

directly based on the given prompt description without providing extra examples in the prompt

template, known as few-shot prompting techniques (Brown et al., 2020). We experimented with

few-shot prompts but did not observe a significant difference. We believe that in our scenario,

zero-shot prompting can save tokens amount while ensuring high-quality responses.

4

Figure 2 Prompt template. Placeholders are marked with colors, indicating the dynamic content that can be

inserted into the template.

3.2 Toolset

Table 1 presents predefined tool functions in the toolset and their descriptions. We designed

various representative tools for agents from three perspectives, essentially covering basic

aspects of human-machine interaction in BIM authoring software: a) CRUD operations for

building components (marked in blue), b) Creating complex models with parametric tools

(marked in green), c) Addressing software usage questions based on external documentation

(marked in red).

Table 1 Implemented tools in this study

Tool function name Description

Create_wall

This tool is used to create a wall in Vectorworks. It takes two inputs: ‘st_pt’, which

should be the start point of the wall, and ‘ed_pt’, which should be the end point of the

wall. Both ‘st_pt’ and ‘ed_pt’ are 2D coordinates string. This tool will return nothing.

Set_wall_attributes

This tool is used to set the geometric properties of a wall, such as thickness, height and

offset. The required input is a wall’s uuid. Depending on the specific property settings

needed, optional input parameters include ‘thickness’, ‘height’, and ‘bot_offset’. The

‘bot_offset’ refers to the vertical distance from the bottom of the wall to the XY plane

at the origin. This tool will return the uuid of the modified wall object.

Move

This tool is used to move a list of elements in Vectorworks. It takes four required

inputs: the ‘xDistance’, ‘yDistance’, ‘zDistance’, and ‘uuid’. These represent moving

distance in x, y, z directions, and the element’s unique uuid. The moving distances in

each direction should be either integer or float values. The ‘uuid’ can be a list or a

single string.

Delete
This tool deletes an element or a list of elements in Vectorworks. It takes an element’s

unique uuid or a list of uuids as input and then deletes the elements.

Find_selected_element
This tool is used to get selected elements in Vectorworks. It takes no input but returns

the elements uuids in the list. If no elements are found, it will return an empty list.

Create_building

This tool is used to create a building from the selected floorplan shape. As input, it

takes a single polygon shape’s uuid and the styles of wall, slab and roof slab. Also, the

user can specify the story height and story amount. The complete list of input

parameters and their corresponding types are: “floorplan_shape_uuid: str,

slab_style_name_roof: str, slab_style_name: str, wall_style_name_first_floor: str,

wall_style_name: str, number_of_stories: int, wall_height _first_floor: int,

5

story_height: int.” Only the floorplan_shape_uuid is the required parameter, and the

rest are optional. If not specified, the default values will be used. The return value is the

height of the building.

Document_retrieval

This tool is designed to aid the assistant in responding to user inquiries specifically

related to software usage questions about Vectorworks. When the assistant identifies a

question that requires detailed, accurate information from the official documentation of

Vectorworks, this tool should be invoked to search for and provide the necessary

information to the user. The tool takes one input string: ‘question’, which should be the

user’s question. Formulate the input to the tool using the exact phrasing of the user’s

question whenever possible. Ensure to maintain the context and specificity the user

provided to retrieve the most relevant section of the documentation.

Each blue tool invokes the relevant Python APIs of Vectorworks based on its design

requirements. As the raw APIs are often fine-grained and low-level, each tool intrinsically

encapsulates the logic that combines different APIs to achieve the tool’s functionality. The

green tool is essentially an encapsulation of a script for generating parametric buildings. We

initially developed a parametric building object using the Marionette graphical scripting tool in

Vectorworks (similar to Dynamo/Grasshopper), which allows for the generation of different

design variations by changing parameters such as the floor plan shape, number of stories, wall

styles, etc. We then exported it as a Python script and wrapped it in a Python function, aligning

the function and building parameters.

The red-labeled document retrieval tool is designed to answer user inquiries regarding software

usage. To prevent LLMs from generating unreliable responses due to hallucinations, we expect

LLMs to refer to Vectorworks’ documentation when answering software usage questions. This

tool, therefore, effectively encapsulates a Retrieval Augmentation Generation (RAG) (Lewis et

al., 2020) workflow, a technique that enhances the accuracy and reliability of LLMs by

leveraging facts obtained from external knowledge sources. We can extract relevant snippets

from Vectorworks documentation through RAG and enable the LLM to generate dependable

answers based on this content.

The custom RAG workflow behind the tool is shown in Figure 3. We first collected and cleaned

1911 HTML files of Vectorworks online documentation4, removing unnecessary hyperlinks,

images, etc., and converted them into Markdown format. This allowed the documents’ structure

and tables to be represented in plain text using Markdown syntax. Given that each Markdown

document is generally not very long and contains numerous tables, we did not further split the

document into smaller chunks in order to retain table structure and contextual coherence. The

processed documents are fed into a pre-trained Sentence Transformer model (Reimers and

Gurevych, 2019) to obtain their corresponding embedding vector representations. This process

is crucial as it converts text into a numerical format that machines can understand, allowing for

more nuanced and complex interpretations of language beyond simple keyword matching.

These vectors, representing the essence of the documents in high-dimensional space, are

indexed and stored in a vector database for later retrieval. Given a user query, the embedding

model first converts it into a vector representation. This step is essential for aligning the user’s

request with the same numerical space as the documents. We then search for the two nearest

neighbors of this query vector in the vector database by calculating the cosine similarity

between vectors, which in practice means finding documents with the most similar content to

the query. The Markdown text of these two candidates, along with the user query text, is then

input into the prompt. GPT-4 is ultimately asked to answer the question based on the given

context from the most relevant documents, ensuring the accuracy and reliability of the response.

It’s worth noting that any other LLM can easily replace GPT-4 in this workflow.

4 https://app-help.vectorworks.net/2023/eng/VW2023_Guide/LandingPage/Welcome_to_Vectorworks.htm

https://app-help.vectorworks.net/2023/eng/VW2023_Guide/LandingPage/Welcome_to_Vectorworks.htm

6

Figure 3 The implemented RAG workflow behind the document retrieval tool. “Query” is the input parameter of

the tool function, which is a question from the user about the software usage, and “Answer” is the return value of

the tool, which is a textual answer to the software usage issue generated by the LLM based on the retrieved

context. Please note that here, GPT-4 and the prompt operate independently of the agent framework and are

solely dedicated to this workflow. In addition, GPT-4 can be replaced by any other LLMs.

3.3 Custom interpreter

The custom Python interpreter is designed to evaluate Python code in a controlled environment.

It uses the ast (Abstract Syntax Tree) module to parse code into a tree of nodes and then evaluate

it. A state dictionary stores and tracks defined variables and their values during the evaluation.

This information will also be stored in the memory module, allowing LLMs to access variables

defined in previous code within the current conversation round, thereby maintaining a

comprehensive context throughout the session. We significantly expanded the limited Python

interpreter from the Transformer Agent framework, ensuring it supports standard Python

features while safely executing code. For instance, it restricts importing arbitrary third-party

libraries, only allowing the Python standard library and predefined tool functions. Additionally,

it limits file I/O, multithreading, and network operations, preventing the execution of potentially

harmful code in the system.

4. Case study

Our case study features the BIM authoring tool Vectorworks, where we integrated the proposed

framework by developing a web palette plugin using the architecture shown in Figure 4. The

C++ backend of the web palette allows defining JavaScript functions, enabling the frontend

implemented by Vue.js to call them. This allows the implementation of a dynamic web interface

embedded within Vectorworks. Since our framework is entirely based on Python, we invoke

the built-in Python engine of Vectorworks on the backend to execute our code, thus delegating

the JavaScript implementation. We utilize the memory module to store the state between Python

calls. Figure 5 shows the developed prototype. The user can directly chat with the agent by

clicking the microphone button, and the backend automatically calls the Whisper model

(Radford et al., 2023) to convert the audio to text and populate the input message box. This

7

adds a new dimension to interaction with the BIM authoring tool. The LLMs we used in this

study are the latest version of GPT-4 (OpenAI, 2023) and the open-soure model Mixtral-8×7B

(Jiang et al., 2024).

Figure 4 Software architecture of the copilot prototype in Vectorworks based on web palette plugin template5

Figure 5 Seamless integration into Vectorworks. Users can interact with the copilot in the built-in chat window,

giving modeling instructions or asking usage questions through voice or text. By clicking the microphone button,

the backend automatically calls the Whisper model to convert the audio to text and fill the input message box.

4.1 Empirical evaluation

We designed several representative test prompts to empirically evaluate whether the proposed

LLM agents can understand the combination of complex intent instructions to complete

modeling tasks using the correct set of tools. The results are shown in Figure 6. We designed

the test prompts A, B, and C as a series of consecutive dialogues, aiming to examine whether

5 https://github.com/VectorworksDeveloper/SDKExamples/tree/master/Examples/WebPaletteExample

https://github.com/VectorworksDeveloper/SDKExamples/tree/master/Examples/WebPaletteExample

8

the agents can fully utilize the context information in multi-round conversations through the

proposed memory module. It can be observed that GPT-4 and open-source model Mixtral can

generate stable and correct results for straightforward complex instructions (A, B). Interestingly,

their concepts of “north” differ - GPT-4 opts for the positive Y-axis, while Mixtral chooses the

positive X-axis. However, for more abstract instructions like arranging rooms in a hotel layout

(C), GPT-4 demonstrates better understanding and reasoning abilities, capable of generating

the correct coordinates in code, whereas Mixtral struggles with comprehending the spatial

layout. This is mainly due to the significant difference in their parameter sizes. However, it also

shows that LLMs pre-trained on massive text data have a certain perceptual ability for spatial

and geometric concepts. The test prompt D assesses whether the agent can interpret effective

information from human intent and align it with input parameters when calling complex

parametric tools. GPT-4 excels at this task, while Mixtral often encounters code errors, such as

invoking non-existent or wrong tools. Interestingly, when prompted to resolve these errors, the

agent can automatically correct itself and produce the right result based on the previous code

and error messages the custom Python interpreter returned.

Figure 6 Test prompts and the corresponding modeling results generated by different LLM agents. The red,

green and blue axes in the model represent the X, Y and Z axes, respectively. Prompts A, B, and C are

sequentially related, forming a continuous dialogue, whereas prompt D is standalone. The * indicates that the

agent obtained this result after revising its code based on human feedback. Overall, GPT-4 can generate more

accurate and robust results compared to the latest open-source model.

We quantitatively assessed the RAG workflow designed for software usage Q&A using the

RAGAs evaluation framework (Es et al., 2024). We had ChatGPT pose as a user and ask 20

questions about Vectorworks, covering basic usage, advanced features, troubleshooting, etc. A

synthetic validation set was created after manually correcting some hallucination issues. We

comprehensively evaluated the performance of various components in our RAG pipeline using

the faithfulness, context utilization, and answer relevancy metrics provided by the RAGAs

framework. Faithfulness measures the consistency of the generated answers with the factual

content in the given context, answer relevancy focuses on assessing how relevant the generated

answers are to the given query, and context utilization calculates whether the retrieved context

9

can be used to answer the query. The results in Table 2 demonstrate that our agent can reliably

answer software usage questions based on external knowledge.

Table 2 Average evaluation metrics based on 20 usage questions

Faithfulness Context utilization Answer relevancy

99.5% 100% 96.4%

5. Discussion and future works

We believe the proposed framework can be extended to a broader range of use cases if more

tools are implemented for use by LLM agents. The manually defined tool functions can

essentially be seen as higher-order, concise API interfaces exposed to LLMs, encapsulating

specific design rules and engineering logic. This avoids the tedium of low-level API calls while

ensuring the accuracy of the modeling tasks for which the tools are responsible. However,

designing universal tool functions to cover different scenario needs efficiently is challenging.

In addition, the current agent invokes and combines tools based on a limited number of tool

descriptions to meet user intents. Allowing it to discern and assemble the right tools from a

large set could lead to unreliable call results due to hallucination issues. Therefore, for more

complex design scenarios, developing a structured toolset based on certain rules could better

assist agents in selection, planning, and reasoning.

Moreover, the agent currently perceives its environment and self-corrects based solely on the

code execution results of the Python interpreter and human feedback. We believe providing a

comprehensive building context, such as project information and component attributes, could

help it perform tasks more effectively.

Finally, while the open-source LLM underperforms in highly complex tasks, its ability to be

fine-tuned offers great optimization potential in our specific verticals. Additionally, deploying

an instructions-tuned open-source model can better protect user data and privacy.

6. Conclusion

In this paper, we introduce an LLM-based agent framework that autonomously completes

modeling tasks and provides suggestions for practical software usage within BIM authoring

software. Our experiments employed representative complex instructions to evaluate the

proposed framework, demonstrating the agent’s perception of spatial and geometric concepts,

ability to plan and reason based on complex prompts, utilization of external knowledge bases,

and the capability to self-correct based on contextual information and human feedback during

the conversation. In a case study, we developed a software prototype in Vectorworks to

integrate the LLM agent as a design copilot into the user’s workflow, laying a foundation for

more intelligent human-machine interaction and a move towards modeling-by-chatting.

Acknowledgment

This work is funded by Nemetschek Group, which is gratefully acknowledged. We sincerely

appreciate the data and licensing support provided by Vectorworks, Inc.

10

References

Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,

Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.M., Wu,

J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,

S., Radford, A., Sutskever, I. and Amodei, D. (2020) ‘Language models are few-shot learners’, in Proceedings of

the 34th International Conference on Neural Information Processing Systems. (NIPS ’20).

Es, S., James, J., Espinosa Anke, L. and Schockaert, S. (2024) ‘RAGAs: Automated Evaluation of Retrieval

Augmented Generation’, in Proceedings of the 18th Conference of the European Chapter of the Association for

Computational Linguistics: System Demonstrations, pp. 150–158. Available at:

https://aclanthology.org/2024.eacl-demo.16.

Franklin Stan and Graesser, A. (1997) ‘Is It an agent, or just a program?: A taxonomy for autonomous agents’, in

Intelligent Agents III Agent Theories, Architectures, and Languages. Springer Berlin Heidelberg, pp. 21–35.

Jang, S. and Lee, G. (2022) Interactive Design by Integrating a Large Pre-Trained Language Model and Building

Information Modeling. Available at: https://doi.org/10.48550/arXiv.2306.14165 (Accessed: 16 February 2024).

Jang, S., Lee, G., Oh, J., Lee, J. and Koo, B. (2023) Automated detailing of exterior walls using NADIA: Natural-

language-based architectural detailing through interaction with AI. Available at:

https://ssrn.com/abstract=4674577.

Jiang, A.Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bamford, C., Chaplot, D.S., Casas, D. de las,

Hanna, E.B., Bressand, F., Lengyel, G., Bour, G., Lample, G., Lavaud, L.R., Saulnier, L., Lachaux, M.-A., Stock,

P., Subramanian, S., Yang, S., Antoniak, S., Scao, T. Le, Gervet, T., Lavril, T., Wang, T., Lacroix, T. and Sayed,

W. El (2024) ‘Mixtral of Experts’. Available at: http://arxiv.org/abs/2401.04088.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., Yih, W., Rocktäschel,

T., Riedel, S. and Kiela, D. (2020) ‘Retrieval-augmented generation for knowledge-intensive NLP tasks’, in

Proceedings of the 34th International Conference on Neural Information Processing Systems. (NIPS ’20).

Mehta, N., Teruel, M., Deng, X., Figueroa Sanz, S., Awadallah, A. and Kiseleva, J. (2024) ‘Improving Grounded

Language Understanding in a Collaborative Environment by Interacting with Agents Through Help Feedback’, in

Findings of the Association for Computational Linguistics: EACL 2024, pp. 1306–1321. Available at:

https://aclanthology.org/2024.findings-eacl.87.

OpenAI (2023) ‘GPT-4 Technical Report’. Available at: http://arxiv.org/abs/2303.08774.

Radford, A., Kim, J.W., Xu, T., Brockman, G., McLeavey, C. and Sutskever, I. (2023) ‘Robust speech recognition

via large-scale weak supervision’, in Proceedings of the 40th International Conference on Machine Learning.

JMLR.org (ICML’23).

Reimers, N. and Gurevych, I. (2019) ‘Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks’,

in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th

International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992. Available

at: https://doi.org/10.18653/v1/D19-1410.

Shen, Y., Song, K., Tan, X., Li, D., Lu, W. and Zhuang, Y. (2023) ‘HuggingGPT: Solving AI Tasks with ChatGPT

and its Friends in Hugging Face’, in Advances in Neural Information Processing Systems. Available at:

https://proceedings.neurips.cc/paper_files/paper/2023/file/77c33e6a367922d003ff102ffb92b658-Paper-

Conference.pdf.

Sun, C., Han, J., Deng, W., Wang, X., Qin, Z. and Gould, S. (2023) ‘3D-GPT: Procedural 3D Modeling with Large

Language Models’. Available at: http://arxiv.org/abs/2310.12945.

Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J., Chen, Z., Tang, J., Chen, X., Lin, Y., Zhao, W.X.,

Wei, Z. and Wen, J. (2024) ‘A survey on large language model based autonomous agents’, Frontiers of Computer

Science, 18(6), p. 186345. Available at: https://doi.org/10.1007/s11704-024-40231-1.

Wei, J., Bosma, M., Zhao, V.Y., Guu, K., Yu, A.W., Lester, B., Du, N., Dai, A.M. and Le, Q. V. (2021) ‘Finetuned

Language Models Are Zero-Shot Learners’. Available at: http://arxiv.org/abs/2109.01652.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q. V and Zhou, D. (2024)

‘Chain-of-thought prompting elicits reasoning in large language models’, in Proceedings of the 36th International

Conference on Neural Information Processing Systems. (NIPS ’22).

	1. Introduction
	2. Related works
	3. Methodology
	3.1 Prompt template
	3.2 Toolset
	3.3 Custom interpreter

	4. Case study
	4.1 Empirical evaluation

	5. Discussion and future works
	6. Conclusion
	Acknowledgment
	References

