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It is by now well established that periodically driven quantum many-body systems can realize topological
nonequilibrium phases without any equilibrium counterpart. Here we show that, even in the absence of time
translation symmetry, nonequilibrium topological phases of matter can exist in aperiodically driven systems for
tunably parametrically long prethermal lifetimes. As a prerequisite, we first demonstrate the existence of long-
lived prethermal Anderson localization in two dimensions under random multipolar driving. We then show that
the localization may be topologically nontrivial with a quantized bulk orbital magnetization even though there are
no well-defined Floquet operators. We further confirm the existence of this anomalous random multipolar driven
insulator by detecting quantized charge pumping at the boundaries, which renders it experimentally observable.
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I. INTRODUCTION

The exploration of nonequilibrium many-body phenomena
has flourished in the past decades as time-dependent driv-
ing opens new pathways for controlling quantum systems
[1–5]. Beyond the research program of “Floquet-engineering”
sought-after equilibrium phases of matter [6,7], of particular
interest is the possibility to realize intrinsically dynamical
phases without direct analogies in static systems [8,9]. For
example, combining the discrete time translational symmetry
(TTS) of periodically driven systems with many-body local-
ization (MBL) [10] may stabilize a discrete time crystal phase
spontaneously breaking TTS [11–14]. Floquet systems may
also host a variety of topological nonequilibrium phases such
as the two-dimensional (2D) anomalous Floquet-Anderson
insulators (AFAI) [15,16] and its interacting generalization,
the anomalous Floquet insulator (AFI) [17]. Although fully
localized in the bulk, they support quantized chiral edge cur-
rents robust to generic perturbations.

It is natural to ask whether dynamical phases may exist
beyond the Floquet paradigm [18–24]. Recently the fate of
Floquet topological edge states in the presence of white noise
has been studied [25,26]. Here we will address the question:
can topological phases exist in aperiodically driven systems
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for tunably parametrically long times when the temporal
aperiodicity is strong? If so, is there a diagnostic capable
of capturing the topological nature of the system once TTS
is explicitly broken? At first sight it seems unlikely because
the absence of TTS precludes the usual definition of Floquet
operators. Therefore, the topological characterization, e.g.,
via the bulk winding numbers of the AFAI Floquet states,
cannot be applied [15,27]. In addition, the stability of MBL
in Floquet systems is essential for the realization of the AFI.
In contrast, MBL is unstable for aperiodic drives and, thus,
cannot prevent heating to a featureless infinite temperature
state [18,22,28].

Nevertheless, we here provide an affirmative answer to
the above question by constructing a concrete example. To
do so, we introduce an aperiodic step-wise driving scheme
which extends the Floquet protocol for the realization of
the AFAI [15,16] to n-random multipolar driving (n-RMD)
as recently proposed in Ref. [29]. A key observation for
our purpose is that, for generic (nonintegrable) many-body
systems, a transient but long-lived prethermal steady state
emerges in n-RMD drives, whose lifetime τ scales univer-
sally as τ ∝ (1/T )2n+1 for finite n [29,30] (with T being the
duration of the fundamental time evolution block as intro-
duced below). The lifetime grows faster than any power law
in 1/T in the n → ∞ limit, where n-RMD corresponds to
the quasiperiodic Thue-Morse (TM) sequence [31]. Here, we
first establish that disorder induced localization also follows
this scaling and can indeed persist as a long-lived prethermal
phenomenon [32–35] before the system eventually delocal-
izes. Next we show how long-lived localization can lead
to a prethermal topologically nontrivial 2D insulator, which
we dub the anomalous random multipolar driven insulator
(ARMDI).
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FIG. 1. Scheme of the driving protocol. (a) Sequence of driving
blocks U ±

0 employed to realize the TM protocol up to time 2nT .
(b) The elementary time evolution operator U ±

0 involves five driving
steps. The first four steps contain hopping processes on different
bonds of different colors, meanwhile a sublattice potential of ampli-
tude ±δh is applied. The disorder potential appears in the fifth step,
leading to Anderson localization.

Crucially, although TTS is absent, we can show that the
bulk orbital magnetization density [36] remains quantized
over the prethermal timescale. We furthermore confirm the
existence of the ARMDI by detecting the quantized charge
pumping at its boundaries. Although we concentrate on the
noninteracting limit, the prethermal lifetime of the ARMDI
strikingly scales in the same way as established for nonin-
tegrable systems in one dimension (1D) [29,30], suggesting
that the ARMDI remains robust with respect to the addition
of sufficiently weak interactions.

II. THE DRIVING PROTOCOL

We first introduce the protocol, starting with a system
of noninteracting spinless fermions on a 2D bipartite lattice
driven by the step-wise time-dependent Hamiltonian H (t ) =
Hid (t ) + Hdis(t ), which is periodic in time: H (t ) = H (t + T )
with period T . Within a period, the first term consists of
translationally invariant hopping terms described by [15]

Hid (t ) = J
∑
r∈A

4∑
n=1

fn(t )(c†
r+dn

cr + H.c.), (1)

where fn(t ) = 1 for (n − 1)T/5 � t < nT/5 and zero other-
wise. The summation over r is performed over all sites of
sublattice A, as illustrated in Fig. 1(b). The vectors {dn} are
defined as d1 = −d3 = (0, 1) and d2 = −d4 = (1, 0). This
model has a solvable limit when the hopping amplitude J is
chosen as JT/5 = π/2 such that one particle prepared on site
r can be completely transferred to site r + dn over step n of the
cycle. The fifth step of the cycle involves the disorder poten-
tial Hdis(t ) = f5(t )

∑
r hrc†

rcr, where hr is uniformly chosen
in the interval [−hmax, hmax]. This Floquet model hosts the

topologically protected nonequilibrium phase, AFAI, which
features chiral edge modes together with a fully localized bulk
[15]. It remains stable to generic time-periodic perturbations
(with the same period as the drive, T ) as long as no topological
phase transition occurs.

Building on this foundation, we now study an aperiodically
driven cousin of the AFAI—the ARMDI introduced above—
and show that nontrivial topology persists as a new long-lived
prethermal phase. The aperiodic driving protocol is defined
in terms of sequences which toggle in an irregular fashion
between two types of evolution blocks, labeled by + and −.
The corresponding stroboscopic time evolution operators for
these blocks are defined as

U ±
0 = T e−i

∫ T
0 dsH±(t ), (2)

where the Hamiltonian reads H±(t ) = Hid (t ) + Hdis(t ) +
H±

pert (t ) with a local perturbation H±
pert (t ). Now T defines the

duration of the fundamental evolution block, and its inverse
denotes the characteristic driving rate of the protocol. The
qualitative behavior of the ARMDI does not depend on the
specific form of the perturbation but for concreteness we con-
sider the perturbation of the form H±

pert (t ) = (δJ/J )Hid (t ) ±
[1 − f5(t )]δhHsub. The first term modifies the hopping ampli-
tudes in the “ideal” hopping cycle by an amount δJ , which
breaks the perfect transfer of particles between sites on each
step. The second term is a time-dependent sublattice potential,
Hsub = (

∑
r∈A nr − ∑

r∈B nr ), with opposite signs in the two
types of evolution blocks, see Fig. 1(b), which is nonzero
during all but the fifth step. For any δh �= 0, the stroboscopic
block evolution operators defined in Eq. (2) do not commute:
[U +

0 ,U −
0 ] �= 0. Thus the driving with δh �= 0 is qualitatively

different from that of the aforementioned Floquet drive.
We consider two types of aperiodic driving protocols

where TTS is explicitly broken. The first protocol is the
quasiperiodic TM sequence shown in Fig. 1(a). In this case,
the time evolution operator U +

n at time t = 2nT is constructed
recursively from the elementary block evolution unitaries U ±

0
[Eq. (2)] as U ±

n = U ∓
n−1U

±
n−1.1 The other protocol we consider

is the n-RMD protocol. For n-RMD, at each iteration one of
the two nth order multipolar operators U ±

n defined above is
randomly chosen to propagate the state [29]. In both cases, it
is clear that Floquet theory manifestly does not apply. Impor-
tantly, this means that the eigenstates and quasienergies that
underpin the topological classification of Floquet systems are
absent and a different approach is needed.

III. PRETHERMAL LOCALIZATION

For generic nonintegrable systems subjected to n-RMD
or TM driving, it was both rigorously shown and numeri-
cally verified that long-lived prethermal states form in the
rapid driving regime, i.e., when the inverse of the corre-
sponding fundamental block duration, 1/TRMD or 1/TTM,

1An important feature of the TM protocol is that, due to its recursive
nature, only a linearly increasing number of matrix multiplications is
required to obtain the result of an exponentially long time evolution.

245119-2



ANOMALOUS RANDOM MULTIPOLAR DRIVEN INSULATORS PHYSICAL REVIEW B 105, 245119 (2022)

respectively, is the dominant energy scale of the system.2 For
the model considered here, it is not a priori clear whether the
same phenomenology holds, because Anderson localization
might drastically change the system’s approach to eventual
equilibration. Also, to remain close to the “ideal hopping”
condition, i.e., JT/5 = π/2, the hopping amplitude J must
increase proportionally with the driving rate 1/T . Hence, the
requirement of rapid driving cannot be satisfied.

To demonstrate that the strongly driven, disordered model
that we consider also exhibits long-lived prethermalization,
we employ a unitary transformation Q(t ) = T e−i

∫ t
0 dsHid (s) that

removes the evolution due to the “ideal” part of the hop-
ping [17]. The Hamiltonian in the corresponding rotating
frame reads H̃ (t ) = Q†(t )Ĥ (t )Q(t ) − iQ†(t )Q̇(t ). Note that
this transformation is periodic in time: Q(t ) = Q(t + T ). In
the rotating frame, the energy scale J does not contribute to
the norm of the Hamiltonian, see the Appendix A. A rapid
driving regime is hence achieved for hmax, δJ , δh � T −1,
where a long-lived prethermal localization can be established.
The localization length in the rotating frame increases with
the ratio δJ/hmax; the value of δh determines the strength
of the temporally aperiodic portion of the drive, which even-
tually delocalizes the system. In fact, due to the periodicity of
Q(t ), the stroboscopic time evolution operators in the physi-
cal and rotating frames coincide. Therefore, rigorous results
obtained in the rotating frame for n-RMD and TM driving
directly remain valid in the physical frame at stroboscopic
times.

In the following, we numerically verify the existence of
prethermal Anderson localization as a prerequisite for the
ARMDI. We consider a lattice of N = Lx × Ly sites with pe-
riodic boundary conditions, subjected to the TM and n-RMD
protocols described above. To demonstrate the existence of
prethermal localization, we prepare an initial state of a
single particle on site m and quantify the degree of local-
ization over time using the participation ratio (PR) PRm(t ) =
1/

∑N
j=1 |ψm

j |4, where ψm
j (t ) defines the single-particle wave

function on site j at time t = MT , and M denotes the total
number of fundamental evolution blocks U ±

0 . We also aver-
age over all possible initial states to obtain PR = 〈PRm〉. For
localized states, the participation ratio scales as PR/N ∼ 1/N ,
whereas for delocalized states one has PR/N ∼ O(1) [37].

The evolution of PR/N for the TM and 3-RMD protocols
are plotted in Figs. 2(a) and 2(b), respectively. As the particle’s
wave function locally spreads, PR/N first increases and satu-
rates to a small value (black dashed line) at time t ∼ 102J−1

0 .
(Here J0 is a reference energy scale that we use for the scaling
of all numerical parameters in this work.) The initial rise of
PR/N is independent of the driving rate 1/T as long as it is
large. PR/N remains nearly constant in the prethermal regime,
confirming the existence of long-lived prethermal localiza-
tion. Only after a large time window, PR/N rapidly increases

2The fundamental block duration for n-RMD or TM driving is
defined as the common duration of the evolution blocks U ±

0 , which
we assume are equal in length. The lifetime τ of the prethermal state
scales algebraically for n-RMD as τRMD ∼ T −(2n+1)

RMD , while for TM

driving the lifetime scales as τTM ∼ eC[ln(T −1
TM/g)]2

with a constant C
and a typical local energy scale g [29,30].

FIG. 2. The participation ratio for (a) TM driving and (b) 3-
RMD, with varying driving rates, quickly saturates to a prethermal
plateau before increasing to 0.5 (indicating delocalization at long
times). The dependence of the prethermal lifetime on the driving rate
is shown for (c) TM driving and (d) n-RMD drivings. We use param-
eters δJ = 1.2J0, hmax = 6J0, δh = 7J0 and system size 70 × 70 and
40 × 40 for TM driving and RMD, respectively. T −1 is in units of J0.

to the eventual plateau at the value 0.5, corresponding to a
final steady state evenly occupying the entire space.

For both types of driving, the prethermal lifetime of local-
ization increases with 1/T . To enable the numerical extraction
of a prethermal lifetime, we first define a time tx such that
PR(tx )/N = x. Since the choice of x is somewhat arbitrary,
we define the prethermal lifetime as the average τ = 〈tx〉x

performed over five threshold values x = x0, x0 ± ε, x0 ± ε/2.
For TM driving, x0 = 0.2, ε = 0.06 and for RMD, we use
x0 = 0.05, ε = 0.03.3 The dependence of τ on 1/T is de-
picted in Figs. 2(c) and 2(d), respectively for TM and RMD
protocols. As shown in Fig. 2(c), the numerical results fit
well with the analytical prediction of τTM ∼ eC[ln(T −1/g)]2

for
TM driving [30], where the slope defines the constant

√
C. In

contrast, a log-log scale is used in Fig. 2(d) where the linear
fit indicates that τRMD scales algebraically with the driving
rate as τRMD ∼ T −β for n-RMD. The fitted exponent reads ap-
proximately β ≈ 2n + 1 for n � 1, again in accordance with
rigorous predictions [29,30]. For the purely random driving
with n = 0, the system always quickly delocalizes around
t ∼ 10J−1

0 and prethermal localization cannot be established.

IV. QUANTIZED CHARGE PUMPING

We now confirm that the prethermal localized phase is
topological and that its topological nature is characterized by
a prethermal bulk invariant. As the system possesses neither
a Floquet spectrum nor a periodic micromotion operator, here

3The scaling behavior does not show qualitative dependence on
the precise values x of the threshold, as long as the state is in the
prethermal regime at the corresponding time tx .
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FIG. 3. Dynamics and scaling of prethermal lifetime for TM
driving. (a) Particle density for a single random realization in the
prethermal regime at time t ≈ 103J−1

0 for 1/T = 20J0. (b) Quantized
orbital current serving as a prethermal topological order parameter.
(c) Chiral edge current at the boundary between filled and empty
sites. (d) Scaling of the lifetime of the quantized current. We use
parameters δJ = 1J0, hmax = 20J0, δh = 7J0.T −1 is in units of J0.

we diagnose nontrivial topology using the time-averaged or-
bital magnetization density as introduced in Ref. [36] and
detailed in the Appendix.

For the AFAI, which is stable in the long-time limit, the
magnetization density averaged over an infinitely long time
window, m̄∞, was shown to be a topological invariant in
units of 1/T [36]. This quantity is obtainable by using a
finite “droplet” constructed such that its interior is completely
filled with particles whereas its surroundings are unoccupied.
According to Ampere’s law, for a droplet of sufficiently large
size compared with the localization length, and in a stationary
state, the magnetization density deep inside the droplet equals
the time-averaged orbital current flowing at the droplet’s
boundary [36].

As localization in our system has a finite lifetime, in-
stead of employing m̄∞, we here use the magnetization
density m̄T (t ) averaged over each block of duration T . Al-
though m̄T (t ) is time-dependent, we show that it remains
approximately constant and quantized in units of 1/T in the
prethermal regime.

To extract m̄T (t ), we initially fill a square droplet (35 × 35)
centered in the middle of the square lattice (70 × 70) with
periodic boundary conditions. Subject to TM driving, the
droplet starts to evolve and remains well localized during
the prethermal regime. As shown in Fig. 3(a), for a single
disorder realization, the particle density at time t ≈ 103J−1

0
remains close to the initial distribution with a slightly broad-
ened boundary. The orbital current ĪC (t ) can be obtained by
integrating the expectation value of the current operator IC =
−i

∑
r∈D[Jrr′ (t )c†

rcr′ − Jr′r(t )c†
r′cr] over a complete evolution

block of duration T , where the set D includes all sites along
one side of the cut [solid black line in Fig. 3(a)] and Jrr′ (t ) is
the time-dependent hopping to the adjacent sites on the other

FIG. 4. (a) Particle density for a single 3-RMD realization at time
t ≈ 400J−1

0 for 1/T = 9. (b) Edge current averaged over a single
block at the boundary between filled and empty sites with 3-RMD for
different driving frequencies. We use parameters δJ = 1J0, hmax =
10J0, δh = 7J0. T −1 is in units of J0.

side of the cut, as defined in Eq. (1). The average over different
cuts is performed to reduce spatial and temporal fluctuations.
Clearly, as shown in Fig. 3(b), a prethermal plateau in the
orbital current can be identified at the integer value ĪC = 1/T .
The current drops to zero only after a parametrically long
timescale which substantially increases for larger 1/T . Us-
ing the Ampere’s law as discussed above, on the prethermal
plateau we extract m̄T (t ) = ĪT (t ). Consequently, this defines
the prethermal topological bulk invariant ν(t ) := T m̄T (t ) and
suggests the existence of a prethermal topologically nontrivial
ARMDI.

This is further verified by confirming the existence of a
robust chiral edge current circulating at the boundary between
filled and empty sites, in coexistence with a fully localized
bulk. We now consider the lattice geometry of a cylinder
of size 70 × 70 where the upper half is occupied. The edge
current averaged over each evolution block of length T start-
ing at t = 2nT is plotted in Fig. 3(c). The pumped charge
per evolution block remains at the quantized value in the
prethermal regime, before decaying when delocalization sets
in. Similar to the lifetime of prethermal localization, we define
the lifetime τ of both the prethermal orbital and edge cur-
rent by using the threshold values 0.6/T for the current.4 As
presented in Fig. 3(d) for TM driving, their relation with the
driving rate again fits well with the scaling τTM ∼ eC[ln(T −1/g)]2

.
Both the fitted slopes give approximately the same exponent√

CE,
√

CO ≈ 1 for the edge and orbital current respectively.
When switching from quasiperiodic TM driving to the RMD,
the prethermal topological phase remains robust. However,
as the recursive quasiperiodic structure is missing [35], to
simulate a sufficiently long time evolution (t ∼ 106J−1

0 ), the
size of the square lattice is limited to 40 × 40. In Fig. 4, we
illustrate the dynamics for n = 3 RMD, in the case where the
upper half of a cylinder is fully filled as the initial state. In
Fig. 4(a), the particle density at time t ≈ 400J−1

0 is depicted.
The density only changes significantly in a strip centered
around the boundary of the filled region, similarly to Fig. 3(a).
As shown in Fig. 4(b), the current across the vertical black cut
remains close to a constant quantized value for a long time,

4Numerical noise can be suppressed in terms of an average over the
threshold values 0.6/T , 0.6 ± 0.3/T , 0.6 ± 0.15/T .
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confirming the existence of the prethermal ARMDI. In the
Appendix we further verify the dependence of the prethermal
lifetime on the driving rate, which exhibits an algebraic scal-
ing similar to the behavior of the PR as τRMD ∼ T −(2n+1).

V. DISCUSSION AND OUTLOOK

By constructing a concrete example, we have established
that aperiodically driven systems can host novel nonequilib-
rium topological phases of matter without any equilibrium
counterparts. The price to pay for relieving the constraint of
TTS is that the ARMDI is strictly speaking only transient,
disappearing in the asymptotic long-time limit. However, its
prethermal lifetime can be tuned arbitrarily long with a con-
trollable universal scaling of the heating times.

Regarding the experimental feasibility of our proposal, we
note that the (periodically driven) AFAI has recently been
realized in cold atom quantum simulators [38]. We expect that
the RMD drives proposed here can be naturally implemented
in a similar fashion. In that context, recent simulation plat-
forms studying prethermalization, e.g., in trapped ions [39] or
cold atoms [40], would also permit a study of the universal
scaling of the prethermal timescale as a function of n.

A fundamental and open question is whether there exist
aperiodically driven topological phases stable for infinitely
long times, e.g., in discrete versus continuous driven clean
or disordered systems. Finally, the role of interactions for the
stability of the ARMDI prethermal phase is a very interesting
and challenging problem, which is beyond the reach of nu-
merical methods and is thus an ideal candidate for quantum
simulators.
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APPENDIX A: ROTATING FRAME

Quantum systems subjected to random multipolar driving
(RMD) have been shown to exhibit long-lived prethermal
quasisteady states, with lifetimes that grow algebraically with
the driving rate 1/T [29,30]. This behavior is obtained when
1/T is large compared with the energy scales associated with
all other local terms in the system’s Hamiltonian. However,
the anomalous random multipolar driven insulator (ARMDI)
introduced in the main text has one energy scale J whose
magnitude is locked to be proportional to 1/T . Hence the

previous results exhibiting long lifetimes for RMD systems
do not directly apply here.

To demonstrate the prethermal stability of the ARMDI,
we define a rotating-frame transformation the removes the
dynamics associated with the hopping with energy scale
J ∼ 1/T :

Q(t ) = T e−i
∫ t

0 dsHid (s), (A1)

where, as defined in Eq. (1) of the main text, Hid (s) generates
the “ideal” hopping sequence in which each particle circles
around one plaquette in time T . Importantly, for systems with
periodic boundary conditions (PBCs) one obtains Q(T ) = I ,
as particles all hop back to their initial position after the first
four steps.

The new Hamiltonian in the rotating frame is given by

H̃±(t ) = Q†(t )H±(t )Q(t ) − iQ†(t )Q̇(t ), (A2)

where H±(t ) = Hid (t ) + Hdis(t ) + H±
pert (t ) (see main text).

This transformation gives

H̃±(t ) = Q†(t )
[
Hdis(t ) + H±

pert (t )
]
Q(t ). (A3)

Note that Hid has been canceled, and thus there are no terms
of magnitude J in H̃±(t ). Also, as Q(t ) is equal to the identity
during the fifth step of each block, H̃dis(t ) (which itself is only
nonzero during the fifth step) remains unchanged in the new
frame.

Now we discuss the behavior of the perturbation in the
rotating frame. The specific form of the perturbation should
not result in qualitatively different results, as long as it is local
and its amplitude remains small. Here, as in the main text, we
consider

H±
pert (t ) =

4∑
n=1

fn(t )

[
δJ

∑
r∈A

(c†
r+dn

cr + H.c.)±δhHsub

]
,

Hsub =
∑
r∈A

nr −
∑
r∈B

nr, (A4)

where dn is a nearest-neighbor bond vector as defined in the
main text. The first term represents a deviation of the hopping
amplitude from its ideal value (where each particle hops be-
tween neighboring sites with probability one during a given
step). This term transforms to a new (next-nearest neighbor)
hopping term in the rotating frame, remaining local on this
scale. The second contribution is a sublattice potential that is
present during the hopping steps. Note that a nonzero δJ or δh
will both induce imperfect hopping during the first four steps.
Here we set δh �= 0 and δJ = 0 for simplicity. In the rotating
frame, we have new driving Hamiltonians for the + and −
blocks given by

H̃±(t ) = Hdis f5(t ) ± δh
4∑

n=1

fn(t )Q†(t )HsubQ(t ). (A5)

The second term, corresponding to the sublattice potential,
involves the transformed operators ñr(t ) ≡ Q†(t )nrQ(t ). Note
that each operator ñr(t ) has its support only on r, as well as
the nearest-neighbor and next-nearest-neighbor sites of r [17].
To be precise, we take the result from Ref. [17] for the first
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driving step as an example:

ñr(t ) = cos2(Jt )c†
rcr + sin2(Jt )c†

r+σrd1
cr+σrd1

+ i

2
sin(2Jt )(c†

rcr+σrd1 − H.c.), 0 � t < T/5,

(A6)

where σr = 1 for r in sublattice A and σr = −1 for r in
sublattice B. Terms with support on the neighboring sites
of r appear, e.g., c†

rcr+σrd1 and c†
r+σrd1

cr+σrd1 . At later times
T/5 � t < T , terms involving next-nearest-neighbor sites of
r also appear, but H̃±(t ) still remains local. Clearly, the hop-
ping amplitude J now does not contribute to the norm of the
rotated Hamiltonian H̃±(t ). Expressions for the operator ñr(t )
for δJ �= 0 can be similarly obtained. Therefore, in the rotating
frame, a rapid driving regime required for the prethermaliza-
tion is achieved for hmax, δJ , δh � T −1.

One can furthermore estimate the heating rate induced by
a random drive, in two different limits T → 0 and δh → 0.
One can consider a simplified time-independent version of
Eq. (A5): H± = Hdis ± δhHp where Hp appears as a random
perturbation. For small δh we have the following opera-
tor distance || · · · || characterizing the deviation between the
time evolution operators U ±

0 = exp[−iT (Hdis ± δhHp)] and
exp(−iT Hdis) (Hdis can be treated as an unperturbed effective
Hamiltonian to approximate the transient dynamics at early
times) [29]:

‖U ±
0 − exp (−iT Hdis)‖ ≈ O(δhT ).

This distance can be used to estimate the deviation (or the
heating rate) after a single evolution block. Thus we see that,
for a single evolution block, the two limits T → 0 and δh → 0
are indeed equivalent: both of them lead to vanishing devia-
tions after a single block.

Now consider the evolution after m evolution blocks, with
U ±

0 selected randomly in each block. The distance between
the true evolution operator for random driving (with U ±

0
selected randomly on each cycle) and the ideal localized evo-
lution exp(−iT Hdis ) accumulates linearly with the number of
periods, m, becoming [29]

‖U−U+U+U− · · ·︸ ︷︷ ︸
m random blocks

− exp (−iHdismT )‖

≈ O(mT δh) ≈ O(tδh). (A7)

While reducing T gives an improvement of the deviation per
evolution block (period), i.e., in stroboscopic time, at a fixed
absolute time t = mT the deviation does not scale with T .
Hence taking T → 0 has little effect on the long-time dynam-
ics in absolute time. In contrast, taking δh → 0 meaningfully
leads to a prolongation of stability. Rigorous proofs and de-
tailed discussions can be found in Refs. [29,30]; this argument
can also be generalized to time-dependent Hamiltonians in the
form of Eq. (A5).

Now we turn to random multipolar driving, where the
lifetime obtains a nontrivial dependence on T and δh, both
in stroboscopic time and in absolute time. Specifically, the
main advantage of using n-RMD is that, for any nonzero
integer n, the heating rate is further suppressed by a power
of the inverse driving period [30], and the operator distance

for the time evolution at (absolute) time t scales as O(tT n).
The dependence on δh is complicated and model dependent,
but most importantly the deviation generically scales with
different powers of δh and of T . The additional power-law
suppression in T is universal, implying a power-law increase
of the lifetime in absolute time. This shows how genuinely
long-lived prethermal states may be stabilized by random
multipolar driving.

APPENDIX B: MAGNETIZATION DENSITY

Here we follow Ref. [36] and define the magnetic density
used to identify the topological property of the bulk. Micro-
motion of particles in this system can be characterized via the
orbital magnetization

M(t ) = 1

2
(r × ṙ(t )) · ẑ, (B1)

with ṙ(t ) = −i[r, H (t )]. M(t ) is equivalent to the response
of the Hamiltonian to an applied uniform magnetic field B,
M(t ) = −∂H (t )/∂B. The orbital magnetic density associated
with each plaquette p can be defined as

mp(t ) = −∂H (t )

∂φp
, φp =

∫
p

d2rB(r), (B2)

where φp represents the magnetic flux applied through the pla-
quette p. For a state |ψ (t )〉, one can define the time-averaged
expectation value of an operator O(t ) as

〈O〉τ = 1

τ

∫ τ

0
dt〈ψ (t )|O(t )|ψ (t )〉. (B3)

According to Ampere’s law on the lattice [36], if the parti-
cle density ρ is stationary throughout the system over the time
averaging interval, i.e., 〈ρ̇〉τ = 0, the time-averaged current
on the bond between neighboring plaquettes p and q equals
the difference between the associated time-averaged magnetic
densities

〈Ipq〉τ = 〈mp〉τ − 〈mq〉τ . (B4)

In our model, although time translation symmetry is broken,
such stationary states can still be approximately achieved for
τ = MT with integer M during the long-lived prethermal
regime before heating happens. Particle density only signif-
icantly changes within a strip of width D around the boundary
of the filled region (as shown later in Fig. 5), where D rep-
resents the localization length of the prethermal localized
states. Therefore, at the distance d from the boundary and
for d � D, particle density changes exponentially small in
the ratio d/D. Hence, all bond currents vanish in regions
deep inside the droplet and the associated magnetic density
becomes uniform.

This uniform value of magnetic density is system-size
dependent for finite-size systems (finite-size effect will be
discussed later in Appendix D). For a plaquette p at distance
d from the boundary, in the case of the AFAI (which is
stable in the long-time limit) one has limτ→∞〈mp〉τ = m̄∞ +
O(e−d/D), with m̄∞ denoting the value in the thermodynamic
limit. It has been shown in Ref. [36] that m̄∞ is quantized
as the bulk topological order parameter for the anomalous
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FIG. 5. Evolution of the particle density under Thue-Morse driv-
ing for a single random disorder realization for 1/T = 20J0. The
times shown in the three panels correspond to 215T , 225T , 235T . The
parameters are δJ = 1J0, hmax = 20J0, δh = 7J0.

Floquet-Anderson insulators. For a nonvanishing m̄∞, Am-
pere’s law [Eq. (B4)] implies that the time-averaged orbital
current limτ→∞〈IC〉τ (see definition of IC in the main text)
passing through a cut (the length of the cut needs to be larger
than the localization length D) around the boundary of the
droplet is also quantized and equals m̄∞ up to a correction
exponentially small in the localization length. See Ref. [36]
for more details.

As shown in the main text, for the aperiodic driving
protocol, localization in our system has a finite prethermal
lifetime τpre. Therefore, instead of employing m̄∞ which needs
infinitely long time average, one can consider a temporal
average over a time window τ ′ such that τ ′ � τpre. In practice,
we numerically compute the orbital current 〈IC〉T averaged
over each block of duration T to identify the correspond-
ing time-averaged magnetization density m̄T (t ) = 〈mp〉T (t ) +
O(e−d/D) for plaquette p deep in the droplet. Although m̄T (t )
now becomes time-dependent, as shown in Fig. 3(b) in the
main text, it remains approximately constant and quantized in
the prethermal regime.

APPENDIX C: DENSITY PROFILES FOR THUE-MORSE
DRIVING

Here we show additional density plots at different times
using the same parameters as in Fig. 3 of the main text.
As shown in Fig. 5, the upper-left panel shows the same
results at t ≈ 103J−1

0 as in Fig. 3(a), where the density remains
almost the same as the initial distribution. The upper-right
panel shows the density around t ≈ 1.5 × 106J−1

0 . Clearly
the dynamics is not limited to the boundary of the square.
A large region of the whole lattice has a nonzero density.
After a sufficiently long time, e.g., t ≈ 2 × 109J−1

0 , the system
exhibits a homogeneous distribution at particle density 0.25
indicating the eventual delocalization (bottom panel).

FIG. 6. Dynamics of PRLi /N for initial states prepared at Li sites
away from the boundary of the cylinder of size 70 × 70. Li = 0 and
34 in panels (a) and (b), respectively. We use parameters Lx = Ly =
70, δJ = 1J0, δh = 7J0, hmax = 6J0. T −1 is in units of J0.

APPENDIX D: FINITE-SIZE EFFECTS

Here we discuss the boundary effect which causes notable
consequences to the lifetime of the prethermal localization.
With periodic boundary conditions (PBCs), our model is sim-
ilar to a localized system coupled to a thermal bath at infinite
temperature [41]. The effect of the aperiodic drive on Ander-
son localization can be treated as classical noise source. For
open boundary conditions (OBCs), instead of being localized,
states prepared at the boundary exhibit chiral propagation and
quickly delocalize within a strip of the boundaries during
the prethermal regime. Therefore, coupling to the delocalized
boundary states further destabilizes the Anderson localization
in the bulk on top of the local random noise. This coupling
decays exponentially with distance. Hence such boundary ef-
fects can be well-controlled by either going to larger system
sizes or stronger disorder strengths (corresponding to shorter
bulk localization lengths). To demonstrate this phenomenon,
in Fig. 6 we depict the evolution of the participation ratio
PRLi/N defined by

PRLi = 〈PRm〉Li ,

where the average is performed over all sites at distance Li

from the top boundary of a cylinder of size 70 × 70 and PRm

is as defined in the main text. Figures 6(a) and 6(b) show the
result for Li = 0 and Li = 34, corresponding to the boundary
and the center of the cylinder, respectively. For Li = 0, the
system first slowly delocalizes around t ∼ 102J−1

0 . This onset
time does not change for larger driving rate 1/T . Dynamics
of the participation ratio follow the form PR0/N ∼ log t over
a large time window, e.g., from 102J−1

0 to 108J−1
0 for 1/T =

19J0, followed by a pronounced increase to the final plateau
at 0.5. For Li deep in the bulk, as in Fig. 6(b), the boundary
effect is negligible and a prethermal Anderson localization can
be identified similarly to Fig. 2 of the main text, which was
obtained with PBC.

The dependence of the delocalization time τTM(Li ) on the
driving rate 1/T and distance to the boundary, Li, is plot-
ted in Fig. 7. For each value of Li, τTM(Li ) is extracted by
the procedure described in the main text as the average of
times when PRLi/N increases above the values 0.1 ± 0.03,
0.1 ± 0.06 for Li = 34, 15, or 0.1 ± 0.005, 0.1 ± 0.01 for
Li = 0. The black dashed lines are described by the functional
form τTM ∼ eC[ln(T −1/g)]2

, and the fitted slope α corresponds
to

√
C. Note that the scaling exponent increases if the initial
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FIG. 7. Scaling of the delocalization time versus driving rates for
different Li. We use parameters Lx = Ly = 70, δJ = 1J0, δh = 7J0,
hmax = 6J0. T −1 is in units of J0.

state is far from the edge, with a maximum value around 1.2.
If we instead use a larger threshold value for determining
τTM(Li ), e.g., 0.4, a similar scaling exponent around 1 will
be reproduced even for Li = 0. Such behavior indicates that
at the boundary, only the late stage of delocalization can be
captured by the divergence of higher-order operators of the
TM sequence [30]. As a comparison, for layers away from the
open boundary, localization is stable and its lifetime scales
similar as the system with PBC.

Boundary effects also affect the scaling of the lifetime of
edge current when we have a half filled cylinder. The left
panel of Fig. 8 shows the dynamics of the (approximately)
quantized current at the boundary between filled and empty
sites. The lifetime of this prethermal phenomenon is nu-
merically extracted by averaging the times when the current
drops below 0.7/T , 0.7 ± 0.2/T , 0.7 ± 0.1/T . As shown in
the right panel of Fig. 8, the lifetime again fits well with
τTM ∼ eC[ln(T −1/g)]2

, but the fitted slope (α corresponds to
√

C)
is smaller than the largest value in Fig. 6 for Li = 34. This
is reasonable as the deviation from the quantized current is
induced by the delocalization around the central region of
the lattice, for instance Li ∈ [Ly/2 − δL, Ly/2], where δL is
a small finite integer and should be proportional to the local-
ization length of the system. As shown in Fig. 6, for finite
system sizes, the delocalization scaling exponent might still be
dependent on Li and decrease for smaller Li. Hence the scal-
ing exponent for the current lifetime, which should involve

FIG. 8. Dynamics of the edge current and its lifetime scaling for
Lx = Ly = 70. We use parameters δJ = 1J0, δh = 7J0, hmax = 6J0

and T −1 in units of J0.

FIG. 9. Scaling of the prethermal lifetime of edge current for
different system sizes Lx = 20, 50, 70. We use parameters δJ = 1J0,
δh = 5J0, hmax = 6J0 and T −1 in units of J0.

contributions from layers of sites within [Ly/2 − δL, Ly/2],
is slightly below the maximum delocalization scaling
exponent.

In Fig. 9 we also plot the prethermal lifetime of edge cur-
rent for different system sizes. Deviations from the expected
scaling τTM ∼ eC[ln(T −1/g)]2

can be clearly observed for small
system sizes at larger driving frequencies. But for sufficiently
large system size, the scaling behavior converges for the nu-
merically accessible timescales.

APPENDIX E: RANDOM MULTIPOLAR DRIVING
CURRENT

In Fig. 10, we show the scaling of the lifetime τRMD for
the ARMDI with different n-RMD protocols. The lifetime is
numerically extracted by averaging the times when the cur-
rent drops below 0.96/T , 0.96 ± 0.015/T , 0.96 ± 0.0075/T .
The numerical results fit well with τRMD ∼ T −β with β ≈
2n + 1 for n � 1. Note that, compared with Fig. 2 of the
main content, here we use a stronger disorder strength to

FIG. 10. Dynamics of the edge current and its scaling for n = 0,
1, 2, 3 RMD. We use parameters δJ = 1J0, hmax = 10J0, δh = 7J0

and system size 40 × 40.
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reduce finite-size effects. Consequently, the lifetime obtained
for purely random driving n = 0 (blue dot in Fig. 10) also
scales with the driving rate but with a very small exponent.

We expect that for a weaker disorder and sufficiently large
system size, the lifetime for n = 0 should be independent of
driving rate.
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