
Technische Universität München

Professur für Coding and Cryptography

Prof. Dr.-Ing. Antonia Wachter-Zeh

Master’s Thesis

Byzantine-Resilient and

Information-Theoretically Private

Federated Learning

Vorgelegt von:

Yue Xia

München, May 2024

Betreut von:

Dr. Ph.D. Rawad Bitar

M.Sc. Maximilian Egger

M.Sc. Christoph Hofmeister

Master’s Thesis an der

Professur für Coding and Cryptography (COD)

der Technischen Universität München (TUM)

Titel : Byzantine-Resilient and Information-Theoretically Private Federated Learning

Autor : Yue Xia

Yue Xia

Theresienstr. 90

80333 München

yue1.xia@tum.de

Ich versichere hiermit wahrheitsgemäß, die Arbeit bis auf die dem Aufgabensteller bereits

bekannte Hilfe selbständig angefertigt, alle benutzten Hilfsmittel vollständig und genau

angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert

oder mit Abänderung entnommen wurde.

München, 28.05.2024
. .

Ort, Datum (Yue Xia)

Contents

Abstract 1

1 Introduction 3

2 Related Work 7

2.1 Byzantine-Resilient Secure Aggregation 7

2.1.1 BREA and ByzSecAgg . 7

2.1.2 Other Algorithms . 8

2.2 Secret Sharing based Multi-Party Computation 9

3 System Model and Preliminaries 13

3.1 System Model . 13

3.2 Preliminaries . 14

3.2.1 FLTrust . 14

3.2.2 Linear Secret Sharing Scheme . 15

3.2.3 Beaver Triple . 17

3.2.4 Message Authentication Code . 18

3.3 Threat Model and Defense Goals . 19

4 Main Result 21

4.1 ByITFL . 21

4.2 Theoretical Analysis of ByITFL . 25

4.3 LoByITFL . 27

4.4 Theoretical Analysis of LoByITFL . 32

4.5 Choice of the Discriminator Function . 35

4.6 Complexity Analysis . 36

5 Experiments 39

6 Conclusion 43

Bibliography 47

i

List of Figures

3.1 Federated learning system. 13

4.1 Comparison of different discriminator functions h(x). 36

iii

List of Tables

4.1 The number of random numbers and Beaver triples required per training

iteration. {l,m, n} are used for computing the dot product of two vectors

and {x,y, z} are used for computing the element-wise multiplication of a

scalar and a vector, where l,m,y, z ∈ Fd
p, n is the dot product of l and

m, z is the component-wise multiplication of x and y. Those operations

generalize Beaver triples from scalars to vectors, each containing d scalar

Beaver triples a, b, c. 32

4.2 Communication Complexity. 37

4.3 Computation Complexity . 37

5.1 Testing accuracy comparison. We report the mean and standard deviation

of 10 runs on i.i.d. MNIST. For reference, FedAvg under no attack achieves

0.962± 0.001. 40

5.2 Testing accuracy and attack success rate comparison under scaling (back-

door) attack. We report the mean and standard deviation of 10 runs on

i.i.d. MNIST. 40

5.3 Testing accuracy comparison. We report the mean and standard deviation

of 10 runs on non-i.i.d. MNIST. For reference, FedAvg under no attack

achieves 0.962± 0.001. 40

5.4 Testing accuracy comparison. We report the mean and standard deviation

of 2 runs on CIFAR-10. For reference, FedAvg under no attack achieves

0.655± 0.005. 40

v

Abstract

Federated learning (FL) emerged as a new paradigm enabling training neural networks on

private data owned by multiple users. Users run local computations on their data and only

share the computation results with the federator coordinating the learning process. FL

faces many challenges such as guaranteeing privacy of the users’ data and security against

malicious users. It has been shown that, by only observing the computational results,

the federator can infer information about the users’ data. Secure aggregation is proposed

in the literature where only the aggregate result is shared with the federator. Hence,

guaranteeing privacy. Security is typically guaranteed by running statistics on the users’

computations and pruning the outliers. Thus, a natural tradeoff arises between privacy

(not learning the users’ data) and security (requiring learning statistics on the users’

data to prune the outliers). Proposed solutions for this challenge design secret sharing

schemes to compute the desired statistics and prune the outliers in a private manner.

However, those schemes guarantee computational privacy, i.e., assume eavesdroppers to

have bounded computational power.

We design a private and secure federated learning scheme that guarantees perfect information-

theoretic privacy and leaks as less information as possible about the users’ data. We build

our scheme on FLTrust. The federator computes a trust score (TS) for each users’ compu-

tation result based on a small representative dataset at the federator and uses these TSs

as weights for aggregation. We introduce a novel method to compute the aggregation by

only observing a privatized version of the users’ computation. We approximate the ReLU

function used to compute TSs by a polynomial, then rely on the additive homomorphism

of secret sharing. We present two different schemes. The first uses a trusted authority

that distributes Beaver triples that unlock a multiplicative homomorphism property of

the secret shares. The second instead uses Lagrange coded computing for evaluating

polynomial functions of the secret shares. We compare our schemes to the literature and

show that the first scheme outperforms all the existing ones in computation and commu-

nication complexity while achieving a better privacy guarantee. The only caveat is the

need for a trusted authority, which is used in a pre-processing phase before the data is

known, to distribute randomnesses to users.

1

1 Introduction

Federated learning (FL) emerged as a promising paradigm enabling the training of neural

networks on private data possessed by a large amount of users, allowing users to train

the model under the coordination of a central server, called federator, while keeping their

private data localized. The training process is distributed across multiple devices. In

each training iteration, the federator sends the current global model to the users, each

user then updates it based on its local training data, creates a local model update and

returns the model update to the federator. Upon receiving the local model updates, the

federator uses an aggregation rules to combine them into the new global model for the

next iteration. This repeats until the model attains certain converge criteria.

Compared to centralized machine learning, Federated learning addresses the data privacy

problem by allowing users to keep their private data local and send the model updates

to the federator instead. However, this introduces additional privacy concerns. The local

model updates, gradients or weights, still contain sensitive information about the users’

private local data. Once the federator receives the local model updates, it is possible to

reconstruct users’ private training data through inversion attacks [ZLH19], [GBDM20].

Private aggregation protocols [BIK+17] [AHW+17] are introduced to ensure the privacy

of individual updates such that the federator only obtains the aggregation of the local

model updates.

Moreover, federated learning introduces security concerns by allowing users sending cor-

rupt updates that manipulate the global model directly. We call malicious users behav-

ing arbitrarily Byzantine, who may send arbitrary vectors to the federator. [BEMGS17]

shows that when employing a linear aggregation rule, such as FedAvg [MMR+17], even

a single Byzantine worker can force the aggregation rule to select any arbitrary value as

the output result. This may lead to convergence to sub-optimal models, or even diver-

gence [KMA+21]. The primary countermeasure to defend against such Byzantine attack is

identify and remove the outliers in users’ updates, which are more likely to be vectors pre-

sented by Byzantine users. Many aggregation rules against Byzantine attacks have been

proposed ([BEMGS17], [YCKB18], [GR+18], [FYB18], [XKG19], [CFLG20], [ZSWJ22]).

Krum [BEMGS17] is a distance-based approach. With N being the number of total

users in the system, assumption on the number of Byzantine workers B has to be made.

3

1 Introduction

The local update having the minimum distance with its N − B neighbors, where no

Byzantine users are included by assumption, is chosen to be the aggregation result.

However, the distance-based approach can be easily fooled when considering high di-

mensional data. Statistic-based approaches such as Trimmed Mean and Median are

proposed in [YCKB18]. They perform coordinate-wise operations: for each coordinate,

they either find the mean value after trimming off a certain percentage of the highest and

lowest values or find the median value of this coordinate. [GR+18] is a combination of

Krum and Trimmed Mean. [FYB18] use cosine similarity of identify malicious updates.

FLTrust [CFLG20] also use cosine similarity as a measure, but assumes a small repre-

sentative root dataset possessed by the federator, based on which it computes a trust

score for each user and use the trust score to scale the users’ updates during aggrega-

tion. [ZSWJ22] requries the federator to first inverse the local model update submitted

by individual user to generate a corresponding dummy dataset, then compare the result-

ing dummy datasets for finding the outliers. However, all these approaches require the

federator to learn the actual values of the local updates for learning the statistics of them,

which is therefore not privacy preserving.

Hence, there is an inherent tension between security and privacy: for security, the ag-

gregator needs access to the plain local updates in order to learn statistics of them and

identify the outliers; for privacy reason, on the other hand, the true local updates must

remain concealed. This tension between the objectives makes it challenging to develop

methods that are jointly secure and private, which is the focus of this work.

Many Byzantine-resilient secure aggregation schemes [SGA20,JNMAC23,VXK21,HLX+21,

MMM+22,XOWZiA23,GMS+23,FMM+21,DWL+23,XLZ+22,HLW+23,BIMP+24,ZTX+24,

ZL24, LLTW23, AJB, DCL+21, MYL+24] are proposed, but are either based on clus-

tering and compromise privacy or require two federators during execution or consider

computational privacy. Among computational private schemes, the most related works

are BREA [SGA20] and ByzSecAgg [JNMAC23]. Both use secret sharing schemes to

make Krum [BEMGS17], a distance-based Byzantine-resilient aggregation rule, privacy-

preserving. Both schemes are computationally private and leak the pairwise distances

between local updates to the federator. Additionally, BREA leaks some extra information

to the federator, through not re-randomizing secret sharings, cf. [XHEB24]. ByzSecAgg

alleviates this problem by incorporating additional randomness.

While computational privacy has been the main focus in most studies due to its effi-

ciency, all methods rely on computational hardness assumptions potentially vulnerable

to attacks, such as those run by quantum computers. If only a limited number of entities

collude to compromise privacy, information-theoretic (IT) privacy provides the strongest

possible privacy guarantee, which withstands even computationally unbounded adver-

4

saries. Currently, no Byzantine-resilient scheme in the literature provides full IT-privacy

and without privacy compromises in the literature.

For this reason, we propose two Byzantine-resilient and information-theoretically (IT) pri-

vate secure aggregation schemes in this thesis. We name them ByITFL and LoByITFL

respectively. ByITFL is an information-theoretically private solution without privacy

compromises but suffers from high communication and computation costs, growing with

the fifth power of the number of users. In LoByITFL, we reduce the communication

and computation cost significantly, i.e. with total communication and computation cost

quadratic in the number of users, by assuming the existence of a trusted third party dis-

tributing randomnesses before the start of the training algorithm. Both schemes are built

on FLTrust [CFLG20] for Byzantine-resilience. The federator possesses a small represen-

tative root dataset to obtain a federator model update. This enables the computation of

a trust score (TS) for each user through a discriminator function on the cosine similarity

between the user’s and federator’s model update. To enable IT privacy, we use a poly-

nomial as the discriminator function. The two solutions then use different methods to

compute the aggregation in an IT private manner.

In ByITFL, each user’s model update is embedded into a finite field through a stochastic

quantizer, partitioned into M sub-vectors, secret shared with all users by Lagrange Coded

Computing (LCC) [YLR+19], and verified against corruptions using an IT verifiable secret

sharing (ITVSS) scheme [BOGW88], [AL17]. Re-randomization [GRR98] is required

before reconstructing the aggregation result to perfectly hide the local model updates.

From the perspective of LCC, Byzantine users can be seen as errors and dropouts as

erasures in a Reed-Solomon code, cf. [MS81]. The federator decodes the aggregate by

Reed-Solomon error-correction decoding and updates the global model. With k the degree

of the approximation polynomial and M the number of sub-vectors, the proposed scheme

is resilient against any B Byzantine users, IT private against the federator and against

any T colluding users, and robust against any P dropouts, as long as N ≥ 2B + (k+2) ·
(M + T − 1) + P + 1.

In LoByITFL, we require a Trusted Third Party (TTP) during initialization, which can be

implemented through a trusted execution environment, to distribute Beaver triples [Bea92]

once before the start of the training algorithm. Through an additively homomorphic se-

cret sharing, each user’s model update is shared with all other users. Beaver triples enable

a multiplicative homomorphism, and hence, polynomial computations can be performed

on shared model updates without increasing the degree of the encoding polynomial. Be-

fore reconstruction, an additively homomorphic Message Authentication Code (MAC) is

used for an integrity check to prevent the malicious users from sending corrupt messages

during the polynomial computation [BDOZ11]. The federator decodes the aggregation

5

1 Introduction

and updates the global model. The proposed scheme is resilient against any B Byzantine

users, IT private against the federator and against any T colluding users, and robust

against any P dropouts, as long as N ≥ B + T + P + 1.

6

2 Related Work

2.1 Byzantine-Resilient Secure Aggregation

Many Byzantine-resilient secure aggregation schemes [SGA20,JNMAC23,HKJ20,VXK21,

HLX+21,MMM+22,XOWZiA23,GMS+23,FMM+21,DWL+23,XLZ+22,HLW+23,BIMP+24,

ZTX+24,ZL24,LLTW23,AJB,DCL+21,MYL+24] are proposed. They either are based on

clustering and compromise privacy or require two federators during execution or consider

computational privacy.

2.1.1 BREA and ByzSecAgg

The most relevant works are BREA [SGA20] and ByzSecAgg [JNMAC23]. BREA [SGA20]

represents the first Byzantine-resilient secure aggregation scheme that only requires a

single federator. It is built on Krum, which requires the federator to learn the pairwise

distances between users’ local updates to removes outliers. Each user employs a verifiable

Shamir secret sharing scheme [Sha79], [Fel87] to secret shares its local model update with

other users, such that they can compute the pairwise distances between the secret shares

locally and send the computation results to the federator. Note that the Verifiable Secret

Sharing (VSS) scheme used here is computational private, which relies on the hardness

of computing discrete logarithms. Upon receiving a sufficient number of computation

results, the federator can decode the pairwise distances between the local model updates

and apply Krum for user selection. The federator then broadcasts the selected users to all

participants and awaits users computing the aggregation of selected secret shares locally.

Following the decoding of the aggregated results, the server is ready to update the global

model for the next iteration.

BREA is secure against B Byzantine users, T colluding users and P dropout users. By

treating the local model updates from Byzantine users as errors and dropout users as

erasures, the federator can always decode the correct pairwise distances and aggregation

result. This is achieved through leveraging the error correction property of Reed-Solomon

code, ensuring reliable decoding as long as the number of users N ≥ 2B + 2T + P + 1.

However, BREA suffers from two privacy leaks. The first one is obvious: the server

obtains all pairwise distances between the local model updates. This clearly leaks some

7

2 Related Work

relationship between users and can be extremely harmful even if the federator accidentally

gets the local model update of a single user in plaintext. The second leakage arises from

users’ local computation of pairwise distances between secret shares. Specifically, in

BREA, shares of the pairwise distance is computed by multiplication on secret shares.

However, Shamir secret sharing is not multiplicative homomorphic [Ben86]. The reason

for this lies in the fact that multiplying two secrets a and b, which are encoded by ua(x)

and ub(x) respectively, gives us a secret encoded by the polynomial u(x) = ua(x) · ub(x).
While the free coefficient of u(x) is indeed the desired multiplication result, i.e. u(0) = a·b,
the other coefficients are no longer completely random and cannot perfectly hide the

secrets a and b [BOGW88]. Thus, by interpolating the polynomial u(x) during decoding,

the federator obtains additional information about a and b, while we would only allow

revealing the product ab as output.

ByzSecAgg [JNMAC23] improves the communication efficiency by partitioning local model

updates into M smaller sub-vectors and letting each user use Mcliece-Sarwate secret shar-

ing [MS81] rather than Shamir secret sharing scheme to share their local model updates.

This reduces the dimension of problem from d to d
M . However, ByzSecAgg also considers

computational privacy and leaks all pairwise distances between model updates. With re-

gard to the randomness issue that arises when computing pairwise distances, ByzSecAgg

alleviates it by incorporating additional randomness.

2.1.2 Other Algorithms

Some solutions require two federators during execution and focus on computational pri-

vacy. [XLZ+22] proposes PPFDL, which requires two federators during the training al-

gorithm. PPFDL uses additive homomorphic encryption schemes and the garbled circuit

to perform addition, multiplication and division for computing the aggregation while re-

ducing the negative impact of irregular users. [HKJ20] also proposes a solution with two

federators, where each user’s model update is split into two additive secret shares and each

federator gets one of the shares. The federators then collaboratively perform a distance-

based secure aggregation rule based on the additive secret shares they hold. The pairwise

distances are leaked to the federator. [DCL+21] uses additive homomorphic encryption

and two federators perform secure two-party computation for performing the hamming

distance-based aggregation rule to defend against Byzantine attacks. Byzantine-resilience

of SecureFL [HLX+21] is also built on FLTrust, but two federators are required during

training. Linear operations are computed by the additive homomorphism of additive se-

cret sharing and computation of reciprocal square root and the ReLU function in FLTrust

are realized by utilizing boolean sharing. [MMM+22] uses cosine similarity between local

8

2.2 Secret Sharing based Multi-Party Computation

model update and the aggregated update to identify Byzantine users. Two federators are

required and computations are done by a two-trapdoor homomorphic encryption scheme.

RFed [MYL+24] requires two federators and leverages an efficient privacy preserving

mechanism Cheon-Kim-Kim-Song (CKKS), homomorphic encryption and secure multi-

party computation to achieve both computational privacy and security. WVFL [ZTX+24]

also proposes a solution that requires two federators and utilizes additive secret sharing

and linear homomorphic hash functions.

Some schemes only need a single server, but also focus on computational privacy. [FMM+21]

proposes SAFELearn, where each user receives the encrypted global model from the fed-

erator, decrypts it and trains a model update. Users send the encrypted update to the

federator, who utilizes fully homomorphic encryption, multi-party computation or secure

two-party computation for the aggregation. In NSPFL [ZL24], an aggregation server,

a third party and a cloud service provider are necessary for the execution of the train-

ing algorithm and guaranteeing computational privacy. RVPFL [LLTW23] also requires

a federator and another platform for aggregation in a private manner through homo-

morphic encryption. [HLW+23] uses cosine similarity as a measure to identify malicious

updates. It leverages compressive sensing to approximate it and achieves computational

privacy protection. [DWL+23] and [BIMP+24] achieve computational privacy by leverag-

ing multi-party computation to perform a Byzantine-robust aggregation method. [AJB]

obtains computational privacy by modifying the training data and the model training

process. SAFEFL [GMS+23] uses secret sharing-based multi-party computation, i.e. the

MP-SPDZ [Kel20] framework, for enabling the privacy-preserving computation of the

Byzantine-resilience aggregation techniques.

Some works cluster the users and compromise the privacy to achieve security. Users

are randomly clustered in SHARE [VXK21]. Then the Byzantine-resilient aggregation

is performed in each cluster to filter malicious updates. The cluster aggregated update

is revealed to the federator. Through several reclustering rounds, Byzantine robustness

is enhanced. FedGT [XOWZiA23] clusters the users into overlapping groups and apply

group testing to identify the Byzantine users. It also reveals the aggregate of each test

group and therefore shows the trade-off between users’ data privacy and security.

2.2 Secret Sharing based Multi-Party Computation

The BGW [BOGW88] protocol is one of the first and most celebrated information-

theoretically private secret sharing based multi-party computation (MPC) protocols,

which is secure even in the present of a malicious adversary. It heavily relies on Shamir

secret sharing [Sha79] and use its property to perform addition, multiplication and scaling

9

2 Related Work

on the shares. Share addition and scaling are quite trivial and involves local computa-

tion only: decoding the computation on the secret shares directly gives us the desired

computed secret. Unfortunately, as mentioned before in Section 2.1.1, share multiplica-

tion is non-trivial for Shamir secret sharing, not only because multiplication increases

the degree of the encoding polynomial, but the coefficients of the computed encoding

polynomial are also not random any more. Since the non-randomness in the coefficients

may lead to some leakage of the secret, computing multiplication by merely multiply-

ing the shares, as is done in addition, does not guarantee information-theoretic security.

BGW solves these problems by performing two additional steps before reconstructing the

computation, namely a degree reduction step and a re-randomization step, which require

further sharing, verification, addition and secret reconstruction. [GRR98] presented the

simplification of the additional steps. For security against malicious adversaries, Verifi-

able Secret Sharing (VSS) is used to ensure the validity of the shares received by users

and error correction of Reed-Solomon code is used in decoding to mitigate the impact of

malicious users manipulating the shares and the computation. By performing BGW, for

each multiplication, the number of users needed are n ≥ 3t, with t being the number of

malicious users. However, the BGW protocol requires a lot of communication and inter-

action between users and between the server and the user. For every multiplication gate,

the communication cost for the simplified BGW protocol is O(n4) over point-to-point

private channels if no malicious user misbehaves, and is O(n6) over point-to-point private

channels with O(n6) over broadcast channel if there is any malicious behavior [AL17].

Note that, if we have n ≥ 4t users, then the degree reduction step is not needed, as there

are a sufficient number of users to provide redundancy for error correction in polynomials

with degree 2t, then we get a much simpler case.

[Bea92] presented Beaver triple, which will be introduced in detail in Section 3.2.3, to

deal with the large amount of communication overhead and the increase of the degree in

the BGW protocol when performing multiplication on shares. It splits the problem into a

pre-processing phase and an online phase. Upon successfully generating enough number

of Beaver triples in the pre-processing phase, the online phase is extremely efficient by

consuming one Beaver triple for each multiplication and it doesn’t increase the degree of

the encoding polynomial.

BDOZ [BDOZ11] make use of Beaver triples and proposed a secret-sharing based multi-

party computation protocol that is computationally private in the pre-processing phase

and information-theoretically private in the online phase, and is secure against malicious

adversary. Additive secret sharing is used in BDOZ, where the secret is the addition of

all the shares. In the pre-processing phase, BDOZ uses semi-homomorphic encryption

scheme to generate Beaver triples, then the online phase, by consuming Beaver triples

10

2.2 Secret Sharing based Multi-Party Computation

for multiplication and using information-theoretic one-time Message Authentication Code

(MAC) for integrity check, is able to perform addition and multiplication with optimal ef-

ficiency. After the introduction of BDOZ, more secret sharing based multi-party computa-

tion schemes emerged, including SPDZ [DPSZ12], SPDZ2 [DKL+13], MASCOT [KOS16],

Overdrive [KPR18] and MP-SPDZ [Kel20]. These schemes, all based on additive secret

sharing, offer many options depending on the context when considering secret sharing

based MPC. Nonetheless, they share a common strategy of dividing the process into the

pre-processing and online phase, and utilizing Beaver triples to simplify the multiplica-

tion on shares. As a result, these Beaver triple based schemes guarantee information-

theoretical security against any t < n malicious users in the online phase, instead of

honest majority or even a relatively less t due to the need of error correction.

11

3 System Model and Preliminaries

We use [n] to denote the set of positive integers {1, · · · , n} and use ⌊x⌋ for the largest

integer less than or equal to x. We denote x[i] as the secret share of the variable x held

by user i and use {x} to denote the secret shares of the variable x accompanied by the

corresponding Message Authentication Code, i.e. {x} = {x[i],MAC(x[i])}. ⟨x, y⟩ denotes
the dot product of x and y. Vectors are denoted in bold type and scalars in normal type.

For a ordered sequence x1, . . . , xn and a set S ⊆ [n] of indices let xS = {xi : i ∈ S}.
The mutual information between two discrete random variables X and Y is denoted as

I(X;Y) while H(X) denotes the entropy of X.

3.1 System Model

We consider an FL setting with a single federator, N users and a Trusted Third Party

(TTP) in LoByITFL, which is used only before the start of the training process. As is

illustrated in 3.1.

trusted third party

pre-processing:

(for LoByITFL)

training:

aggregation: g

D0

user 1

D1

user 2

D2

user i

Di

user n

Dn

g1 g2 gi gn

b Byzantine t collusions p dropouts

g0

· · · · · ·

w(g+1) = w(g) − η · g

global model: w(g)

Figure 3.1: Federated learning system.

While the federator is honest-but-curious, B users are Byzantine, T users are colluding

and P users may drop out during the execution. Each user i, for i ∈ [n], holds a private

dataset Di. The federator has a small representative root dataset D0 and coordinates the

training process through interaction with the users. It possesses a d-dimensional global

13

3 System Model and Preliminaries

model w ∈ Rd and aims to train the global model using private data held by the users

to find the optimal global model w∗:

w∗ = argminw F (w).

F (w) is the loss function and ∇f(D,w) is an unbiased estimator of the true gradient

∇F (w), i.e. ∇F (w) = ED∼D[∇f(D,w)]. Specifically, in each global iteration g, the

federator sends the current global model w(g) to the users. Each user i initializes its local

model to the current global model, i.e., w
(0)
i = w(g), and updates it for one or more local

iterations by training on Di according to

w
(c+1)
i = w

(c)
i − ηu · ∇f(Di;w

(c)
i),

where ηu is the local learning rate and c is the local iteration. Each user, holding wi

after its local training iterations, sends the local model update gi = wi − w(g) to the

federator. Meanwhile, the federator trains on D0 and obtains g0, which is assumed to

be public. Upon receiving the local updates, the federator aggregates them according

to some aggregation rule AGG, i.e., g = AGG(g0,g1, · · · ,gn), and computes the global

model for the next iteration 1

w(g+1) = w(g) − η · g,

where η is the global learning rate.

3.2 Preliminaries

3.2.1 FLTrust

FLTrust [CFLG20] assumes that the federator holds a small clean training dataset D0

(referred to as root dataset) and performs local training to compute the federator model

update g0 in each iteration. Upon receiving local model updates gi from users, the

federator first normalizes all local model updates as

g̃i =
gi
∥gi∥

, ∀i ∈ 0, 1, ..., N

1Although we present our scheme in the simple gradient descent setting, it does not depend on the exact
update rule and is applicable to, e.g., momentum and higher order methods and adaptive learning
rate schedules. Similarly, it is compatible with additional privacy mechanisms based on adding noise
to updates, like differential privacy [?].

14

3.2 Preliminaries

to mitigate the influence of potential extremely large/small local updates that may be

submitted by Byzantine users. The federator then assigns a trust score TSi to each user

i, which is computed by the discriminator of the cosine similarity between the federator

model update g0 and the local model update gi. FLTrust chooses the rectified linear unit

(ReLU) function ReLU(x) = max(0, x) as the discriminator function, shown in equation

(3.1). This enables the federator to determine whether to trust the user and the degree

of the trust.

TSi = ReLU(cos(θi)) = ReLU(
⟨g0,gi⟩

∥g0∥ · ∥gi∥
) = ReLU(⟨g̃0, g̃i⟩), (3.1)

Ultimately, the federator aggregates the local model updates by averaging the normalized

updates weighted by their trust scores, as in equation (3.2), then uses the aggregation

result g to update the global model for the next iteration.

g =
∥g0∥∑
i∈[n] TSi

·
∑
i∈[n]

(TSi · g̃i) (3.2)

3.2.2 Linear Secret Sharing Scheme

An (N,T)-linear secret sharing (SS) scheme utilizes a randomized degree-T encoding

polynomial u(x) over the finite field Fp that encodes a secret s ∈ Fd
p into n secret shares,

i.e. s[1], · · · , s[n], each secret share is an evaluation of the encoding polynomial at certain

point. Observing T of these secret shares do not reveal any information about the secret

and observing T + 1 of the secret shares can fully reconstruct the secret s. We call

T the threshold of the SS scheme. The reconstruction is through Lagrange polynomial

interpolation: a degree-T polynomial can be interpolated by observing T +1 evaluations

of it. Instantiations of a linear SS scheme with threshold T can be Shamir SS [Sha79],

McEliece-Sarwate SS [MS81], Lagrange coded computing [YLR+19] or additive SS.

These SS schemes are linear, i.e. additive homomorphic, thus, the addition of the secret

shares is equivalent to the secret share of the addition and observing T + 1 such shares

can reconstruct the addition. This holds for any linear combination of the secrets, but

does not hold for multiplication. We detail this property of linear secret sharing scheme

through Shamir secret sharing scheme [Sha79] and decsribe Lagrange Coded Computing

(LCC) [YLR+19] in detail since we need it in ByITFL.

Shamir secret sharing [Sha79]: The encoding polynomial of Shamir secret sharing is

u(x) = r0+r1x+r2x
2+ · · ·+rTx

T , by setting r0 be the secret, i.e. r0 = s, and choosing

T random vectors r1, r2, · · · , rT from the finite field randomly. It then distributes the

secret s among a group of N users by sending each user i a share s[i] = u(αi), where

15

3 System Model and Preliminaries

αi’s are distinct values in Fp. Each secret share is therefore an evaluation of the encoding

polynomial u(x) at the point αi. To reconstruct the secret, a group of more than T users

collaboratively solve a Lagrange interpolation problem

s = u(0) =
T+1∑
i=1

u(αi)
T+1∏

j=1,j ̸=i

−αj

αi − αj
=

T+1∑
i=1

λi · u(αi).

Since Shamir secret sharing scheme is linear, any linear combination of the secrets can

be easily computed locally based on local secret shares. However, for multiplication,

collaboration among the users becomes essential to preserve information-theoretically

privacy.

More precisely, suppose two scalar secrets, denoted as s1 and s2, are shared using the

degree-T polynomials u1(x) and u2(x), respectively. When aiming to compute the addi-

tion (or any linear combination) of the secrets, users can locally compute the addition

on their shares, resulting in an evaluation point on the polynomial u(x) = u1(x) + u2(x),

with u(0) = s1 + s2. Since u(x) is a random polynomial with degree T , the desired com-

putation result can be obtained through polynomial interpolation and evaluating u(x)

at the point x = 0. However, when it comes to computation involving multiplication

of the secrets, a significant difference emerges. The multiplication of two secrets s1 and

s2 results in an evaluation point over the polynomial u(x) = u1(x) · u2(x), which is a

polynomial of degree at most 2T . While the constant term of u(x) is indeed the desired

product, i.e. u(0) = s1 ·s2, two issues arise. Firstly, the increase in the polynomial degree

requires a higher number of users needed for decoding the computation result: in the

above example, at least 2T + 1 evaluation points are needed for polynomial interpola-

tion. Secondly, the resulting polynomial u(x) = u1(x) · u2(x) is not a completely random

polynomial, but with a specific structure, which may leak additional information to the

adversary and thus cannot perfectly hide s1 and s2. As a consequence, we need additional

communication and collaboration when computing functions involving multiplications on

the secrets, i.e. an additional re-randomization step [BOGW88,GRR98,AL17] to make

the encoding polynomial random again.

Lagrange Coded Computing: [YLR+19] proposed Lagrange Coded Computing (LCC).

A secret s is partitioned into M smaller sub-vectors. LCC leverages the Lagrange polyno-

mial to create redundancy during encoding, which allows the users to compute the target

polynomial f(x) over the secret as if no coding is taking place. LCC provides resiliency

against P straggles, security against B Byzantine workers and information-theoretic pri-

vacy against T colluding workers.

Specifically, let the secret s be partitioned into M batches s(1), s(2), · · · , s(M), the com-

16

3.2 Preliminaries

puting system has N workers and is in the finite field Fp. By selecting M + T distinct

elements β1, β2, · · · , βM+T from Fp and choosing T uniformly random r(i) with the same

size as s(i)’s, it is able to construct a Lagrange interpolation polynomial

u(z) =
∑
j∈[M]

s(j) ·
∏

l∈[M+T]\{j}

z − βl
βj − βl

+
∑
j∈[T]

r(j) ·
∏

l∈[M+T]\{M+j}

z − βl
βM+j − βl

,∀i ∈ [N],

(3.3)

where u is a polynomial of degree at most M + T − 1. It satisfies that u(βi) = s(i) for

i ∈ {1, 2, · · · ,M} and u(βi) = r(i) for i ∈ {M + 1, · · · ,M + T}.
The coded dataset is then computed by selecting N distinct elements {αi}i∈[N] from F
such that {αi}i∈[N] ∩ {βj}j∈[M] = ∅ and user i receives the secret share s[i] = u(αi)

for i ∈ [N]. LCC allows users to perform polynomial computations on the secret shares

directly. Assume the desired polynomial is f , which is a degree deg(f) polynomial,

each worker i then computes f(s[i]) = f(u(αi)) locally. Each computation result is an

evaluation of the resulting polynomial f(u(z)), whose degree is at most (M+T−1)·deg(f),
at the point αi. Thus, upon having more than (M + T − 1) · deg(f) computation results

(evaluations) from the workers, the resulting polynomial f(u(z)) can be interpolated.

Thus, the desired computation results f(s(1)), · · · , f(s(M)) can be obtained by evaluating

the polynomial f(u(z)) at points {βj}j∈[M]. Since P straggles, B Byzantine workers

and T colluding workers are considered, the number of workers N should satisfy N >

(M + T − 1) · deg(f) + 2B + P + 1 for Reed-Solomon error correction decoding.

However, since LCC is essentially a linear secret sharing scheme, before reconstructing

the computed secret f(s), additional operation, i.e. re-randomization of the computed

polynomial, is also essential to perfectly hide the secret s.

3.2.3 Beaver Triple

The Beaver triple [Bea92] is a useful tool to deal with the large communication cost

which is required by the re-randomization step in the BGW protocol [BOGW88], when

computing multiplication on shared secrets. Beaver triple is a triple of values a, b, c, where

a, b are two independent and uniformly random values in the underlying finite field and

c is the product of a and b, i.e. c = ab. The triple is secret-shared among all n users, who

want to compute the product of two secret-shared messages x and y collaboratively. Note

that, the chosen SS scheme has to be identical and a linear SS scheme with threshold T ,

and none of the users can obtain the values of the triple and the messages as long as the

number of colluding users is less than the threshold of the chosen SS scheme. Also, one

17

3 System Model and Preliminaries

Beaver triple can only be used once to provide privacy.

Each user i holds one secret share of the Beaver triple a[i], b[i], c[i] and the messages x[i]

and y[i] and wants to compute a secret share of the product xy. To this end, each user:

1) computes x[i] − a[i] and y[i] − b[i], 2) sends the results to one dedicated participant,

who reconstructs and publicly announces the values of x− a and y − b, and 3) computes

its secret share of the product as

(xy)[i] = (x− a)(y − b) + (x− a)b[i] + (y − b)a[i] + c[i],

which only involves addition and scaling of secret shares. Reconstructing from enough

shares (xy)[i] gives xy = (x− a)(y − b) + (x− a)b+ (y − b)a+ c.

Therefore, we can convert the multiplication on the secret shares to linear computation,

which can be trivially solved because of the additive homomorphism of the chosen linear

SS scheme, by consuming one Beaver triple.

3.2.4 Message Authentication Code

In LoByITFL, we need the information-theoretically private one-time Message Authen-

tication Code (MAC) for integrity check, such that Byzantine users cannot cheat during

the computation without being detected.

Suppose the underlying finite field, where all operations are carried out, is Fp. We use

the information-theoretic one-time MAC with key (α, β) ∈ F2
p as in the BDOZ protocol

[BDOZ11]. ’One-time’ implies that the message authentication code remains secure only

when the key is used at most once. Formally, the authentication code of a message x is

defined to be MACα,β(x) = α · x+ β.

To allow computation to be performed on MAC, it is important to keep α constant

over different MAC keys, such that they are additive homomorphic. It means that,

when having two messages x, x′ and the corresponding MACα,β(x) = α · x + β and

MACα,β′(x′) = α · x′ + β′ with the same α, we can do the following computations on the

MACs to get the MACs of the computations:

1. Addition: MACα,β(x) +MACα,β′(x′) = MACα,β+β′(x+ x′)

2. Scaling: k ·MACα,β(x) = MACα,k·β(kẋ)

3. Addition by constant: MACα,β(x) = MACα,β−αk(x+ k)

This allows the integrity check of the computation: an adversary who sees MACα,β(x) for

a certain message x cannot forge another valid MACα,β(x
′) for x ̸= x′ with a forgery prob-

ability 1
Fp
. More precisely, the integrity check runs as follows. Let one party Pi, holding

18

3.3 Threat Model and Defense Goals

the message x and its corresponding MACα,β(x), be the party who performs the com-

putation, and another party Pj holding the MAC key (α, β) be the verifier. Pi performs

linear computation on the message x, say f(x), in the meanwhile, it performs the same

linear function on the corresponding MAC. When Pi is supposed to open the computation

result to Pj , it sends the computation result f(x) and the computed MACα,β(f(x)) to

Pj , such that the MAC key holder Pj can use the MAC key to compute α · f(x) + β and

check the consistency with the MACα,β(f(x)) it receives from Pi.

3.3 Threat Model and Defense Goals

We consider Byzantine attackers that arbitrarily deviate from the protocol and have

access to all users’ datasets. ByITFL and LoByITFL should be resilient and converge

even when up to B such users collaboratively misbehave.

ByITFL and LoByITFL guarantee the privacy of honest users’ local model updates in each

iteration against eavesdroppers with unlimited computing resources, requiring perfect IT

privacy. Considering up to T colluding users and the honest-but-curious federator, the

privacy constraint is as follows:

Privacy against colluding users: Once knowing the current global model, which is required

for the learning task, and the datasets of the colluding users, which may give information

about what the datasets of the honest users look like, no set T of up to |T | = T colluding

users can learn any additional information about the local model updates of the other

honest users:

I(g[N]\T ;gT ,MT | DT ,w
(g)) = 0. (3.4)

Privacy against the federator: Knowing the current global model and the root dataset,

the federator should not gain any information about the local model updates of the honest

users beyond the aggregation:

I(g[N]\T ;g0,Mf | D0,w
(g),g) = 0, (3.5)

where MT denotes the messages received by the colluding parties and Mf denotes the

intermediate messages received by the federator.

We consider the possibility of a subset of up to P users experiencing delays or dropping

out during protocol. The protocol should be IT private against the curious-but-honest

federator and against any collusion of up to T users, robust against B Byzantine users

and at the same time be able to tolerate up to P users staying silent during the execution.

19

4 Main Result

ByITFL and LoByITFL both are built on FLTrust [CFLG20] for Byzantine-resilience.

The federator possesses a small representative root dataset to obtain a federator model

update. This enables the computation of a trust score (TS) for each user through a

discriminator function on the cosine similarity between the user’s and federator’s model

update. To enable IT privacy, we use a polynomial as the discriminator function, which

makes the computation of the aggregation result a polynomial. The two schemes we pro-

pose apply different methods to make this polynomial computation IT private. ByITFL

utilizes the property of LCC [YLR+19] to provide IT privacy, corrects the aggregation

result by assuming enough number of users and perform error correct decoding. While

LoByITFL is suitable for any linear secret sharing scheme, by assuming a trusted third

party before the training algorithm, the federator can always ensure the correctness of

the aggregation by utilizing an integrity check on the computation results and remove

the computations failed in the check. We describe the two schemes one by one.

4.1 ByITFL

We present ByITFL, which leverages the ability of FLTrust [CFLG20] to provide resilience

against Byzantine attacks. Assuming the federator holds a small training dataset and

performs local training to obtain a federator model update, ByITFL approximates the

ReLU function used to compute the trust scores in FLTrust by a polynomial and uses

LCC to provide IT privacy against eavesdroppers. ByITFL consists of the following five

main steps:

A. Users normalize and quantize their local model updates. The federator model

update is treated accordingly.

B. The normalized updates are partitioned into smaller sub-vectors and secret

shared using LCC and ITVSS.

C. Users validate the normalization based on the secret shares from other users.

D. Users compute a secret representation of the aggregation result by evaluating

the target polynomials.

21

4 Main Result

E. The federator receives shares of the aggregation from the users to reconstruct the

secure aggregation by decoding an error correcting code and updates the global

model.

We describe the details of each step in the sequel.

A. Normalization and Quantization To defend against Byzantine attacks performed

on the magnitude, the federator and all users first normalize their model update gi to

a unit vector g̃i =
gi

∥gi∥ ,∀i ∈ {0, 1, · · · , N}, so that the impact of extremely large/small

local updates, more likely originating from Byzantine users, can be eliminated.

Since the training process is performed in the real domain and LCC (like every IT private

secret sharing) works over finite fields, it is essential to transfer the normalized model

updates g̃i ∈ Rd to vectors in a prime field ḡi ∈ Fd
p, where p is a large prime. Therefore,

users apply an element-wise stochastic quantizer Qq(x) with 2q+1 quantization intervals

as in [SGA20], [JNMAC23]. The relation between p and q is explained later. Note that

the stochastic rounding is unbiased, i.e., EQ[Qq(x)] = x. Let ϕ(x) = x + p mod p map

integers to values in Fp, the quantization is defined to be

ḡi := ϕ(q ·Qq(g̃i)). (4.1)

B. Sharing of the Normalized Model Updates The federator and the users first

partition their normalized model updates ḡi into M smaller subvectors

ḡi = [ḡ
(1)
i , ḡ

(2)
i , · · · , ḡ(M)

i]T ,∀i ∈ {0, 1, · · · , N},

where each sub-vector is of size d
M and M ∈ [N−P+1

2 −B − T].

We assume the federator model update is public, the federator broadcasts the sub-vectors

of ḡ0 to the users. Each user i uses LCC [YLR+19] to secret share ḡi with all users by

the degree-(T +m− 1) encoding polynomial

ui(z) =
∑
j∈[M]

ḡ
(j)
i ·

∏
l∈[M+t]\{j}

z − βl
βj − βl

+
∑
j∈[T]

r
(j)
i ·

∏
l∈[M+t]\{M+j}

z − βl
βM+j − βl

, ∀i ∈ [N],

(4.2)

where β1, · · · , βM+t are M + t distinct elements from Fp and r(j)’s are chosen indepen-

dently and uniformly at random from Fp. Note that ui(β1) = ḡ
(1)
i , · · · ,ui(βM) = ḡ

(M)
i

and the finite field size should be large enough to avoid any wrap around, which we de-

scribe in subsection 4.1. Secret shares are computed by evaluating ui(z) at n distinct

values {αl}l∈[n], which are selected from Fp such that {αl}l∈[n] ∩ {βl}l∈[M] = ∅. Hence,

22

4.1 ByITFL

each user j receives a secret share of ḡi from other user i, i.e. ḡi[j] = ui(αj), which is a

vector of size d
M , for i, j ∈ [N].

Note that, we leverage the ITVSS protocol from [BOGW88] to prevent Byzantine users

from misbehaving in the secret sharing phase.

C. Validation of Normalization Malicious users may misbehave during normalization.

Thus, upon receiving a secret share, each user i verifies correct normalization by locally

computing the squared l2-norm ∥ḡj [i]∥22 of the secret shares for each j ∈ [N] and sending

the computed shares to the federator. This is possible due to LCC and a re-randomization

step before sending computations to the federator, which will be detailed in the next

subsection. Upon receiving the computation results, the federator utilizes error correction

decoding of the underlying Reed-Solomon code, cf. [MS81], to reconstruct ∥ḡi∥22 for each

ḡi and checks if it is within a certain interval, i.e.,

∣∣∥ḡi∥22 − ϕ(q ·Qq(1))
2
∣∣ < ε · q2, (4.3)

where ε is a predefined threshold and can be set empirically. Note that the error correction

requires the total number of users N ≥ 2B+2(M+T−1)+P+1. The interval is caused by

the accuracy loss due to quantization. If any user does not pass the normalization check,

the federator marks them as Byzantine and excludes them from future computations.

D.Users Secure Computation In FLTrust [CFLG20], the federator assigns to each user

a trust score TSi = ReLU(cos(θi)),∀i ∈ [N], where θi is the angle between the federator’s

and the user’s model update. The federator aggregates the local model updates by

averaging the normalized updates weighted by their trust scores.

Making FLTrust IT private is not straightforward, which is why we choose a degree-k

polynomial function h(x) = h0 + h1x + · · · + hkx
k as the discriminator function. We

detail the choice of this discriminator function in Section 4.5. Therefore, the trust score

for each user becomes

TSi ≈ h(cos(θi)) = h(⟨ḡ0, ḡi⟩), ∀i ∈ [N],

and the aggregation result is

g =
∥g0∥∑
i∈[N]TSi

·
∑
i∈[N]

(TSi · ḡi) =
∥g0∥
Σ1

·Σ2, (4.4)

where Σ1 =
∑
i∈[N]

h(⟨ḡ0, ḡi⟩) and Σ2 =
∑
i∈[N]

(h(⟨ḡ0, ḡi⟩) · ḡi).

Since the federator possesses g0, for computing the aggregation g in a privacy-preserving

23

4 Main Result

manner, the federator only needs to compute the value of Σ2
Σ1

in a private manner without

learning individual users’ private information beyond this quotient. The colluding users

should learn nothing about other honest users during the computation.

Privacy Against Colluding Users: Both Σ1 and Σ2 are polynomial functions of the

model updates ḡ0 and ḡi for i ∈ [n], where ḡ0 is public and ḡi’s are secret shared

among the users using LCC. Note that LCC allows the computation of an arbitrary

polynomial f with degree deg(f) over its secret. Suppose user i holds a secret si, the

user partitions it and shares it among users via a degree-(M + T − 1) encoding poly-

nomial ui(z). Each user j, holding its secret share si[j] = ui(αj), is able to com-

pute f(si[j]) = f(ui(αj)) locally, which is an evaluation of the resulting polynomial

f(ui(z)) at the point αj . Upon having more than (m + t − 1) deg(f) + 1 evaluations

from the users, the resulting polynomial f(ui(z)) can be interpolated. The desired

computation is obtained by evaluating the polynomial f(ui(z)) at points {βl}l∈[M], i.e.,

f(si) = [f(s
(1)
i), · · · , f(s(M)

i)]T = [f(ui(β1)), · · · , f(ui(βM))]T .

Hence, it is possible to perform the polynomial computations of Σ1 and Σ2 on the secret

shares, such that each user obtains an evaluation point of Σ1 and Σ2. This guarantees

that any set of up to T users are not able to learn anything from the shares.

Privacy Against the Federator: Privacy against the federator has not yet been guaranteed:

the reconstructions of the computation results, i.e. ∥ḡi∥22, Σ1 and Σ2, cannot perfectly

hide the secret values g1, · · · ,gN against the federator. LCC is a linear secret sharing

scheme that is additively, but not multiplicatively, homomorphic. Given two secrets a

and b shared among n users with encoding polynomial ua(z) and ub(z), each user i,

having the secret shares a[i] = ua(αi) and b[i] = ub(αi), is able to locally compute the

sum of the shares a[i] + b[i] = ua(αi) + ub(αi) = ua+b(αi), which perfectly hides the

secrets. This property does not hold for multiplication on shares [BOGW88,AL17]. The

product of a[i] and b[i] results in a secret share of ua(z) · ub(z), whose evaluation at β1

is indeed a · b, but is not a completely random polynomial perfectly hiding the secret,

i.e. ua(z) · ub(z) ̸= ua·b(z). The federator can learn additional information about a and

b beyond a · b. We follow the re-randomization step from [GRR98,AL17], which involves

sub-sharing the users’ secret shares using ITVSS [BOGW88], and linearly combining to

construct re-randomized secret shares.

The users own the re-randomized shares of Σ1 and Σ2. It remains to ensure that the

federator obtains the quotient Σ2/Σ1 without gaining any additional information about

Σ1 and Σ2. Therefore, each user i 1) chooses an independent value λi uniformly at

random from Fp and secret shares it by LCC and ITVSS among all users, 2) adds the

shares of λj ’s from all other user j and obtains the share of1 λ =
∑

j=[N] λj . Each user

1The case λ = 0 can be avoided by minor changes, omitted for brevity.

24

4.2 Theoretical Analysis of ByITFL

multiplies the re-randomized shares of Σ1 and Σ2 by their share of λ, performs another

re-randomization and sends the resulting shares of λΣ1 and λΣ2 to the federator.

E. Secure Aggregation The federator receives the secret shares of λΣ1 and λΣ2, where

the degree of the encoding polynomial for λΣ1 is k · (M + T − 1) and for λΣ2 is (k+ 1) ·
(M + T − 1). With sufficient number of users sending evaluations to the federator, the

federator is able to leverage the error correction property of Reed-Solomon codes [MS81]

to decode the values of λΣ1 and λΣ2. Therefore, we require the total number of users in

the system to be N ≥ 2B + (k + 1) · (M + T − 1) + P + 1.

Upon decoding the correct values, the federator computes Σ2/Σ1 = λΣ2/λΣ1, converts

the results from the finite field back to the real domain by de-quantizing by Qq(x)
−1 and

demapping by ϕ−1 and computes the global model for the next iteration. To ensure the

correctness of the result, none of the computations should cause a wrap around in the

finite field. Each entry of the normalized gradient is in the range −q to q, hence the dot

product is in the range −dq2 to dq2. Scaling the gradients by this value and summing N

such entries results in the range −dNq3 to dNq3. Accounting for the 0 value, we thus

require p ≥ 2dNq3 + 1.

4.2 Theoretical Analysis of ByITFL

The following Theorem 1 proves the robustness of ByITFL against Byzantine behavior

during the protocol execution and the strong IT privacy guarantee achieved by ByITFL.

Theorem 1. ByITFL with N ≥ 2B + (k + 1) · (M + T − 1) + P + 1 guarantees

1) IT privacy against any T users according to (3.4) and against the federator according

to (3.5), and

2) Byzantine-resilience, i.e. it computes the correct aggregation result according to (4.4)

when up to B users are Byzantine.

Proof of Theorem 1. (Privacy) We first prove the privacy against any T colluding users

according to (3.4):

I(g[n]\T ;gT ,MT | DT ,w
(g))

= H(g[n]\T | DT ,w
(g))−H(g[n]\T | gT ,MT , DT ,w

(g))

= H(g[n]\T , DT ,w
(g))−H(DT ,w

(g))

−H(g[n]\T ,gT ,MT , DT ,w
(g)) +H(gT ,MT , DT ,w

(g))

= H(g[n]\T , DT ,w
(g))−H(DT ,w

(g))

−H(g[n]\T ,MT , DT ,w
(g)) +H(MT , DT ,w

(g)), (4.5)

25

4 Main Result

where the last equation follows because gT is a deterministic function of DT and w(g).

We then consider the exchanged messages MT , which include the shares of the normalized

local model updates ḡT [i] and sub-shares from the re-randomization step in Step C and

Step D of the scheme, i.e. when computing the squared l2-norm ∥ḡi∥22 to check the

correctness of the normalization and the two sums Σ1 and Σ2 in the aggregation. We can

leverage the privacy guarantees of LCC [YLR+19], the re-randomization step [GRR98],

[AL17] and ITVSS [BOGW88]. When the number of colluding users T satisfies N ≥
2B+(k+1) · (M +T −1)+P +1, the exchanged messages MT observed by the colluding

users are completely random and independent of g[n]\T , DT and w(g), i.e.,

H(g[n]\T ,MT , DT ,w
(g)) = H(g[n]\T , DT ,w

(g)) +H(MT),

H(MT , DT ,w
(g)) = H(DT ,w

(g)) +H(MT).

By substituting the above into (4.5) we prove (3.4), showing that ByITFL is IT private

against T users. For privacy against the honest-but-curious federator, we need to prove

(3.5). We have

I(g[n]\T ;g0,Mf | D0,w
(g),g)

= H(g0,Mf | D0,w
(g),g)−H(g0,Mf | g[n]\T , D0,w

(g),g)

= H(g0 | D0,w
(g),g)+H(Mf | g0, D0,w

(g),g)

−H(g0 |g[n]\T , D0,w
(g),g)−H(Mf|g0,g[n]\T , D0,w

(g),g)

= H(Mf | g0, D0,w
(g),g)−H(Mf | g0,g[n]\T , D0,w

(g),g),

where the last equation holds because g0 is a deterministic function of D0 and w(g).

With regard to the exchanged messages Mf , we need to consider: 1) the computed

shares of ∥ḡi∥22, λΣ1 and λΣ2 sent from the users, which are completely random, i.e.

uniformly distributed and independent of g0,g[n]\T , D0,w
(g),g, by leveraging the privacy

guarantee of the re-randomization step [GRR98], [AL17], and 2) the reconstructed values

of ∥ḡi∥22 and Σ2/Σ1. Since ∥ḡi∥22 lies within a certain range for all possible model updates

(ideally equivalent to one), the value of ∥ḡi∥22 is also independent of g0,g[n]\T , D0,w
(g),g.

Regarding Σ2/Σ1, we have H(Σ2/Σ1 | g,g0) = 0 since g = ∥g0∥ ·Σ2/Σ1. We denote the

computed shares as c, and have

H(Mf | g0, D0,w
(g),g) = H(c, ∥ḡi∥22,Σ2/Σ1 | g0, D0,w

(g),g)

= H(c, ∥ḡi∥22 | g0, D0,w
(g),g) +H(Σ2/Σ1 | c, ∥ḡi∥22,g0, D0,w

(g),g)

= H(c, ∥ḡi∥22 | g0, D0,w
(g),g) = H(c, ∥ḡi∥22),

26

4.3 LoByITFL

and H(Mf | g0,g[n]\T , D0,w
(g),g) = H(c, ∥ḡi∥22) for the same reason. This concludes

the proof of IT privacy against the federator and the proof of Theorem 1.

(Byzantine-Resilience) Byzantine users can present arbitrary incorrect results in any step

during the computation. Particularly, they can (1) share invalid secret shares in the

secret sharing step, (2) incorrectly normalize local model updates g̃i in the normalization

step, (3) present an incorrect computation result of (∥gj∥22)[i] during validation of the

normalization step, (4) misbehave when computing the discriminator function, (λΣ1)[i]

and (λΣ2)[i], and send incorrect computation results to the federator in step D.

To prevent Byzantine users from sending invalid secret shares among users, such as send-

ing secret shares encoded by different encoding polynomials or encoded by some polyno-

mial with higher degree, we leverage the information-theoretic verifiable secret sharing

scheme described in [BOGW88] for sharing the model updates.

For Byzantine attacks in the second scenario, since the model updates presented and

normalized by honest users lie within a certain range, the misbehaving malicious users

presenting malicious normalized vectors and trying to manipulate the learning process

through attacks on the magnitude can be detected and identified through the normal-

ization validation. Thus, even if the malicious users present the model updates with the

largest squared l2-norm that will be accepted by the normalization validation, it only has

limited impact since the ϵ is empirically set to be very small.

For Byzantine attacks in the remaining scenarios, i.e. the attempts to send incorrect

computation results back to the federator, the malicious behavior will be corrected by

error correct decoding during reconstruction of the computations. In the presence of

B Byzantine users, by utilizing error correction decoding of Reed-Solomon code [MS81],

LCC allows to correct B errors as long as N ≥ 2B+(T+M−1)+P+1, where (T+M−1)

is the degree of the encoding polynomial and P is the number of non-responsive users.

Since multiplication on secret shares increases the degree of the encoding polynomial, i.e.,

the encoding polynomial for ∥gj∥22 is with degree 2(T+M−1), for λΣ1 is (k+1)(T+M−1)

and for λΣ2 is (k + 2)(T + M − 1), the B errors presented by Byzantine users can be

corrected as long as N ≥ 2B + (k + 2)(T + M − 1) + P + 1. Hence, correctness of the

computation is guaranteed.

4.3 LoByITFL

We propose LoByITFL, a Byzantine-resilient scheme with information-theoretic privacy

and low communication cost. The resilience against Byzantine attacks of LoByITFL is

based on the robustness of FLTrust [CFLG20] and the integrity check of Message Authen-

tication Codes (MACs). IT privacy is obtained by embedding each user’s model update

27

4 Main Result

into a finite field through stochastic quantization and secret sharing with all users by lin-

ear Secret Sharing (SS) schemes such as Shamir SS [Sha79], McEliece-Sarwate SS [MS81],

Lagrange coded computing [YLR+19] and additive SS (see e.g. [BDOZ11]). These linear

SS schemes are inherently additively homomorphic; and multiplicative homomorphism

can be ensured through Beaver triples. We split the scheme into two phases: the pre-

processing phase and the training phase. In the pre-processing phase, we assume the

existence of a Trusted Third Party for distributing Beaver triples to users. While in the

training phase, per iteration, users share their local model updates with other users by

linear secret sharing. With Beaver triples converting multiplication of the secret shares

to addition and scaling, the discriminator function, which is a polynomial function, can

be computed on the secret shares to obtain the shares of the aggregation result. Note

that, during the computation, to prevent Byzantine users from providing corrupt com-

putation results, we utilize additive homomorphic MACs for an integrity check. To this

end, the TTP assigns a MAC for each secret share of the local model updates in the

pre-processing phase, such that the users, when performing computations on the secret

shares, have to perform the same computations on the corresponding MACs and send the

computation result and the resulting MACs to the federator to prove the correctness of

its computation. Therefore, the federator is able to identify misbehaving Byzantine users

and reconstruct the aggregation result correctly. We describe LoByITFL in more details

as follows.

LoByITFL is processed in two phases: the pre-processing phase and the training phase.

Pre-processing phase: We require a Trusted Third Party (TTP) in this phase. It

generates a sufficient number of Beaver triples a, b, c and sends the corresponding secret

shares to the users to enable multiplications on shares in the training phase. In addition,

it also samples sufficiently many random vectors r ∈ Fd
p and one random value λ ∈ F

uniformly at random. Then, the TTP sends the random vectors ri,g and the secret shares

λg[i] to user i, one for each iteration g, and sends the secret shares ri,g[j] to user j. The

random numbers are for secret sharing the local model updates in the training phase

efficiently and preserve the privacy of intermediate computation results. We omit g in

the following for brevity.

In order to prevent Byzantine users from providing corrupt computation results during

the protocol, the TTP assigns an information-theoretic one-time MAC [BDOZ11] for each

secret share of the Beaver triples and r’s: MACα,β(x) = α · x + β, where x is the secret

share, (α, β) is the MAC key and both α and β are sampled from the underlying finite

field Fp uniformly at random. Note that we keep α globally fixed and sample a new β

independently for each MAC. As a result the MAC is additive homomorphic and linear

operations can be performed on the MAC. This allows the integrity check for any linear

28

4.3 LoByITFL

computation f on a secret share x, by checking the consistency of the resulting MAC

f(MACα,β(x)) and the MAC of the computation result MACα,β(f(x)) (we omit α and

β later in the text for brevity). Therefore, the TTP also sends the MAC keys (α, β)’s

used to generate the MACs for Beaver triples and random numbers to the federator. The

federator can then perform the integrity check at the end of each share multiplication,

mark users who do not pass the integrity as Byzantine and exclude them from future

computation. In other words, at the end of the pre-processing phase, each user i receives

ri, {rj [i]}, {λ[i]} and a sufficient number of {a[i]}, {b[i]}, {c[i]}, while the federator

receives all MAC keys (α, β) used for generating MACs of these variables. The number

of random numbers and Beaver triples required for the training phase will be given later.

Training phase: The training phase in each iteration is conducted in five main steps.

A. Users and the federator normalize and quantize their model updates. Byzantine

attacks are considered in both magnitude and direction of the model update vector.

For defending attacks on the magnitude, the model updates gi, ∀i ∈ {0, 1, · · · , N}, are
normalized, which means the federator and all users compute the unit vector g̃i =

gi

∥gi∥ ,

i ∈ {0, . . . , N}. Note that the SS schemes works over finite fields, but the training process

is conducted in the real domain. We use the unbiased element-wise stochastic quantizer

Qq(x) and the mapper ϕ(x) as in previous works [SGA20, JNMAC23,XHEB24], with q

being the quantization parameter and 2q + 1 being the quantization intervals, to map g̃i

to vectors in a prime field ḡi ∈ Fd
p, where p is a large enough prime to avoid any wrap

around. The relation between p and q will be detailed later.

B. Users secret share their local model updates. The federator simply broadcasts g0

to all users. Each user i secret shares its local model update gi to all other users with a

linear SS scheme, thus keeping it IT private while making it available for computations

on the shares. The secret sharing of user i’s model update is supported by the uniformly

random vector ri, that was distributed in the pre-processing phase. Specifically, each user

j ∈ [N] has a share ri[j] of ri and user i knows the plain value of ri. User i secret shares

gi by broadcasting gi − ri to all other users. User j, for j ∈ [n] can compute

{gi[j]} = (gi − ri) + {ri[j]}. (4.6)

Note that this constitutes an (N−1, T)-linear SS of gi among users j ∈ [N]\ i as detailed
in the following. The uniformly random vector ri is independent of gi and thus perfectly

hides it by Shannon’s one-time-pad [?]. Once gi− ri is public, gaining information about

gi implies gaining information about ri, which is only possible if the adversary has access

to more than T shares ri[j]. Conversely, from any T + 1 shares ri[j] it is straightforward

to decode ri and thus gi. The corresponding MAC(gi[j]) is obtained by the additive

29

4 Main Result

homomorphism of MAC. To summarize, each user i computes the secret share and the

corresponding MAC of the local model update of every user j, i.e. {gj [i]}, for j ∈ [n].

C. For preventing Byzantine users from incorrectly performing the normalization, each

user i ∈ [n], validates the normalization by computing secret shares of the squared

l2-norm as

{(∥gj∥22)[i]} = {⟨gj [i],gj [i]⟩}, (4.7)

for the local model update gj of each user j ∈ [n]. Since {(∥gj∥22)[i]} is a d-dimensional

vector, every {(∥gj∥22)[i]} computation is done by consuming d Beaver triples to perform

a multiplication via linear computations, which enables computation on the linear secret

shares and the corresponding MACs. Users send the computation results to the federator,

who performs an integrity check on each {(∥gj∥22)[i]} using the MACs and reconstructs

the value of ∥gj∥22. Similar to [XHEB24], the federator checks if ∥gj∥22 lies within a certain

interval, i.e., ∣∣∥ḡj∥22 − ϕ(q ·Qq(1))
2
∣∣ < ε · q2,

where ε is a predefined small threshold, to compensate for quantization error. Users who

fail the normalization check are excluded from future computations.

D. Users compute the discriminator function on the secret shares of the model updates,

which gives the secret shares of the aggregation result.

This step is based on the non-private scheme FLTrust [CFLG20], which assigns to each

user i a trust score determined by the cosine similarity between the federator and the

local model update, i.e., TSi = ReLU(cos(θi)). We call the function used to compute

trust scores discriminator function, i.e., FLTrust uses ReLU as the discriminator function.

In [CFLG20], the federator then scales the local model updates by their trust scores and

averages them for the aggregation result.

As discussed by the authors of [XHEB24], making FLTrust IT private is not straight-

forward and requires the transformation of the discriminator function from ReLU to a

polynomial. The choice of the discriminator function will be discussed later. In gen-

eral, the discriminator function is chosen to be a polynomial h(x) with degree k, i.e.

h(x) = h0 + h1x+ · · ·+ hkx
k, which gives the trust score for each user

TSi = h(cos(θi)) = h(⟨ḡ0, ḡi⟩),∀i ∈ [N].

30

4.3 LoByITFL

The aggregation result is therefore

g =
∥g0∥∑
i∈[N]TSi

·
∑
i∈[N]

(TSi · ḡi) =
∥g0∥
Σ1

·Σ2,

where Σ1 =
∑
i∈[N]

h(⟨ḡ0, ḡi⟩) and Σ2 =
∑
i∈[N]

(h(⟨ḡ0, ḡi⟩) · ḡi).
(4.8)

Notice that, with the discriminator function being a polynomial, the computation of the

aggregation only involves the computation of Σ1 and Σ2, which are polynomial functions

of g0 and gi, for i ∈ [n]. Since the federator holds g0, it suffices to compute the quotient

Σ2/Σ1 in a privacy-preserving manner. Hence, user i, having g0, {gj [i]} for j ∈ [n],

and λ[i], computes the secret shares of λΣ1 and λΣ2, i.e. {(λΣ1)[i]} and {(λΣ2)[i]}, by
performing polynomial computations on g0 and {gj [i]} step by step. For each multipli-

cation the users consume one Beaver triple. Therefore, the computations of {(λΣ1)[i]}
and {(λΣ2)[i]} can be solved by utilizing the additive homomorphism of both the linear

SS scheme and the MAC. Finally, the users obtain one secret share each of λΣ1 and λΣ2

and send them to the federator.

E. The federator reconstructs the aggregation result upon receiving the secret shares

from users. By receiving the {(λΣ1)[i]} and {(λΣ2)[i]} from user i ∈ [n], the federator

first checks the integrity of the computation results to ensure the correctness of each secret

share, then reconstructs the value of λΣ1 and λΣ2 by Lagrange polynomial interpolation,

as long as it receives at least t + 1 correct computations. Note that, we do not need

error correction decoding [MS81] like previous works, which is expensive in computation

and requires a higher total number of users for decoding, since the federator ensures the

correctness of all computation through the integrity check. Thus, the quotient Σ2/Σ1 is

obtained without additional leakage since λ is a uniformly random value unknown to all

participants. The federator converts Σ2/Σ1 from the finite field back to the real domain

by performing the inverse of the quantizer Qq(x) and the mapper ϕ(x) and computes the

global model for the next iteration.

The number of random numbers and Beaver triples required for the training phase (and

distributed during the initialization phase) is given in Table 4.1.

To guarantee the correctness of the reconstructed results, none of the intermediate com-

putations may cause a wrap around in the underlying finite field. Since each coordinate

of ḡi is in the range −q to q and each summation and multiplication during the poly-

nomial computation can increase the range accordingly, we require p ≥ 2Ndkq2k+1 + 1,

where N is the total number of users, d is the dimension of the model updates, q is the

quantization parameter and k is the degree of the discriminator function.

31

4 Main Result

Table 4.1: The number of random numbers and Beaver triples required per training it-
eration. {l,m, n} are used for computing the dot product of two vectors and
{x,y, z} are used for computing the element-wise multiplication of a scalar
and a vector, where l,m,y, z ∈ Fd

p, n is the dot product of l and m, z is the
component-wise multiplication of x and y. Those operations generalize Beaver
triples from scalars to vectors, each containing d scalar Beaver triples a, b, c.

Notation Amount Purpose (for i ∈ [n])

Random number
r n secret share ḡi
λ 1 hide Σ1 and Σ2

Beaver triple
l,m, n n2 compute ∥ḡi∥22
a, b, c (k − 1)n2 compute ⟨ḡ0, ḡi⟩l, l = 2, 3, ..., k
x,y, z n2 compute h(⟨ḡ0, ḡi⟩) · ḡi

4.4 Theoretical Analysis of LoByITFL

The following Theorem 2 proves the robustness of LoByITFL against Byzantine behavior

during the protocol execution and the strong IT privacy guarantee achieved by LoBy-

ITFL.

Theorem 2. LoByITFL with N ≥ B + T + P + 1 guarantees

1) IT privacy against any T users according to (3.4) and against the federator according

to (3.5), and

2) Byzantine-resilience, i.e. it computes the correct aggregation result according to (4.8)

when up to B users are Byzantine.

Proof of Theorem 2. (Privacy) We first prove the privacy against any T colluding users

according to (3.4):

I(g[n]\T ;gT ,MT | DT ,w
(g))

= H(g[n]\T | DT ,w
(g))−H(g[n]\T | gT ,MT , DT ,w

(g))

= H(g[n]\T , DT ,w
(g))−H(DT ,w

(g))

−H(g[n]\T ,gT ,MT , DT ,w
(g)) +H(gT ,MT , DT ,w

(g))

= H(g[n]\T , DT ,w
(g))−H(DT ,w

(g))−H(g[n]\T ,MT , DT ,w
(g)) +H(MT , DT ,w

(g)),

(4.9)

where the last equation holds because gT is a deterministic function of DT and w(g).

We then consider the exchanged messages. The exchanged messages MT observed by

the colluding users are 1) {rj [T]}, {λ[T]} and {a[T]}, {b[T]}, {c[T]} sent from the TTP,

2) the values of gi − ri sent from user i and the secret share {gi[T]}, 3) {(∥gi∥22)[T]}
computed during normalization validation, 4) all intermediate results when consuming

32

4.4 Theoretical Analysis of LoByITFL

Beaver triples for share multiplication computations, i.e., when computing multiplication

of x and y, malicious users get the values of {x[T] − a[T]}, {y[T] − b[T]}, x − a, y − b

and {(xy)[T]}, 5) {(λΣ1)[T]}, {(λΣ2)[T]}. We can leverage the privacy guarantees of

the secret sharing scheme, the Beaver triple [Bea92] and the MAC scheme. When the

number of colluding users is smaller than the threshold of the secret sharing scheme,

i.e. T , we have 1) the secret shares observed by the colluding users are completely

random and independent of g[n]\T , DT and w(g), 2) the corresponding MACs observed

by Byzantine users are also random because of the randomness of β and do not leak any

information about the secret, 3) the plaintext values gi − ri, x − a and y − b observed

by the Byzantine users are completely random and independent of g[n]\T , DT and w(g)

because of the randomness r, a and b, i.e.,

H(g[n]\T ,MT , DT ,w
(g)) = H(g[n]\T , DT ,w

(g)) +H(MT),

H(MT , DT ,w
(g)) = H(DT ,w

(g)) +H(MT).

By substituting the above into (4.9) we prove (3.4), showing that ByITFL is IT private

against T users. For privacy against the honest-but-curious federator, we need to prove

(3.5). We have

I(g[n]\T ;g0,Mf |D0,w
(g),g)

= H(g0,Mf |D0,w
(g),g)−H(g0,Mf |g[n]\T , D0,w

(g),g)

= H(g0 | D0,w
(g),g)+H(Mf | g0, D0,w

(g),g)

−H(g0|g[n]\T , D0,w
(g),g)−H(Mf |g0,g[n]\T , D0,w

(g),g)

= H(Mf |g0, D0,w
(g),g)−H(Mf |g0,g[n]\T , D0,w

(g),g),

where the last equation holds because g0 is a deterministic function of D0 and w(g). We

then consider the exchanged messages Mf observed by the federator. Mf includes 1)

the MAC keys sent by the TTP at the pre-processing phase, 2). all intermediate results

when using Beaver triples for share multiplication computations, i.e., when computing

multiplication of two variables x and y, the federator gets the values of {x[i] − a[i]},
{y[i]− b[i]} for all i ∈ [n] and the reconstructed values x− a and y − b, 3) the computed

secret shares {(∥gj∥22)[i]} for j ∈ [n], {(λΣ1)[i]} and {(λΣ2)[i]} sent from the users i ∈ [n],

4) the reconstructed values of ∥gj∥22, λΣ1, λΣ2 and the quotient Σ2/Σ1.

The MAC keys sent from the TTP are random values that are independent of

g0,g[n]\T , D0,w
(g),g. With regards to the intermediate results when computing share

multiplications, the private secrets x and y is protected by the random values a and b,

therefore independent. Since ∥ḡj∥22 lies within a certain range for all possible model up-

33

4 Main Result

dates (ideally equivalent to one), the value of ∥ḡj∥22 is also independent of g0,g[n]\T , D0,w
(g),g.

The values of Σ1 and Σ2 are protected by the random value λ. Regarding Σ2/Σ1, we have

H(Σ2/Σ1|g,g0) = 0 since g = ∥g0∥ ·Σ2/Σ1. We consider the MAC keys, all intermediate

results during multiplication, the computed shares, λΣ1 and λΣ2 together and denote

them as m, we have

H(Mf |g0, D0,w
(g),g)

= H(m, ∥ḡi∥22,Σ2/Σ1|g0, D0,w
(g),g)

= H(m, ∥ḡi∥22 | g0, D0,w
(g),g) +H(Σ2/Σ1 | c, ∥ḡi∥22,g0, D0,w

(g),g)

= H(m, ∥ḡi∥22 | g0, D0,w
(g),g) = H(m, ∥ḡi∥22),

and H(Mf | g0,g[n]\T , D0,w
(g),g) = H(m, ∥ḡi∥22) for the same reason. This concludes

the proof of IT privacy against the federator. Hence, we conclude the proof of privacy.

(Byzantine-resilience) Byzantine users can present arbitrary incorrect results in any step

during the computation. Particularly, they can (1) incorrectly normalize local model

updates g̃i in the normalization step, (2) compute the incorrect secret shares {gj [i]} for

other users’ model updates in the secret sharing step, (3) present an incorrect compu-

tation result of {(∥gj∥22)[i]} during validation of the normalization step, (4) misbehave

when computing the discriminator function, {(λΣ1)[i]} and {(λΣ2)[i]}, and send incorrect

computation results to the federator in step D.

For Byzantine attacks in the first scenario, the misbehaving malicious users can be de-

tected and identified in the normalization validation step. For all honest users, the model

updates presented and normalized lie within a certain range. Thus, even if the malicious

users present the model updates with the largest squared l2-norm that will be accepted

by the normalization validation, it only has limited impact since the ϵ is empirically set

to be very small.

For Byzantine attacks in the remaining scenarios, the malicious behavior will be detected

by requiring the users to perform the same computation on the corresponding MACs

and through integrity check before reconstructing the computation result. Since users

receive the MACs of each rj [i], λ[i] and Beaver triples a[i], b[i], c[i] from the TTP and

the federator receives all the corresponding MAC keys (α, β)s’ from the TTP, the users

and the federator can trust the correctness of the MAC value. According to equations

(4.6), (4.7) and (4.8), after consuming Beaver triples on each multiplication during the

computation, the computations of {gj [i]}, {(∥gj∥22)[i]}, {(λΣ1)[i]} and {(λΣ2)[i]} in the

last three attack scenarios only involve linear operations on the secret shares and the

corresponding MACs given by the TTP at the pre-processing phase, i.e. {rj [i]}, {λ[i]}
and {a[i]}, {b[i]}, {c[i]}. Therefore, the correctness of the computations entirely relies on

34

4.5 Choice of the Discriminator Function

the integrity check of the information-theoretic one-time MAC [BDOZ11], where we need

to consider the forgery probability of the MAC. Forgery probability is the probability that

a malicious user guesses the MAC key used for generating the MAC of a specific secret

share correctly, such that it can create a valid MAC for the computation result to fool the

integrity check. Since in all MAC keys (α, β)s, α is a uniformly random consistent value

and βs are chosen independently uniformly at random from the underlying prime field

Fp, which are used to protect the value of α when we reusing it in different MACs. The

forgery probability for each scalar is the probability of guessing the β used for generating

the MAC for a specific scalar, that is 1/∥Fp∥ = 1/p, i.e. the inverse of the size of the

underlying finite field. Since the finite field we choose is very large, i.e. p ≥ 2Ndkq2k+1+1,

and the malicious users have to guess the β’s used for all d dimensions to fool the integrity

check, the forgery probability is small enough to guarantee the security and correctness

of the scheme.

4.5 Choice of the Discriminator Function

In FLTrust [CFLG20], the ReLU function is chosen as the discriminator function, whose

use in ByITFL and LoByITFL poses challenges. Most importantly, the ReLU function

requires a comparison, which is difficult to compute under IT privacy, i.e., it inherently

leaks information about the relative direction of local model updates with the federator

model update. We first thought about approximating the ReLU function used in FLTrust

by a polynomial. But it is only satisfactory when the degree k is greater than 6. We thus

design our discriminator function based on the following core observation: As long as the

function takes non-zero values in the interval between−1 and 0, the left tail is not required

to be zero. If the Byzantine attackers present model updates resulting in cosine similarity

around −1, we use the inverted vector (scaled by a negative trust score). Hence, such

corrupt updates cannot harm the learning process beyond what corrupt model updates

with a positive cosine similarity are capable of. Based on these observations, we find that

it is not required to approximate the ReLU function by large-degree polynomials with

high precision; instead, we carefully choose a degree-3 polynomial that mimics ReLU in

the negative half. In the positive half, we choose a more conservative shape than ReLU

by giving higher trust scores to local model updates that strongly point in the same

direction as the federator model update. Uncertain local model updates are attenuated

more aggressively. This is very similar to [LLTW23], where the authors use a quadratic

function on the right, and a constant 0 on the left. As a by-product, the degree of

our discriminator polynomial is decreased significantly to k = 3. The chosen degree-3

polynomial is given by h(x) = 0.46897526x3 + 0.56578977x2 + 0.1860353x+ 0.01363545,

35

4 Main Result

and plotted in Figure 4.1 alongside with the degree-6 approximation polynomial and the

ReLU function.

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.5

1

1.5

x

h
(x
)

FLTrust (ReLU)

degree 6 ReLU approximation polynomial

degree 3 polynomial

Figure 4.1: Comparison of different discriminator functions h(x).

4.6 Complexity Analysis

Proposition 1. ByITFL requires a user to communicate O(d
M n3+n4) and the federator

O(d
mn+n2) scalars. The computation cost is O((d

M n3+n4) log2 n log log n) and O((d
mn+

n2) log2 n log logn), respectively.

Sketch Proof of Proposition 1. For each user sharing a single scalar, the computation

complexity of encoding in LCC is O(n log2 n log log n) [YLR+19] and that of ITVSS

[BOGW88] is O(n2 log2 n). Since the re-randomization step [GRR98] involves sub-sharing

each secret share using VSS and a linear combination of the sub-shares, the computation

complexity is O(n2 log2 n log log n+n3 log2 n). The communication cost for the ITVSS is

O(n2), and O(n3) for re-randomization. With respect to the federator, the computation

cost for decoding a single scalar using error-correction decoding takes O(n log2 n log log n).

The remaining proof follows counting arguments, here omitted for brevity.

Proposition 2. LoByITFL requires a user to communicate O((d+k)n) and the federator

O((d+k)n2) scalars. The computation cost for each user and the federator is O((d+k)n)

and O((d+ k)n2 log2 n log logn), respectively.

Remark 1. When choosing a linear secret sharing scheme such as McEliece-Sarwate

secret sharing [MS81] or Lagrange coded computing [YLR+19], that partition the model

updates into M smaller sub-vectors, like ByzSecAgg and ByITFL did, the communication

and computation complexity can be effectively optimized by reducing every d to d/M .

36

4.6 Complexity Analysis

Proof of Proposition 2. Our scheme is split into the pre-processing phase and the train-

ing phase. In the pre-processing phase, the TTP communicates O((d + k)n) with each

user and O((d + k)n2) with the federator for one iteration. The training phase is more

complicated. The computation for each user sharing a scalar is, accoding to (4.6), the the

addition of a publicly known value and a secret share, thus O(1), and that of one share

multiplication is O(1) as well, i.e. the computation of consuming one Beaver triple, which

only involves addition and scaling of the secret shares. For the federator, the computation

complexity is when reconstructing the intermediate results during share multiplications

and the multiplication results, which is a Lagrange polynomial interpolation problem and

costs O(n log2 n log log n) per scalar. The communication cost for secret sharing and com-

putations on secret shares are O(1) for each user and O(n) for the federator per scalar.

The rest of the proof follows the counting arguments, which is omitted here for the sake

of brevity.

In Table 4.2 and 4.3, we compare the communication and computation complexity of

ByITFL and LoByITFL with respect to N , d and the partitioning parameter M to the

previous solutions BREA and ByzSecAgg.

Table 4.2: Communication Complexity.

Per-User Federator

BREA [SGA20] O(dn+ n2) O(dn+ n3)

ByzSecAgg [JNMAC23] O(d
M n+ n2) O(d

M n+ n3)

ByITFL O(d
mn3 + n4) O(d

mn+ n2)

LoByITFL O((d+ k)n) O((d+ k)n2)

Table 4.3: Computation Complexity

Per-User Federator

BREA [SGA20] O(dn log2 n+ dn2) O((dn+ n3) log2 n log log n)

ByzSecAgg [JNMAC23] O(d
M n log2 n+ d

M n2) O((d
M n+ n3) log2 n log log n)

ByITFL O((d
M n3 + n4) log2 n log logn) O((d

mn+ n2) log2 n log logn)

LoByITFL O((d+ k)n) O((d+ k)n2 log2 n log log n)

37

5 Experiments

We numerically demonstrate the convergence of the proposed schemes, i.e. ByITFL

and LoByITFL, and compare to FedAvg and FLTrust. Our experiments are based on the

implementation provided by [GMS+23] for our experiments. We consider MNIST [Den12]

and CIFAR-10 [KH+09] equally distributed across N = 40 users. On MNIST we train a

three-layer dense neural network, and on CIFAR-10 a CNN model. The rectified linear

unit function (ReLU) is used as the activation function. As loss function we choose Cross-

Entropy. In each iteration, users randomly sample a minibatch of 64 samples from their

local training dataset and perform local training on the minibatch. The learning rate for

MNIST is chosen to be 0.1, and 0.01 for CIFAR-10.

We assume 25% of the users are Byzantine (B = 10) and perform either the Krum attack,

trim attack, label flipping attack scaling attack or the adaptive attack. Krum attack

and trim attack are untargeted local model poisoning attacks presented in [FCJG20],

optimized for the aggregation rule Krum [BEMGS17] and Trimmed mean [YCKB18].

The label-flipping attack follows the same setting as in [FCJG20]. The scaling attack

is equivalently known as the backdoor attack [BVH+20]. The adaptive attack is the

attack presented in [FCJG20] and optimized for the proposed schemes. We design our

adaptive attack by following the design of adaptive attack in FLTrust [CFLG20], but

replace the discriminator function in FLTrust with the chosen degree-3 polynomial. As

in [CFLG20], we randomly split the users into 10 groups and a training example with label

j is assigned to group j with probability a > 0 and to any other groups with probability
1−a
9 . Data are uniformly distributed to each user within the same group. Therefore, we

set a = 0.1 for i.i.d. setting and set a = 0.5 for non-i.i.d. setting. We set q = 1024. As

in [CFLG20], the size of the root dataset D0 is 100. We set ε = 0.02 for the normalization

validation. For i.i.d. MNIST and all attacks other than the adaptive attack, we plot the

average results and standard deviation across 10 runs. Due to the large computation

time, the results for the adaptive attack are solely based on 2 runs. In Table 5.1, it can

be found that when plotted against FLTrust, the proposed schemes achieve comparably

effective resilience against Krum attacks, trimmed attacks, label flipping attacks, and the

adaptive tailored attacks on MNIST. Note that, while the adaptive attack on ByITFL

and LoByITFL is optimized for the chosen degree 3 polynomial, the adaptive attack

39

5 Experiments

performed on FLTrust is optimized for the ReLU function. Hence, replacing the ReLU

function with the appropriately tuned degree-3 polynomial does not incur additional

vulnerabilities. Both schemes, however, are not able to counteract backdoor attacks,

with our scheme resulting in an average attack success rate of 0.874± 0.276 and FLTrust

of 0.617 ± 0.366 in i.i.d setting, as shown in Table 5.2. Similar results can be found for

non-i.i.d MNIST and CIFAR-10, as indicated in Table 5.3 and Table 5.4, where each

experiment is repeated ten times for non-i.i.d. MNIST and twice for CIFAR-10. We

omit the results for the adaptive attack and the scaling attack on non-i.i.d. MNIST and

CIFAR-10 as the adaptive attack is computationally too expensive and the scaling attack

is indefensible.

Table 5.1: Testing accuracy comparison. We report the mean and standard deviation
of 10 runs on i.i.d. MNIST. For reference, FedAvg under no attack achieves
0.962± 0.001.

label-flipping trim attack Krum attack adaptive attack

FLTrust 0.933± 0.008 0.891± 0.041 0.930± 0.005 0.913± 0.005
ours 0.940± 0.008 0.924± 0.046 0.925± 0.013 0.911± 0.008

Table 5.2: Testing accuracy and attack success rate comparison under scaling (backdoor)
attack. We report the mean and standard deviation of 10 runs on i.i.d. MNIST.

testing accuracy attack success rate

FLTrust 0.918± 0.011 0.617± 0.366
ours 0.942± 0.010 0.874± 0.276

Table 5.3: Testing accuracy comparison. We report the mean and standard deviation of
10 runs on non-i.i.d. MNIST. For reference, FedAvg under no attack achieves
0.962± 0.001.

label-flipping trim attack Krum attack

FLTrust 0.928± 0.005 0.916± 0.013 0.934± 0.004
ours 0.939± 0.006 0.911± 0.019 0.933± 0.008

Table 5.4: Testing accuracy comparison. We report the mean and standard deviation of
2 runs on CIFAR-10. For reference, FedAvg under no attack achieves 0.655±
0.005.

label-flipping trim attack Krum attack

FLTrust 0.597± 0.002 0.633± 0.006 0.634± 0.005
ours 0.573± 0.006 0.634± 0.004 0.629± 0.005

40

Compute Resources All experiments in this section were conducted on an internal

compute cluster of machines with CPUs of type Intel Xeon and AMD EPYC, GPUs of

type Nvidia GTX 1080 Ti, RTX 4080 and RTX 4090, and between 64GB and 512GB of

RAM. The overall computation time for all experiments is on the order of multiple days.

41

6 Conclusion

We introduced two schemes ByITFL and LoByITFL, two information-theoretically pri-

vate and Byzantine-resilient federated learning schemes. ByITFL is the first Byzantine-

resilient scheme for FL with full information-theoretic privacy and LoByITFL reduces

the significant communication cost of ByITFL towards practicable applications by the

use of a TTP during the pre-processing phase. We studied discriminator functions dif-

ferent from the originally proposed ReLU [CFLG20] that allow for IT private schemes

without sacrificing the resiliency against Byzantine attacks. We prove the robustness

and the privacy of our scheme, and experimentally compare the Byzantine-resilience

aginst FLTrust [CFLG20]. While FLTrust, ByITFL and LoByITFL can effectively de-

fend against label-flipping attacks, trim attacks, Krum attacks, and adaptive attacks

individually tailored to the choice of the discriminator polynomial, we found that none of

the schemes can resist a properly examined backdoor (scaling) attack. Improving our IT

private scheme to also resist backdoor attacks while maintaining the strongest possible

notion of privacy is left for future work.

43

45

Bibliography

[AHW+17] Y. Aono, T. Hayashi, L. Wang, S. Moriai et al., “Privacy-preserving deep

learning via additively homomorphic encryption,” IEEE transactions on

information forensics and security, vol. 13, no. 5, pp. 1333–1345, 2017.

[AJB] Z. Alebouyeh and A. Jalaly Bidgoly, “Privacy-preserving federated learning

compatible with robust aggregators,” Available at SSRN 4793556.

[AL17] G. Asharov and Y. Lindell, “A full proof of the bgw protocol for perfectly

secure multiparty computation,” Journal of Cryptology, vol. 30, no. 1, pp.

58–151, 2017.

[BDOZ11] R. Bendlin, I. Damg̊ard, C. Orlandi, and S. Zakarias, “Semi-homomorphic

encryption and multiparty computation,” in Annual International Con-

ference on the Theory and Applications of Cryptographic Techniques.

Springer, 2011, pp. 169–188.

[Bea92] D. Beaver, “Efficient multiparty protocols using circuit randomization,” in

Advances in Cryptology—CRYPTO’91: Proceedings 11. Springer, 1992,

pp. 420–432.

[BEMGS17] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine

learning with adversaries: Byzantine tolerant gradient descent,” Advances

in neural information processing systems, vol. 30, 2017.

[Ben86] J. C. Benaloh, “Secret sharing homomorphisms: Keeping shares of a se-

cret secret,” in Conference on the theory and application of cryptographic

techniques. Springer, 1986, pp. 251–260.

[BIK+17] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,

S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggrega-

tion for privacy-preserving machine learning,” in proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security,

2017, pp. 1175–1191.

47

Bibliography

[BIMP+24] Y. Ben-Itzhak, H. Möllering, B. Pinkas, T. Schneider, A. Suresh,

O. Tkachenko, S. Vargaftik, C. Weinert, H. Yalame, and A. Yanai, “Scionfl:

Efficient and robust secure quantized aggregation,” in IEEE Conference on

Secure and Trustworthy Machine Learning (SaTML), 2024, pp. 490–511.

[BOGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems for

non-cryptographic fault-tolerant distributed computation,” in Proceedings

of the Twentieth Annual ACM Symposium on Theory of Computing, ser.

STOC ’88. New York, NY, USA: Association for Computing Machinery,

1988, p. 1–10. [Online]. Available: https://doi.org/10.1145/62212.62213

[BVH+20] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How

to backdoor federated learning,” in International conference on artificial

intelligence and statistics. PMLR, 2020, pp. 2938–2948.

[CFLG20] X. Cao, M. Fang, J. Liu, and N. Z. Gong, “Fltrust: Byzantine-robust fed-

erated learning via trust bootstrapping,” arXiv preprint arXiv:2012.13995,

2020.

[DCL+21] Y. Dong, X. Chen, K. Li, D. Wang, and S. Zeng, “FLOD: Oblivious

defender for private byzantine-robust federated learning with dishonest-

majority,” in Computer Security – ESORICS 2021, 2021, pp. 497–518.

[Den12] L. Deng, “The mnist database of handwritten digit images for machine

learning research,” IEEE Signal Processing Magazine, 2012.

[DKL+13] I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart,

“Practical covertly secure mpc for dishonest majority–or: breaking the spdz

limits,” in Computer Security–ESORICS 2013: 18th European Symposium

on Research in Computer Security, Egham, UK, September 9-13, 2013.

Proceedings 18. Springer, 2013, pp. 1–18.

[DPSZ12] I. Damg̊ard, V. Pastro, N. Smart, and S. Zakarias, “Multiparty compu-

tation from somewhat homomorphic encryption,” in Annual Cryptology

Conference. Springer, 2012, pp. 643–662.

[DWL+23] C. Dong, J. Weng, M. Li, J.-N. Liu, Z. Liu, Y. Cheng, and S. Yu, “Privacy-

preserving and byzantine-robust federated learning,” IEEE Transactions

on Dependable and Secure Computing, 2023.

48

Bibliography

[FCJG20] M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning attacks to

{Byzantine-Robust} federated learning,” in 29th USENIX security sympo-

sium (USENIX Security 20), 2020, pp. 1605–1622.

[Fel87] P. Feldman, “A practical scheme for non-interactive verifiable secret shar-

ing,” in 28th Annual Symposium on Foundations of Computer Science (sfcs

1987). IEEE, 1987, pp. 427–438.

[FMM+21] H. Fereidooni, S. Marchal, M. Miettinen, A. Mirhoseini, H. Möllering,

T. D. Nguyen, P. Rieger, A.-R. Sadeghi, T. Schneider, H. Yalame, and

S. Zeitouni, “Safelearn: Secure aggregation for private federated learning,”

in IEEE Security and Privacy Workshops (SPW), 2021, pp. 56–62.

[FYB18] C. Fung, C. J. Yoon, and I. Beschastnikh, “Mitigating sybils in federated

learning poisoning,” arXiv preprint arXiv:1808.04866, 2018.

[GBDM20] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting

gradients-how easy is it to break privacy in federated learning?” Advances

in Neural Information Processing Systems, vol. 33, pp. 16 937–16 947, 2020.

[GMS+23] T. Gehlhar, F. Marx, T. Schneider, A. Suresh, T. Wehrle, and H. Yalame,

“Safefl: Mpc-friendly framework for private and robust federated learning,”

2023.

[GR+18] R. Guerraoui, S. Rouault et al., “The hidden vulnerability of distributed

learning in byzantium,” in International Conference on Machine Learning.

PMLR, 2018, pp. 3521–3530.

[GRR98] R. Gennaro, M. O. Rabin, and T. Rabin, “Simplified vss and fast-track

multiparty computations with applications to threshold cryptography,” in

Proceedings of the seventeenth annual ACM symposium on Principles of

distributed computing, 1998, pp. 101–111.

[HKJ20] L. He, S. P. Karimireddy, and M. Jaggi, “Secure byzantine-robust machine

learning,” arXiv preprint arXiv:2006.04747, 2020.

[HLW+23] G. Hu, H. Li, T. Wu, W. Fan, and Y. Zhang, “Efficient byzantine-robust

and privacy-preserving federated learning on compressive domain,” IEEE

Internet of Things Journal, 2023.

[HLX+21] M. Hao, H. Li, G. Xu, H. Chen, and T. Zhang, “Efficient, private and robust

federated learning,” in Annual Computer Security Applications Conference,

2021, pp. 45–60.

49

Bibliography

[JNMAC23] T. Jahani-Nezhad, M. A. Maddah-Ali, and G. Caire, “Byzantine-resistant

secure aggregation for federated learning based on coded computing and

vector commitment,” arXiv e-prints, pp. arXiv–2302, 2023.

[Kel20] M. Keller, “Mp-spdz: A versatile framework for multi-party computation,”

in Proceedings of the 2020 ACM SIGSAC conference on computer and com-

munications security, 2020, pp. 1575–1590.

[KH+09] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from

tiny images,” 2009.

[KMA+21] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,

K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al., “Advances

and open problems in federated learning,” Foundations and Trends® in

Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[KOS16] M. Keller, E. Orsini, and P. Scholl, “Mascot: faster malicious arithmetic

secure computation with oblivious transfer,” in Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security,

2016, pp. 830–842.

[KPR18] M. Keller, V. Pastro, and D. Rotaru, “Overdrive: Making spdz great

again,” in Annual International Conference on the Theory and Applica-

tions of Cryptographic Techniques. Springer, 2018, pp. 158–189.

[LLTW23] Z. Lu, S. Lu, X. Tang, and J. Wu, “Robust and verifiable privacy federated

learning,” IEEE Transactions on Artificial Intelligence, 2023.

[MMM+22] Z. Ma, J. Ma, Y. Miao, Y. Li, and R. H. Deng, “Shieldfl: Mitigating

model poisoning attacks in privacy-preserving federated learning,” IEEE

Transactions on Information Forensics and Security, vol. 17, pp. 1639–

1654, 2022.

[MMR+17] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,

“Communication-efficient learning of deep networks from decentralized

data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–

1282.

[MS81] R. J. McEliece and D. V. Sarwate, “On sharing secrets and reed-solomon

codes,” Communications of the ACM, vol. 24, no. 9, pp. 583–584, 1981.

50

Bibliography

[MYL+24] Y. Miao, X. Yan, X. Li, S. Xu, X. Liu, H. Li, and R. H. Deng, “Rfed:

Robustness-enhanced privacy-preserving federated learning against poison-

ing attack,” IEEE Transactions on Information Forensics and Security, pp.

1–1, 2024.

[SGA20] J. So, B. Güler, and A. S. Avestimehr, “Byzantine-resilient secure federated

learning,” IEEE Journal on Selected Areas in Communications, vol. 39,

no. 7, pp. 2168–2181, 2020.

[Sha79] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22,

no. 11, pp. 612–613, 1979.

[VXK21] R. K. Velicheti, D. Xia, and O. Koyejo, “Secure byzantine-robust dis-

tributed learning via clustering,” arXiv preprint arXiv:2110.02940, 2021.

[XHEB24] Y. Xia, C. Hofmeister, M. Egger, and R. Bitar, “Byzantine-resilient secure

aggregation for federated learning without privacy compromises,” arXiv

preprint arXiv:2405.08698, 2024.

[XKG19] C. Xie, S. Koyejo, and I. Gupta, “Zeno: Distributed stochastic gradient

descent with suspicion-based fault-tolerance,” in International Conference

on Machine Learning. PMLR, 2019, pp. 6893–6901.

[XLZ+22] G. Xu, H. Li, Y. Zhang, S. Xu, J. Ning, and R. H. Deng, “Privacy-

preserving federated deep learning with irregular users,” IEEE Transac-

tions on Dependable and Secure Computing, vol. 19, no. 2, pp. 1364–1381,

2022.

[XOWZiA23] M. Xhemrishi, J. Oestman, A. Wachter-Zeh, and A. G. i Amat, “Fedgt:

Identification of malicious clients in federated learning with secure aggre-

gation,” arXiv preprint arXiv:2305.05506, 2023.

[YCKB18] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust dis-

tributed learning: Towards optimal statistical rates,” in International Con-

ference on Machine Learning. PMLR, 2018, pp. 5650–5659.

[YLR+19] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. A.

Avestimehr, “Lagrange coded computing: Optimal design for resiliency,

security, and privacy,” in The 22nd International Conference on Artificial

Intelligence and Statistics. PMLR, 2019, pp. 1215–1225.

51

Bibliography

[ZL24] Z. Zhang and Y. Li, “Nspfl: A novel secure and privacy-preserving feder-

ated learning with data integrity auditing,” IEEE Transactions on Infor-

mation Forensics and Security, 2024.

[ZLH19] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances in

neural information processing systems, vol. 32, 2019.

[ZSWJ22] B. Zhao, P. Sun, T. Wang, and K. Jiang, “Fedinv: Byzantine-robust feder-

ated learning by inversing local model updates,” in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 36, no. 8, 2022, pp. 9171–9179.

[ZTX+24] Y. Zhong, W. Tan, Z. Xu, S. Chen, J. Weng, and J. Weng, “Wvfl:

Weighted verifiable secure aggregation in federated learning,” IEEE In-

ternet of Things Journal, 2024.

52

