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A B S T R A C T   

Recovery from forest disturbances is a pivotal metric of forest resilience. Forests globally are facing unprece
dented levels of both natural and anthropogenic disturbances, yet our understanding of their recovery from these 
disturbances remains incomplete. Remote sensing is an effective tool for understanding post-disturbance re
covery, but existing approaches largely rely on spectral recovery indicators that are difficult to interpret and 
require long time series after disturbance, which limits their applicability to recent disturbance pulses. We here 
introduce a novel, ecologically informed set of recovery indicators based on fractional cover maps derived from 
spectral unmixing analysis of Landsat and Sentinel-2 time series. We estimated annual pre- and post-disturbance 
tree cover and bare ground fractions over the eastern Alps (~130,000 km2) for the period from 1990 to 2021. 
From these fraction time series, we derived recovery intervals defined as the time it takes to reach a pre-defined 
tree cover threshold after disturbance, referred to as canopy recovery. We found mean recovery intervals be
tween 5.5 and 13.4 years, depending on recovery threshold and disturbance severity. Comparing our results to 
traditional remote sensing-based approaches of mapping forest recovery, we found that spectral unmixing-based 
recovery indicators give considerably more realistic recovery intervals than approaches based on spectral indices 
because they effectively distinguish tree regeneration from other post-disturbance vegetation (e.g., shrubs, 
grasses). Finally, we were able to accurately predict the long-term forest recovery success based on the infor
mation available only three years after disturbance, which underlines the high importance of a short window of 
reorganization post-disturbance, and highlights the utility of remote sensing to inform post-disturbance forest 
management (e.g., in identifying areas in need of tree planting). Our study thus provides an important step ahead 
in the remote sensing-based monitoring of forest recovery and resilience, which is urgently needed in a time of 
rapid forest change.   

1. Introduction 

Forests in Europe have experienced an increase in disturbances in the 
past four decades (Senf et al., 2018) which has sparked interest in 
assessing post-disturbance forest recovery (Seidl and Turner, 2022). 
Forest recovery is, however, a broad term, and it can be measured in 
different dimensions (e.g., structure, composition, or function). A key 
dimension of structural forest recovery is canopy cover, which can be 
defined as the reestablishment of a closed tree canopy (Grantham et al., 
2020). Post-disturbance canopy recovery is a pivotal process for 
assessing forest resilience (Ingrisch and Bahn, 2018; Stritih et al., 2023) 
because it reflects the potential of a forest to regain the capacity for 

important ecosystem functions and services (Trumbore et al., 2015). 
Such functions and services include, among other, protection from 
natural hazards (Sebald et al., 2019) or water purification (Jung et al., 
2021). A European-wide study by Senf and Seidl (2022) showed that 
most forests return to a closed canopy state within 30 years after 
disturbance. However, soil loss and competition from graminoids can 
impede the establishments of seeds and the growth of saplings (Zehet
gruber et al., 2017). Increasing climate extremes pose additional chal
lenges during the initial recovery phases (Beloiu et al., 2022; Hérault 
and Piponiot, 2018; Stevens-Rumann et al., 2022), which likely will 
become more significant in the future. There is thus growing uncertainty 
regarding the successful recovery of forests to closed canopy conditions 
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after disturbances (McDowell et al., 2020; Seidl and Turner, 2022), 
which highlights the need for a comprehensive monitoring of forest 
recovery across space and time. 

A variety of studies have assessed post-disturbance recovery using 
field data on post-disturbance tree densities (Strickland et al., 2024), 
including a recent large-scale study across Europe (Cerioni et al., 2024). 
While those studies give valuable insights into the establishment of trees 
after disturbance, they often only present a snapshot in time and thus do 
not fully capture the temporal dynamics of forest recovery to closed 
canopy conditions. Field-based approaches also rarely allow for spatially 
explicit analyses of recovery, because field data are labor-intensive to 
collect, and most datasets thus only represent a limited sample of 
disturbed sites. Remote sensing has been suggested as a complementary 
tool for studying post-disturbance recovery (Frolking et al., 2009), 
overcoming some of the limitations of field-based approaches. Special 
emphasis has been given to long time series of multispectral observa
tions, now spanning over 50 years with regular (theoretically 8–16 days) 
multispectral observations (Wulder et al., 2022). The long data history 
has led to numerous studies investigating post-disturbance forest re
covery using spectral indices: In earlier studies, the Normalized Differ
ence Vegetation Index (NDVI) was commonly used for post-disturbance 
recovery assessments, particularly after events like fires (Gitas et al., 
2012; Solans Vila and Barbosa, 2010; Veraverbeke et al., 2013). How
ever, the quick saturation of NDVI after disturbances, attributed to early 
successional vegetation, limits its application in capturing and dis
tinguishing changes in post-disturbance vegetation structure (Buma, 
2012). To address this problem, it was suggested to adopt alternative 
indices based on the short-wave infrared region, such as the Normalized 
Burn Ratio (NBR), which offers a higher sensitivity to post-disturbance 
structural changes (Pickell et al., 2016). The NBR has consequently 
been operational in assessing forest recovery across a wide range of 
forest ecosystem, from boreal to Mediterranean biomes (Chirici et al., 
2020; Frazier et al., 2018; Hermosilla et al., 2019; Nikinmaa et al., 2020; 
White et al., 2022; White et al., 2018; White et al., 2017). 

What all approaches for assessing recovery based on spectral indices 
have in common is the need to define a recovery threshold. Most studies 
define this threshold as 80% of the pre-disturbance average index value, 
which was found to correspond well to LiDAR-derived measures of re
covery in a case study in Finland (White et al., 2018). Yet, an 80% 
threshold might not always signify structural or compositional recovery, 
as highlighted recently by White et al., 2023, and might not correspond 
to established definitions of forest cover. Other studies have used mul
tiple indices to gain a more comprehensive understanding of recovery 
processes (Hislop et al., 2018; Liu et al., 2023; Pickell et al., 2016; Smith- 
Tripp et al., 2024), but defining a reference state for multiple spectral 
indices is even more challenging, as different indices contain different 
information on the recovery process (Pickell et al., 2016). Another 
important drawback of spectral indices is their inability to distinguish 
between different vegetation types and consequently their limitation in 
assessing which factors drive the observed increase in the respective 
index. It thus remains unclear whether spectral recovery does indeed 
signify recovery of the tree canopy, or just an increase in vegetation 
density after disturbance. To overcome these limitations, it has been 
suggested to convert spectral recovery trajectories into trajectories of 
tree cover using either regression models (Senf et al., 2019; Senf and 
Seidl, 2022) or spectral unmixing (Senf et al., 2020). Doing so allows for 
defining distinct recovery thresholds based on a physically meaningful 
unit (e.g., 80% of pre-disturbance canopy cover) or for defining fixed 
thresholds based on existing definitions (e.g., > 40% tree cover as 
defined by the FAO as closed forest). 

Estimating if and how quickly a forest recovers its canopy after 
disturbance requires decadal time series, as most forests will take years 
to decades to close their canopy (Senf and Seidl, 2022). This constraint 
makes it challenging to predict recovery for recently disturbed sites, 
which have not yet closed their canopy. The need for long time series 
also makes it challenging to assess potential changes in recovery over 

time, which would be an important early warning signal for eroding 
forest resilience (Scheffer et al., 2015). Given those limitations, a key 
question is whether the long-term recovery of a forest can be predicted 
already from early post-disturbance site characteristics. This question 
follows the notion that forest recovery trajectories are, to a large degree, 
determined in a short reorganization window after disturbance (Seidl 
and Turner, 2022) that might be captured by remote sensing. For 
example, high disturbance severities and high shares of bare ground 
shortly after disturbance might indicate a severe impact on local soil 
conditions (i.e., through heavy machinery used in post-disturbance 
salvage logging) and thus reduced seed establishment. It likewise 
might indicate a reduced seed availability (i.e., local loss of all mature 
trees) and increased light availability, which can hinder forest recovery 
by favouring the dominance of competing vegetation such as graminoids 
(Kleinman et al., 2019; Mantero et al., 2023). Conversely, low distur
bance severities and low bare ground fractions shortly after disturbance 
might indicate the presence of remaining mature trees, advanced tree 
regeneration and shrubs, which are associated with a faster recovery due 
to higher seed availability (Ibáñez et al., 2019) and more favourable 
microclimate conditions (Alfaro-Sánchez et al., 2015; Marcolin et al., 
2019). To quantify early post-disturbance conditions as a window into 
the future recovery trajectory of a forest, we propose the use of spectral 
unmixing to derive early post-disturbance fractions of bare ground 
(Schug et al., 2020). We hypothesize that early post-disturbance bare 
ground fractions, in combination with disturbance characteristics (i.e., 
disturbance severity, pre-disturbance canopy cover), can provide valu
able insights into the long-term recovery probability of a pixel. 

Here, our aim is to develop a novel, ecologically informed set of 
remote sensing-based recovery indicators using spectral unmixing. We 
address our overall aim by focusing on two specific objectives: (a) 
compare recovery intervals derived from spectral unmixing and based 
on physical units of tree cover to existing recovery indicators based on 
spectral indices across variable disturbance characteristics; and (b) test 
whether post-disturbance bare ground fractions and disturbance char
acteristics can be used to predict long-term recovery probabilities. We 
approach all objectives for a study system located in the Eastern Alps of 
Central Europe, covering 130,000 km2 and a wide range of different 
forest types and disturbance regimes. 

2. Study system 

Our study system encompasses the entire eastern Alps in Europe 
(Fig. 1), stretching from Munich in the north to Verona in the south 
(48.5◦ N to 45.5◦ N) and from Zurich in the west to Vienna in the east (9◦

E to 16.5◦ E), with approximately 130,000 km2 of land surface, of which 
~70.000 km2 are forests (Senf and Seidl, 2021). The study system has a 
distinctive geographical and ecological profile, with strong elevational 
gradients from lowlands at around sea level to altitudes of 4048 m a.s.l. 
(Piz Bernina), with the average potential tree line being between 2000 
and 2350 m a.s.l (Pecher et al., 2011). The climate of the eastern Alps is 
influenced by their geographical location between the temperate and 
Mediterranean biomes and by their strong topographical gradients, from 
relatively mild temperatures in the colline and montane elevation zone 
to cold conditions at higher elevations. Mean annual temperature is 
− 0.7 ◦C for the climate period 1991–2020 (Nigrelli and Chiarle, 2023) 
and mean annual precipitation is around 1100 mm (Frei and Schär, 
1998), yet both vary substantially with elevation. The Alps showcase a 
remarkable diversity of vegetation and forest types, with deciduous 
broadleaf forests, primarily dominated by European beech (Fagus syl
vatica L.), being the most prevalent potential natural vegetation type 
(Bohn et al., 2000). However, the composition of these forests has been 
significantly altered due to historical land use practices, with forest 
management favouring Norway spruce (Picea abies (L.) Karst.) – natu
rally occurring in montane and subalpine forests – even at lower ele
vations. At higher elevations, broadleaved species are widely replaced 
by coniferous species, including Norway spruce, Silver fir (Abies alba 
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Mill.), European larch (Larix decidua L.), Swiss stone pine (Pinus cembra 
L.) and mountain pine (Pinus mugo Turra). Additionally, the region hosts 
a variety of shrubs, including green alder (Alnus viridis (Ehrh.) K. Koch), 
contributing to the overall ecological complexity of the area (Rüetschi 
et al., 2021). Historical land-use practices, such as the expansion of 
pastures for grazing, anthropogenic fires, and intensive ungulate 
browsing have significantly shaped forest and disturbance dynamics in 
the European Alps. These practices have had long-lasting effects that 
continue to strongly impact disturbance regimes in the area (Bebi et al., 
2017). In the last decades, the European Alps have experienced an 
increasing frequency of natural disturbances likely related to increasing 
climate extremes and past land use practices (Sebald et al., 2021; Senf 
et al., 2021; Stritih et al., 2021b), with storms, bark beetle outbreaks, 
avalanches and wildfires being the most prevalent natural disturbance 
agents (Bebi et al., 2017). While the size of natural disturbances in the 
Alps is generally small (Maroschek et al., 2023), salvage logging and 
human management have altered disturbance regimes in the region: 
Based on a recent disturbance map derived from Landsat data (see de
tails in Senf and Seidl, 2021) we identified a total of 1.76 106 patches in 
our study system with a median patch size of 0.36 ha, summing to an 
average disturbed area of 320 km2 per year, with a standard deviation of 
150 km2. The most disturbances were identified in the years 2003, 2007 
and 2019, following three major storm events (Foehn storm Uschi in 
2003, storm Kyrill in 2007 and storm Vaia in 2018) with subsequent 
bark beetle outbreaks. All following analysis will focus on these 
disturbed areas. 

3. Data & methods 

3.1. Building a consistent data cube from Landsat 4–8 and Sentinel-2 

We retrieved all available Landsat 4–8 and Sentinel-2 A/B images 
between 1990 and 2021 with a maximum cloud cover of 60% from the 
Google cloud storage (https://cloud.google.com/storage/docs/public- 
datasets/). We incorporated all available images, thus not focusing on 
specific seasons. This resulted in a total of 7701 Landsat images and 
13,960 Sentinel-2 images. Both Landsat and Sentinel-2 data were pro
cessed to Level 2 Analysis Ready Data (ARD) using the Framework for 
Operational Radiometric Correction for Environmental Monitoring 
(FORCE version 3.7.10, (Frantz, 2019)), which stores the final ARD in 
non-overlapping 60 km × 60 km tiles. The 10 and 20 m bands of the 
Sentinel-2 Multispectral Imager (MSI) were resampled to 30 m to match 
the spatial resolution of Landsat. Pre-processing to Level 2 consisted of 
radiometric processing as well as correcting atmospheric, topographic 
and bidirectional effects (Frantz et al., 2016; Roy et al., 2016; Zhu and 
Woodcock, 2012). For the atmospheric and topographic correction, we 
used the Copernicus DEM with 25 m resolution (EU-DEM v1.1 2016) and 
a pre-compiled water vapor database (Frantz, 2019). We also masked 
clouds, cloud shadows and snow using an adapted version of the Fmask 
algorithm (Frantz et al., 2018; Zhu and Woodcock, 2014). To fix geo
metric misalignment between Landsat and Sentinel-2 data, we per
formed a co-registration by employing Landsat level 2 NIR composites as 
base images using the LSReg algorithm (Frantz, 2019; Rufin et al., 2021; 

Fig. 1. The study system of the Eastern Alps (i) and its location in Central Europe (ii). (a) represents a typical, sub-alpine non-disturbed landscape configuration in 
the Alps with trees, bare ground and alpine grassland. (b), (c) and (d) show different post-disturbance states with a mixture of dead trees, remaining trees and 
shrubland, mainly grassland, and grassland with planted seedlings and a relatively high bare ground share. 
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Yan et al., 2016). 
The Level 2 processed Landsat and Sentinel-2 data were converted to 

a collection of spectral-temporal metrics, which represent annual sta
tistical aggregations of the spectral characteristics at the pixel level 
(Frantz, 2019). This step was necessary to build a consistent annual time 
series of predictors to be used in the spectral unmixing described below, 
accounting for varying observations densities over time. We employed 
the 25th, 50th, and 75th quantiles of annual Landsat and Sentinel-2 
reflectance values and the 90th percentile and standard deviation of 
common spectral indices (Normalized Difference Vegetation Index 
(NDVI; Kriegler et al., 1969), Enhanced Vegetation Index (EVI; Liu and 
Huete, 1995), Normalized Burn Ratio (NBR; García and Caselles, 1991), 
Normalized Difference Moisture Index (NDMI; Buschmann and Nagel, 
1993), Soil-Adjusted Vegetation Index (SAVI; Huete, 1988), Normalized 
Difference Water Index (NDWI; Gao, 1996), Normalized Difference 
Snow Index (NDSI; Riggs et al., 1994)). This combination was also 
successfully applied in previous synthetic spectral unmixing studies 
(Haberl et al., 2021; Okujeni et al., 2021; Schug et al., 2020; Viana-Soto 
et al., 2022). 

3.2. Spectral unmixing 

We applied spectral unmixing analysis (Cooper et al., 2020; Okujeni 
et al., 2018) to convert the spectral-temporal metrics (STMs) described 
above into annual fractions of land cover. Spectral unmixing is a well- 
suited tool for describing disturbance and recovery trajectories (Senf 
et al., 2020; Viana-Soto et al., 2022), because disturbed sites will be 
covered by a mix of remnant trees, shrubs, grasses and soil. Spectral 
unmixing enables to decompose a post-disturbance pixel into fractions 
of each of these cover type. Spectral unmixing, as implemented in this 
study and based on Okujeni et al., 2013 and Okujeni et al., 2017, in
volves several key steps. Initially, endmembers, serving as pure spectral 
signatures of various land cover classes, are used as reference spectra. 
Following this, spectral-temporal metrics (STMs) are synthetically 
combined at the locations of endmembers into various mixing pro
portions. This generates a training dataset that represents diverse com
binations of land cover classes. Subsequently, Support Vector Regression 
(SVR) is applied to this training dataset to predict fractional land cover 
at annual scale. Each step will be described in more detail in the 
following, for a visual representation of the entire workflow, please see 
Fig. S1. 

We developed a multi-year endmember library consisting of pure 
and temporally stable pixels for the target classes tree cover, bare ground, 
and shrubs/grassland, representing the major post-disturbance land 
cover types (see also Table 1). To pre-select candidate pixels for the 
endmember library, we utilized the LUCAS (Land Use/Cover Area frame 
Statistical Survey) database, which provides harmonized in-situ data on 
land cover and land use from 2006 to 2018. LUCAS aims at gathering 
comprehensive and standardized data on land use and land cover across 
EU member states. The database employs a stratified random sampling 

design, with trained field surveyors conducting on-site measurements to 
evaluate various characteristics including local land cover (d’Andrimont 
et al., 2020). Additionally, some survey plots include photographs, 
which further aided in the pre-selection process for the endmember li
brary compiled here. Visual examples of endmembers with high- 
resolution aerial imagery and spectral profiles can be found in the 
Fig. S2. To ensure the greatest possible purity in our endmembers (i.e. 
the absence of other land cover classes in a pixel), we only included 
points with a cover value of >75% in the pre-selection. In addition, we 
integrated a forest mask developed by Senf and Seidl, 2021 to ensure 
that tree cover endmembers are not located at forest edges, and lever
aged Google Earth imagery to corroborate the selection of our candidate 
endmembers. To validate the pre-selection, we conducted an analysis of 
NDVI values over time. Pixels were considered suitable endmember 
candidates if their NDVI values exhibited minimal fluctuations, indi
cating temporal stability (see Fig. S3). As an additional step, we per
formed a feature space analysis to refine our selection process further 
(see Fig. S4). The outcome of this pre-selection yielded a total of 39 
pixels for tree cover, 87 for shrubs/grassland, and 44 for bare ground. 
For their geographic distribution see Fig. S5, for endmember examples 
and their spectral profiles, see Figs. S2 and S6. 

Training synthetic spectral unmixing models requires training data 
covering all potential mixtures of endmember classes. We implemented 
the approach outlined in Cooper et al., 2020 and Okujeni et al., 2021 to 
create a synthetic training dataset from the above described pure end
members that can be used as input for model training. A total of 15 
training datasets were produced by creating five distinct synthetically 
mixed training datasets for each of the three target classes - tree cover, 
bare ground and shrubs/grassland. Each dataset contained 1000 syn
thetic mixtures at random mixing ratios (e.g., 80% tree cover, 20% bare 
ground), which represent the weighted averages of pure spectral sig
natures. We employed a maximum mixing complexity of three classes, 
with 20% of mixtures being one-class mixtures, 50% being two-class and 
30% being three-class mixtures. These mixtures were generated by 
combining the spectral-temporal metrics (see 3.1) with cover pro
portions ranging from 0 to 1. This approach ensured that the regression 
model could accurately predict cover proportions across the entire 
spectrum present in our study system. Class likelihoods were determined 
by the proportional share of class entries in the library. Finally, the 
synthetic mixture was calculated as a linear combination of the selected 
spectral-temporal metrics, weighted by the assigned mixing proportions. 
The generation of synthetic training data was conducted using the 
FORCE synthmix module (Frantz, 2019). 

These synthetical training datasets, along with their respective 
mixing ratios, were then used to train regression models predicting 
annual fractional cover of each land cover type (Okujeni et al., 2017; 
Okujeni et al., 2013). For each target class, five regression models were 
trained using resampled training data. This technique leads to five in
termediate predictions per pixel and target class, which were averaged 
to obtain a final prediction. This method, known as ensemble approach, 
has been demonstrated to enhance prediction robustness (Okujeni et al., 
2017). We used support vector regression (Smola and Schölkopf, 2004) 
and optimized model parameters via 10-fold cross-validation grid 
search. The ensemble of support vector regression models was then 
applied annually to all pixels, resulting in annual predictions of tree 
cover, bare ground, and shrubs/grassland cover fractions at disturbed 
sites over the years 1990 to 2021. 

To validate our fractional cover maps, we compared them to visual 
estimates based on high-resolution aerial imagery. Additional informa
tion on the high-resolution imagery used in this study can be found in 
Table S1. We randomly selected 100 pixels, ensuring a minimum dis
tance of 90 m between each to avoid selecting neighbouring pixels. 
Within each 30 m × 30 m pixel, we distributed 3 × 3 points evenly. 
These points were visually assigned to discrete labels of tree cover, bare 
ground, or shrubs/grassland. If a pixel represented a land cover class 
that couldn’t be assigned (e.g., water), it was excluded, and a new one 

Table 1 
Endmember classes and corresponding LUCAS level 3 land cover codes, classes 
and the number of points per class used for creating synthetic training data.  

Endmember 
class 

Code Land cover class (level 3) Number of 
points 

Tree cover C10 Broadleaved woodland 16 
C20 Coniferous woodland 23 

Shrubs/ 
grassland 

D20 Shrubland without tree cover 11 
E20 Grassland without tree/shrub cover 66 

Bare ground F10 Rock and stones 24 
F30 Lichen and moss 9  
F40 Other bare soil (containing bare arable 

land, temporarily unstocked areas within 
forests with bare soil, burnt areas and 
secondary land cover for tracks with bare 
land cover) 

11  
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was randomly chosen. Subsequently, we calculated sample proportions 
for each class to estimate the reference fractions. To evaluate the 
agreement between predicted and reference class fractions, we gener
ated scatterplots and assessed the model fit with standardized major axis 
regression (SMA) and the coefficient of determination (R2). We further 
validated our results based on the Mean Absolute Error (MAE) and the 
Relative Root Mean Squared Error (rRMSE), with the latter being 
normalized by the value range. Confidence intervals were obtained 
using bootstrapping with 1000 iterations. To quantify how uncertainties 
in tree cover estimates will percolate into estimates of recovery, we 
employed a Monte Carlo simulation to create 100 random draws of tree 
cover estimates from a normal distribution around the estimated value 
with the standard deviation corresponding to the MAE. The resulting 
draws provide insights into the range of possible outcomes under pre
diction uncertainty and the associated uncertainties in subsequent es
timates (i.e., recovery intervals as described below). 

3.3. Recovery analysis 

3.3.1. Estimating post-disturbance recovery intervals 
We used the annual tree cover fraction maps derived from spectral 

unmixing as described above to compute disturbance severity and 
analyse post-disturbance recovery. For doing so, we first randomly 
sampled 500,000 pixels for subsequent analysis to reduce the amount of 
and redundancy in data and speed up calculations. As we were primarily 
interested in regional estimates, this step does not lead to lower preci
sion, because sampling uncertainty will be small given that the sample is 
still large (500,000 pixels times 32 years totalling to 16 million obser
vations). Second, we used the year of disturbance (see chapter 2; Senf 
and Seidl, 2021) as a starting point of analyses. In many cases, however, 
the disturbance year did not correspond exactly to the year of minimum 
post-disturbance tree cover and thus with the start of the recovery signal 
(see Fig. 2). We thus identified the year of minimum tree cover within 
two years before and after the disturbance and used this year as starting 
point for all following analyses. 

To analyse the potential impact of disturbance severity on recovery 

intervals, we calculated the relative difference between minimum post- 
disturbance tree cover and average tree cover over all the available years 
before disturbance, thus representing the percentual change in tree 
cover over the disturbance event (see Fig. 2). We used disturbance 
severity to subdivide disturbances into stand-replacing (≥ 80% canopy 
loss) and non-stand-replacing disturbances (<80% canopy loss). Addi
tionally, we conducted a comparative analysis between our tree cover- 
based severity measures and the widely used differenced Normalized 
Burn Ratio (dNBR) to test if both metrics capture the entire range of 
severity levels. 

Before calculating recovery intervals, we smoothed out year-to-year 
variation in the tree cover estimates using generalized additive models 
with splines using 3 knots (see Fig. 2). This step was necessary as random 
year-to-year variation can lead to random observations crossing the 
recovery threshold even though average conditions do not indicate re
covery. From the GAM-derived tree cover fractions, we calculated re
covery intervals based on definitions given in Ingrisch and Bahn, 2018: 
absolute recovery and baseline-normalized recovery. The former sets a 
fixed threshold independent of pre-disturbance conditions, whereas the 
latter sets a pre-disturbance reference level (“baseline”) as recovery 
threshold. For absolute recovery, we relied on the FAO definition of 
closed forests, which requires a minimum tree cover of 40% (FAO, 
2012). For baseline-normalized recovery, we set the baseline as 80% of 
the average pre-disturbance tree cover, in accordance with most previ
ous studies employing spectral indices (White et al., 2022). We then 
calculated the time required to reach this threshold after disturbance, 
following defined as recovery interval. The definition of baseline- 
normalized recovery is particularly useful when comparing different 
ecosystems and disturbance agents, as it measures the disturbance 
response relative to the pre-disturbed state (Ingrisch and Bahn, 2018), 
whereas the absolute recovery can be used to implement existing defi
nitions (i.e. FAO forest definition in our case). We also calculated 
baseline-normalized recovery intervals for time series of NBR and NDVI 
to make our approach comparable to previous studies. Specifically, we 
used the 75th percentile of annual NBR and NDVI values (corresponding 
to summer conditions), applying 80% of the average pre-disturbance 

Fig. 2. Exemplary trajectory from real data showing the pre-disturbance tree cover (green solid line), the 80% baseline (brown dashed line), severity (purple) as well 
as the year of disturbance and the year of recovery. The time between the year of minimum tree cover within ±2 years before/after disturbance and the year of 
recovery is the recovery interval. Dark green dots after the disturbance represent the tree cover values from fractional cover maps, the yellow dots and the yellow line 
show the GAM-fitted trajectory, aiming for reducing inter-annual variations. Created with BioRender.com. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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NBR and NDVI values as baseline for recovery (i.e. as suggested by White 
et al., 2018; White et al., 2017 and White et al., 2022). Calculating ab
solute recovery from the spectral indices was not possible, as there is no 
general spectral threshold indicating forest recovery. Finally, in addition 
to recovery intervals (i.e. the time from minimum tree cover to recov
ery), we also calculated the proportion of pixels recovered within 10, 20 
and 30 years after disturbance. 

3.3.2. Predicting long-term recovery success 
The last objective of our study was to test whether we can predict 

long-term recovery success based on disturbance characteristics and 
post-disturbance bare ground fractions derived from spectral unmixing. 
We approached this objective by predicting the probability of recovery 
10 years after disturbance using both relative and absolute recovery 
indicators. For prediction, we used logistic regression with the following 
predictors: pre-disturbance average tree cover, disturbance severity, and 
the fraction of bare ground three years after disturbance. Pre- 
disturbance tree cover is expected to represent the baseline ecological 
state of an ecosystem, impacting its ability to recover after disturbances 
with greater tree cover associated with greater capacity to recover due to 
seed availability and favourable microclimate conditions (Vandewiele 
et al., 2023; Zehetgruber et al., 2017). Disturbance severity is regarded 
as a key determinant of the magnitude of ecological disruption 
(Izquierdo et al., 2023) and is assumed to have strong implications for 
recovery trajectories because it determines the amount of live trees 
carried over into the post-disturbance state. The bare ground share 
shortly after the disturbance event may reflect soil degradation and 
vegetation loss of disturbed sites and thus the temporary disruption of 
forest structure. High levels of bare ground share may indicate a delayed 
or impeded recovery process, as vegetation regrowth is hindered by the 
absence of plant cover (Mantero et al., 2023). 

The accuracy of the model was assessed using 5-fold cross validation 
and the optimal probability threshold for deriving a binary prediction 
from the continuous probability was optimized using the F1-score. We 
further explored potential interactions between the fractions of bare 
ground and pre-disturbance tree cover and bare ground and disturbance 
severity. We also tested the robustness of the model for predicting re
covery success 15-, 20- and 30- years post disturbance and report the 
results in Fig. S7. 

4. Results 

4.1. Annual fraction mapping – accuracy and uncertainty 

We observed high agreement between the fractional cover maps and 

the validation data, with R2 values of 0.88 for tree cover, 0.93 for bare 
ground, and 0.74 for shrubs/grassland (Fig. 3). The mean absolute errors 
were 10.6% for tree cover, 4.2%for bare ground, and 14.8% for shrubs/ 
grassland. The scatterplots demonstrated a strong linear relationship 
across all classes, with no signs of saturation at the extremes, but a 
tendency of underestimation of all fractional cover classes compared to 
visual interpretation. 

The average pre-disturbance tree cover across all pixels was 67%, 
with 81% of the pixels having a tree cover between 40 and 100% and 
thus representing closed canopy conditions. Using average pre- 
disturbance tree cover and minimum post-disturbance tree cover, we 
estimated an average disturbance severity of 71% canopy loss during 
disturbance (see Fig. 4). Stand-replacing-disturbances (defined as 
severity >80% canopy loss) accounted for 49% of all disturbed pixels. 
For an exemplary map of pre- and post-disturbance tree cover, see 
Fig. S8. Comparing the severity measured through canopy loss with 
dNBR, a widely used measure of severity, we found a non-linear rela
tionship between both metrics where dNBR consistently underestimates 
severity and has only very limited potential to capture low severity 
disturbances (see Fig. S9). 

Fig. 3. Predicted versus observed fractions of tree cover, bare ground, and shrubs/grassland. The grey dashed lines show the 1:1 line, the green lines a linear 
regression fits. 95% confidence intervals were derived by bootstrapping. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 4. Distribution of pre-disturbance tree cover and severity in the 
eastern Alps. 
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4.2. Objective 1: post-disturbance recovery intervals 

We quantified the recovery intervals for tree cover- and spectral- 
index based recovery indicators across our full study system and strat
ified by non-stand-replacing and stand-replacing disturbances (using the 
80% severity threshold defined above). The distribution of recovery 
intervals was right-skewed for non-stand-replacing disturbances, but 
more normally distributed for stand-replacing disturbances. The mean 
post-disturbance recovery interval for tree cover-based absolute recov
ery was 5.5 ± 0.03 years (mean and standard error) for non-stand- 
replacing disturbances and 13.4 ± 0.16 years for stand replacing dis
turbances. For tree cover-based baseline-normalized recovery (i.e. 
reaching 80% of pre-disturbance tree cover), we found a mean recovery 
interval of 6.9 ± 0.04 years for non-stand-replacing disturbances and 
10.2 ± 0.64 years for stand-replacing disturbances. The use of spectral 
index-based indicators, in turn, showed substantially faster recovery 
intervals. Baseline-normalized recovery in NBR displayed recovery in
tervals of 3.5 ± 0.01 years for non-stand-replacing disturbances and 7.3 
± 0.36 years for stand-replacing disturbances. NDVI-based recovery 
intervals were even shorter, averaging to 1.6 ± 0.006 years for non- 
stand-replacing disturbances and 5.9 ± 0.32 years for stand-replacing 
disturbances (see Fig. 6a). For uncertainty analyses using Monte Carlo 
simulations, please see Fig. S10. 

Over the full observation period of 32 years, almost all disturbances 
(97%) recovered according to the tree cover-based absolute recovery 
definition, compared to 95% for tree cover-based baseline-normalized 
recovery definition (Fig. 5b). By reducing the observation period to 20 
years post-disturbance, approximately 95% of forests showed recovery 
using the absolute recovery definition, while about 93% did so for the 
baseline-normalized definition. In contrast, only 71% and 60% of all 
disturbed pixels recovered within a decade for absolute and baseline- 

normalized recovery, respectively. Comparing those results to spectral 
index-based indicators, we found recovery success for 100% of all dis
turbances over our 32-year observation period, as well as within the 20- 
year time window for both NBR and NDVI-based recovery. Focusing on 
recovery 10 years post-disturbance, 83% recovered for the NBR-based 
recovery indicator while 93% of forests exhibited recovery for the 
NDVI-based definition (see Fig. 5b). Recovery based on spectral indices 
was thus far more rapid than recovery measured in terms of canopy 
cover. 

In Fig. 6, we illustrate the derivation of recovery intervals from 
fractional cover maps using the example of a storm (2008) in Črnivec, 
SIovenia. The storm event in Črnivec resulted in a very high severity 
(mean of 91% canopy loss). We estimated a mean recovery interval of 
5.6 years for absolute recovery and 8.8 years for baseline-normalized 
recovery. Areas with high pre-disturbed tree cover showed rapid re
covery, resulting in an 82% recovery success within the observation 
period (2008–2021) for absolute recovery. For baseline-normalized re
covery, however, we estimate that only 26% of all pixels recovered until 
2021 and thus within 13 years post-disturbance. 

4.3. Objective 2: predicting long-term recovery success 

Using pre-disturbance tree cover, disturbance severity and post- 
disturbance bare ground fractions as predictors allowed us to predict 
the probability of recovery ten years post disturbance. For absolute re
covery, the overall model accuracy was 83%, with an error of commis
sion of 22%, an error of omission of 5%, and an F1 score of 0.79. 
Baseline-normalized recovery was predicted with similar overall accu
racy of 76%, an error of commission of 7%, an error of omission at 17%, 
and an F1 score of 0.67. Predictions of recovery success over longer time 
periods (20 and 30 years) had similar accuracies (see Fig. S7), thus 

Fig. 5. Recovery intervals stratified by disturbance type (a) and percentage of recovered disturbances (b) for different indicators of recovered disturbances. Please 
note, that subplot a) and b) are independent plots, thus not sharing a common x-axis. 
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representing stable recovery estimates over time. The observed and 
predicted recovery success (Fig. 7) showed a similar spatial pattern, 
where lower pre-disturbance tree cover value, high disturbance severity 
and a high bare ground share led to reduced recovery probabilities. We 
thus provide evidence that recovery success can be predicted success
fully from the patterns emerging in the first three years after 
disturbance. 

Investigating the effects of each predictor as well as their in
teractions, we found a higher probability of recovery for the absolute 
recovery indicator in areas with high pre-disturbance tree cover and low 
bare ground shares, while baseline-normalized recovery was more likely 
in areas with a lower pre-disturbance cover (Fig. 8). We observed a 
similar relationship between relative severity and bare ground share 
three years post-disturbance: The probability of successful recovery 
increased as the bare ground share and relative severity decreased, 
which was consistent for both recovery indicators. With high shares of 
bare ground three years post-disturbance, the probability of recovery is 
severely reduced across all levels of pre-disturbance cover and distur
bance severity. 

5. Discussion 

We here present a new approach for determining post-disturbance 
forest recovery intervals and predicting long-term recovery success 
based on ecologically informed disturbance and recovery characteris
tics. We found strong differences in recovery between recovery defini
tions (i.e. absolute or baseline-normalized) and between stand-replacing 
and non-stand-replacing disturbances. Absolute recovery definitions use 
a fixed tree cover threshold that has to be reached after disturbance, 
such as 40% as defined for close-canopy forests by the FAO (FAO, 2012). 
While using a fixed threshold has advantages (e.g. comparable across 
regions), recovery intervals can be substantially influenced by pre- 

disturbance tree cover: In systems characterized by dense forests, for 
instance, a fixed threshold can be reached very quickly post-disturbance, 
or low disturbance severities might not even push tree cover below the 
predefined threshold at all. However, in a system characterized by open 
forests, commonly occurring in high elevation forests or drier regions of 
the world (Stritih et al., 2023), a fixed threshold might never be met. 
Baseline-normalized recovery, in contrast, is more adaptive to variable 
pre-disturbance tree covers and disturbance severities, as it directly 
considers pre-disturbance tree cover in its definition. While non-stand- 
replacing disturbances still lead to shorter recovery intervals, the pro
portional nature of this indicator causes a smaller difference between the 
two disturbance types compared to absolute recovery. The different 
underlying mechanisms of these recovery indicators are also reflected in 
the consistently higher proportion of recovered pixels for absolute re
covery compared to baseline-normalized recovery, which corresponds 
with findings by Bartels et al. (2016). The differences between recovery 
definitions shown here highlight the need for carefully choosing and 
explicitly defining recovery in remote sensing studies. Our results 
further highlight that disturbance characteristics themselves impact 
recovery estimates, and reporting recovery estimates without a quanti
fication of disturbance severity might be misleading. 

We found high variability in spectral recovery intervals estimated 
from NDVI and NBR, with variability likely linked to the spectral index, 
disturbance characteristics and also the heterogeneity of the study sys
tem. Our findings indicate that spectral index-based recovery metrics, if 
used as surrogate for canopy cover, estimated considerably lower re
covery intervals than our tree cover-based indicators for both stand- 
replacing and non-stand-replacing disturbances. Comparing our results 
to existing studies, Pickell et al., 2016 found a mean spectral recovery 
length of 5.6 years for NBR and 2.7 years for NDVI in North American 
boreal forests, which is similar to the recovery intervals we found for 
NBR (4.9 years) and NDVI (3.3 years) for our system. Focusing on fire- 

Fig. 6. Example for recovery from a storm event in Črnivec, SIovenia, occurring in the year 2008. The first row displays the development of tree cover from pre- 
disturbance (a) to immediately post-disturbance (b), and finally to 10 years post-disturbance state (c). The second row shows the severity (d), along with maps of the 
two recovery definitions: absolute recovery (i.e. reaching >40% tree cover; e) and baseline-normalized recovery (i.e. reaching >80% pre-disturbance tree cover; f). 
The area shown here refers to location (b) in Fig. 1. 
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prone forests in Australia, Hislop et al., 2018 observed comparatively 
longer recovery intervals, specifically eight years for NBR and five years 
for NDVI. Examining Canada’s forested ecosystems, particularly 

impacted by wildfires and harvest, White et al., 2022 reported recovery 
intervals for baseline-normalized NBR ranging from 6.1 years (harvest) 
to 10.6 years (fires). This is substantially longer than in our study, but 
disturbances in this particular study were also larger than average 
disturbance patches in Europe, which may slow recovery due to limited 
seed supply (Hansen et al., 2018). In a different context (coppice for
ests), Chirici et al., 2020 found no substantial differences between NDVI 
and NBR recovery. In our study system, characterized by a combination 
of natural and human disturbances and more complex spectral signals 
due to the small-scale nature and patchiness of disturbances (Maroschek 
et al., 2023), NDVI led to consistently shorter recovery intervals 
compared to NBR, aligning with the conclusion of Hislop et al., 2018 and 
Pickell et al., 2016. The substantially shorter recovery intervals 
observed for spectral-index based metrics compared to tree cover-based 
metrics may be attributed to the underestimation of disturbance severity 
with dNBR compared to canopy cover (Fig. S9), which is likely related to 
residual trees on non-stand-replacing disturbances that lead to higher 
post-disturbance vegetation index values compared to post-disturbance 
canopy cover estimates. Finally, a common drawback of using a spectral- 
index-based approach is the lack of specific details about which land 
cover class drives the increase in the spectral index. Not only tree 
regrowth, but also the presence of other vegetation (grasses and shrubs) 
can quickly increase photosynthetic activity on disturbed sites (Buma, 
2012), without leading to forest recovery in the sense of reaching a pre- 
disturbance tree cover state. Spectral indices should thus only be seen as 
proxies for physical and functional recovery (Helfenstein et al., 2022), 
but not taken as proxy of post-disturbance canopy recovery. 

Our newly developed recovery indicators, based on clearly defined 
ecological units (percent tree cover, percent recovery to pre-disturbance 
tree cover), overcomes difficulties in interpretability of spectral recov
ery indicators and likely result in more realistic estimates of post- 

Fig. 7. Mapped predictors (see also Fig. 5) used as input for the logistic regression model, which are translated into probabilities of recovery success (right). The 
column in the middle shows observed recovery success derived from the fractional cover maps. 

Fig. 8. Effects of pre-disturbance tree cover, relative severity and bare ground 
share three years post-disturbance on the probability of absolute and baseline- 
normalized recovery 10 years post-disturbance (for other time frames see 
Figs. S7 and S12). 
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disturbance canopy recovery. While our study focuses on one structural 
dimension of recovery (i.e. canopy cover), it is important to recognize 
that other dimensions, such as tree height or species composition, have 
not been incorporated into our analysis. We assume longer recovery 
times when additional dimensions are considered, which is supported by 
a study from Stritih et al., 2023, showing that tree cover recovered faster 
than tree height in mountain forests. Incorporating multiple dimensions 
of recovery into our analysis could offer a more comprehensive 
perspective on forest recovery. For example, variation in tree height can 
be used as an indicator of forest developmental stage, while, changes in 
species composition can provide insights into shifts in ecological com
munities and habitat suitability over time, offering a nuanced under
standing of ecosystem services and dynamics (Stritih et al., 2021a). 
Nevertheless, while recognizing the potential benefits of integrating 
multiple dimensions recovery assessments, they are also associated with 
practical challenges. One significant obstacle is the lack of time series 
from LiDAR data, which would allow for assessing detailed information 
on forest structure, as well as a lack of temporal information on tree 
species (Blickensdörfer et al., 2024). 

Our spectral unmixing approach allowed us to investigate how post- 
disturbance land cover and disturbance characteristics influence forest 
recovery. For post-disturbance land cover, we found a negative rela
tionship between an increasing bare ground share shortly after distur
bance and a decreasing probability of successful recovery. Ecologically, 
this might be attributed to several factors: A high bare ground share 
indicates a complete loss of vegetation, including early and advanced 
regeneration, often caused by mechanized salvage logging operations. 
This loss of vegetation potentially leads to reduced seed availability 
from remaining trees and soil seed banks. The latter is especially 
noticeable after wildfires and salvage logging (Brown and Johnstone, 
2012; Leverkus and Castro, 2017). Dispersal of seeds from nearby areas 
and refilling of the soil seed bank takes a significant amount of time 
(Bowd et al., 2019; Ibáñez et al., 2019), which in turn leads to delayed 
recovery. An increased bare ground share can also induce changes in the 
microclimate, as the buffering effect provided by vegetation is lost 
(Bugalho et al., 2011; Vandewiele et al., 2023). More extreme temper
ature fluctuations and lower soil moisture create suboptimal conditions 
for seed germination and establishment (Vieira and Scariot, 2006). 
Finally, soil compaction and erosion have a negative impact on tree 
establishment and growth (Marchi et al., 2016; Meyer et al., 2014). 
Compacted soil restricts root development, hindering a trees’ ability to 
anchor itself and access nutrients and water. Erosion exacerbates this 
challenge by removing the top layer of the soil, which is rich in organic 
matter and essential nutrients necessary for supporting the regrowth of 
trees (Quinton et al., 2010). Post-disturbance bare ground fractions can 
thus be identified as an important early predictor of long-term recovery 
success. 

Considering disturbance characteristics, pixels with a higher pre- 
disturbance tree cover are more likely to reach absolute recovery 
thresholds, but less likely to recover under a baseline-normalized re
covery definition. This discrepancy between recovery definitions arises 
because absolute recovery ignores the pre-disturbance characteristics of 
forests, whereas baseline-normalized recovery takes them into account. 
In the case of absolute recovery, the requirement to reach the 40% tree 
cover threshold implies that higher pre-disturbance tree cover acts as a 
facilitator for recovery success. For baseline-normalized recovery, a 
lower pre-disturbance tree cover might indicate increased light avail
ability, promoting the growth of understory vegetation and facilitating 
advanced regeneration (Stiers et al., 2019). Lower competition for re
sources in open forests enhances effective seed dispersal and allows for 
faster growth rates and easier establishment of pioneer species, which 
might support a quicker recovery process (Damptey et al., 2023). The 
consistent trend of lower recovery probability with higher disturbance 
severity can be explained by the simple fact that with lower disturbance 
severities, there are more residual trees and the site will thus meet re
covery thresholds more quickly (Stuart-Haëntjens et al., 2015). 

The results of our study suggest that the efficient monitoring of forest 
recovery can be achieved by assessing pre- and early post-disturbance 
characteristics, reducing the need for long-term time series to estimate 
recovery. This is important because it allows managers to counteract 
potentially undesirable trajectories (e.g., by tree planting) before they 
unfold, without having to first wait for the undesired outcome to 
materialize. Our novel approach thus goes beyond past remote sensing- 
based studies on forest recovery, which required long time series to track 
recovery trajectories over extended periods post-disturbance (ten or 
more years; Chirici et al., 2020; Senf and Seidl, 2022; Smith-Tripp et al., 
2024; White et al., 2022; White et al., 2018). Our findings show that 
early post-disturbance indicators already provide crucial insights into 
long-term recovery of the forest canopy. The capability of our approach 
to promptly monitor forest recovery based on disturbance characteris
tics and early post-disturbance indicators substantially improves our 
capacity to support management decisions with remote sensing. With 
access to up-to-date information on recovery shortly after disturbance, 
forest managers can quickly react, e.g. through the identification of 
areas that require intervention, allowing for targeted reafforestation 
efforts to promote recovery in areas that show signs of delayed or 
compromised recovery. Nonetheless, it’s important to acknowledge that 
in this study, we examined canopy recovery, which is only one dimen
sion of forest recovery (see discussion above). In contrast to many 
studies that focus on small study sites or specific disturbance agents such 
as fire (e.g. Bousquet et al., 2022, Pérez-Cabello et al., 2021, Pfoch et al., 
2023; Smith-Tripp et al., 2024 or Viana-Soto et al., 2022), and studies 
investigating particular management scenarios, like productive forests 
in Finland (White et al., 2018), we here analyse recovery across a large 
and complex area with diverse disturbance agents and management 
strategies. Our results are thus likely transferable also to other regions. 
Monitoring recovery over time also allows for the identification of early 
warning indicators (Seidl and Turner, 2022), potentially signaling 
eroding resilience in forests frequently affected by forest disturbances 
(Reyer et al., 2015). 

6. Conclusion 

We here present a new approach for estimating post-disturbance 
forest recovery intervals and predicting long-term recovery success 
from remote sensing data. Based on our findings, we arrive at four 
conclusions: (1) Traditional spectral index-based recovery indicators - if 
taken as proxies for tree cover - substantially underestimated recovery 
intervals compared to tree cover-based indicators derived from spectral 
unmixing. (2) Disturbance severity has a major influence on post- 
disturbance recovery; recovery studies thus should consider distur
bance characteristics explicitly. (3) The majority of forests in the Alps 
recover their tree cover within three decades post disturbances. (4) Pre- 
and early post-disturbance characteristics can predict long-term (ten- 
year) recovery success, suggesting that recovery trajectories can be 
gleaned from the short window of post-disturbance forest reorganiza
tion. Our study emphasizes the effectiveness of remote sensing for 
assessing forest recovery, yet it also highlights that recovery indicators 
need to be ecologically informed and well defined in order to be appli
cable and comparable across studies. Our newly developed approach 
predicting long-term recovery success based on pre- and early post- 
disturbance characteristics further facilitates the monitoring of post- 
disturbance recovery as an important component of forest resilience, 
which is direly needed in a rapidly changing world. 

Author contributions 

Conceptualization: LM and CS; Investigation: LM, AVS, AS, CS; 
Formal analysis: LM; Methodology: LM, AVS, AS, RS, CS; Writing - 
original draft: LM; Writing - review & editing: AVS, AS, RS, CS (editing). 

L. Mandl et al.                                                                                                                                                                                                                                   



Remote Sensing of Environment 308 (2024) 114194

11

Declaration of competing interest 

The authors declare no competing interests. 

Data availability 

Data will be made publicly available after publication. The distur
bance maps used are openly available and can be downloaded here: 
https://zenodo.org/records/7080016. 

Acknowledgements 

LM and CS acknowledge funding from the Fachagentur Nachwach
sende Rohstoffe e.V. (FNR) through the ERA-Net cofound action For
estValue (project FORECO, projectnr. 2221NR088X). AVS 
acknowledges funding from the European Union’s Horizon Europe 
Research and Innovation Programme as well as from the United 
Kingdom Research and Innovation Council (project ForestPath, proj
ectnr. 101056755). RS acknowledges support from the European 
Research Council (ERC) under the European Union’s Horizon 2020 
research and innovation programme (grant agreement no. 101001905, 
FORWARD). We thank Katja Kowalski and Akpona Okujeni for sharing 
their valuable experience with synthetic spectral unmixing. Open access 
funding enabled and organized by Project DEAL. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.rse.2024.114194. 

References 
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Cordonnier, T., de Koning, J.H.C., Diaci, J., Dobrowolska, D., Dountchev, A., 
Engelhart, J., Fidej, G., Fuhr, M., Garbarino, M., Jansons, Ā., Keren, S., 
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Analyzing spatial distribution patterns of European beech (Fagus sylvatica L.) 
regeneration in dependence of canopy openings. Forests 10, 637. 

Strickland, M.K., Jenkins, M.A., Ma, Z., Murray, B.D., 2024. How has the concept of 
resilience been applied in research across forest regions? Front. Ecol. Environ. e2703 
n/a.  

Stritih, A., Bebi, P., Rossi, C., Grêt-Regamey, A., 2021a. Addressing disturbance risk to 
mountain forest ecosystem services. J. Environ. Manag. 296, 113188. 

Stritih, A., Senf, C., Seidl, R., Grêt-Regamey, A., Bebi, P., 2021b. The impact of land-use 
legacies and recent management on natural disturbance susceptibility in mountain 
forests. For. Ecol. Manag. 484, 118950. 

Stritih, A., Seidl, R., Senf, C., 2023. Alternative states in the structure of mountain forests 
across the Alps and the role of disturbance and recovery. Landsc. Ecol. 38, 933–947. 
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