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Abstract
Aim: Forest ecosystems around the globe are facing increasing natural and human 
disturbances. Increasing disturbances can challenge forest resilience, that is, the ca-
pacity of forests to sustain their functions and services in the face of disturbance. 
Quantifying resilience across large spatial extents remains challenging, as it requires 
the assessment of the ability of forests to recover from disturbance. Here we ana-
lysed the resilience of Europe’s forests by means of satellite-based recovery and dis-
turbance indicators.
Location: Continental Europe (35 countries).
Time period: 1986–2018.
Major taxa studied: Gymnosperm and angiosperm woody plant species.
Methods: We used a comprehensive set of manually interpreted reference plots 
and random forest regression to model annual canopy cover from remote sensing 
data across more than 30 million disturbance patches in Europe over the time period 
1986–2018. From annual time series of canopy cover, we estimated the time it takes 
disturbed areas to recover to pre-disturbance canopy cover levels using space-for-
time substitution. We quantified forest resilience as the ratio between canopy dis-
turbance and recovery intervals, with critical resilience defined as forest areas where 
canopy disturbances occurred faster than canopy recovery.
Results: On average across Europe, forests recover to pre-disturbance canopy cover 
within 30 years. The resilience of Europe’s forests to disturbance is high, with recov-
ery being > 10 times faster than disturbance on 69% of the forest area. However, 
14% of Europe’s forests had low or critical resilience, with disturbances occurring as 
fast or faster than forest canopy can recover.
Main conclusions: We conclude that Europe’s forests are widely resilient to past 
disturbance regimes, yet changing climate and disturbance regimes could erode 
resilience.
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1  | INTRODUC TION

Natural disturbances, such as windthrow, bark beetle outbreaks 
or wildfire, are important drivers of forest ecosystem dynamics 
(Turner, 2010). Disturbances structure forest ecosystems across mul-
tiple spatial scales (Perry, 2002), from the death of individual trees 
creating gaps in the canopy to a large-scale reset of successional tra-
jectories following stand-replacing disturbances. Disturbances occur 
abruptly (i.e., on time-scales of hours to years), but have long-lasting 
impacts on forest demography (McDowell et  al.,  2020; Schurman 
et al., 2018; Senf et al., 2021). They create biologically valuable early 
seral stages (Swanson et al., 2011), and generate a wide range of bi-
ological legacies (Franklin et al., 2002). Forest disturbances are thus 
essential drivers of forest ecosystem functioning and biodiversity 
(Bengtsson et al., 2000; Mori et al., 2018).

There is accumulating evidence that forest disturbances are 
increasing around the globe, in response to both climate change 
and human land use (Cohen et  al.,  2016; Seidl et  al.,  2014; Senf 
et  al.,  2018, 2021). Warmer and drier conditions as well as an in-
creasing frequency of climatic extremes are fuelling natural distur-
bance regimes (Bowman et al., 2020; McDowell & Allen, 2015; Seidl 
et  al., 2014, 2017; Senf, Buras, et  al.,  2020; Senf & Seidl,  2021b). 
Furthermore, humans disturb forests by extracting timber for 
the support of human wellbeing (Curtis et  al.,  2018; McDowell 
et al., 2020). Both the changes in natural disturbance regimes as well 
as increasing human land use have raised concerns that forests are 
losing their capacity to maintain their structure, functions and ser-
vices (Millar & Stephenson, 2015; Trumbore et al., 2015). In other 
words: there is increasing concern that forests globally are losing 
their resilience (Albrich et al., 2020; Johnstone et al., 2016; Reyer 
et al., 2015; Stevens-Rumann et al., 2018; Whitman et al., 2019).

Quantifying resilience is a key objective of contemporary ecol-
ogy (Carpenter et  al.,  2001; Nikinmaa et  al.,  2020), and a quanti-
tative understanding of a system’s resilience is a prerequisite for 
determining the risk of losing it (Lindenmayer et al., 2016). There is a 
multitude of definitions and indicators of resilience in the literature 
(Nikinmaa et al., 2020; Scheffer et al., 2015), which can create con-
fusion on how to measure resilience (Hodgson et al., 2015). We here 
adopt a resilience definition that is rooted in past research on eco-
logical stability (Turner et al., 1993) and adopts recently proposed 
ideas for quantifying resilience in ecology (Ingrisch & Bahn, 2018): 
post-disturbance recovery. Post-disturbance recovery is a widely 
accepted and commonly used measure of resilience to disturbance 
(Hodgson et al., 2015; Ingrisch & Bahn, 2018; Nimmo et al., 2015; 
Willis et al., 2018). Post-disturbance recovery can be expressed as 
recovery rate (i.e., the rate at which an ecosystem state recovers), 
or as recovery interval (i.e., time it takes for a system to recovery to 
a pre-disturbance state). However, recovery alone is not sufficient 
to quantify resilience. In the context of forest disturbance, for ex-
ample, a recovery interval of 50 years could indicate high resilience 
if the average disturbance interval is long (e.g., 500 years), meaning 
that forests recover important properties long before they will be 
disturbed again. However, the same recovery interval could indicate 

a high risk of ecosystem collapse if the average disturbance interval 
in a system is 25 years, indicating that the system is not able to suc-
cessfully recover from disturbances and that a state change (e.g., to 
open, non-forest systems) is likely. Hence, the resilience of a system 
does not only depend on its ability to recover from disturbance, but 
also on the degree to which it is exposed to disturbance. In analogy 
to recovery rate or recovery interval, the degree to which a system 
is exposed to disturbance can be expressed as disturbance rate or 
disturbance interval, that is the average proportion of a forest expe-
riencing disturbance or the average time between two disturbance 
events. Quantifying the resilience of forest ecosystems to (increas-
ing) disturbances thus requires the joint analysis of both forest dis-
turbance and recovery (Hodgson et al., 2015; Ingrisch & Bahn, 2018; 
Nimmo et al., 2015).

Quantifying disturbance and recovery at regional to continental 
scales requires spatially explicit and exhaustive long-term data. With 
recent advances in data processing and the availability of multi-
decadal time series, remote sensing fulfils all of these requirements 
and is a potent means to quantify resilience across large spatial 
domains. While long-term spatial analysis of disturbance using re-
mote sensing data is de facto operational (M. C. Hansen et al., 2013; 
Hermosilla et al., 2016; Senf & Seidl, 2021a), mapping forest recov-
ery over broad spatial and long temporal scales remains challenging. 
Recent studies have addressed this challenge by using spectral recov-
ery (i.e., the time it takes until a pixel has similar spectral reflectance 
properties as prior to disturbance) as a proxy of recovery (Frazier 
et al., 2015; Kennedy et al., 2012; Pickell et al., 2015). Spectral re-
covery allows for the quantification of disturbance recovery rates at 
national scales (White et al., 2017), and has been shown to correlate 
well with structural measures of recovery (Chirici et al., 2020; Senf 
et  al.,  2019; White et  al.,  2018, 2019). Despite these advances in 
mapping forest recovery at the case study level, there is still a lack 
of information on patterns and drivers of recovery across large spa-
tial scales, for example, for all of Europe. This knowledge gap ham-
pers the development of recovery-based resilience indicators for 
Europe’s forests, and constitutes a crucial knowledge gap given the 
sharp increase in forest disturbances in Europe in recent years (Senf 
et al., 2018, 2021; Senf & Seidl, 2021b).

Here, our aim was to analyse the resilience of Europe’s forests 
to disturbance using satellite-based disturbance and recovery indica-
tors. Disturbance and recovery here focus on canopy cover and re-
silience is defined as the ratio between average canopy disturbance 
and average canopy recovery intervals (hereafter referred to simply 
as disturbance and recovery intervals). Disturbance interval was de-
fined as the average time between two disturbance events. Recovery 
interval was defined as the average time until a disturbed area will 
recover to pre-disturbance canopy cover. Hence, a resilience greater 
than 1 indicates a resilient landscape with faster recovery than dis-
turbance, while a resilience around 1 indicates similar disturbance 
and recovery intervals, resulting in increasing landscape variability 
(Fraterrigo & Rusak, 2008; Turner et al., 1993). A resilience of less 
than 1 indicates a critical state where disturbances outpace recov-
ery, suggesting that forest cover will decline over time (e.g., forests 
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shifting to open woodlands, savanna, shrublands, or grasslands). We 
address our overall aim by focusing on three specific objectives: (a) 
estimate pre- and post-disturbance canopy cover across all distur-
bance patches mapped for Europe in the period 1986–2018 from sat-
ellite data (Senf & Seidl, 2021a); (b) quantify recovery intervals across 
Europe; (c) analyse how recovery intervals vary by disturbance patch 
size and severity, that is, two important descriptors of the distur-
bance regime; and (d) estimate forest resilience across Europe by cal-
culating the ratio between disturbance and recovery intervals.

2  | MATERIAL S AND METHODS

2.1 | Satellite-based canopy cover estimates

We used time series of Landsat satellite images to predict annual 
pre- and post-disturbance canopy cover for more than 36 million 
disturbance patches mapped throughout Europe in a previous study 
(Senf & Seidl, 2021a). A disturbance patch was defined as contiguous 
pixels (30-m grain) that were disturbed in the same year, with a mini-
mum mapping unit of two pixels (0.18 ha). As a first step, we built an-
nual medoid composites using all available Landsat Thematic Mapper 
(TM), Enhanced Thematic Mapper Plus (ETM+) and Operational 
Land imager (OLI) Tier-1 surface reflectance observations between 
1 June and 30 September following methods described in Flood 
(2013). Before doing so, we masked out all cloud, cloud shadow and 
snow pixels using the Landsat quality band. We further matched im-
ages from OLI to TM/ETM+ to avoid bias from the different spectral 
response functions (Roy et al., 2016). We then used the LandTrendr 
algorithm—a time series segmentation approach that partitions time 
series into linear segments (Kennedy et  al.,  2010)—to smooth the 
annual spectral time series, that is to remove remaining inter-annual 
variability caused by phenological variations, clouds not detected 
during the cloud screening process or other artefacts not addressed 
in the Landsat quality band (Moisen et al., 2016; Oeser et al., 2020; 
Senf, Laštovička et al., 2020; Vogeler et al., 2018). Specifically, this 
processing step interpolates annual Landsat spectral time series 
from the linear segments and thus removes unwanted inter-annual 
variability for stable segments, but keeps larger changes caused by 
disturbances. The temporal segmentation was done based on the 
normalized burn ratio (NBR), which is a normalized difference index 
of the shortwave infrared reflectance bands and which is highly sen-
sitive to disturbance (Hermosilla et al., 2015). From the interpolated 
spectral Landsat time series, we derived a set of seven spectral in-
dices: (a) the normalized difference vegetation index (NDVI), (b) the 
enhanced vegetation index (EVI), (c) the soil-adjusted vegetation 
index (SAVI), (d) the modified soil-adjusted vegetation index (mSAVI), 
(e) the normalized difference moisture index (NDMI), (f) the NBR, 
and (g) the NBR-2. All calculations were done in a cloud environment 
(Gorelick et al., 2017) using existing code and implementations and 
described in detail in Kennedy et al. (2018).

To predict canopy cover from the segmented annual Landsat time 
series, we created a reference database of canopy cover estimates 

using image interpretation of high-resolution imagery available in 
Google Earth. We first created a random sample of 1,000 Landsat 
pixels stratified across countries based on relative land area. The 
stratification, whilst not affecting the probabilistic nature of the sam-
ple, ensured that references from all countries were included in the 
final reference database (see Supporting Information Figure  S1 for 
details on the location of reference pixels). We then selected a 5 × 5 
pixel neighbourhood centred on the reference pixel (i.e., total of 25 
pixels or 2.25 ha) as a reference site, accounting for a potential spatial 
mismatch between Landsat pixels and high-resolution imagery used 
for the interpretation of canopy cover (Senf, Laštovička, et al., 2020; 
Vogeler et  al.,  2018). For estimating canopy cover from high-
resolution imagery, we placed a regular grid of 10 × 10 points into the 
reference site and counted the number of points intersecting with a 
tree crown in all high-resolution imagery available in Google Earth 
(see Supporting Information Figure S2 for examples of the interpreta-
tion setup). That is, at each of the 1,000 reference sites, we estimated 
canopy cover for all time points where high-resolution imagery was 
available, even if no change in canopy cover occurred. This was done 
in order to collect reference canopy cover estimates for different 
points in time and different successional stages (i.e., before and after 
disturbance). If there was shadow and we were unable to determine 
whether the point intersected with a crown or not, the point was la-
belled as not available. If no high-resolution imagery was available in 
Google Earth, the reference site was dropped. In total, we estimated 
canopy cover for 963 sites and 11,221 site–year combinations.

We extracted all Landsat spectral bands and indices for each 
of the site–year combinations (i.e., matching both the location and 
year of the estimate) and built a random forest regression model 
(Breiman, 2001) to predict canopy cover from the smoothed Landsat 
spectral data and vegetation indices (Moisen et  al.,  2016; Vogeler 
et al., 2018). We evaluated the model using 10-fold cross-validation, 
and calculated the variance explained, the root mean squared error 
and the normalized root mean squared error as measures of model 
accuracy. We predicted canopy cover for each disturbed pixel over 
the time period 1986 to 2018, resulting in more than 12 billion in-
dividual canopy cover predictions across Europe. Subsequently, we 
averaged the canopy cover predictions per disturbance patch and 
year, resulting in approximately 1.1 billion canopy cover estimates 
across Europe. Based on this data we calculated the average canopy 
cover 5 years before disturbance (i.e., pre-disturbance canopy cover) 
and the annual canopy cover for each year after disturbance (i.e., 
post-disturbance canopy cover) per patch. We excluded patches for 
which less than 5 years of data prior to disturbance were available 
to avoid unreliable estimates of pre-disturbance canopy cover. This 
restricted our analysis to the time period 1991–2018 or a maximum 
of 28 years of disturbance recovery estimates.

2.2 | Estimating recovery intervals

For assessing post-disturbance recovery intervals, we used a space-
for-time substitution approach to develop a chrono-sequence of 
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relative canopy cover after disturbance. Relative canopy cover here 
means canopy cover in relation to the pre-disturbance canopy cover, 
and was used because forest definitions based on absolute canopy 
cover vary widely across Europe. To create the chrono-sequences, 
we sorted all relative canopy cover observations along years (t) 
after disturbance, with t = {1 ,…, 28}, and calculated the average 
relative canopy cover per year, following named rt. The resulting 
chrono-sequence of rt shows the average relative canopy cover (i.e., 
in relation to pre-disturbance canopy cover) for 1 to 28 years after 
disturbance (see Figure 1 for examples). From the chrono-sequence, 
we derived the recovery interval as the first year of complete recov-
ery (i.e., relative canopy cover ≥ 1), following the definition given in 
the Introduction (see also Figure  1 for examples). Because not all 
chrono-sequences fully recover within 28 years, we used a statis-
tical model to extrapolate our chrono-sequences beyond 28 years. 
We fitted logistic functions to the chrono-sequences, predicting the 
relative canopy cover dependent on t:

with n, m, k and t0 being model parameters estimated from the 
data using a Levenberg–Marquardt algorithm implemented in the 
minpack.lm package (Elzhov et al., 2016) available in the statistical 
programming language R (R Core Team, 2020). We used the fitted 

model to predict relative canopy cover for up to 1,000 years post-
disturbance, and derived the recovery interval (i.e., the first year of 
complete recovery) from the model predictions.

As our aim was to assess the spatial variation in recovery intervals, 
and subsequently resilience, a spatial aggregation unit was needed to 
create chrono-sequences. We used three different spatial aggrega-
tion levels: (a) A grid of hexagons distributed equally across Europe 
along a 50 km grid with each hexagon sized 2,165 km2 and used in 
previous studies to assess spatial patterns of disturbance regimes 
(Senf & Seidl, 2021a). This hexagon grid allows for assessing spatial 
variation in recovery across Europe. (b) Individual countries to assess 
differences in recovery intervals and subsequently resilience between 
countries. (c) Different patch sizes and disturbances severities, testing 
their influence on recovery. Disturbance severities were calculated 
from the canopy cover estimates described above by (1−min(can-
opy coverpost)/canopy coverpre) × 100, resulting in values from 0 (no 
change in canopy) to 100 (complete loss of canopy); and were classi-
fied into < 50 (low severity), 50–90 (high severity) and > 90 (very high 
severity). Patch size was classified into < 1, 1–10 and > 10 ha.

2.3 | Assessment of disturbance resilience

Resilience was here defined as the ratio between disturbance 
and recovery intervals. Recovery intervals were estimated as de-
scribed in the previous section. Disturbance intervals were based 
on a Landsat-based disturbance map published previously (Senf & 
Seidl, 2021a) and available from Senf (2021; version 1.0.0). The dis-
turbance map depicts any abrupt declines in the dominant forest 
canopy—regardless of their cause—that are detectable at a spatial 
grain of 30 m, including disturbances that only remove a part of the 
canopy within a pixel. It does, however, not detect any changes in 
sub-canopy tree layers. Using relatively short data series, such as 
the remote sensing-based disturbance maps used in this study (cov-
ering the period 1986 to 2016), it is challenging to estimate true dis-
turbance intervals (i.e., the time between two disturbance events). 
We hence used rotation period as a proxy for disturbance interval. 
Rotation period is the average time needed to disturb an area of the 
size of the focal area (e.g., forest area of a hexagon or country), and 
is calculated by dividing the total forest area by the average annual 
forest area disturbed (Pugh et  al.,  2019; Turner & Gardner, 2015). 
Both forest area and average annual forest area disturbed were 
derived from the previously published disturbance maps (Senf & 
Seidl, 2021a). We neglected land use conversions in the calculation 
of disturbance rotation periods, because they play a minor role in 
European forest disturbance dynamics (Senf et al., 2021). While ro-
tation period and return intervals are, strictly speaking, not equiv-
alent, there is no possibility of calculating disturbance intervals 
directly from the relatively short time series available from satellite 
data. While differences between disturbance rotation period and re-
turn interval can be potentially large at small spatial scales, the two 
concepts—however—converge at large spatial scales.

(1)rt = n +
m

(

1 + exp−k(t−t0)
)

F I G U R E  1   Three example trajectories (different colours) of 
average relative canopy cover (dots) over time since disturbance. 
A logistic function fit to the observed data (solid lines) was used 
to estimate the recovery interval, that is the time it takes until—
on average—a patch has fully recovered (i.e., average relative 
canopy cover ≥1; see vertical dashed lines and triangles in 
figure). [Correction added on 23 October 2021, after first online 
publication: Figure 1 has been replaced.] 
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The resultant indicator of resilience (i.e., ratio between distur-
bance and recovery intervals) ranges from 0 to ∞, with larger values 
indicating more resilient systems (i.e., infrequent disturbance, fast 
recovery). A resilience value smaller than 1 (i.e., higher disturbance 
interval than recovery interval) was defined as critical, because it 
indicates that a system is no longer able to recover from disturbance, 
which can indicate system change (i.e., long-term loss of forest area). 
A resilience value between 1 and 5 was defined as low resilience. 
In a low resilience state, the forest ecosystem is highly variable in 
time (Fraterrigo & Rusak, 2008; Turner et al., 1993), and a gradual 
increase in average disturbance rates or a sudden large pulse of dis-
turbance might push the system into a critical state. We further de-
fined moderate resilience as a resilience value between 5 and 10; 
and high resilience as a system exceeding a resilience value of 10 
(i.e., with 10 times higher recovery intervals than disturbance inter-
vals). We derived resilience indicators for each hexagon grid cell (see 
Section 2.2), as well as at the country level.

3  | RESULTS

3.1 | Mapping forest cover across Europe

The Landsat-based model accurately predicted canopy cover with 
a R2 of .96 and an average error of 7.9 percentage points (Figure 2). 
The average canopy cover for Europe’s forests (with forests defined 
as areas with > 10% canopy cover; Chazdon et al., 2016) was 57%, 
with a standard deviation of 33 percentage points. Based on these 

canopy cover estimates we calculated disturbance severity, that is, 
the percent loss of forest canopy during disturbance relative to pre-
disturbance canopy cover. Across all disturbed patches recorded in 
Europe between 1986 and 2016, the average disturbance severity 
was 66%. Approximately 75% of all disturbances in Europe were high 
severity events with > 50% canopy loss. Approximately 10% of all 
disturbances in Europe had very high severity (> 90% canopy loss; 
see also Supporting Information Figure S3).

3.2 | Recovery intervals

Using annual canopy cover estimates we quantified how quickly 
disturbed patches recover, on average, to pre-disturbance canopy 
cover. The trajectories of recovery were well described by the logis-
tic model’s' fit to the data, with only a few instances of failed model 
convergence (1.2%). All estimates given in the following are based 
on the model fit and not on raw data. The distribution of recovery 
intervals across Europe was left-skewed with a forest-area weighted 
median recovery interval of 18  years and a forest-area weighted 
mean recovery interval of 35 years. Overall, in 87% of Europe’s for-
ests canopy cover recovered to pre-disturbance values in less than 
30 years. Longer recovery intervals for canopy cover (30–100 years) 
were found in mountain regions of the Alps and Carpathians as well 
as in large parts of Fenno-Scandinavia (in total 9% of Europe’s forest 
area; Figure 3 and Table 1). Only in a few regions did it take forest 
canopy > 100 years to recover from disturbance, including parts of 
the Iberian Peninsula, France and Greece (totalling to approximately 
2% of Europe’s forest area; Figure 3 and Table 1). For less than 1% of 
Europe’s forests recovery intervals exceeded 1,000 years and were 
capped at this value. For those regions we estimate that, given our 
data, the majority of disturbances will not reach pre-disturbance 
canopy cover again within ecological time frames.

Disturbance patch size and severity influenced recovery intervals 
(Figure 4). For disturbance patches up to 10 ha, we observed little 
variability in recovery intervals, with forests recovering within the 
first 30 years of disturbance. For patches above 10 ha, however, the 
proportion of patches with very long recovery intervals (> 100 years) 
increased, and a considerable proportion of patches did not recover 
at all (i.e., recovery intervals of >1,000 years). Furthermore, recov-
ery slowed with increasing disturbance severity. Low severity dis-
turbances (≤50% of canopy lost) recovered almost exclusively within 
the first 30 years after disturbance. High severity disturbances (50% 
< canopy loss ≤ 90%) led to a substantially higher proportion of long 
recovery intervals (30–100 years). Very high severity disturbances 
(>90% canopy loss) were most likely to experience very long recov-
ery intervals (>100 years) and had the highest proportion of forests 
not recovering at all (i.e., with disturbance intervals >1,000 years). 
From this analysis we conclude that disturbance severity is a more 
important driver of recovery than disturbance size (Figure 4).

We did find substantial variation in average recovery intervals 
between countries (Table  1), with fastest post-disturbance recov-
ery in Bulgaria, Hungary, Moldova and the Netherlands (11  years) 

F I G U R E  2   Assessment of the Landsat-based canopy cover 
model via 10-fold cross-validation. RMSE, root mean squared error; 
nRSME, normalized root mean squared error. [Correction added on 
23 October 2021, after first online publication: Figure 2 has been 
replaced.]
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and longest average recovery times in Portugal (228  years), Spain 
(87 years) and Greece (33 years). Except for these three countries, 
canopy recovered within 30  years post-disturbance in all other 
European countries.

3.3 | Resilience of Europe’s forests to disturbance

We quantified and mapped forest resilience to disturbance by 
calculating the ratio between disturbance and recovery intervals 
(Figure 5). We found that the majority of Europe’s forest area (ap-
proximately 69%) can be considered highly resilient to the cur-
rently prevailing disturbance regime, with ratios of disturbance 
interval to recovery interval of greater than 10 (i.e., 10 times faster 
recovery than disturbance). Regions of high resilience were found 
on the Balkan Peninsula, the southern side of the Alps, northern 
Fenno-Scandinavia, and parts of Central and Eastern Europe. 
Approximately 17% of Europe’s forests have moderate resilience, 
with ratios of disturbance to recovery intervals between 5 and 10. 
Regions of moderate resilience were found in parts of the Alps 
and the Carpathians (especially Austria and Czechia), the United 
Kingdom and Ireland, large parts of Fenno-Scandinavia, northern 
Spain, southern France, and Greece (see also Table 1). Another 12% 
of Europe’s forests have low resilience, with disturbance intervals 
approaching recovery intervals (i.e., resilience values smaller than 
5 but larger than 1). Those forests can still be considered resilient, 
but they exhibit high variability over time and a gradual decrease 
in average recovery rates or a sudden large pulse of disturbances 
might push them into a critical state. Those regions were found in 

southern Sweden and Finland as well as central France and Spain. 
Critical states, that is areas where disturbances occur faster than 
forests can recover (i.e., resilience values <  1), were identified 
for 2% of Europe’s forest area. Those regions were largely con-
centrated on the Iberian Peninsula and occurred particularly in 
Portugal (Table 1).

4  | DISCUSSION

We here provide the first quantitative assessment of disturbance re-
silience in Europe’s forests, calculating remote sensing-based recov-
ery and disturbance intervals. We found that the majority of Europe’s 
forest area is resilient to the recent rate of disturbance by human and 
natural causes. This result reflects the observation that forest area 
in Europe has increased over recent decades (Forest Europe, 2020), 
and that rates of timber extraction (from planned harvesting and sal-
vage harvesting of naturally disturbed areas) remain below annual 
increment in most of Europe’s countries (Levers et al., 2014). We fur-
ther document that even regions affected by large-scale natural dis-
turbance events since the mid-1980s have generally high resilience 
(e.g., regions affected by large cyclonal storms; Forzieri et al., 2020; 
Senf & Seidl, 2021c). This underlines that Europe’s forests are well 
adapted to disturbance, and that infrequent, large pulses of tree 
mortality do not generally threaten Europe’s forest ecosystems. We 
did, however, also identify several regions of low resilience to pre-
vailing disturbance regimes (approximately 12% of Europe’s forests). 
In these areas a sudden pulse of tree mortality caused by natural 
disturbance could push forests into a critical state. Regions of low 

F I G U R E  3   Disturbance and recovery intervals across Europe’s forests. Shown are the centroids of the 50-km hexagon grid, with point 
size scaled to the forest area within each hexagon. Grey dots indicate missing data. [Correction added on 24 October 2021, after first online 
publication: Figure 3 has been replaced. 
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resilience mostly occurred in areas with high or very high manage-
ment intensity (Levers et al., 2014; Nabuurs et al., 2019). According 
to our analysis, these regions have very low safety margins against 
additional disturbances and might already be in “resilience debt” 
(Johnstone et al., 2016; Lindenmayer et al., 2016).

We found approximately 2% of Europe’s forest area to be in a 
critical state with regard to disturbance resilience, that is, they are 
disturbed faster that they can recover. For these regions a loss of 
forest area (e.g., due to immaturity risk) and a shift to an alterna-
tive, non-forest ecosystem state have to be expected. Regions with 
critical resilience were exclusively found in Portugal and Spain. 

Portugal currently has the shortest disturbance intervals in Europe, 
due to a combination of intensively managed short-rotation planta-
tion forests (mostly Eucalyptus globulus, covering approximately one 
quarter of Portugal’s forest area and approximately 10% of its land 
area; Fernandes et al., 2019; Forest Europe, 2020) and a high preva-
lence of fires (Nunes et al., 2019; Senf & Seidl, 2021c). Furthermore, 
high disturbance rates coincide with long recovery intervals here, 
which might be related to the Mediterranean climate in general 
and to increasing fire severity in the region. Climate change, plan-
tation management, and increasing fuel availability and continuity 
have led to larger and more intense fires in recent decades across 

Country
Average recovery 
interval (years)

Average disturbance 
interval (year) Resilience

Albania 20 205 9.78

Austria 19 212 10.61

Belarus 12 238 19.83

Belgium 15 175 10.93

Bosnia and Herzegovina 15 533 31.36

Bulgaria 11 387 35.19

Croatia 17 363 20.18

Czechia 11 175 14.47

Denmark 13 180 12.03

Estonia 20 146 6.63

Finland 18 141 7.44

France 19 212 9.62

Germany 15 242 15.12

Greece 27 207 6.26

Hungary 10 206 18.71

Ireland 14 166 11.10

Italy 15 322 20.15

Latvia 14 138 9.20

Lithuania 11 180 15.03

Moldova 12 678 61.64

Montenegro 20 321 14.59

Netherlands 10 384 34.87

North Macedonia 16 272 16.01

Norway 20 279 12.15

Poland 11 231 19.27

Portugal >100 56 0.25

Romania 13 359 25.65

Serbia 11 497 41.40

Slovakia 13 231 16.50

Slovenia 20 417 18.98

Spain >100 111 1.28

Sweden 23 136 5.21

Switzerland 16 418 24.59

Ukraine 12 280 23.33

United Kingdom 16 183 10.19

TA B L E  1   Average disturbance and 
recovery intervals, as well as resilience 
(i.e., disturbance interval/recovery 
interval), for the 35 countries included 
in this study . [Correction added on 
23 October 2021, after first online 
publication: Table 1 has been modified.
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the Iberian Peninsula (Fernandes et al., 2014; Moreira et al., 2020). 
Those larger and more intense fires can transition the widespread 
plantation forests to mixed forests or open systems dominated by 
shrubs (Fernandes et al., 2019; Silva et al., 2011). In fact, official data 
suggest that Portugal’s forest area has already declined in the past 
20 years (Forest Europe, 2020), most likely as a consequence of fire 
(Fernandes et al., 2019; Oliveira et al., 2017), supporting our remote 
sensing-based assessment of forest resilience.

While we show that the majority of Europe’s forests is resilient 
to prevailing disturbance regimes, an important question remains un-
answered: Can future disturbances push Europe’s forests across re-
silience thresholds and into a critical state? Forest disturbances have 
increased across Europe in recent decades as a result of both land use 

and climate change (Senf et  al., 2018, 2021). Furthermore, there has 
been an increase in large-scale forest diebacks in response to drought 
(Senf, Buras, et al., 2020; Senf & Seidl 2021b), as well as an increase 
in wind disturbances (Senf & Seidl, 2021c). A continued change in dis-
turbance regimes along the trajectories of the recent past could thus 
bring Europe’s forests closer to critical resilience thresholds. Yet, even 
for a doubling of disturbance intervals only an additional 1% of Europe’s 
forest area will be in a critical state based on our analysis, assuming sta-
ble recovery intervals. However, the recovery rate will likely also be af-
fected by climate change: first, larger disturbance patches under climate 
change can hamper natural regeneration after disturbances (Figure 4; 
Hansen et al., 2018; Harvey et al., 2016); second, a higher prevalence of 
high-severity disturbances can hamper the establishment of new for-
ests (Figure 4; Buma & Wessman, 2011; Rydgren et al., 2004); third, 
drought has been found to impede natural regeneration by increased 
seedling mortality (Hansen et al., 2018; Harvey et al., 2016; McDowell 
et  al.,  2008). Climate change could, however, also foster recovery in 
some parts of Europe, for example, in mountain forests where tree 
establishment has been limited by temperature (Mina et  al.,  2017). 
Furthermore, it remains unclear to what extent elevated CO2 could 
compensate drought effects and foster post-disturbance recovery 
(Pretzsch et al., 2020). Hence, further research on the future resilience 
of Europe’s forests to disturbance is urgently needed.

Our analysis is the first continental-scale assessment of forest 
disturbance resilience in Europe. While this type of analysis would 

F I G U R E  4   Distribution of recovery intervals over disturbance 
patch size and severity. [Correction added on 23 October 2021, 
after first online publication: Figure 4 has been replaced.] 

F I G U R E  5   The resilience of Europe’s 
forest ecosystems to disturbance. 
Resilience was defined as the ratio 
between disturbance and recovery 
intervals (see Sections 1 and 2.3 for 
detailed definitions). Shown are the 
centroids of a 50-km hexagon grid, with 
point size scaled to the forest area within 
each hexagon. Grey dots indicate missing 
data. [Correction added on 23 October 
2021, after first online publication: 
Figure 5 has been replaced.] 
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have been impossible without the spatially exhaustive and historic 
archives of Landsat, it also comes with limitations and uncertainties. 
First, the remote sensing data employed here have a relatively coarse 
resolution of 30 m. Many disturbances in Europe are small compared 
to this grain of analysis (Senf & Seidl,  2021a), and post-disturbance 
forest recovery might operate at much finer scale (e.g., surviving re-
sidual trees; Bolton et al., 2015). Our analysis thus provides a coarse 
view on recovery dynamics at the continental scale, and should be 
amended with local, field-based studies in the future to reach robust 
conclusions at the regional scale (e.g., Zeppenfeld et al., 2015). In ad-
dition, emerging studies showing the potential of remote sensing to 
also monitor forest recovery locally (e.g., Chirici et al., 2020) suggest a 
combination of field-based approaches with remote sensing analyses 
as a potent way forward for forest resilience studies. Second, our time 
series cover a relatively short time period given the longevity of trees. 
This is a limitation inherent to the underlying data that must be taken 
into account when interpreting our results. We suggest that future 
research should verify our results with more localized but long-term 
data such as dendroecological data. Third, we note that resilience can 
be defined in manifold ways, and the utility of our quantification might 
vary with context. Here, we used local canopy cover before a distur-
bance as the reference state for recovery. This means that if canopy 
cover pre-disturbance was very high (as is the case for plantations in 
Portugal, for instance), a lower canopy cover post-disturbance indi-
cates a loss of resilience. However, the lower level of canopy cover 
might still sustain important ecological functions and services, and 
might thus not constitute a loss of resilience in terms of ecosystem 
service supply (Seidl et al., 2016). Likewise, increasing canopy cover 
does not per se indicate higher resilience in terms of ecosystem func-
tions and services. The socio-ecological resilience of Europe’s forests 
(cf. Nikinmaa et al., 2020) is thus likely considerably different from the 
quantification presented here. Third, we here only focused on one im-
portant parameter to define recovery: canopy cover. Hence, our view 
on recovery is limited and does not provide information on whether 
forests have recovered to their pre-disturbance structure, nor to their 
pre-disturbance composition. It remains difficult, however, to map for-
est structure from optical remote sensing data, because optical sig-
nals saturate at tree cover > 25 m (Potapov et al., 2021). The use of 
spaceborne Lidar data for estimating structural recovery might help in 
overcoming this challenge in the future (Dubayah et al., 2020).

5  | CONCLUSION

We here provide the first continental-scale analysis of post-
disturbance forest recovery in Europe. Based on our experience we 
conclude that large-scale remote sensing of forest recovery is an inno-
vative way to assess forest resilience. We encourage further research 
on assessing forest resilience from remote sensing data, and suggest 
that an integration of remote sensing information with empirical and 
experimental approaches is a promising way forward for quantify-
ing forest resilience. We here showed that the majority of Europe’s 
forests is resilient to the disturbance regimes of the recent past. We, 

however, also highlight that a considerable share of Europe’s forests 
(14%) has only low resilience or is already in a critical state regard-
ing forest disturbance and recovery. Given that climate change could 
further amplify disturbance and impede recovery, fostering forest re-
silience should be a central focus of forest management in Europe. 
Management could improve resilience by aiding post-disturbance 
recovery, for example, via retaining a considerable portion of live 
trees in management interventions (i.e., reducing the severity of an-
thropogenic disturbances, cf. Figure  4; Gustafsson et  al.,  2012) or 
aiding recovery with tree planting (i.e., reducing the recovery inter-
val). A second level for management is to increase the resistance of 
forests to natural disturbance, and to compensate increasing natural 
disturbance rates by reducing planned canopy openings (and thereby 
increasing the disturbance interval). We conclude that resilience is a 
central property of forest ecosystems in a changing world, and should 
be a focus of forest research and management.
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