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Abstract

Set-based reachability analysis is used extensively in fields such as robotics in the context
of, e.g., motion planning and the formal verification of cyber-physical systems. In order
to properly model such systems, various set representations have been used throughout
the literature. For certain computational tasks, one needs to be able to sample random
points within such set representations. This thesis will introduce two approaches,
the Ball Walk Algorithm and the Billiard Walk Algorithm, which are both so-called
Markov Chain Monte Carlo methods that allow one to generate random samples within
a convex set. In addition, the distribution of these samples can be shown to converge
to the uniform distribution. The set representation we will focus our efforts on are
spectrahedral shadows, which can be seen as the solution sets of positive semi-definite
constraints. As a possible application, this thesis will also present two probabilistic
solutions to the containment problem for spectrahedral shadows, using uniform random
sampling algorithms.
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1 Introduction

1.1 Motivation

The significance of cyber-physical systems is rising in the modern world of today. Au-
tonomous vehicles and robots, health monitoring systems and smart grids are just some
examples of such systems that we may encounter on a daily basis in the future. The
industrial sector is shaped by the usage of highly automated production lines. However,
in order to ensure safe operation of those sometimes delicate or even dangerous systems,
there is a need for methods that can verify the correct execution of cyber-physical
systems. This is the main goal of reachability analysis [1], which basically boils down to
the prediction of certain trajectories of a system. One particular approach is set-based
reachability analysis, where the aim is not to predict a single trajectory, but rather the
behaviour of an entire region or system, modeled using certain set representations.

An appropriate set representation would be spectrahedra or, more generally, spec-
trahedral shadows [2], which can execute most basic set operations in polynomial time.
Spectrahedra, also known as linear matrix inequality representable sets, are the solution
sets of positive semi-definite constraints. Spectrahedral shadows are the images of spec-
trahedra under affine or linear transformations. Many convex sets such as polytopes,
zonotopes, ellipsoids and capsules can be represented as spectrahedral shadows.

Moreover, set-based reachability requires one to uniformly sample points [3][4]. This
is especially useful, when simulating a trajectory of a single, random point that starts
within a spectrahedral shadow. Therefore, being able to generate random points on
spectrahedral shadows is important, in order to verify the correctness of reachability
algorithms. Another use case presented in this thesis is the approximation of contain-
ment, which is very useful, e.g., when steering a system into a target region. The two
uniform random sampling methods presented, the Ball Walk and the Billiard Walk, are
both Markov Chain Monte Carlo sampling algorithms [3][4]. This indicates that they
eventually converge to a uniform distribution.

1



1 Introduction

1.2 Contributions

This thesis provides two different approaches to uniformly sample points on spectra-
hedral shadows. The following algorithms have been implemented in the MATLAB
toolbox CORA [5].

Sampling Algorithms

The Ball Walk randomly samples a point inside the ball surrounding the last sample
point p⃗i−1. If the newly sampled p⃗i is contained within the spectrahedral shadow, we
add it to the list of points. This is done, until a point that is contained inside the
spectrahedral shadow is found. We then proceed to the next point, starting, again, from
the ball around p⃗i.

The Billiard Walk randomly samples a direction d⃗ and a random segment length
l, based on some parameter τ, which represents the expectation value of l. Starting from
the point p⃗i−1, we can trace a line segment in direction d⃗, until the target length l is
reached at point p⃗i. Should the line segment reach the boundary of the spectrahedral
shadow, the computation of normal vectors at the boundary points is required for
determining the direction after the reflection. Both the intersection points and the
normal vectors are computed using semi-definite programs.

In addition to the uniform random sampling algorithms, two methods solving the
containment problem for spectrahedral shadows will also be presented. Their relevance
for this thesis lies in their usage of uniform random sampling for their approach.

Containment Algorithms

The Inner Sampling Containment Algorithm checks whether some spectrahedral
shadow is inside another one, by uniformly sampling points in the spectrahedral
shadow thought to be on the interior and then creating boundary points from these
points. Containment can then be disproven if a single point of the inner spectrahedral
shadow lies outside the outer one. If no such points can be found, and enough points
are sampled, one can conclude with a certain probability that containment holds.

The Outer Sampling Containment Algorithm solves the containment problem by
uniformly sampling points in the spectrahedral shadow thought to be on the exterior
and, similarly to the previous approach, creating boundary points from these points. We
can then compute the normal vectors at these boundary points and compare the results
of the support function of these normal vectors to the result of the support function of
the centre of the inner spectrahedral shadow.

2



1 Introduction

1.3 Related Work

The CORA toolbox already contains an implementation of different uniform random
sampling algorithms for other convex sets, such as polytopes and zonotopes, but they
cannot be directly applied to spectrahedral shadows.

The R package volesti [6] also contains implementations of uniform sampling algo-
rithms for polytopes, including the two methods presented in this thesis. Similarly
to the existing CORA implementations, these methods cannot be applied directly to
spectrahedral shadows.

Kulmburg and Althoff have proven that the containment problem for zonotopes is
NP-hard [7], meaning that the containment problem for spectrahedral shadows is also
NP-hard. Additionally, they have also presented a method for a probabilistic approach
for the containment of zonotopes [8]. Methods used in this thesis are of a similar nature
to the ones presented in their paper.

3



2 Preliminaries

2.1 Basic Notation

A letter with an arrow, e.g., v⃗ denotes a vector in Rn. The vectors e⃗i, for i = 1, ..., n, will
indicate the canonical basis vectors of Rn. For a vector v⃗ ∈ R, we will denote vi, for
i = 1, ..., n, the coordinates of v⃗ with respect to the canonical basis. Matrices in Rn×m

will be represented by an uppercase letter, which is underlined, e.g., A. For a matrix
A ∈ Rn×m, we will denote Ai,j, for i = 1, ..., n and j = 1, ..., m, the (i, j)-th coordinate of
A. For a vector v⃗ ∈ Rn and p ∈ [1, ∞], ∥v∥p := p

√
|v1|p + ... + |vn|p is the p-norm of v⃗

(the ∞-norm is defined as ∥v⃗∥∞ := maxi |vi|). For a matrix A ∈ Rn×n the trace is defined
as tr(A) = ∑n

i=1 Ai,i. We define A + B = {a + b | a ∈ A, b ∈ B} as the Minkowski sum
of the sets A and B. The boundary of a set S is represented by ∂S.

Notation in Algorithms

We will now introduce certain functions that we shall use throughout the thesis, which
have been implemented in CORA, previous to the writing of this thesis.

The expression rand(n) generates a random number in the interval (0, n), accord-
ing to the uniform distribution, whereas randn(n,m) generates an n×m matrix with
random values according to the normal distribution. The method interval(S) com-
putes the interval box over-approximation of the set S, i.e., the smallest interval box
that contains S. The method center(S) computes the centre of the set S. The proce-
dure feasible(S) returns a feasible point x⃗ such that x⃗ ∈ S. The methods SpS.G and
dim(SpS) return the generator G and the dimension of the spectrahedral shadow SpS
respectively, whereas the method getCoeffMat(SpS) returns the coefficient matrices
A0, Ai of SpS, for i = 1, ..., m.

2.2 Spectrahedra and Spectrahedral Shadows

Before formally introducing spectrahedra and spectrahedral shadows, let us touch on
some concepts and notation regarding positive semi-definite matrices.

We write A ≥ B when A− B is positive semi-definite. In particular, A ≥ 0 denotes that
A is positive semi-definite. Let A0, ..., Am ∈ Rn×n be symmetric matrices. The linear
map A : Rm → Rn×n, x⃗ 7→ A0 + ∑m

i=1 Aixi is a linear matrix polynomial.

4



2 Preliminaries

Definition 2.2.1 (Spectrahedral Shadow). LetA(x⃗) be a linear matrix polynomial. The set
SA is then called the spectrahedron defined by A, defined as SA = {x⃗ ∈ Rm | A(x⃗) ≥ 0}.
Given an affine map P : Rm+r → Rm, the set P(SA) = {P(x⃗) | x⃗ ∈ SA} is called a
spectrahedral shadow [2]. This can be more precisely written as follows:

SpS =
{

Gβ⃗ + c⃗ | A0 +
m

∑
i=1

βi Ai ≥ 0
}

,

where G ∈ Rn×m is called the generator matrix and c⃗ ∈ Rn is called the centre vector of
the spectrahedral shadow SpS of dimension n.

Along spectrahedral shadows, we will also need the definition of polytopes:

Definition 2.2.2 (Polytope). An n-dimensional (convex) polytope P ⊂ Rn can be defined
as the convex hull of a finite set of points {v⃗1, v⃗2, ..., v⃗N} in Rn. This is also called the
vertex representation of P.

Additionally, for the purpose of evaluating the efficiency of our sampling methods, we
will introduce capsules as well:

Definition 2.2.3 (Capsule). For c⃗, g⃗ ∈ Rn and some r > 0, let L = {⃗c + ag⃗ | a ∈ [−1, 1]}
and S = {x⃗ | ∥x⃗∥2 ≤ r}. An n-dimensional capsule C is defined as:

C := L + S.

The vector c⃗ is known as the centre of the capsule C, g⃗ is called the generator of C, and
r is its radius.

2.3 Uniform Distribution and Sampling

The main goal of this thesis is to find methods to generate random, uniformly distributed
points on various sets. We characterise the uniform distribution as follows:

Definition 2.3.1 (Uniform Distribution). Let S be a compact set in Rn and let x⃗ ∈ S be a
random variable. Then x⃗ is said to be ϑ-uniformly distributed on S for some ϑ ≥ 0, if
and only if ∀A ⊆ S: ∣∣∣∣∣P(x⃗ ∈ A)− vol(A)

vol(S)

∣∣∣∣∣≤ ϑ.

When referring to the uniform distribution, we mean the ϑ-uniform distribution with
ϑ = 0.

5



2 Preliminaries

2.4 Duality

Duality will also be used in proofs, as such, we will need to define it here. The concept
of duality is important in the context of computing normal vectors for boundary points
of convex sets, but can also be used to reformulate certain optimisation problems into a
more convenient form.

Definition 2.4.1 (Dual Set). For a set S ⊆ Rn containing the origin, the dual set (also
referred to as polar set in some literature) is defined as:

S∗ :=
{

y⃗ ∈ Rn | sup
x⃗∈S

y⃗⊤ x⃗ ≤ 1
}

.

While the definition of the dual set can seem to be quite abstract at first, the dual set
of a spectrahedral shadow has a relatively simple form. In order to deduce it, we first
need the following theorem:

Theorem 2.4.1. Let C, Ai ∈ Rn×n be symmetric matrices, b⃗ ∈ Rm be a vector. Consider the
following primal minimisation problem with feasible constraints:

P = min
tr(AiX)=⃗b

X≥0

tr(C⊤X)

The dual maximisation problem is defined as:

D = max
∑i yi Ai≤C

y⃗⊤⃗b

Then there holds P = D.

The prof of this theorem can be found in [9].

Theorem 2.4.2. Let SpS be a spectrahedral shadow with generator matrix G ∈ Rn×m, symmetric
coefficient matrices A0, ..., Am ∈ Rk×k, and centre vector c⃗ = 0⃗. Furthermore, assume that SpS
contains the origin. Then the dual of SpS is given as:

SpS∗ :=
{

y⃗ ∈ Rn | ∃X ≥ 0 s.t. tr(A0 x⃗) ≤ 1, tr(AiX) = e⃗i
⊤G⊤y⃗

}
.

Proof. Using Theorem 2.4.2, we make the following transformations:

max
x⃗∈SpS

y⃗⊤ x⃗ = max
x⃗=Gβ⃗

A0+∑i βi Ai≥0

y⃗⊤ x⃗

= max
A0+∑i βi Ai≥0

y⃗⊤Gβ⃗

= max
−∑i βi Ai≤A0

y⃗⊤Gβ⃗

= min
−tr(AiX)=(G⊤ y⃗)i

X≥0

tr(A0X)

= min
−tr(AiX)=e⃗⊤i G⊤ y⃗

X≥0

tr(A0X)

6



2 Preliminaries

This proves that the dual of SpS is:

SpS∗ :=
{

y⃗ ∈ Rn | ∃X ≥ 0 s.t. tr(A0 x⃗) ≤ 1, tr(AiX) = e⃗i
⊤G⊤y⃗

}
.

Q.E.D.

2.5 Support Function

In this thesis, we will mostly work with convex set representations. One common way
to characterise convex sets is the support function, which will prove useful later on:

Definition 2.5.1 (Support Function). The support function hS : Rn → R of a non-empty
closed convex set S in Rn defines the distance of supporting hyperplanes of S to the
origin. It can be described with the formula:

hS(x⃗) = sup{x⃗⊤⃗s | s⃗ ∈ S}.

2.6 Geometric Random Walks

Suppose we have a convex set S. A geometric random walk begins at some point
p⃗ ∈ S and iteratively moves to a neighbouring point according to some distribution.
By choosing an appropriate distribution for the one-step iteration, one ends up with a
sequence of points inside the set S, that may converge towards a certain distribution,
e.g., the uniform distribution.

This thesis will look at two geometric random walk algorithms and their different
heuristics: the Ball Walk Algorithm and the Billiard Walk Algorithm. In fact, it is
proven that for an infinite amount of iterations, the Ball Walk Algorithm, in particular,
converges to the uniform distribution. Moreover, it has been proven in [4] that, for a
finite but large enough sample size, the resulting points are ϑ-uniformly distributed,
with ϑ depending on the number of points sampled. It has also been proven that the
Billiard Walk is asymptotically uniform [10].

7



3 Algorithms/Approach

In this chapter, the focus will lie on two sampling algorithms that were implemented
in CORA for spectrahedral shadows. Proof of the uniformity of the approaches is also
discussed for each individual algorithm. Section 3.2 describes the Ball Walk Algorithm
and the choice of parameters for the ball generation. Section 3.3 presents an overview
of the billiard walk algorithm, as well as an explanation of the computation of normal
vectors, used for the reflection of lines inside the spectrahedral shadows. Finally, the
accuracy and the efficiency of the two approaches are described in section 3.4.

3.1 Naive Approach

Prior to the presentation of our methods, we are going to describe an approach, that
may seem easier to grasp, but that demonstrates why generating uniformly distributed
points on a spectrahedral shadow is not trivial. One straightforward approach to
generate uniformly distributed points on a given compact and convex set would be to
over-approximate it with a surrounding interval box and uniformly sample random
points on that interval, then check for each point whether it is contained in the set in
question. For spectrahedral shadows, the algorithm would take the following form:

1. Approximate the SpS with the interval box I.

2. Uniformly sample points p⃗i ∈ I.

3. For each point p⃗i, check if it is in SpS. If it is, add it to a solution set of points.

4. The algorithm terminates once the desired number of points is in our solution set.

The approach is intuitive and actually gives an independent uniformly distributed
sample. We will now explain why this algorithm does not work very well in general. We
imagine a spectrahedral shadow. Using the naive approach on this set would generate
a lot of points outside of the spectrahedral shadow itself, but inside its interval box,
because the ratio between the volume of the spectrahedral shadow and the volume of
the interval box is very small.

This issue becomes even worse in higher dimensions by looking at the volume of
the n-dimensional ball, which can be represented by a spectrahedral shadow. In Figure 3.1
we can see that the volume of the unit n-ball first increases up to the dimension 7, but
then quickly decreases and converges to 0. Since the interval box of the n-ball is the

8



3 Algorithms/Approach
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Figure 3.1: Volume of the unit n-ball across dimensions

n-cube (with volume 2n), this means that the volume ratio between a spectrahedral
shadow and its interval over-approximation can become arbitrarily small.

The major issue is thus the runtime, as the algorithm would converge very slowly.
This happens, because the volume that can be sampled becomes disproportionately
large compared to the target volume, meaning generated points would, more often than
not, be thrown out. The advantage of this approach is the near-perfect uniformity, but
the major disadvantage is the runtime, which may be at least exponential in n.

Therefore, there is the need for algorithms that can sample a convex set in polyno-
mial time, albeit not perfectly uniformly as for the naive approach. These methods use
geometric random walks, which will generate a set of ϑ-uniformly distributed points.

3.2 Ball Walk

3.2.1 Outline

The first sampling algorithm presented in this thesis is the Ball Walk Sampling Algorithm.
Intuitively, the approach can be described as follows: We start with a spectrahedral
shadow SpS and the number of points we would like to uniformly generate N. We will
then proceed as follows:

1. Start from a randomly chosen starting point p⃗0.

2. Generate a ball Br around p⃗0 with radius r.

9



3 Algorithms/Approach

3. Generate a random point y⃗ randomly inside Br.

4. Check to see if y⃗ is in SpS. Should this be the case, y⃗ is added to our list of points
and we set p⃗0 := y⃗. If this is not the case, we go to step 3.

5. We decrease N and, if N > 0, we go to step 1. Otherwise, the algorithm is finished.

3.2.2 Algorithm

The pseudocode of the algorithm can be seen in Figure 3.2. A visual of the algorithm
can be seen in Algorithm 1. A proof for the convergence to the uniform distribution can
be found in [4, Theorem 3.7].

Algorithm 1 Ball Walk Algorithm

Input: a spectrahedral shadow SpS of dimension n with m generators, the number of points N
to be sampled in SpS
Output: the set of sampled points

1: p⃗i ← 0⃗, i = 1, ..., N
2: I ← interval(SpS)
3: c⃗← center(I)
4: SpS0 ← SpS− c⃗
5: l⃗ = (sup I − inf I)/2
6: SpStrans ← diag(⃗l−1) · SpS0
7: r ← 1/

√
dim(SpS)

8: p⃗0 ← feasible(SpS)
9: i← N

10: while i>0 do
11: γ⃗← randn(dim(SpS),1)
12: γ⃗← γ⃗/∥γ⃗∥2
13: d← rand(1)
14: x⃗ ← d1/dim(SpS) · γ⃗
15: y⃗← p⃗0 + r · x⃗
16: if y⃗ ∈ SpStrans then
17: p⃗N−i+1 ← y⃗
18: i← i− 1
19: p⃗0 ← y⃗
20: end if
21: end while
22: p⃗i ← diag(⃗l) · p⃗i, i = 1, ..., N
23: p⃗i ← p⃗i + c⃗, i = 1, ..., N
24: return p⃗i, i = 1, ..., N

10



3 Algorithms/Approach
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Figure 3.2: An example of the point generation inside the transformed spectrahedral
shadow. In each iteration, a ball with radius r is drawn around the current
point (in red), and a new point is generated within that ball. If the point is
inside the spectrahedral shadow, we define it as the new current point, and

add it to the list of sampled points.
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3 Algorithms/Approach

Preparations

We first generate the interval box that surrounds our spectrahedral shadow, which
we can accomplish with the method interval(SpS). Since an interval box can be
represented as [⃗a, b⃗] := {x⃗ | ai ≤ xi ≤ bi, ∀i}, to compute the side lengths l⃗ of a box
it suffices to set l⃗ = 1

2 (⃗b− a⃗). By subtracting the centre of the interval from SpS, we
centre it around the origin. We then multiply this newly centred SpS with diag(⃗l−1),
the diagonal matrix of inverse of the length of the box surrounding SpS. This entire
heuristic ensures better working conditions for the algorithm, since it has been shown in
[4] that the Ball Walk performs particularly well if the set is shaped similarly to the unit
hyperball. A typical pre-processing procedure for the Ball Walk is called "rounding",
and consists in transforming the set beforehand in such a way, that it resembles a unit
ball. Unfortunately, computing the ball over-approximation of a spectrahedral shadow
is NP-hard, as can be seen in [11]. In table 1 it is specified that computing the radius
with respect to the euclidean norm of a H-polytope is NP-hard. Spectrahedral shadows
can represent H-polytopes, so it follows that the ball approximation of a spectrahedral
shadow is also NP-hard. However, since a unit hyperbox is relatively similar to a
hyperball, approximating spectrahedral shadows with an interval box achieves similar
results. We can now generate a random starting point. In order to generate such a point,
one possibility is to compute the support function of SpS in a random direction, and
check which point in SpS is the maximiser of the corresponding optimisation problem.
This generates a random point on the boundary of SpS, which is sufficient for our
purpose.

3.3 Billiard Walk

3.3.1 Outline

The second sampling algorithm that will be introduced is the Billiard Walk Sampling
Algorithm. It can be described as follows: We, once again, start with SpS and N (as
described in section 3.2).

1. Start from a randomly chosen point p⃗0.

2. Sample a random direction and a random trajectory length.

3. Follow the direction until the length is reached or the boundary of SpS is hit.

4. If the boundary of SpS is hit, reflect the trajectory. Update the direction accordingly.

5. When the length is reached at point p⃗i, add it to the list of points and set p⃗0 := p⃗i.

6. Go to step 2. (Do this N times).

12
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Fig. 1. The scheme of the Billiard Walk algorithm.

2. ALGORITHM

Let Q ⊂ Rn be an open, bounded and connected region
and a point x0 ∈ Q. Our aim is to generate asymptotically
uniform samples xi ∈ Q, i = 1, . . . , N .

The brief description of Hit-and-Run algorithm is as
follows. At every step HR generates a random direction
uniformly over the unit sphere and chooses next point
uniformly from the segment of the line in given direction
in Q.

The new BW algorithm generates a random direction
uniformly as Hit-and-Run. But the next point is chosen as
the end of the billiard trajectory of length ℓ. The scheme
of the method is given in Fig. 1 while the precise routine
is as follows.

Billiard Walk algorithm.

1. Starting point x0 ∈ Int Q is given; i = 0, x = x0.
2. Generate the length of the trajectory ℓ = −τ logη,

η being uniform random in [0, 1], τ is a specified
parameter of the algorithm.

3. Pick random direction d ∈ Rn uniformly distributed
on the unit sphere (i.e., di = ξ/∥ξ∥, where ξ is a stan-
dard Gaussian vector in n dimensions. Construct a
billiard trajectory starting at xi with initial direction
d = di. When the trajectory meets a boundary with
internal normal s, ||s|| = 1, the direction is changed
as

d → d− 2(d, s)s.

4. Calculate the end of the trajectory of length ℓ. If a
point with nonsmooth boundary is met or the number
of reflections exceeds R go to step 2.

5. i = i+1, take the end point as xi+1 and go to step 2.

We prove asymptotical uniformity of the samples produced
by BW for convex and nonconvex cases separately. The
requirements for Q are different for these two cases, while
the sampling algorithm remains the same. Consider the
Markov Chain induced by the BW algorithm x0, x1, . . . .
For an arbitrary measurable set A ⊆ Q, denote by P(A|x)
the probability of obtaining xi+1 ∈ A for xi = x by the BW
algorithm. Then PN (A|x) is the probability to get xi+N ∈

A for xi = x. We also denote by p(y|x) the probability
density function for P(A|x), i.e. P(A|x) =

∫
A

p(y|x)dy.

Theorem 1. Assume Q is an open bounded convex set
in Rn, the boundary of Q is piecewise smooth. Then the
distribution of points xi sampled by the BW algorithm
tends to the uniform one over Q, i.e.

lim
N→∞

PN (A|x) = λ(A)

for any measurable A ⊆ Q, λ(A) = Vol(A)/Vol(Q) and
any starting point x.

Proof. First, the algorithm is well-defined: at step 4 with
zero probability the algorithm sticks at a point with
nonsmooth boundary. On the other hand ℓ and d are
chosen such that with positive probability xi+1 is obtained
by less than R reflections.

In view of Theorem 2 in Smith [1984] based on the asymp-
totic properties of Markov Chains, the two assumptions
on p(y|x) imply that the uniform distribution over Q is a
unique stationary distribution, and it is achieved for any
starting point x ∈ Q. The first assumption requires the ex-
istence of p(y|x) and its symmetry; the second assumption
claims its positivity p(y|x) > 0 for all x, y ∈ Q.

The existence of a probability density means that for any
x, y ∈ Q, the transition probability from x to a small
neighborhood δy of y is proportional to the volume of
δy. Among the trajectories proceeding from x to δy, there
are a conic bundles of trajectories with no reflections and
with 1, 2, . . . , R reflections. These bundles of trajectories
are cones with small spatial angle δθ. The area of reflection
with a smooth boundary can be approximated as plain
region. Then a reflection does not change the geometry of
the bundle and the reasonings for these bundles remain the
same as for the bundle of trajectories with no reflections.
P(δy|x) ∼ P(δθ)P(δℓ), where P(δθ) ∼ S is the probability
of choosing the spatial angle (proportional to the volume
of the base of the cone) and P(δℓ) ∼ δℓ is the probability
of choosing a certain trajectory length ℓ ∈ δℓ. Thus
P(δy|x) ∼ vol(δy) and p(y|x) exists for all x, y ∈ Q.

For convex bodies, the positivity of p(y|x) is obvious,
all the points are reachable by the trajectory with no
reflections. The symmetry of the probability density func-
tion follows from the uniformity of the distribution of the
directions and reversibility of a billiard trajectory due to
the reflection law: the angle of incidence equals the angle of
reflection. Thus all the assumptions on p(y|x) are satisfied
and the distribution of points xi generated by the BW
algorithm tends to uniform distribution on Q. 2

Theorem 2. Assume Q is connected, bounded and open
set, the boundary of Q is piecewise smooth and for all
x, y ∈ Q there exists a piecewise-linear path such that it
connects x and y, lies inside Q and has no more than B+1
linear parts. Then the distribution of points xi generated
by the BW algorithm tends to the uniform distribution on
Q in the same sense as in Theorem 1.

Proof. Again, the algorithm is well defined: with probabil-
ity one xi+1 ̸= xi is found for arbitrary xi ∈ Q.

All the constraints on Q are important. Connectedness
guarantees that starting from any point, we can reach a

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014
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Figure 3.3: Possible trajectory for a point generated by the Billiard Walk (taken from
[10])

3.3.2 Algorithm

The pseudocode of the Billiard Walk algorithm can be seen in Algorithm 2. Figure 3.3
illustrates an example of a possible trajectory. A proof for asymptotic uniformity can be
found in [10, Theorem 1] .

Preparations

In order to generate the points, the spectrahedral shadow needs to first be centred at the
origin, hence we can subtract the centre c⃗ from every point of SpS. This is because for
the next methods we will need to compute the dual of the spectrahedral shadow, which
is only well-defined if it contains the origin.

Similarly to the Ball Walk Algorithm, the starting point p⃗0 needs to be chosen at
random, but not (necessarily) uniformly random. This is done similarly as for the
Ball Walk, i.e., by computing the support function of SpS in a random direction, and
checking which point solves the optimisation problem, thus giving a feasible, random
point on the boundary.

For each point p⃗i, we set the segment starting point q⃗0 := p⃗0. The length l of the
segment corresponding to p⃗i is set to −τ ln(rand(1)). Two additional parameters for
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the Billiard Walk Algorithm that are needed are τ and R. The quantity τ was proposed
in [10] to be defined as at least the magnitude of the diameter of SpS. Because calculating
the diameter would be computationally expensive, τ can be set as the diameter of the
interval box interval(SpS) instead. R is descibed in detail in Section 3.3.4.

Reflection Loop

We can imagine a line being drawn from the current point in the direction d⃗ and length
l. In order to check if the segment length in the given direction is within the bounds
of our spectrahedral shadow, a calculation of the maximum coefficient of d⃗, such that
q⃗0 + λmax · d⃗ ∈ SpS is needed, further denoted λmax. This can be expressed as an
optimisation problem:

arg min
λ, x⃗

− λ

s.t. q⃗0 + λ · d⃗ = Gx⃗

A0 +
m

∑
i=1

Aixi ≥ 0

(3.1)

The optimisation problem is expressed as an equivalent minimisation problem, as the
solver we use is only able to solve such problems. Once computed, we can compare the
obtained λmax with l. Should the length be greater or equal the distance from the point
to the boundary of our spectrahedral shadow, we can compute the coordinates of our
point p⃗i = q⃗0 + l · d⃗ and add it to our list of points and break the while-loop. We can
then proceed to the next iteration, starting from p⃗0 := p⃗i.

Should l > λ, we need to perform a reflection on the boundary of SpS. We can
determine the boundary point y⃗ = q⃗0 + λmax · d⃗ ∈ ∂SpS by solving Equation (3.1). From
this point we can reflect the line back within the spectrahedral shadow. To this end, the
normal vector needs to be computed, which is described further in section 3.3.3. Let s⃗ be
the corresponding unit outer normal of SpS at the boundary point y⃗. We need to update
the starting point, direction and remaining length of the segment. To this end, we can
set q⃗0 := y⃗, d⃗ := d⃗− 2(d⃗⊤⃗s) · s⃗ and l := l − λmax, as proposed in [10]. The while-loop
can now continue until the target length is reached.

3.3.3 Normal Vector Computation

In order to calculate the direction of the reflected line that would pass the boundary of
our spectrahedral shadow, we need to compute the normal vector at the boundary point
from which the reflection takes place. Computing this normal vector for a general set
can be done using the dual:

Theorem 3.3.1. A normal vector η⃗ at a boundary point y⃗ of a convex and compact set S can be
computed as:

η⃗ = arg max
x⃗∈S∗

y⃗⊤ x⃗,
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where S∗ is the dual set of S.

Proof. We only provide a sketch of the proof, since a formal proof, which would
involve handling subgradients of certain functions, is beyond the scope of this thesis.
Any convex, compact set S can be approximated by a sequence of polytopes PN that
coonverge to S (with respect to the Hausdorff distance). The formula for computing the
normal vector at a boundary point y⃗ ∈ ∂P is [12]:

η⃗ = arg max
z⃗∈P∗

y⃗⊤ z⃗.

Let yN be boundary points on PN , such that yN −→ y, and let ηN be the corresponding
normal vectors. Then it is easy to see that ηN −→ η as defined in (3.2). Thus the normal
vector definition holds for any boundary point y⃗. Q.E.D.

Now that we know how to compute the normal vector at the boundary points of any
convex set, one can apply this for spectrahedral shadows:

η⃗ = arg max
z⃗∈SpS∗

y⃗⊤ z⃗,

where y⃗ ∈ ∂SpS.

Theorem 3.3.2. Let SpS be a spectrahedral shadow containing the origin, with generator
G ∈ Rn×m, centre vector c⃗ = 0⃗, and coefficient matrices A0, A1, ..., Am ∈ Rk×k. Furthermore,
let y⃗ ∈ ∂SpS be a boundary point of SpS. Then, an outer normal vector of SpS at the point y⃗
can be computed as follows:

arg min
z⃗

y⃗⊤ z⃗

s.t. tr(A0Z) ≤ 1

tr(AiZ) = e⃗⊤i G⊤ z⃗ ∀i = 1, ..., m

Z ≥ 0

Proof. By Theorem 3.3.1 we know that a normal vector η⃗ can be computed as η⃗ =

arg maxx⃗∈S∗ y⃗⊤ x⃗. The constraint z⃗ ∈ SpS∗ can be evaluated using Theorem 2.4.2, which
results in:

arg max
z⃗

y⃗⊤ z⃗

s.t. tr(A0Z) ≤ 1

−tr(AiZ) = e⃗⊤i G⊤ z⃗ ∀i = 1, ..., m

Z ≥ 0

As our solver is only able to solve minimisation problems, we will need to transform
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this accordingly:
arg min

z⃗
−y⃗⊤ z⃗

s.t. tr(A0Z) ≤ 1

−tr(AiZ) = e⃗⊤i G⊤ z⃗ ∀i = 1, ..., m

Z ≥ 0

By substituting z⃗ := −z⃗, we obtain the following:

arg min
z⃗

y⃗⊤ z⃗

s.t. tr(A0Z) ≤ 1

tr(AiZ) = e⃗⊤i G⊤ z⃗ ∀i = 1, ..., m

Z ≥ 0.

Q.E.D.

3.3.4 Reflection Issues

A problem that might occur when running the algorithm, is that the trajectory of the
Billiard Walk might get stuck in a corner, which would result in a very large number
of reflections which are relatively costly to compute. To this end, we can imagine the
following example: A point has been generated in the neighbourhood around the corner
of this spectrahedral shadow. As the direction is randomised and the trajectory of
the point could lead in that same neighbourhood, points might just be contained in
that region. To combat this, we will introduce the reflection number R which is set to
R0 := 10·dim(SpS), as proposed in [10]. If a trajectory produces more than R0 reflections,
we abandon that trajectory and start anew from the point p⃗0 of the current iteration, by
choosing a new random direction and trajectory length.

3.4 Complexity

In the algorithms above, we only use basic numerical operations on vectors and matrices,
as well as solving positive semi-definite programs, which have polynomial runtime.
Consequently, each iteration of the algorithms has polynomial runtime. However, in
principle, the algorithms might never terminate, and thus would have an infinite runtime.
This is because it is theoretically possible, e.g., for the Ball Walk, that the sampled points
are always outside the spectrahedral shadow, which means that no further points can
be added to the list. A similar problem can occur for the Billiard Walk. Fortunately,
the likelihood of this happening is very low, so that both algorithms have on average
polynomial runtime. One important question is therefore how many samples need to
be generated such that points produced by either algorithm are uniformly distributed.
This is called the mixing time of the algorithm, and an upper bound for the Ball Walk
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algorithm has been presented in [4]. For the Billiard Walk, no such bounds are known
apart from the fact that the distribution is asymptotically uniform. However, in practice,
the performance of the Billiard Walk is largely superior to that of the Ball Walk, and
also compared to other geometric random walks [6].
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Algorithm 2 Billiard Walk Algorithm

Input: a spectrahedral shadow SpS of dimension n with m generators, number of points N to
be sampled in SpS
Output: the set of sampled points

1: p⃗i ← 0⃗, i = 1, ..., N
2: c⃗←center(SpS)
3: G ← SpS.G
4: p⃗0 ← feasible(SpS)
5: R0 ← 10·dim(SpS)
6: A0, Ai =getCoeffMatrices(SpS), i = 1, ..., n
7: for i=1:N do
8: q⃗0 ← p⃗0
9: I ← interval(SpS)

10: τ ← max(sup I − inf I)
11: l ← −τ ln(rand(1))
12: R← R0
13: d⃗← randn(dim(SpS), 1)
14: d⃗← d⃗/∥d⃗∥2
15: while True do
16: λ← arg minλ{−λ : p⃗i + λ · d⃗ = G · x}
17: y⃗← q⃗0 + λ · d⃗
18: if l ≤ λ then
19: p⃗0 ← q⃗0 + l · d⃗
20: p⃗i ← p⃗0
21: break
22: else
23: η⃗ ← arg minx⃗{x⃗⊤y⃗ : tr(A0Z ≤ 1), tr(AjZ) = e⃗⊤j G⊤ x⃗, Z ≥ 0, j = 1, ..., m}
24: s⃗ = η⃗/∥η⃗∥2

25: d⃗← d⃗− 2 · (d⃗⊤⃗s) · s⃗
26: l ← l − λ
27: q⃗0 ← y⃗
28: end if
29: if R ≤ 0 then
30: R← R0, q⃗0 ← p⃗0
31: l ← −τ ln(rand(1))
32: d⃗← randn(dim(SpS), 1)
33: d⃗← d⃗/∥d⃗∥
34: continue
35: else
36: R← R− 1
37: end if
38: end while
39: end for
40: p⃗i ← p⃗i + c⃗, i = 1, ..., N
41: return p⃗i, i = 1, ..., N
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The containment of spectrahedra and spectrahedral shadows is a classical decision
problem in convex optimisation theory. It asks whether a spectrahedral shadow is
contained inside another spectrahedral shadow. This problem is NP-hard in general, as
can be seen in [7], where it is proven that checking for two zonotopes whether one is
inside the other is NP-hard. Since zonotopes can be expressed as spectrahedral shadows,
this proves that containment for spectrahedral shadows is NP-hard to check.

4.1 Sampling the Inner Spectrahedral Shadow

Parameters

The main parameters used for both algorithms are SpS1, SpS2 and N. Both algorithms
try to answer whether SpS1 ⊆ SpS2. The parameter N represents the number of points
sampled for the probabilistic solution of the problem. The way the points are used is
detailed in the following sections.

4.1.1 Outline

The first approach solves the containment problem, by randomly sampling points from
SpS1 (believed to be the inner spectrahedral shadow) by using one of the random
sampling algorithms, described in section 3 (we use the Billiard Walk in the pseudocode
below). We can think of the containment verification in the following way:

1. Generate N random uniformly distributed points inside SpS1 by using the Billiard
Walk Algorithm.

2. Draw a line in a random direction from every point p⃗i ∈ SpS1 until the boundary
is reached.

3. Check if the resulting boundary point y⃗ ∈ ∂SpS1 is also contained in SpS2. Stop if
it is not and return False. Else, go to step 3.

4. Return True, since every boundary point that was created, has fulfilled the above
condition.

This algorithm can only disprove containment, i.e., if we find some y⃗ /∈ SpS2 we know
for certain that SpS1 ̸⊆ SpS2. It can not confirm containment, as this would require
sampling a potentially infinite amount of points. However, if the amount N of sampled
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points is hight enough, and no point y⃗ has been found that does not lie in SpS2, one can
conclude that containment is likely.

4.1.2 Algorithm

Algorithm 3 Inner Sampling Containment Algorithm

Input: spectrahedral shadows SpS1, SpS2 ⊆ Rn with m generators and number of sampled
points N
Output: Return False if SpS1 ̸⊆ SpS2, True otherwise

1: G ← SpS1.G
2: p⃗i ←BilliardWalk(SpS1, N), i = 1, ..., N
3: A0, Ai ← getCoeffMatrices(SpS1), i = 1, ..., m
4: for i=1:N do
5: d⃗← randn(1)
6: d⃗← d⃗/∥d⃗∥2
7: λ← arg min{−λ : p⃗i + λ · d⃗ = G · x}
8: y⃗← p⃗i + λ · d⃗
9: if y⃗ ̸∈ SpS2 then

10: return False
11: end if
12: end for
13: return True

4.2 Sampling the Outer Spectrahedral Shadow

4.2.1 Outline

The second algorithm approaches the containment problem in a different manner. This
time, instead of sampling points from the inner spectrahedral shadow, we will sample
points from the outer one. We then generate boundary points of SpS2 in a similar
fashion as we did in the previous algorithm for SpS1 and use the support function
to provide a measure of how far SpS1 and SpS2 extend along the direction of each
individual normal vector. If we find a direction in which SpS1 extends further then
SpS2, then we know for certain that SpS1 ̸⊆ SpS2. The verification of containment can
be formulated as follows:

1. Subtract the centre of SpS2 from both spectrahedral shadows (so as to ensure that
the origin is contained in SpS2, which is necessary to compute the normal vectors.

2. Generate N random uniformly distributed points inside SpS2 by using the Billiard
Walk Algorithm.
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3. Draw a line in a random direction from every point p⃗i ∈ SpS2 until the boundary
is reached.

4. Compute the normal vector η⃗ of the resulting boundary point y⃗ ∈ ∂SpS2 (detailed
in section Section 3.3.3).

5. Define a := hSpS1(
η⃗

∥η⃗∥2
) and b := hSpS2(

η⃗

∥η⃗∥2
). hA is defined in Section 2.5.

6. Should a > b, then the algorithm terminates and returns False. Else, go to step 4.

7. If every a ≤ b after the loop is finished, the algorithm terminates and returns True.

4.2.2 Algorithm

Algorithm 4 Outer Sampling Containment Algorithm

Input: spectrahedral shadows SpS1, SpS2 ⊆ Rn with m generators and number of sampled
points N
Output: Return False if SpS1 ̸⊆ SpS2, True otherwise

1: c⃗← center(SpS2)
2: SpS1 ← SpS1 − c⃗
3: SpS2 ← SpS2 − c⃗
4: p⃗i ←BilliardWalk(SpS2, N), i = 1, ..., N
5: A0, Ai ← getCoeffMatrices(SpS2), i = 1, ..., m
6: for i=1:N do
7: d⃗← randn(1)
8: d⃗← d⃗/∥d⃗∥2
9: λ← arg min{−λ : p⃗i + λ · d⃗ = G · x}

10: y⃗← p⃗i + λ · d⃗
11: η⃗ ← arg minx⃗{x⃗⊤y⃗ : tr(A0Z ≤ 1), tr(AiZ) = e⃗⊤j G⊤ x⃗, j = 1, ..., m}
12: a← hSpS1(η⃗/∥η⃗∥2)
13: b← hSpS2(η⃗/∥η⃗∥2)
14: if a > b then
15: return False
16: end if
17: end for
18: return True
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5 Evaluation

In this section we are going to evaluate the performance of the presented algorithms
with respect to uniformity and performance. We are also going to focus on comparisons
with similar methods for other set representations. Section 5.1 and Section 5.2 will focus
on the uniform sampling algorithms, whereas Section 5.3 will be dedicated to evaluating
the containment algorithms.

5.1 Uniformity Evaluation

This section will focus on comparing the presented algorithms in regards to the dis-
tribution of the generated points, namely the degree to which they are distributed
uniformly.

5.1.1 Choice of Set Representation

The main scope of this thesis is analysing methods to generate random, uniformly
distributed points. This means that we want to assess the uniformity of the points
generated by the two algorithms presented in Chapter 3. In general, one can evaluate
how uniformly the points are distributed in a set, by using Definition 2.3.1.

This is more difficult for spectrahedral shadows in general, as there is no way to
compute their volume yet. As such, we will focus on a different type of set, whose
volume can be computed and that can be represented as a spectrahedral shadow. We
can then generalise the results for spectrahedral shadows as a whole.

For simplicity, the following measurements have been taken in dimension n = 2,
but the results can be generalised to higher dimensions as well.

5.1.2 Preparations for evaluating Capsules

We first need to generate a capsule C around the origin and compute its volume. In
order to apply Definition 2.3.1, we need to find a subset within C. We can do this by
computing the interval box I of C and scaling it down, by some factor δ that ensures

that δI ⊆ C. We are now able to compute the ratio of the volumes
vol(δI)
vol(C)

. Points in C

generated by an algorithm are then approximately uniform, if the ratio of the points
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contained in I, compared to the total number of sampled points, approaches
vol(δI)
vol(C)

. In

order to use the two geometric random walk methods that have been implemented, we
first need to transform C into a spectrahedral shadow, which was readily implemented
in CORA prior to the writing of this thesis.

5.1.3 Plot Comparisons

When looking at the plots for points sampled using the two methods, there seems to be
no clear issue regarding the uniformity of either the Ball Walk, shown in Figure 5.1, or
the Billiard Walk, shown in Figure 5.2.

5.1.4 Nummerical Comparison

In order to compare the uniformity of the two methods, we generate points using the
Ball Walk Algorithm, described in Section 3.2, and then count the number of points
contained in I. We can do this for different N, in order to analyse the convergence.

The same can be done using the Billiard Walk Algorithm, described in section Sec-
tion 3.3, also for different N. We can observe, that, in practice, the Billiard Walk
converges to the uniform distribution much faster than the Ball Walk, which would
also indicate why it is preferable over the Ball Walk, when intending to achieve a better
approximation of the uniform distribution.

This development is surprising to a certain extent, knowing that there exists an upper
bound for the number of points sampled, such that the Ball Walk converges to the
uniform distribution. No such proof exists for the Billiard Walk. The only known result
about the convergence of the Billiard Walk is that it will eventually converge to the
uniform distribution, but no bounds on the mixing time are known.

5.2 Performance Evaluation

Now that we compared how the algorithms fare with respect to uniformity, it might be
useful to evaluate how fast the algorithms run in practice.

5.2.1 Runtime Comparison

When considering the runtime as a metric for comparing the two methods, we can
observe that the Ball Walk outperforms the Billiard Walk by a significant amount, as N
increases. This can likely be explained by the procedures used by each algorithm, when
sampling points.

The Ball Walk uses a rounded spectrahedral shadow, in order to work faster (detailed in
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(a) N = 1500 (b) N = 2000

(c) N = 2500 (d) N = 3000

(e) N = 3500 (f) N = 4000

Figure 5.1: Ball Walk Scatter Plot for different sample sizes N

24



5 Evaluation

(a) N = 1500 (b) N = 2000

(c) N = 2500 (d) N = 3000

(e) N = 3500 (f) N = 4000

Figure 5.2: Billiard Walk Scatter Plot for different sample sizes N
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Figure 5.3: Uniformity Comparison: The reference volume ratio for our evaluation is
vol(δI)
vol(C)

= 0.6659. We can see that the ratio between the number of points

inside I, sampled using the Billiard Walk, and N approaches the reference
volume ratio, once N > 1000, whereas the same cannot be said about the
Ball Walk. There the ratio does seem to be consistently off by about 9%.
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Figure 5.4: Runtime Comparison: Here we can see that the runtime of the Billiard Walk
grows significantly faster than the runtime of the Ball Walk. The difference

is apparent once N > 1000.
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Section 3.2.2) and makes use of semi-definite programming only when checking point
containment. This is in contrast to the Billiard Walk Algorithm, which uses semi-definite
programming when computing the maximum distance a segment can extend to, in
addition to the normal vector, should this segment extend over the boundary of the
spectrahedral shadow. This, along with the possible reflection issues (described in
Section 3.3.4), shows why the difference in computational steps and, hence, speed, is
apparent.

5.2.2 Comparison with Polytopes

One other interesting aspect is how well the sampling algorithms for spectrahedral
shadows perform, when compared to the same algorithms for other set representations.
For instance, spectrahedral shadows are able to represent polytopes, and both random
walks were already implemented in CORA for polytopes prior to the writing of this
thesis, which begs the question whether the implementation for spectrahedral shadows
perfoms similarly to that for polytopes.

The implementation for polytopes has an inherent advantage: While for spectrahe-
dral shadows, in each iteration we need to solve a positive semi-definite program,
polytopes only require solving linear programs, which are significantly faster. This is
confirmed in Table 5.1.

N Ball Walk P Billiard Walk P Ball Walk SpS Billiard Walk SpS

100 0.1791 0.1207 14.7981 108.1077
1000 0.4246 0.1179 275.2458 4071.6

Table 5.1: Runtime Comparison [s] of Random Walks for Polyopes P and Spectrahedral
Shadows SpS

5.3 Evaluation of the Containment Algorithms

The two presented containment algorithms work very differently and it would be
interesting to see how their behaviour differs, with respect to runtime. Since no other
method for solving the containment problem for spectrahedral shadows has been
developed and there is no naive way of solving it, we can only compare the two
presented approaches to each other.
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5 Evaluation

Runtime Evaluation

In order to analyse the runtime of the two containment algorithms, we randomly gen-
erate a spectrahedral shadow and centre it. We then copy that same spectrahedral
shadow and scale it down by a factor δ, in order to make sure that it is contained in
the original set. Multiple N can then be used for these tests. Both methods disprove
containment by finding an unfit point or a normal vector respectively. This means
that the maximum number of iterations, and hence the maximum runtime, is attained
when the spectrahedral shadow is contained, which would give us a good metric for
comparisons. The sampling algorithm used for both algorithms will be the Billiard Walk,
as it performed better in the Uniformity evaluation, presented in Section 5.1.

We can observe in Figure 5.5, Figure 5.6 and Figure 5.7 that the Inner Sampling Con-
tainment Algorithm performs better than the Outer Sampling Containment Algorithm.
The difference becomes more evident when increasing the dimension of the spectra-
hedral shadows. Both algorithms make use of semi-definite programming, for point
containment and the computation of normal vectors, respectively, but it is also used for
computing the support function in the Outer Sampling Containment Algorithm, which
explains why the performance varies.
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Figure 5.5: Containment Runtime Evaluation for Dimension n = 2: The difference in
runtime is relatively small at first, but becomes more significant once N

grows. For this and subsequent evaluations N ∈ {20, 30, 40, 50}
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Figure 5.6: Containment Runtime Evaluation for Dimension n = 3: The difference in
runtime is, for the most part, similar to the evaluation for n = 2, but

becomes significantly larger ones N = 50.
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Figure 5.7: Containment Runtime Evaluation for Dimension n = 4: The difference in
runtime becomes more apparent in this dimension, even for N = 30.
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6 Conclusion

The main goal of this thesis was to find efficient and reliable methods for uniform
sampling on spectrahedral shadows, as naively sampling inside the interval box of spec-
trahedral shadows does not scale well for higher dimensions. To this end, two sampling
algorithms were presented, the Ball Walk and the Billiard Walk. Both methods run on
average in polynomial time with respect to the representation size of the spectrahedral
shadow.

The secondary goal of this thesis was to find a solution to the containment problem for
spectrahedral shadows. We therefore considered two different approaches, which both
used uniform random sampling for solving the containment problem probabilistically,
by either sampling the inner spectrahedral shadow or sampling the outer spectrahedral
shadow.

Uniformity

Asymptotic uniformity has been proven for both methods. Testing the correctness was
done using capsules, a special case of spectrahedral shadows, for which the volume
was easy to compute. Both algorithms are Markov Chain Monte Carlo methods, hence
they sample every additional point from the previous one, through a random method.
This means that there is a minimum number of points that have to be sampled until a
convergence to the uniform distribution is achieved. Although the Ball Walk has been
proven to have an upper bound on its convergence, we observed that, in practice, it
converges considerably slower than the Billiard Walk, for which no such proven upper
bound exists.

Performance

When comparing the two methods to each other, we observed that the Ball Walk had a
far better runtime than the Billiard Walk. We concluded that this happens on account of
the multiple semi-definite programs having to potentially be solved for the sampling
of even one point when using the Billiard Walk, whereas this is not the case for the
Ball Walk. Given that the Billiard Walk converged faster, but the Ball Walk had a better
runtime, it is up to the user to decide which algorithm is better in which context, as a
trade-off has to be considered between the two metrics.

We also analysed how the two methods perform on polytopes. To this end, we used
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the implementations for spectrahedral shadows on the polytopes represented as such
and the direct implementations for polytopes. The main difference between the two
sets of implementations is the usage of semi-definite programming for spectrahderal
shadows, compared to the usage of linear programming for polytopes. We concluded
that, especially in the case of the Billiard Walk, the polytope implementations run
considerably faster and it may not be worth to use semi-definite programming, if one is
sure that the set in question is a polytope.

Containment

We looked into one particular application of the uniform sampling algorithms presented
in this thesis, the containment problem for spectrahedral shadows. The containment of
spectrahderal shadows has a wide range of uses and applications in robotics, such as
steering a system into a target space, which is why this thesis had a particular focus on
this problem.

When analysing the two methods, we discovered that the algorithm uniformly sampling
the inner spectrahedral shadow yielded faster results, as it does not necessitate the same
amount of computations as the second method.

Future Work

Applications of Uniform Sampling and Containment

Uniform sampling for spectrahedra and the containment problem for spectrahedral
shadows are worth further research, as they provide useful ways of analysing a very
general set representation for cyber-physical systems.

Uniform sampling is a useful tool in set-based reachability analysis. Future devel-
opment in the field could employ the methods presented in this thesis, i.e., using
uniform sampling for estimating the set of reachable states of a system and analysing
its behaviour over time. The application in safety verification might also be of interest,
where one needs to determine whether a system may reach forbidden states. The
algorithms presented in this thesis could be used to uniformly sample points inside the
state space, in order to determine unsafe states and analysing the likelihood of entering
them.

The containment problem for spectrahedral shadows may be relevant for its uses
in a variety of fields. For control applications, it could be used when a system needs to
be steered toward a state, for which containment needs to checked first. In addition,
containment plays a major role in constraint satisfaction problems in control theory. Set
containment techniques can be used in order to apply constraints on the state space and
the input variables, thus ensuring the feasibility of the resulting optimisation problem.
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6 Conclusion

Further Analysis of the Ball Walk Algorithm

When analysing and implementing the Ball Walk, the concept of "rounding" was
mentioned, as a way for the Ball Walk to converge faster. In the future, one could
study how rounding effectively affects the convergence of the Ball Walk, since, the
numerical testing presented in Section 5.1.4 shows that, in practice, the Ball Walk
converges rather slowly to the uniform distribution. It might be useful to study how
changing or modifying the rounding procedure influences the behaviour of the Ball
Walk algorithm.

Proof of the Probability for Containment

While this thesis did provide two methods for deciding containment for spectrahedral
shadows, both methods take a probabilistic approach for the problem. It might be
interesting to establish and prove the probability that the decision of containment is
indeed accurate, similarly to the proof done for zonotope containment in [8]. This would
provide a closer validation of the presented algorithms and indicate a certain degree of
reliability when confirming the containment of two spectrahedral shadows.
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