TUM Klimaschutzkonzept
Abschlussbericht
Förderinformation

Das Klimaschutzkonzept der Technischen Universität München wurde durch das Bundesministerium für Wirtschaft und Klimaschutz (BMWK) gefördert. Projekttitel: „KSI: Erstellung eines Klimaschutzkonzepts und Einrichtung der Stelle eines Klimaschutzmanagements für die Technische Universität München“

Förderkennzeichen: 67K18873

Impressum

Herausgeber
Der Präsident der Technische Universität München
Prof. Dr. Thomas F. Hofmann

Ansprechpartner / Klimaschutzmanager
TUM Sustainability Office, Klimaschutzmanagement
klimaschutz@tum.de | sustainability@tum.de

Autorinnen und Autoren der Technischen Universität München
Jonathan Bauer, Lisa Weber, Werner Lang, Tobias Michl

Autoren der FutureCamp Climate GmbH
Sebastian Durry, Florian Frieden, Michael Gollinger, Andreas Wolff

Wesentliche Mitwirkende
Zentrale Verwaltung Immobilien (ZA4)
Taskforce Sustainable Campus Development
TUM Sustainability Board
Lehrstuhl für erneuerbare und nachhaltige Energiesysteme
TUM Campus Straubing für Biotechnologie und Nachhaltigkeit

Stand
Februar 2024

Fachliche Begleitung durch
FutureCamp Climate GmbH
Vorwort

Liebe Leserinnen und Leser,

Thomas F. Hofmann
Präsident der Technischen Universität München
Inhaltsverzeichnis

Impressum .. 2
Vorwort ... 3
Inhaltsverzeichnis .. 4
Abbildungsverzeichnis .. 6
Tabellenverzeichnis ... 7
Abkürzungsverzeichnis ... 8
Executive Summary ... 10
1 Grundlagen und Rahmenbedingungen .. 12
 1.1 TUM Sustainable Futures Strategy 2030 ... 13
 1.2 Prozessgestaltung, Organisationsstruktur und Stakeholder 14
 1.3 Begriffserklärungen ... 17
2 Energie- und Treibhausgasbilanz ... 19
 2.1 Methodik .. 19
 2.2 Energiebilanz .. 34
 2.3 Treibhausgasbilanz ... 35
3 Roadmap: Wege zur Treibhausgasneutralität .. 41
 3.1 Definition der Szenarien .. 41
 3.2 Grundlegende Annahmen .. 42
 3.3 Szenarioanalyse in Scope 1 und 2 .. 44
 3.4 Szenarioanalyse in Scope 3 .. 54
4 Aktivitäten in den Transformationsfeldern .. 58
 4.1 Energieversorgung .. 58
 4.2 Energieverbrauch .. 66
 4.3 Mobilität .. 74
 4.4 Ressourcenverbrauch und -effizienz ... 81
 4.5 Anpassung an den Klimawandel .. 86
 4.6 Forschung, Lehre & Bildung und Entrepreneurship .. 88
 4.7 Management ... 92
5 Projektkatalog .. 94
 5.1 Projekte Energieversorgung .. 96
 5.2 Projekte Energieverbrauch ... 110
 5.3 Projekte Mobilität ... 148
 5.4 Projekte Ressourcenverbrauch und -effizienz ... 162
 5.5 Projekte Anpassung an den Klimawandel ... 184
 5.6 Projekte Forschung, Lehre & Bildung und Entrepreneurship 192
Abbildungsverzeichnis

Abb. 1: Handlungsfelder der TUM Sustainable Futures Strategy 2030 .. 14
Abb. 2: Sieben Transformationsfelder des Klimaschutzkonzepts (eigene Darstellung) 17
Abb. 3: Operative Systemgrenzen der Startbilanz der TUM (Darstellung FutureCamp) 22
Abb. 4: Gesamtemissionen der TUM (market based) nach Scopes und Kategorien 36
Abb. 5: Gesamtemissionen der TUM (location based) nach Scopes und Kategorien 38
Abb. 6: Lageplan der Gebäude des TUMCS in der Stadt Straubing 40
Abb. 7: Absolute und spezifische THG-Emissionen der Gebäude des TUMCS 40
Abb. 8: Emissionsübersicht der Szenarien 1 bis 3 ... 45
Abb. 9: Kumulierte Gesamteinvestitionen der Szenarien 1 bis 3 ... 45
Abb. 10: Emissionsverlauf in Szenario 1 .. 46
Abb. 11: Verlauf der jährlichen Nominalinvestitionen Szenario 1 ... 47
Abb. 12: Jährliche Kosten für Energieträger und Emissionszertifikate Szenario 1 48
Abb. 13: Emissionsverlauf in Szenario 2 .. 49
Abb. 14: Verlauf der jährlichen Nominalinvestitionen Szenario 2 ... 50
Abb. 15: Jährliche Kosten für Energieträger und Emissionszertifikate Szenario 2 51
Abb. 16: Emissionsverlauf in Szenario 3 .. 52
Abb. 17: Verlauf der jährlichen Nominalinvestitionen Szenario 3 ... 53
Abb. 18: Jährliche Kosten für Energieträger und Emissionszertifikate Szenario 3 53
Abb. 19: Szenario 1 - passiv (links) und aktiv (rechts) .. 55
Abb. 20: Szenario 2 - passiv (links) und aktiv (rechts) .. 56
Abb. 21: Szenario 3 - passiv (links) und aktiv (rechts) .. 56
Abb. 22: Verteilung und Verbrauch der Endenergie am Campus München 2021 60
Abb. 23: Verteilung und Verbrauch der Endenergie am Campus Garching 2021 61
Abb. 24: Verteilung und Verbrauch der Endenergie am Campus Weihenstephan 2021 62
Abb. 25: Verteilung und Verbrauch der Endenergie am Campus Straubing 2021 64
Abb. 26: Verteilung und Verbrauch der Endenergie an den Außenstellen 2021 65
Abb. 27: Verteilung der Baualtersklassen des Gebäudebestands der TUM 67
Abb. 28: Verteilung der Nutzungsstruktur der Gebäudeflächen der TUM 68
Abb. 29: Energiebezug und spezifischer Energiebezug der Gebäude des TUMCS 74
Abb. 30: THG-Emissionen aus Dienstreisen 2021 und 2022 .. 75
Abb. 31: Modal Split nach Wegen und Distanzen; TUM gesamt 2023 78
Abb. 32: Modal Split nach Anzahl der Wege und Standorten 2023 .. 79
Abb. 33: Modal Split nach zurückgelegten Distanzen und Standorten 2023 79
Abb. 34: THG-Emissionen der Student Outgoing Reisen 2021 und 2022 81
Abb. 35: Muster eines Projektsteckbriefs .. 95
Abb. 36: Verteilung der Teilnehmenden der Klimaschutzworkshops 214
Abb. 37: Beteiligungsworkshops an den TUM-Standorten ... 214
Abb. 38: Darstellung des Monitoring und Controlling Prozesses (eigene Abbildung) 223
Tabellenverzeichnis

Tab. 1: Interne Stakeholder des Klimaschutzkonzepts .. 16
Tab. 2: Emissionsquellen gemäß BayCalc .. 19
Tab. 3: Nettoraumfläche der TUM Campus Standorte ... 20
Tab. 4: Anzahl der Hochschulangehörigen in Vollzeit und pro Kopf 2021 21
Tab. 5: Datenqualität der Scope 1- und 2- Emissionen .. 23
Tab. 6: Datenqualität der Scope 3 Emissionen ... 24
Tab. 7: Unsicherheitsaufschläge gemäß BayCalc .. 24
Tab. 8: Verbrauchsdaten des Fuhrparks 2021 .. 25
Tab. 9: Verbrauchswerte der Kältemittel 2021 .. 26
Tab. 10: Beschaffte Waren und Dienstleistungen 2021 .. 27
Tab. 11: Erfasste Kapitalgüter 2021 ... 27
Tab. 12: Verbrauchsmengen Wasser und Abwasser 2021 ... 29
Tab. 13: Taxi-, PKW-, Motorrad- und Fahrradfahrten 2021 .. 30
Tab. 14: Zurückgelegte Flugstrecken nach Entfernungskategorien 2021 30
Tab. 15: Zurückgelegte Bahnstrecken im Nah- und Fernverkehr 2021 31
Tab. 16: Student Outgoing Personenkilometer pro Verkehrsmittel 2021 32
Tab. 17: Aufgeschlüsselte Energieverbräuche der Universitätsstandorte in MWh 35
Tab. 18: Übersicht der wichtigsten Energiekennzahlen .. 35
Tab. 19: Aufschlüsselung der Emissionen nach Emissionsquellen .. 37
Tab. 20: Gesamtmissionen der TUM und Ausweisung von Emissionskennzahlen 37
Tab. 21: Emissionen des Strombezugs (market based and location based) 37
Tab. 22: Aufschlüsselung der Emissionen (market based) nach Universitätsstandorten 39
Tab. 23: Übersicht der Wachstumskennzahlen und Energieeffizienzkennzahlen 42
Tab. 24: Anzusetzende Strompreise und Emissionsfaktoren des deutschen Strommix 44
Tab. 25: Übersicht der Emissionsreduktionsmaßnahmen in Szenario 2 48
Tab. 26: Übersicht der Emissionsreduktionsmaßnahmen in Szenario 3 51
Tab. 27: Außenstellen mit Energieträgerstruktur .. 64
Tab. 28: Fluganzahl und -strecke 2021 und 2022 .. 75
Tab. 29: THG-Emissionen der Alltagsmobilität im Jahr 2023 ... 78
Tab. 30: Studienangebot am TUMCS 2024 .. 92
Tab. 31: Beteiligungsveranstaltungen und Gremiensitzungen ... 212
Tab. 32: Zielgruppen der Kommunikation .. 218
Tab. 33: Ziele der Kommunikation mit internen und externen Zielgruppen 219
Tab. 34: Inhalte der Klimaschutzkommunikation ... 219
Tab. 35: Wesentliche Indikatoren in den Transformationsfeldern für das Monitoring 221
Tab. 36: Emissionsfaktoren gemäß BayCalc ... 228
Tab. 37: Gebäudebestand der TUM und Zuordnung im Klimaschutzkonzept 231
Tab. 38: TUM Gebäude außerhalb der Systemgrenze des Klimaschutzkonzepts 240
Tab. 39: Verkehrsmittelschlüssel der Entfernungskategorien auf Basis der Daten 2022 ... 242
Abkürzungsverzeichnis

ASR Technische Regeln für Arbeitsstätten
CCC Corporate Communication Center
BayARV Bayerische Auslandsreiseverordnung
BayCalc THG-Bilanzerierung für Bayerische Hochschulen
BayHIG Bayerischen Hochschulinnovationsgesetz
BayKlimaG Bayerisches Klimaschutzgesetz
BayRKG Bayerische Reisekostengesetz
BayRKS Bayerisches Reisekostenabrechnungssystem
BayRMS Bayerisches Reisekostenmanagementsystem
BayZeN Zentrum Hochschule und Nachhaltigkeit Bayern
BHKW Blockheizkraftwerk
BMWK Bundesministeriums für Wirtschaft und Klimaschutz
DEFRA Department for Environment, Food and Rural Affairs
DIN Deutsches Institut für Normung
eGon Entbehrliche Gegenstände Online
EMAS Eco-Management and Audit Scheme
EMS Energiemanagementsystem
EVU Energieversorgungsunternehmen
GEMIS Globales Emissions-Modell integrierter Systeme
GHG Protocol Greenhouse Gas Protocol
HBEFA Handbuch für Emissionsfaktoren
HPC High-Performance-Computing
HSWT Hochschule Weihenstephan-Triesdorf
ISCN International Sustainable Campus Network
KoNaRo Kooperationszentrum für Nachwachsende Rohstoffe
KSG Bundes-Klimaschutzgesetz
KWK Kraft-Wärme-Kopplung
LfF Landesamt für Finanzen
LRZ Leibniz-Rechen-Zentrum
NHNB Netzwerks Hochschule und Nachhaltigkeit Bayern
PRIMA Partizipatives Reallabor für innovatives Mobilitätsmanagement mit App-basierten Anreizen
PV Photovoltaik
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>StMWK</td>
<td>Staatsministerium für Wissenschaft und Kunst</td>
</tr>
<tr>
<td>TFZ</td>
<td>Technologie- und Förderzentrum</td>
</tr>
<tr>
<td>THG</td>
<td>Treibhausgas(e)</td>
</tr>
<tr>
<td>TREMOD</td>
<td>Transport Emission Model</td>
</tr>
<tr>
<td>TUM</td>
<td>Technische Universität München</td>
</tr>
<tr>
<td>TUM IL³</td>
<td>TUM Institute for LifeLong Learning</td>
</tr>
<tr>
<td>TUMCS</td>
<td>TUM Campus Straubing für Biotechnologie und Nachhaltigkeit</td>
</tr>
<tr>
<td>UBA</td>
<td>Umweltbundesamt</td>
</tr>
<tr>
<td>VZÄ</td>
<td>Vollzeitäquivalent</td>
</tr>
</tbody>
</table>
Executive Summary

Im Referenzpfad 1 – Business as usual – werden die derzeitigen Energieverbräuche und Emissionen gemäß der Wachstumsprognose ohne spezifische Reduktionsmaßnahmen weitergeführt, aber passive Effekte wie sinkende Stromemissionsfaktoren eingerechnet. Laufende Effizienzmaßnahmen, die nicht explizit in der Planung enthalten sind, jedoch fortlaufend umgesetzt werden, werden über einen pauschalen Energieeffizienzfaktor berücksichtigt. In die-
sem Szenario werden die Emissionen durch das angenommene Wachstum und trotz Effizienzsteigerungen von im Jahr 2021 knapp unter 40.000 t CO2e in Scope 1 und 2 auf im Jahr 2045 knapp unter 60.000 t CO2e steigen.

Eine Treibhausgasneutralität bis 2028, wie bislang als Arbeitshypothese etabliert, könnte demnach nur durch die Kompensation der bis dahin nicht reduzierten Treibhausgasemissionen, also den Erwerb und die Stilllegung von CO2-Zertifikaten im freiwiligen Kompensationsmarkt, erfolgen. Eine Kompensation in dieser Form wird, solange reale Emissionsreduktionspotenziale bestehen, für die TUM als nicht zielführend angesehen. Investitionen in die Umsetzung von Treibhausgasminderungen innerhalb der Universität haben gegenüber Investitionen in CO2-Senkenprojekten außerhalb der TUM Systemgrenzen Priorität.

Aufgrund dieser Ergebnisse hat sich die TUM entschlossen, das Ziel anzupassen und zu präzisieren. In Zusammenschluss mit der Zentralen Technik des Immobilienmanagement (ZA4) wurde sich das Ziel der Treibhausgasreduktion von 80 % in Scope 1 und 2 bis 2030 gegenüber dem Basisjahr 2021 gesetzt.

In insgesamt sieben Transformationsfeldern wurde der Beitrag zum Klimaschutz auf Basis der Analysen eingehend untersucht und konkrete Projekte abgeleitet, welche gesamtheitlich einen Beitrag zur Reduktion der Treibhausgase der TUM leisten können. Diese insgesamt 58 Einzelprojekte unterteilen sich in sowohl technische und ingenieurwissenschaftliche als auch kommunikations- und organisationsspezifische Projekte. Sie bilden den Kern des Klimaschutzkonzepts und die Grundlage für ein zukünftiges Klimaschutzmanagement an der TUM.

1 Grundlagen und Rahmenbedingungen

Die Menschheit stößt jährlich rund 40 Milliarden Tonnen CO$_2$ in die Atmosphäre aus – Tendenz steigend (Friedlingstein et al., 2022). Gemäß einer Studie des Forschungsteams rund um den Physiker Robin Lamboll vom Imperial College London würde die Welt bei konstanten Emissionsentwicklung, das globale CO$_2$-Budget für die Limitierung der Erderwärmung auf 1,5 Grad bereits in knapp über sechs Jahren überschreiten (Lamboll et al., 2023). Um das 1,5-Grad-Ziel mit einer 50% Wahrscheinlichkeit noch zu erreichen, müsste die Menschheit demnach bis 2035 netto null Emissionen erreichen – zehn bzw. fünf Jahre früher als etwa Deutschland bzw. Bayern dies laut ihrem Klimaschutzgesetz aktuell planen (Art. Absatz 2 Satz 1 KSG; Art. 2 Absatz 2 BayKlimG).

Die TUM begegnet den drängenden Herausforderungen des Klimawandels mit einem klaren Bekenntnis zu nachhaltigem Handeln\(^1\). Mit der im Jahr 2022 veröffentlichten TUM Sustainable Futures Strategy 2030 hat sie sich zur Entwicklung eines integrierten Klimaschutzkonzepts und der Reduktion ihrer Treibhausgasemissionen verpflichtet. Da das Zeitfenster für wirksame Maßnahmen begrenzt ist, betont auch die TUM die Dringlichkeit mit entschiedenem Handeln auf die Klimakrise zu reagieren.

\(^{1}\) Weitere Informationen: https://www.tum.de/nachhaltigkeit
1.1 TUM Sustainable Futures Strategy 2030

Entlang dieser sechs Handlungsfelder wurden ambitionierte Ziele ins Visier genommen und gemeinschaftlich Maßnahmen entwickelt. Deren Wirkung soll anhand geeigneter Erfolgsindikatoren messbar werden, um die Fortschritte in der Nachhaltigkeitstransformation der TUM zu steuern. Die Umsetzung und Weiterentwicklung der Strategie wird künftig durch eine regelmäßige Berichterstattung (TUM Sustainable Futures Report) begleitet (Technische Universität München, 2022).

1.2 Prozessgestaltung, Organisationsstruktur und Stakeholder

Im September 2021 beantragte die TUM Fördermittel des Bundesministeriums für Wirtschaft und Klimaschutz (BMWK) im Rahmen der Kommunalrichtlinie (Förderschwerpunkt 4.1.8 a) für die Entwicklung eines integrierten Klimaschutzkonzepts und den Aufbau eines Klimaschutzmanagements für die Universität. Die Bewilligung erfolgte im April 2022, woraufhin im Herbst 2022 die Klimaschutzmanager die Arbeit aufgenommen haben. Die Projektträgerschaft liegt bei der Zukunft-Umwelt-Gesellschaft (ZUG) gGmbH. Für das Vorhaben wurden zwei Klimaschutzmanager eingestellt, da die TUM durch ihre vielfältige Campusstruktur unterschiedliche Anforderungen und Voraussetzungen für die Implementierung von Klimaschutzmaßnahmen bietet. Insbesondere ist hierbei der TUM Campus Straubing für Biotechnologie und Nachhaltigkeit (TUMCS) zu nennen.

TUM Campus Straubing für Biotechnologie und Nachhaltigkeit

Die Entwicklung nachhaltiger Technologien einerseits und ihre wirtschaftliche Umsetzung andererseits – das sind die beiden großen Themen, die der TUM Campus Straubing als sogenanntes „Integrative Research Institute“ der Technischen Universität München in Kooperation mit der Hochschule Weihenstephan-Triesdorf zusammenführt. Dafür braucht es naturwissenschaftlich-technisch ausgebildete Fachkräfte, Chemiker, Biotechnologen und Ingenieure, die auch ein breites Verständnis der ökonomischen und sozialen Zusammenhänge haben, oder Ökonomen, die die Sprache der Techniker verstehen. Im Jahr 2023 studierten rund 1.100 Studierende in zehn Studienprogrammen am TUM Campus Straubing.

Der TUMCS liegt etwa 140 km nordöstlich von München im ländlich geprägten Niederbayern und zeichnet sich durch ein eigenständiges Campus- und Gebäudemanagement aus. Die an-
deren Standorte werden vom zentralen Gebäude- und Immobilienmanagement betreut. Zudem hat der Campus Straubing Nachhaltigkeit als Themenschwerpunkt und ist in das bayerische Zentrum für Nachwachsende Rohstoffe (Kompetenzzentrum für Nachwachsende Rohstoffe, KoNaRo) integriert.

Neben der Erweiterung der Führungsebene um das Thema Nachhaltigkeit mit dem Vice President Sustainable Transformation wurde im März 2023 zur erfolgreichen Umsetzung, Begleitung und Weiterentwicklung der TUM Sustainable Futures Strategy 2030 das TUM Sustainability Board als Think Tank etabliert. Dieses setzt sich zusammen aus dem Vice President Sustainable Transformation (Vorsitz), sieben fachkompetenten Vertreterinnen und Vertreter aus den TUM Schools sowie zwei Vertreterinnen und Vertreter aus der Studierendenschaft. Zur Bearbeitung spezifischer Schwerpunkte kann das TUM Sustainability Board bedarfsbezogene Taskforces einsetzen. Für die Entwicklung des Klimaschutzkonzeptes kam dem TUM Sustainability Board insbesondere die Funktion als übergeordnetes Sounding Board zu. Künftig ist die aktive Beteiligung an der Umsetzung insbesondere strategischer Maßnahmen vorgesehen.

Aufgrund der zentralen Bedeutung eines nachhaltigen Ressourcenmanagements und einer treibhausgasneutralen Campusentwicklung wurde ad hoc eine Taskforce Sustainable Campus Development eingerufen. Diese verfolgt gemäß Hochschulleitungsbeschluss das Ziel gemeinsam mit der Zentralen Verwaltung für Immobilien (ZA4), durch signifikante Veränderungen in der Energieversorgung (Quellen und Verteilung) und Energienutzung (Nutzerverhalten, Gebäudehülle) schnellstmöglich einen treibhausgasneutralen Campusbetrieb zu erreichen. Seit ihrem Arbeitsbeginn im Sommer 2023 begleitet die Taskforce Sustainable Campus Development die Entwicklung des Klimaschutzkonzeptes auf inhaltlicher und fachlicher Ebene und wird weiterhin auch den Umsetzungsprozess mit ihrer Fachexpertise unterstützen.

Neben den unmittelbar relevanten Governance-Strukturen und der organisatorischen Verankerung des Themas Nachhaltigkeit beim TUM Sustainability Office waren und sind weitere interne Stakeholder bzw. Fachabteilungen für die Entwicklung und Umsetzung des Klimaschutzkonzepts von großer Bedeutung (Tab. 1).

Tab. 1: Interne Stakeholder des Klimaschutzkonzepts

<table>
<thead>
<tr>
<th>Gremien, Fachabteilungen, Verwaltungseinheiten, Lehrstühle</th>
<th>Interne Bezeichnung / Abkürzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hochschulpräsidium & Präsident</td>
<td>Hochschulleitung</td>
</tr>
<tr>
<td>Kanzler, Büro des Kanzlers</td>
<td>Kanzler</td>
</tr>
<tr>
<td>Vice President Sustainable Transformation</td>
<td>VP Sustainability</td>
</tr>
<tr>
<td>TUM Sustainability Board</td>
<td>Board</td>
</tr>
<tr>
<td>Taskforce Sustainable Campus Development</td>
<td>Taskforce</td>
</tr>
<tr>
<td>TUM Sustainability Office</td>
<td>Sustainability Office</td>
</tr>
<tr>
<td>Studentische Vertretung Referat für Umwelt</td>
<td>URef</td>
</tr>
<tr>
<td>Zentrale Verwaltung Abteilung Immobilien, Zentrale Technik</td>
<td>ZA4, Zentrale Technik</td>
</tr>
<tr>
<td>Zentrale Verwaltung Abteilung Immobilien, Gebäudemanagement der Standorte</td>
<td>ZA4, Gebäudemanagement</td>
</tr>
<tr>
<td>Zentrale Verwaltung Abteilung Immobilien, Baumanagement der Standorte</td>
<td>ZA4, Baumanagement</td>
</tr>
<tr>
<td>Zentrale Serviceeinrichtung, IT Servicezentrum</td>
<td>ITSZ</td>
</tr>
<tr>
<td>Zentrale Verwaltung für Finanzen, Zentrale Reisekostenstelle</td>
<td>ZA3, Zentrale Reisekostenstelle</td>
</tr>
<tr>
<td>Zentrale Verwaltung für Finanzen, Finanzbuchhaltung</td>
<td>ZA3, Finanzen</td>
</tr>
<tr>
<td>Zentrale Verwaltung, TUM Legal Office, Zentrale Vergabeberatung</td>
<td>ZA5, Zentrale Vergabeberatung</td>
</tr>
<tr>
<td>Zentrale Serviceeinrichtung, Center for Study and Teaching</td>
<td>CST</td>
</tr>
<tr>
<td>Präsidialstab Berufungen</td>
<td>Berufungsstab</td>
</tr>
<tr>
<td>TUM Institute for Life Long Learning</td>
<td>IL3</td>
</tr>
<tr>
<td>Hochschulreferat 2, Corporate Communications Center</td>
<td>CCC</td>
</tr>
<tr>
<td>Hochschulreferat 3, TUM Global and Alumni Office</td>
<td>TUM Global and Alumni Office</td>
</tr>
<tr>
<td>Hochschulreferat 4, TUM Forschungsförderung und Technologie-transfer</td>
<td>TUM ForTe</td>
</tr>
<tr>
<td>Integrative Research Institute, Campus Straubing für Biotechnologie und Nachhaltigkeit</td>
<td>TUMCS</td>
</tr>
<tr>
<td>TUMCS Office, Gebäudemanagement</td>
<td>Gebäudemanagement TUMCS</td>
</tr>
<tr>
<td>Lehrstuhl für Verkehrstechnik</td>
<td>Lehrstuhl VT</td>
</tr>
<tr>
<td>Lehrstuhl für Siedlungsstruktur und Verkehrsplanung</td>
<td>Lehrstuhl SVP</td>
</tr>
<tr>
<td>Lehrstuhl für erneuerbare und nachhaltige Energiesysteme</td>
<td>Lehrstuhl ENS</td>
</tr>
<tr>
<td>Lehrstuhl für Energiesysteme</td>
<td>Lehrstuhl LES</td>
</tr>
<tr>
<td>Lehrstuhl für energieeffizientes und nachhaltiges Planen und Bauen</td>
<td>Lehrstuhl ENPB</td>
</tr>
</tbody>
</table>

Betrachtungsrahmen und Inhalt des Klimaschutzkonzepts

Gemäß der Förderrichtlinie beinhaltet das Klimaschutzkonzept eine Energie- und Treibhausgasbilanz, Potentialanalyse, und die Entwicklung von Reduktionspfaden. Aus den Ergebnissen dieser sowie den zu betrachtenden Themenfeldern des Förderantrags/-bescheids leiten sich sieben Transformationsfelder ab (Abb. 2), die auch die Struktur des Klimaschutzkonzepts

Abb. 2: Sieben Transformationsfelder des Klimaschutzkonzepts (eigene Darstellung)

1.3 Begriffserklärungen

Da die Begrifflichkeiten wie „Treibhausgasneutralität“ oder „Klimaneutralität“ häufig sehr unterschiedlich definiert und interpretiert werden, sind einige Begriffsdefinitionen nötig, die für das vorliegende Klimaschutzkonzept gelten:

Treibhausgasneutralität bezeichnet das Gleichgewicht von Emissionen und Entnahmen von Treibhausgasen (THG; entsprechend der Definition im Kyoto-Protokoll) in bzw. aus der Atmosphäre. Sie kann dabei praktisch auf zwei Wegen erreicht werden. Durch die Reduktion der Emission von THG oder durch den Entzug von THG aus der Atmosphäre (Carbon Capture).

Der Begriff **Klimaneutralität** bezieht ein weiteres Spektrum ein, indem neben THG weitere Gase und indirekte Effekte berücksichtigt werden. So wirken sich die Veränderungen von Böden oder Oberflächen ebenfalls auf das Klima aus und auch Gase, welche nicht im Kyoto-Protokoll als direkte THG aufgelistet werden, können indirekt zum THG-Effekt beitragen.
Die **Treibhausgasbilanzierung** beschreibt den Prozess, bei dem die Menge an THG, die durch eine bestimmte Aktivität, ein Unternehmen, eine Organisation oder eine räumliche Einheit emittiert werden, gemessen, quantifiziert und dokumentiert wird. Das Ziel dieser Bilanzierung ist es, einen Überblick über die Auswirkungen der betrachteten Einheit bezüglich Klimawandels zu erhalten. Dieser Prozess umfasst typischerweise folgende Schritte:

1. Identifikation von Quellen und Senken
2. Messung und Quantifizierung
3. Kategorisierung in Scopes

Daran anschließend erfolgt meist die Berichterstattung sowie die Entwicklung von Reduktionsstrategien. Beides kann durch die vorherige Bilanzierung fokussierter und effizienter gestaltet werden.

- **Corporate Standard**: Dieser Standard bietet Anleitungen zur Messung und Berichterstattung von Treibhausgasemissionen von Unternehmen und Organisationen. Dieser Standard deckt alle drei Scopes ab (s. unten).
- **Value Chain Standard**: Dieser Standard konzentriert sich speziell auf die Erfassung von Treibhausgasemissionen in der Lieferkette eines Unternehmens, einschließlich der Emissionen, die durch Lieferanten und Endnutzer verursacht werden.

Scopes beziehen sich auf die drei verschiedenen Kategorien von Treibhausgasemissionen, die eine Organisation oder ein Unternehmen verursachen kann (WRI & WBCSD, 2004).

- **Scope 1** umfasst direkte Emissionen, die aus der Verbrennung von Brennstoffen oder anderen Quellen innerhalb der Organisation selbst stammen. Dazu gehören beispielsweise Emissionen aus Fahrzeugen, Heizungsanlagen und Produktionsprozessen sowie der Austritt von Kältemitteln.
- **Scope 2** bezieht sich auf indirekte Emissionen, die durch den Bezug von Elektrizität, Dampf oder Wärme entstehen, die außerhalb der Organisation erzeugt werden, aber von dieser genutzt werden. Ein typisches Beispiel hierfür sind die Emissionen, die bei der Stromerzeugung in einem Kraftwerk entstehen und dann durch den Verbrauch elektrischer Energie durch die Organisation verursacht werden.
- **Scope 3** umfasst alle anderen indirekten Emissionen, die mit den Aktivitäten der Organisation verbunden sind, aber nicht direkt von ihr kontrolliert werden. Dazu gehören beispielsweise Emissionen, die durch Lieferanten, den Transport von Waren und Dienstleistungen, Dienstreisen sowie durch Pendeltätigkeiten entstehen. Das GHG Protocol unterteilt den Scope 3 in 15 Kategorien. Die für die Bilanzierung der TUM verwendete BayCalc-Richtlinie führt sechs der 15 Kategorien als für Hochschulen relevant auf (siehe Kapitel 2.1).
2 Energie- und Treibhausgasbilanz

2.1 Methodik

Bilanzierungsstandard

Tab. 2: Emissionsquellen gemäß BayCalc

<table>
<thead>
<tr>
<th>Verpflichtend in Scope 1 und 2</th>
<th>Empfohlen in Scope 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strom (marktbasiert und standortbasiert)</td>
<td>Kategorie 1: Vorgelagerte Emissionen durch Erzeugung und Transport von Brennstoffen und Energie</td>
</tr>
<tr>
<td>Wärme</td>
<td>Kategorie 2: Bezogene Waren und Dienstleistungen</td>
</tr>
<tr>
<td>Kältemittel</td>
<td>Kategorie 3: Bezogene Kapitalgüter (Baustoffe)</td>
</tr>
<tr>
<td>Prozessemissionen</td>
<td>Kategorie 4: Abfall und Wasser</td>
</tr>
<tr>
<td></td>
<td>Kategorie 5: Dienstreisen (Dienstreisen von Beschäftigten, Student Outgoing, Exkursionen, An- und Abreise von Gästen)</td>
</tr>
<tr>
<td></td>
<td>Kategorie 6: Pendeln von Mitarbeitenden und Studierenden</td>
</tr>
</tbody>
</table>

Klimaschutzkonzept | 19
Die Leitprinzipien für die THG-Bilanzierung nach GHG Protocol und nach der BayCalc-Richtlinie sind (Sargl et al., 2023; WRI & WBCSD, 2004):

1. **Relevanz**: Definition und adäquate Ansprache der relevanten Zielgruppen.
2. **Vollständigkeit**: Einbezug aller relevanten Emissionsquellen innerhalb der Systemgrenzen und Offenlegen von Ausnahmen.
3. **Kontinuität**: Verwendung derselben Methodik für alle Bilanzen der gleichen Systemgrenze und Offenlegung von Änderungen im Vorgehen, falls zutreffend.

Durch die Definition organisatorischer Systemgrenzen wird festgelegt, welche organisationsbezogenen Bereiche und Liegenschaften einer Organisation, eines Unternehmens oder hier einer Hochschule innerhalb der Bilanzgrenzen liegen.

Systemgrenze der Technischen Universität München

Bei der Definition der System- oder Bilanzgrenzen wird zwischen organisatorischen und operativen bzw. inhaltlichen Systemgrenzen unterschieden. Die organisatorische Systemgrenze für die Startbilanz der TUM mit Bezugsjahr 2021 umfasst die in Tab. 3 aufgeführten Standorte und Gesamtfläche, welche von der ZA4, Gebäudemanagement zur Verfügung gestellt wurde. Es wurden nur Gebäudeflächen in die Systemgrenze gezählt, die auch der TUM zugeordnet werden können. Gebäude, die durch die TUM verwaltet, aber vollständig durch andere staatliche Einrichtungen genutzt werden wurden nicht integriert. Eine Übersicht der für das Klimaschutzkonzept relevanten Gebäude sowie der explizit exkludierten Gebäude kann dem Anhang C entnommen werden (Tab. 34 und Tab. 35).

Tab. 3: Nettoraumfläche der TUM Campus Standorte

<table>
<thead>
<tr>
<th>NRF in m²</th>
<th>Standort</th>
</tr>
</thead>
<tbody>
<tr>
<td>143.501</td>
<td>Campus München</td>
</tr>
<tr>
<td>312.956</td>
<td>Campus Garching</td>
</tr>
<tr>
<td>125.885</td>
<td>Campus Weihenstephan</td>
</tr>
<tr>
<td>19.357</td>
<td>Campus Straubing</td>
</tr>
<tr>
<td>145.577</td>
<td>Außenstellen5</td>
</tr>
<tr>
<td></td>
<td>Gesamt-Nettoraumfläche der TUM 747.256</td>
</tr>
</tbody>
</table>

Am Standort Straubing wurden alle Gebäudeflächen des TUMCS und damit verbundenen Energieverbräuche und Emissionen der TUM zugeordnet. Durch die Kooperation mit der HSWT werden einige Flächen am Campus zwar von Professuren der HSWT oder gemeinschaftlich genutzt, es erfolgt jedoch keine Abrechnung der Energiekosten mit der HSWT. Die

4 Die angegebene Fläche in m² bezieht sich auf die Nettoraumfläche (NRF).
5 Berchtesgaden, Campus im Olympiapark, Campus Ottobrunn, Dachau, Eichenau, Forschungsstation Viehhausen, Freising-Achering, Garching Sonst., Garmisch-Partenkirchen, Ilfeldorf, Kapuzinerhölzl, München Sonst., Obernach, Pasing, Raitenhaslach, Schwabing-West, Starnberg, Veitshof, Versuchsstation Dürnast, Versuchsstation Roggenstei, Versuchsstation Thalhausen

20 | Technische Universität München

Im Jahr 2021 verteilt sich die Zahlen der Hochschulangehörigen wie in Tab. 4 abgebildet (TUM in Zahlen 2021, 2022).

Tab. 4: Anzahl der Hochschulangehörigen in Vollzeit und pro Kopf 2021

<table>
<thead>
<tr>
<th>Vollzeitäquivalente (VZÄ)</th>
<th>Personen („Köpfe“)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Studierenden</td>
<td>47.937⁶</td>
</tr>
<tr>
<td>Anzahl der Beschäftigten</td>
<td>10.746⁷</td>
</tr>
<tr>
<td>Hochschulangehörige</td>
<td>58.683</td>
</tr>
</tbody>
</table>

Die operative Systemgrenze für die Startbilanz der TUM mit Bezugsjahr 2021 umfasst, gemäß der BayCalc-Richtlinie, die in Abb. 3 dargestellten Emissionsquellen. Die vollumfängliche Bilanzierung der Scope 1 und der Scope 2 Emissionen ist für eine THG-Bilanz gemäß den Anforderungen der BayCalc-Richtlinie verpflichtend. Dies ist bei der TUM erfüllt.

⁶ Umfasst Studierende der Schools of Engineering & Design, Life Sciences, Management (ohne Heilbronn), Social Sciences & Technology, Fakultäten Mathematik, Physik, Chemie, Elektrotechnik & Informationstechnik, Informatik, Medizin, Sport & Gesundheitswissenschaften, Integrative Research Institute TUMCS, German Institute of Sciences & Technology, Elitestudiengänge, Austauschprogramme und Promotionsstudierende

⁷ Umfasst: Professorinnen und Professoren, außeruniversitäre Professorinnen und Professoren, Wissenschaftlerinnen und Wissenschaftler, Nicht-Wissenschaftlerinnen und Nicht-Wissenschaftler, Wissenschaftliche Hilfskräfte, studentische Hilfskräfte, Auszubildende, Professorinnen und Professoren Klinikum
Abb. 3: Operative Systemgrenzen der Startbilanz der TUM (Darstellung FutureCamp)

Treibhausgasemissionsberechnung und Emissionsfaktoren

Die Berechnung der Emissionen der TUM erfolgte anhand von Aktivitätsdaten in Kombination mit aktuellen Emissionsfaktoren. Für die Berechnung wird von BayZeN in Ergänzung zur BayCalc-Richtlinie ein auf Microsoft Excel basiertes Berechnungstool (BayCalc-Bilanzierungsstool) bereitgestellt. Die Emissionsfaktoren, die für die THG-Berechnung der TUM im Tool hinterlegt und somit für die Berechnung verwendet wurden, stammen aus den folgenden Datenbanken und Quellen (siehe Anhang B):

4 https://www.nachhaltigehochschule.de/arbeitsgruppen/ag-thg-bilanzierung/
• UBA (Umweltbundesamt)
• DEFRA (Department for Environment, Food and Rural Affairs. GB/UK)
• GEMIS (Globales Emissions-Modell integrierter Systeme, IINAS Darmstadt)
• ÖKOBAUDAT (Bundesministerium für Wohnen, Stadtentwicklung und Bauwesen)
• TREMOD (Transport Emission Model)
• öffentlich zugänglichen Studien

Größtenteils wurden die Emissionsfaktoren genutzt, die standardmäßig im BayCalc-Bilanzierungstool hinterlegt sind. Für Kältemittel wurden zusätzliche Emissionsfaktoren aus der DEFRA-Datenbank und der U.S. Environmental Protection Agency (EPA) verwendet.

Sofern vorhanden, wurden im Berechnungstool aktuelle Daten des UBA implementiert, da diese sich auf den korrekten geografischen Kontext beziehen. Das UBA ist die zentrale Umweltbehörde Deutschlands und liefert durch Studien sowie durch das Handbuch für Emissionsfaktoren (HBEFA) aktuelle Emissionsfaktoren in relevanten Bereichen.

Für einige Emissionsquellen wird GEMIS als Quelle für Emissionsfaktoren genutzt. Bei GEMIS handelt es sich um eine kostenlose Datenbank von IINAS welches durch das Ökoinstitut entwickelt wurde. Die Datenbank wird ebenfalls jährlich aktualisiert. Der Emissionsfaktor für den deutschen Strom-Mix wurde beispielsweise basierend auf GEMIS berechnet.

Es ist davon auszugehen, dass die Emissionsfaktorelliste des BayCalc-Bilanzierungstools jährlich aktualisiert und erweitert wird. Dies wird für die Bilanzierung der Folgejahre entsprechend berücksichtigt.

Datenqualität und Datenlücken

Im Folgenden werden die Datenqualität und der Umgang mit Datenlücken zusammenfassend dargestellt (Tab. 5 und Tab. 6). Die Darstellung ist in Scope 1, Scope 2 sowie Scope 3 Emissionsquellen unterteilt. Die Einheiten ergeben sich aus den innerhalb des BayCalc-Bilanzierungstool hinterlegten Emissionsfaktoren.

Tab. 5: Datenqualität der Scope 1- und 2- Emissionen

<table>
<thead>
<tr>
<th>Emissionsquellen Scope 1+2</th>
<th>Einheiten</th>
<th>Datenqualität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energie (Strom und Wärme)</td>
<td>kWh</td>
<td>hoch</td>
</tr>
<tr>
<td>Fuhrpark (Kraftstoffverbrauch Diesel)</td>
<td>l</td>
<td>ausreichend</td>
</tr>
<tr>
<td>Fuhrpark (Kraftstoffverbrauch Benzin)</td>
<td>l</td>
<td>ausreichend</td>
</tr>
<tr>
<td>Fuhrpark (Fahrleistung)</td>
<td>km</td>
<td>ausreichend</td>
</tr>
<tr>
<td>Kältemittel</td>
<td>kg</td>
<td>hoch</td>
</tr>
</tbody>
</table>
Tab. 6: Datenqualität der Scope 3 Emissionen

<table>
<thead>
<tr>
<th>Emissionsquellen Scope 3</th>
<th>Einheiten</th>
<th>Datenqualität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energie (Strom und Wärme)</td>
<td>kWh</td>
<td>hoch</td>
</tr>
<tr>
<td>Bezogene Waren und Dienstleistungen</td>
<td>Stück</td>
<td>ausreichend</td>
</tr>
<tr>
<td>Kapitalgüter</td>
<td>€</td>
<td>ausreichend</td>
</tr>
<tr>
<td>Abfall und Abwasser</td>
<td>Abfall noch nicht bilanziert, Abwasser und Wasser: m³</td>
<td>hoch</td>
</tr>
<tr>
<td>Dienstreisen</td>
<td>Pkm, Liter, €</td>
<td>niedrig-hoch</td>
</tr>
</tbody>
</table>

Weitere Details zu Datenlücken und die Grundlage für die in Tab. 5 und Tab. 6 angegebene Bewertung der Datenqualität ist dem folgenden Unterkapitel zu entnehmen. Die Ausweisung und Kategorisierung der Datenqualität ergibt sich aus der der BayCalc-Richtlinie (vgl. Kapitel 7.4 Datengüte, BayCalc-Richtlinie). Aus der Bewertung der Datenqualität ergeben sich entsprechende Unsicherheitsaufschläge, die innerhalb des BayCalc-Bilanzierungstool hinterlegt sind und in Tab. 7 aufgeführt sind.

Tab. 7: Unsicherheitsaufschläge gemäß BayCalc

<table>
<thead>
<tr>
<th>Datenqualität in BayCalc</th>
<th>Unsicherheitsfaktor in BayCalc</th>
</tr>
</thead>
<tbody>
<tr>
<td>hoch</td>
<td>1</td>
</tr>
<tr>
<td>ausreichend</td>
<td>1,1</td>
</tr>
<tr>
<td>niedrig</td>
<td>1,25</td>
</tr>
<tr>
<td>sehr niedrig</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Datenerfassung

Energie

Für Garching wurden der Strombezug, der Erdgasbezug sowie die erzeugten Wärme- und Strommengen (in kWh) durch die ZA4, Zentrale Technik bereitgestellt. Ein Abgleich der Energiедaten und Ergänzungen erfolgten mittels einer Übersicht der Entlastungskontingente für Strom und Gas. In Garching ist eine gebäudescharfe Zuordnung der Wärmeverbräuche aufgrund fehlender Messinfrastruktur nicht möglich. Jedoch ist eine Auflösung der Energiever-
bräuche je Gebäude für die Berechnung der THG-Emissionen und die Aufstellung einer Energiebilanz nicht notwendig, da sich die TUM als Betreiber des Heizkraftwerks und Wärmennetzes diese Emissionen gemäß GHG Protocol in Scope 1 anzurechnen hat.

Die Außenstellen, welche nicht im o. g. Energiemonitoringbericht gelistet waren, wurden separat nach dem Strom- und Wärmeverbrauch angefragt. Dies betrifft den Campus Ottobrunn, das Akademiezentrum Raitenhaslach und das Forschungszentrum Geriatronik in Garmisch-Partenkirchen.

Da die Daten aus direkten Messungen, Ablesungen, oder Rechnungen stammen, ist die Datengüte gemäß BayCalc-Richtlinie als hoch kategorisiert. Eine zusammengefasste Auflistung der zugrunde liegenden Daten für die THG-Bilanz ist unter Kapitel 2.2 zu finden.

Fuhrpark

Bei der Datensammlung für die Erstellung der THG-Bilanz zeigte sich, dass bislang keine zentrale und vollständige Datenbank über alle Fahrzeuge des Fuhrparks mit Kraftstoffverbrauchsmengen oder der Fahrleistung an der TUM existiert. Eine Liste der vorhandenen Informationen über alle bekannten Dienstfahrzeuge der TUM wurde von der ZA3, Finanzen bereitgestellt. Da die Möglichkeit besteht, dass nicht alle Fahrzeuge vollständig erfasst sind, ist die Datenqualität hier jedoch nur „ausreichend“.

Tab. 8: Verbrauchsdaten des Fuhrparks 2021

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Menge</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbrauch Diesel</td>
<td>139.639</td>
<td>l</td>
</tr>
<tr>
<td>Verbrauch Benzin</td>
<td>6.989</td>
<td>l</td>
</tr>
<tr>
<td>Verbrenner-PKW (Fuhrpark)</td>
<td>409.609</td>
<td>km</td>
</tr>
<tr>
<td>Hybrid-PKW (Fuhrpark)</td>
<td>30.683</td>
<td>km</td>
</tr>
<tr>
<td>E-PKW (Fuhrpark)</td>
<td>64.190</td>
<td>km</td>
</tr>
</tbody>
</table>
Kältemittel

Die Kältemittelverbräuche wurden bei der ZA4, Gebäudemanagement angefragt. Dabei wurden nur nachgefüllte Mengen an Kältemittel in der THG-Bilanz aufgeführt, da davon ausgegangen wird, dass diese Mengen durch Leckagen ausgetreten und in die Umwelt gelangt sind. Die nachgefüllten Mengen sind in Tab. 9 aufgeführt. Da die Daten aus Rechnungen stammen, wird die Datengüte gemäß BayCalc-Richtlinie als hoch kategorisiert.

Tab. 9: Verbrauchswerte der Kältemittel 2021

<table>
<thead>
<tr>
<th>Kältemittel</th>
<th>Menge in kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>R410A</td>
<td>1,8</td>
</tr>
<tr>
<td>R134</td>
<td>3,2</td>
</tr>
<tr>
<td>R422D</td>
<td>8,3</td>
</tr>
<tr>
<td>R407C</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Bezogene Waren und Dienstleistungen

Die im BayCalc-Bilanzierungstool vorgesehenen Waren und Dienstleistungen wurden auf die Verfügbarkeit von Daten an der TUM geprüft. Diese Prüfung zeigte auf, dass nur ein Teil der vorgegebenen Waren und Dienstleistungen zentral erfasst wird. Alle Waren, die im zentralen SAP-System aufgeführt sind und einer der Kategorien aus dem BayCalc-Bilanzierungstool zugewiesen werden konnten, wurden in die THG-Bilanz aufgenommen und sind in Tab. 10 aufgeführt.

Die eingekauften Mengen Papier konnten nicht erfasst werden, da die Papierbeschaffung dezentral durch die Lehrstühle oder Verwaltungseinheiten erfolgt und nicht in SAP zu inventarisieren sind.

Die Beschaffung von Reinigungsmitteln, Papierhandtüchern und Toilettenpapier erfolgt ebenfalls dezentral oder über die Dienstleistungsunternehmen, die für die Gebäudereinigung zuständig sind und konnte daher nicht erfasst werden.

Die outgesourceten Leistungen an das Leibniz Rechen Zentrum (LRZ) konnten nicht in der in der BayCalc-Richtlinie vorgegebenen Einheit bereitgestellt werden.

Die geringe Anzahl der Docking Stationen ergibt sich aus der Schwelle von 250 € netto der Inventarisierungen in SAP.
Tab. 10: Beschaffte Waren und Dienstleistungen 2021

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Menge</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beamer</td>
<td>46</td>
<td>Stück</td>
</tr>
<tr>
<td>Desktop-PC</td>
<td>1.274</td>
<td>Stück</td>
</tr>
<tr>
<td>Docking-Stationen</td>
<td>9</td>
<td>Stück</td>
</tr>
<tr>
<td>Drucker</td>
<td>226</td>
<td>Stück</td>
</tr>
<tr>
<td>Toner</td>
<td>Nicht erfassbar</td>
<td>Stück</td>
</tr>
<tr>
<td>Monitore</td>
<td>763</td>
<td>Stück</td>
</tr>
<tr>
<td>Multifunktionsgeräte</td>
<td>Nicht erfassbar</td>
<td>Stück</td>
</tr>
<tr>
<td>Notebook/Laptop</td>
<td>1.997</td>
<td>Stück</td>
</tr>
<tr>
<td>Outgesourcete Leistungen des Rechenzentrums</td>
<td>Nicht erfassbar</td>
<td>Gb/a</td>
</tr>
<tr>
<td>Papier (Primärfaser)</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Papier (Recycling)</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Papierhandtücher (Recycling)</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Regale/ Schränke</td>
<td>944</td>
<td>Stück</td>
</tr>
<tr>
<td>Reinigungsmittel</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Smartphones</td>
<td>241</td>
<td>Stück</td>
</tr>
<tr>
<td>Stühle</td>
<td>1.458</td>
<td>Stück</td>
</tr>
<tr>
<td>Tablet</td>
<td>406</td>
<td>Stück</td>
</tr>
<tr>
<td>Tische</td>
<td>1.351</td>
<td>Stück</td>
</tr>
<tr>
<td>Toilettenpapier (Recycling)</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
</tbody>
</table>

Kapitalgüter

Tab. 11: Erfasste Kapitalgüter 2021

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Menge</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kies</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Sand</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Beton</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Branntkalk</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Gips</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Glas</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Steinwolle</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Kategorie</td>
<td>Menge</td>
<td>Einheit</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Zement (Portland)</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Kupfer</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Stahl-mix</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Stahl-Elektro</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Stahlblech-verzinkt</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Schafwolle</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Hanf</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Jute</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Stahlbeton</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Kalksandstein</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Hochlochziegel</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Mineralwolle</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Holz</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Holzfaserdämmung</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Zellulose</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Baumwolle</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Blähperlit</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Glaswolle</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Blähglas</td>
<td>Nicht erfassbar</td>
<td>t</td>
</tr>
<tr>
<td>Fahrzeuge</td>
<td>537.214 €</td>
<td></td>
</tr>
<tr>
<td>Server</td>
<td>251</td>
<td>Stück</td>
</tr>
</tbody>
</table>

Abfall und Abwasser

Tab. 12: Verbrauchsmengen Wasser und Abwasser 2021

<table>
<thead>
<tr>
<th>Campus</th>
<th>Art</th>
<th>Menge in m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weihenstephan</td>
<td>Wasser</td>
<td>821.097</td>
</tr>
<tr>
<td>Weihenstephan</td>
<td>Abwasser</td>
<td>821.097</td>
</tr>
<tr>
<td>Garching</td>
<td>Wasser</td>
<td>Nicht erfasst</td>
</tr>
<tr>
<td>Garching</td>
<td>Abwasser</td>
<td>Nicht erfasst</td>
</tr>
<tr>
<td>München</td>
<td>Wasser</td>
<td>106.779</td>
</tr>
<tr>
<td>München</td>
<td>Abwasser</td>
<td>106.779</td>
</tr>
<tr>
<td>Straubing</td>
<td>Wasser</td>
<td>2.586</td>
</tr>
<tr>
<td>Straubing</td>
<td>Abwasser</td>
<td>2.586</td>
</tr>
<tr>
<td>Außenstellen⁹</td>
<td>Wasser</td>
<td>47.013</td>
</tr>
<tr>
<td>Außenstellen⁹</td>
<td>Abwasser</td>
<td>47.013</td>
</tr>
</tbody>
</table>

Dienstreisen

Innerhalb der TUM ist die ZA3, zentrale Reisekostenstelle für die Genehmigung von Dienst- und Fortbildungsreisen und die anschließende Erstattung von Auslagen zuständig. Derzeit werden die für die Berechnung der THG-Emissionen benötigten Daten bei der Rückerstattung der Reisekosten, die Entfernung und das genutzte Hauptverkehrsmittel, weder digital über das Bayerische Reisekostenmanagementsystem (BayRMS) noch über das Reisekostenabrechnungssystem (BayRKS) vollständig erfasst. Eine TUM-seitige Auswertung der Daten lassen diese Systeme darüber hinaus nicht zu. Außerdem können die Emissionen aus Dienstreisen nicht standortbezogen aufgeteilt werden (auch zukünftig nicht angedacht). Die Emissionen werden daher übergreifend der gesamten TUM zugeordnet. Für die Berechnung der THG-Emissionen aus Dienstreisen musste aufgrund der begrenzten Datenverfügbarkeit auf Basis der genutzten Verkehrsmittel unterschiedliche Herangehensweisen gewählt werden, welche im Folgenden beschrieben werden.

Die Auswertung der in BayRKS hinterlegten Daten, welche zur Bearbeitung der Abrechnungsanträge für Reisekosten genutzt werden, kann derzeit nur über das bayer. Landesamt für Finanzen (LfF) erfolgen. Dabei können jedoch auch nur kostenrelevante Datensätze exportiert und ausgewertet werden, dies betrifft die Fahrkosten und die Anzahl der Fahrten oder Flüge mit dem jeweiligen Verkehrsmittel. Demnach können aus den hinterlegten Daten lediglich die zurückgelegte Entfernung mit privaten PKWs, Motorrädern oder Fahrrädern über die Wegstreckenentschädigung berechnet werden sowie die entstandenen Kosten für Taxifahrten für die Berechnung der Emissionen der Dienstreisen genutzt werden. Im BayCalc-Bilanzierungstool sind Emissionsfaktoren für Taxifahrten in € pro t CO₂e sowie für Verbrenner-PKWs und Mo-

⁹ Umfasst: Richard-Wagner-Str. 14, Franz Langiger Str. 10, Baumbachstr. 11, Tennisanlage, Schacht Süd, BFTS, Schacht Nord, Schacht Ost, WSP Starnberg, Eichenau, Ilfeldorf, Schragenhofstr. 31

¹⁰ Das Hauptverkehrsmittel entspricht dem Verkehrsmittel, mit dem die größte Entfernung zurückgelegt wird.
torräder in Personenkilometer pro t CO₂-e hinterlegt. Die für Taxi-, PKW-, Motorrad- und Fahrradfahrten ergeben sich die folgenden Werte aus der Auswertung des LfF (Tab. 13). Da die Daten aus Abrechnungen stammen, wird die Datengüte gemäß BayCalc-Richtlinie als hoch kategorisiert.

Tab. 13: Taxi-, PKW-, Motorrad- und Fahrradfahrten 2021

<table>
<thead>
<tr>
<th>Verkehrsmittel</th>
<th>Menge</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxi</td>
<td>9.612</td>
<td>€</td>
</tr>
<tr>
<td>Verbrenner-PKW</td>
<td>816.413</td>
<td>Pkm</td>
</tr>
<tr>
<td>Motorrad</td>
<td>2.639</td>
<td>Pkm</td>
</tr>
<tr>
<td>Fahrrad</td>
<td>6.688</td>
<td>Pkm</td>
</tr>
</tbody>
</table>

Mit dem Beschluss des Maßnahmenpakets zum Klimaschutz des Ministerrats im November 2019 müssen ab dem Jahr 2020 alle entstehenden CO₂-Emissionen für unvermeidbare dienstliche Flugreisen kompensiert werden (Klimaschutzprogramm gemäß Art. 5 BayKlimaG, 2022). Für die Ermittlung der zu kompensierenden CO₂-Emissionen für Flugreisen müssen alle Resorts, also auch die TUM, alle dienstlichen Flüge inkl. Flugstrecke (Start- und Endflughafen) erfassen. Die Auswahl der CO₂-Kompensationsmöglichkeiten sowie die Beschaffung der entsprechenden Zertifikate erfolgt zentral über die Landesagentur für Energie und Klimaschutz (LENK). Die gesammelten Daten werden der LENK direkt zur Verfügung gestellt. Die LENK ermittelt mit Hilfe eines Emissionsrechners die entstandenen und zu kompensierenden THG-Emissionen. Dabei spielen nicht nur Faktoren wie die zurückgelegte Flugstrecke, sondern auch der Flugzeugtyp oder die Besetzung des Flugzeugs eine Rolle. Im BayCalc-Bilanzierungstool erfolgt die Emissionsberechnung jedoch über eine Unterteilung in Entfernungs- kategorien von Kurz- (unter 1.000 km), Mittel- (zwischen 1.000 und 10.000 km) und Langstrecke (über 10.000 km) und den dazugehörigen Emissionsfaktoren. Diese Unterteilung entspricht der Vorgehensweise des Umweltbundesamts (UBA) für die Berechnung der Flugreiseemissionen der Bundesministerien und wurde im Zuge der Entwicklung der BayCalc-Richtlinie mit diesem abgestimmt. Für die Berechnung der THG-Emissionen aus den Flugreisen der TUM wurden demnach nicht direkt die von der LENK berechneten Emissionswerte übernommen, sondern lediglich die ermittelten Flugstrecken. Die für die TUM zusammengefasste Auswertung der zurückgelegten Flüge und Streckenberechnung wurde von Seiten der LENK für die Jahre 2021 und 2022 zur Verfügung gestellt. Für das Jahr 2021 ergibt sich daraus die in Tab. 14 abgebildete Aufteilung der Flugstrecken in die für das BayCalc-Bilanzierungstool erforderten Entfernungs kategorien. Da die Daten für die Flugstrecken aus dem Reisekostensystem stammen, wird die Datengüte gemäß BayCalc-Richtlinie als hoch kategorisiert.

Tab. 14: Zurückgelegte Flugstrecken nach Entfernungs kategorien 2021

<table>
<thead>
<tr>
<th>Entfernungs kategorie</th>
<th>Personenkilometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flug unter 1.000 km (einfach)</td>
<td>448.437</td>
</tr>
<tr>
<td>Flug 1.000 km-10.000 km (einfach)</td>
<td>2.126.219</td>
</tr>
<tr>
<td>Flug über 10.000 km (einfach)</td>
<td>104.464</td>
</tr>
</tbody>
</table>

Die Emissionen, welche durch Dienstreisen mit der Bahn verursacht wurden, können für die THG-Bilanzierung bisher nur hochgerechnet werden. Eine vollständige Erfassung der Start- und Zielorte erfolgt wie oben beschrieben bislang nicht digital. Für die Hochrechnung wurden
die Bahnfahrten, welche über die einschlägige BMIS-Nummer der TUM (Bahnkundennummer) gebucht wurden von der Deutschen Bahn angefordert. Die angefragten Daten enthalten die unter der TUM Bahnkundennummer gebuchten Personenkilometer im Nah- und Fernverkehr. Die Anzahl der über die TUM Bahnkundennummer gebuchten Fahrten unterscheidet sich jedoch von der Anzahl der abgerechneten Bahnfahrten im BayRKS. In 2021 wurden 41 % der Anzahl der Bahnfahrten über die einschlägige TUM Bahnkundennummer gebucht. Für die Hochrechnung wurde der Mittelwert der zurückgelegten Strecke im Nah- und Fernverkehr gebildet und anteilig auf die Differenz der nicht über die TUM Bahnkundennummer gebuchten Fahrten für Nah- und Fernverkehr hochgerechnet. Für das Jahr 2021 ergibt sich daraus die in Tab. 15 abgebildete Aufteilung der zurückgelegten Bahnstrecke im Nah- und Fernverkehr. Da die Daten für die Berechnung der Bahnreiseemissionen auf Annahmen und Hochrechnungen beruht, wird die Datengüte gemäß BayCalc-Richtlinie als niedrig kategorisiert.

Tab. 15: Zurückgelegte Bahnstrecken im Nah- und Fernverkehr 2021

<table>
<thead>
<tr>
<th>Streckenkategorie</th>
<th>Personenkilometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fernverkehr</td>
<td>1.040.742</td>
</tr>
<tr>
<td>Nahverkehr</td>
<td>129.041</td>
</tr>
</tbody>
</table>

Emissionen, die sich aus Fahrten mit dem Öffentlichen Nahverkehr ergeben können aufgrund der fehlenden Datenbasis derzeit für die TUM nicht errechnet werden.

Student Outgoing

In dieser Kategorie werden Emissionen erfasst, die durch die An- und Abreise von Auslandsaufenthalten der Studierenden entstehen. Abweichend der BayCalc-Richtlinie inkludiert die TUM auch die Emissionen der Auslandsaufenthalte, die nicht direkt durch die Hochschule finanziert werden. Analog zu den Dienstreisen werden die Personenkilometer und das verwendete Hauptverkehrsmittel11 für die An- und Abreise der Studierenden erhoben. Eine Heimreise oder weitere während des Auslandaufenthalts entstehende Emissionen durch Privatreisen werden nicht der THG-Bilanz der TUM angerechnet.

Die Verantwortung für die Datenerfassung liegt beim TUM Global und Alumni Office, welches eine Übersicht der von Studierenden genutzten Austauschprogramme und Ziele pro Semester für die Berechnung der THG-Emissionen zur Verfügung stellen kann. Allgemein wird bei Austauschreisen von Studierenden zwischen zwei verschiedenen Austauschprogrammen unterschieden: ERASMUS (innereuropäischen Austausch) und TUM-Exchange (außereuropäischer Austausch). Für die Berechnung der Emissionen liegt in Bezug auf diese Austauschprogramme eine leicht unterschiedliche Datenbasis zu Grunde, jedoch wird für beide Austauschprogramme angenommen, dass die Studierenden diese von München starten und nach München zurückkehren. Bei Flugreisen wird der nächstmögliche Flughafen des Austauschorts angenommen und analog zu den Dienstreisen für die Berechnung der Emissionen mit dem im BayCalc-Bilanzierungstool hinterlegtem Emissionsfaktor zwischen Kurz- (unter 1.000 km), Mittel- (zwischen 1.000 und 10.000 km) und Langstrecke (über 10.000 km) unterschieden. Da Reisen im Wintersemester über den Jahreswechsel erfolgen, wurde für die jährliche Betrachtung die Anreisen bzw. Abreisen des jeweiligen Wintersemesters betrachtet. Für das Jahr 2021 sind somit die folgenden Anreisen (von München zum Studienort) und Abreisen (vom

11 Das Hauptverkehrsmittel entspricht dem Verkehrsmittel, mit dem die größte Entfernung zurückgelegt wird.

Tab. 16: Student Outgoing Personenkilometer pro Verkehrsmittel 2021

<table>
<thead>
<tr>
<th>Verkehrsmittel</th>
<th>Personenkilometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus</td>
<td>100.558</td>
</tr>
<tr>
<td>PKW</td>
<td>375.322</td>
</tr>
<tr>
<td>davon Carpooling</td>
<td>183.307</td>
</tr>
<tr>
<td>E-PKW</td>
<td>9.644</td>
</tr>
<tr>
<td>Motorrad</td>
<td>2.150</td>
</tr>
<tr>
<td>Bahn</td>
<td>451.678</td>
</tr>
<tr>
<td>Schiff/ Fähre</td>
<td>0</td>
</tr>
<tr>
<td>Fahrrad/E-Bike</td>
<td>0</td>
</tr>
<tr>
<td>Flug bis 1.000 km</td>
<td>34.549</td>
</tr>
<tr>
<td>Flug 1.000 km-10.000 km</td>
<td>4.575.626</td>
</tr>
<tr>
<td>Flug über 10.000 km</td>
<td>260.096</td>
</tr>
</tbody>
</table>

Exkursionen

Die gemäß BayCalc-Richtlinie zu erfassenden mobilitätsbedingten Emissionen durch Exkursionen, die nicht mit hochschuleigenen Fahrzeugen erfolgt sind, sind derzeit nicht in der THG-Bilanz der TUM abgebildet, da diese Daten nicht zentral erfasst werden.

An- und Abreise von Gästen

Auch die gemäß BayCalc-Richtlinie zu erfassenden mobilitätsbedingten Emissionen durch die An- und Abreise von Gästen, die über die TUM abgerechnet werden, sind derzeit nicht in der THG-Bilanz der TUM abgebildet, da diese Daten nicht zentral erfasst werden.
Pendelaktivitäten der Beschäftigten und Studierenden

Folgebilanzierung, Umgang mit Datenlücken und Unsicherheiten

In diesem Prozess wird mit der Implementierung wiederholbarer und transparenter Erfassungsmethoden begonnen. Eine gute Dokumentation der Datenerfassung, der Datenqualität und der entsprechenden Unsicherheiten trägt dazu bei, die Qualität der THG-Bilanz und somit die Interpretierbarkeit der Ergebnisse zu verbessern.

Die Datenqualität der Startbilanz der TUM wurde bereits in Tab. 5 und Tab. 6 eingestuft. Die Unsicherheitsaufschläge, die sich aus der Bewertung der Datenqualität ergaben, wurden in Tab. 7 aufgeführt und bei der Emissionsberechnung berücksichtigt. Unsicherheiten im Zuge der Modellierung der Treibhausgasreduktionsmaßnahmen (siehe Kapitel 3) wurden durch konservative Annahmen berücksichtigt.

Darüber hinaus ist eine Erfassung aller Kapitalgüter und beschaffter Waren und Dienstleistungen auch für die TUM als Universität empfohlen, da diese üblicherweise im unternehmerischen Kontext einen erheblichen Anteil der Scope 3 Emissionen ausmachen. Die Datenlage ist für diese Kategorien in der Startbilanz noch nicht vollständig. Eine detaillierte Erfassung dieser Kategorien kann jedoch sehr zeitintensiv sein. Daher kann es gerechtfertigt und sinnvoll sein,

Um die Effektivität von bereits definierten Maßnahmen und zukünftig geplanten Maßnahmen besser evaluieren zu können sollten Anstrengungen unternommen werden, Energiebezüge und eingesetzte Energieträger gebäudespezifisch bzw. anlagenspezifisch zu erfassen (siehe Projekte in ED4, 📃 Energiemonitoring)

<table>
<thead>
<tr>
<th>Lebenszyklusbasierte Kostenermittlung als Grundlage der Vergabe von Bauvorhaben</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED3a</td>
</tr>
</tbody>
</table>

2.2 Energiebilanz

Bezogen auf die Vollzeitäquivalente der Beschäftigten und Studierenden sowie die Nettoraumfläche ergeben sich die in Tab. 18 aufgeführten spezifischen Energiekennzahlen. Diese wurden sowohl in der Taskforce als auch in der AG Klimaschutzmanagement des BayZeN abgestimmt.
Tab. 17: Aufgeschlüsselte Energieverbräuche der Universitätsstandorte in MWh

<table>
<thead>
<tr>
<th>Standort</th>
<th>München</th>
<th>Garching</th>
<th>Weihenstephan</th>
<th>Straubing</th>
<th>Außenstellen</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erdgas (Wärme)</td>
<td>4.978</td>
<td>88.563</td>
<td>2.641</td>
<td>1.738</td>
<td>927</td>
<td>98.847</td>
</tr>
<tr>
<td>Erdgas (Strom)</td>
<td>0</td>
<td>79.337</td>
<td>0</td>
<td>0</td>
<td>79.337</td>
<td></td>
</tr>
<tr>
<td>Heizöl</td>
<td>0</td>
<td>501</td>
<td>65</td>
<td>0</td>
<td>492</td>
<td>3.888</td>
</tr>
<tr>
<td>Biomasse</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>492</td>
<td>492</td>
</tr>
<tr>
<td>konventionelle Fernwärme</td>
<td>0</td>
<td>0</td>
<td>25.240</td>
<td>221</td>
<td>6.767</td>
<td>32.228</td>
</tr>
<tr>
<td>Fernwärme aus Biogas</td>
<td>18.604</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>77</td>
<td>18.681</td>
</tr>
<tr>
<td>Fernwärme aus Biomasse</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.125</td>
<td>0</td>
<td>1.125</td>
</tr>
<tr>
<td>Strom</td>
<td>12.797</td>
<td>48.938</td>
<td>30.259</td>
<td>1.610</td>
<td>8.983</td>
<td>102.587</td>
</tr>
<tr>
<td>Gesamt</td>
<td>36.379</td>
<td>217.339</td>
<td>58.205</td>
<td>4.694</td>
<td>20.568</td>
<td>337.185</td>
</tr>
</tbody>
</table>

Tab. 18: Übersicht der wichtigsten Energiekennzahlen

<table>
<thead>
<tr>
<th>Kennzahl</th>
<th>Einheit</th>
<th>Spezifische Kennzahl für Wärmeverbrauch(^{12})</th>
<th>Spezifische Kennzahl für Stromverbrauch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energieverbrauch je VZÄ(^{13})</td>
<td>MWh/VZÄ</td>
<td>2.627</td>
<td>2.238</td>
</tr>
<tr>
<td>Energieverbrauch pro m(^2) NRF</td>
<td>MWh/m(^2)</td>
<td>0.206</td>
<td>0.183</td>
</tr>
</tbody>
</table>

2.3 Treibhausgasbilanz

Die TUM hat im Jahr 2021 direkt und indirekt den Ausstoß von 59.214 t CO\(_2\)e verursacht (market based). Dabei entfallen 57 % der Emissionen auf Scope 1, 9 % der Emissionen auf Scope 2 und 34 % auf Scope 3 (Abb. 4). Damit machen die direkten Emissionen auf Basis der hinterlegten Datengrundlage den größten Anteil aus. Dies muss jedoch vor dem Hintergrund noch fehlender Scope 3 Daten betrachtet werden. Wenn alle Scopes vollständig bilanziert werden können, ist davon auszugehen, dass die Scope 3 Emissionen den größten Anteil ausmachen.

\(^{12}\) Die Kennzahl bezieht sich auf Brennstoffbezug in MWh zur Wärmeerzeugung plus Wärmebezug (Fernwärme) in MWh.

\(^{13}\) VZÄ bezieht sich auf alle Hochschulangehörigen gemäß Tab. 4
In Tab. 19 werden die Werte der in der BayCalc-Richtlinie verankerten Emissionsquellen detailliert dargestellt. Wie bereits in Kapitel 2.1 erläutert, konnten aufgrund der Datenverfügbarkeit nicht für alle Quellen in Scope 3 Emissionen ermittelt werden. Für die Folgebilanzerungen wird eine Verbesserung der Datengrundlage angestrebt, um ein ganzheitliches Bild der THG-Emissionen der TUM in Zukunft darstellen zu können. Erst durch eine genaue Datengrundlage ist die Wirksamkeitskontrolle von Emissionsreduktionsmaßnahmen in allen Kategorien möglich.

Auf Basis der derzeitigen Datengrundlage machen die Emissionen in Scope 1, 2 und 3 in der Strom- und Wärmeversorgung den größten Anteil aus. Da insbesondere die Kategorien Waren und Dienstleistungen, oder das Pendelverhalten noch nicht vollständig oder gar nicht bilanziert werden konnten, fallen die Scope 3 Emissionen niedriger aus als es in der Realität der Fall ist. Die Kategorie der eingekauften Waren und Dienstleistungen und die Pendelmobilität führen üblicherweise zu hohen Scope 3 Emissionen. Trotz fehlender Datenlage wurde versucht die Scope 3 Emissionen basierend auf übergeordneten Annahmen und Studienwerten zu modellieren (siehe Kapitel 3.4).
Bezogen auf die Hochschulangehörigen und die Nettoraumfläche der Universität ergeben sich die in Tab. 20 aufgeführten Werte. Beide Kennzahlen sollten bestenfalls zu Vergleichen mit anderen Hochschulen herangezogen werden, die ebenfalls nach der BayCalc Richtlinie bilanziert haben, da branchenübergreifende Vergleiche keine sinnvollen Schlüsse zulassen.

Tab. 19: Aufschlüsselung der Emissionen nach Emissionsquellen

<table>
<thead>
<tr>
<th>Emissionen in t CO₂e</th>
<th>Scope 1</th>
<th>Scope 2</th>
<th>Scope 3</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strom</td>
<td>14.443</td>
<td>25</td>
<td>4.610</td>
<td>4.635</td>
</tr>
<tr>
<td>Wärme</td>
<td>19.033</td>
<td>5.262</td>
<td>9.899</td>
<td>48.637</td>
</tr>
<tr>
<td>Bezogene Waren und Dienstleistungen</td>
<td>1.689</td>
<td>1.689</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kapitalgüter</td>
<td>602</td>
<td></td>
<td>602</td>
<td></td>
</tr>
<tr>
<td>Abfall und Wasser</td>
<td>412</td>
<td></td>
<td>412</td>
<td></td>
</tr>
<tr>
<td>Dienstreisen</td>
<td>494</td>
<td>4</td>
<td>1.123</td>
<td>1.622</td>
</tr>
<tr>
<td>Exkursionen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student Outgoing</td>
<td></td>
<td></td>
<td>1.584</td>
<td>1.584</td>
</tr>
<tr>
<td>An und Abreise von Gästen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pendeln von Beschäftigten und Studierenden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kältemittel</td>
<td>33</td>
<td>1</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>34.003</td>
<td>5.292</td>
<td>19.919</td>
<td>59.214</td>
</tr>
</tbody>
</table>

Bezogen auf die Hochschulangehörigen und die Nettoraumfläche der Universität ergeben sich die in Tab. 20 aufgeführten Werte. Beide Kennzahlen sollten bestenfalls zu Vergleichen mit anderen Hochschulen herangezogen werden, die ebenfalls nach der BayCalc Richtlinie bilanziert haben, da branchenübergreifende Vergleiche keine sinnvollen Schlüsse zulassen.

Tab. 20: Gesamtemissionen der TUM und Ausweisung von Emissionskennzahlen.

<table>
<thead>
<tr>
<th>Kennzahl</th>
<th>Wert</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissionen</td>
<td>59.214</td>
<td>t CO₂e</td>
</tr>
<tr>
<td>Emissionen pro VZÄ</td>
<td>1.01</td>
<td>t CO₂e/VZÄ</td>
</tr>
<tr>
<td>Emissionen pro m² (NRF)</td>
<td>0.079</td>
<td>t CO₂e/m²</td>
</tr>
</tbody>
</table>

Dual Reporting

Die Scope 2 Emissionen durch Energiebezüge sind im Vergleich zu den Scope 1 und 3 Emissionen gering. Dies begründet sich vor allem durch den Bezug von Ökostrom an nahezu allen Standorten. Wie in Tab. 21 zu sehen ist, würden die strombedingten Emissionen bei Bezug des lokalen Strommix um über 40.000 t CO₂e ansteigen.

Tab. 21: Emissionen des Strombezugs (market based und location based)

<table>
<thead>
<tr>
<th>Angaben in t CO₂e</th>
<th>Scope 2</th>
<th>Scope 3</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stromemissionen (market based)</td>
<td>25</td>
<td>4.610</td>
<td>4.635</td>
</tr>
<tr>
<td>Stromemissionen (location based)</td>
<td>36.741</td>
<td>9.591</td>
<td>46.332</td>
</tr>
<tr>
<td>Emissionsreduktion durch Ökostrom</td>
<td>36.716</td>
<td>4.981</td>
<td>41.697</td>
</tr>
</tbody>
</table>
Wenn die durchschnittlichen lokalen Emissionsfaktoren herangezogen werden (location based), ergibt sich ein anderes Gesamtbild. Hier steigen die Emissionen in Scope 2 durch den Strombezug auf 36.741 t CO₂e. Beim location based Berechnungsansatz machen die Scope 2 Emissionen mit 42 % den größten Anteil an den Gesamtemissionen aus. Die Gesamtemissionen steigen aufgrund der höheren Werte in Scope 2 und 3 auf 100.911 t CO₂e an (Abb. 5). Durch den Bezug von Ökostrom primär aus Wasserkraftanlagen im EU-Ausland wird eine Emissionsreduktion von knapp über 41 % erzielt.

Abb. 5: Gesamtemissionen der TUM (location based) nach Scopes und Kategorien

Standortspezifische Auswertung der energiebedingten Emissionen in Scope 1 und 2

Der Standort Garching hat aufgrund seiner Größe und energieintensiven Forschungsaktivitäten mit Abstand den höchsten Energieeinsatz (Tab. 17). Durch die primäre Energiebereitstellung im eigenen Heizkraftwerk aus Erdgas ist der Campus Garching damit für ca. 50 % der Gesamtemissionen der TUM verantwortlich (Tab. 22). Die zweitgrößte Emissionsmenge fällt am Campus Weihenstephan in Scope 2 (Tab. 22) an. Diese ist auf den Bezug von Fernwärme in Weihenstephan zurückzuführen.
Tab. 22: Aufschlüsselung der Emissionen (market based) nach Universitätsstandorten

<table>
<thead>
<tr>
<th>Standort</th>
<th>Scope 1</th>
<th>Scope 2</th>
<th>Gesamt</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>München</td>
<td>906</td>
<td>744</td>
<td>1.650</td>
<td>t CO\textsubscript{2}e</td>
</tr>
<tr>
<td>Garching</td>
<td>30.732</td>
<td>0</td>
<td>30.732</td>
<td>t CO\textsubscript{2}e</td>
</tr>
<tr>
<td>Weihenstephan</td>
<td>498</td>
<td>3.303</td>
<td>3.801</td>
<td>t CO\textsubscript{2}e</td>
</tr>
<tr>
<td>Straubing</td>
<td>316</td>
<td>78</td>
<td>395</td>
<td>t CO\textsubscript{2}e</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>1.056</td>
<td>1.162</td>
<td>2.218</td>
<td>t CO\textsubscript{2}e</td>
</tr>
<tr>
<td>Gesamt</td>
<td>33.508</td>
<td>5.287</td>
<td>38.796</td>
<td>t CO\textsubscript{2}e</td>
</tr>
</tbody>
</table>

TUM Campus Straubing

Abb. 7 zeigt die absoluten THG-Emissionen und spezifischen THG-Emissionen pro m2 NRF der Gebäude am TUMCS auf. Dort ist zu erkennen, dass das Gebäude der US53 die höchsten

Abb. 6: Lageplan der Gebäude des TUMCS in der Stadt Straubing

Abb. 7: Absolute und spezifische THG-Emissionen der Gebäude des TUMCS
3 Roadmap: Wege zur Treibhausgasneutralität

3.1 Definition der Szenarien

Für die Pfade 2 und 3 werden so THG-Minderungsmaßnahmen ermittelt, die jeweils ab einem bestimmten Zeitpunkt im Zeitraum 2023–2045 wirksam werden. Dabei werden zum einen Effekte erfasst, die sich aus Änderungen der energiewirtschaftlichen Rahmenbedingungen ergeben. Diese sind zum Beispiel Veränderungen in den Emissionsfaktoren des deutschen
Strommix und im Brennstoffmix der Eigenerzeugung. Zum anderen werden in allen Pfaden angenommene Effizienzentwicklungen berücksichtigt.

Auf Basis der ermittelten Maßnahmen erfolgt pro Pfad eine Berechnung und Darstellung der Emissionsentwicklung, Kosten und Vermeidungskostenkurven.

3.2 Grundlegende Annahmen

Annahmen zum Wachstum der TUM

Das Wachstum wird grundsätzlich in allen drei Pfaden gleich angenommen (Tab. 23) und basiert für den gesamten Zeitraum bis 2045 auf aktuellen Planungen der TUM. Energieeffizienzgewinne durch kleinere Maßnahmen werden mit einem pauschalen Energieeffizienzfaktor in der Gesamtbilanz berücksichtigt (Tab. 23).

<table>
<thead>
<tr>
<th>Standort</th>
<th>Jährlicher Anstieg d. Energieverbräuche in %</th>
<th>Jährlicher Anstieg d. Energieeffizienz in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garching</td>
<td>2,5 %</td>
<td>0,5 %</td>
</tr>
<tr>
<td>München</td>
<td>0,7 %</td>
<td>0,2 %</td>
</tr>
<tr>
<td>Weihenstephan</td>
<td>0,7 %</td>
<td>0,1 %</td>
</tr>
<tr>
<td>Straubing</td>
<td>0,7 %</td>
<td>0,1 %</td>
</tr>
<tr>
<td>Außenstellen</td>
<td>0,7 %</td>
<td>0,1 %</td>
</tr>
</tbody>
</table>

Annahmen zukünftiger technologischer Entwicklungen

Strom ist grundsätzlich nur begrenzt verfügbar und kann nicht beliebig zusätzlich zur Verfügung gestellt werden, vor allem steht erneuerbarer Strom in größeren Mengen bislang nur begrenzt zur Verfügung. Dennoch wird in der vorliegenden Arbeit davon ausgegangen, dass über den Betrachtungszeitraum bis 2045 entsprechende politische Rahmenbedingungen geschaffen werden und eine hohe Akzeptanz vorherrschen wird, um im Bedarfsfall trotz des stärkeren Ausbaus erneuerbarer Kapazitäten den fehlenden erneuerbaren Strom auch in großem Umfang aus dem Ausland zu importieren. Daher wird in dieser Studie davon ausgegangen, dass der notwendige erneuerbare Strom auch zur Verfügung steht.

Annahmen der Kostenentwicklung

14 In die Berechnung wurden vereinfacht alle Fahrzeuge des Fuhrparks integriert, ungeachtet der Tatsache, dass auch landwirtschaftliche Fahrzeuge darunter gelistet sind, für die eine Elektrifizierung unter der aktuellen Marktlage keine Alternative darstellt.
<table>
<thead>
<tr>
<th>Tab. 24: Anzusetzende Strompreise und Emissionsfaktoren des deutschen Strommix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Stromkosten gesamt</td>
</tr>
<tr>
<td>Emissionsfaktor Strommix Deutschland (Scope 2)</td>
</tr>
</tbody>
</table>

Die Fernwärmebezugs- kosten werden mit einer jährlichen Steigerung von 2 % bilanziert. Langfristig werden somit die Kostensteigerungen anhand der angestrebten Inflationsrate angenommen.

3.3 Szenarioanalyse in Scope 1 und 2

Mittels der in Kapitel 3.2.3.2 beschriebenen Annahmen werden drei Szenarien für die Scopes 1 und 2, auf der Basis verschiedener Emissionsreduktionsmaßnahmen bilanziert. Neben der Berechnung von Energie- und Emissionszahlen wurden auch Kostenabschätzungen getroffen. Abb. 8 zeigt die Emissionsverläufe der drei Szenarien und Abb. 9 die korrespondierenden kumulierten Investitionssummen.
Die Emissionen der drei Szenarien unterscheiden sich in den ersten Jahren der Bilanzierung nicht. Erst ab 2025 zeigen sich große Abweichungen zwischen Szenario 3 und Szenario 1 und 2. Da im Szenario 3 schon 2028 die Treibhausgasneutralität angestrebt wird, müssen die Maßnahmen schon früh greifen, obwohl die Gesamtwirtschaftlichkeit dadurch schlechter ausfällt. Somit sinken die Emissionen im Szenario 3 im Jahr 2028 auf null. Szenario 2, welches langfristig ebenfalls die Klimaneutralität erreicht, erreicht im Jahr 2027 erste Emissionsreduktionen. Insgesamt sinken die Emissionen deutlich langsamer ab, sodass bis 2040 die Emissionen auf ca. 1.200 t CO$_2$e sinken. Die Restemissionen in den Jahren 2040 bis 2045 ergeben sich aus Fernwärmebezügen. Im Vergleich zum Referenzszenario (Szenario 1) weisen die Szenarien 2 und 3 im Jahr 2045 eine Emissionsreduktion von über 50.000 t CO$_2$e pro Jahr auf.

Abb. 8: Emissionsübersicht der Szenarien 1 bis 3

Abb. 9: Kumulierte Gesamtinvestitionen der Szenarien 1 bis 3
Die Emissionsreduktionen der Szenarien 2 und 3 gehen mit signifikanten Investitionssummen einher. In Szenario 3 fallen sehr früh hohe Investitionen an, während die Investitionen in Szenario 2 weiter über die Zeitachse verteilt sind (Abb. 9). Insgesamt übersteigen die Investitionen in Szenario 2 sogar die Kosten von Szenario 3. Um ein ganzheitliches Bild der Kosten für die TUM zu erhalten, sollten jedoch auch die laufenden Kosten betrachtet werden. In diesem Vergleich ist das Szenario 2 am günstigsten, während Szenario 3 immer noch günstiger als Szenario 1 ist.

Szenario 1: Business-As-Usual

Beschreibung des Pfades

Entwicklung der CO\textsubscript{2}e-Emissionen

In Szenario 1 kann bis 2045 keine Reduktion der absoluten CO\textsubscript{2}e-Emissionen erreicht werden. Die Gesamtemissionen steigen aufgrund des Wachstums der Universität langsam, aber stetig an. Dadurch steigen die CO\textsubscript{2}e-Emissionen der TUM in Scope 1 und 2 von etwa 38.000 auf etwa 58.000 t CO\textsubscript{2}e p. a. an (Abb. 10). Somit führt das jährliche Wachstum bis 2045 zu einer Steigerung der jährlichen Emissionen von 51,8 %. Wie schon im Kapitel Treibhausgasbilanz erwähnt, verursacht Garching den höchsten Anteil der Emissionen.

Auf eine passive Reduktion der Emissionen kann die TUM sich somit nicht zurückziehen. Szenario 1 zeigt, dass aktive Maßnahmen nötig sind, um überhaupt eine signifikante absolute Emissionsreduktion zu erreichen.
Kostenabschätzung zu Szenario 1

In Szenario 1 werden nur Investitionen für die Durchführung der Effizienzmaßnahmen bilanziert. Wie Abb. 11 zeigt, ergeben sich geringe, aber stetig steigende jährliche Investitionssummen. Die Effizienzkosten nehmen mit steigender Effizienz immer weiter zu. Zusätzlich muss dem Wachstum der Universität Rechnung getragen werden. Aufgrund des Heizkraftwerks sind die Kosten der Effizienzmaßnahmen in Garching am höchsten. In absoluten Zahlen werden dadurch allerdings auch die meisten Emissionen eingespart.

Abb. 11: Verlauf der jährlichen Nominalinvestitionen Szenario 1

Abb. 12: Jährliche Kosten für Energieträger und Emissionszertifikate Szenario 1

Szenario 2: Klimaneutralität bis 2045 in Scope 1 und 2

Beschreibung des Pfades

Tab. 25: Übersicht der Emissionsreduktionsmaßnahmen in Szenario 2

<table>
<thead>
<tr>
<th>Maßnahme</th>
<th>Standort</th>
<th>Voraussichtliche Erstinbe-triebnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufbau von Photovoltaik auf allen verfügbaren Flächen</td>
<td>Garching</td>
<td>2024</td>
</tr>
<tr>
<td>Aufbau von Photovoltaik auf allen verfügbaren Flächen</td>
<td>Straubing</td>
<td>2025</td>
</tr>
<tr>
<td>Absenkung der Wärmenetzentemperatur</td>
<td>Garching</td>
<td>2027</td>
</tr>
<tr>
<td>Wärmepumpen als Ersatz für Heizkessel</td>
<td>Garching</td>
<td>2030</td>
</tr>
<tr>
<td>Umstellung auf THG-neutrale Kältemittel</td>
<td>Garching</td>
<td>2035</td>
</tr>
<tr>
<td>Elektrodenkessel zur Erzeugung von Dampf</td>
<td>Garching</td>
<td>2040</td>
</tr>
<tr>
<td>Wärmepumpen als Ersatz für BHKW</td>
<td>Straubing</td>
<td>2042</td>
</tr>
<tr>
<td>Wärmepumpen als Ersatz für Heizkessel</td>
<td>Weihenstephan</td>
<td>2034</td>
</tr>
<tr>
<td>Umstellung auf THG-neutrale Fernwärme</td>
<td>Weihenstephan</td>
<td>2035</td>
</tr>
<tr>
<td>Wärmepumpen als Ersatz für Heizkessel</td>
<td>München</td>
<td>2036</td>
</tr>
<tr>
<td>Umstellung auf THG-neutrale Fernwärme</td>
<td>Straubing</td>
<td>2035</td>
</tr>
<tr>
<td>Wärmepumpen als Ersatz für Heizkessel</td>
<td>Außenstelle</td>
<td>2040</td>
</tr>
</tbody>
</table>
Maßnahme | Standort | Voraussichtliche Erstinbetriebnahme
--- | --- | ---
Umstellung von Heizöl auf THG-neutrale Fernwärme | Außenstelle | 2035
Elektrifizierung von PKWs | Fuhrpark | 2025-2030
Elektrifizierung von Nutzfahrzeugen | Fuhrpark | 2030-2035

Entwicklung der CO\textsubscript{2}e Emissionen

Abb. 13: Emissionsverlauf in Szenario 2

Im Vergleich zum Status Quo im Jahr 2021 können die Emissionen in diesem Szenario bis 2030 um 7 % reduziert werden und bis 2040 um 96 %. Diese Emissionsreduktionen werden vor allem durch die Elektrifizierung der Wärmebereitstellung sowie die Nutzung von treibhausgasneutraler Fernwärme erreicht.

Kostenabschätzung zu Szenario 2

Abb. 14: Verlauf der jährlichen Nominalinvestitionen Szenario 2

Abb. 15: Jährliche Kosten für Energieträger und Emissionszertifikate Szenario 2

Szenario 3: Klimaneutralität bis 2028 in Scope 1 und 2

Beschreibung des Pfades

Tab. 26: Übersicht der Emissionsreduktionsmaßnahmen in Szenario 3

<table>
<thead>
<tr>
<th>Maßnahme</th>
<th>Standort</th>
<th>Voraussichtliche Erstinbetriebnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufbau von Photovoltaik auf allen verfügbaren Flächen</td>
<td>Garching</td>
<td>2024</td>
</tr>
<tr>
<td>Aufbau von Photovoltaik auf allen verfügbaren Flächen</td>
<td>Straubing</td>
<td>2025</td>
</tr>
<tr>
<td>Wärmepumpen als Ersatz für Heizkessel</td>
<td>Garching</td>
<td>2025</td>
</tr>
<tr>
<td>Nutzung von Biomethan im Heizkraftwerk</td>
<td>Garching</td>
<td>2026</td>
</tr>
<tr>
<td>Absenkung der Wärmennetztemperatur</td>
<td>Garching</td>
<td>2027</td>
</tr>
<tr>
<td>Umstellung auf THG-neutrale Kältemittel</td>
<td>Garching</td>
<td>2028</td>
</tr>
<tr>
<td>Maßnahme</td>
<td>Standort</td>
<td>Voraussichtliche Erstinbetriebnahme</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Bilanziell THG-neutrale Fernwärme als Ersatz f. Heizkessel</td>
<td>Weihenstephan</td>
<td>2028</td>
</tr>
<tr>
<td>Vollständige Umstellung auf Ökostrom</td>
<td>Straubing</td>
<td>2028</td>
</tr>
<tr>
<td>Bilanziell THG-neutraler Fernwärme als Ersatz für BHKW</td>
<td>Straubing</td>
<td>2028</td>
</tr>
<tr>
<td>Wärmepumpen als Ersatz für Heizkessel</td>
<td>München</td>
<td>2028</td>
</tr>
<tr>
<td>Bilanziell THG-neutraler Fernwärme als Ersatz f. Heizkessel</td>
<td>Außenstellen</td>
<td>2028</td>
</tr>
<tr>
<td>Elektrifizierung von PKWs</td>
<td>Fuhrpark</td>
<td>2024-2028</td>
</tr>
<tr>
<td>Elektrifizierung von Nutzfahrzeugen</td>
<td>Fuhrpark</td>
<td>2024-2028</td>
</tr>
</tbody>
</table>

Entwicklung der CO\textsubscript{2}e Emissionen

Durch die hohe Konzentration der Klimaschutzmaßnahmen in den kommenden fünf Jahren sinken die Emissionen bis 2028 auf weniger als 50 t CO\textsubscript{2}e ab, welche im Zusammenhang mit dem genutzten Biomethan stehen und langfristig noch anfallen werden (Abb. 16). Durch den Einsatz von Biomethan und die Absenkung der Wärmenetztemperatur in Garching sinken die Emissionen schon um über 32.000 t CO\textsubscript{2}e ab. Weiterhin führt die Nutzung von bilanziell treibhausgasneutraler Fernwärme in Straubing, Weihenstephan und den Außenstellen zu relevanten Emissionsreduktionen. Während die Emissionen in diesem Szenario bis 2025 aufgrund des Wachstums der Universität noch um knapp 6 % steigen, sinken die Emissionen in den drei darauffolgenden Jahren um über 99 %.

Kostenabschätzung zu Szenario 3

Die gesamten Nominalinvestitionen (ohne Effizienzmaßnahmen) in Szenario 3 belaufen sich auf ca. 19 Millionen Euro. Allein die Elektrifizierung des Fuhrparks benötigt ca. 16 Millionen Euro aufgeteilt auf vier Jahre. Daneben fallen hohe Einzelinvestitionen für die Absenkung der

Abb. 17: Verlauf der jährlichen Nominalinvestitionen Szenario 3

Im Szenario 3 verändert sich die Zusammensetzung der laufenden Kosten entsprechend den balanzierten Maßnahmen lediglich in den ersten Jahren (Abb. 18). So fallen ab dem Jahr 2028 keine Kosten mehr für fossile Energieträger an. Besonders die Nutzung von kostenintensivem Biomethan steigt die laufenden Kosten im Szenario 3. So weist dieses Szenario zwar insgesamt geringere Investitionskosten als Szenario 2 auf, jedoch sind die laufenden Kosten deutlich höher, sodass Szenario 3 zwar ökologisch vorteilhafter ist, jedoch zu höheren Gesamtkosten für die TUM führt.

Abb. 18: Jährliche Kosten für Energieträger und Emissionszertifikate Szenario 3
3.4 Szenarioanalyse in Scope 3

Beschreibung der Szenarien

Ein Großteil der Kategorien in Scope 3 können von Organisationen nur bedingt beeinflusst werden. Daher wären Szenarien, welche eine vollständige Treibhausgasneutralität in allen drei Scopes erzwingen, wenig realistisch. Um realistische Szenarien für die TUM zu erstellen, wurde ausgehend von den oben beschriebenen Szenarien 1-3 jeweils ein passives und ein aktives Scope 3 Szenario generiert.

Trotz fehlender Datenlage der Startbilanz in Bezug auf Scope 3 Emissionen (siehe Kapitel 2) wurde in dieser Studie versucht die Scope 3 Emissionen der TUM basierend auf übergeordneten Annahmen und Studienwerten abzuschätzen (Belz et al., 2020). Die Emissionen, die aus dem Pendeln der Hochschulangehörigen resultieren, wurden deshalb basierend auf Mittelwerten hochgerechnet. Im Folgenden ist diese Berechnung dargestellt.

\[
NA_B \cdot EF_B + NA_U \cdot EF_U + NA_A \cdot EF_A + NA_{FR} \cdot EF_{FR} + NA_F \cdot EF_F = EF_D \quad (1)
\]

\[
W_{D,M} \cdot A_{D,J} \cdot EF_D = E_{D,M} \quad (2)
\]

Der durchschnittliche Pendleremissionsfaktor je Hochschulangehöriger errechnet sich aus der Multiplikation der durchschnittlichen Wegstrecke je Angehöriger \((W_{D,M})\) mit der Anzahl der Arbeitstage im Jahr \((A_{D,J})\) und dem zuvor errechneten durchschnittlichen Emissionsfaktor.

Die Berechnung der Pendleremissionen erfolgt durch die Multiplikation der Anzahl der Hochschulangehörigen mit dem durchschnittlichen Pendleremissionsfaktor.

Die energiebedingten Scope 3 Emissionen können aus den Energieverbräuchen der TUM abgeleitet werden. Alle anderen Emissionskategorien sind ohne ausreichende Datenlage schwierig abschätzbar, da sich hier von Institution zu Institution üblicherweise ein sehr individuelles Bild zeigt.

Die Effekte des aktiven Szenarios wurden in Workshops mit unterschiedlichen Gruppen der Hochschulangehörigen erarbeitet. Dadurch sollen die Maßnahmen, welche auch direkt in das Leben an der Universität eingreifen, möglichst gut von allen Stakeholdern angenommen werden.

Im aktiven Szenario wurden folgende Effekte berücksichtigt: Die Subventionierung von klimaschonenden Reisen, die Anpassung von Dienstreiseregelnungen, die Anpassung von Pendlerregelnungen, das Anreizen einer erhöhten Fahrradnutzung, ein nachhaltiges Beschaffungsweise sowie campusnahe Wohnheime. Die Effekte dieses Szenarios werden also durch die TUM

Neben diesen Maßnahmen wurde auch die Reduktion von Scope 3 Emissionen durch die Reduktion von Warenkäufen sowie die Nutzung von nachhaltigen Rohstoffen im Bauwesen diskutiert. Allerdings sind diese Vorschläge zumindest mittelfristig entweder kaum realistisch oder können mit der aktuellen Datenbasis nicht sinnvoll bilanziert werden.

Übersicht der Scope 3 Szenarien

Die Effekte des passiven und aktiven Scope 3 Szenarios in Verbindung mit den für Scope 1 und 2 entwickelten Szenarien 1-3 zeigen die folgenden Abbildungen: Abb. 19, Abb. 20 und Abb. 21.

Abb. 19: Szenario 1 - passiv (links) und aktiv (rechts)
Im Vergleich der drei Szenarien verändern sich lediglich die energiebedingten Vorkettenemis-
SIONEN. Die Szenarien 2 und 3 weisen mit ca. 89.000 t CO\textsubscript{2}e im Jahr 2045 die geringsten Scope 3 Emissionen aus. Szenario 1 führt im Jahr 2045 zu ca. 93.000 t CO\textsubscript{2}e. Die aktiven Szenarien weisen im Vergleich zu den passiven Szenarien eine Einsparung von ca. 17.000 t CO\textsubscript{2}e im Jahr 2045 aus. Dies lässt sich zum größten Teil auf Einsparungen im Bereich des Pendlerverkehrs zurückführen.

Insgesamt lassen sich also über alle Scopes hinweg in Szenario 2 (aktiv) 77.000 t CO\textsubscript{2}e im Jahr 2045 einsparen. In Szenario 3 (aktiv) können im gleichen Jahr 79.000 t CO\textsubscript{2}e eingespart werden. Im Sinne des Carbon Budget ist jedoch auch wichtig zu erwähnen, dass Szenario 3 schon im Jahr 2028 ca. 53.000 t CO\textsubscript{2}e eingespart werden können, während in Szenario 2 im besten Fall nur eine Emissionsreduktion von ca. 17.000 t CO\textsubscript{2}e möglich ist.
4 Aktivitäten in den Transformationsfeldern

Zielsetzung der TUM

Treibhausgasreduktion um 80 % in Scope 1 und 2 bis 2030

Aufgrund dessen hat sich die TUM entschlossen, das Ziel auf Basis der Ergebnisse aus der Treibhausgasbilanzierung, der Szenarioanalyse und der laufenden Aktivitäten insbesondere am energieintensiven Campus Garching anzupassen und zu präzisieren. Dementsprechend wurde das Ziel der Treibhausgasreduktion von 80 % in Scope 1 und 2 bis 2030 gegenüber dem Basisjahr 2021 durch das Hochschulpräsidium beschlossen.

<table>
<thead>
<tr>
<th>Übergeordnetes Ziel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
</tr>
</tbody>
</table>

4.1 Energieversorgung

Campus München

Campus Garching

Abb. 22: Verteilung und Verbrauch der Endenergie am Campus München 2021
Im Rahmen des Projekts „CleanTechCampus Garching“15 wurden im Zeitraum 2016 bis 2019 in einem BMWi-geförderten Forschungsprojekt umfassende Strategien für eine mögliche zukünftige Energieversorgung des Campus entwickelt. Dabei wurden die Energiebedarfsseite der Gebäude, Energieversorgungsnetze sowie Konzepte zur Energiebereitstellung und Speicherung untersucht, um effiziente, nachhaltige, flexible und wirtschaftliche Versorgungsvarianten für den Campus Garching zu identifizieren. Ein umfassendes Modell untersuchte die Optimierungspotentiale für den Campus im Zeitraum von 2017 bis 2040 unter verschiedenen Randbedingungen wie beispielsweise CO\textsubscript{2}-Emissionsgrenzwerte, verschiedene Bedarfsentwicklungen oder unterschiedlichen Systemtemperaturen (Schweiger et al., 2019). Zentrale Erkenntnisse betreffen die endenergetische, ökonomische und zukünftig weiterwachsende Dominanz des Stromsektors im Gesamtenergiebedarf des Campus, das erhebliche Einsparpotential im Bereich Wärme und Kälte durch effiziente Planung von Neubauten und Sanierungen sowie die Nutzung bisher ungenutzter Abwärme- und Niedertemperaturquellen insbesondere für den Campus West16. Für die Identifizierung und Umsetzung von Optimierungspotenzialen wurde die Implementierung eines Energiemanagementsystems (EMS) empfohlen.

Aufgrund der für die Umstellung der Energieversorgung am Campus Garching in Eigenregie fehlenden finanziellen Mittel, hat sich die Zentrale Verwaltung für Immobilien (ZA4) im Sommer 2023 für die Ausschreibung einer Contracting-Maßnahme \textit{Energieversorgung Wärme und Strom} am Forschungscampus Garching entschieden. Dabei soll in Zukunft die Energieversorgung, Wärmeerzeugung, Wärmeübertragung und Übergabe sowie Stromerzeugung oder Lieferung im Umfang der bisherigen Stromeigenerzeugung über einen Contractor erfolgen. Die geplante Erstvertragslaufzeit liegt bei 20 Jahren. Im Fokus der Ausschreibung stehen dabei regional verfügbare, treibhausgasneutrale Primärenergien in der Erzeugung und/oder Lieferung sowie eine Verbrauchsminderung durch die Ertüchtigung des Verteilnetzes und der Übergabestationen. Die Energieeffizienz der versorgten Liegenschaften soll aber parallel weiterhin von der TUM sukzessive optimiert werden. Im Umfeld des Campus stehen künftig als regional

15 https://www.epe.ed.tum.de/ens/research/projects/finished-projects/ctc/

16 Erweiterungsbereich des Campus entlang der Freisinger Landstraße, wird aktuell durch TUM wie auch „Industry on Campus“ Partner bebaut.

Klimaschutzkonzept | 61
verfügbare Primärenergien Geothermie und ggf. Altholz zur Verfügung. Für die Stromversorgung besteht auch Potenzial für größere PV-Flächen und einen Windpark. Ebenso erzeugt das vom Freistaat Bayern getragene LRZ bereits heute Abwärme, die in einem bestimmten Umfang zukünftig in die Wärmeversorgung des Campus integriert werden soll.

Campus Weihenstephan

Abb. 24: Verteilung und Verbrauch der Endenergie am Campus Weihenstephan 2021

Campus Straubing

Die räumliche Verteilung der Gebäude des Campus Straubing (Abb. 6) bedingt die heterogene Wärmeversorgung. Die Wärmeversorgung für die Gebäude entlang der Schulgasse (SG16, SG20, SG22, SG22a und PG18) ist dabei durch ein komplexes Zusammenspiel verschiedener Wärmenetze bedingt.

Die WärmeverSORGung der SG22a, sowie die Kühlung der Labore erfolgt normalerweise über zwei Luftwärmepumpen mit je 129,2 kW Leistung. Bis April 2022 konnten die Wärmepumpen aufgrund einer Störung jedoch nicht in Betrieb genommen werden, weshalb die Notversorgung über die oben beschriebene kommunale Wärmeinsel und eine externe Kühlanlage erfolgte.

In der PG5, einem sanierten Altbau, wurde eine Sole-Wasser-Wärmepumpe mit Fußbodenheizung in Kombination mit einer Innendämmung realisiert. Im Sommer kann über einen zusätzlichen Wärmetauscher als Bypass um die Wärmepumpe herum mit der Sole direkt die Fußbodenheizung und damit das Gebäude passiv gekühlt werden. Diese Art der erneuerbaren Energieversorgung ist zukunftsweisend, da mit einer WärmeverSORGung auch gleichzeitig eine Kühlung für Zeiten mit hoher Außentemperatur zur Verfügung steht, die keiner aktiven Kühlung mit Klimageräten bedarf. Es laufen lediglich die Umwälzpumpen und mit ca. 200 – 300 W kann somit das ganze Gebäude mit ca. 1.650 m² Fläche gekühlt werden. Außerdem zeigt das Gebäude auf, dass auch Altbauten mit den eingesetzten regenerativen Technologien ausgestattet werden können und dient daher als Mustersanierung.

Die angemieteten Räumlichkeiten in den Gebäuden RB1 und EB3 werden mittels Gasthermen beheizt, die nicht im Einfluss des TUMCS stehen.

Tab. 27: Außenstellen mit Energieträgerstruktur

<table>
<thead>
<tr>
<th>Außenstellen</th>
<th>Stromversorgung</th>
<th>Wärmeversorgung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berchtesgaden</td>
<td>PV</td>
<td>Photovoltaik, Solarthermie, Rapsöl</td>
</tr>
<tr>
<td>Campus im Olympiapark</td>
<td>Ökostrom</td>
<td>Fernwärme (konventionell)</td>
</tr>
<tr>
<td>Campus Ottobrunn</td>
<td>Ökostrom</td>
<td>keine Daten</td>
</tr>
<tr>
<td>Dachau</td>
<td>Ökostrom</td>
<td>keine Daten</td>
</tr>
<tr>
<td>Eichenau</td>
<td>Ökostrom</td>
<td>Erdgas</td>
</tr>
<tr>
<td>Forschungsstation Viehhausen</td>
<td>Nicht verfügbar</td>
<td>keine Daten</td>
</tr>
<tr>
<td>Freising-Achering</td>
<td>Ökostrom</td>
<td>keine Daten</td>
</tr>
<tr>
<td>Garching Sonst.</td>
<td>Nicht verfügbar</td>
<td>keine Daten</td>
</tr>
<tr>
<td>Garmisch-Partenkirchen</td>
<td>Ökostrom</td>
<td>Erdgas</td>
</tr>
<tr>
<td>Iffeldorf</td>
<td>Ökostrom</td>
<td>Erdgas</td>
</tr>
<tr>
<td>Kapuzinerhölzl</td>
<td>Ökostrom</td>
<td>Erdgas</td>
</tr>
<tr>
<td>München Sonst.</td>
<td>Ökostrom</td>
<td>keine Daten, Fernwärme (Biogas)</td>
</tr>
<tr>
<td>Obernach</td>
<td>Ökostrom</td>
<td>Heizöl, Biomasse</td>
</tr>
<tr>
<td>Außenstellen</td>
<td>Stromversorgung</td>
<td>Wärmeversorgung</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Pasing</td>
<td>Ökostrom</td>
<td>Erdgas, Fernwärme (konventionell)</td>
</tr>
<tr>
<td>Raitenhaslach</td>
<td>Ökostrom</td>
<td>Fernwärme (konventionell)</td>
</tr>
<tr>
<td>Schwabing-West</td>
<td>Ökostrom</td>
<td>keine Daten</td>
</tr>
<tr>
<td>Starnberg</td>
<td>Ökostrom</td>
<td>Erdgas</td>
</tr>
<tr>
<td>Veitshof</td>
<td>Ökostrom</td>
<td>Erdgas</td>
</tr>
<tr>
<td>Versuchsstation Dürnast</td>
<td>Ökostrom</td>
<td>Heizöl</td>
</tr>
<tr>
<td>Versuchsstation Roggenstein</td>
<td>Nicht verfügbar</td>
<td>keine Daten</td>
</tr>
<tr>
<td>Versuchsstation Thalhausen</td>
<td>Ökostrom</td>
<td>keine Daten</td>
</tr>
</tbody>
</table>

![Diagramm der Energieverbrauch in Prozent]

Abb. 26: Verteilung und Verbrauch der Endenergie an den Außenstellen 2021

Potentiale und Projekte

Ein bedeutendes Vorhaben betrifft die Umstellung der Wärme- und Stromversorgung am Campus Garching. Fast 80 % der THG-Emissionen der gesamten TUM in Scope 1 und 2 gehen auf die Energieversorgung am Campus Garching zurück. Es soll perspektivisch das mit fossilen Brennstoffen befeuerte Heizkraftwerk durch regenerative Energieträger ersetzt werden. Dabei können potenziell insgesamt 30.000 t CO₂e pro Jahr in Scope 1 eingespart werden. Zentral sind dabei die Ergebnisse der am Standort laufenden Energie-Contracting-Ausschreibung. Auch am Campus München soll die Substitution der restlichen fossilen Brennstoffe (Erdgas) durch regenerative Energieträger vorangetrieben werden. Dies schließt die Erkundung verschiedener Optionen zur Nutzung erneuerbarer Energiequellen für die Energieversorgung ein. Am Campus Weihenstephan sollen die technischen Möglichkeiten des Anschlusses der noch nicht an das Fernwärmenetz der Stadtwerke Freising angeschlossenen Gebäude geprüft und nach Möglichkeit umgesetzt werden. Ein weiterer Schwerpunkt liegt außerdem auf dem...
Campus Straubing, wo das BHKW an der Uferstraße 53 im Rahmen von Potenzialanalysen durch Studienarbeiten einer Prüfung und Umsetzung zur Substitution von Erdgas durch regenerative Energieträger unterzogen werden soll. In Bezug auf die Außenstellen, die von der TUM selbst betrieben werden, soll die Substitution der heizöl- und erdgasbasierten Wärmeerzeugungsanlagen durch regenerative Energieträger geprüft und nach Möglichkeit umgesetzt werden.

<table>
<thead>
<tr>
<th>Umstellung der Energieversorgung auf regenerative Energiequellen an allen Standorten</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES1a Umstellung der Wärme- und Stromversorgung vom mit fossilen Brennstoffen befeuerten Heizkraftwerk auf regenerative Energieträger am Campus Garching</td>
</tr>
<tr>
<td>ES1b Prüfung und Umsetzung der Substitution des Erdgases als Energieträger auf regenerative Energieträger am Campus München</td>
</tr>
<tr>
<td>ES1c Anschluss weiterer Gebäude am Campus Weihenstephan an das öffentliche Fernwärmenetz im Rahmen der technischen Möglichkeiten sowie Prüfung und Umsetzung der Substitution der heizöl- und erdgasbasierten Wärmeerzeugungsanlagen mit regenerativen Energieträgern</td>
</tr>
<tr>
<td>ES1d Prüfung und ggf. Umsetzung der Substitution von Erdgas als Energieträger mit regenerativen Energieträgern im BHKW der Uferstraße 53 am Campus Straubing</td>
</tr>
<tr>
<td>ES1e Prüfung und Umsetzung der Umstellung und ggf. des Austauschs der heizöl- und erdgasbasierten Wärmeerzeugungsanlagen zugunsten regenerativer Energieträger an den durch die TUM selbst betriebenen Außenstellen</td>
</tr>
</tbody>
</table>

Zusätzlich unterstützt die TUM die mögliche Gründung einer Energiegenossenschaft, um die Gemeinschaftsbeteiligung an nachhaltigen Energieprojekten zu fördern. Dies ermöglicht nicht nur eine breite Beteiligung der Universitätsangehörigen an der Energiewende, sondern stärkt auch den Fokus auf erneuerbare Energien in der gesamten Universitätsgemeinschaft.

<table>
<thead>
<tr>
<th>Umstellung der Stromversorgung auf regenerative Energiequellen und Erhöhung des Eigenanteils zur Stromerzeugung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES2a Belegung aller TUM-Dächer mit Photovoltaik Anlagen im Rahmen der technischen und rechtlichen Möglichkeiten</td>
</tr>
<tr>
<td>ES2b Unterstützung einer TUM-Energiegenossenschaft</td>
</tr>
</tbody>
</table>

4.2 Energieverbrauch

Für eine umfassende Analyse des Energieverbrauchs der TUM im Hinblick auf mögliche Energieeffizienzpotenziale der Liegenschaften ist die Betrachtung der Gebäudehülle, Gebäudetechnik sowie des Nutzerverhaltens unerlässlich. Dabei stellt ein ganzheitliches und objektscharfes Energiemonitoring eine wesentliche Voraussetzung dar.
Die Liegenschaften der TUM verteilen sich über vier Campus Standorte sowie über eine Vielzahl an Außenstellen in ganz Bayern. Der TUM ist ein heterogener Gebäudebestand von insgesamt 450 Gebäuden mit einer Nettoraumfläche (NRF) von 811.241 m² zugeordnet. Davon sind 721.642 m² landeseigene Fläche und 89.600 m² angemietete Flächen (inkl. Flächen mit Nutzungsrecht; Stand Frühjahr 2023). Wie zu Beginn erläutert ist ein Teil dieser Fläche für das Klimaschutzkonzept der TUM und insbesondere die THG-Bilanzierung nicht relevant, da diese wie beispielsweise das Universitätsklinikum rechtlich eigenständige Einheiten bilden (Systemgrenze der Technischen Universität München). Bezogen auf die Nettoraumfläche liegen jedoch etwa 92 % der verwalteten Gesamtfläche bzw. 378 Gebäude innerhalb der Systemgrenzen des Klimaschutzkonzepts der TUM.

Abb. 27: Verteilung der Baualtersklassen des Gebäudebestands der TUM

In Bezug auf die Gebäudetechnik zeigt sich, dass die aktuelle Belüftungs- und Heizungstechnik in einem Großteil der Räume der TUM nicht ausreichend an die jeweiligen Bedürfnisse der Nutzerinnen und Nutzer angepasst ist und flexibel auf die tagesaktuellen Witterungsbedingungen reagieren kann. Im Großteil der TUM-Gebäude erfolgt die Beleuchtung in den Büros mittels herkömmlicher Leuchtstoffröhren, und es liegt keine Bestandsaufnahme von bereits verbauten LED-Leuchtmitteln vor. Bisher ist nicht bekannt, zu welchen Anteilen die Beleuchtungssteuerung in den Fluren und Gängen an der TUM automatisch oder halbautomatisch betrieben wird.

Potentiale und Projekte

Optimierung der Gebäudetechnik zur Steigerung der Energieeffizienz

<table>
<thead>
<tr>
<th>ED1a</th>
<th>Evaluation und Konzeption zur Reduktion der Vor- und Rücklauftemperaturen im internen Wärmenetz am Campus Weißenstephan für die Auslegung des öffentlichen Fernwärmenetzes auf erneuerbare Energien</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED1b</td>
<td>Ersatz des Teilbereichs Dampfheizung im Wärmenetz am Campus München</td>
</tr>
<tr>
<td>ED1c</td>
<td>Evaluation und Konzeption zur Reduktion der Vor- und Rücklauftemperaturen im internen Wärmenetz des Campus Garching</td>
</tr>
<tr>
<td>ED1d</td>
<td>Evaluation und Konzeption für die sukzessive Sanierung und Nachrüstung der Belüftungs- und Heizungstechnik an allen Standorten</td>
</tr>
<tr>
<td>ED1e</td>
<td>Prüfung und ggf. Einführung einer bedarfsgerechten und witterungsgeführten Steuerung der Belüftungs- und Heizungstechnik in den Gebäuden aller Standorte</td>
</tr>
<tr>
<td>ED1f</td>
<td>Evaluation und Konzeption für sukzessiven Austausch alter Leuchtmittel für Innen- und Außenbeleuchtung</td>
</tr>
<tr>
<td>ED1g</td>
<td>Identifikation der Potenziale zur bedarfsgerechten Regelungs- und Steuerungstechnik der Beleuchtung der Sanitäreinrichtungen und Verkehrsläufe</td>
</tr>
<tr>
<td>ED1h</td>
<td>Integration von Nachhaltigkeits- und Klimaschutzstandards in den Standardkatalog der TUM</td>
</tr>
</tbody>
</table>

Sanierung der Gebäudehülle zur Steigerung der Energieeffizienz

<table>
<thead>
<tr>
<th>ED2a</th>
<th>Energetische Bewertung der Liegenschaften und Erstellung eines Gebäudekatasters zur Identifizierung einer Sanierungsreihenfolge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED2b</td>
<td>Gebäudesanierung mit nachhaltigen Methoden und Baustoffen nach identifizierter Sanierungsreihenfolge</td>
</tr>
<tr>
<td>ED2c</td>
<td>Regelmäßiges Update der energetischen Bewertung der Liegenschaften (Monitoring des Sanierungsbedarfs)</td>
</tr>
</tbody>
</table>

Bei der Vergabe von Bauvorhaben sollen perspektivisch die Gesamtkosten über den Lebenszyklus betrachtet werden. Damit sollen laufende Betriebskosten der Gebäude in die Entscheidungsfindung mit einfließen, um die Kosten- und Energieeinsparung während der Gebäude- nutzung berücksichtigen zu können.

Lebenszyklusbasierte Kostenermittlung als Grundlage der Vergabe von Bauvorhaben

| ED3a | Enge Kooperation mit den relevanten staatlichen Stellen zur Einführung einer lebenszyklusbasierten Kostenermittlung für Vergaben im Hochschulbau und Integration als Entscheidungsgrundlage bei der Vergabe von Bau- und Sanierungsvorhaben |

70 | Technische Universität München
Energiemonitoring

Seit 2017 erstellt die ZA4, Zentrale Technik jährliche Energiemonitoringberichte für den Campus München, Weihenstephan und die meisten Außenstellen. Diese Berichte fassen die jährlichen Wärme- und Stromverbräuche so weit wie messtechnisch möglich objektscharf zusammen und bilden eine der wichtigsten Datengrundlagen für die THG-Bilanzierung (siehe Datenerfassung). Allerdings liegt für den größten und energieintensivsten Campus Garching bisher kein objektscharfes jährliches Energiemonitoring in dieser Form vor.

Die Energieversorgung am Forschungscampus Garching wird derzeit in Eigenregie über den Betrieb eines eigenen Heizkraftwerks bewerkstelligt. In zahlreichen Gebäuden in Garching werden die Energieverbräuche, insbesondere die Wärmeverbrauchswerte, nicht objektscharf pro Einheit erfasst, sondern über vereinzelte gemeinsame Messstellen oder die Wärmeübergabestation des Heizkraftwerks gemessen. Die stromseitige Messinfrastruktur am Campus Garching ist im Vergleich zur Wärme bereits in einem deutlich höheren Detailgrad vorhanden und wird dem Klimaschutzmanagement zur Verfügung gestellt.

Aufgrund der unvollständigen der Messinfrastruktur, insbesondere am Campus Garching, und der softwareseitigen Unterstützung für ein ganzheitliches Energiemonitoring, ist weder eine objektscharfe Zuteilung der Energieverbräuche noch die Bildung aussagekräftiger Kennzahlen wie dem spezifischen Wärmeverbrauch pro Quadratmeter Nettoraumfläche der Gebäude für den Vergleich oder die Fortschrittskontrolle möglich.

Potentiale und Projekte

Die Implementierung eines umfassenden Energiemonitoringsystems für alle Campusstandorte ermöglicht eine gezielte Optimierung des Energieverbrauchs und Nutzung von Energieeffizienzpottentialen durch objektscharfe Erfassung des Strom-, Wärme- und Kälteverbrauchs.

Einführung eines kontinuierlichen und umfassenden Energie Monitorings zur Optimiierung und bedarfsgerechten Steuerung der Gebäudetechnik an allen Campus Standorten

ED4a	Implementierung eines Energiemanagements mit adäquater personeller Ausstattung
ED4b	Ausbau der vorhandenen Messinfrastruktur für eine digitale und umfassende Erfassung des Energiebedarfs der Gebäude mit Energie-Dashboard
ED4c	Ausstattung eines Pilotgebäudes in Garching mit umfassender Sensorik zur detaillierten Messung und Analyse des Energieverbrauchs inklusive Dashboard
ED4d	Ausstattung des TUM Campus Straubing mit umfassender Sensorik zur detaillierten Messung und Analyse des Energieverbrauchs inklusive Dashboard
Nutzerverhalten

Potentiale und Projekte

Im Bereich der entsprechenden Kommunikationskampagne soll der TUMCS eine zentrale Rolle im Rahmen einer Pilotphase einnehmen. Dabei sollen die ausgearbeiteten Inhalte im kleinen Rahmen mit den Studierenden und Beschäftigten vor Ort getestet werden, bevor ein Rollout an den anderen Standorten erfolgt.

Einbeziehung der Hochschulgemeinschaft zur Reduktion des Energieverbrauchs

<table>
<thead>
<tr>
<th>EDSa</th>
<th>Entwicklung einer umfangreichen Kommunikationskampagne zu Energieeinsparmaßnahmen mit den Zielgruppen Studierende und Beschäftigte</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDSb</td>
<td>Evaluation und ggf. sukzessive Einführung einer internen Leistungsverrechnung des Energieverbrauchs zur Sensibilisierung der Entscheidungsträgerinnen und Entscheidungsträger und Beschäftigten</td>
</tr>
</tbody>
</table>

Finanzierung

Potentiale und Projekte

| Finanzierung von Klimaschutzprojekten aus den Einsparungen aus durchgeführten Projekten |
|----------------------------------|--|
| ED6a | Prüfung von Intracting als Möglichkeit der internen Refinanzierung von Klimaschutzprojekten |

TUM Campus Straubing

4.3 Mobilität

Innerhalb des Transformationsfelds Mobilität liegen die Schwerpunkte auf Dienstreisen, Alltagsmobilität und den Studierenden, die die TUM für einen Auslandsaufenthalt temporär verlassen („Student Outgoing“). Die Quantifizierung der Einsparpotentiale innerhalb dieses Transformationsfeld ist aufgrund der unzureichenden Datengrundlage insbesondere innerhalb der Alltagsmobilität, der bedingt durch die Corona-Effekte noch begrenzten Aussagekraft der Dienstreiseemissionen sowie Student Outgoing Emissionen sowie den Unsicherheiten aus den getroffenen übergeordneten Annahmen (siehe Kapitel 3.4) nur schwer abzuschätzen. Daher wird innerhalb dieses Kapitels davon abgesehen die Potenziale mit quantitativen Emis-
sionseinsparungen zu beziffern und es wird sich auf eine qualitative Beschreibung der Potentialien beschränkt. Mit der Wirksamkeitskontrolle der Projekte können konkreten Einsparungen im Nachgäng zur Umsetzung quantifiziert werden so bald verlässliche Basisdaten für ein Referenzjahr (voraussichtl. 2023) vorliegen.

Dienstreisen & Fuhrpark

![Diagramm THG-Emissionen aus Dienstreisen 2021 und 2022](image)

Abb. 30: THG-Emissionen aus Dienstreisen 2021 und 2022

Der größte Anstieg ist dabei im Bereich der Flugreisen (Mittelstrecke) zu verzeichnen (Tab. 28). Eine weiter steigende Tendenz wird für das Jahr 2023 erwartet.

Tab. 28: Fluganzahl und -strecke 2021 und 2022

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Fluganzahl 2021</th>
<th>Flugstrecke 2021 [km]</th>
<th>Fluganzahl 2022</th>
<th>Flugstrecke 2022 [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bis 1.000 km</td>
<td>769</td>
<td>469.903</td>
<td>2.976</td>
<td>1.926.576</td>
</tr>
<tr>
<td>1.000 km – 10.000 km</td>
<td>594</td>
<td>2.163.665</td>
<td>3.986</td>
<td>16.363.559</td>
</tr>
<tr>
<td>Über 10.000 km</td>
<td>10</td>
<td>105.016</td>
<td>160</td>
<td>1.807.077</td>
</tr>
<tr>
<td>Gesamt</td>
<td>1.373</td>
<td>2.738.584</td>
<td>7.122</td>
<td>20.097.212</td>
</tr>
</tbody>
</table>
Die Grundlage für alle dienstlichen Reisen ist das Bayerische Reisekostengesetz (BayRKG) sowie für Auslandsdienstreisen auch die Bayerische Auslandsreiseverordnung (BayARV) und weitere zu beachtende rechtliche Bestimmungen.

Flugreisen sind aufgrund der Bayerischen Klimaschutzoffensive möglichst zu vermeiden und es ist bevorzugt auf andere, umweltverträglichere Verkehrsmittel auszuweichen. Entsprechend wurden die VV-BayRKG bereits dahingehend angepasst, dass bahnnutzungsbedingte Mehrkosten auch dann als Reisekosten ersetzt werden können, wenn bei einer alternativen Flugnutzung niedrigere Kosten anfallen würden (vgl. 3.2.1 VV-BayRKG). Daneben sind auch gegebenenfalls höhere Tagegelder und Übernachtungskosten erstattungsfähig. Bei der Wahl des Verkehrsmittels sollen die dienstlichen Erfordernisse, die fürsorgerechtlichen Aspekte, die Kosten sowie die Umweltauswirkungen im Einzelfall berücksichtigt werden. Flugreisen, sowie Dienstreisen mit dem eigenen PKW müssen außerdem immer gesondert begründet werden. Letztere sind darüber hinaus nur unter bestimmten Umständen vollständig Erstattungsfähig.

Potentiale und Projekte

Trotz dieser bestehenden Bestimmungen werden die THG-Emissionen bei der Wahl des Verkehrsmittels für die Dienstreise zumeist noch nicht berücksichtigt. Insbesondere für Kurzstrecken besteht die Möglichkeit mit hinreichender Begründung z. B. einen Flug der Bahn vorzuziehen. Es gilt, die Emissionen systematisch zu reduzieren und der Bereitschaft zur Nutzung von Alternativen zu Flugreisen entgegenzukommen. Dazu gehört als Grundlage die Entwicklung einer TUM Travel Policy (Dienstreiserichtlinie) um innerdeutsche Flugreisen sowie innereuropäische Flugreisen unter einer zu definierenden Grenze (Reisestrecke und Reisedauer) auf ein Minimum zu reduzieren und nur in begründeten Ausnahmefällen genehmigt zu bekommen.

Die Thinking Green-Initiative des TUM Global & Alumni Office zeigt derzeit beispielhaft Reisen von Studierenden, die sich intensive Gedanken zu umweltfreundlichem Reisen im Rahmen ihrer Auslandsaufenthalte gemacht haben. Es gilt die TUM-Community weiter für klimafreundliche Dienstreisen zu sensibilisieren und konkrete Maßnahmen zur Reduzierung der Klima- auswirkungen zu fördern und kommunizieren. Dafür sollen Entscheidungshilfen für die Wahl

17 https://www.gesetze-bayern.de/Content/Document/BayVV_6320_F_13759
des Verkehrsmittels und eine Travel Policy entwickelt werden. Die Thinking Green-Initiative soll dabei von den studentischen Auslandsreisen auch auf Dienstreisen der Beschäftigten ausgeweitet und ergänzt werden.

<table>
<thead>
<tr>
<th>Signifikante Reduzierung der dienstreisebedingten Treibhausgasemissionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1a</td>
</tr>
<tr>
<td>M1b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signifikante Reduzierung der Treibhausgasemissionen des TUM-Fuhrparks</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2a</td>
</tr>
<tr>
<td>M2b</td>
</tr>
</tbody>
</table>

Alltagsmobilität

An der Umfrage nahmen etwa 10 % aller TUM-Angehörigen teil. Die hochgerechneten THG-Emissionen der Alltagsmobilität für alle Beschäftigten und Studierenden an der TUM für das Jahr 2023 betrugen insgesamt 28.967 t CO₂e (Tab. 29).
Tab. 29: THG-Emissionen der Alltagsmobilität im Jahr 2023

<table>
<thead>
<tr>
<th>Standort</th>
<th>THG-Emissionen</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garching</td>
<td>13.508</td>
<td>t CO₂e</td>
</tr>
<tr>
<td>München</td>
<td>9.254</td>
<td>t CO₂e</td>
</tr>
<tr>
<td>Weihenstephan</td>
<td>4.733</td>
<td>t CO₂e</td>
</tr>
<tr>
<td>Straubing</td>
<td>484</td>
<td>t CO₂e</td>
</tr>
<tr>
<td>Außenstellen</td>
<td>989</td>
<td>t CO₂e</td>
</tr>
<tr>
<td>Gesamt</td>
<td>28.967</td>
<td>t CO₂e</td>
</tr>
</tbody>
</table>

Berechnungsgrundlage für die THG-Emissionen und übergeordneter Orientierungsrahmen für die künftige Entwicklung zielgerichteter Maßnahmen ist der Modal Split der Alltagsmobilität der TUM-Angehörigen. Der Modal Split wird einerseits über Anzahl bzw. Anteile der mit unterschiedlichen Verkehrsmitteln zurückgelegten Wege (Abb. 31a und Abb. 32) und andererseits entsprechend der mit den unterschiedlichen Verkehrsmitteln zurückgelegten Distanzen (Abb. 31b und Abb. 33).

Abb. 31: Modal Split nach Wegen und Distanzen; TUM gesamt 2023

18 Der Standort München inkludiert für die Alltagsmobilität alle Standorte innerhalb Münchens und nicht nur das Stammgelände (Campus München). In der Gesamtbilanz werden die Standorte innerhalb Münchens unter den Außenstellen zusammengefasst (siehe S. 20). Eine einheitliche Betrachtung der Bilanzgrenzen soll in Zukunft erfolgen.
Die folgenden ersten Erkenntnisse können (Stand der Analyse 02/2024) abgeleitet werden. Insbesondere eine Analyse nach Personengruppen (z. B. Beschäftigte, Studierende) lässt weiter differenzierte Ergebnisse erwarten.

- Mehr als die Hälfte der TUM-Angehörigen reist mit dem Öffentlichen Verkehr (ÖV) zum Arbeits-/Studienort an und ab. Die damit zurückgelegte Distanz haben einen noch höheren Anteil von etwa 2/3 der Gesamtdistanz, wobei dieser Anteil über die Standorte hinweg ähnlich ist.
- Intermodalität (Park+Ride, Bike+Ride) spielt derzeit nur eine untergeordnete Rolle bzgl. des Anteils der Wege und könnte gewisse Potenziale für eine nachhaltigere Mobilität haben.
- Der Modal Split der unterschiedlichen Standorte spiegelt die jeweilige Verfügbarkeit von Verkehrsmitteln -/ Infrastruktur anschaulich wider.
Potentiale und Projekte

Die Möglichkeit für mehr mobiles Arbeiten ermöglicht es den Beschäftigten Wege zur Arbeit einzusparen, insbesondere wenn diese sehr lang/weit und/oder umständlich sind.

Signifikante Reduzierung der Treibhausgasemissionen der Pendelmobilität

<table>
<thead>
<tr>
<th>M3a</th>
<th>Etablierung eines Mobilitätsmanagements zur Umsetzung zielgerichteter Projekte für eine nachhaltigere Pendelmobilität</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3b</td>
<td>Förderung von flexiblen Arbeitszeitmodellen und mobilem Arbeiten</td>
</tr>
</tbody>
</table>

Steigerung der Fahrradnutzung am Campus zur Reduktion von motorisiertem Verkehr

| M4a | Ausbau der Fahrradabstellanlagen und/oder -parkhäusern und Steigerung der Fahrradfreundlichkeit des Campus |

Student-Outgoing

Abb. 34: THG-Emissionen der Student Outgoing Reisen 2021 und 2022

Potentiale und Projekte

4.4 Ressourcenverbrauch und –effizienz

Auch innerhalb dieses Transformationsfeldes wird von quantitativen Aussagen zu möglichen Einsparpotentialen aufgrund der unzureichenden Datengrundlage und auf Basis von ausschließlich auf Annahmen getroffenen Abschätzungen verbundenen hohen Unsicherheiten, abgesehen. Das Kapitel beschränkt sich auf eine qualitative Beschreibung der Potentiale und geplanten Aktivitäten.

Beschaffung

Die Herausforderung des Beschaffungswesens an der TUM liegt in der dualen Struktur, die eine zentrale und direkt beeinflussbare sowie eine dezentrale und daher nur sehr eingeschränkt steuerbare Beschaffung von Produkten und Dienstleistungen umfasst. Bislang wur-

Potenziale und Projekte

Aufgrund der noch bevorstehenden Umstellung des Beschaffungssystems und bislang unzureichenden Datengrundlage können keine konkreten Einsparpotenziale im Bereich Beschaffung quantifiziert werden.

Die Erarbeitung von Handreichungen und Vorgaben für nachhaltige Beschaffung soll durch das TUM Sustainability Office gemeinsam mit der Zentralen Vergabeberatung der ZA5, Legal Office vorangetrieben werden, mit dem Ziel, diese in die Vergabeberatung zu integrieren. Dies dient dazu, Beschafferinnen und Beschaffer das notwendige Wissen zu vermitteln und Nachhaltigkeitskriterien in die Vergabeprozesse zu integrieren. Parallel dazu wird eine stufenweise Zentralisierung und Digitalisierung geeigneter Beschaffungsprozesse im Zuge der Digitalisierungsstrategie angestrebt, wobei auch hier besonderes Augenmerk auf Nachhaltigkeitskriterien gelegt wird. Die kontinuierliche Erweiterung der in der THG-Bilanz berücksichtigten Waren und Güter (Scope 3) ist dabei ein integraler Bestandteil, um Umweltauswirkungen umfassend zu erfassen.

\(^{19}\) Unter Veranstaltungen sind durch die TUM ausgerichtete Konferenzen, Tagungen, hochschulinterne Feiern und Veranstaltungen wie der TUM Sustainability Day oder Dies Academicus, studentische Großveranstaltungen wie das GARNIX und TUNNIX, etc. zu verstehen.
Abfall

Das Abfallmanagement der TUM zeichnet sich durch ein einheitliches und klar strukturiertes Abfallsammelsystem mit Recyclingstationen aus, das derzeit jedoch ausschließlich außerhalb der Alltagsabfälle standortübergreifend implementiert ist. Dieses System besteht aus Behältern für die Sammlung nicht gefährlicher Abfälle mit farbcodierten Deckeln, deren Gestaltung an allen Standorten der TUM einheitlich ist. Dadurch wird sichergestellt, dass sowohl Beschäftigte als auch Studierende an allen Standorten auf die gleichen Gegebenheiten treffen. Die Beschriftung der Behälter wurde im Einklang mit dem Corporate Design der Universität abgestimmt, um eine konsistente visuelle Identität zu gewährleisten.

Potenziale und Projekte

Um eine ganzheitliche und effiziente Abfallbewirtschaftung zu gewährleisten, soll die Implementierung des einheitlichen Abfallsammelsystems auch innerhalb der Gebäude in Betracht geprüft werden. Eine Umsetzung kann dazu beitragen, die Transparenz und Zugänglichkeit für alle Nutzer weiter zu verbessern und eine umfassende Abfalltrennung zu fördern. Es wäre ratsam, die Zusammenarbeit zwischen dem internen Gebäudemanagement, externen Gebäudedienstleistern und anderen relevanten Akteuren (Studierende, Wissenschaftlerinnen und Wissenschaftler) zu stärken, um eine nahtlose Integration und Pflege dieses Systems zu gewährleisten.

Abfallvermeidung und -trennung im Arbeits- und Studienalltag

R2a Umsetzung des vorgesehenen einheitlichen Mülltrenn- und Sammelsystems in den Gebäuden an allen TUM-Standorten mit Mapping der Wertstoffinseln und Kommunikationskampagne

Treibhausgaseinsparungen in der Beschaffung

R1a Erarbeitung von Handreichungen und Vorgaben für nachhaltige Beschaffung und Integration in die Vergabeverfahren

R1b Stufenweise Zentralisierung und Digitalisierung geeigneter Beschaffungsprozesse unter Berücksichtigung von Nachhaltigkeitseinschränkungen und kontinuierliche Erweiterung der in der Treibhausgasbilanz berücksichtigten Waren und Güter (Scope 3)

R1c Modernisierung der Plattform für Tausch vorhandener Ressourcen und Erweiterung um Sharing Funktionen

R1d Entwicklung eines Green Event Guidebooks und Erarbeitung einer Green Event Policy inklusive Monitoring durch ein Ökobilanzierungstool für Veranstaltungen
Arbeitsalltag

Auch die Möglichkeit der Nutzung von flexiblen Arbeitsplätzen an der TUM zur effizienten Nutzung von Flächen und möglichen Energieeinsparung ist derzeit unzureichend erfasst und lediglich vereinzelt umgesetzt.

Potenziale und Projekte

Über die Erarbeitung von Handlungsempfehlungen für den Arbeitsalltag können potenziell Ressourcen und THG-Emissionen durch die Nutzung digitaler Dokumente, Abfallvermeidung, Mülltrennung, Energiebewusstsein und die Reduktion von Neuanschaffungen innerhalb der TUM eingespart werden. Eine umfassende Kommunikationskampagne ist erforderlich, wobei die Green Offices und das Studentische Referat für Umwelt eine Schlüsselrolle spielen können.

Darüber hinaus zielt die Einführung von flexiblen Arbeitsplätzen darauf ab Flächen, Energie und Emissionen (Pendelverkehr, Emissionen aus der Beheizung) einzusparen. Hierbei soll das Potential und die Umsetzbarkeit gemeinsam genutzter Arbeitsplätze (Shared Desktops) geprüft werden. Die technische, organisatorische und soziale Machbarkeit erfordert eine umfassende Analyse und Pilotierung.

Insgesamt bieten die geplanten Maßnahmen die Möglichkeit, Ressourceneffizienz zu steigern, THG-Emissionen zu reduzieren und eine nachhaltige Arbeitsumgebung an der TUM zu schaffen.

Ressourceneffizienter Arbeitsalltag an der TUM

R3a	Erarbeitung von Handlungsempfehlungen für einen ressourceneffizienten Arbeitsalltag
R3b	Förderung von flexiblen Arbeitsplätzen an der TUM zur Reduktion des Platz- und Ressourcenbedarfs
R3c	Pilotprojekt zu Zertifizierungsprogrammen für effizientere und nachhaltigere Labore am TUM Campus Straubing und ggf. sukzessiver Rollout für die ganze TUM

IT-Infrastruktur

Ein Großteil der Verwaltungsprozesse läuft derzeit analog oder nur teildigitalisiert. Mit ihrer Digitalisierungsstrategie setzt die TUM im Bereich des Betriebs und der Verwaltung darauf die betrieblichen und administrativen Prozesse der gesamten TUM zu optimieren, und effizient und
umweltfreundlich zu gestalten. Dazu hat sich die TUM entschlossen im Rahmen der übergreifenden IT-Strategie zu einer papierlosen Verwaltung überzugehen. Die Umstellung soll Arbeitsabläufe vereinfachen, Fehler reduzieren und zu einem nachhaltigen und umweltbewussten Campus beitragen.21

Potenziale und Projekte

Insbesondere durch die Einführung eines neuen SAP-Systems soll eine großflächige Digitalisierung von Verwaltungsprozessen erfolgen, die bisher noch nicht oder nur teilweise digital abgewickelt werden. Das neue System soll einerseits Ressourcen bündeln und einsparen und andererseits die Möglichkeit bieten, individuell und flexibel Kennzahlen aus den hinterlegten Daten auszugeben. Viele Verwaltungsprozesse können dadurch zentralisiert werden und bieten die Grundlage für die Möglichkeit der Auswertung der Daten unter anderem auch für die jährliche THG-Bilanz der TUM. Das neue System bietet ein großes Potenzial der Effizienzsteigerung für den Verwaltungsapparat der TUM.

Durch die Zentralisierung der Rechenkapazitäten im Bereich des Hochleistungsrechnens (HPC) am LRZ soll die Auslastung dieser Kapazitäten deutlich gesteigert werden und allen Forschenden an der TUM zur Verfügung stehen. Eine höhere Auslastung führt zu einer effizienteren Nutzung der vorhandenen und neuen Ressourcen, was den Bedarf für den Erwerb zusätzlicher HPCs reduziert.

Die Zentralisierung bietet zudem ein verbessertes Potenzial für die Nutzung von Abwärme, die zwangsläufig bei intensiven Rechenprozessen entsteht. Die wasserbasierte Kühlung am LRZ soll in das Energiekonzept für den Campus Garching integriert werden und die Wärme somit nutzbar gemacht werden. Im Gegensatz dazu werden derzeit viele dezentrale Anlagen individuell mit Klimageräten gekühlt, wodurch die anfallende Wärme nicht genutzt wird und zusätzlicher Energieaufwand betrieben wird, um den Betrieb zu gewährleisten.

21 https://www.digitalisierung.tum.de/betrieb-und-verwaltung/
Klimaschutz und Nachhaltigkeit in der IT

<table>
<thead>
<tr>
<th>R4a</th>
<th>Digitalisierung zur Effizienzsteigerung in Verwaltungsprozessen</th>
</tr>
</thead>
<tbody>
<tr>
<td>R4b</td>
<td>Zentralisierung von High-Performance-Computing zur Effizienzsteigerung</td>
</tr>
<tr>
<td>R4c</td>
<td>Identifikation von Maßnahmen zur Abwärmenutzung an allen Standorten</td>
</tr>
</tbody>
</table>

TUM Campus Straubing

Im Transformationsfeld Ressourcenverbrauch und -effizienz möchte der TUMCS im Bereich der Beschaffung der erste TUM-Campus werden, der alle seine Veranstaltungen mit einem noch zu erarbeitenden Ökobilanzierungstool bilanziert. In der Ausarbeitsphase soll er dabei die Rolle des Pilotcampus einnehmen und das Tool gemeinsam mit dem TUM Sustainability Office weiterentwickeln, sodass es an allen Standorten für die Bilanzierung von Veranstaltungen eingesetzt werden kann.

Da ca. 54 % der Fläche an der TUM auf die Forschung entfallen (Abb. 28), kommt diesen Flächen, insbesondere in Form von Laboren, eine besondere Bedeutung beim Ausstoß von THG-Emissionen zu. Das zeigte auch die Auswertung der Energieverbrauchsdaten und THG-Emissionen der Gebäude des TUMCS (S. 73). Die Laborgebäude weisen die höchsten absoluten und spezifischen Energieverbräuche und THG-Emission auf.

Da bislang jedoch noch nicht bekannt ist, was in den Laboren den größten Energieverbrauch und die höchsten THG-Emissionen verursacht und dort auch noch keine Prozesse und Güter erfasst werden, soll Projekt R3c am TUMCS noch während dem Erstvorhaben des Klimaschutzmanagements initiiert werden. Mit dem Projekt werden verschiedene Zertifizierungsprogramme für nachhaltigere und ressourceneffizientere Labore am TUMCS getestet. Dadurch soll einerseits die Datenverfügbarkeit im Bereich der Labore verbessert werden, anderseits sollen die Beschäftigten in den Laboren für Energieeinspar- und Effizienzmaßnahmen sensibilisiert werden. Nach der Pilotphase am TUMCS und der Evaluation der Programme sollen fortschreitend weitere Labore an anderen TUM-Standorten an den Programmen teilnehmen. Ebenfalls besteht bereits die Idee, die gewonnen Erkenntnisse aus den Forschungslaboren auf die Ausbildungslabore und die dort stattfindende Ausbildung der Studierenden zu übertragen, damit die zukünftigen Fachkräfte ihr erworbenes Wissen zu mehr Nachhaltigkeit und Ressourcenschutz weitertragen können.

Der TUMCS ist für das Pilotprojekt ein geeigneter Standort, da eine hohe Motivation der Beschäftigten zum Thema Nachhaltigkeit vorliegt und außerdem Kernelement aller Forschungsaktivitäten ist (S. 91). Darüber hinaus stehen unterschiedliche Arten von Laboren (biologisch, technisch, chemisch) zur Verfügung, auf die die Zertifizierungsprogramme angewandt werden können.

4.5 Anpassung an den Klimawandel

Angesichts der drastischen Veränderungen des Klimas steht auch die TUM vor der Herausforderung, nachhaltige Lösungen zu entwickeln, um auf veränderte klimatische Bedingungen zu reagieren. Die innerhalb des Transformationsfelds erarbeiteten Projekte reflektieren das...
Engagement der TUM, ihren Campusbetrieb in Zukunft resilienter und umweltfreundlicher zu gestalten. Da diese Projekte weniger auf konkrete Einsparungen von THG-Emissionen sondern auf Lösungen auf sich verändernde klimatische Bedingungen abzielt steht die Identifizierung von Einsparpotentialen innerhalb dieses Kapitels nicht im Vordergrund.

Naturnaher Wasserhaushalt

Die Prüfung des Einsatzes als Brauchwasser ist insbesondere für Neubauten sinnvoll, da eine Nachrüstung in Bestandgebäuden durch ein zusätzliches Leitungssystem mit hohem Aufwand verbunden ist.

<table>
<thead>
<tr>
<th>Entwicklung der TUM Campus im Sinne einer wassersensiblen Stadtentwicklung und eines naturnahen Wasserhaushalts</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1a</td>
</tr>
<tr>
<td>A1b</td>
</tr>
</tbody>
</table>

Verändernde klimatische Gegebenheiten

Bei der Planung und dem Bau neuer Gebäude, sowie der Sanierung von Bestandsgebäuden sollten Maßnahmen, die zum sommerlichen Wärmeschutz beitragen verpflichtend mitbedacht werden und fester Bestandteil von Architektenwettbewerben und Bauausschreibungen sein.

<table>
<thead>
<tr>
<th>Anpassung an sich verändernde klimatische Gegebenheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2a</td>
</tr>
<tr>
<td>A2c</td>
</tr>
</tbody>
</table>

22 Derzeit erfolgt keine Bewässerung der Außenanlagen in relevanter Größenordnung. Inwiefern im Zuge des Klimawandels ggf. künftig Bewässerung notwendig sein könnte ist offen.

Zum Einsatz kommen bisher Heiz-Kühldecken, eine passive Kühlung über die Fußbodenheizung und ferner intelligente Verschattungen an der Fassade (S. 73). Gerade die passive Kühlung über die Fußbodenheizung der PG5 und die Heiz-Kühldecken in der US53 haben sich im Betrieb als sehr erfolgreich erwiesen, da mit nur sehr geringem Investitions- und Betriebsaufwand ein deutlicher Kühleffekt erzielt werden kann. Die angewandten Technologien stellen eine vielversprechende Möglichkeit der Anpassung an die steigenden sommerlichen Temperaturen dar und machen den TUMCS in diesem Bereich zu einem Vorbild für weitere Bauvorhaben an der TUM.

Neben Neubauten und Sanierungen werden auch Bestandsgebäude am TUMCS beim sommerlichen Wärmeschutz mitbedacht. So sollen bspw. nachträglich Beschattungen und eine automatische Nachtlüftung in der SG16 installiert werden, um die hohen sommerlichen Temperaturen in dem Gebäude zu reduzieren.

Die erfolgreiche Integration von sommerlichen Wärmeschutzmaßnahmen in Sanierungen, Bestandsgebäuden und Neubauten am TUMCS und die gesammelten Erfahrungen können im Besten Fall auf andere Gebäude der TUM übertragen werden.

4.6 Forschung, Lehre & Bildung und Entrepreneurship

Forschung, Lehre & Bildung

Die Forschungsaktivitäten an der TUM werden durch den Research Code of Conduct geleitet, der als ethischer Leitfaden und verbindliche Richtlinie für alle Forschenden dient. Dieser zielt darauf ab, sicherzustellen, dass Forschungstätigkeiten höchsten wissenschaftlichen, ethischen und gesellschaftlichen Standards entsprechen. Die Integration von Klimaschutz und

Des Weiteren wird erkannt, dass die bestehende Lehrverfassung der TUM als Grundlage für eine exzellente akademische Ausbildung dient, jedoch in ihrer aktuellen Form noch Potenzial für eine explizite Integration von Nachhaltigkeit und Klimaschutz bietet. Die Integration dieser Themen in die Lehrverfassung soll verschriftlichen, dass sie nicht nur temporäre Ergänzungen sind, sondern dauerhaft in den Strukturen der Universität verankert werden. Das Ziel besteht darin, allen Studierenden die Möglichkeit zu geben, während ihres Studiums Kompetenzen im Bereich Nachhaltigkeit zu erwerben und die TUM als Vorreiterin in nachhaltiger Bildung zu positionieren.

Die verstärkte Integration von Klimaschutz und Nachhaltigkeit wird auch in der universitären Profilbildung betont, insbesondere durch die Berufungen neuer Professorinnen und Professoren. Daher soll eine umfassende Strategie zur Integration der Themen Nachhaltigkeit und Klimaschutz in die Berufungspolitik entwickelt und umgesetzt werden.

Etablierung von Klimaschutz und Nachhaltigkeit als feste Bestandteile der Forschung und Lehre an der TUM

FLE1a	Umfassende Integration der Themen Klimaschutz und Ressourcennutzung in den Research Code of Conduct der TUM
FLE1b	Integration der Themen Nachhaltigkeit und Klimaschutz in die Lehrverfassung der TUM
FLE1c	Integration der Themen Nachhaltigkeit und Klimaschutz in die Berufungspolitik

Im Bereich der Weiterbildung setzt das TUM Institute for LifeLong Learning (TUM IL³) aktiv auf die Integration von Nachhaltigkeitsaspekten in Weiterbildungs- und Austauschformate für interne und externe Zielgruppen. Seit Anfang 2023 werden schrittweise Nachhaltigkeitsaspekte in alle Programme integriert. Es besteht jedoch Bedarf an einem breit einsetzbaren grundlegenden Weiterbildungsformat zum Thema Klimaschutz für alle TUM-Beschäftigten.

Um die TUM-Community aktiv in Klimaschutzmaßnahmen einzubinden, soll ein solches Weiterbildungsangebot entwickelt werden, dass es den Beschäftigten ermöglicht, sich im Bereich Klimaschutz am Arbeitsplatz zu engagieren. Dieses Angebot soll die Sensibilisierung und Qualifizierung fördern, ein Bewusstsein für den individuellen Beitrag zur Reduktion von Energieverbrauch und THG-Emissionen schaffen und praxisnahe Handlungsanleitungen für einen nachhaltigen Arbeitsplatz bieten. Gleichzeitig soll die Einführungsveranstaltung für neuerb ernomene Professorinnen und Professoren "TUM Prelude" um spezifische Elemente zu Nachhaltigkeit und Klimaschutz erweitert werden.

Integration von Klimaschutz in die Weiterbildungsformate der TUM

| FLE2a | Konzeption und Umsetzung eines Weiterbildungsangebots zum Thema „Nachhaltigkeit und Klimaschutz“ für alle TUM-Beschäftigten |
| FLE2b | Integration der Themen Nachhaltigkeit und Klimaschutz in das Onboarding für neue Professorinnen und Professoren |
Eine Verknüpfung von Forschungsinhalten/-aktivitäten und dem Betrieb der Universität findet aktuell nur in geringem Umfang statt. Jedoch birgt das umfassende Fachwissen der Wissenschaftlerinnen und Wissenschaftler an der TUM vielfältige Möglichkeiten für die Anwendung im Universitätsbetrieb, insbesondere durch die Umsetzung von Reallaboren. So kann das vorhandene Fachwissen in Bereichen wie bspw. Energie, Gebäudetechnik, Architektur, Baustoffe, Landschaftsgestaltung oder Mobilität direkt genutzt werden.

Stärkung der Living-Lab-Funktion der TUM Campus

| FLE3a | Prüfung und Konzeption des Aufbaus eines internen Consulting-Programms für Infrastrukturprojekte durch das Fachwissen an den Professuren der TUM |

Entrepreneurship

Die TUM, als „Entrepreneurial University“, trägt maßgeblich zum technologischen Fortschritt in Deutschland und weltweit bei, insbesondere durch ihre Stärke in technischen Innovationen. In den letzten Jahren hat sie verstärkt durch ihre Gründungsteams und Start-ups einen bedeutenden Beitrag geleistet. Wenn Ideen und Forschungsergebnisse wirtschaftlich verwertet und in großem Maßstab skaliert werden, entstehen tatsächliche Innovationen mit erheblichem Einfluss. Mit etwa 80 Ausgründungen pro Jahr zählt die TUM zu den führenden Universitäten Europas in diesem Bereich.

Feste Verankerung des Themas Klimaschutz in der Entrepreneurship-Kultur

| FLE4a | Etablierung der Themenkoordinationsstelle „Innovation & Entrepreneurship“ an der TUM für das Zentrum Hochschule und Nachhaltigkeit Bayern (BayZeN) |
| FLE4b | Ausbau des TUM Venture Lab Sustainability and Circular mit Fokus Clean-Tech |

Alle Studiengänge und angebotenen Lehrveranstaltungen am TUMCS haben einen Bezug zum den Themen Nachhaltigkeit, Klimaschutz oder nachwachsenden Rohstoffen. Im Jahr 2024 werden je fünf Bachelor- und Masterstudiengänge am TUMCS angeboten (Tab. 30). Durch die Interdisziplinarität lernen die Studierenden wie technische Lösungen für eine Wirtschaft mit weniger Einsatz fossiler Rohstoffe entwickelt werden können, ob diese ökonomisch tragfähig sind und ob sie nachhaltiger sind als bisherige Produkte oder Prozesse.

Dieses am TUMCS vorhandene Wissen kann auch genutzt werden, um Projekte aus dem Projektkatalog des Klimaschutzkonzepts zu initiieren oder (begleitende) Projektstudien zu erstellen, die zur Realisierung von Projekten beitragen oder die Auswirkungen dieser bemessen können, wie in Projekt ES1d bereits vorgesehen ist.

4.7 Management

Weiterführung/-entwicklung und Verstetigung des Klimaschutzmanagements

| MN1a | Weiterführung des Klimaschutzmanagements im Rahmen des Förderpunkts 4.1.8.b aus der Kommunalrichtlinie |

TUM Campus Straubing

Um die spezifischen Pilotprojekte, die für den Campus Straubing vorgesehen sind und im Erstvorhaben bereits angestoßen werden optimal initiieren, umsetzen und begleiten zu können ist, aufgrund der Entfernung zu den anderen Standorten und der herausfordernden Vielfalt und Anzahl aller Projekte, weiterhin eine spezifische Klimaschutzmanagement-Stelle am TUMCS notwendig. Durch die Doppelzugehörigkeit zum TUMCS und dem Sustainability Office fungiert die Klimaschutzmanagerin oder der Klimaschutzmanager am TUMCS auch als wichtiges Bindeglied zwischen der Zentralen Verwaltung und dem Campus Straubing.

Im Bereich Wasser, Abwasser und Abfall wurde festgestellt, dass zum Ressourcenverbrauch kaum Daten vorhanden sind. Diese bilden jedoch die Grundlage, um systematisch Vermeidungs- und Verminderungsstrategien anzugehen. Durch die Einführung eines systemischen und zertifizierten Umweltmanagementsystem sollen die notwendigen Prozesse etabliert und verstetigt werden. Das Projekt zielt darauf ab, ein umfassendes Umweltmanagementsystem gemäß den Anforderungen der EMAS-Richtlinie (Eco-Management and Audit Scheme) am TUM Campus Straubing zu implementieren, um die Umweltleistung des Campus Straubing weiter zu optimieren.

Stärkung eines strukturierten Umweltmanagements

| MN2a | Prüfung der Implementierung eines Umweltmanagements am TUM Campus Straubing |
Der Campus Straubing wäre bei der erfolgreichen Einführung eines Umweltmanagements inklusive Auditierung die erste Einheit der TUM die mit einem Umweltmanagement-Zertifikat ausgezeichnet wird. Dadurch würde die Vorbildfunktion des Campus zum Thema Nachhaltigkeit, im Sinne eines ganzheitlichen Ansatzes, innerhalb der TUM gestärkt. Es ergäben sich außerdem zahlreiche Synergieeffekte mit anderen Projekten und Piloten am TUMCS, wie der Erweiterung des Energiemonitorings (ED4d) oder der Zertifizierungsprogramme in Laboren (R3c).
5 Projektkatalog

Für jedes in Kapitel 4 beschriebene Projektes wurde ein Projektsteckbrief erstellt. In diesen findet sich neben einer Beschreibung der aktuellen Situation sowie der verantwortlichen Akteure eine grobe Auflistung der nächsten Handlungsschritte und Erfolgsindikatoren (Abb. 35).

<table>
<thead>
<tr>
<th>Projekttitel</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transformationsfeld</td>
<td>Listet das übergeordnete Transformationsfeld</td>
</tr>
<tr>
<td>Ziel</td>
<td>Beschreibt das übergeordnete Ziel auf, auf welches das Projekt einläuft</td>
</tr>
</tbody>
</table>

Ausgangslage

Beschreibt in Kürze die allgemeine Ausgangssituation

<table>
<thead>
<tr>
<th>Typ</th>
<th>XX</th>
<th>Einführung</th>
<th>XX</th>
<th>Dauer</th>
<th>XX</th>
</tr>
</thead>
</table>

Beschreibung

Beschreibt in Kürze den Ansatz des Projekts

Energie- und Treibhausgaseinsparung

| XX | Beschreibt in Kürze (wenn möglich) quantitativ oder qualitativ die Einsparpotentiale |
| XX | Falls nicht quantifizierbar: n/a |

| XX | MWh pro Jahr |
| XX | tCO₂e pro Jahr |

Handlungsschritte

Listet die notwendigen Arbeitsschritte

Erfolgsindikatoren

Listet (wenn möglich) handfeste Ergebnisse und/oder Meilensteile; Falls nicht möglich: n/a

Gesamtaufwand

Abschätzung des finanziellen und/oder personellen Aufwands Falls nicht möglich: n/a

Finanzierungsansatz

Hinweise der Finanzierungsmöglichkeiten für das Projekt Falls nicht möglich: n/a

Umsetzungsverantwortung

Listet Stellen/Abteilungen, die das Projekt initiieren und umsetzen
<table>
<thead>
<tr>
<th>Akteure</th>
<th>Listet mitwirkende Stellen/Abteilungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flankierende Projekte</td>
<td>Listet Projekt-IDs</td>
</tr>
</tbody>
</table>

Hinweise

Weitere Informationen zu Hintergründen, Best-Practice o.ä.

Abb. 35: Muster eines Projektsteckbriefs
5.1 Projekte Energieversorgung

Umstellung der Wärme- und Stromversorgung vom mit fossilen Brennstoffen befeuerten Heizkraftwerk auf regenerative Energieträger am Campus Garching

<table>
<thead>
<tr>
<th>Transformationsfeld</th>
<th>Energieversorgung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziel</td>
<td>Umstellung der Energieversorgung auf regenerative Energiequellen an allen Standorten</td>
</tr>
</tbody>
</table>

Ausgangslage

Derzeit wird die Energieversorgung des gesamten Forschungscampus Garching in Eigenregie durch die TUM bewerkstelligt. Durch die Verbrennung von Erdgas (und Heizöl) werden dabei jährlich ca. 80 GWh Wärme und ca. 37 GWh Strom in einer Cheng-Cycle Turbine erzeugt und ca. 166 GWh Erdgas verbraucht. Zusätzlich werden jährlich ca. 47 GWh Strom eingekauft.

<table>
<thead>
<tr>
<th>Typ</th>
<th>technisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung</td>
<td>Kurzfristig (0-3 Jahre)</td>
</tr>
<tr>
<td>Einleitung</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung

Energie- und Treibhausgaseinsparung

| 0 MWh pro Jahr | Durch die geforderte Umstellung auf regenerative Energieträger können die THG-Emissionen aus der Verbrennung von konventionellen Brennstoffen langfristig eingespart werden. |
| ca. 30.000 tCO₂e pro Jahr |

Handlungsschritte

- Teilnahmewettbewerb Q3 2023
- Verhandlungsverfahren Q4 2023- Q4 2024
- Ggf. Zuschlagserteilung Q4 2024

Erfolgsindikatoren

- Umstellung der Energieversorgung am Campus Garching auf 100 % regenerative Energien
| Gesamtaufwand | Anschubfinanzierung: ca. 600.000 EUR Vergütung für die Versorgungskonzepte + sonstige Projektkosten
Umlage auf Energiekosten (Contracting für 20 Jahre, Kosten noch nicht bezifferbar) oder eigene Investition TUM (noch nicht bezifferbar) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Finanzierungsansatz</td>
<td>Zentrale Mittel</td>
</tr>
<tr>
<td>Umsetzungsverantwortung</td>
<td>ZA4</td>
</tr>
<tr>
<td>Akteure</td>
<td>Sustainability Office, Taskforce Sustainable Campus Development</td>
</tr>
<tr>
<td>Flankierende Projekte</td>
<td>ED1c, ED2b</td>
</tr>
<tr>
<td>Hinweise</td>
<td></td>
</tr>
</tbody>
</table>
Prüfung und Umsetzung der Substitution des Erdgases als Energieträger auf regenerative Energieträger am Campus München

Transformationsfeld

Energieversorgung

Ziel

Umstellung der Energieversorgung auf regenerative Energiequellen an allen Standorten

Ausgangslage

Der Erdgasverbrauch zur Wärmeerzeugung am TUM-Campus in München (Stammgelände) ist seit 2013 aufgrund der Übernahme der Wärmeversorgung im Rahmen des Projekts Energie Liefercontracting kontinuierlich zurückgegangen. Die Bereitstellung der Nahwärme durch den Contractor erfolgt über bilanzielles Biomethan. Derzeit werden zusätzlich noch ca. 5 GWh Erdgas zur Dampferzeugung in Einzelanlagen verbrannt.

Typ

Technisch

Einführung

Kurzfristig (0-3 Jahre)

Dauer

Langfristig

Beschreibung

Die Wärmeversorgung am Campus in München soll langfristig vollständig auf das Warmwassernetz über das Energieliefer-Contracting erfolgen, siehe unter ED1b. Die Wärmeerzeugung muss dann vollständig bilanziell über nicht fossile Brennstoffe erfolgen.

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>Menge</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 MWh pro Jahr</td>
<td>Die möglichen THG-Einsparungen ergeben sich aus der Verbrennung von ca. 5 GWh Erdgas pro Jahr.</td>
</tr>
<tr>
<td>ca. 1.100 tCO₂e pro Jahr</td>
<td>Überprüfung der einzelnen Erdgasthermen und Evaluierung der Anschlussfähigkeit an das vorhandene Wärmenetz oder an alternative Wärmequellen</td>
</tr>
</tbody>
</table>

Handlungsschritte

THG-Einsparung von ca. 1.100 tCO₂e pro Jahr

Erfolgsindikatoren

Gesamtaufwand

Steigerung der Energiebewirtschaftungskosten, marktabhängig

Finanzierungsansatz

Bundesförderung für Energieberatung bei Nichtwohngebäuden, Anlagen und Systeme

https://www.bafa.de/DE/Energie/Energieberatung/Nichtwohngebaeude_Anlagen_Systeme/Modul2_Energieberatung/modul2_energieberatung_node.html

Bundesförderung für effiziente Gebäude
<table>
<thead>
<tr>
<th>Umsetzungsverantwortung</th>
<th>ZA4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akteure</td>
<td>Sustainability Office, Taskforce Sustainable Campus Development</td>
</tr>
<tr>
<td>Flankierende Projekte</td>
<td>ED1b, ED2b</td>
</tr>
</tbody>
</table>

Hinweise
Anschluss weiterer Gebäude am Campus Weihenstephan an das öffentliche Fernwärmenetz im Rahmen der technischen Möglichkeiten sowie Prüfung und Umsetzung der Substitution der heizöl- und erdgasbasiert Wärmeerzeugungsanlagen mit regenerativen Energieträgern

Transformationsfeld
Energieversorgung

Ziel
Umstellung der Energieversorgung auf regenerative Energiequellen an allen Standorten

Ausgangslage

Ein Großteil der Gebäude am TUM-Campus Freising-Weihenstephan wird bereits mit Fernwärme der Stadtwerke Freising versorgt, die bis 2035 zu 100 % aus regenerativen Quellen gewonnen werden soll. Darüber hinaus werden derzeit jährlich noch ca. 2,6 GWh Erdgas und 65 MWh Heizöl für die Wärmeversorgung einzelner Gebäude am Campus verbrannt.

Beschreibung

Die Gebäude der TUM, die noch nicht an das öffentliche Fernwärmenetz angeschlossen sind, sollen im Rahmen der technischen Möglichkeiten an dieses angeschlossen werden. Gebäude, für die kein Fernwärmeanschluss in Frage kommt, soll perspektivisch die Wärmeversorgung mit innovativen klimafreundlichen Technologien erfolgen. Die Möglichkeiten der Umstellung auf 100% erneuerbare Energiequellen für die Wärmeversorgung der Gebäude soll im Rahmen des Projekts geprüft werden. Derzeit ist eine Absenkung der Netztemperaturen von Seiten des Versorgers an die TUM gefordert, damit die Umstellung auf 100 % erneuerbare Energien umsetzbar ist.

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>n/a</th>
<th>MWh pro Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>606</td>
<td>tCO₂e pro Jahr</td>
</tr>
</tbody>
</table>

Die Energieeinsparungen erfolgen durch einen verbesserten energetischen Zustand der Gebäude und die Reduktion des Wärmebedarfes aus dem öffentlichen Fernwärmenetz.

Die Treibhausgaseinsparungen würden durch den Ersatz von Heizöl (65 MWh) und Erdgas (2,6 GWh) durch erneuerbare Energieträger erfolgen.

Handlungsschritte

- Bildung eines Projektteams mit erforderlichen Fachleuten und Partnern zur Definition der Projektschritte und Meilensteine
- Bestandsaufnahme und Machbarkeitsstudie zur Klärung der technischen Anforderungen für die Absenkung der Netztemperaturen

Erfolgsindikatoren

Reduktion der Netztemperaturen im TUM internen Netz auf die Anforderungen der Stadtwerke Freising
<table>
<thead>
<tr>
<th>Gesamtaufwand</th>
<th>Projekterung ca. 100.000 EUR</th>
</tr>
</thead>
</table>
| Finanzierungsansatz | Bundesförderung für Energieberatung bei Nichtwohngebäuden, Anlagen und Systeme [1]
| | Bundesförderung für effiziente Gebäude [2]
| | Förderschwerpunkt Machbarkeitsstudie der Kommunalrichtlinie [3] |

<table>
<thead>
<tr>
<th>Umsetzungsverantwortung</th>
<th>ZA4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akteure</td>
<td>Staatliches Bauamt Freising</td>
</tr>
<tr>
<td>Flankierende Projekte</td>
<td>ED1a</td>
</tr>
</tbody>
</table>

Hinweise
Prüfung und Umsetzung der Substitution von Erdgas als Energieträger mit regenerativen Energieträgern im BHKW der Uferstraße 53 am Campus Straubing

Transformationsfeld Energieversorgung
Ziel Umstellung der Energieversorgung auf regenerative Energiequellen an allen Standorten

Ausgangslage

Beschreibung

Dieses Projekt beinhaltet die Prüfung der Möglichkeiten der Umstellung auf 100 % regenerative Energiequellen für die Wärmeversorgung der Gebäude mit eigener Wärmeversorgung durch den TUMCS. 2021 wurden bereits 37 % der Wärme durch erneuerbare Energien gedeckt. In angemieteten Gebäuden und Räumlichkeiten besteht keine direkte Einflussnahme auf die dortige Wärmeversorgung.

Da das BHKW erst im Jahr 2021 in Betrieb genommen wurde stellt die Umstellung des Energieträgers Erdgas hier, insbesondere auf ökonomischer Seite, eine besondere Herausforderung dar. Die Entscheidung für die Energieversorgung des Gebäudes mittels Erdgases wurde durch das zuständige Bauamt in der Planungsphase getroffen und lag nicht in der Verantwortung der TUM bzw. des TUMCS. Eine diskutierte Option der Geothermie-Nutzung, die aufgrund der speziellen Bauweise des Gebäudes im Hochwasserbereich der Donau auf Pfletern mit vertretbarem Aufwand hätte erfolgen können, wurde nicht realisiert

Energie- und Treibhausgaseinsparung

> 1500 MWh pro Jahr
Handlungsschritte

Einsparungen aus der Verbrennung von Erdgas ca. 1,5 GWh (2021) und ca. 2,2 GWh (2022), Tendenz steigend

Durchführung von Machbarkeits- und Effizienzstudien zum Ersatz des Erdgases im BHKW der Uferstraße 53

Auswahl einer alternative zu Erdgas als Energieträger.

Erfolgsindikatoren

Ersatz des Erdgases im BHWK

Gesamtaufwand

n/a

Finanzierungsansatz

Bundesförderung für effiziente Gebäude

https://www.bafa.de/DE/Energie/Effiziente_Gebaueude/Sanierung_Nichtwohngebaueude/Anlagen_zur_Waermeerzeugung/anlagen_zur_waermeerzeugung_node.html

Förderschwerpunkt Machbarkeitsstudie der Kommunalrichtlinie

https://www.klimaschutz.de/de/foerderung/foerderprogramme/kommunalrichtlinie/erstellung-von-machbarkeitsstudien

Umsetzungsverantwortung

TUMCS, Klimaschutzmanager TUMCS

Akteure

Staatliches Bauamt Passau, Professuren Energietechnik, Regenerative Energiesysteme und Geothermie am TUMCS

Flankierende Projekte

Hinweise
Prüfung und Umsetzung der Umstellung und ggf. des Austauschs der heizöl- und erdgasbasierten Wärmeerzeugungsanlagen zugunsten regenerativer Energieträger an den durch die TUM selbst betriebenen Außenstellen

Transformationsfeld Energieversorgung

Ziel Umstellung der Energieversorgung auf regenerative Energiequellen an allen Standorten

Ausgangslage

An den TUM-Außenstellen werden an den unterschiedlichen Standorten insgesamt jährlich ca. 1 GWh Erdgas und 3,3 GWh Heizöl für die Wärmeerzeugung verbrannt.

Typ technisch
Einführung Langfristig (mehr als 7 Jahre)
Dauer Lang

Beschreibung

Dieses Projekt umfasst die Prüfung der Möglichkeiten der Umstellung auf 100% regenerative Energiequellen für die Wärmeversorgung der Gebäude an allen Außenstellen, die sich in Hand des Freistaates Bayern befinden. Auf Anmietungen hat die TUM keinen Einfluss; bei Neuanmietungen sollen die Themen bauliche Energieeffizienz und Energieträger als wichtige Entscheidungskriterien berücksichtigt werden.

Zur Festlegung einer Reihenfolge der Sanierung der Wärmeerzeugungsanlagen der Außenstellen in Hand des Freistaates Bayern muss eine energetische Bewertung (ED2a) und Machbarkeitsstudie zum Austausch fossiler Wärmeerzeugungsanlagen durchgeführt werden.

Energie- und Treibhausgaseinsparung

| n/a

 MWh pro Jahr | Energieeeinsparungen sind in Kombination mit der energetischen Sanierung der Gebäude möglich (ED2b), aber nicht bezifferbar. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1245 tCO₂e pro Jahr</td>
<td>THG-Einsparpotenzial von insg. 1 GWh Erdgas (ca. 205 tCO₂e) und 3,3 GWh Heizöl (ca. 1.040 tCO₂e)</td>
</tr>
</tbody>
</table>

Handlungsschritte

- Bewertung der Gebäude über Projekt ED2a inkl. Sanierungsreihenfolge
- Gespräche mit den für die Gebäude zuständigen Personen aus dem Gebäude- und Baumanagement der ZA4
- Prüfen der Möglichkeiten zum Austausch alter Wärmeerzeugungsanlagen (prioritär: Austausch in Gebäuden mit geringen Sanierungspotenzialen; sonst zunächst Sanierung)

Erfolgsindikatoren

- Austausch von x % der mit fossilen Energieträgern betriebenen Anlagen
<table>
<thead>
<tr>
<th>Gesamtaufwand</th>
<th>Projektierung einmalig 250.000 EUR 0,5 Mio. EUR pro Jahr für die Umsetzung</th>
</tr>
</thead>
</table>
| Finanzierungsansatz | Bundesförderung für Energieberatung bei Nichtwohngebäuden, Anlagen und Systeme
https://www.bafa.de/DE/Energie/Energieberatung/Nichtwohngebaeude_Anlagen_Systeme/Modul2_Energieberatung/modul2_energieberatung_node.html
Bundesförderung für effiziente Gebäude
https://www.bafa.de/DE/Energie/Effiziente_Gebaeude/Sanierung_Nichtwohngebaeude/Anlagen_zur_Waermeerzeugung/anlagen_zur_waermeerzeugung_node.html
Förderschwerpunkt Machbarkeitsstudie der Kommunalrichtlinie
https://www.klimaschutz.de/de/foerderung/foerderprogramme/kommunalrichtlinie/erstellung-von-machbarkeitsstudien |
| Umsetzungsverantwortung | ZA4 |
| Akteure | zuständige Bauämter |
| Flankierende Projekte | ED2b, ES1c |
| Hinweise |
Belegung aller TUM-Dächer mit Photovoltaik Anlagen im Rahmen der technischen und rechtlichen Möglichkeiten

Transformationsfeld
Energieversorgung

Ziel
Umstellung der Stromversorgung auf regenerative Energiequellen und Erhöhung des Eigenanteils zur Stromerzeugung

Ausgangslage

Beschreibung

Die TUM plant im Rahmen des Sonderprogramm PV auf staatlichen Dächern die zur Verfügung stehenden Dachflächen im Rahmen der technischen und rechtlichen Möglichkeiten mit PV-Modulen auszustatten. Die erzeugte Menge soll vollständig im Campusnetz verbraucht werden. Die Fortführung der Belegung der Dächer mit PV über das Sonderprogramm hinaus nach 2026 soll weitergeführt werden. Die Installation von PV-Anlagen auf Neubauten erfolgt verpflichtend im Rahmen des GEG.

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>Typ</th>
<th>Einführung</th>
<th>Dauer</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>technisch</td>
<td>Kurzfristig (0-3 Jahre)</td>
<td>Mittel</td>
<td></td>
</tr>
</tbody>
</table>

Energie- und Treibhausgaseinsparung

| 0 MWh pro Jahr | Durch die Ausstattung der TUM-Dachflächen entstehen keine Energieeinsparungen.
| Auch direkte THG-Einsparungen (in Scope 1 und 2) sind nicht zu verzeichnen, da der eingekaufte Strom bereits 100% Ökostrom ist. Indirekte Einsparungen können in der Vorkette (Scope 3) realisiert werden. |
| gering tCO₂e pro Jahr | Identifikation der Dachflächen auf denen der Dachzustand und Denkmalschutz eine Belegung mit PV-Anlagen zulässt
| Kommunikation mit den zuständigen Denkmalschutzbehörden zur Nutzung der Denkmal Geschützten Dachflächen
| Installation und Anschluss von PV-Anlagen |

Erfolgsindikatoren

| Installierte Leistung in kWp |
| **Gesamtaufwand** | Mittel über das Sonderprogramm des Freistaat Bayern bis 2026 von 7,2 Mio. EUR
Folgend ab 2027 ca. 1,2 Mio. pro Jahr |
Finanzierungsansatz	Sonderprogramm PV auf staatlichen Dächern
Umsetzungsverantwortung	ZA4
Akteure	ZA4
Flankierende Projekte	ES2b

Hinweise
Unterstützung einer TUM-Energiegenossenschaft

Transformationsfeld: Energieversorgung
Ziel: Umstellung der Stromversorgung auf regenerative Energiequellen und Erhöhung des Eigenanteils zur Stromerzeugung

Ausgangslage
Der geringe Anteil an PV-Anlagen bis in das Jahr 2023 auf TUM-Dächern führte zur Idee der Gründung einer TUM-Energiegenossenschaft, um die Finanzierung aus der TUM-Familie heraus zu ermöglichen.

Beschreibung
Es besteht die Idee der Gründung einer Energiegenossenschaft aus der TUM-Belegschaft und Studierendenschaft, um regenerativen Strom für die TUM aus der TUM-Community heraus bereitzustellen. Das Konzept soll angelehnt sein an Bürger-Energiegenossenschaften. Das TUM Sustainability Office unterstützt die Initiative, die aber weitestgehend selbstverwaltend ist.

Energie- und Treibhausgaseinsparung

| n/a | Keine direkten THG-Einsparungen, da eingekaufter Strom bereits 100 % Ökostrom ist. Wird aber relevant, sollten sich die Grundlagen des GHG-Protokolls ändern und nur noch der location-based Ansatz bei der Berechnung der Emissionen angewandt werden. |
| MWh pro Jahr |
| n/a | tCO₂e pro Jahr |

Handlungsschritte
Rechtliche Prüfung, inwiefern sich die TUM an einer Gründung der TUM-Energiegenossenschaft beteiligen kann

Erfolgsindikatoren
Gründung der Energiegenossenschaft
Aufbau der organisatorischen Struktur
Bau von eigenen Stromerzeugungsanlagen
Lieferung von regenerativem Strom an die TUM

Gesamtaufwand
n/a

Finanzierungsansatz
Genossenschaftsmodell

Umsetzungsverantwortung
Projektteam der Initiative TUM Energiegenossenschaft
<table>
<thead>
<tr>
<th>Akteure</th>
<th>Stundetisches Referat für Umwelt, Fachschaft Maschinenbau, Lehrstuhl für Gebäudetechnologie und klimagerechtes Bauen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flankierende Projekte</td>
<td>ES2a</td>
</tr>
</tbody>
</table>

Hinweise
5.2 Projekte Energieverbrauch

Evaluation und Konzeption zur Reduktion der Vor- und Rücklauftemperaturen im internen Wärmenetz am Campus Weihenstephan für die Auslegung des öffentlichen Fernwärmenetzes auf erneuerbare Energien

Transformationsfeld Energieverbrauch

Ziel Optimierung der Versorgungs- und Gebäudetechnik zur Steigerung der Energieeffizienz

Ausgangslage

Ein Großteil der Gebäude am TUM Campus Weihenstephan wird über öffentliche Fernwärme versorgt, die lt. Versorger bis 2035 zu 100 % aus erneuerbaren Quellen gewonnen werden soll. Das baulich getrennte Subnetz der TUM wird aktuell mit hohen Temperaturen (max. ca. 130 °C VL / 70 °C RL) betrieben, da die Technik der Gebäude derzeit dieses Temperaturniveaus erfordert.

Typ technisch
Einführung Mittelfristig (4-7 Jahre)
Dauer Lang

Beschreibung

Energie- und Treibhausgaseinsparung

| n/a MWh pro Jahr | THG-Einsparpotenzial aus ca. 25 GWh bezogener konventioneller Fernwärme aus dem öffentlichen Fernwärmenetz |
| ca. 4.000 tCO₂e pro Jahr | Energetische Sanierung der am Wärmenetz angeschlossenen Gebäude zur Reduktion der benötigten VL-Temperatur |

Handlungsschritte

- Energetische Sanierung der am Wärmenetz angeschlossenen Gebäude zur Reduktion der benötigten VL-Temperatur
- Weitere Maßnahmen zur Reduktion des Wärmebedarfs der Gebäude
- Ggf. Erneuerung der Wärmetauscher zur effizienteren Wärmeübergabe an das TUM-Interne Netz
<table>
<thead>
<tr>
<th>Erfolgsindikatoren</th>
<th>Reduktion des Temperaturniveaus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtaufwand</td>
<td>>> 3 Mio. EUR</td>
</tr>
</tbody>
</table>
| Finanzierungsansatz | Bundesförderung für effiziente Wärmennetzet https://www.bafa.de/DE/Energie/Energieeffizienzwegweiser/energieeffizienzwegweiser_node.html
| Umsetzungsverantwortung | ZA4 |
| Akteure | Staatliches Bauamt Freising, Sustainability Office |
| Flankierende Projekte | ED1c, ED2b |

Hinweise
Ersatz des Teilbereichs Dampfheizung im Wärmennetz am Campus München

Technologiegrenzen

Technische Universität München

ED1b

Transformationsfeld

Energieverbrauch

Ziel

Optimierung der Versorgungs- und Gebäudetechnik zur Steigerung der Energieeffizienz

Ausgangslage

<table>
<thead>
<tr>
<th>Typ</th>
<th>technisch</th>
<th>Einführung</th>
<th>Mittelfristig (4-7 Jahre)</th>
<th>Dauer</th>
<th>Lang</th>
</tr>
</thead>
</table>

Beschreibung

Es soll die vollständige Umstellung vom Heißdampfbetrieb auf das Warmwassernetz für die Erzeugung der Raumwärme erfolgen. Darüber hinaus wird eine Reduzierung der Netztemperaturen und Verbesserung der Regelfähigkeit sowie Anpassung der Heizflächen (Abhängigkeit von ED2b) verfolgt.

Energie- und Treibhausgaseinsparung

\[
\begin{array}{l|l}
\text{n/a} & \text{MWh pro Jahr} \\
\end{array}
\]

Die Endenergieeinsparung ist abhängig vom Wirkungsgrad der jeweiligen Anlagen und der Substitution von Wasserdampf als Trägermedium.

\[
\begin{array}{l|l}
\text{n/a} & \text{tCO}_2\text{e pro Jahr} \\
\end{array}
\]

Nach gegenwärtigem Kenntnisstand wird von einer Energieeinsparung von über 10% maßgeblich über die verbesserte Regelfähigkeit angenommen.

Handlungsschritte

Erfolgsindikatoren

- Reduzierung des Endenergieeinsatzes

Gesamtaufwand

- Investitionskosten: neue Regelungstechnik und ggf. Infrastruktur
- Reduzierung der Energiebewirtschaftungskosten, marktabhängig

Finanzierungsansatz

- Bundesförderung für Energieberatung bei Nichtwohngebäuden, Anlagen und Systeme
Umsetzungsverantwortung | ZA4
---|---
Akteure | Sustainability Office, Taskforce Sustainable Campus Development
Flankierende Projekte | ES1b, ED2a, ED2b

Hinweise
Evaluation und Konzeption zur Reduktion der Vor- und Rücklauftemperaturen im internen Wärmenetz des Campus Garching

Transformationsfeld
Energieverbrauch

Ziel
Optimierung der Versorgungs- und Gebäudetechnik zur Steigerung der Energieeffizienz

Ausgangslage

Beschreibung

Energie- und Treibhausgaseinsparung

| ca. 2.000 MWh pro Jahr | Durch die Absenkung der Netztemperatur können Energieeinsparungen erzielt werden, da für die Bereitstellung der niedrigeren Netztemperatur technologisch weniger Primärenergie benötigt wird. Zudem verringern sich Energieverluste im Verteilnetz. Das konkrete Einsparpotenzial wird derzeit im Zuge der Energieversorgungsausschreibung ermittelt und wird auf ca. 2 GWh geschätzt. Die THG-Einsparungen ergeben sich aus dem Projekt ES1a. |
| 0 tCO₂e pro Jahr |

Handlungsschritte
Prüfung der im Rahmen der Energieversorgungsausschreibung Garching entwickelten Versorgungskonzepte
Prüfung des Finanzierungsansatz für die selbstständige Umsetzung seitens TUM

Erfolgsindikatoren
Bestandteil des Gesamtkonzepts der Energieversorgung am Campus Garching (ES1a)
<table>
<thead>
<tr>
<th>Gesamtaufwand</th>
<th>Bestandteil des Projekts ES1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finanzierungsansatz</td>
<td>Bestandteil des Projekts ES1a</td>
</tr>
<tr>
<td></td>
<td>ggf. Bundesförderung für effiziente Wärmenetze</td>
</tr>
<tr>
<td></td>
<td>https://www.bafa.de/DE/Energie/Energieeffizienz/Waermenetze/Effiziente_Waermenetze/effiziente_waernenetze_node.html</td>
</tr>
<tr>
<td>Umsetzungsverantwortung</td>
<td>ZA4</td>
</tr>
<tr>
<td>Akteure</td>
<td>Sustainability Office, Taskforce Sustainable Campus Development</td>
</tr>
<tr>
<td>Flankierende Projekte</td>
<td>ES1a, ED2b</td>
</tr>
<tr>
<td>Hinweise</td>
<td></td>
</tr>
</tbody>
</table>
Evaluation und Konzeption für die sukzessive Sanierung und Nachrüstung der Belüftungs- und Heizungstechnik an allen Standorten

ED1d

Transformationsfeld
Energieverbrauch

Ziel
Optimierung der Versorgungs- und Gebäudetechnik zur Steigerung der Energieeffizienz

Ausgangslage

Der Sanierungsstau der Liegenschaften der TUM stellt eine große Hürde für eine angestrebte klimaneutrale Versorgung der Gebäude dar. Sanierungsmaßnahmen werden abhängig vom baulichen Zustand, Nutzungsanforderungen und in Abstimmung mit den Bauämtern priorisiert und angestoßen. Für einen klimaneutralen Gebäudebestand muss die Sanierungsgeschwindigkeit und -effizienz deutlich erhöht werden.

Beschreibung

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th></th>
<th>Eingesparte Energie und eingesparte THG-Emissionen (derzeit nicht abschätzbar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a MWh pro Jahr</td>
<td>Durch die Sanierung und Optimierung von Belüftungs- und Heizungstechnik sollen sich Energieeinsparungen und dadurch geringere THG-Emissionen ergeben. Die Einsparungen sind jedoch zum jetzigen Zeitpunkt noch nicht quantifizierbar.</td>
</tr>
<tr>
<td>n/a tCO₂e pro Jahr</td>
<td></td>
</tr>
</tbody>
</table>

Handlungsschritte

- Bestandsanalyse: Bewertung und Identifizierung von Schwachstellen und Einsparpotenzialen
- Bedarfsanalyse unter Berücksichtigung von Energieeffizienz und Komfortanforderung
- Konzeptentwicklung für die Sanierung, Nachrüstung und Finanzierung dieser
- Hydraulischer Abgleich

Erfolgsindikatoren

- Eingesparte Energie und eingesparte THG-Emissionen (derzeit nicht abschätzbar)
- Inklusion von Ergebnissen aus ED2b
| **Gesamtaufwand** | ca. 3 Mio. EUR pro Jahr
Personalstellen: 1 VZÄ (Ingenieur zur Koordination) |
|------------------|---|
| **Finanzierungsansatz** | Förderschwerpunkt Sanierung und Nachrüstung von raumlufttechnischen Anlagen der Kommunalrichtlinie
https://www.klimaschutz.de/de/foerderung/foerderprogramme/kommunalrichtlinie/sanierung-und-nachrüuestung-von-raumlufttechnischen-anlagen
Bundesförderung für effiziente Gebäude
https://www.bafa.de/DE/Energie/Effiziente_Gebaeude/Sanierung_Nichtwohngebaeude/sanierung_nichtwohngebaeude_node.html |
| **Umsetzungsverantwortung** | ZA4 |
| **Akteure** | Sustainability Office, Taskforce Sustainable Campus Development |
| **Flankierende Projekte** | ED1a, ED1b, ED1c, ED2a, ED2b |

Hinweise
Prüfung und ggf. Einführung einer bedarfsgerechten und witterungsgeführten Steuerung der Belüftungs- und Heizungstechnik in den Gebäuden aller Standorte

ED1e

<table>
<thead>
<tr>
<th>Transformationsfeld</th>
<th>Energieverbrauch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziel</td>
<td>Optimierung der Versorgungs- und Gebäudetechnik zur Steigerung der Energieeffizienz</td>
</tr>
</tbody>
</table>

Ausgangslage

Die aktuelle Belüftungs- und Heizungstechnik in einem Großteil der Räume der TUM ist nicht ausreichend an die jeweiligen Bedürfnisse der Nutzer und die aktuellen Witterungsbedingungen angepasst. Derzeit ist keine zentrale Steuerung der Technologien der Raumheizseinrichtungen möglich.

Typ | technisch | **Einführung** | Langfristig (>7 Jahre) | **Dauer** | Lang |

Beschreibung

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>Energiemengen</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ca. 6.000 MWh pro Jahr</td>
<td>Durch eine bedarfsgerechte und witterungsgeführte Steuerung der Belüftungs- und Heizungstechnik können Energieeinsparungen erzielt werden, indem weniger Primärenergie verbraucht wird, da die Heiz- und Belüftungslast reduziert wird. Dadurch ergeben sich außerdem THG-Einsparungen und Einsparungen der Betriebskosten.</td>
</tr>
<tr>
<td>n/a tCO₂e pro Jahr</td>
<td></td>
</tr>
</tbody>
</table>

Handlungsschritte

- Einführung eines zentralen und digitalisierten Raumbuchungs- bzw. Raummanagements
- Bestandsanalyse: Erfassung (Heizkörper und Ventile) aller Gebäude
- Zentrale, intelligente Steuerung der Gebäudetechnik wo möglich

Erfolgsindikatoren

- Energieeinsparung

Gesamtaufwand

- ca. 1,25 Mio. EUR pro Jahr
Finanzierungsansatz

| Förderschwerpunkt Sanierung und Nachrüstung von raumlufttechnischen Anlagen der Kommunalrichtlinie |
|https://www.klimaschutz.de/de/foerderung/foerderprogramme/kommunalrichtlinie/sanierung-und-nachruestung-von-raumlufttechnischen-anlagen|
| Bundesförderung für effiziente Gebäude |
|https://www.bafa.de/DE/Energie/Effiziente_Gebaeude/Sanierung_Nichtwohngebaeude/sanierung_nichtwohngebaeude_node.html|
| Sonderprogramm „Energetische Sanierung staatlicher Gebäude des StMB |

Umsetzungsverantwortung

| ZA4 |

Akteure

| Sustainability Office, IT, Taskforce Sustainable Campus Development |

Flankierende Projekte

| ED1d, ED2b, ED4b |

Hinweise
Evaluation und Konzeption für sukzessiven Austausch alter Leuchtmittel für Innen- und Außenbeleuchtung

Transformationsfeld	Energieverbrauch
Ziel | Optimierung der Versorgungs- und Gebäudetechnik zur Steigerung der Energieeffizienz

Ausgangslage

Im Großteil der TUM-Gebäude erfolgt die Beleuchtung in den Büros mittels herkömmlicher Leuchtstoffröhren. Es liegt keine Bestandsaufnahme von bereits verbauten LED-Leuchtmitteln vor.

<table>
<thead>
<tr>
<th>Typ</th>
<th>technisch</th>
<th>Einführung</th>
<th>Kurzfristig (0-3 Jahre)</th>
<th>Dauer</th>
<th>Lang</th>
</tr>
</thead>
</table>

Beschreibung

Im Rahmen des Projekts wird ein ganzheitlicher Ansatz verfolgt, um die Beleuchtung sowohl in Innenräumen als auch im Freien zu optimieren. Dies umfasst die Identifizierung von Standorten mit veralteten Leuchtmitteln, die Planung und Priorisierung des Austauschs, die Beantragung von Fördermitteln für den Austausch über die Kommunalrichtlinie, die Beschaffung von hochwertigen LED-Leuchtmitteln und die Installation durch qualifiziertes Fachpersonal.

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>n/a</th>
<th>MWh pro Jahr</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>n/a</th>
<th>tCO₂e pro Jahr</th>
</tr>
</thead>
</table>

Handlungsschritte

- Bestandanalyse und Identifizierung der Reihenfolge für einen sukzessiven Austausch der Leuchtmittel in Zusammenhang mit Projekt ED1g
- Beantragung der Fördermittel für den Austausch
- Auswahl von hochwertigen LED
- Ausschreibung und Vergabe für die Installation durch qualifiziertes Fachpersonal

Erfolgsindikatoren

- Austausch in mind. 3 Gebäuden pro Jahr über Förderprogramme
<table>
<thead>
<tr>
<th>Gesamtaufwand</th>
<th>Beispielhafte Schätzung der Investitions- und Montagekosten für den Austausch der Leuchtmittel durch LED in einem Gebäudedinger des Maschinenwesens in Garching: 155.344,00 EUR</th>
</tr>
</thead>
</table>
| Finanzierungsansatz | Förderschwerpunkt Sanierung von Außen- und Straßenbeleuchtung der Kommunalrichtlinie
Förderschwerpunkt Sanierung von Innen- und Hallenbeleuchtung der Kommunalrichtlinie
https://www.klimaschutz.de/de/foerderung/foerderprogramme/kommunalrichtlinie/sanierung-von-innen-und-hallenbeleuchtung
Bundesförderung für effiziente Gebäude
https://www.bafa.de/DE/Energie/Effiziente_Gebaeude/Sanierung_Nichtwohngebaeude/sanierung_nichtwohngebaeude_node.html
Sonderprogramm „Energetische Sanierung staatlicher Gebäude des StMB
| Umsetzungsverantwortung | ZA4 |
| Akteure | Sustainability Office, Lehrstuhl Energiesysteme, Taskforce Sustainable Campus Development |
| Flankierende Projekte | ED1g, ED2b |
| Hinweise | weitere in Eigenfinanzierung durch Umbauten |
Identifikation der Potenziale zur bedarfsgerechten Regelungs- und Steuerungstechnik der Beleuchtung der Sanitäreinrichtungen und Verkehrsflächen

ED1g

<table>
<thead>
<tr>
<th>Transformationsfeld</th>
<th>Energieverbrauch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziel</td>
<td>Optimierung der Versorgungs- und Gebäudetechnik zur Steigerung der Energieeffizienz</td>
</tr>
</tbody>
</table>

Ausgangslage

Bisher ist nicht bekannt, zu welchen Anteilen die Beleuchtungssteuerung in den Fluren und Gängen an der TUM schon automatisch/halbautomatisch betrieben wird. Die Beleuchtungssteuerung in Fluren und Gängen wird im Gegensatz zu Räumlichkeiten häufig vernachlässigt, bietet aber auf die Größe der TUM bezogen ein unter Umständen relevantes Einsparpotenzial, welches es zu ermitteln gilt.

Typ	strategisch
Einführung | Kurzfristig (0-3 Jahre)
Dauer | Kurz

Beschreibung

Das Projekt soll ermitteln, wie die Beleuchtungssteuerung in den Fluren und Gängen der TUM-Gebäude erfolgt und welches Einsparpotential sich ergibt, wenn eine automatische, bewegungsgesteuerte oder halbautomatische, zeitgesteuerte Beleuchtungssteuerung oder kombiniert erfolgt. Außerdem kann unter Umständen die Ausarbeitung einer bedarfsgerechten Steuerung (z. B. durch Verknüpfung mit meteorologischen Daten) erfolgen, damit nicht notwendige Beleuchtungszeiten vermeiden werden. Durch eine automatisierte Steuerung kann ausgeschlossen werden, dass die Beleuchtung eingeschaltet ist, wenn sich keine Personen auf den beleuchteten Flächen befinden. Dies kann bei längeren Abwesenheitszeiten, über das Wochenende oder Feiertage zu einer erheblichen Einsparung führen.

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>MWh pro Jahr</th>
<th>tCO₂e pro Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandanalyse und Identifizierung der Reihenfolge für den Einbau bedarfsgerechter Regelungs- und Steuerungstechnik in Zusammenhang mit Projekt ED1f</td>
<td></td>
</tr>
<tr>
<td>Beantragung der Fördermittel für den Austausch und die Bedarfsgerechte Steuerung</td>
<td></td>
</tr>
<tr>
<td>Ausschreibung und Vergabe für die Installation durch qualifiziertes Fachpersonal</td>
<td></td>
</tr>
<tr>
<td>Erfolgsindikatoren</td>
<td>Austausch in mind. 3 Gebäuden pro Jahr über Förderprogramme (In Kombination mit ED1f)</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Gesamtaufwand</td>
<td>Derzeit nicht abschätzbar</td>
</tr>
</tbody>
</table>
| Finanzierungsansatz | Förderschwerpunkt Sanierung von Außen- und Straßenbeleuchtung der Kommunalrichtlinie
| | Förderschwerpunkt Sanierung von Innen- und Hallenbeleuchtung der Kommunalrichtlinie |
| | https://www.klimaschutz.de/de/foerderung/foerderprogramme/kommunalrichtlinie/sanierung-von-innen-und-hallenbeleuchtung |
| | Bundesförderung für effiziente Gebäude
| | https://www.bafa.de/DE/Energie/Effiziente_Gebaeude/Sanierung_Nichtwohngebaeude/sanierung_nichtwohngebaeude_node.html |
| Umsetzungsverantwortung | ZA4 |
| Akteure | Sustainability Office, Taskforce Sustainable Campus Development |
| Flankierende Projekte | ED1f, ED2b |
| Hinweise | |
Integration von Nachhaltigkeits- und Klimaschutzstandards in den Standardkatalog der TUM

Transformationsfeld
Energieverbrauch

Ziel
Optimierung der Versorgungs- und Gebäudetechnik zur Steigerung der Energieeffizienz

Ausgangslage

Die TUM steht vor der Herausforderung die vorhandenen Campus Standorte weiter auszubauen, um den wachsenden Anforderungen an Lehr- und Forschungseinrichtungen gerecht zu werden. Es existiert bereits ein Standardkatalog der ZA4, der eine Regelausstattung von Räumen und technischen Gebäudeausrüstungen definiert. Die Themen Nachhaltigkeit und Klimaschutz spielen bisher noch keine primäre Rolle. Trotz laufender Sanierungsbemühungen und Effizienzsteigerungen wird erwartet, dass die Energieverbräuche insbesondere am Campus Garching durch Zubauten weiter ansteigen wird.

Typ
strategisch

Einführung
Kurzfristig (0-3 Jahre)

Dauer
lang

Beschreibung

Vor dem oben beschriebenen Hintergrund sollen klare und umfassende technische Anschlussbedingungen für Neubauten mit Fokus auf die Themen Klimaschutz und Nachhaltigkeit an der TUM definiert werden. Diese sollen als Leitfaden dienen und sicherstellen, dass die technische Infrastruktur in neuen Gebäuden an der TUM effizient, sicher und nachhaltig entwickelt und integriert wird. Angestrebt wird zudem eine Nachhaltigkeits-Zertifizierung aller Neubauten (z.B. DGNB, BNB).

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th></th>
<th>Die Energie- und THG-Einsparungen aus diesem Projekt können zum derzeitigen Stand nicht quantifiziert werden.</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a MWh pro Jahr</td>
<td></td>
</tr>
<tr>
<td>n/a tCO₂e pro Jahr</td>
<td></td>
</tr>
</tbody>
</table>

Handlungsschritte

- Regelmäßige Analyse bestehender Vorgaben und Normen im Standardkatalog der ZA4 durch die Taskforce Sustainable Campus Development
- Regelmäßige Ausarbeitung von Vorschlägen für den Standardkatalog in den Themen Baustoffe, Energieeffizienz, Gebäudeautomatik, Umweltstandards, Heizungs- und Klimatechnik durch die Taskforce Sustainable Campus Development
- Gemeinsame Evaluierung der ausgearbeiteten Inhalte durch die Taskforce und die ZA4

Erfolgsindikatoren

Integration der Vorschläge der Taskforce Sustainable Campus Development für technische Anschlussbedingungen für Neubauten in den Standardkatalog
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtaufwand</td>
<td>-/-</td>
</tr>
<tr>
<td>Finanzierungsansatz</td>
<td>-/-</td>
</tr>
<tr>
<td>Umsetzungsverantwortung</td>
<td>Taskforce Sustainable Campus Development</td>
</tr>
<tr>
<td>Akteure</td>
<td>ZA4, Sustainability Office</td>
</tr>
<tr>
<td>Flankierende Projekte</td>
<td></td>
</tr>
</tbody>
</table>

Hinweise
Energetische Bewertung der Liegenschaften und Erstellung eines Gebäudekatasters zur Identifikation einer Sanierungsreihenfolge

Transformationsfeld Energieverbrauch

Ziel Sanierung der Gebäudehülle zur Steigerung der Energieeffizienz

Ausgangslage

Typ strategisch **Einführung** Kurzfristig (0-3 Jahre) **Dauer** Kurz

Beschreibung

Um die Sanierungsmaßnahmen am Gebäudebestand der TUM mit den wirtschaftlichsten Energieeinsparpotentialen identifizieren zu können, soll eine systematische energetische Bewertung der Liegenschaften durchgeführt werden. Auf Basis dessen können geeignete Sanierungsmaßnahmen zur Energieeffizienzsteigerung inklusive einer Kostenabschätzung erarbeitet werden um einen geeigneten Sanierungsfahrplan/Reihenfolge zu identifizieren und gegenüber Entscheidungsträgern in der Argumentation darzulegen.

Energie- und Treibhausgaseinsparung

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a MWh pro Jahr</td>
<td>Das Energie- und THG-Einsparpotenzial kann erst im Laufe des Projekts erfasst werden.</td>
</tr>
<tr>
<td>n/a tCO2e pro Jahr</td>
<td></td>
</tr>
</tbody>
</table>

Handlungsschritte

- Beauftragung eines externen Dienstleisters für die energetische Bewertung der Liegenschaften
- Erstellung eines Gebäudekatasters (Nutzungsart, Baualtersklasse, energetischen Sanierungszustand etc.)
- Entwicklung eines Sanierungsfahrplans

Erfolgsindikatoren

- Energetische Bewertung von 100 % der Liegenschaften

Gesamtaufwand

- Anschubkosten Dienstleister von 100.000 EUR

Finanzierungsansatz

- Zentrale Mittel bzw. Mittel aus dem Hochschulvertrag mit dem StMWK
<table>
<thead>
<tr>
<th>Umsetzungsverantwortung</th>
<th>ZA4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akteure</td>
<td>Sustainability Office, Taskforce Sustainable Campus Development</td>
</tr>
<tr>
<td>Flankierende Projekte</td>
<td>ED2b, ED2c</td>
</tr>
</tbody>
</table>

Hinweise
Gebäudesanierung mit nachhaltigen Methoden und Baustoffen nach identifizierter Sanierungsreihenfolge

Transformationsfeld
Energieverbrauch

Ziel
Sanierung der Gebäudehülle zur Steigerung der Energieeffizienz

Ausgangslage

### Typ	technisch	Einführung	Mittelfristig (4-7 Jahre)	Dauer	Lang

Beschreibung
Nachdem die Sanierungsreihenfolge identifiziert wurde (vgl. ED2a), sollen die Sanierungsmaßnahmen mit den wirtschaftlichsten Energieeinsparpotentialen in die Umsetzung gebracht werden. Den Planungs- und Umsetzungsprozess wird die Taskforce Sustainable Campus Development begleiten.

Energie- und Treibhausgaseinsparung

n/a	Die einzelnen Energieeinsparpotentiale werden im Zuge des Projekts ED2a quantifiziert. Es wird insbesondere mit Energieeinsparungen im Bereich des Wärme- und Kälteverbrauchs gerechnet.
n/a	MWh pro Jahr
n/a	tCO₂e pro Jahr

Handlungsschritte
Im Anschluss an Projekt ED2a

Prüfung von Bundes- und Landesförderungen und Klärung der Finanzierung mit dem Freistaat Bayern

Erfolgsindikatoren
Bedarfsbezogene Sanierungsrate von >2 % jährlich (ab 2024 gemäß GEG)

Umsetzung der vorgeschlagenen Sanierungsreihenfolge

Grenzwert in kgCO₂e pro m² und Jahr inkl. der Gebäudetechnik (siehe ED1d)

Gesamtaufwand
Abhängig von der energetischen Analyse und der Erstellung eines Sanierungsfahrplans des Gebäudebestands
Finanzierungsansatz

| Bundesförderung für Energieberatung bei Nichtwohngebäuden, Anlagen und Systeme | https://www.bafa.de/DE/Energie/Energieberatung/Nichtwohngebaeude_Anlagen_Systeme/Modul2_Energieberatung/modul2_energieberatung_node.html |

Umsetzungsverantwortung

| ZA4 |

Akteure

| Staatliche Bauämter, Taskforce Sustainable Campus Development (begleitend) |

Flankierende Projekte

| ED1a, ED1b, ED1c, ED1d, ED1e, ED1f, ED1g, ED2a, ED3a, ED4a, ED4b |

Hinweise
Regelmäßiges Update der energetischen Bewertung der Liegenschaften (Monitoring des Sanierungsbedarfs)

Transformationsfeld Energieverbrauch

Ziel Sanierung der Gebäudehülle zur Steigerung der Energieeffizienz

Ausgangslage

<table>
<thead>
<tr>
<th>Typ</th>
<th>Einführung</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlling / Lenkungsinstrument</td>
<td>Mittelfristig (4-7 Jahre)</td>
<td>Lang</td>
</tr>
</tbody>
</table>

Beschreibung

Damit eine langfristige und nachhaltige Sanierungsstrategie verfolgt werden kann ist ein Monitoring des Sanierungsbedarfs des Gebäudebestandes notwendig. Dazu muss in zu definierenden Abständen der energetische Zustand der Gebäude bewertet werden. Im Zuge dessen soll eine aktuell gehaltene Datenbank entwickelt und gepflegt werden, welches den aktuellen Sanierungszustand der Liegenschaften der TUM vereinfacht darstellt.

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>n/a MWh pro Jahr</th>
<th>Keine direkten Energie- und THG-Einsparungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a tCO₂e pro Jahr</td>
<td>Im Anschluss an Projekt ED2a und kontinuierlich im Zusammenhang mit ED2b</td>
</tr>
<tr>
<td></td>
<td>Erstellung einer Datenbank welche den Sanierungszustand der TUM-Liegenschaften darstellt</td>
</tr>
<tr>
<td></td>
<td>Kontinuierliche Pflege der Datenbank zum Sanierungszustand der TUM-Liegenschaften</td>
</tr>
</tbody>
</table>

Handlungsschritte

<table>
<thead>
<tr>
<th>Erfolgsindikatoren</th>
<th>Erstellung einer Datenbank zur Übersicht der Sanierungszustände der TUM-Liegenschaften</th>
</tr>
</thead>
</table>

| Gesamtaufwand | noch nicht abschätzbar |

| Finanzierungsansatz | Zentrale Mittel |

130 | Technische Universität München
<table>
<thead>
<tr>
<th>Umsetzungsverantwortung</th>
<th>ZA4 (Energiemanagerin oder Energiemanager)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akteure</td>
<td>Staatliche Bauämter, Sustainability Office, Taskforce Sustainable Campus Development (begleitend)</td>
</tr>
<tr>
<td>Flankierende Projekte</td>
<td>ED2a, ED2b</td>
</tr>
</tbody>
</table>

Hinweise
Enge Kooperation mit den relevanten staatlichen Stellen zur Einführung einer lebenszyklusbasierten Kostenermittlung für Vergaben im Hochschulbau und Integration als Entscheidungsgrundlage bei der Vergabe von Bau- und Sanierungsvorhaben

Transformationsfeld Energieverbrauch
Ziel Lebenszyklusbasierte Kostenermittlung als Grundlage der Vergabe von Bauvorhaben

Ausgangslage

Typ strategisch Einführung Kurzfristig (0-3 Jahre) Dauer Mittel

Beschreibung

Durch ausgearbeitete Empfehlungen seitens der TUM sollen die Akteure auf Seiten des Freistaates Bayern dazu bewegt werden Lebenszyklusbasierte Kosten als Entscheidungsgrundlage für Bauvorhaben der TUM zu berücksichtigen, damit diese bei der Vergabe von Bau- und Sanierungsvorhaben Anwendung finden können.

Energie- und Treibhausgaseinsparung

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a MWh pro Jahr</td>
<td>Energie und THG-Einsparungen ergeben sich indirekt durch die Lebenszyklusbetrachtungen in frühen Planungsphasen beim Bauen.</td>
</tr>
<tr>
<td>n/a t(\text{CO}_2)e pro Jahr</td>
<td></td>
</tr>
</tbody>
</table>

Handlungsschritte Kontaktaufnahme mit den relevanten Ministerien durch das Hochschulpräsidium

Erfolgsindikatoren Berücksichtigung einer lebenszyklusbasierten Kostenermittlung für Vergaben im Hochschulbau der TUM
<table>
<thead>
<tr>
<th>Gesamtaufwand</th>
<th>n/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finanzierungsansatz</td>
<td>n/a</td>
</tr>
<tr>
<td>Umsetzungsverantwortung</td>
<td>VP Sustainable Transformation</td>
</tr>
<tr>
<td>Akteure</td>
<td>ZA4, Kanzler, Präsident, Sustainability Office, Sustainability Board, Taskforce Sustainable Campus Development</td>
</tr>
<tr>
<td>Flankierende Projekte</td>
<td>ED2b</td>
</tr>
</tbody>
</table>

Hinweise
Implementierung eines Energiemanagements mit adäquater personeller Ausstattung

Transformationsfeld
Energieverbrauch

Ziel
Einführung eines kontinuierlichen und umfassenden Energie-Monitorings zur Optimierung und bedarfsgerechten Steuerung der Gebäudetechnik an allen Campus Standorten

Ausgangslage

<table>
<thead>
<tr>
<th>Typ</th>
<th>strategisch</th>
<th>Einführung</th>
<th>Kurzfristig (0-3 Jahre)</th>
<th>Dauer</th>
<th>Kurz</th>
</tr>
</thead>
</table>

Beschreibung

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>n/a</th>
<th>Keine direkten Energie- und THG-Einsparungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWh pro Jahr</td>
<td></td>
</tr>
<tr>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>tCO₂e pro Jahr</td>
<td></td>
</tr>
</tbody>
</table>

Handlungsschritte

- Beschluss zur Einrichtung einer Stelle zum Aufbau eines Energiemanagements nach ISO 50001
- Beantragung der Fördermittel über die Kommunalrichtlinie (möglichst schnell noch die Förderung beantragen)
- Besetzung der Stelle der Energiemanagerin oder Energiemanager
- Aufbau eines Energiemanagements nach ISO 50001
- Zertifizierung bis 2027 (abhängig vom Förderbescheid)

Erfolgsindikatoren

Implementierung des Energiemanagements wurde mit dem Beschluss des Klimaschutzkonzeptes beschlossen (Q1 2024)
<table>
<thead>
<tr>
<th>Eintrag</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Förderung</td>
<td>wurde beantragt</td>
</tr>
<tr>
<td>Geförderte Stelle</td>
<td>Energiemanagerin oder Enerigemanager, wurde besetzt</td>
</tr>
<tr>
<td>Zertifizierung</td>
<td>nach ISO 50001 o.Ä. bis 2027</td>
</tr>
<tr>
<td>Gesamtaufwand</td>
<td>Ca. 780.000 EUR (förderfähige Gesamtausgaben Kommunalrichtlinie für zwei VZÄ)</td>
</tr>
<tr>
<td></td>
<td>Zählernachrüstung: mind. 2 Mio. EUR am Standort Garching</td>
</tr>
<tr>
<td>Finanzierungsansatz</td>
<td>Zentrale Mittel bzw. eigen Mittel aus dem Hochschulvertrag des StMWK (Eigenmittel 30 % für 3 Jahre)</td>
</tr>
<tr>
<td></td>
<td>Förderschwerpunkt Implementierung und Erweiterung eines Energiemanagements der Kommunalrichtlinie</td>
</tr>
<tr>
<td></td>
<td>https://www.klimaschutz.de/de/foerderung/foerderprogramme/kommunalrichtlinie/implementierung-und-erweiterung-eines-energiemanagements</td>
</tr>
<tr>
<td>Umsetzungsverantwortung</td>
<td>ZA4</td>
</tr>
<tr>
<td>Akteure</td>
<td>Sustainability Office</td>
</tr>
<tr>
<td>Flankierende Projekte</td>
<td>ED2b, ED4b</td>
</tr>
<tr>
<td>Hinweise</td>
<td></td>
</tr>
</tbody>
</table>
Ausbau der vorhandenen Messinfrastruktur für eine digitale und umfassende Erfassung des Energiebedarfs der Gebäude mit Energie-Dashboard

Transformationsfeld
Energieverbrauch

Ziel
Einführung eines kontinuierlichen und umfassenden Energie-Monitorings zur Optimierung und bedarfsgerechten Steuerung der Gebäudetechnik an allen Campus Standorten

Ausgangslage

Typ
Controlling / Lenkungsinstrument

Einführung
Kurzfristig (0-3 Jahre)

Dauer
Lang

Beschreibung

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>n/a</th>
<th>MWh pro Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>tCO₂e pro Jahr</td>
</tr>
</tbody>
</table>

Die Energie- und Treibhausgaseinsparungen sind erst quantifizierbar, sobald das Monitoring System etabliert und erste Energieeffizienzmaßnahmen identifiziert wurden.

Handlungsschritte

Im Anschluss an ED3a und mit der Einstellung einer Energiemanagerin oder eines Energiemanagers

- Einführung eines Energie-Monitoringsystems
- Energetische Bewertung und Analyse
- ggf. Schaffung von benutzerfreundlichen Schnittstellen

Erfolgsindikatoren
<table>
<thead>
<tr>
<th>Gesamtaufwand</th>
<th>ca. 2 Mio. EUR pro Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finanzierungsansatz</td>
<td>Zentrale Mittel bzw. eigen Mittel aus dem Hochschulvertrag des StMWK</td>
</tr>
<tr>
<td></td>
<td>Förderschwerpunkt Implementierung und Erweiterung eines Energiemanagements der Kommunalrichtlinie</td>
</tr>
<tr>
<td></td>
<td>https://www.klimaschutz.de/de/foerderung/foerderprogramme/kommunalrichtlinie/implementierung-und-erweiterung-eines-energiemanagements</td>
</tr>
<tr>
<td>Umsetzungsverantwortung</td>
<td>ZA4 (Energiemanagerin oder Energiemanager)</td>
</tr>
<tr>
<td>Akteure</td>
<td>ZA4, Sustainability Office, Taskforce Sustainable Campus Development</td>
</tr>
<tr>
<td>Flankierende Projekte</td>
<td>ED2a, ED4a</td>
</tr>
</tbody>
</table>

Hinweise
Ausstattung eines Pilotgebäudes in Garching mit umfassender Sensorik zur detaillierten Messung und Analyse des Energieverbrauchs inklusive Dashboard

<table>
<thead>
<tr>
<th>Transformationsfeld</th>
<th>Energieverbrauch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziel</td>
<td>Einführung eines kontinuierlichen und umfassenden Energie-Monitorings zur Optimierung und bedarfsgerechten Steuerung der Gebäudetechnik an allen Campus Standorten</td>
</tr>
</tbody>
</table>

Ausgangslage

<table>
<thead>
<tr>
<th>Typ</th>
<th>technisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung</td>
<td>Kurzfristig (0-3 Jahre)</td>
</tr>
<tr>
<td>Dauer</td>
<td>Kurz</td>
</tr>
</tbody>
</table>

Beschreibung

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>n/a</th>
<th>MWh pro Jahr</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>n/a</th>
<th>tCO₂e pro Jahr</th>
</tr>
</thead>
</table>

Handlungsschritte

- Bildung eines Projektteams mit Festlegung des Zeitplans und der Meilensteine
- Sensorik-Auswahl und Integration
- Dashboard-Entwicklung
- Echtzeit-Monitoring, Analyse und Optimierungsmaßnahmen
Integration in Lehrformate
Nutzerinnen und Nutzer-Schulung und Bewusstseinsbildung
Technologieevaluation und Dokumentation der Ergebnisse

| Erfolgsindikatoren | Ausstattung mit der entsprechenden Messtechnik
| | Inbetriebnahme eines Energie-Dashboards für das Gebäude |

| Gesamtaufwand | ca. 100.000 EUR |
| Finanzierungsansatz | Zentrale Mittel bzw. Mittel aus dem Hochschulvertrag mit dem StMWK |

| Umsetzungsverantwortung | ZA4 (Energiemanagerin oder Energiemanager) |
| Akteure | ZA4, Lehrstuhl für Erneuerbare und Nachhaltige Energiesysteme, Sustainability Office, Taskforce Sustainable Campus Development |

| Flankierende Projekte | ED4a, ED4b |

Hinweise
Ausstattung des TUM Campus Straubing mit umfassender Sensorik zur detaillierten Messung und Analyse des Energieverbrauchs inklusive Dashboard

Transformationsfeld
Energieverbrauch

Ziel
Lebenszyklusbasierte Kostenermittlung als Grundlage der Vergabe von Bauvorhaben

Ausgangslage

Typ
technisch
Einführung
Kurzfristig (0-3 Jahre)
Dauer
Kurz

Beschreibung

Energie- und Treibhausgaseinsparung

140 | Technische Universität München

Handlungsschritte

| Vor-Ort Begehung der aktuell verbauten Technik |
| Identifikation der gewünschten Auswertungsinhalte der Software für das Dashboard und Nachrüstung mit noch benötigter Hardware |
| Dashboard-Entwicklung |
| Echtzeit-Monitoring, Analyse und Optimierungsmaßnahmen |
| Nutzerinnen und Nutzer-Schulung und Bewusstseinsbildung |

Erfolgsindikatoren

| Ausstattung mit noch benötigter Messtechnik |
| Inbetriebnahme eines Energie-Dashboards für das Gebäude |
| Identifikation von Einsparpotenzialen |

Gesamtaufwand

n/a

Finanzierungsansatz

Eigenmittel TUMCS

Umsetzungsverantwortung

Gebäudemanagement TUMCS, Klimaschutzmanager TUMCS

Akteure

TUM Sustainability Office

Flankierende Projekte

ED1e, ED4b, ED4c, ES1d

Hinweise
Entwicklung einer umfangreichen Kommunikationskampagne zu Energieeinsparmaßnahmen mit den Zielgruppen Studierende und Beschäftigte

Transformationsfeld

Technische Universität München

Energieverbrauch

Ziel

Einbeziehung der Hochschulgemeinschaft zur Reduktion des Energieverbrauchs

Ausgangslage

<table>
<thead>
<tr>
<th>Typ</th>
<th>kommunikativ & partizipativ</th>
<th>Einführung</th>
<th>Kurzfristig (0-3 Jahre)</th>
<th>Dauer</th>
<th>Lang</th>
</tr>
</thead>
</table>

Beschreibung

Energie- und Treibhausgaseinsparung

| n/a | MWh pro Jahr | | Durch die Kommunikationskampagne sollen die Studierenden und Beschäftigte für Klimaschutz- und Energiesparmaßnahmen in ihrem täglichen Handeln sensibilisiert werden. Durch angeregte Verhaltensänderungen ergeben sich Energieeinsparungen und dadurch THG-Einsparungen, die in ihrem Umfang jedoch aktuell nicht quantifizierbar sind. |

| n/a | tCO₂e pro Jahr | | Bildung eines interdisziplinären Teams für die Durchführung des Projekts |

Handlungsschritte

Erfassung und Bewertung von aktuellen Verhaltensmustern anhand von Beispielen
<table>
<thead>
<tr>
<th>Erfolgsindikatoren</th>
<th>n/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtaufwand</td>
<td>Abhängig vom Umfang der Einzelmaßnahmen der Kampagne</td>
</tr>
<tr>
<td>Finanzierungsansatz</td>
<td>u.a. Personalmittel aus Folgeförderung des Klimaschutzmanagements</td>
</tr>
<tr>
<td></td>
<td>Bestandspersonal im Bereich Kommunikation</td>
</tr>
<tr>
<td>Umsetzungsverantwortung</td>
<td>Sustainability Office</td>
</tr>
<tr>
<td>Akteure</td>
<td>CCC, CST-Kommunikation, Kommunikationsstellen der Schools, TUM Green Offices, Studentisches Referat für Umwelt, relevante (verhaltensökonomische) Lehrstühle, Sustainability Board</td>
</tr>
<tr>
<td>Flankierende Projekte</td>
<td>M1b, R3a, R3c</td>
</tr>
<tr>
<td>Hinweise</td>
<td></td>
</tr>
</tbody>
</table>
Evaluation und ggf. sukzessive Einführung einer internen Leistungsverrechnung des Energieverbrauchs zur Sensibilisierung der Entscheidungsträgerinnen und Entscheidungsträger und Beschäftigten

Transformationsfeld Energieverbrauch

Ziel Einbeziehung der Hochschulgemeinschaft zur Reduktion des Energieverbrauchs

Ausgangslage

<table>
<thead>
<tr>
<th>Typ</th>
<th>Controlling</th>
<th>Einführung</th>
<th>Mittelfristig (4-7 Jahre)</th>
<th>Dauer</th>
<th>Lang</th>
</tr>
</thead>
</table>

Beschreibung

Ein Konzept für eine internen Leistungsverrechnung soll durch die Taskforce Sustainable Campus Development ausgearbeitet werden. Dabei soll zu Beginn ein Fokus auf die elektrische Energie (Strom) liegen, da im Bereich der Wärme Korrekturfaktoren für die unterschiedlichen Gebäudezustände notwendig wären.

Energie- und Treibhausgaseinsparung

| MWh pro Jahr | tCO₂e pro Jahr | Durch das Aufzeigen der entstehenden Kosten und benötigten Energien sollen die Nutzerinnen und Nutzer für Energieeinsparungen sensibilisiert werden. |

Handlungsschritte Aufbauend auf Projekte ED3a und ED3b

Erfolgsindikatoren

Gesamtaufwand n/a

Finanzierungsansatz n/a
<table>
<thead>
<tr>
<th>Umsetzungsverantwortung</th>
<th>ZA4 (Energiemanagerin oder Energiemanager)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akteure</td>
<td>Sustainability Office, ZA4</td>
</tr>
<tr>
<td>Flankierende Projekte</td>
<td>ED4a, ED4b</td>
</tr>
</tbody>
</table>

Hinweise
Prüfung von Intracting als Möglichkeit der internen Refinanzierung von Klimaschutzprojekten

Transformationsfeld Energieverbrauch

Ziel Finanzierung von neuen Klimaschutzprojekten aus den Einsparungen aus durchgeführten Projekten

Ausgangslage

Klimaschutzprojekte müssen aus diversen Haushaltsmitteln finanziert werden. Auch für die TUM gelten spezifische Regelungen für öffentliche Haushalte und Finanzen. Die gesetzlichen und haushaltrechtlichen Bestimmungen lassen eine einfache Refinanzierung durch Energieeinsparungen zum derzeitigen Stand nicht zu. Dies bedeutet, dass aktuell für jedes Projekt eine eigene Finanzierungsmöglichkeit gefunden werden muss.

Typ strategisch **Einführung** Mittelfristig (4-7 Jahre) **Dauer** Lang

Beschreibung

Intracting stellt eine noch neue Art zur Finanzierung von Klimaschutz- und Nachhaltigkeitsprojekten dar, und wird bereits an der Universität Kassel angewandt.

Die Möglichkeiten zur Umsetzung des Ansatzes an der TUM werden aus rechtlicher und organisatorischer Sicht geprüft.

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th></th>
<th>Die Energieeinsparungen der jeweiligen Projekte müssten individuell erfasst werden um die Kosteneinsparungen zu bestimmen, welche die Grundlage für ein Intracting darstellen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a MWh pro Jahr</td>
<td></td>
</tr>
<tr>
<td>n/a tCO₂e pro Jahr</td>
<td></td>
</tr>
</tbody>
</table>

Handlungsschritte

- Projektplanung und Stakeholder-Identifikation
- Prüfung der rechtlichen Rahmenbedingungen und Identifikation möglicher rechtlicher Hürden
- Ggf. Umsetzungskonzeption

Erfolgsindikatoren

- Entscheidung über eine mögliche Umsetzung von Intracting
| Gesamtaufwand | Im Falle der Umsetzung: Anschubfinanzierung ca. 10 % der durchschnittlichen jährlichen Energiekosten der Hochschule (Bsp. Uni Kassel)
Personal für die Umsetzung (Intracting Management) |
|---|---|
| Finanzierungsansatz | Evaluierungsphase: Bestandspersonal
Kosten im Falle der Umsetzung: n/a |
| Umsetzungsverantwortung | Sustainability Office |
| Akteure | Finanzen ZA3, Immobilien ZA4, Legal Office ZA5 |

Hinweise

Veröffentlichungen der Uni Kassel zu Intracting:
https://kobra.uni-kassel.de/bitstream/handle/123456789/14371/AbschlussberichtEnEffCampusIntractingAnHochschulen2022.pdf?sequence=4
5.3 Projekte Mobilität

Entwicklung einer TUM Travel Policy und eines Sets an Push- und Pull-Maßnahmen für nachhaltigere Dienstreisemobilität

Transformationsfeld

Mobilität

Ziel

Signifikate Reduzierung der dienstreisebedingten Treibhausgasemissionen

Ausgangslage

Als international vernetzte Universität ist die TUM auf die Kooperation und den Austausch mit internationalen Partnern angewiesen. Die Teilnahme an Konferenzen und Durchführung internationaler Projekte spielt für Forschende auf allen Karrierestufen eine bedeutende Rolle. Gleichzeitig verursachen Emissionen aus Dienstreisen einen signifikanten Anteil der gesamten Treibhausgasbilanz der TUM, wobei wiederum ein Großteil auf dienstliche Flugreisen zurückgeht. Die Grundlage für alle dienstlichen Reisen ist das Bayerische Reisekostengesetz (BayRKG) sowie für Auslandsdienstreisen auch die Bayerische Auslandsreiseverordnung (BayARV) und weitere zu beachtende rechtliche Bestimmungen.

Flugreisen sind aufgrund der Bayerischen Klimaschutzoffensive möglichst zu vermeiden und es ist bevorzugt auf andere, umweltverträglichere Verkehrsmittel auszuweichen. Entsprechend wurden die VV-BayRKG bereits dahingehend angepasst, dass bahnnutzungsbedingte Mehrkosten auch dann als Reisekosten ersetzt werden können, wenn bei einer alternativen Flugnutzung niedrigere Kosten anfallen würden (vgl. 3.2.1 VV-BayRKG). Daneben sind auch gegebenenfalls höhere Tagegelder und Übernachtungskosten erstattungsfähig.

Bei der Wahl des Verkehrsmittels sollen die dienstlichen Erfordernisse, die fürsorgerechtlichen Aspekte, die Kosten sowie die Umweltauswirkungen im Einzelfall berücksichtigt werden. Flugreisen, sowie Dienstreisen mit dem eigenen PKW müssen außerdem immer gesondert begründet werden. Letztere sind darüber hinaus nur unter bestimmten Umständen vollständig Erstattungsfähig. Es gilt, die Emissionen systematisch zu reduzieren und der Bereitschaft zur Nutzung von Alternativen zu Flugreisen entgegenzukommen.

Typ | Richtlinie / Policy | Einführung | Kurzfristig (0-3 Jahre) | Dauer | Kurz

Beschreibung

Ergänzend zu den bestehenden gesetzlichen Vorgaben soll eine TUM-Dienstreiserichtlinie erarbeitet werden, um innerdeutsche Flugreisen sowie innereuropäische Flugreisen unter einer zu definierenden Grenze (Reisestrecke und Reisedauer) auf ein Minimum zu reduzieren und nur in begründeten Ausnahmefällen genehmigt zu bekommen.

Als Bestandteil dieser Dienstreiserichtlinie soll unter Berücksichtigung der geltenden rechtlichen Bestimmungen einerseits ein Anreizsystem für die Nutzung emissionsarmer Verkehrsmittel geschaffen werden und andererseits das Reisen mit emissionsreichen Verkehrsmitteln auf ein minimiert werden.
Sehr umfassende Partizipationsmaßnahmen sind dabei notwendig, um alle von den Änderungen betroffenen Beschäftigen der TUM für die Implementierung der Richtlinie abzuholen. Eine dauerhaft transparente Kommunikation mit Hochschulpräsidium und erweitertem Hochschulpräsidium ist ebenfalls unerlässlich.

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th></th>
<th>Die THG-Einsparungen ergeben sich indirekt aus der Reduktion von Flugreisen und sind derzeit nicht quantifizierbar.</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a
MWh pro Jahr</td>
<td></td>
</tr>
<tr>
<td>n/a
tCO₂e pro Jahr</td>
<td></td>
</tr>
</tbody>
</table>

Handlungsschritte

- Definition von Zielen und Grenzwerten für die Reisestrecke und -dauer
- Ermittlung von Fällen, in denen Flugreisen weiterhin akzeptabel sind
- Partizipative Entwicklung von Pull-Maßnahmen (Incentives)
- Partizipative Entwicklung von Push-Maßnahmen (Restriktionen)
- Erarbeitung einer TUM-Dienstreiserichtlinie und Aufnahme der zuvor entwickelten Maßnahmen
- Transparente Kommunikation an Beschäftigte

Erfolgsindikatoren

- Reduktion der Anzahl an Flugreisen
- Reduktion der THG-Emissionen aus Flugreisen

Gesamtaufwand

Die Kosten für die Maßnahmenumsetzung können erst nach deren Entwicklung quantifiziert werden.

Finanzierungsansatz

Konzeption mit Bestandspersonal

Umsetzungsverantwortung

Sustainability Office

Akteure

Ref. 34 Zentrale Reisekostenstelle, Global & Alumni Office

Flankierende Projekte

M1b

Hinweise
Ausbau der Thinking Green-Initiative zur Kommunikationskampagne zur Steigerung des Bewusstseins für nachhaltigere Dienstreisen

<table>
<thead>
<tr>
<th>Transformationsfeld</th>
<th>Mobilität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziel</td>
<td>Signifikante Reduzierung der dienstreisebedingten Treibhausgasemissionen</td>
</tr>
</tbody>
</table>

Ausgangslage

Als international vernetzte Universität ist die TUM auf die Kooperation und den Austausch mit internationalen Partnern angewiesen. Die Teilnahme an Konferenzen und Durchführung internationaler Projekte spielt für Forschende auf allen Karrierestufen eine bedeutende Rolle. Gleichzeitig verursachen Emissionen aus Dienstreisen einen signifikanten Anteil der gesamten Treibhausgasbilanz der TUM, wobei wiederum ein Großteil auf dienstliche Flugreisen zurückgeht. Die Grundlage für alle dienstlichen Reisen ist das Bayerische Reisekostengesetz (BayRKG) sowie für Auslandsdienstreisen auch die Bayerische Auslandsreiseverordnung (BayARV) und weitere zu beachtende rechtliche Bestimmungen. Trotz dieser bestehenden Bestimmungen werden die Treibhausgasemissionen bei der Wahl des Verkehrsmittels für die Dienstreise zumeist noch nicht ausreichend berücksichtigt. Insbesondere für Kurzstrecken bestehen keine Anreizsysteme z. B. die Bahn einem Flug vorzuziehen. Es gilt, die Emissionen systematisch zu reduzieren und der Bereitschaft zur Nutzung von Alternativen zu Flugreisen entgegenzukommen.

Die Thinking Green-Initiative des TUM Global & Alumni Office zeigt derzeit beispielhaft Reisen von Studierenden, die sich intensive Gedanken zu umweltfreundlichem Reisen im Rahmen ihrer Auslandsaufenthalte gemacht haben. In Form von Reiseberichten werden die Geschichten der Reisenden für andere Studierende erzählt und sollen vermitteln, wie umweltbewusstes Reisen auch im Auslandssemester möglich ist und man dabei noch viele Erlebnisse haben kann. Im Rahmen des Erasmusprogramms ist auch eine finanzielle Incentivierung bei nachhaltigen Reisen in das Auslandssemester geboten. Um möglichst viele Studierende zu umweltbewusstem Reisen zu motivieren, werden ausgesuchte Stories mit dem Erasmus+ Award prämiert.

<table>
<thead>
<tr>
<th>Typ</th>
<th>kommunikativ & partizipativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung</td>
<td>Kurzfristig (0-3 Jahre)</td>
</tr>
<tr>
<td>Dauer</td>
<td>Lang</td>
</tr>
</tbody>
</table>

Beschreibung

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>n/a</th>
<th>MWh pro Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>tCO₂e pro Jahr</td>
</tr>
</tbody>
</table>

Die THG-Einsparungen sollen sich indirekt aus der Reduktion von Flugreisen durch die Anreizsysteme ergeben und sind nur schwer quantifizierbar.
| Handlungsschritte | Anpassung und Ausbau der Thinking Green-Initiative auf Dienstreisen
Entwicklung von Informationsmaterialien und Handreichungen
Integration in geeignete Kommunikationsformate und Veranstaltungen |
|------------------|--|
| Erfolgsindikatoren | Reduktion der Anzahl Flugreisen
Reduktion der THG-Emissionen aus Flugreisen |
Gesamtaufwand	n/a
Finanzierungsansatz	Bestandspersonal
Umsetzungsverantwortung	Sustainability Office
Akteure	TUM Global & Alumni Office, Ref. 34 Zentrale Reisekostenstelle
Flankierende Projekte	M1a, ED5a, R3a

Hinweise
Aufbau eines zentralen und digitalen Systems zur kontinuierlichen Erfassung aller Fahrzeuge und Verbrauchsdaten im Fuhrpark der TUM

Transformationsfeld: Mobilität
Ziel: Signifikante Reduzierung der Treibhausgasemissionen des TUM-Fuhrparks

Ausgangslage

Typ | Controlling / Lenkungsinstrument | Einführung | Kurzfristig (0-3 Jahre) | Dauer | Lang

Beschreibung

Energie- und Treibhausgaseinsparung

| n/a | Die zentrale und digitale Erfassung der Nutzungsdaten führt zu keiner direkten Energie- und THG-Einsparungen, bildet aber die Grundlage für eine THG-Monitoring und vereinfacht den Prozess zur Ermittlung der THG-Emissionen aus dem Fuhrpark.
| n/a | MWh pro Jahr |
| n/a | tCO₂e pro Jahr |

Handlungsschritte

Identifikation zentraler, sowie dezentraler Ansprechpersonen in den TUM-Einheiten, die Fahrzeuge unterhalten, zur vollständigen Erfassung der Auslastung und damit Optimierung sowie nach Möglichkeit Reduzierung des Fuhrparks.
| Erfolgsindikatoren | Vollständige digitale Erfassung der Fahrzeuge und Auslastungs- sowie Verbrauchsdaten der TUM
	Einführung einer zentralen Stelle für ein Fuhrparkmanagement
Gesamtaufwand	n/a
Finanzierungsansatz	n/a
Umsetzungsverantwortung	Offen (Fuhrparkmanagement)
Akteure	ZA3, TUM Sustainability Office, IT
Flankierende Projekte	M2b

Hinweise
Dekarbonisierung des Fuhrparks durch Einsatz alternativer Antriebstechnologien entsprechend der wirtschaftlichen und technischen Möglichkeiten und Erfordernisse

Transformationsfeld Mobilität

Ziel Signifikante Reduzierung der Treibhausgasemissionen des TUM-Fuhrparks

Ausgangslage

Typ technisch Einführung Mittelfristig (4-7 Jahre) Dauer Lang

Beschreibung

Um die Nutzung der elektrischen Fahrzeuge zu ermöglichen, muss die Ladeinfrastruktur an allen TUM-Campusstandorten ausgebaut werden. Dabei sollen auf eine intelligente Integration der Ladesysteme zur Optimierung der Energieeffizienz und des Netzausgleichs Wert gelegt werden.

Da sich auch eine Vielzahl landwirtschaftlicher Fahrzeuge im TUM-Fuhrpark befinden, wird eine vollständige Elektrifizierung nach aktuellem Stand der Technik nicht möglich sein. Für diese Fahrzeuge können auch alternative Kraftstoffe in Erwägung gezogen werden.

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>n/a</th>
<th>MWh pro Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>629</td>
<td>tCO₂e pro Jahr</td>
</tr>
</tbody>
</table>

Eine Elektrifizierung des gesamten Fuhrparks der TUM würde in Scope 1 zu einer Treibhausgaseinsparung von ca. 629 tCO₂e führen. (Einschränkungen siehe oben)

Handlungsschritte

Aufbauend auf M2a eine Identifikation des Elektrifizierungspotenzials der Flotte

Entwicklung und Implementierung einer TUM-Richtlinie für die Neuanschaffung von Fahrzeugen unter Berücksichtigung der gesetzlichen/ministeriell bestehenden Vorgaben seitens Bund und Freistaat Bayern

154 | Technische Universität München
Erfolgsindikatoren

- Steigende Anzahl und steigender Anteil der Fahrzeuge mit alternativen Antrieben im Fuhrpark der TUM (jährliche Erfassung)
- Steigende Anzahl von Ladepunkten für Elektro-Dienstfahrzeuge an allen Standorten

Gesamtaufwand

- n/a

Finanzierungsansatz

- Förderprogramm des StMWi für Nicht öffentlich zugängliche Ladeinfrastruktur für Elektrofahrzeuge in Bayern

 https://www.bayern-innovativ.de/de/foerderprogramme-elektromobilitaet/seite/foerderprogramm-nicht-oeffentliche-ladepunkte

Umsetzungsverantwortung

- Fuhrparkmanagement

Akteure

- ZA3, ZA5, Sustainability Office, ZA4, alle Fuhrpark-/Fahrzeugverantwortlichen

Flankierende Projekte

- M2a

Hinweise

Bei der Bereitstellung von Ladepunkten für Dienstfahrzeuge sollten Synergieeffekte für den Ausbau der öffentlichen Elektromobilitätsinfrastruktur in Deutschland immer mitbedacht werden. Daher gilt es zu prüfen inwiefern die errichteten Ladepunkte auch der Öffentlichkeit oder eingeschränkten Öffentlichkeit, in Form von Beschäftigten und Studierenden, zur Verfügung gestellt werden können. Dabei müssen die haushaltsrechtlichen Gegebenheiten zwingend beachtet werden. Ein Modellversuch für Ladepunkte für die eingeschränkte Öffentlichkeit in Form von Beschäftigten und Studierenden wurde Anfang 2024 am TUM Campus Straubig gestartet.

Vergabeberatung: beratende Unterstützung, zwingende Voraussetzung bei der Beschaffung: Leistungsbeschreibung; oder in den Zuschlagskriterien als „Bonus“ bei der Wertung; Aufnahme in den Dienstleistungskompass

ZA 5: Richtlinie entwerfen, auf den Weg bringen; insbesondere nach erforderlichen Input: technische Spezifikationen; Zielsetzung, Umsetzung, etc.
Etablierung eines Mobilitätsmanagements zur Umsetzung zielgerichteter Projekte für eine nachhaltigere Pendelmobilität

Transformationsfeld
Mobilität

Ziel
Signifikante Reduzierung der Treibhausgasemissionen der Pendelmobilität

Ausgangslage

Für die Startbilanz lagen keine Daten zur Pendelmobilität vor. Aus diesem Grund wurden im Q2 2023 zwei einschlägige Lehrstühle damit beauftragt eine Mobilitätsumfrage durchzuführen. Die Umfrage konzentriert sich speziell auf den Aspekt der Alltagsmobilität zu den TUM-Standorten mit dem Ziel Daten für die Treibhausgasbilanz und ein regelmäßiges Monitoring zu sammeln. Derzeit existiert kein institutionalisiertes Mobilitätsmanagement an der TUM.

<table>
<thead>
<tr>
<th>Typ</th>
<th>Controlling / Lenkungsinstrument</th>
<th>Einführung</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kurzfristig (0-3 Jahre)</td>
<td>Lang</td>
</tr>
</tbody>
</table>

Beschreibung

Auf Basis der Mobilitätsumfrage werden Mobilitäts- und/oder Mobilitätsmanagementkonzepte für die verschiedenen TUM-Standorte entwickelt, um eine nachhaltige Mobilität zu ermöglichen, die Erreichbarkeit zu verbessern und Mobilitätsgerechtigkeit sicherzustellen. Für die Umsetzung von zielgerichteten Projekten ist die Etablierung eines Mobilitätsmanagements erforderlich.

Energie- und Treibhausgaseinsparung

| 0 MWh pro Jahr | Die Treibhausgasemissionen des Pendelverkehrs konnten für die Startbilanz noch nicht erhoben werden. Die Etablierung eines Mobilitätsmanagements wird auch nur indirekt über die Umsetzung von konkreten Projekten zu Einsparungen von Treibhausgasen führen. Die konkreten Zahlen können erst zu einem späteren Zeitpunkt ermittelt werden. |
| n/a tCO₂e pro Jahr | Einführung eines Mobilitätsmanagements mit unmittelbaren Schnittstellen zum Management der jeweiligen Campus Standorte (ZA4) und den zuständigen Bauämtern
Umsetzung standortspezifischer und allgemeiner Mobilitätsmanagementmaßnahmen
Etablierung einer regelmäßigen Mobilitätsumfrage als Controllinginstrument zur Erfolgsmessung
Veränderung des Modal Split der Studierenden und Beschäftigten zugunsten emissionsärmerer Verkehrsmittel |

Handlungsschritte

Erfolgsindikatoren

Gesamtaufwand

1-3 Personalstellen
Sachmittel für die Umsetzung konkreter Maßnahmen

Finanzierungsansatz

- BMWK: Förderschwerpunkt Logistik und Mobilität der Kommunalrichtlinie
 https://www.klimaschutz.de/de/foerderung/foerderkompass/logistik-mobilitaet
- BMDV: Förderrichtlinie Betriebliches Mobilitätsmanagement
 https://www.balm.bund.de/DE/Foerderprogramme/BMM/Foerderaufruf/Foerderaufruf_BMM.html

Umsetzungsverantwortung

Sustainability Office

Akteure

Forschungseinheiten/-verbünde (TUM.Mobility, MCube, etc.), ZA4, Kommunale Akteurinnen und Akteure

Flankierende Projekte

M2a, M4a

Hinweise

Das Projekt beinhaltet potenziell auch bauliche / strukturelle Veränderungen der Campus. Dementsprechend müssen diese Aspekte im Verbund mit Projekten geplant werden, die ebenfalls auf das Thema Campusentwicklung einziehen.

Stand 02/2024 in Antragsphase bzw. kurz vor Freigabe befinden sich folgende Projekte:

- PRIMA (BMDV-Förderung "mobil gewinnt") Partizipatives Reallabor für innovatives Mobilitätsmanagement mit App-basierten Anreizen
- M-Cube (BMBF Innovationscluster für nachhaltige Mobilität), Teilprojekt Phase II zur nachhaltigen Mobilität am Campus Garching
Förderung von flexiblen Arbeitszeitmodellen und mobilem Arbeiten

M3b

Transformationsfeld	Mobilität
Ziel | Signifikante Reduzierung der Treibhausgasemissionen der Pendelmobilität

Ausgangslage

Alternierende Telearbeit und mobiles Arbeiten – umgangssprachlich als Homeoffice bezeichnet – sind wichtige Bausteine für ein Arbeitsmodell der Zukunft, das den Ausgleich von Arbeit und Privatleben unterstützt. Eine erfolgreiche Umsetzung ist immer von den spezifischen dienstlichen Erfordernissen aber auch einem Vertrauensverhältnis zwischen Arbeitgeberin und Beschäftigten mit offenem und ehrlichem Dialog, Kritikfähigkeit und Rücksichtnahme vorausgesetzt. Zum derzeitigen Stand können die Beschäftigten der TUM nach Genehmigung auf Grundlage der Rahmenvereinbarung bis zu 40 % mobil bzw. 50 % in alternierender Telearbeit arbeiten.

<table>
<thead>
<tr>
<th>Typ</th>
<th>Controlling / Lenkungsinstrument</th>
<th>Einführung</th>
<th>Dauer</th>
</tr>
</thead>
</table>

| Beschreibung |

| Energie- und Treibhausgaseinsparung |

| n/a MWh pro Jahr | Es entstehen THG-Einsparungen im Bereich Mobilität durch reduzierte Tage mit Fahrt zum Arbeitsplatz, die zum derzeitigen Zeitpunkt noch nicht quantifizierbar sind. |
| n/a tCO2e pro Jahr |

| Handlungsschritte |

| Regelmäßige Evaluierung der Rahmenvereinbarung zur alternierenden Telearbeit und mobilen Arbeiten. |
| Großzügige (den jeweiligen dienstlichen Erfordernissen und der persönlichen Befähigung der/des Mitarbeitenden angepasste) Genehmigungspraxis für mobiles Arbeiten durch die Personalverantwortlichen. |

158 | Technische Universität München
<table>
<thead>
<tr>
<th>Erfolgsindikatoren</th>
<th>Datenerhebung in regelmäßigem Mobilitätsmonitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtaufwand</td>
<td>n/a</td>
</tr>
<tr>
<td>Finanzierungsansatz</td>
<td>n/a</td>
</tr>
<tr>
<td>Umsetzungsverantwortung</td>
<td>ZA2, alle Personen mit Personalverantwortung</td>
</tr>
<tr>
<td>Akteure</td>
<td>Gesamtpersonalrat, Sustainability Office, Kanzler</td>
</tr>
</tbody>
</table>

Flankierende Projekte

Hinweise
Ausbauf der Fahrradabstellanlagen und/ oder – parkhäusern und Steigerung der Fahrradfreundlichkeit der Campus

<table>
<thead>
<tr>
<th>Transformationsfeld</th>
<th>Mobilität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziel</td>
<td>Steigerung der Fahrradnutzung am Campus zur Reduktion von motorisierten Verkehr</td>
</tr>
</tbody>
</table>

Ausgangslage

Beschreibung

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>Energieeinheit</th>
<th>MWh pro Jahr</th>
<th>tCO₂e pro Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>Durch die verbesserte Radinfrastruktur soll das Fahrradfahren für Pendelnde attraktiver gemacht werden, um das motorisierte Verkehrsaufkommen zu reduzieren und den Aufwand für PKW-Stellplätze zu reduzieren sowie THG-Emissionen einzusparen. Die genauen THG-Einsparungen sind noch nicht quantifizierbar.</td>
<td></td>
</tr>
</tbody>
</table>

Handlungsschritte

Bedarfsanalyse an allen TUM-Standorten, aufbauend auf Mobilitätsanalysen / -konzepten und Integration des Bestands ins kommende GIS (siehe M3a)

Evaluation bestehender Förderprogramme und Vorbereitung der Antragstellung
<table>
<thead>
<tr>
<th>Erfolgsindikatoren</th>
<th>Zielgerichteter Ausbau der Fahrradabstellanlagen an allen TUM-Standorten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtaufwand</td>
<td>Bestandteil von Projekt M3a</td>
</tr>
<tr>
<td>Finanzierungsansatz</td>
<td>Förderschwerpunkt Verbesserung des ruhenden Radverkehrs und dessen Infrastruktur</td>
</tr>
<tr>
<td>Umsetzungsverantwortung</td>
<td>ZA4, Sustainability Office (Mobilitätsmanagement)</td>
</tr>
<tr>
<td>Akteure</td>
<td>Taskforce Sustainable Campus Development, ReparadTUM</td>
</tr>
<tr>
<td>Flankierende Projekte</td>
<td>M3a</td>
</tr>
</tbody>
</table>

Hinweise
5.4 Projekte Ressourcenverbrauch und -effizienz

Erarbeitung von Handreichungen und Vorgaben für nachhaltige Beschaffung und Integration in die Vergabeberatung

<table>
<thead>
<tr>
<th>Transformationsfeld</th>
<th>Ressourcenverbrauch und -effizienz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziel</td>
<td>Treibhausgaseinsparungen in der Beschaffung</td>
</tr>
</tbody>
</table>

Ausgangslage

Die Herausforderung des Beschaffungswesens an der TUM liegt in der Unterteilung in eine zentrale und direkt beeinflussbare, sowie in eine dezentrale und daher nur bedingt steuerbare Beschaffung von Produkten und Dienstleistungen. Bislang wurden nur vereinzelt konkrete Kriterien im Bereich Nachhaltigkeit für die Beschaffung von Gütern und Dienstleistungen an der TUM festgelegt.

<table>
<thead>
<tr>
<th>Typ</th>
<th>Richtlinie / Policy</th>
<th>Einführung</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kurzfristig (0-3 Jahre)</td>
<td>Kurz</td>
</tr>
</tbody>
</table>

Beschreibung

Durch die Integration von Nachhaltigkeitskriterien in die Vergabeberatung werden die Beschafferinnen und Beschaffer stärker mit den Themen Nachhaltigkeit und Klimaschutz konfrontiert und gezielt von der Vergabeberatung darauf hingewiesen, sollten sie noch nicht in ausreichendem Umfang in den Ausschreibungen beinhaltet sein.

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th></th>
<th>THG-Einsparungen entstehen durch die Beschaffung von klimafreundlicheren Materialien (z. B. Recyclingpapier), Geräten (IT-Geräte). Aktuell liegen noch keine ausreichenden Daten vor, um Einsparpotentiale zu quantifizieren.</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>MWh pro Jahr</td>
</tr>
<tr>
<td>n/a</td>
<td>tCO₂e pro Jahr</td>
</tr>
</tbody>
</table>

Handlungsschritte

Auswertung der laufenden Beschaffungen; was und wieviel kauft die TUM ein?
Entwicklung einer Handreichung für Nachhaltigere Beschaffung inkl. Prüfung von Siegeln und Zertifizierungen
Prüfung der Einführung einer verbindlichen Richtlinie zur nachhaltigen Beschaffung
Entwicklung entsprechender Formulare
Integration von Nachhaltigkeitskriterien in die Vergabe und Vergabeberatung
Schulungen, extern und intern (der Vergabeberatung, aber insbesondere auch der Beschaffenden)
Sukzessive Umstellung von Rahmenverträgen ggf. Vertragspartnerwechsel, um Produkte mit höheren Nachhaltigkeitsstandards zu beziehen
Nationaler und internationaler Austausch mit anderen Universitäten, etc.; Netzwerken beitreten bzw. Netzwerke aufbauen – z. B. DTU (schon begonnen, durch Teilnahme am Nachhaltigkeitstag durch Sustainability Office und Vergabeberatung)

<table>
<thead>
<tr>
<th>Erfolgsindikatoren</th>
<th>Vorgaben für eine nachhaltigen Beschaffung sind eingeführt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nachhaltigkeitskriterien sind fester Bestandteil der Vergabeberatung</td>
</tr>
<tr>
<td></td>
<td>Schulungen werden angeboten und durchgeführt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gesamtaufwand</th>
<th>Entwicklung Handreichung für nachhaltigere Beschaffung: ca. 3 Arbeitswochen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Entwicklung der Formulare: 2 Arbeitswochen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Finanzierungsansatz</th>
<th>Bestandspersonal</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Umsetzungsverantwortung</th>
<th>ZA5 Vergabeberatung, TUM Sustainability Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akteure</td>
<td>Beschaffende Stellen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flankierende Projekte</th>
<th>R1b, R1c</th>
</tr>
</thead>
</table>

Hinweise

Empfehlungen und Hilfestellungen können kurzfristig von der Vergabeberatung erfolgen bzw. umgesetzt werden, z. B. Anpassung der Formulare, verstärkte Aufnahme in die Schulungen und den Beratungsalltag

Die Einführung einer verbindlichen Beschaffungsrichtlinie bedarf eines Präsidiumsbeschlusses

https://www.bmi.bund.de/SharedDocs/kurzmeldungen/DE/2023/05/fortbildungsinitiative-nachhaltige-beschaffung.html

https://www.bmi.bund.de/SharedDocs/pressemitteilungen/DE/2023/05/initiative-nachhaltige-beschaffung.html;jsessionid=C6A028537E7815887C4E2A9E85DDE198.live892
Stufenweise Zentralisierung und Digitalisierung geeigneter Beschaffungsprozesse unter Berücksichtigung von Nachhaltigkeitskriterien und kontinuierliche Erweiterung der in der Treibhausgasbilanz berücksichtigten beschafften Waren und Güter (Scope 3)

Transformationsfeld
Ressourcenverbrauch und -effizienz

Ziel
Treibhausgaseinsparungen in der Beschaffung

Ausgangslage

<table>
<thead>
<tr>
<th>Typ</th>
<th>Controlling / Lenkungsinstrument</th>
<th>Einführung</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kurzfristig (0-3 Jahre)</td>
<td>Lang</td>
</tr>
</tbody>
</table>

Beschreibung

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>n/a MWh pro Jahr</th>
<th>Aktuell liegen noch keine ausreichenden Daten vor, um Einsparpotentiale zu quantifizieren. Das Projekt dient u.a. dazu die Datengrundlage dafür zu schaffen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a tCO₂e pro Jahr</td>
<td>Erfahrungsaustausch mit EuroTech-Partnern fortführen Bereitstellung der notwendigen personellen und finanziellen Ressourcen Einführung einer zentralen Beschaffungsplattform Inklusion der in R1a definierten Nachhaltigkeitskriterien in die Rahmenverträge für die Beschaffungsplattform</td>
</tr>
</tbody>
</table>

Handlungsschritte

- Erfahrungsaustausch mit EuroTech-Partnern fortführen
- Bereitstellung der notwendigen personellen und finanziellen Ressourcen
- Einführung einer zentralen Beschaffungsplattform
- Inklusion der in R1a definierten Nachhaltigkeitskriterien in die Rahmenverträge für die Beschaffungsplattform
| Erfolgsindikatoren | Inbetriebnahme einer zentralen Beschaffungspattform
| | Anzahl von Rahmenverträgen, die in die Plattform integriert sind
| | Alle Beschaffungen werden über das zentrale System abgewickelt |
| Gesamtaufwand | Softwarekosten inklusive Beratung: n/n
| | Personalkosten: n/a |
| Finanzierungsansatz | Software und Beratung: zentrale Mittel
| | Personal: n/a |
| Umsetzungsverantwortung | IT, ZA5 Vergabeberatung |
| Akteure | Sustainability Office, ZA3 |
| Flankierende Projekte | R1a |

Hinweise
Modernisierung der Plattform für Tausch vorhandener Ressourcen und Erweiterung um Sharing Funktionen

Transformationsfeld Ressourcenverbrauch und -effizienz

Ziel Ressourceneffizienter Arbeitsalltag an der TUM

Ausgangslage

Der TUM-Basar und eGon sind nur wenigen Beschäftigten bekannt. Im Rahmen des myTUM-Portals bieten die Systeme einen eingeschränkten Bedienkomfort und erfordern einen vergleichsweise hohen Nutzungsauwand.

<table>
<thead>
<tr>
<th>Typ</th>
<th>Einführung</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>kommunikativ & partizipativ</td>
<td>Kurzfristig (0-3 Jahre)</td>
<td>Lang</td>
</tr>
</tbody>
</table>

Beschreibung

Durch die Weiterverwendung von Gegenständen müssen weniger Neuanschaffungen getätigt werden, die Gegenstände werden länger im Kreislauf geführt und das Abfallaufkommen wird reduziert.

Um das aktuelle System attraktiver und besser zugänglich zu machen ist die Integration der Inhalte in ein einfach zu bedienendes, digitales und leicht zugängliches Tool notwendig. Dabei sollte eine direkte Bearbeitung durch die Veräußernden Stellen ermöglicht werden, da ungenaue Beschreibungen der Gegenstände die Suche nach gelisteten Gegenständen und dabei insbesondere Spezialgeräte stark einschränkt. Wie eine solche Lösung aussehen kann, soll mit der IT-Abteilung und der ZA3 erarbeitet werden.

Welche Gegenstände und weiteren Kategorien in die Liste zur Weitergabe und/oder zum Tausch aufgenommen werden ist noch auszuarbeiten.
Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>n/a</th>
<th>MWh pro Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>tCO₂e pro Jahr</td>
</tr>
</tbody>
</table>

Handlungsschritte

- Bedarfsanalyse und Erhebung der Nutzungsbereitschaft bezüglich einer neuen Plattform
- Festlegung von Zielsetzungen, technischen Anforderungen und Schnittstellen für ein digitales Tool
- Testphase für die Erfassung von Nutzerfeedback und Anpassungen des Systems
- Umsetzung und Integration von Feedbackschleifen für die kontinuierliche Verbesserung
- Entwicklung einer Kommunikationsstrategie und Schulungsmaterial zur Verbreitung des überarbeiteten Systems zur breitflächigen Anwendung.

Erfolgsindikatoren

- Wachsende Anzahl von Nutzerinnen und Nutzer eines neuen Systems

Gesamtaufwand

- n/a

Finanzierungsansatz

- n/a

Umsetzungsverantwortung

- Sustainability Office

Akteure

- IT, ZA3

Flankierende Projekte

- ED5a, R1a, R3a

Hinweise

Die Max-Planck-Gesellschaft nutzt bereits eine Altgerätebörse. Dort könnte man Informationen über deren funktionsweise einholen.

Die Umsetzung ist von den noch zu bestimmenden Nutzerinnen- und Nutzerpotenzialen abhängig (Kosten-Nutzen Relation)
Entwicklung eines Green Event Guidebooks und Erarbeitung einer Green Event Policy inklusive Monitoring durch ein Ökobilanzierungstool für Veranstaltungen

Transformationsfeld Ressourcenverbrauch und -effizienz

Ziel Treibhausgaseinsparungen in der Beschaffung

Ausgangslage

<table>
<thead>
<tr>
<th>Typ</th>
<th>Richtlinie / Policy</th>
<th>Einführung</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kurzfristig (0-3 Jahre)</td>
<td>Kurz</td>
</tr>
</tbody>
</table>

Beschreibung

Es soll ein umfassender Leitfaden, der klare Richtlinien, Ressourcen und Checklisten für die Planung und Durchführung von nachhaltigeren Veranstaltungen an der TUM enthält, entwickelt werden. Auf Basis dessen und nach Einbeziehung der Universitätsgemeinschaft, Veranstaltungsplanern für Feedback wird eine strategischen Green Event Policy, die die Verpflichtung der TUM zur Nachhaltigkeit in Veranstaltungen festhält und klare Ziele und Kriterien für Green Events definiert, formuliert.

Zum Monitoring soll ein Tool für die Ökobilanzierung von Veranstaltungen entwickelt und bereitgestellt werden. Der TUM Campus Straubing soll dabei die erste TUM-Einheit werden, in der alle organisierten Veranstaltungen durch das zuvor entwickelte Bilanzierungstool bilanziert werden.

Energie- und Treibhausgaseinsparung

| n/a | MWh pro Jahr | Veranstaltungen sind derzeit noch kein fester Bestandteil der Treibhausgasbilanz. Daher können keine Einsparpotenziale durch die Durchführung von nachhaltigeren Veranstaltungen quantifiziert werden. |
| n/a | tCO₂e pro Jahr | Das angestrebte Bilanzierungstool kann die Emissionen von einzelnen Veranstaltungen quantifizierbar machen. |

Handlungsschritte

- Entwicklung und Veröffentlichung des Green Events Guidebook (Q1 2024)
- Partizipative Entwicklung eines Ökobilanzierungstools für Veranstaltungen im Rahmen von einer oder mehrerer Lehrveranstaltungen
- Formulierung Green Events Policy

Erfolgsindikatoren

- Anzahl ökobilanzierter Veranstaltungen
<table>
<thead>
<tr>
<th>Gesamtaufwand</th>
<th>n/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finanzierungsansatz</td>
<td>n/a</td>
</tr>
<tr>
<td>Umsetzungsverantwortung</td>
<td>Sustainability Office</td>
</tr>
<tr>
<td>Akteure</td>
<td>Veranstalterinnen und Veranstalter an der TUM, TUMCS</td>
</tr>
<tr>
<td>Flankierende Projekte</td>
<td></td>
</tr>
</tbody>
</table>

Hinweise
Umsetzung des vorgesehenen einheitlichen Mülltrenn- und Sammelsystems in den Gebäuden an allen TUM-Standorten mit Mapping der Wertstoffinseln und Kommunikationskampagne

Transformationsfeld
Ressourcenverbrauch und -effizienz

Ziel
Abfallvermeidung und -trennung im Arbeits- und Studienalltag

Ausgangslage

Für die Abfallsammelbehälter in den einzelnen Gebäuden und Fluren ist das jeweilige interne Gebäudemangement oder der zuständige externe Gebäudedienstleister zuständig.

<table>
<thead>
<tr>
<th>Typ</th>
<th>Controlling / Lenkungsinstrument</th>
<th>Einführung</th>
<th>Kurzfristig (0-3 Jahre)</th>
<th>Dauer</th>
<th>Lang</th>
</tr>
</thead>
</table>

Beschreibung

Ein einheitliches Müllsammelsystem mit einfacher Farbcodierung und Symbolik, sowie strategisch gewählten Einwurf Öffnungen kann zu einer sehr sauberen Trennquote von Alltagsabfällen führen, wie die EuroTech-Partner EPFL und DTU bei Site-Visits aufzeigen konnten. Die Sammelbehälter müssen dazu in ausreichender Zahl auf dem Campusgelände (im Außenbereich sowie auf Fluren und Gängen), gut erreichbar zur Verfügung gestellt werden. Darüber hinaus sollen die Sammelstationen auch auf einer Karte verzeichnet werden. Außerdem soll die Karte die größeren Wertstoffstationen beinhalten, inklusive einer Übersicht der Wertstoffe, die dort entsorgt werden können.

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>n/a</th>
<th>MWh pro Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>tCO₂e pro Jahr</td>
</tr>
</tbody>
</table>

Treibhausgaseinsparungen können sich durch die fachgerechte Trennung und anschließendes Recycling von Wertstoffen ergeben. Aktuell sind die THG-Emissionen aus den Abfällen noch nicht bekannt.

Handlungsschritte

Bedarfsanalyse

Einwicklung eines einheitlichen Abfalltrenn- und Sammelkonzepts, das die Bedürfnisse und Gegebenheiten der Standorte und Akteure berücksichtigt.

Identifizierung geeigneter Tools für das Mapping der Sammelstationen und die Kommunikationskanäle

Ermittlung des Budgets und der benötigten Ressourcen, einschließlich Müllbehälter, Aufkleber, Schulungsmaterial
Kommunikation an und Sensibilisierung der TUM-Gemeinschaft (R3a)

Erfolgsindikatoren

<table>
<thead>
<tr>
<th>Erfolgsindikatoren</th>
<th>Einheitliches Abfallsammelsystem an allen TUM-Standorten</th>
</tr>
</thead>
</table>

Gesamtaufwand

<table>
<thead>
<tr>
<th>Gesamtaufwand</th>
<th>n/a</th>
</tr>
</thead>
</table>

Finanzierungsansatz

<table>
<thead>
<tr>
<th>Finanzierungsansatz</th>
<th>n/a</th>
</tr>
</thead>
</table>

Umsetzungsverantwortung

<table>
<thead>
<tr>
<th>Umsetzungsverantwortung</th>
<th>Stabstelle Entsorgung und Umwelt, Gebäudemanagement der Standorte</th>
</tr>
</thead>
</table>

Akteure

<table>
<thead>
<tr>
<th>Akteure</th>
<th>TUM Sustainability Office, Green Offices, Gebäudedienstleister</th>
</tr>
</thead>
</table>

Flankierende Projekte

<table>
<thead>
<tr>
<th>Flankierende Projekte</th>
<th>R3a, MN2a</th>
</tr>
</thead>
</table>

Hinweise

Entsorgungsleitfaden: https://collab.dvb.bayern/display/TUMhr6/01.03+Standorte
Erarbeitung von Handlungsempfehlungen für einen ressourceneffizienten Arbeitsalltag

Transformationsfeld | Ressourcenverbrauch und -effizienz
Ziel | Ressourceneffizienter Arbeitsalltag an der TUM

Ausgangslage

Bis zur Erstellung des Klimaschutzkonzepts 2023 sind keine übergreifenden Handlungsempfehlungen für einen ressourceneffizienten Arbeitsalltag an der TUM vorhanden.

Auf studentischer Ebene tragen das studentische Referat für Umwelt und die TUM Green Offices bereits in vielen Bereichen zu einem nachhaltigeren (Studien)Alltag bei. Dabei sind insbesondere das große Engagement der TUM Green Offices mit deren zahlreichen Veranstaltungen und Informationskampagnen zu den Themen Abfall und Entsorgung, Upcycling, Sharing, Mobilität, Ernährung und Ökologie auf dem Campus, sowie der „Umweltlifeguide“ der Studentischen Vertretung der TUM und LMU zu erwähnen.

Das erste Green Office wurde 2018 am TUMCS gegründet, als das Campusmanagement und die Studierenden gemeinsam beschlossen sich der internationalen Green Office Bewegung anzuschließen. Die thematische Nähe in Forschung und Lehre und das große Interesse der Studierenden sowie Beschäftigten am Campus Straubing waren die besten Voraussetzungen für ein Pilotprojekt „Green Office an der TUM“. Aufgrund des Erfolgs in Straubing wurde 2022 schließlich das Green Office Weihenstephan gegründet. Weitere Green Offices für die Standorte München und Garching befinden bereits ebenfalls in der Planung.

<table>
<thead>
<tr>
<th>Typ</th>
<th>kommunikativ & partizipativ</th>
<th>Einführung</th>
<th>Kurzfristig (0-3 Jahre)</th>
<th>Dauer</th>
<th>Kurz</th>
</tr>
</thead>
</table>

Beschreibung

Beispiele für einen Katalog mit Handlungsempfehlungen sind:

- Die Nutzung digitaler Dokumente und Prozesse und Reduzierung von Druckerzeugnissen / des Papierverbrauchs
- Vermeidung von Abfällen
- Mülltrennung am Arbeitsplatz und Recycling von Wertstoffen, die nicht vermieden werden können
- Einstellung von nicht mehr benötigten Gegenständen im TUM-Basar
- Bewusster Energieverbrauch: Ausschalten von Geräten und Leuchten, wenn sie nicht benötigt werden

Die Handlungsempfehlungen werden in geeigneten und zielgruppengerechten Formaten aufbereitet und bekannt gemacht (Handreichungen, Kommunikationskampagne, Sensibilisierungs- und Weiterbildungsformate, Aktionstage, etc.).
Bei der Ausarbeitung und Kommunikation dieser Handlungsempfehlungen kann den Green Offices und dem Studentischen Referat für Umwelt eine besondere Rolle zukommen.

Alle Formen der Kommunikation erfolgen in engem Zusammenhang mit der Kommunikationskampagne zu Energieeinsparmaßnahmen (ED5a)

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>n/a</th>
<th>MWh pro Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>tCO₂e pro Jahr</td>
</tr>
</tbody>
</table>

Durch die Handlungsempfehlungen sollen die Beschäftigten und Studierenden dazu angeregt werden, ihren Arbeitsalltag ressourceneffizienter zu gestalten. Dadurch können sowohl Energie- als auch THG-Einsparungen erzielt werden. Die konkrete Einsparung ist nicht pauschal quantifizierbar.

Handlungsschritte

Ausarbeitung der Handlungsempfehlungen zusammen mit den Green Offices und dem Studentischen Referat für Umwelt

Integration in die Kommunikationskampagne zu Energiesparmaßnahmen und ressourcenschonenden Umgang (ED5a)

Erfolgsindikatoren

Steigende Anzahl der Interaktionen mit den Medien über die die Handlungsempfehlungen kommuniziert werden (Aufrufe Social Media Posts, Aufrufe der Webpages, Downloads, Teilnehmende an Veranstaltungen etc.)

Gesamtaufwand

Personalkosten für Konzeption und Umsetzung: n/a

Sachkosten für die Umsetzung: n/a

Finanzierungsansatz

Bestandspersonal für Konzeption und Umsetzung

Sachkosten: bestehende Budgets (Sustainability Office)

Umsetzungsverantwortung

Sustainability Office

Akteure

Green Offices, Studentisches Referat für Umwelt (Uref), IL3

Flankierende Projekte

ED5a, M1a, M1b, M3a, R1c, R1d, R2a,

Hinweise

Umweltlifeguide: [https://acro-bat.adobe.com/link/track?uri=urn%3AAaaid%3Ascds%3AUS%3A2f070a-3177-4b88-8fbe-d07fb3a52507](https://acrobat.adobe.com/link/track?uri=urn%3AAaaid%3Ascds%3AUS%3A2f070a-3177-4b88-8fbe-d07fb3a52507)
Förderung von flexiblen Arbeitsplätzen an der TUM zur Reduktion des Platz- und Ressourcenbedarfs

R3b

Transformationsfeld
Ressourcenverbrauch und -effizienz

Ziel
Ressourceneffizienter Arbeitsalltag an der TUM

Ausgangslage

Typ
strategisch

Einführung
Kurzfristig (0-3 Jahre)

Dauer
Mittel

Beschreibung

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>Emissionsquelle</th>
<th>Menge pro Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a MWh pro Jahr</td>
<td>Da vermehrt von zu Hause gearbeitet werden kann, können THG-Emissionen im Pendelverkehr sowie zur Beheizung von nicht ausgelasteten Flächen eingespart werden. Die Höhe der Einsparungen ist nicht quantifizierbar.</td>
</tr>
<tr>
<td>n/a tCO₂e pro Jahr</td>
<td>Machbarkeitsanalyse und Identifikation ungenutzter Räumlichkeiten</td>
</tr>
</tbody>
</table>

Handlungsschritte

- Pilotierung Shared Desktops mit interessierten Beschäftigten, Abteilungen, Instituten
- Anpassung der Dienstvereinbarung und Integration von Homeoffice Optionen

Erfolgsindikatoren
<table>
<thead>
<tr>
<th>Gliederungsthema</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtaufwand</td>
<td>n/a</td>
</tr>
<tr>
<td>Finanzierungsansatz</td>
<td>n/a</td>
</tr>
<tr>
<td>Umsetzungsverantwortung</td>
<td>n/a</td>
</tr>
<tr>
<td>Akteure</td>
<td>Kanzler, ZA2, ZA4, Sustainability Office, IT, Schools, Lehrstühle, weitere Einheiten</td>
</tr>
<tr>
<td>Flankierende Projekte</td>
<td>R1c, M3b</td>
</tr>
</tbody>
</table>

Hinweise
Pilotprojekt zu Zertifizierungsprogrammen für effizientere und nachhaltigere Labore am TUM Campus Straubing und ggf. sukzessiver Rollout für die ganze TUM

Transformationsfeld
Ressourcenverbrauch und -effizienz

Ziel
Ressourceneffizienter Arbeitsalltag an der TUM

Ausgangslage

Bis zur Erstellung des Klimaschutzkonzepts existieren keine TUM-weiten Erfassungen zu den Energie- und Materialverbräuchen im Laborbereich, sowie keine zentralen Informationen, wie mehr Nachhaltigkeit und Klimaschutz im Labor angewendet werden können. Einzelne, voneinander unabhängige Initiativen bestehen jedoch bereits.

Typ
Kommunikativ & partizipativ

Einführung
Kurzfristig (0-3 Jahre)

Dauer
Mittel

Beschreibung

Mit der Einführung eines Zertifizierungsprogramms für Nachhaltigkeit sollen folgende Ziele erreicht werden: Erfassung und Reduzierung des Energieverbrauchs in Laboren, Erfassung und Reduzierung der verbrauchten und entsorgten Materialien in Laboren sowie Sensibilisierung der Beschäftigten für mehr Klimaschutz, Energie- und Ressourceneinsparung. Durch ein kontinuierliches Monitoring, was durch die Teilnahme an den Programmen vorausgesetzt wird, sollen die Beschäftigten über ihren Ressourcen- und Energieverbrauch in Kenntnis gesetzt werden, um gemeinsam Verhaltensänderungen und Prozessoptimierungen zu entwickeln und dauerhaft zu etablieren.

Zu Beginn sollen die beiden Programme "My Green Lab" und "LEAF" mit Testgruppen am TUMCS in einer Pilotphase getestet werden. Nach der Testphase soll mit den Laborgruppen evaluiert werden, ob und welches Programm für einen sukzessiven Rollout an der TUM besser geeignet ist. Dadurch kann sich der Campus Straubing im für die TUM als technische Universität äußerst relevanten Bereich der Nachhaltigkeit in Laboren weiter profilieren und innerhalb der TUM eine Vorreiterrolle einnehmen.

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>n/a MWh pro Jahr</th>
<th>Energie- und Treibhausgaseinsparungen sollen durch die Teilnahme an den Zertifikatprogrammen ermittelt werden</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a tCO₂e pro Jahr</td>
<td>Klärung der Rahmenbedingungen und Projektplanung (Q1/Q2 2024)</td>
</tr>
</tbody>
</table>

Handlungsschritte

<table>
<thead>
<tr>
<th>Identifizierung von und Austausch mit Laborgruppen am TUMCS (Q3 2024)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start der Pilotphase (Q3 2024)</td>
</tr>
</tbody>
</table>
Erfolgsindikatoren
- Ende der Pilotphase und Evaluierung mit den Pilotgruppen (Q2 2025)
- Planung eines Roll-outs an den anderen Standorten (Q4 2025)
- Anzahl der Labore, die an den Zertifizierungsprogrammen teilnehmen
- Erreichte Energie-, Emissions- und Ressourceneinsparungen in den teilnehmenden Laboren

Gesamtaufwand
- 2.600 £ für TUM (LEAF)
- 350 - 500 $ / Labor

Finanzierungsansatz
- Pilotphase: Haushaltsmittel TUMCS
- Rollout: offen

Umsetzungsverantwortung
- TUM Sustainability Office (Klimaschutzmanager TUMCS)

Akteure
- TUMCS
- Anschließend: insbesondere School of Life Sciences, School of Natural Sciences, School of Medicine and Health, ggf. School of Engineering of Design

Flankierende Projekte
- ED5a, R3a

Hinweise
Digitalisierung zur Effizienzsteigerung in Verwaltungsprozessen

Transformationsfeld Ressourcenverbrauch und -effizienz

Ziel Klimaschutz und Nachhaltigkeit in der IT

Ausgangslage

Viele Verwaltungsprozesse laufen derzeit analog oder nur teildigitalisiert. Mit ihrer Digitalisierungsstrategie setzt die TUM im Bereich des Betriebs und der Verwaltung darauf die betrieblichen und administrativen Prozesse der gesamten TUM zu optimieren, und effizient und umweltfreundlich zu gestalten.

<table>
<thead>
<tr>
<th>Typ</th>
<th>strategisch</th>
<th>Einführung</th>
<th>Mittelfristig (4-7 Jahre)</th>
<th>Dauer</th>
</tr>
</thead>
</table>

Beschreibung

Energie- und Treibhausgaseinsparung

| n/a MWh pro Jahr | Direkte Energie- und THG-Einsparungen aus diesem Projekt sind nicht abzuschätzen. THG-Einsparungen können sich zu Beispiel durch den reduzierten Papierverbrauch ergeben, der bisher jedoch noch nicht bekannt ist. Allerdings sollen sich diverse Indikatoren aus dem System entnehmen lassen, auf Basis derer Einsparungen ermittelt werden könnten. |
| n/a tCO₂e pro Jahr |

Handlungsschritte

Identifikation der Bedürfnisse an das neue System aus den Fachabteilungen
Modellierung aller Prozesse
Umsetzung digitaler Workflows, die den Versand von Papierunterlagen ersetzen

Erfolgsindikatoren

Einführung des neuen SAP-Systems
Reduktion versendeter Formulare
<table>
<thead>
<tr>
<th>Gesamtaufwand</th>
<th>Ca. 10 Mio. EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finanzierungsansatz</td>
<td>Hochschulvertrag mit StMWK</td>
</tr>
<tr>
<td>Umsetzungsverantwortung</td>
<td>IT</td>
</tr>
<tr>
<td>Akteure</td>
<td>Fachabteilungen und zentrale Verwaltung</td>
</tr>
<tr>
<td>Flankierende Projekte</td>
<td>M2a, R1b</td>
</tr>
</tbody>
</table>

Hinweise
Zentralisierung von High-Performance-Computing zur Effizienzsteigerung

Transformationsfeld Ressourcenverbrauch und -effizienz

Ziel Klimaschutz und Nachhaltigkeit in der IT

Ausgangslage

Derzeit existiert eine Vielzahl größerer und kleinerer dezentraler Server und Recheneinheiten (mit Speicherkapazitäten, CPUs und GPUs), verteilt auf die verschiedenen TUM-Standorte. Neben den dezentralen Recheneinheiten stehen der TUM auch verschiedene Hochleistungsrechner des LRZ zur Verfügung. Die TUM hatte 2021 bereits 7 % Anteil an der Nutzung des SuperMUC-NG und 54,4 % am Linux-Cluster am LRZ.

<table>
<thead>
<tr>
<th>Typ</th>
<th>strategisch / technisch</th>
<th>Einführung</th>
<th>Kurzfristig (0-3 Jahre)</th>
<th>Dauer</th>
</tr>
</thead>
</table>

Beschreibung

Durch die Zentralisierung der Rechenkapazitäten im Bereich des Hochleistungsrechnens (HPC) am LRZ soll die Auslastung dieser Kapazitäten deutlich gesteigert werden und allen Forschenden an der TUM zur Verfügung stehen. Eine höhere Auslastung führt zu einer effizienteren Nutzung der vorhandenen und neuen Ressourcen, was wiederum den Bedarf für den Erwerb zusätzlicher HPCs reduziert. Obwohl die Nutzung der Kapazitäten durch eine Terminierung für die Forschenden koordiniert werden muss, ermöglicht eine zentrale Großeinheit deutlich schnellere Berechnungen im Vergleich zu dezentralen, kleineren Einheiten.

Die Zentralisierung bietet zudem ein verbessertes Potenzial für die Nutzung von Abwärme, die zwangsläufig bei intensiven Rechenprozessen entsteht. Die wasserbasierte Kühlung am LRZ soll in das Energiekonzept für den Campus Garching integriert werden und somit nutzbar gemacht werden. Im Gegensatz dazu werden viele dezentrale Anlagen individuell mit Klimageräten gekühlt, wodurch die anfallende Wärme nicht genutzt wird und zusätzlicher Energieaufwand betrieben wird, um den Betrieb zu gewährleisten.

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>MWh pro Jahr</th>
<th>n/a</th>
</tr>
</thead>
</table>

Direkte Energieeinsparungen sind durch die Zentralisierung von HPCs nur zu erreichen, wenn die entstehende Wärme am Campus Garching genutzt werden kann. Außerdem entfällt dadurch der Energieeinsatz zur zusätzlichen Kühlung der dezentralen Anlagen. Die konkreten Energie- und THG-Einsparungen aus diesem Projekt sind noch nicht quantifizierbar.

Handlungsschritte

Eingeschränkte Genehmigung von neuen HPCs an der TUM
<table>
<thead>
<tr>
<th>Erfolgsindikatoren</th>
<th>Schaffung zusätzlicher Angebote für HPC / GPU Nutzung mit neuen Nutzungsszenarien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtaufwand</td>
<td>Bis zu 60 Mio. EUR</td>
</tr>
<tr>
<td>Finanzierungsansatz</td>
<td>DFG, StMWK</td>
</tr>
<tr>
<td>Umsetzungsverantwortung</td>
<td>IT</td>
</tr>
<tr>
<td>Akteure</td>
<td>LRZ</td>
</tr>
<tr>
<td>Flankierende Projekte</td>
<td>ES1a</td>
</tr>
</tbody>
</table>

Hinweise
Identifikation von Maßnahmen zur Abwärmenutzung an allen Standorten

Transformationsfeld Ressourcenverbrauch und -effizienz

Ziel Klimaschutz und Nachhaltigkeit in der IT

Ausgangslage

Es existieren viele dezentrale Serverräume sowie wissenschaftliche Apparate in allen TUM Liegenschaften. Diese werden aufwendig gekühlt.

<table>
<thead>
<tr>
<th>Typ</th>
<th>technisch</th>
<th>Einführung</th>
<th>Mittelfristig (4-7 Jahre)</th>
<th>Dauer</th>
<th>Lang</th>
</tr>
</thead>
</table>

Beschreibung

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>n/a MWh pro Jahr</th>
<th>Die Energie- und THG-Einsparungen aus diesem Projekt sind noch nicht quantifizierbar.</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a tCO$_2$e pro Jahr</td>
<td>Pilotprojekt: Ertüchtigung des bestehenden Gebäudes Installation von Kühltechnik und Einbindung in das Wärmever- sorgungsnetz</td>
</tr>
</tbody>
</table>

Handlungsschritte

Erfolgsindikatoren

<table>
<thead>
<tr>
<th>Pilotprojekt: Auflösung veralteter Serverräume Abschaltung dezentraler Kühltechnik Nutzung der Abwärme</th>
</tr>
</thead>
</table>

Gesamtaufwand

Abhängig vom konkreten Projekt
<table>
<thead>
<tr>
<th>Finanzierungsansatz</th>
<th>Haushalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umsetzungsverantwortung</td>
<td>ZA4</td>
</tr>
<tr>
<td>Akteure</td>
<td>IT</td>
</tr>
<tr>
<td>Flankierende Projekte</td>
<td></td>
</tr>
</tbody>
</table>

Hinweise
5.5 Projekte Anpassung an den Klimawandel

Prüfung der Sammlung und Nutzung der Ressource Regenwasser in Gebäuden als fester Bestandteil bei Neubauprojekten

Transformationsfeld	Anpassung an den Klimawandel
Ziel | Entwicklung der TUM Campus im Sinne einer wassersensiblen Stadtentwicklung und eines naturnahen Wasserhaushalts

Ausgangslage

Aktuell besteht eine Regenwasserzisterne in Garching als Teil eine Aufbereitungsanlage für Brauchwasser. Weitere direkte Nutzungen von Regenwasser sind derzeit nicht bekannt.

<table>
<thead>
<tr>
<th>Typ</th>
<th>technisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung</td>
<td>Mittelfristig (4-7 Jahre)</td>
</tr>
<tr>
<td>Dauer</td>
<td>Lang</td>
</tr>
</tbody>
</table>

Beschreibung

Energie- und Treibhausgaseinsparung

| n/a MWh pro Jahr | Das THG-Einsparpotenzial wird gering eingeschätzt. Dennoch stellt das Projekt eine sinnvolle Möglichkeit dar sich mit fortschreitend steigenden Temperaturen auf das Risiko einer zukünftigen Wasserknappheit im Hochschulbetrieb vorzunehmen. |

| n/a tCO₂e pro Jahr |

Handlungsschritte

Identifikation der Gebäude die über eine Regenwasserauffanganlage verfügen

Der Hinweis zur Regenwassernutzung wird in den Standardkatalog (Regelausstattungen von Räumen und technischer Gebäudeausrüstung) der TUM aufgenommen.

Erfolgsindikatoren

Einsatz von Regenwasserauffanganlagen mit passenden Nutzungskonzepten bei Neubauten und Sanierungen
<table>
<thead>
<tr>
<th>Gesamtaufwand</th>
<th>Der finanzielle Aufwand muss für jedes Bauvorhaben individuell bestimmt werden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finanzierungsansatz</td>
<td>offen</td>
</tr>
<tr>
<td>Umsetzungsverantwortung</td>
<td>ZA4</td>
</tr>
<tr>
<td>Akteure</td>
<td>Sustainability Office, relevante Lehrstühle</td>
</tr>
<tr>
<td>Flankierende Projekte</td>
<td>ED2b, A1b</td>
</tr>
</tbody>
</table>

Hinweise
Prüfung der Sammlung und Nutzung der Ressource Regenwasser zur Bewässerung der Vegetation

Transformationsfeld	Anpassung an den Klimawandel
Ziel | Entwicklung der TUM Campus im Sinne einer wassersensiblen Stadtentwicklung und eines naturnahen Wasserhaushalts

Ausgangslage

An allen Standorten erfolgt die Bewässerung von Vegetation, wenn nötig, derzeit über das Trinkwassernetz.

<table>
<thead>
<tr>
<th>Typ</th>
<th>technisch</th>
<th>Einführung</th>
<th>Langfristig (mehr als 7 Jahre)</th>
<th>Dauer</th>
<th>Lang</th>
</tr>
</thead>
</table>

Beschreibung

Energie- und Treibhausgaseinsparung

| n/a | MWh pro Jahr | Das Treibhausgaseinsparpotenzial wird gering eingeschätzt. Dennoch stellt das Projekt eine sinnvolle Möglichkeit dar sich mit fortschreitend steigenden Temperaturen auf das Risiko einer zukünftigen Wasserknappheit im Hochschulbetrieb vorzunehmen. |
| n/a | tCO₂e pro Jahr |

| Handlungsschritte | Identifikation von Gebäuden, die für die Installation einer Regenwasserauffanganlage zur Bewässerung der Vegetation geeignet und sinnvoll sind (z. B. am Campus Weihenstephan, Garching oder Straubing) |
| Erfolgsindikatoren | Errichtung von regenwasserauffanganlagen an Bestandsgebäuden zu Bewässerung der Vegetation |

| Gesamtaufwand | Der finanzielle Aufwand muss für jedes Bauvorhaben individuell bestimmt werden |
| Finanzierungsansatz | offen |

Umsetzungsverantwortung | ZA4 |
Akteure
Sustainability Office, relevante Lehrstühle

Flankierende Projekte
A1a

Hinweise
Das Projekt beinhaltet potenziell auch bauliche / strukturelle Veränderungen der Campus. Dementsprechend müssen diese Aspekte im Verbund mit Projekten geplant werden, die ebenfalls auf das Thema Campusentwicklung einziehen.
Entwicklung von Hitzeschutzplänen zum sommerlichen Wärmeschutz

Transformationsfeld
Anpassung an den Klimawandel

Ziel
Anpassung an sich verändernde klimatische Gegebenheiten

Ausgangslage
In den letzten Jahren ist eine deutliche Zunahme von Hitzewellen zu verzeichnen, die nicht nur das Wohlbefinden der Universitätsmitglieder beeinträchtigen, sondern auch potenzielle Risiken für die Gesundheit und die Effizienz von Arbeits- und Lernumgebungen mit sich bringen.

Grundsätzlich gelten an allen Arbeitsplätzen an der TUM die Regularien der Arbeitsstättenverordnung und die daraus abgeleiteten technischen Regeln für Arbeitsstätten (ASR). Unter ASR 3.5 sind dabei die Vorgaben für Raumtemperatur und entsprechend zu ergreifende Maßnahmen geregelt. Alle im Hitzeschutzplan zu erarbeitenden Maßnahmen gehen über die arbeitsschutzrechtlichen Vorgaben hinaus.

Typ	strategisch
Einführung | Langfristig (mehr als 7 Jahre)
Dauer | Lang

Beschreibung
Die TUM erkennt die Notwendigkeit, proaktiv Maßnahmen zu ergreifen, um den sommerlichen Hitzeschutz auf dem Campus insbesondere im Freiraum zu verbessern.

- Identifikation von lokalen Hitzeinseln an den Campus Standorten und Begleitung der Planungsprozesse mit Hilfe von Simulationen in Zusammenarbeit mit relevanten Lehrstühlen
- Freiraumbegrünung und Beschattungsmaßnahmen in den identifizierten Hitzeinseln inklusive Steigerung der Biodiversität gemeinsam mit den Landschaftsplanern
- Identifikation von Gebäuden oder Gebäudeteilen mit starker Hitzebelastung (z.B. Magistrale der Mathematik)
- Umsetzung gezielter baulicher Anpassungen im Bestand (Durchlüftungsmöglichkeiten, Ventilatoren, etc. siehe A2c)
- Integration von Lösungen in Gebäuden mit starker Hitzebelastung

Energie- und Treibhausgaseinsparung
<table>
<thead>
<tr>
<th>Einheit</th>
<th>Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a tCO₂e pro Jahr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Handlungsschritte
- Prüfung der Beantragung von Fördergeldern für die Erarbeitung eines Hitzeschutzplanes.
- Beauftragung von Fachexpertinnen und -experten (intern, extern) für Untersuchungen lokaler Hitzeinseln

Erfolgsindikatoren
- Ausgearbeiteter Hitzeschutzplan

<table>
<thead>
<tr>
<th>Gesamtaufwand</th>
<th>n/a</th>
</tr>
</thead>
</table>

Finanzierungsansatz
- Förderschwerpunkt B: Innovative Modellprojekte für die Klimaanpassung und den natürlichen Klimaschutz
 - https://www.z-u-g.org/das/ank-das-foerderaufruf-2023/

Umsetzungsverantwortung
- Sustainability Office

Akteure
- Taskforce Sustainable Campus Development, ZA4, HR6

Flankierende Projekte

Hinweise
Berücksichtigung von sommerlichem Wärmeschutz in der Planung von Neubauten und Sanierungen

Transformationsfeld
Anpassung an den Klimawandel

Ziel
Anpassung an sich verändernde klimatische Gegebenheiten

Ausgangslage

<table>
<thead>
<tr>
<th>Typ</th>
<th>technisch</th>
<th>Einführung</th>
<th>Kurzfristig (0-3 Jahre)</th>
<th>Dauer</th>
<th>Mittel</th>
</tr>
</thead>
</table>

Beschreibung
Bei der Planung und dem Bau neuer Gebäude, sowie der Sanierung von Bestandsgebäuden sollten Maßnahmen, die zum sommerlichen Wärmeschutz beitragen verpflichtend mitbedacht werden und fester Bestandteil der Gebäudeplanung und der Bauausschreibungen sein.

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>n/a</th>
<th>MWh pro Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>tCO₂e pro Jahr</td>
</tr>
</tbody>
</table>

Handlungsschritte
Ausarbeitung insbesondere von konstruktiven Kriterien die bei der Planung von Neubauten zum sommerlichen Wärmeschutz berücksichtigt werden sollen (Positivkriterien und Ausschlusskriterien) durch die Taskforce Sustainable Campus Development.

Von den Planern einfordern, dass der sommerliche Wärmeschutz berücksichtigt wurde.
<table>
<thead>
<tr>
<th>Erfolgsindikatoren</th>
<th>Einhaltung der DIN 4108 in Bauvorhaben zur Verbesserung des sommerlichen Wärmeschutzes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtaufwand</td>
<td>Die Kosten müssen für jedes Bauprojekt individuell bestimmt werden.</td>
</tr>
<tr>
<td>Finanzierungsansatz</td>
<td>Offen</td>
</tr>
<tr>
<td>Umsetzungsverantwortung</td>
<td>ZA4</td>
</tr>
<tr>
<td>Akteure</td>
<td>Staatliche Bauämter, Taskforce Sustainable Campus Development</td>
</tr>
<tr>
<td>Flankierende Projekte</td>
<td>ED1e, ED1h</td>
</tr>
</tbody>
</table>

Hinweise
5.6 Projekte Forschung, Lehre & Bildung und Entrepreneurship

Umfassende Integration der Themen Klimaschutz und Ressourcen­nutzung in den Research Code of Conduct der TUM

Transformationssfeld Forschung, Lehre & Bildung, Entrepreneurship

Ziel Etablierung von Klimaschutz und Nachhaltigkeit als feste Bestandteile der Forschung und Lehre an der TUM

Ausgangslage

Der Research Code of Conduct dient als ethischer Leitfaden und verbindliche Richtlinie für alle Forschenden an der TUM und soll sicherstellen, dass Forschungstätigkeiten höchsten wissenschaftlichen, ethischen und gesellschaftlichen Standards entsprechen.

Typ Richtlinie / Policy Einführung Kurzfristig (0-3 Jahre) Dauer Kurz

Beschreibung

Energie- und Treibhausgaseinsparung

| n/a MWh pro Jahr | Aus dem Projekt ergeben sich keine unmittelbar messbaren Energie- und Treibhausgaseinsparung. |
| n/a tCO₂e pro Jahr |

Handlungsschritte Absprachen mit den Akteuren, wie die Integration der Themen Nachhaltigkeit und Klimaschutz in den Research Code of Conduct integriert werden können.

Erfolgs­indikatoren Veröffentlichung eines überarbeiteten Research Code of Conduct

Gesamtaufwand Ca. 1 Arbeitswoche kumuliert für alle Beteiligten

Finanzierungsansatz Bestandspersonal
<table>
<thead>
<tr>
<th>Umsetzungsverantwortung</th>
<th>TUM Compliance Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akteure</td>
<td>TUM Sustainability Office, SVP Forschung & Innovation, VP Sustainable Transformation, TUM Research Board, TUM ForTe</td>
</tr>
</tbody>
</table>

Flankierende Projekte

Hinweise
Integration der Themen Nachhaltigkeit und Klimaschutz in die Lehrverfassung der TUM

Transformationsfeld
Forschung, Lehre & Bildung, Entrepreneurship

Ziel
Etablierung von Klimaschutz und Nachhaltigkeit als feste Bestandteile der Forschung und Lehre an der TUM

Ausgangslage

Die bestehende Lehrverfassung der TUM bildet zwar die Grundlage für eine exzellente akademische Ausbildung bietet, jedoch in ihrer aktuellen Form noch Potenzial für eine weitere Integration von Nachhaltigkeit und Klimaschutz.

Typ
Richtlinie / Policy

Einführung
Kurzfristig (0-3 Jahre)

Dauer
Kurz

Beschreibung

Das Ziel des Projekts ist es, das Thema Nachhaltigkeit und Klimaschutz als feste Bestandteile der Lehrinhalte und -methoden an der TUM zu verankern. Die Integration dieser Themen als Grundsatz in die Lehrverfassung soll sicherstellen, dass sie nicht nur als temporäre Ergänzung betrachtet werden, sondern dauerhaft in den Strukturen der Universität verankert sind und alle Studierenden der TUM im Rahmen ihres Studiums die Möglichkeit zum Kompetenzerwerb in diesem Bereich erhalten. In Anbetracht des zunehmenden Bewusstseins für Umweltfragen und der Notwendigkeit, innovative Lösungen für eine nachhaltige Zukunft zu fördern, unterstützt die Überarbeitung der Lehrverfassung die Ambition, die TUM als Vorreiterin in nachhaltiger Bildung zu positionieren und gleichzeitig eine Generation von Studierenden zu inspirieren, die sich aktiv Nachhaltigkeit und Klimaschutz einsetzen.

Energie- und Treibhausgaseinsparung

| n/a MWh pro Jahr | Aus dem Projekt ergeben sich keine direkt messbaren Energie- und THG-Einsparung. Der mittel- und langfristige Impact durch die sensibilisierten und mit entsprechendem Fachwissen ausgebildeten Studierenden ist für den Standort Deutschland sowie aufgrund der Internationalität der TUM auch global sehr groß. |
| n/a tCO2e pro Jahr | |

Handlungsschritte

Analyse und Bewertung der bestehenden Lehrverfassung in Bezug auf Nachhaltigkeit und Klimaschutz
Proaktive Beteiligung der relevanten Gremien bei der Ausarbeitung entsprechender Inhalte für die Lehrverfassung
Einbringung der Inhalte Nachhaltigkeit und Klimaschutz in die bestehenden Veranstaltungen der Lehr- und Lernkultur
Umsetzung der ergänzten Inhalte aus der Lehrverfassung durch die School Offices
Entwicklung eines Evaluationskonzeptes mit Erhebung relevanter Kennzahlen und Ziele
<table>
<thead>
<tr>
<th>Erfolgsindikatoren</th>
<th>Einführung von Kennzahlen zur Messung der Integration von Klimaschutz und Nachhaltigkeit in der Lehre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtaufwand</td>
<td>n/a</td>
</tr>
<tr>
<td>Finanzierungsansatz</td>
<td>Bestandspersonal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Umsetzungsverantwortung</th>
<th>TUM Center for Study and Teaching, TUM Sustainability Office, ProLehre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akteure</td>
<td>SVP Studium & Lehre, VP Sustainable Transformation, Vice Deans Academic & Student Affairs, Study and Teaching Board, Study and Teaching Council, Academic Program Directors, StudierendenVertreterinnen und Vertreter im Symposium Lehre, Forum Lehre</td>
</tr>
</tbody>
</table>

| Flankierende Projekte |

| Hinweise |

Integration der Themen Nachhaltigkeit und Klimaschutz in die Berufungspolitik

Transformationsfeld
Forschung, Lehre & Bildung, Entrepreneurship

Ziel
Etablierung von Klimaschutz und Nachhaltigkeit als feste Bestandteile der Forschung und Lehre an der TUM

Ausgangslage
Die Notwendigkeit einer verstärkten Integration von Klimaschutz und Nachhaltigkeit für die universitäre Profilbildung wird durch die zunehmende Dringlichkeit und die hohe gesellschaftliche Relevanz dieser Themen unterstrichen. Eine zentrale Stellschraube für die inhaltliche und personelle Weiterentwicklung der TUM sind die Berufungen neuer Professorinnen und Professoren. Dementsprechend ist es erforderlich, die Berufungspolitik anzupassen, um sicherzustellen, dass die TUM einen positiven Einfluss hinsichtlich der globalen Herausforderungen und Ziele durch eine entsprechende akademische Führung, Forschung und Lehre nimmt.

Typ
strategisch

Einführung
Kurzfristig (0-3 Jahre)

Dauer
Kurz

Beschreibung
Das Hauptziel dieses Projekts ist die Entwicklung und Implementierung einer umfassenden Strategie zur Integration der Themen Nachhaltigkeit und Klimaschutz in die Berufungspolitik der TUM. Dies umfasst die strategische Berufungsplanung durch die Schools sowie die Anpassung der Auswahlkriterien für neue Fakultätsmitglieder sowie die Schaffung von Anreizen und Unterstützungsmechanismen für Forschung und Lehre im Bereich Nachhaltigkeit.

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>Energieeinsparung</th>
<th>Aus dem Projekt ergeben sich keine messbaren Energie- und THG-Einsparung.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWh pro Jahr</td>
<td>n/a</td>
</tr>
<tr>
<td>tCO₂e pro Jahr</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Handlungsschritte

Berufungsplanung: Angabe, welche geplanten Professuren zu den Themen Nachhaltigkeit und Klimaschutz anschlussfähig sind

Beschreibung des Aspektes „Future Impact“ im Stellendossier für Neuerberufungen

Aufnahme eines/r Professor/in mit Nachhaltigkeitskompetenz in Berufungskommissionen zu einschlägigen Themenfeldern

Hinweis zur Bedeutung von Nachhaltigkeit und Klimaschutz in den Berufungsleitfaden für Kommissionen

Benefit für besonders nachhaltige (energiesparende/effiziente) Ausstattungskonzepte für Berufungsverhandlungen (z. B. Ein-
bringt von Geräten in Core Facilities zur gemeinsamen Nutzung sowie die Anschaffung besonders energiesparender Gerätschaften)

<table>
<thead>
<tr>
<th>Erfolgsindikatoren</th>
<th>Anzahl der Berufungen mit Passung zum Thema Nachhaltigkeit und Klimaschutz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtaufwand</td>
<td>n/a</td>
</tr>
<tr>
<td>Finanzierungsansatz</td>
<td>n/a</td>
</tr>
<tr>
<td>Umsetzungsverantwortung</td>
<td>Präsidialstab Berufungen</td>
</tr>
<tr>
<td>Akteure</td>
<td>TUM Sustainability Office, School Offices, Präsident, Hochschulpräsidium</td>
</tr>
<tr>
<td>Flankierende Projekte</td>
<td></td>
</tr>
</tbody>
</table>

Hinweise
Konzeption und Umsetzung eines Weiterbildungsangebots zum Thema "Nachhaltigkeit und Klimaschutz" für alle TUM-Beschäftigten

Transformationsfeld
Forschung, Lehre & Bildung, Entrepreneurship

Ziel
Integration von Klimaschutz in die Weiterbildungsformate der TUM

Ausgangslage

Auch die Möglichkeiten, Kenntnisse und Methoden zum Thema Nachhaltigkeit und Klimaschutz im Rahmen eines strukturierten Onboardings zu vermitteln, werden derzeit noch nicht für alle Zielgruppen genutzt (ein Onboardingkonzept für neuerwerbene Professorinnen und Professoren wird derzeit ausgerollt). Die Vermittlung von Kenntnissen und Richtlinien zu diesen wichtigen Aspekten liegt bisher in der Verantwortung der Kolleginnen und Kollegen, die neue Beschäftigte einweisen.

<table>
<thead>
<tr>
<th>Typ</th>
<th>Einführung</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>kommunikativ & partizipativ</td>
<td>Kurzfristig (0-3 Jahre)</td>
<td>Mittel</td>
</tr>
</tbody>
</table>

Beschreibung

Um die TUM-Community aktiv in die Umsetzung von Klimaschutzmaßnahmen einzubinden, wird ein Weiterbildungsangebot entwickelt, das allen Beschäftigten ermöglicht, sich im Bereich Klimaschutz am Arbeitsplatz zu engagieren. Dabei soll das Weiterbildungsangebot der Sensibilisierung und Qualifizierung der TUM-Beschäftigten im Bereich Nachhaltigkeit und Klimaschutz dienen, ein Bewusstsein für den individuellen Beitrag aller Beschäftigten zur Reduktion des Energieverbrauchs und der THG-Emissionen schaffen und praxisnahe Inhalte und Handlungsanleitungen für einen nachhaltigen Arbeitsplatz schaffen.

Das Angebot soll sowohl allen Beschäftigten offen stehen wie auch in Onboardingprozesse integriert werden.

Energie- und Treibhausgaseinsparung

- Im Rahmen des Weiterbildungsformats werden Kenntnisse vermittelt, die darauf abzielen, das Verhalten im Hinblick auf Klimaschutz und Nachhaltigkeit positiv zu verändern. Da Verhalten jedoch von einer Vielzahl von Faktoren beeinflusst wird, kann der direkte Effekt des Weiterbildungsformats auf den Energieverbrauch und die THG-Emissionen nicht erfasst werden.

<table>
<thead>
<tr>
<th>Energie- und Treibhausgaseinsparung</th>
<th>n/a MWh pro Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Im Rahmen des Weiterbildungsformats werden Kenntnisse vermittelt, die darauf abzielen, das Verhalten im Hinblick auf Klimaschutz und Nachhaltigkeit positiv zu verändern. Da Verhalten jedoch von einer Vielzahl von Faktoren beeinflusst wird, kann der direkte Effekt des Weiterbildungsformats auf den Energieverbrauch und die THG-Emissionen nicht erfasst werden.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Handlungsschritte</th>
<th>Bedarfsanalyse und Konzeptentwicklung (im Hinblick auf Zielgruppen, Formate, Umfang, Inhalte)</th>
</tr>
</thead>
</table>

198 | Technische Universität München
Entwicklung von Lehr-/Lernformaten, die die Grundlagen von Klimaschutz und Nachhaltigkeit sowie deren Bedeutung für die TUM vermitteln (ggf. unter Einbindung externer Dienstleister)

Pilotierung und Anpassungen

Integration des Weiterbildungsformats in das Programm des TUM IL³

Kommunikation und Marketing

Evaluation

<table>
<thead>
<tr>
<th>Erfolgsindikatoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anmeldungen bzw. Zugriffszahlen, hier u.a. Reichweite innerhalb der TUM</td>
</tr>
<tr>
<td>Erfolgreicher Abschluss des Trainings (Anzahl Teilnehmende)</td>
</tr>
<tr>
<td>Zufriedenheit der Teilnehmenden (Selbstbericht)</td>
</tr>
<tr>
<td>Wissenserwerb/Lernerfolg der Teilnehmenden (Selbstbericht)</td>
</tr>
<tr>
<td>Intention/Motivation, das Erlernte umzusetzen (Selbstbericht)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gesamtaufwand</th>
<th>n/a</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Finanzierungsansatz</th>
<th>n/a</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Umsetzungsverantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUM Institute for LifeLong Learning, TUM Sustainability Office</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Akteure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flankierende Projekte</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLE2b, ED5a, R3a</td>
</tr>
</tbody>
</table>

Hinweise

Das TUM IL³ benötigt in den frühen Phasen und insbesondere in der Feinkonzeption die Expertise der Fachabteilung, mit der das Angebot ausgearbeitet werden soll. Für die Bedarfserfassung/Konzeptentwicklung und Auswahl/Entwicklung eines (Online-) Weiterbildungsangebots soll demnach das Sustainability Office verantwortlich sein. Für die Pilotierung, den Roll Out und Evaluation anschließend das TUM IL3.
Integration der Themen Nachhaltigkeit und Klimaschutz in das Onboarding für neue Professorinnen und Professoren

Transformationsfeld	Forschung, Lehre & Bildung, Entrepreneurship
Ziel | Integration von Klimaschutz in die Weiterbildungsformate der TUM

Ausgangslage

Um neuberufenen Professorinnen und Professoren möglichst schnell einen Überblick und Orientierung zu verschaffen, bietet die TUM einmal im Jahr die Willkommensveranstaltung “TUM Prelude” an. An diesem Tag erhalten Professorinnen und Professoren einen exklusiven Einblick in die Gesamtstrategie der TUM und besuchen ausgewählte Bereiche und Standorte der Universität.

Beschreibung

Um den wachsenden Fokus auf Nachhaltigkeit und Klimaschutz widerzuspiegeln, soll das Onboarding nun entsprechend angepasst werden. Das Ziel dieses Projekts ist es, die Themen Nachhaltigkeit und Klimaschutz fest in “TUM Prelude” zu integrieren. Durch die Einbindung dieser wichtigen Aspekte sollen die neuberufenen Professorinnen und Professoren nicht nur mit den strategischen Zielen der TUM vertraut gemacht werden, sondern auch ein Bewusstsein für ihre Rolle als Botschafter nachhaltiger Praktiken in Lehre und Forschung entwickeln.

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th></th>
<th>Keine messbaren direkten Energie- oder THG-Einsparungen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWh pro Jahr</td>
<td>n/a</td>
</tr>
<tr>
<td>tCO$_2$e pro Jahr</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Handlungsschritte

Konzeptentwicklung
Umsetzung und Evaluation
Konzeptanpassung

Erfolgsindikatoren

Gesamtaufwand	n/a
Finanzierungsansatz | n/a

Umsetzungsverantwortung | Präsidialstab Berufungen, Munich Dual Carrer Office
Akteure

| TUM Sustainability Office |

Flankierende Projekte

| FLE2a |

Hinweise
Prüfung und Konzeption des Aufbaus eines internen Consulting-Programms für Infrastrukturprojekte durch das Fachwissen an den Professuren der TUM

<table>
<thead>
<tr>
<th>Transformationsfeld</th>
<th>Forschung, Lehre & Bildung, Entrepreneurship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziel</td>
<td>Stärkung der Living-Lab-Funktion der TUM Campus</td>
</tr>
</tbody>
</table>

Ausgangslage

Erste Ansätze sind bereits vorhanden:

- Gegenseitige Unterstützung zur Beantragung von Fördergeldern für die energetische Sanierung von Gebäuden in Freising und Garching (ZA4 + wiss. Beschäftigte von Lehrstühlen ENBP und Energie- systeme)
- Idee eines TUM Energy Labs zur Verbindung von Wissenschaft und Betrieb
- Taskforce Sustainable Campus Development

<table>
<thead>
<tr>
<th>Typ</th>
<th>strategisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung</td>
<td>Kurzfristig (0-3 Jahre)</td>
</tr>
<tr>
<td>Dauer</td>
<td>Lang</td>
</tr>
</tbody>
</table>

Beschreibung

In diesem Projekt soll die Nutzung des vorhandenen Fachwissens aus den Bereichen Energie, Gebäudetechnik, Architektur, Baustoffe, Landschaftsgestaltung, Mobilität etc. über den Dialog mit den entsprechenden Lehrstühlen erfolgen, z.B. durch gemeinsame Projekte oder Drittmittelvorhaben. Diese können ihre Expertise als Ratgeber in Projekten wie Bauvorhaben, die Auswahl von Technologien bei Sanierungen, Campusgestaltung, etc. einfließen lassen. Dadurch kann Wissen, das an der TUM vorhanden ist, gezielt eingesetzt werden, um zukunftsweisende Entscheidungen in der weiteren Infrastrukturentwicklung zu treffen. Auch eine Einbindung von Studieren und Studierenden-Initiativen sind anzustreben.

Unter anderem können auch Pilotprojekte aus diesem Projektkatalog wissenschaftlich begleitet werden, um Handlungsempfehlungen für weitere Vorhaben abzuleiten.

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>n/a MWh pro Jahr</th>
<th>Die Energie- und Treibhausgaseinsparungen für dieses Projekt sind nicht direkt zu ermitteln. Idealerweise werden Energie- und Treibhausgaseinsparungen für jedes Projekt individuell ermittelt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a tCO₂e pro Jahr</td>
<td></td>
</tr>
</tbody>
</table>

Handlungsschritte

Gemeinsame Durchführung von Pilotprojekten

Erfolgsindikatoren
<table>
<thead>
<tr>
<th>Gesamtaufwand</th>
<th>n/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finanzierungsansatz</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Umsetzungsverantwortung

| Akteure | ZA4, Sustainability Office, Taskforce Sustainable Campus Development |

Flankierende Projekte

Hinweise
Etablierung der Thematischen Koordinationsstelle „Innovation & Entrepreneurship“ an der TUM für das Zentrum Hochschule und Nachhaltigkeit Bayern (BayZeN)

<table>
<thead>
<tr>
<th>Typ</th>
<th>strategisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung</td>
<td>Kurzfristig (0-3 Jahre)</td>
</tr>
<tr>
<td>Dauer</td>
<td>Lang</td>
</tr>
</tbody>
</table>

Transformationsfeld Forschung, Lehre & Bildung, Entrepreneurship

Ziel Feste Verankerung des Themas Klimaschutz in der Entrepreneurship-Kultur

Ausgangslage
Die TUM als „Entrepreneurial University“ leistet mit ihrer Stärke in technischen Innovationen und insbesondere in den letzten Jahren immer stärker mit den aus ihr hervorgegangenen Gründungsteams und Start-ups seit jeher einen relevanten Beitrag zum technologischen Fortschritt in Deutschland und der Welt. Wenn aus Ideen und Forschungsergebnissen durch wirtschaftliche Inwertsetzung und Skalierung tatsächliche Innovationen werden, kann auch in großem Maßstab Impact generiert werden. Mit in den letzten Jahren ca. 80 Ausgründungen pro Jahr zählt die TUM hier zu den stärksten Universitäten Europas.

Beschreibung
Da Gründungsteams und Start-ups mit ihren Ideen, Arbeitsweisen und Produkten besonders innovative Beiträge zu Entwicklung regionaler, nationaler und internationaler Innovationssysteme leisten sind sie hinsichtlich des Impacts der TUM bzgl. der nachgelagerten THG-Emissionen von großer Bedeutung (diese sind jedoch aktuell nicht in THG-Bilanz erfasst.) Zudem sorgen kurze Innovationszyklen und eine hohe Dynamik und Flexibilität für schnellen Impact. Dementsprechend ist die Implementierung der Themen Nachhaltigkeit und Klimaschutz in die gesamte Start-up-Journey von großer Relevanz – sowohl hinsichtlich der Organisations- und Arbeitsweisen der künftigen Unternehmen als auch vor allem hinsichtlich ihrer Produkte. Um die Effekte zu skalieren ist es zielführend, die entsprechenden Teilmaßnahmen nicht nur für die TUM durchzuführen, sondern sie für alle bayerischen Hochschulen verfügbar zu machen und co-kreativ weiterzuentwickeln. Dementsprechend sind Stand 12/2023 die folgenden Teilprojekte vorgesehen:

- Bayernweiter Austausch und Netzwerk auf Grundlage einer strukturierter Erfassung der Aktivitäten und Kompetenzen aller bayerischen Hochschulen
- Partizipative Entwicklung und Umsetzung einer Arbeitsgruppe (Arbeitstitel „Responsible Innovation & Sustainable Entrepreneurship“)
- Entwicklung eines standardisierten Bewertungsinstruments für ein strukturiertes Assessment von und Handlungsempfehlungen für Start-ups / Gründungsteams.
- Definition der neuen / zusätzlichen Anforderungen an Sensibilisierungs- Beratungs- und Betreuungsangebote und entsprechende Entwicklung von Train-the-Trainer-Programmen zur Schaffung von Kompetenzen
Energie- und Treibhausgaseinsparung

| MWh pro Jahr | Durch die Thematische Koordinationsstelle Innovation & Entrepreneurship im BayZeN werden direkt keine THG-Emissionen reduziert. Die indirekten Effekte sind jedoch umso bedeutsamer, wenngleich (noch) nicht quantifizierbar. Start-ups mit Fokus Nachhaltigkeit und Start-ups, die Nachhaltigkeitsprinzipien in ihren Produkten wie ihrem Betrieb berücksichtigen leisten einen Betrag zum Klimaschutz, insbesondere wenn sie skalieren kön- | n/a |
| tCO₂e pro Jahr | nen. | n/a |

Handlungsschritte

	(teils bereits erfolgt)
	Beitritt zum BayZeN via Kooperationsvereinbarung
	Etablierung der Thematischen Koordinationsstelle Innovation & Entrepreneurship
	Vernetzung mit den bayerischen Hochschulen und Etablierung einer Arbeitsgruppe im BayZeN inkl. Ausarbeitung und Umsetzung konkreter Maßnahmen (s.o.)

Erfolgsindikatoren

| | Erfolgsindikatoren werden im Rahmen des BayZeN entwickelt und erfasst. Diese betreffen u.a. die Entwicklung der Arbeitsgruppe oder eingeworbene Drittmittel |

Gesamtaufwand

| | Startphase: 0,5 FTE + Sachmittel |

Finanzierungsansatz

| | Eigenmittel TUM für 3 Jahre |

Umsetzungsverantwortung

| | TUM ForTe (TUMentrepreneurship) |

Akteure

| | TUM Sustainability Office, TUM Venture Lab Sustainability & Circular, Zentrum für Hochschule und Nachhaltigkeit Bayern |

Flankierende Projekte

| | FLE4b |

Hinweise
Ausbau des TUM Venture Lab Sustainability and Circular mit Fokus CleanTech

Transformationsfeld
Forschung, Lehre & Bildung, Entrepreneurship

Ziel
Feste Verankerung des Themas Klimaschutz in der Entrepreneurship-Kultur

Ausgangslage
Die TUM als „Entrepreneurial University“ leistet mit ihrer Stärke in technischen Innovationen und insbesondere in den letzten Jahren immer stärker mit den aus ihr hervorgegangenen Gründungsteams und Start-ups seit jeher einen relevanten Beitrag zum technologischen Fortschritt in Deutschland und der Welt. Wenn aus Ideen und Forschungsergebnissen durch wirtschaftliche Inwertsetzung und Skalierung tatsächliche Innovationen werden, kann auch in großem Maßstab Impact generiert werden. Mit in den letzten Jahren ca. 80 Ausgründungen pro Jahr zählt die TUM hier zu den stärksten Universitäten Europas.

Mit dem Ziel einer noch breiteren und effizienteren Nutzung der Ausgründungspotenziale und der Skalierung der Risikokapitalakquise wurden durch die TUM und die UnternehmerTUM gemeinsam die TUM Venture Labs gegründet. Mit verschiedenen Themenschwerpunkten sollen Zahl, Effizienz und Skalierung der Ausgründungen erhöht werden.

<table>
<thead>
<tr>
<th>Typ</th>
<th>strategisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung</td>
<td>Kurzfristig (0-3 Jahre)</td>
</tr>
<tr>
<td>Dauer</td>
<td>Lang</td>
</tr>
</tbody>
</table>

Beschreibung

Darüber hinaus sind die TUM Venture Labs aktiv an Multi-Stakeholder-Projekten wie der Energy Resilience Leadership Group (ERLG) beteiligt, wodurch eine internationale Zusammenarbeit von Playern im CleanTech Sektor ermöglicht wird. In Straubing befindet sich derzeit das CleanTech Design Lab, ein Raum zur Förderung von nachhaltigem Unternehmertum, in der Planungsphase.

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th></th>
<th>MWh pro Jahr</th>
<th>tCO₂e pro Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>

Durch das Venture Lab Sustainability & Circular werden direkt keine THG-Emissionen reduziert. Die indirekten Effekte sind jedoch umso bedeutsamer, wenn gleich (noch) nicht quantifizierbar. CleanTech Start-ups leisten entweder durch neue und
emissionsfreie/-arme Technologien einen Betrag zum Klimaschutz oder entwickeln sogar CCS-Technologien (Carbon Capture and Storage).

<table>
<thead>
<tr>
<th>Handlungsschritte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weiterer Ausbau des Venture Lab Sustainability & Circular entsprechend o.g. Beschreibung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Erfolgsindikatoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vgl. Indikatoren der TUM Sustainable Futures Strategy 2030 sowie Entwicklung eigener KPIs durch die Venture Labs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gesamtaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operatives Personal</td>
</tr>
<tr>
<td>Wissenschaftliche Unterstützung</td>
</tr>
<tr>
<td>Sachmittel zur Durchführung div. Aktivitäten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Finanzierungsansatz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laufende Finanzierung durch Freistaat</td>
</tr>
<tr>
<td>Drittmittel; Akquise beständig laufend</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Umsetzungsverantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUM Venture Labs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Akteure</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUM ForTe (TUMentrepreneurship), UnternehmerTUM, TUM Sustainability Office</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flankierende Projekte</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLE4a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hinweise</th>
</tr>
</thead>
</table>

5.7 Projekte Management

Weiterführung des Klimaschutzmanagements im Rahmen des Förderpunkts 4.1.8.b aus der Kommunalrichtlinie

<table>
<thead>
<tr>
<th>Transformationsfeld</th>
<th>Ziel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management</td>
<td>Weiterführung/-entwicklung und Verstetigung des Klimaschutzmanagements</td>
</tr>
</tbody>
</table>

Ausgangslage

Die erste Förderperiode für die Einführung eines Klimaschutzmanagements und Erstellung eines integrierten Klimaschutzkonzepts erfolgte vom 01.09.2022 bis 31.08.2024.

<table>
<thead>
<tr>
<th>Typ</th>
<th>Förderantrag</th>
<th>Einführung</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kurzfristig (0-3 Jahre)</td>
<td>Kurz</td>
</tr>
</tbody>
</table>

Beschreibung

Über die Kommunalrichtlinie in Förderpunkt 4.1.8.b wird die Umsetzung der Maßnahmen aus dem Klimaschutzkonzept über maximal drei Jahre mit 40 Prozent gefördert. In die Förderung fallen:

- Sach- und Personalausgaben
- Vergütung externer Dienstleistungen
- Ausgaben für Dienstreisen
- Ausgaben für Öffentlichkeitsarbeit
- Ausgaben für Akteursbeteiligung

Neben der Umsetzung der Projekte aus dem Projektkatalog des Klimaschutzkonzepts entfallen auf das Klimaschutzmanagement weitere regelmäßige zu verstetigende Aufgaben wie die jährliche Fortführung der THG-Bilanz, sowie Erstellung eines Monitoring Berichts. Außerdem koordiniert das Klimaschutzmanagement die Taskforce Sustainable Campus Development und leitet die AG Klimaschutzmanagement im Bayerischen Zentrum für Nachhaltigkeit (BayZeN).

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>n/a</th>
<th>MWh pro Jahr</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>n/a</th>
<th>tCO₂e pro Jahr</th>
</tr>
</thead>
</table>

Durch das Klimaschutzmanagement werden alle Projekte zur Energie- und THG-Einsparung aus dem Projektkatalog koordiniert.

Handlungsschritte

Die Antragstellung zur Förderung von 4.1.8.b erfolgt, sobald das Klimaschutzkonzept vom Hochschulpräsidium beschlossen wurde.
<table>
<thead>
<tr>
<th>Erfolgsindikatoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beschluss des Klimaschutzkonzepts durch das Hochschulpräsidium</td>
</tr>
<tr>
<td>Erfolgreiche Antragstellung für die Fördermittel und Weiterführung des Klimaschutzmanagements</td>
</tr>
<tr>
<td>Jährliche Erstellung der THG-Bilanz und eines Monitoring Berichts</td>
</tr>
<tr>
<td>Gesamtaufwand</td>
</tr>
<tr>
<td>Gesamtaufwand ca. 770.000 EUR, davon 40 % gefördert durch BMWK</td>
</tr>
<tr>
<td>Finanzierungsansatz</td>
</tr>
<tr>
<td>Eigenmittel</td>
</tr>
<tr>
<td>BMWK: Förderschwerpunkt Anschlussvorhaben Klimaschutzmanagement</td>
</tr>
<tr>
<td>Umsetzungsverantwortung</td>
</tr>
<tr>
<td>Sustainability Office</td>
</tr>
<tr>
<td>Akteure</td>
</tr>
<tr>
<td>n/a</td>
</tr>
<tr>
<td>Flankierende Projekte</td>
</tr>
<tr>
<td>Hinweise</td>
</tr>
</tbody>
</table>
Prüfung der Implementierung eines Umweltmanagements am TUM Campus Straubing

Transformationsfeld Management

Ziel Stärkung eines strukturierten Umweltmanagements

Ausgangslage

Bis zur Erstellung des Klimaschutzkonzepts existiert kein Umweltmanagementsystem an der TUM. Umweltschutz relevante Daten werden derzeit nicht zentral von einer Stelle zusammengefasst und obliegt den einzelnen Abteilungen.

Typ | Controlling / Lenkungsinstrument | Einführung | Kurzfristig (0-3 Jahre) | Dauer | Lang

Beschreibung

Das Projekt zielt darauf ab, ein umfassendes Umweltmanagementsystem gemäß den Anforderungen der EMAS-Richtlinie (Umweltmanagement-Audit-System) am TUM Campus Straubing zu implementieren, um die Umweltleistung des Campus Straubing weiter zu optimieren. Die Umsetzung erfolgt durch finanzielle Unterstützung im Rahmen der Kommunalrichtlinie, die darauf abzielt, nachhaltige Praktiken in öffentlichen Einrichtungen zu fördern.

Der Campus Straubing wäre bei der erfolgreichen Einführung eines Umweltmanagements inklusive Auditierung die erste Einheit der TUM die mit einem Umweltmanagement-Zertifikat ausgezeichnet wird. Dadurch würde die Vorbildfunktion des Campus zum Thema Nachhaltigkeit, im Sinne eines ganzheitlichen Ansatzes, innerhalb der TUM noch deutlicher gestärkt werden.

Energie- und Treibhausgaseinsparung

<table>
<thead>
<tr>
<th>n/a</th>
<th>MWh pro Jahr</th>
</tr>
</thead>
</table>

| n/a | tCO₂e pro Jahr |

Die konkreten Energie- und THG-Einsparungen werden erst bekannt, wenn ein Umweltmanagement eingeführt wurde.

Handlungsschritte

Beantragung der Fördergelder für die Implementierung eines Umweltmanagements für die Pilotierung am Campus Straubing

Erfolgsindikatoren

Beschluss des TUMCS zur Einführung eines Umweltmanagementsystems

Erfolgreiche Antragstellung auf die Fördermittel
| Einstellung eines Umweltmanagers / einer Umweltmanagerin |
| Erfolgreiche Zertifizierung durch einen externen Auditor |
| Gesamtaufwand |
| Personalstelle (Umweltmanagerin oder Umweltmanager) |
| Beauftragung externer Dienstleister |
| Kosten für Audit und Eintragung ins EMAS-Register |
| Finanzierungsansatz |
| BMWK: Förderschwerpunkt Implementierung eines Umweltmanagements der Kommunalrichtlinie (50 % der Kosten für externen Dienstleister) |
| https://www.klimaschutz.de/de/foerderung/foerderprogramme/kommunalrichtlinie/implementierung-eines-umweltmanagements |
| Haushaltsmittel TUMCS |
| Umsetzungsverantwortung |
| Klimaschutzmanager am TUMCS, TUMCS |
| Akteure |
| Sustainability Office |
| Flankierende Projekte |
| MN1a |

Hinweise
6 Beteiligung und Kommunikation

Der Prozess der Entwicklung des Klimaschutzkonzepts wurde in Anlehnung an die Entwicklung der TUM Sustainable Futures Strategy 2030 partizipativ und statusgruppenübergreifend gestaltet. In Kapitel 1.2 werden die für die Erstellung des Konzepts unmittelbar relevanten Governance-Strukturen und die organisatorische Verankerung des Themas innerhalb des Sustainability Office dargestellt. Die internen Stakeholder, Gremien und Fachabteilungen, welche maßgeblich an der Entwicklung des Klimaschutzkonzepts beteiligt waren, sind in Tab. 1 gelistet; Tab. 31 zeigt ausgewählte partizipative Elemente und Gremienstermine. Im Folgenden Kapitel werden die Formate der Beteiligung und Kommunikationsarbeit dargestellt.

Tab. 31: Beteiligungsveranstaltungen und Gremiensitzungen

<table>
<thead>
<tr>
<th>Datum</th>
<th>Veranstaltung / Gremium</th>
<th>Inhalt / Ergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.10.22</td>
<td>Hochschulpräsidium</td>
<td>Beschluss der TUM Sustainable Futures Strategy 2030 inkl. der Maßnahme Klimaschutzmanagement</td>
</tr>
<tr>
<td>17.11.22</td>
<td>Corporate Communication Center</td>
<td>Aufbau Klimaschutzhomepage</td>
</tr>
<tr>
<td>07.12.22</td>
<td>ZA4, Zentrale Technik</td>
<td>Datenbeschaffung Energie</td>
</tr>
<tr>
<td>15.12.22</td>
<td>Corporate Communication Center</td>
<td>Aufbau Klimaschutzhomepage</td>
</tr>
<tr>
<td>20.12.22</td>
<td>ZA4, Zentrale Technik</td>
<td>Datenbeschaffung Abfälle</td>
</tr>
<tr>
<td>10.01.23</td>
<td>ZA3, Zentrale Reisekostenstelle</td>
<td>Datenbeschaffung Dienstreisen</td>
</tr>
<tr>
<td>16.01.23</td>
<td>TUM Global & Alumni Office</td>
<td>Datenbeschaffung Student Outgoing</td>
</tr>
<tr>
<td>25.01.23</td>
<td>TUMCS</td>
<td>Rolle TUMCS im Klimaschutzkonzept</td>
</tr>
<tr>
<td>22.02.23</td>
<td>LfF</td>
<td>Datenbeschaffung Dienstreisen</td>
</tr>
<tr>
<td>09.03.23</td>
<td>LENK</td>
<td>Datenbeschaffung Dienstreisen</td>
</tr>
<tr>
<td>30.03.23</td>
<td>Hochschule für Politik</td>
<td>Definition Systemgrenze THG-Bilanz</td>
</tr>
<tr>
<td>25.04.23</td>
<td>ZA4, Gebäudemanagement</td>
<td>Datenbeschaffung Strom</td>
</tr>
<tr>
<td>24.05.23</td>
<td>Lst. SVP, Lst. VT</td>
<td>Kick-off Mobilitätserhebung</td>
</tr>
<tr>
<td>24.05.23</td>
<td>ZA4 Zentrale Technik, FutureCamp</td>
<td>Energieversorgung</td>
</tr>
<tr>
<td>30.05.23</td>
<td>Taskforce Sustainable Campus Development</td>
<td>Vorstellung und Diskussion THG-Bilanz</td>
</tr>
<tr>
<td>02.06.23</td>
<td>Lst. SVP, Lst. VT</td>
<td>Folgebesprechung Mobilitätserhebung</td>
</tr>
<tr>
<td>13.06.23</td>
<td>Workshop Campus Weihenstephan</td>
<td>Vorstellung THG-Bilanz, Maßnahmendiskussion</td>
</tr>
<tr>
<td>14.06.23</td>
<td>Hochschulpräsidium</td>
<td>Vorstellung und Diskussion THG-Bilanz</td>
</tr>
<tr>
<td>20.06.23</td>
<td>ZA4, Zentrale Technik</td>
<td>Energie und Gebäude</td>
</tr>
<tr>
<td>21.06.23</td>
<td>Workshop Campus Straubing</td>
<td>Vorstellung THG-Bilanz, Maßnahmendiskussion</td>
</tr>
<tr>
<td>22.06.23</td>
<td>Workshop Campus Garching</td>
<td>Vorstellung THG-Bilanz, Maßnahmendiskussion</td>
</tr>
<tr>
<td>28.06.23</td>
<td>Workshop Campus Stammgelände / München</td>
<td>Vorstellung THG-Bilanz, Maßnahmendiskussion</td>
</tr>
<tr>
<td>30.06.23</td>
<td>ZA4, Zentrale Technik</td>
<td>Energieversorgung Garching</td>
</tr>
<tr>
<td>09.07.23</td>
<td>TUM Sustainability Board</td>
<td>Vorstellung und Diskussion THG-Bilanz</td>
</tr>
<tr>
<td>23.08.23</td>
<td>Taskforce Sustainable Campus Development, FutureCamp</td>
<td>Sondersitzung zum Campus Garching</td>
</tr>
<tr>
<td>19.09.23</td>
<td>Taskforce Sustainable Campus Development, FutureCamp</td>
<td>Sondersitzung zum Campus Garching</td>
</tr>
<tr>
<td>26.10.23</td>
<td>Taskforce Sustainable Campus Development</td>
<td>Vorstellung und Diskussion Entwurf Projektkatalog</td>
</tr>
<tr>
<td>Datum</td>
<td>Veranstaltung / Gremium</td>
<td>Inhalt / Ergebnis</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>08.11.23</td>
<td>FutureCamp, Taskforce Sustainable Campus Development</td>
<td>Präsentation Szenarien</td>
</tr>
<tr>
<td>Nov 23 - Jan 24</td>
<td>E-Mail-Abfrage und bilaterale Termine mit allen relevanten Einheiten</td>
<td>Detaillierte Ausarbeitung des Projektkatalogs</td>
</tr>
<tr>
<td>12.12.23</td>
<td>Präsident und Vizekanzler</td>
<td>Vorstellung Szenarien und Projektkatalog, Diskussion Zielanpassung</td>
</tr>
<tr>
<td>14.12.23</td>
<td>Taskforce Sustainable Campus Development</td>
<td>Vorstellung und Diskussion Szenarien und Zielsetzung</td>
</tr>
<tr>
<td>15.12.24</td>
<td>TUM Sustainability Board</td>
<td>Vorstellung und Diskussion von Szenarien und Projektkatalog</td>
</tr>
<tr>
<td>18.01.24</td>
<td>Taskforce Sustainable Campus Development</td>
<td>Weitere Diskussion von Szenarien und Projektkatalog, Vorstellung und Diskussion Controllingkonzept</td>
</tr>
<tr>
<td>23.01.24</td>
<td>Hochschulpräsidium</td>
<td>Vorstellung und Diskussion von Szenarien, Projektkatalog, und Controllingkonzept</td>
</tr>
<tr>
<td>02.02.24</td>
<td>TUM Sustainability Board</td>
<td>Diskussion des Gesamtkonzepts und Beschlussempfehlung an Hochschulpräsidium</td>
</tr>
<tr>
<td>06.02.24</td>
<td>Hochschulpräsidium</td>
<td>Beschluss des Klimaschutzkonzepts</td>
</tr>
<tr>
<td>22/23.02.24</td>
<td>ZA4 (Zentrale Technik, Gebäudemanagement, Baumanagement)</td>
<td>Workshop Projekte mit Gebäudebezug im Klimaschutzkonzept</td>
</tr>
</tbody>
</table>

6.1 Workshops

Dabei wurde die gesamte TUM-Hochschulgemeinschaft, sowohl Studierende als auch Wissenschaftlerinnen und Wissenschaftler, Beschäftigte der Verwaltung und des technischen Betriebs zur Teilnahme an ihrem Campus eingeladen. Insgesamt haben sich 108 Teilnehmende aus allen Statusgruppen für die Workshops registriert (Abb. 36).

Die Ergebnisse der Workshops waren die Grundlage für die Entwicklung des Projektkatalogs. Die gesammelten Vorschläge aus den Workshops wurden mit den Mitgliedern der Taskforce Sustainable Campus Development geprüft, ergänzt und weiter konkretisiert. Der daraus entstandene Projektkatalog wurde anschließend durch die zuständigen Fachabteilungen geprüft und bei Bedarf in Einklang auf bereits bestehende Projekte und Prozesse angepasst. Da die Expertise der Fachabteilung der ZA4, Zentralen Verwaltung Immobilien für die Umsetzung der Projekte mit den größten Einsparpotenzialen in Scope 1 und 2 von zentraler Bedeutung ist, wurden die für diese Fachabteilung relevanten Projekte und dazugehörigen Steckbriefe innerhalb eines 2-tägigen Fachworkshops weiterentwickelt.
Abb. 36: Verteilung der Teilnehmenden der Klimaschutzwkshops

Abb. 37: Beteiligungsworkshops an den TUM-Standorten

(Fotos: TUM Sustainability Office)
6.2 Website

Seit Ende 2022 wird das Thema Klimaschutz an der TUM auch direkt über den zentralen Internetauftritt der TUM bespielt23. Auf dieser wird über die Entwicklung des Klimaschutzkonzepts informiert und es wurden u.a. auch die Einladung zu den Campus Workshops geteilt. Zukünftig wird die THG-Bilanz sowie weitere Informationen zum Thema Klimaschutz auch online über eine Homepage bespielt werden. Die Neugestaltung dieser ist für das Thema Nachhaltigkeit von Seiten des TUM Sustainability Office für das Frühjahr 2024 geplant. Auf dieser werden auch die Inhalte aus dem Klimaschutzkonzept integriert und prominent platziert werden.

6.3 Externe Vernetzung

Über die Beteiligung der wichtigen internen Akteure hinaus wurde sich im Zuge der Klimaschutzkonzepterstellung über das BayZeN, vormals NHNB auch intensiv mit anderen Klimaschutzmanagern bayerischer Hochschulen ausgetauscht. Dabei wurde, unter Leitung der Klimaschutzmanager der TUM im Januar 2023, die AG Klimaschutzmanagement ins Leben gerufen. Diese organisieren seit Gründung den monatlichen Austausch der Klimaschutzmanager der Mitgliedshochschulen. In den Treffen werden ein einheitliches Vorgehen bei der THG-Bilanzierung und die Weiterentwicklung der BayCalc-Richtlinie, sowie des BayCalc-Tools besprochen, aber auch diverse Fragestellungen im Tagessgeschäft der Klimaschutzmanager an den bayerischen Hochschulen, sowie Absprachen zum Vorgehen bei gemeinsamer Datenbeschaffung beim LfF und der LENK24. Im Juli 2023 fand das erste Präsenz-Treffen der Klimaschutzmanager der bayerischen Hochschulen am TUM Campus Straubing statt25.

23 \url{https://www.tum.de/ueber-die-tum/ziele-und-werte/nachhaltigkeit/klimaschutz-an-der-tum}
24 \url{https://www.nachhaltigehochschule.de/arbeitsgruppen/ag-klimaschutzmanagement/}
25 \url{https://www.cs.tum.de/den-klimaschutz-voranbringen/}
Implementierung des Klimaschutzkonzepts

7.1 Governance

Die TUM erkennt das Thema Nachhaltigkeit und damit Klimaschutz als Leitungsaufgabe an und hat bereits 2020 eine Präsialstabstelle Nachhaltigkeit (TUM Sustainability Office) geschaffen, welche 2023 um einen Vice President Sustainable Transformation und dem TUM Sustainability Board erweitert wurde (siehe Kapitel 1.2). Das Sustainability Office stellt unter anderem die zentrale Koordination und Steuerung universitätsweiter Klimaschutzbemühungen sowie die Verknüpfung mit weiteren strategischen Entwicklungslinien der TUM sicher. Das Klimaschutzmanagement wird daher für die Gesamtzielerreichung weiterhin organisatorisch und institutionell innerhalb des Sustainability Office verankert. Als zentral steuernde Stelle vernetzt das Sustainability Office etablierte Strukturen und Gremien und stärkt den Austausch über bestehende wie neue Formate. Dem Klimaschutzmanagement kommen dabei die folgenden Aufgaben zu:

- Gesamtverantwortung für die Umsetzung des Klimaschutzkonzepts
- Initiierung und Fortentwicklung der Klimaschutzprojekte mit Umsetzungsverantwortung innerhalb des TUM Sustainability Office und am TUM Campus Straubing
- Beratung der Akteurinnen und Akteure mit Umsetzungsverantwortung von Klimaschutzprojekten
- Koordination und Vernetzung relevanter Akteurinnen und Akteure für die Umsetzung der Klimaschutzprojekte
- Enge Zusammenarbeit mit dem Gebäudemanagement der ZA4 sowie dem Gebäude- management am TUMCS (Eigenständigkeit ggü. ZA4)
- Monitoring des übergeordneten Klimaschutzziels inkl. regelmäßiger interner Berichterstattung ggü. der Hochschulleitung (siehe Kapitel 7.2)
- Datensammlung und Weiterentwicklung der THG-Bilanz
- Datensammlung zur Erfolgskontrolle und Monitoring der Klimaschutzprojekte
- Jährliche externe Berichterstattung zum Stand der Klimaschutzbemühungen
• Organisatorische Koordination der Taskforce Sustainable Campus Development
• Evaluierung von Finanzquellen und Akquise von Fördermitteln für die Umsetzung von Klimaschutzprojekten
• Beratung der Verwaltung, Schools und anderer Akteure im Bereich Klimaschutz
• Öffentlichkeitsarbeit zum Klimaschutz an der TUM
• Koordination der AG Klimaschutzmanagement innerhalb BayZeN
• Netzwerkarbeit über Bayerische Hochschulen hinaus
• Vertretung des TUMCS im Netzwerk Region der Nachwachsenden Rohstoffe und Ver- netzung mit den Klimaschutzmanagern von Stadt und Landkreis

Dem Aufgabenportfolio sowie der Komplexität der TUM entsprechend wird davon ausge- gangen, dass für ein effektives Klimaschutzmanagement weiterhin mindestens zwei Vollzeitäquivalente (VZA) zur Umsetzung und Weiterentwicklung des Konzepts benötigt werden. Dies ermöglicht eine Differenzierung der Verantwortungsbereiche nach der räumlichen Verteilung der TUM-Standorte und damit der Koordination und Beratung unterschiedlicher für die Umsetzung relevanter interner und externer Akteurinnen und Akteure. Dem TUMCS kommt dabei durch die im Projektkatalog aufgeführten Pilotprojekte eine besondere Bedeutung zu, denn so sollen skalierbare Lösungen für alle TUM-Standorte entwickelt werden.

Neben ausreichenden Personalressourcen zur zentralen Koordination der Umsetzung des Klimaschutzkonzepts innerhalb des Sustainability Office müssen auch den für die Umsetzung der Klimaschutzprojekte verantwortlichen Organisationseinheiten der TUM die entsprechenden personellen und finanziellen Ressourcen zur Verfügung gestellt werden. Dies ist insbesondere in den Transformationsfeldern Energieverbrauch, Energieversorgung, Mobilität und Ressourcenverbrauch und –effizienz relevant.

Über die folgenden zusammenfassend kalkulierten personellen Ressourcen, die bislang innerhalb der einzelnen Klimaschutzprojekte aufgeführt sind, steht für einige der Projekte die Abschätzung zusätzlicher personeller Ressourcen noch aus (siehe Projektkatalog):

- ED1d: ZA4 Zentrale Technik, 1 VZA, Ingenieur für die standortübergreifende Koordination der Projekte für die Optimierung der Gebäudetechnik
- ED4a: ZA4 Zentrale Technik, 2 VZA, Energiemanager oder Energiemanager
- M3a: Sustainability Office, 2 VZA, Umsetzung standortspezifischer und allgemeiner Mobilitätsmaßnahmen
- R1b: IT & ZA5 Vergabeberatung, tbd VZA, Einführung und Begleitung einer zentralen Beschaffungsplattform
- FLE4a: TUM Entrepreneurship, 0,5 VZA, Thematische Koordinationsstelle Innovation & Entrepreneurship im BayZeN
- MN2a: TUMCS, 1 VZA, Umweltmanagerin oder Umweltmanagerin

Neben Sicherstellung personeller Ressourcen ist eine wesentliche Einflussgröße für die erfolgreiche Umsetzung der erarbeiteten Projekte der bereits in Kapitel 4.1 genannte Sanierungsstau. Mit Blick auf das Ziel der Treibhausgasreduktion der TUM ergibt sich daraus eine mögliche zeitliche Verschiebung. Sollten die Ressourcen für die Umsetzung nicht im vollen Umfang zur Verfügung gestellt werden können, hätte dies maßgeblichen Einfluss auf die Erreichung des Klimaschutzziels der TUM.
7.2 Kommunikationsstrategie

Tab. 32: Zielgruppen der Kommunikation

<table>
<thead>
<tr>
<th>Interne Akteurinnen und Akteure / Zielgruppen</th>
<th>Externe Akteurinnen und Akteure / Zielgruppen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Hochschulleitung</td>
<td>• Bayerische Staatsministerium für Wissenschaft und Kunst</td>
</tr>
<tr>
<td>• Fachabteilungen in der Hochschulverwaltung</td>
<td>• Bayerische Staatsministerium für Wohnen, Bau und Verkehr sowie standortrelevante Staatsbauverwaltung</td>
</tr>
<tr>
<td>• Wissenschaftliches Personal</td>
<td>• Landesagentur für Energie und Klimaschutz</td>
</tr>
<tr>
<td>• School Offices</td>
<td>• Landesamt für Finanzen</td>
</tr>
<tr>
<td>• Studierende</td>
<td>• Dienstleistungsunternehmen, insb. Energieversorgungsunternehmen</td>
</tr>
<tr>
<td>• Sustainability Board</td>
<td>• Universitäre Netzwerke und Partner aus BayZeN, EuroTech, ISCN, Flagship Partners, weitere</td>
</tr>
<tr>
<td>• Taskforce Sustainable Campus Development</td>
<td>• Universitäre Netzwerke und Partner aus BayZeN, EuroTech, ISCN, Flagship Partners, weitere</td>
</tr>
<tr>
<td>• Green Offices</td>
<td>• Klimaschutzmanager anderer Hochschulen</td>
</tr>
<tr>
<td>• Studentische Vertretung und Initiativen</td>
<td></td>
</tr>
</tbody>
</table>

Der Schwerpunkt der Kommunikationsstrategie liegt dabei zunächst auf den internen Akteurinnen und Akteure der TUM. Das zentrale Ziel der Kommunikation zum Thema Klimaschutz ist dabei Personen und Einheiten über die notwendigen Transformationsprozesse zu einem nachhaltigen und klimafreundlichen Universitätsalltag zu informieren und sensibilisieren, und zum anderen diese aktiv in die Gestaltung der Transformation mit einzubinden, zu mobilisieren und im Rahmen des „TUM Sustainable Communities Network“ miteinander zu vernetzen. Nach außen möchte die TUM ihrem Anspruch, als eine der führenden technischen Universitäten Europas gerecht werden und die Fortschritte wie auch Herausforderungen transparent kommunizieren.

Dieses Leitziel kann dabei auf die in Tab. 33 dargestellten Ziele heruntergebrochen werden, welche sowohl interne als auch externe Akteurinnen und Akteure adressieren. Im Fokus der Kommunikation stehen dabei die in Tab. 34 vordefinierten zielgruppenspezifische Inhalte.
Tab. 33: Ziele der Kommunikation mit internen und externen Zielgruppen

<table>
<thead>
<tr>
<th>Ziele</th>
<th>Intern</th>
<th>Extern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vermittlung und Informationen zu Aktivitäten des Klimaschutzmanagements und zur Umsetzung des Klimaschutzkonzepts</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sensibilisierung für Klimaschutz und Etablierung eines Klimaschutzbewusstseins im Universitätsalltag</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Mobilisierung der Hochschulangehörigen für die Umsetzung von Klimaschutzprojekten</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sichtbarkeit von klimaschutz- und nachhaltigkeitsbezogenen Forschungsergebnissen</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Evaluation und Benchmarking der Klimaschutzaktivitäten der TUM im Vergleich zu anderen Universitäten</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Förderung der Vernetzung, Kooperation und Partnerschaft mit anderen Universitäten zum Thema Klimaschutz an Hochschulen</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Förderung der Vernetzung, Kooperationen und Partnerschaften mit außeruniversitären Akteurinnen und Akteure</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Tab. 34: Inhalte der Klimaschutzkommunikation

<table>
<thead>
<tr>
<th>Inhalte</th>
<th>Intern</th>
<th>Extern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jährliche Berichterstattung der Entwicklung der wesentlichen Indikatoren der Transformationsfelder (Tab. 35)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Fortschrittskurzbericht der erarbeiteten Klimaschutzprojekte</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Erreichung des Treibhausgasreduktionsziels</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Klimagerechtes Nutzerinnen- und Nutzerverhalten</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Beteiligungsmöglichkeiten innerhalb bestehender und/ oder neuer Initiativen und Gremien</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Darstellung der relevanten Akteurinnen und Akteure in den Bereichen Klimaschutz und Nachhaltigkeit</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Aufgrund der hohen Relevanz des Themas Klimaschutz in der TUM Sustainable Futures Strategy 2030 wird die Kommunikation über Klimaschutzaktivitäten an der TUM in die entsprechenden bestehenden und zu entwickelnden Kommunikationskanäle und -instrumente eingebettet. Der ab 2024 erstmals veröffentlichte TUM Sustainable Futures Report bildet dabei die Grundlage der künftigen regelmäßigen Nachhaltigkeitsberichterstattung der TUM. Dieser wird die relevanten Inhalte, wie die Entwicklung der definierten Indikatoren zur Erfolgskontrolle (siehe Kapitel 7.2) sowie den Umsetzungsstand der Klimaschutzprojekte und -aktivitäten zusammenfassen und der breiten Öffentlichkeit zur Verfügung stellen.

Darüber sieht die TUM Sustainable Futures Strategy 2030 die Entwicklung eines Sustainability Dashboards vor, welches nachhaltigkeitsrelevante Daten online verfügbar machen soll. Das im Rahmen des Projekts ED4b zu entwickelnde Energiedashboard soll als Startpunkt der Einführung eines TUM Sustainability Dashboards dienen.

Neben diesen beispielhaft genannten Kommunikationswegen und -methoden besteht die ganzheitliche Kommunikationsstrategie des Klimaschutzmanagements aus den folgenden in Kapitel 5 detailliert ausgeführten Projekten:
• ED5a: Entwicklung einer umfangreichen Kommunikationskampagne zu Energieeinsparmaßnahmen mit den Zielgruppen Studierende und Beschäftigte
• ED5b: Evaluation und ggf. sukzessive Einführung einer internen Leistungsverrechnung des Energieverbrauchs zur Sensibilisierung der Entscheidungsträgerinnen Entscheidungsträger und Beschäftigten
• M1a: Entwicklung einer TUM Travel Policy und eines Sets an Push- und Pull-Maßnahmen für nachhaltigere Dienstreisemobilität
• M1b: Ausbau der Thinking Green-Initiative zur Kommunikationskampagne zur Steigerung des Bewusstseins für nachhaltigere Dienstreisen
• R2a: Umsetzung des vorgesehenen einheitlichen Mülltrenn- und Sammelsystems in den Gebäuden an allen TUM-Standorten mit Mapping der Wertstoffinseln und Kommunikationskampagne
• R3a: Erarbeitung von Handlungsempfehlungen für einen ressourceneffizienten Arbeitsalltag
• FLE2a: Konzeption und Umsetzung eines Weiterbildungsangebots zum Thema "Nachhaltigkeit und Klimaschutz" für alle TUM-Beschäftigten

7.3 Monitoring und Controlling Konzept

Ein jährliches Monitoring und Controlling dient der zielgerichteten Steuerung des Klimaschutzmanagements der TUM. Die Informationen über die Fortschritte in den erarbeiteten Projekten und die Realisierung gesetzter Ziele werden in Form von Indikatoren aufbereitet und orientiert sich dem klassischen PDCA-Zyklus (Qualitätsregelkreis):

- PLAN (Ziele, Verantwortungen, Ressourcen festlegen)
- DO (Durchführung gemäß Planung)
- CHECK (Zielerreichung prüfen, Aussagekraft der Indikatoren prüfen, Fehler erheben)
- ACT (Fehler analysieren, Lösungsmöglichkeiten finden, Anpassungen tätigen)

Indikatoren

Mit Stand der Veröffentlichung des Klimaschutzkonzeptes sind noch nicht alle Indikatoren (Tab. 35) aufgrund der begrenzten Verfügbarkeit aller notwendigen Daten und der Datenqualität vollständig aussagekräftig. Sobald entsprechende Datenlücken insbesondere im Hinblick auf wesentliche Scope 3 Emissionen geschlossen werden können, hat die Auswertung in Bezug auf jährliche Veränderungen der betroffenen Indikatoren eine höhere Aussagekraft. Dies wird dann auch die Ableitung geeigneter Konsequenzen hinsichtlich der Wirksamkeit der erarbeiteten Klimaschutzprojekte ermöglichen. Die in Tab. 35 abgebildeten Indikatoren wurden zum einen innerhalb der AG Klimaschutzmanagement des BayZeN gemeinsam mit den Klimaschutzmanagern der bayerischen Hochschulen als Vergleichsgrößen identifiziert und ergeben sich zum anderen aus der Erfolgskontrolle der erarbeiteten Projekte. In kursiv sind Indikatoren gelistet, die derzeit aufgrund der fehlenden Datengrundlage noch nicht gebildet werden können, deren Bereitstellung jedoch geplant ist.
Tab. 35: Wesentliche Indikatoren in den Transformationsfeldern für das Monitoring

<table>
<thead>
<tr>
<th>Indikator</th>
<th>Messgröße [pro Jahr]</th>
<th>Transformationsfeld</th>
<th>Standortbezug²⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Treibhausgasemissionen Gesamt [t CO₂e]</td>
<td>KSK</td>
<td>TUM</td>
</tr>
<tr>
<td>1-1-I</td>
<td>Treibhausgasemissionen Scope 1 [t CO₂e]</td>
<td>KSK</td>
<td>TUM</td>
</tr>
<tr>
<td>1-1-II</td>
<td>Treibhausgasemissionen Scope 2 [t CO₂e]</td>
<td>KSK</td>
<td>TUM</td>
</tr>
<tr>
<td>1-1-II</td>
<td>Treibhausgasemissionen Scope 3 [t CO₂e]</td>
<td>KSK</td>
<td>TUM</td>
</tr>
<tr>
<td>1-2</td>
<td>Treibhausgasemissionen in Scope 1 und 2 [t CO₂e] pro Hochschulangehörige/r [VZÄ]</td>
<td>KSK</td>
<td>TUM</td>
</tr>
<tr>
<td>1-2-I</td>
<td>Treibhausgasemissionen in Scope 1 und 2 [t CO₂e] pro Studierende/r [Vollzeit]</td>
<td>KSK</td>
<td>TUM</td>
</tr>
<tr>
<td>1-2-II</td>
<td>Treibhausgasemissionen in Scope 1 und 2 [t CO₂e] pro Beschäftigte/r [VZÄ]</td>
<td>KSK</td>
<td>TUM</td>
</tr>
<tr>
<td>2-1</td>
<td>Energiebedingte Treibhausgasemissionen in Scope 1, 2 und 3 [t CO₂e]</td>
<td>ES</td>
<td>TUM, M, G, W, S, A</td>
</tr>
<tr>
<td>2-2</td>
<td>Energiebedingte Treibhausgasemissionen in Scope 1, 2 und 3 [t CO₂e] pro Nettoraumfläche [m²]</td>
<td>ES</td>
<td>TUM, M, G, W, S, A</td>
</tr>
<tr>
<td>3-1</td>
<td>Endenergieverbrauch Gesamt [kWh]</td>
<td>ED, ES</td>
<td>TUM, M, G, W, S, A</td>
</tr>
<tr>
<td>3-2</td>
<td>Stromverbrauch Gesamt [kWh]</td>
<td>ED, ES</td>
<td>TUM, M, G, W, S, A</td>
</tr>
<tr>
<td>3-3</td>
<td>Stromverbrauch Gesamt [kWh] pro Nettoraumfläche [m²]</td>
<td>ED, ES</td>
<td>TUM, M, G, W, S, A</td>
</tr>
<tr>
<td>3-4</td>
<td>Stromverbrauch Gesamt [kWh] pro Hochschulangehörige/r [VZÄ]</td>
<td>ED, ES</td>
<td>TUM</td>
</tr>
<tr>
<td>3-5</td>
<td>Wärmeverbrauch Gesamt [kWh]</td>
<td>ED, ES</td>
<td>TUM, M, G, W, S, A</td>
</tr>
<tr>
<td>3-6</td>
<td>Wärmeverbrauch Gesamt [kWh] pro Nettoraumfläche [m²]</td>
<td>ED, ES</td>
<td>TUM, M, G, W, S, A</td>
</tr>
<tr>
<td>3-7</td>
<td>Wärmeverbrauch Gesamt [kWh] pro Hochschulangehörige/r [VZÄ]</td>
<td>ED, ES</td>
<td>TUM</td>
</tr>
<tr>
<td>4-1</td>
<td>Anteil regenerativer Energien am Endenergieverbrauch [%]</td>
<td>ES</td>
<td>TUM, M, G, W, S, A</td>
</tr>
<tr>
<td>4-2</td>
<td>Anteil selbsterzeugter PV-Strom am Gesamtstromverbrauch [%]</td>
<td>ES</td>
<td>TUM, M, G, W, S, A</td>
</tr>
<tr>
<td>4-3</td>
<td>Installierte Gesamtleistung der PV-Anlagen [kWp]</td>
<td>ES</td>
<td>TUM, M, G, W, S, A</td>
</tr>
<tr>
<td>5-1</td>
<td>Treibhausgasemissionen der Dienstreisen [t CO₂e]</td>
<td>M</td>
<td>TUM</td>
</tr>
<tr>
<td>5-2</td>
<td>Strecke der Dienstreisen, die per Flugzeug zurückgelegt wird [km]</td>
<td>M</td>
<td>TUM</td>
</tr>
<tr>
<td>5-3</td>
<td>Strecke der Dienstreisen, die per PKW zurückgelegt wird [km]</td>
<td>M</td>
<td>TUM</td>
</tr>
<tr>
<td>5-4-I</td>
<td>Anteil der Anzahl der Dienstreisen, die mit dem Flugzeug zurückgelegt werden [%]</td>
<td>M</td>
<td>TUM</td>
</tr>
<tr>
<td>5-4-II</td>
<td>Anteil der Anzahl der Dienstreisen, die per Bahn, ÖPNV und Bus zurückgelegt werden [%]</td>
<td>M</td>
<td>TUM</td>
</tr>
<tr>
<td>5-4-III</td>
<td>Anteil der Anzahl der Dienstreisen, die mit dem PKW, Taxi, Motorrad zurückgelegt werden [%]</td>
<td>M</td>
<td>TUM</td>
</tr>
</tbody>
</table>

²⁶ Die Bildung des Indikators ist für die gelisteten TUM Standorte möglich. Dabei steht M für Campus München, G für Campus Garching, W für Campus Weihenstephan, S für Campus Straubing, und A für Außenstellen (aggregiert). Sofern spezifisch relevant kann ggf. eine differenzierte Auswertung für einzelne Außenstellen erfolgen. Die Abkürzung TUM bedeutet, dass der Indikator nur auf der Ebene der gesamten Universität errechnet werden kann bzw. relevant ist.
<table>
<thead>
<tr>
<th>Indikator</th>
<th>Messgröße [pro Jahr]</th>
<th>Transformationsfeld</th>
<th>Standortbezug</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-4-IV</td>
<td>Anteil der Anzahl der Dienstreisen, die mit dem Schiff zurückgelegt werden [%]</td>
<td>M</td>
<td>TUM</td>
</tr>
<tr>
<td>5-4-V</td>
<td>Anteil der Anzahl der Dienstreisen, die mit dem Fahrrad zurückgelegt werden [%]</td>
<td>M</td>
<td>TUM</td>
</tr>
<tr>
<td>5-5</td>
<td>Treibhausgasemissionen des Fuhrparks [t CO₂e]</td>
<td>M</td>
<td>TUM</td>
</tr>
<tr>
<td>5-6</td>
<td>Anteil der Fahrzeuge mit alternativen Antrieben im Fuhrpark [%]</td>
<td>M</td>
<td>TUM</td>
</tr>
<tr>
<td>6-1</td>
<td>Treibhausgasemissionen der Student Outgoing [t CO₂e]</td>
<td>M</td>
<td>TUM</td>
</tr>
<tr>
<td>6-2</td>
<td>Treibhausgasemissionen Student Outgoing [t CO₂e] pro Reisender/r [Kopf]</td>
<td>M</td>
<td>TUM</td>
</tr>
<tr>
<td>7-1</td>
<td>Treibhausgasemissionen der Alltagsmobilität [t CO₂e]</td>
<td>M</td>
<td>TUM, M, G, W, S, A</td>
</tr>
<tr>
<td>7-2</td>
<td>Von einem Mobilitätsmanagement zu definierender Indikator</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Anzahl ökobilanzierter Veranstaltungen</td>
<td>R</td>
<td>TUM, M, G, W, S, A</td>
</tr>
</tbody>
</table>

Darüber hinaus soll für Projekte, für die eine sinnvolle Abschätzung der Einsparung von THG-Emissionen bzw. Energie möglich ist, zukünftig die folgende relative Kennzahl zur Bewertung gebildet werden:

- \[\frac{\text{Finanzieller Aufwand [\(\varepsilon\)]}}{\text{THG-Emissionseinsparung [t CO₂e]}} \text{bzw.} \frac{\text{Finanzieller Aufwand [\(\varepsilon\)]}}{\text{Energieeinsparung [MWh]}} \]
- \[\frac{\text{Personeller Aufwand in Vollzeitäquivalente [VZÄ]}}{\text{THG-Emissionseinsparung [t CO₂e]}} \text{bzw.} \frac{\text{Personeller Aufwand in Vollzeitäquivalente [VZÄ]}}{\text{Energieeinsparung [MWh]}} \]

Auf Basis dieser Kennzahlen kann bei Bedarf eine Priorisierung von Projekten für die Umsetzung erfolgen.

Dokumentation und interne Berichterstattung

Das Klimaschutzmanagement im Sustainability Office fasst in einem internen jährlichen Monitoringbericht die Werte der Indikatoren der Vorjahre gemäß Tab. 35, eine Erklärung über die Emissionsentwicklung und den Umsetzungsstand der erarbeiteten Klimaschutzprojekte zusammen. Der Bericht wird zunächst dem Sustainability Board und der Taskforce Sustainable Campus Development vorgestellt. Innerhalb dieser Gremien wird entschieden, ob konkreter Handlungsbedarf besteht.

Im Falle von Handlungsbedarf werden die zuständigen Fachabteilungen und das Sustainability Office damit beauftragt konkrete Vorschläge zur Nachsteuerung bzw. von Korrekturmaßnahmen zu erarbeiten. Diese werden durch das Sustainability Board und die Taskforce Sustainable Campus Development hinsichtlich ihrer Wirksamkeit abgeschätzt. Die Empfehlungen des Sustainability Board und der Taskforce Sustainable Campus Development werden durch das Klimaschutzmanagement in den Monitoringbericht um ein Controlling Kapitel ergänzt. Dieser Monitoring und Controlling Bericht wird dem Hochschulpräsidium durch den Vice President Sustainable Transformation vorgestellt. Dieses entscheidet und beschließt bei Bedarf über die Umsetzung der jeweiligen Korrekturvorschläge. Das Klimaschutzmanagement ist dabei für die Koordination der Umsetzung der vorgeschlagenen Korrekturmaßnahmen gemeinsam mit den relevanten Akteurinnen und Akteure verantwortlich. Durch diese Bündelung...
kann eine effektive und effiziente Realisierung des angestrebten Klimaschutzziels erfolgen. Der Prozess ist in Abb. 38 dargestellt.

Wird von Seiten des Sustainability Boards und der Taskforce Sustainable Campus Development kein Handlungsbedarf identifiziert, so wird der Hochschulleitung der Monitoringbericht zur Kenntnis vorgelegt.

Für ein zukünftiges effektives Monitoring und Controlling ist eine Verkürzung der Berichtszyklen von aktuell zwei Jahren auf ein Jahr unbedingt anzustreben. In der Praxis kann dies erst erfolgen, wenn die relevanten Daten durch die zuständigen Einheiten rechtzeitig zur Verfügung gestellt werden können. Der Aufbau eines TUM-weiten Energiemonitorings spielt dabei ebenso eine wesentliche Rolle wie die weitere Umsetzung der Digitalisierungsstrategie „Auf dem Weg zur datengestützten Universität“27.

Die erarbeiteten Inhalte für die interne Berichterstattung dient auch als Basis für die Inhalte der externen Berichterstattung innerhalb des TUM Sustainable Futures Report (siehe Kapitel 7.2) und ggf. der durch das Hochschulreferat 1 Controlling herausgegebenen Publikation „TUM in Zahlen“28.

27 https://www.digitalisierung.tum.de/
28 https://www.tum.de/ueber-die-tum/daten-und-fakten/tum-in-zahlen

Abb. 38: Darstellung des Monitoring und Controlling Prozesses (eigene Abbildung)
Literaturverzeichnis

Anhang

A. Auszug aus dem Hochschulvertrag 2023-2017 gem. Art.8 Abs. 2 BayHIG zwischen der TUM und dem StMWK

III.9 Nachhaltigkeit, Klimaschutz

a) Nachhaltigkeit in allen Leistungsdimensionen

ZIEL: Berichterstattung über die Fortschritte der Zielerreichung in den in der Strategie festge- schriebenen Themenfeldern bis spätestens im Jahr 2025.

b) Klimaneutralität

ZIEL: Bis spätestens Ende Juni 2025 erstellt die TUM eine THG-Bilanz inkl. Potenzialanalyse, Szenarien und Reduktionspfaden.
B. Emissionsfaktoren der THG-Bilanz 2021 gemäß BayCalc

Tab. 36: Emissionsfaktoren gemäß BayCalc

<table>
<thead>
<tr>
<th>Emissionsquelle</th>
<th>Einheit</th>
<th>Scope 1</th>
<th>Scope 2</th>
<th>Scope 3</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV (Eigenerzeugung)</td>
<td>kWh</td>
<td>0,000055714</td>
<td></td>
<td></td>
<td>UBA 2022: Emissionsbilanz erneuerbarer Energieträger, Tab 10</td>
</tr>
<tr>
<td>Wärme aus Biogas (in kWh) (Fremdbezug)</td>
<td>kWh</td>
<td>0,000009</td>
<td></td>
<td></td>
<td>UBA 2022: Emissionsbilanz erneuerbarer Energieträger - Bestimmung der ver-</td>
</tr>
<tr>
<td>Erdgas (in kWh) (Eigenerzeugung) (Brennwert)</td>
<td>kWh</td>
<td>0,000182045</td>
<td></td>
<td>0,00004</td>
<td>Emissionsberichterstattungsverordnung 2022</td>
</tr>
<tr>
<td>Wärme aus Erdgas (in kWh) (Fremdbezug)</td>
<td>kWh</td>
<td>0,000201234</td>
<td></td>
<td>0,00004</td>
<td>UBA 2021 Emissionsbilanz erneuerbarer Energieträger</td>
</tr>
<tr>
<td>Heizöl (in kWh)</td>
<td>kWh</td>
<td>0,000267</td>
<td>0,000046</td>
<td></td>
<td>UBA 2021: Emissionsbilanz erneuerbarer Energieträger, Tab. 61, Seite 90, Direkte Emissionen</td>
</tr>
<tr>
<td>Holzhackschnitzel (in kWh) (Eigenerzeugung)</td>
<td>kWh</td>
<td>0,00000418</td>
<td>0,00007273</td>
<td>0,00015743</td>
<td>UBA 2022: Emissionsbilanz erneuerbarer Energieträger - Bestimmung der ver-</td>
</tr>
<tr>
<td>Wärme aus Holzhackschnitzel (in kWh) (Fremdbezug)</td>
<td>kWh</td>
<td>0,00007691</td>
<td>0,00015743</td>
<td></td>
<td>UBA 2022: Emissionsbilanz erneuerbarer Energieträger - Bestimmung der ver-</td>
</tr>
<tr>
<td>Wärme (Fernwärme) (in kWh)</td>
<td>kWh</td>
<td>0,00017073</td>
<td>0,00003319</td>
<td></td>
<td>DEFRA 2022 , Heat and steam, Heat and steam, District heat and steam</td>
</tr>
<tr>
<td>Wärme (Fernwärme) SW Freising</td>
<td>kWh</td>
<td>0,00013086</td>
<td>0,000025859</td>
<td></td>
<td>Freising Stadtwerke</td>
</tr>
<tr>
<td>Strom aus Erneuerbaren Energien</td>
<td>kWh</td>
<td>0</td>
<td>0,00044933</td>
<td></td>
<td>Eigene Berechnung (FutureCamp) auf Basis von: GEMIS 5.0, El-mix-DE-2020</td>
</tr>
<tr>
<td>Strom (Strommix Deutschland)</td>
<td>kWh</td>
<td>0,00035814</td>
<td>0,00009349</td>
<td></td>
<td>Eigene Berechnung auf Basis von: GEMIS 5.0, El-mix-DE-2020</td>
</tr>
<tr>
<td>Strom (Stromtarif 1)</td>
<td>kWh</td>
<td>0</td>
<td>0,00004797</td>
<td></td>
<td>Stromtarif Straubing</td>
</tr>
<tr>
<td>Beamer</td>
<td>Stk</td>
<td>0,173</td>
<td></td>
<td></td>
<td>ClimCalc Österreich</td>
</tr>
<tr>
<td>Desktop-PC</td>
<td>Stk</td>
<td>0,435</td>
<td></td>
<td></td>
<td>Öko Institut 2020 Digitaler CO2-Fußabdruck Tab. 5-1</td>
</tr>
<tr>
<td>Drucker</td>
<td>Stk</td>
<td>0,06159</td>
<td></td>
<td></td>
<td>ClimCalc Österreich</td>
</tr>
<tr>
<td>Toner</td>
<td>Stk</td>
<td>0,0006266</td>
<td></td>
<td></td>
<td>bezieht sich auf DM von Toner --> DM, Toner = 1,14 kg/Stk laut Ecoinvent --> 0,54966 kgCO₂/kg*1,14 kg/Stk = 0,0006266124 t CO₂e/Stk</td>
</tr>
<tr>
<td>Monitore</td>
<td>Stk</td>
<td>0,088</td>
<td></td>
<td></td>
<td>Öko Institut 2020 Digitaler CO2-Fußabdruck Tab. 5-1</td>
</tr>
<tr>
<td>Multifunktionsgeräte</td>
<td>Stk</td>
<td>0,3</td>
<td></td>
<td></td>
<td>ClimCalc Österreich</td>
</tr>
<tr>
<td>Artikel</td>
<td>Einheit</td>
<td>Wert</td>
<td>Quelle/Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------</td>
<td>---------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notebook/Laptop</td>
<td>Stk</td>
<td>0,311</td>
<td>Öko Institut 2020 Digitaler CO2-Fußabdruck Tab. 5-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regale/ Schränke</td>
<td>Stk</td>
<td>0,0245</td>
<td>https://www.office-4-green.de/wissen/life_cycle_assessment.php#3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smartphones</td>
<td>Stk</td>
<td>0,1</td>
<td>Öko Institut 2020 Digitaler CO2-Fußabdruck Tab. 5-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stühle</td>
<td>Stk</td>
<td>0,074</td>
<td>Thünen-Institut 2015: Ökobilanz für holzbasierte Möbel; LCA - office-4-green; eigene Berechnung (LfU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tablet</td>
<td>Stk</td>
<td>0,2</td>
<td>Öko Institut 2020 Digitaler CO2-Fußabdruck Tab. 5-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tische</td>
<td>Stk</td>
<td>0,023</td>
<td>Thünen-Institut 2015: Ökobilanz für holzbasierte Möbel; LCA - office-4-green; eigene Berechnung (LfU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bahn Nahverkehr</td>
<td>Pkm</td>
<td>0,000093</td>
<td>TREMOD 6.42 (12/2022)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bahn Fernverkehr</td>
<td>Pkm</td>
<td>0,000046</td>
<td>TREMOD 6.42 (12/2022)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bahn Unbekannt</td>
<td>Pkm</td>
<td>0,0000695</td>
<td>Durchschnittswert aus Nah- und Fernverkehr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektrische Kleinfahrzeug (E-Roller, E-Bike, etc.)</td>
<td>Pkm</td>
<td>0,0000146</td>
<td>UBA 2020: Ökologische Bewertung von Verkehrarten (Tabellen 71 und 73)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-PKW</td>
<td>Pkm</td>
<td>0,00006457</td>
<td>DEFRA 2022: UK electricity for EVs, Cars (by-size), Average car, Battery Electric + DEFRA 2021: WTT-pass vehs & travel-land, WTT-cars (by-size), Average car, Battery Electric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-PKW (Fuhrpark)</td>
<td>Pkm</td>
<td>0,00005031 0,00001426</td>
<td>DEFRA 2021: UK electricity for EVs, Cars (by-size), Average car, Battery Electric + DEFRA 2021: WTT-pass vehs & travel-land, WTT-cars (by-size), Average car, Battery Electric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fahrrad</td>
<td>Pkm</td>
<td>0,000087</td>
<td>UBA 2020: Ökologische Bewertung von Verkehrarten - Ergebnisse für Fahrzeugherstellung, -wartung und -entsorgung (Tabelle 73)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flug unter 1.000 km (einfach)</td>
<td>Pkm</td>
<td>0,00055549</td>
<td>UBA: Mail von Sebastian Hussels am 21.10.2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flug 1.000 km-10.000 km (einfach)</td>
<td>Pkm</td>
<td>0,000240682</td>
<td>UBA: Mail von Sebastian Hussels am 21.10.2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flug über 10.000 km (einfach)</td>
<td>Pkm</td>
<td>0,000233837</td>
<td>UBA: Mail von Sebastian Hussels am 21.10.2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hybrid-PKW</td>
<td>Pkm</td>
<td>0,000151</td>
<td>DEFRA 2022: Business travel-land, Cars (by-size), Average car, Hybrid + DEFRA 2021: WTT-pass vehs & travel-land, WTT-cars (by-size), Average car, Hybrid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hybrid-PKW (Fuhrpark)</td>
<td>Pkm</td>
<td>0,000071 0,000024 0,000027</td>
<td>DEFRA 2021: Business travel-land, Cars (by-size), Average car, Hybrid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motorrad</td>
<td>Pkm</td>
<td>0,000107</td>
<td>UBA 2023: Flüssiger Verkehrfahrzeug für Klimaschutz und Luftreinhaltung Tab. 38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Straßenbahn/U-Bahn</td>
<td>Pkm</td>
<td>0,0003279</td>
<td>TREMOD 6.42 (12/2022)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxi (in Pkm)</td>
<td>Pkm</td>
<td>0,000185</td>
<td>UBA 2021: Business travel-land</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxi (in €)</td>
<td>€</td>
<td>0,000074</td>
<td>Annahme Taxikosten 2,5 € je gefahrenen km</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kühlmittel</td>
<td>kg</td>
<td>1,81</td>
<td>0,076</td>
<td>Ökoinstitut + IFEU: Carbon Footprint – Teilgutachten „Monitoring für den CO2-Ausstoß in der Logistikkette“. Tabelle 6 S. 35 + Gesamt minus Scope 1 (Quelle gibt Scope 1 und Gesamt an)</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Kühlmittel R134A</td>
<td>kg</td>
<td>1,43</td>
<td>0,103</td>
<td>Ökoinstitut + IFEU: Carbon Footprint – Teilgutachten „Monitoring für den CO2-Ausstoß in der Logistikkette“. Tabelle 6 S. 35 + Gesamt minus Scope 1 (Quelle gibt Scope 1 und Gesamt an)</td>
<td></td>
</tr>
<tr>
<td>Kühlmittel R404A</td>
<td>kg</td>
<td>3,922</td>
<td>0,103</td>
<td>Ökoinstitut + IFEU: Carbon Footprint – Teilgutachten „Monitoring für den CO2-Ausstoß in der Logistikkette“. Tabelle 6 S. 35 + Gesamt minus Scope 1 (Quelle gibt Scope 1 und Gesamt an)</td>
<td></td>
</tr>
<tr>
<td>Kühlmittel R410A</td>
<td>kg</td>
<td>2,088</td>
<td>0,089</td>
<td>Ökoinstitut + IFEU: Carbon Footprint – Teilgutachten „Monitoring für den CO2-Ausstoß in der Logistikkette“. Tabelle 6 S. 35 + Gesamt minus Scope 1 (Quelle gibt Scope 1 und Gesamt an)</td>
<td></td>
</tr>
<tr>
<td>Kühlmittel R422D</td>
<td>kg</td>
<td>2,729</td>
<td>0,09275</td>
<td>DEFRA 2022, Refrigerant & other, Kyoto protocol-blends, Emissions including only Kyoto products + Scope 3: Mittelwert aller im Tool enthaltener Kältemittel</td>
<td></td>
</tr>
<tr>
<td>Kühlmittel R407C</td>
<td>kg</td>
<td>1,774</td>
<td>0,09275</td>
<td>DEFRA 2022, Refrigerant & other, Kyoto protocol-blends, Emissions including only Kyoto products + Scope 3: Mittelwert aller im Tool enthaltener Kältemittel</td>
<td></td>
</tr>
<tr>
<td>Fahrzeuge</td>
<td>€</td>
<td>0,000494357</td>
<td>DEFRA 2009: monetäre Emissionsfaktoren (hochgerechnet für das Jahr 2021 anhand von Wechselkursen und Inflation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server</td>
<td>Stk</td>
<td>1,122</td>
<td>DEFRA 2009: monetäre Emissionsfaktoren (hochgerechnet für das Jahr 2021 anhand von Wechselkursen und Inflation)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C. Gebäudebestand der TUM Stand 2023

Tab. 37: Gebäudebestand der TUM und Zuordnung im Klimaschutzkonzept

<table>
<thead>
<tr>
<th>Zuordnung</th>
<th>Lage</th>
<th>Gebäude ID</th>
<th>Eigentumsverhältnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campus München</td>
<td>Nordgelände</td>
<td>0101</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Nordgelände</td>
<td>0102</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Nordgelände</td>
<td>0103</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Nordgelände</td>
<td>0104</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Nordgelände</td>
<td>0105</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Nordgelände</td>
<td>0106</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Nordgelände</td>
<td>0108</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Nordgelände</td>
<td>0109</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Südgelände</td>
<td>0201</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Südgelände</td>
<td>0202</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Südgelände</td>
<td>0203</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Südgelände</td>
<td>0204</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Südgelände</td>
<td>0205</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Südgelände</td>
<td>0206</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Südostgelände</td>
<td>0305</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Südwestgelände</td>
<td>0401</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Zentralgelände</td>
<td>0501</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Zentralgelände</td>
<td>0502</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Zentralgelände</td>
<td>0503</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Zentralgelände</td>
<td>0504</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Zentralgelände</td>
<td>0505</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Zentralgelände</td>
<td>0506</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Zentralgelände</td>
<td>0507</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Zentralgelände</td>
<td>0508</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Zentralgelände</td>
<td>0509</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Zentralgelände</td>
<td>0510</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Zentralgelände</td>
<td>0511</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus München</td>
<td>Zentralgelände</td>
<td>0512</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Physik</td>
<td>5101</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Physik</td>
<td>5103</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Physik</td>
<td>5104</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Physik</td>
<td>5107</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Physik</td>
<td>5108</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Physik</td>
<td>5111</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Physik</td>
<td>5112</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Physik</td>
<td>5115</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Physik</td>
<td>5116</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Physik</td>
<td>5124</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Physik</td>
<td>5130</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Physik</td>
<td>5131</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Physik</td>
<td>5140</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Physik</td>
<td>5142</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Physik</td>
<td>5143</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Physik</td>
<td>5160</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5202</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5203</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5204</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5207</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5209</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5210</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5211</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5212</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5214</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5215</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5216</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5218</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5219</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5220</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5221</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5222</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5224</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5225</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5226</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5227</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5228</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5229</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5231</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5232</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5233</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5234</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5235</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5236</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5237</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5250</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5251</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5252</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5253</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5256</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5257</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Forschungs-Reaktor</td>
<td>5268</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Zentraler Bereich</td>
<td>5301</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Zentrales Gebäude</td>
<td>5302</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Zentrales Gebäude</td>
<td>5304</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Chemie</td>
<td>5401</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Chemie</td>
<td>5402</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Chemie</td>
<td>5403</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Chemie</td>
<td>5404</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Chemie</td>
<td>5406</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Chemie</td>
<td>5407</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Chemie</td>
<td>5408</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Chemie</td>
<td>5409</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Chemie</td>
<td>5410</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Chemie</td>
<td>5413</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Chemie</td>
<td>5414</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Chemie</td>
<td>5415</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Chemie</td>
<td>5416</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Chemie</td>
<td>5433</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Maschinenwesen</td>
<td>5501</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Maschinenwesen</td>
<td>5502</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Maschinenwesen</td>
<td>5503</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Maschinenwesen</td>
<td>5504</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Maschinenwesen</td>
<td>5505</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Maschinenwesen</td>
<td>5506</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Maschinenwesen</td>
<td>5507</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Maschinenwesen</td>
<td>5508</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Maschinenwesen</td>
<td>5509</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Maschinenwesen</td>
<td>5510</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Maschinenwesen</td>
<td>5513</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Maschinenwesen</td>
<td>5514</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Maschinenwesen</td>
<td>5515</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Maschinenwesen</td>
<td>5517</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Maschinenwesen</td>
<td>5518</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Maschinenwesen</td>
<td>5519</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Maschinenwesen</td>
<td>5530</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Maschinenwesen</td>
<td>5531</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Maschinenwesen</td>
<td>5532</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Maschinenwesen</td>
<td>5537</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Mathematik und Informatik</td>
<td>5601</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Mathematik und Informatik</td>
<td>5602</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Mathematik und Informatik</td>
<td>5603</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Mathematik und Informatik</td>
<td>5604</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Mathematik und Informatik</td>
<td>5605</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Mathematik und Informatik</td>
<td>5606</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Mathematik und Informatik</td>
<td>5607</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Mathematik und Informatik</td>
<td>5608</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------------</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Mathematik und Informatik</td>
<td>5609</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Mathematik und Informatik</td>
<td>5610</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Mathematik und Informatik</td>
<td>5611</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Mathematik und Informatik</td>
<td>5612</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Mathematik und Informatik</td>
<td>5613</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Mathematik und Informatik</td>
<td>5620</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Mathematik und Informatik</td>
<td>5622</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>IMETUM</td>
<td>5701</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Süd-Westlich der Lichtenbergstraße</td>
<td>5901</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Technischer Betrieb</td>
<td>6101</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Technischer Betrieb</td>
<td>6102</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Technischer Betrieb</td>
<td>6103</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Technischer Betrieb</td>
<td>6106</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Technischer Betrieb</td>
<td>6107</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Technischer Betrieb</td>
<td>6202</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Süd-Westlich der Lichtenbergstraße</td>
<td>7910</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Galileo</td>
<td>8122</td>
<td>angemietet</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Galileo</td>
<td>8123</td>
<td>angemietet</td>
</tr>
<tr>
<td>Campus Garching</td>
<td>Galileo</td>
<td>8124</td>
<td>angemietet</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4001</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4101</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4102</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4103</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4105</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4106</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4107</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4108</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4109</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4110</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4111</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4113</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4114</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4115</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4119</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4120</td>
<td>angemietet</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4124</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4126</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4127</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4128</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4129</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4130</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4131</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4132</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephaner-Berg</td>
<td>4153</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4202</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4205</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4210</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4212</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4213</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4214</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4215</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4216</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4217</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4218</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4219</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4220</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4221</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4222</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4223</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4224</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4225</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4226</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4238</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4254</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4259</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4264</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4267</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4275</td>
<td>angemietet</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Mitte</td>
<td>4277</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Hochfeld</td>
<td>4304</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Hochfeld</td>
<td>4307</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Hochfeld</td>
<td>4308</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Hochfeld</td>
<td>4309</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Hochfeld</td>
<td>4310</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Hochfeld</td>
<td>4311</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Hochfeld</td>
<td>4314</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Hochfeld</td>
<td>4315</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Hochfeld</td>
<td>4316</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Hochfeld</td>
<td>4317</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Hochfeld</td>
<td>4318</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Hochfeld</td>
<td>4319</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Hochfeld</td>
<td>4320</td>
<td>Nutzungsrecht</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Hochfeld</td>
<td>4321</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Hochfeld</td>
<td>4322</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Hochfeld</td>
<td>4323</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>------------------------------</td>
<td>------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Hochfeld</td>
<td>4324</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Hochfeld</td>
<td>4325</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Freising-Weihenstephan</td>
<td>Weihenstephan Hochfeld</td>
<td>4387</td>
<td>Nutzungsrecht</td>
</tr>
<tr>
<td>Campus Straubing</td>
<td>Straubing</td>
<td>2927</td>
<td>angemietet</td>
</tr>
<tr>
<td>Campus Straubing</td>
<td>Straubing</td>
<td>2929</td>
<td>angemietet</td>
</tr>
<tr>
<td>Campus Straubing</td>
<td>Straubing</td>
<td>2930</td>
<td>angemietet</td>
</tr>
<tr>
<td>Campus Straubing</td>
<td>Straubing</td>
<td>3501</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Straubing</td>
<td>Straubing</td>
<td>3502</td>
<td>angemietet</td>
</tr>
<tr>
<td>Campus Straubing</td>
<td>Straubing</td>
<td>3503</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Straubing</td>
<td>Straubing</td>
<td>3504</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Straubing</td>
<td>Straubing</td>
<td>3505</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Straubing</td>
<td>Straubing</td>
<td>3508</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Campus Straubing</td>
<td>Straubing</td>
<td>3515</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Kapuzinerhöhlz</td>
<td>2103</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Kapuzinerhöhlz</td>
<td>2104</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Kapuzinerhöhlz</td>
<td>2105</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Kapuzinerhöhlz</td>
<td>2106</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Kapuzinerhöhlz</td>
<td>2107</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Kapuzinerhöhlz</td>
<td>2108</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Kapuzinerhöhlz</td>
<td>2109</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Campus im Olympiapark</td>
<td>2309</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Campus im Olympiapark</td>
<td>2310</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Campus im Olympiapark</td>
<td>2312</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Campus im Olympiapark</td>
<td>2313</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Campus im Olympiapark</td>
<td>2315</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Campus im Olympiapark</td>
<td>2317</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Campus im Olympiapark</td>
<td>2318</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Campus im Olympiapark</td>
<td>2319</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Campus im Olympiapark</td>
<td>2320</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Campus im Olympiapark</td>
<td>2321</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Campus im Olympiapark</td>
<td>2330</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Campus im Olympiapark</td>
<td>2331</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Campus im Olympiapark</td>
<td>2332</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Campus im Olympiapark</td>
<td>2333</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Campus im Olympiapark</td>
<td>2334</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Schwabing-West</td>
<td>2401</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Schwabing-West</td>
<td>2402</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Schwabing-West</td>
<td>2410</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Pasing</td>
<td>2601</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Pasing</td>
<td>2602</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Pasing</td>
<td>2604</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Pasing</td>
<td>2605</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Ort</td>
<td>Nummer</td>
<td>Eigentumsstatus</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------</td>
<td>--------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Pasing</td>
<td>2607</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Dachau</td>
<td>2608</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2805</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2806</td>
<td>Nutzungsrecht</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2903</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2904</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2905</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2906</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2907</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2908</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2909</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2910</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2911</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2912</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2913</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2914</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2915</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2916</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2917</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2918</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2919</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2920</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2921</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2922</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2923</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2924</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2925</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2926</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2927</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2928</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2929</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2930</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2931</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2932</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2933</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2934</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2935</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2936</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2937</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2938</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2939</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>München Sonst.</td>
<td>2940</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Campus im Olympiapark</td>
<td>2941</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Obernach</td>
<td>3101</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Obernach</td>
<td>3102</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Obernach</td>
<td>3103</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Garching Außenbereich</td>
<td>3104</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Garching Außenbereich</td>
<td>3105</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Garching Außenbereich</td>
<td>3106</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Garching Außenbereich</td>
<td>3107</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Garching Außenbereich</td>
<td>3108</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Garching Außenbereich</td>
<td>3109</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Obernach</td>
<td>3110</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Obernach</td>
<td>3111</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Obernach</td>
<td>3112</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Obernach</td>
<td>3113</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Obernach</td>
<td>3114</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Obernach</td>
<td>3115</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Obernach</td>
<td>3116</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Obernach</td>
<td>3117</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Obernach</td>
<td>3118</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Obernach</td>
<td>3119</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Obernach</td>
<td>3120</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Obernach</td>
<td>3121</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Obernach</td>
<td>3122</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Obernach</td>
<td>3123</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Obernach</td>
<td>3124</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Ort</td>
<td>Postleitzahl</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Eichenauf</td>
<td>3201</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Starnberg</td>
<td>3901</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Starnberg</td>
<td>3902</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Starnberg</td>
<td>3904</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Veitshof</td>
<td>4180</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Veitshof</td>
<td>4181</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Veitshof</td>
<td>4182</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Veitshof</td>
<td>4183</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Veitshof</td>
<td>4184</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Veitshof</td>
<td>4185</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Veitshof</td>
<td>4186</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Veitshof</td>
<td>4187</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Veitshof</td>
<td>4188</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Veitshof</td>
<td>4189</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Veitshof</td>
<td>4190</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Veitshof</td>
<td>4191</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Veitshof</td>
<td>4192</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Dürnast</td>
<td>4200</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Dürnast</td>
<td>4201</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Dürnast</td>
<td>4202</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Dürnast</td>
<td>4203</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Dürnast</td>
<td>4204</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Dürnast</td>
<td>4205</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Dürnast</td>
<td>4206</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Dürnast</td>
<td>4207</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Dürnast</td>
<td>4208</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Dürnast</td>
<td>4209</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Dürnast</td>
<td>4210</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Dürnast</td>
<td>4211</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Dürnast</td>
<td>4212</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Dürnast</td>
<td>4213</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Forschungsstation Viehhausen</td>
<td>4500</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Forschungsstation Viehhausen</td>
<td>4501</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Forschungsstation Viehhausen</td>
<td>4502</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Forschungsstation Viehhausen</td>
<td>4503</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Forschungsstation Viehhausen</td>
<td>4504</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Forschungsstation Viehhausen</td>
<td>4505</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Forschungsstation Viehhausen</td>
<td>4506</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Forschungsstation Viehhausen</td>
<td>4507</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Forschungsstation Viehhausen</td>
<td>4508</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Forschungsstation Viehhausen</td>
<td>4509</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Forschungsstation Viehhausen</td>
<td>4510</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Forschungsstation Viehhausen</td>
<td>4511</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Forschungsstation Viehhausen</td>
<td>4512</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Forschungsstation Viehhausen</td>
<td>4513</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Thalhausen</td>
<td>4601</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Thalhausen</td>
<td>4602</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Thalhausen</td>
<td>4603</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Thalhausen</td>
<td>4604</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Thalhausen</td>
<td>4605</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Thalhausen</td>
<td>4606</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Thalhausen</td>
<td>4607</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Thalhausen</td>
<td>4608</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Thalhausen</td>
<td>4609</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Thalhausen</td>
<td>4610</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Thalhausen</td>
<td>4611</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Thalhausen</td>
<td>4612</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Thalhausen</td>
<td>4613</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Thalhausen</td>
<td>4614</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Thalhausen</td>
<td>4615</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Thalhausen</td>
<td>4616</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Thalhausen</td>
<td>4620</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Freising-Achering</td>
<td>4800</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Roggenstein</td>
<td>4901</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Roggenstein</td>
<td>4902</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Roggenstein</td>
<td>4903</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Roggenstein</td>
<td>4907</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Roggenstein</td>
<td>4908</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Roggenstein</td>
<td>4909</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Roggenstein</td>
<td>4910</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Roggenstein</td>
<td>4914</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Roggenstein</td>
<td>4915</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Roggenstein</td>
<td>4916</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Versuchsstation Roggenstein</td>
<td>4920</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Raitenhaslach</td>
<td>9001</td>
<td>Nutzungsrecht</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Garmisch-Partenkirchen</td>
<td>9101</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Berchtesgaden</td>
<td>9201</td>
<td>Staatseigentum</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Campus Ottobrunn</td>
<td>9376</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Campus Ottobrunn</td>
<td>9377</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Campus Ottobrunn</td>
<td>9378</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Campus Ottobrunn</td>
<td>9379</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Campus Ottobrunn</td>
<td>9380</td>
<td>angemietet</td>
</tr>
<tr>
<td>Außenstelle</td>
<td>Campus Ottobrunn</td>
<td>9390</td>
<td>angemietet</td>
</tr>
</tbody>
</table>
Tab. 38: TUM Gebäude außerhalb der Systemgrenze des Klimaschutzkonzepts

<table>
<thead>
<tr>
<th>Gebäude-ID</th>
<th>Bezeichnung</th>
<th>Zuordnung und/ oder Nutzung durch</th>
</tr>
</thead>
<tbody>
<tr>
<td>0403</td>
<td>(SW3) Richard-Wagner-Str. 14 (Kiga.LH-Mün.)</td>
<td>Kindergarten Landeshauptstadt München</td>
</tr>
<tr>
<td>1501</td>
<td>Chirurgische Klinik</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1503</td>
<td>Augen, HNO, I.Med., III.Med.</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1514</td>
<td>Interdisziplinäres Forschungsgebäude</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1523</td>
<td>IMSE, Rechenzentrum (RZ)</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1531</td>
<td>Trogerstr. 4/Einsteinstr. 65</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1533</td>
<td>Trogerstr. 8, Pers.Rar-Sch.beh.</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1535</td>
<td>Trogerstr. 12</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1536</td>
<td>Trogerstr. 14, Seminargebäude Geschichte der Medizin</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1538</td>
<td>Trogerstr. 18, Pathologie</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1545</td>
<td>Mikrobiologie, Tierställe</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1548</td>
<td>GSF-Container, Inst. Virologie</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1551</td>
<td>A1-Hörsäle, Mensa</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1559</td>
<td>Mikrobiologie/Virologie</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>2522</td>
<td>Center for Translational Cancer Research (TranslaTUM)</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1601</td>
<td>Altbau 1, Vorklinik. Inst.</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1602</td>
<td>Altbau 2+3, Anatomisches Institut</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1603</td>
<td>Altbau 2+3, Biologisches Institut</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1607</td>
<td>Altbau 7, Institut für Pharmakologie und Toxikologie</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1608</td>
<td>Altbau 8, Institut für Medizinische Mikrobiologie</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1650</td>
<td>Tierstall f. Pharmakologie</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1652</td>
<td>Tierställe</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1713</td>
<td>Nigerstr. 3 (AM)</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1720</td>
<td>Grillparzerstr. 16-18 (AM)</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1724</td>
<td>Prinzregtenstr. 68 (AM) MRI</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1725</td>
<td>Inst. Allgem. Medizin, Orleanstr. 47 (AM)</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1740</td>
<td>Neherstr.1 (AM) ForTe</td>
<td>Universitätsklinikum</td>
</tr>
<tr>
<td>1901</td>
<td>Bildungscampus D</td>
<td>TUM Campus Heilbronn rechtl. Eigenständig</td>
</tr>
<tr>
<td>1902</td>
<td>Bildungscampus L</td>
<td>TUM Campus Heilbronn rechtl. Eigenständig</td>
</tr>
<tr>
<td>2350</td>
<td>(SZ) Olympiaschwimmhalle (AM)</td>
<td>Zentraler Hochschulsport, gemeinsame Nutzung aller Münchner Hochschulen</td>
</tr>
<tr>
<td>2351</td>
<td>(SZ) Olympia-Eislaufstadion (AM)</td>
<td>Zentraler Hochschulsport, gemeinsame Nutzung aller Münchner Hochschulen</td>
</tr>
<tr>
<td>2352</td>
<td>(SZ) Olympiapark (AM)</td>
<td>Zentraler Hochschulsport, gemeinsame Nutzung aller Münchner Hochschulen</td>
</tr>
<tr>
<td>2353</td>
<td>(SZ) Eislaufstadion Ost (AM)</td>
<td>Zentraler Hochschulsport, gemeinsame Nutzung aller Münchner Hochschulen</td>
</tr>
<tr>
<td>2354</td>
<td>(SZ) Regattaanlage Oberschleißheim (AM)</td>
<td>Zentraler Hochschulsport, gemeinsame Nutzung aller Münchner Hochschulen</td>
</tr>
<tr>
<td>Gebäude-ID</td>
<td>Bezeichnung</td>
<td>Zuordnung und/ oder Nutzung durch</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>2801</td>
<td>Elisabeth-Winterhalter-Weg (NR)</td>
<td>Ludwig-Maximilians-Universität</td>
</tr>
<tr>
<td>2803</td>
<td>Forum der Zukunft (AM)</td>
<td>Forum der Zukunft, Deutsches Museum</td>
</tr>
<tr>
<td>2804</td>
<td>Deutsches Museum, Museumsinsel 1 (NR)</td>
<td>Deutsches Museum</td>
</tr>
<tr>
<td>2807</td>
<td>Pinakothek der Moderne (NR)</td>
<td>Architekturmuseum</td>
</tr>
<tr>
<td>2910</td>
<td>RiWa Nr. 1/Haus B + Haus H</td>
<td>Hochschule für Politik</td>
</tr>
<tr>
<td>2911</td>
<td>RiWa Nr. 3/Haus C</td>
<td>Hochschule für Politik</td>
</tr>
<tr>
<td>2944</td>
<td>Munich Urban Colab</td>
<td>UnternehmerTUM und Landeshauptstadt München</td>
</tr>
<tr>
<td>3035</td>
<td>Helmholtz Biologikum</td>
<td>Institut für Biologische und Medizinische Bildgebung</td>
</tr>
<tr>
<td>3100</td>
<td>Projektbüro Hainich</td>
<td>Biodiversitäts-Exploratorium-Hainich-Dün</td>
</tr>
<tr>
<td>5109</td>
<td>Physik LMU</td>
<td>Ludwig-Maximilians-Universität</td>
</tr>
<tr>
<td>5120</td>
<td>Physik Beschleuniger LMU</td>
<td>Ludwig-Maximilians-Universität</td>
</tr>
<tr>
<td>5121</td>
<td>Atlashalle LMU</td>
<td>Ludwig-Maximilians-Universität</td>
</tr>
<tr>
<td>5122</td>
<td>Neb.Gebäude Beschleunigerbereich LMU (Abriss geplant)</td>
<td>Ludwig-Maximilians-Universität</td>
</tr>
<tr>
<td>5123</td>
<td>Physik Werkstattgebäude LMU</td>
<td>Ludwig-Maximilians-Universität</td>
</tr>
<tr>
<td>5125</td>
<td>LEX (LMU)</td>
<td>Ludwig-Maximilians-Universität</td>
</tr>
<tr>
<td>5126</td>
<td>CALA (LMU)</td>
<td>Ludwig-Maximilians-Universität</td>
</tr>
<tr>
<td>7894</td>
<td>Newton (AM)</td>
<td>General Electric Global Research Center Europe</td>
</tr>
<tr>
<td>7895</td>
<td>Pascal Halle</td>
<td>General Electric Global Research Center Europe</td>
</tr>
<tr>
<td>7896</td>
<td>Prandtl (AM)</td>
<td>General Electric Global Research Center Europe</td>
</tr>
<tr>
<td>8120</td>
<td>Conference Center</td>
<td>Kongresszentrum, Galileo</td>
</tr>
<tr>
<td>8121</td>
<td>Courtyard Hotel</td>
<td>Kongresszentrum, Galileo</td>
</tr>
<tr>
<td>3920</td>
<td>Hans-Albers-Villa</td>
<td>noch keine Nutzung</td>
</tr>
<tr>
<td>3921</td>
<td>Anbau Fischerei</td>
<td>noch keine Nutzung</td>
</tr>
<tr>
<td>3922</td>
<td>Garage mit Hausmeisterwohnung</td>
<td>noch keine Nutzung</td>
</tr>
<tr>
<td>3923</td>
<td>Oberes Bootshaus</td>
<td>noch keine Nutzung</td>
</tr>
<tr>
<td>3924</td>
<td>Seebootshaus</td>
<td>noch keine Nutzung</td>
</tr>
<tr>
<td>4116</td>
<td>Kindervilla (Dr. Gudula Wernerke-Rastetter)</td>
<td>Studierendenwerk</td>
</tr>
<tr>
<td>4117</td>
<td>Kindervilla II</td>
<td>Studierendenwerk</td>
</tr>
<tr>
<td>4133</td>
<td>Wohngebäude Ganzenmüllerstr.</td>
<td>Vermietung Wohnungen (3 Mietparteien)</td>
</tr>
<tr>
<td>4155</td>
<td>Kustermannhalle</td>
<td>Hochschule Weihenstephan-Triesdorf</td>
</tr>
<tr>
<td>4156</td>
<td>Flaschenkeller Staatsbrauerei</td>
<td>Staatsbrauerei</td>
</tr>
<tr>
<td>4211</td>
<td>LfL Bürogebäude 14</td>
<td>Landesanstalt für Landwirtschaft</td>
</tr>
<tr>
<td>4239</td>
<td>Kindergarten „Krabelstube Weihenstephan“</td>
<td>Studierendenwerk</td>
</tr>
<tr>
<td>4278</td>
<td>LWF Bay. Landesanstalt für Wald und Forstwirtschaft</td>
<td>Landesanstalt für Wald und Forstwirtschaft</td>
</tr>
<tr>
<td>4279</td>
<td>LWF Erweiterungsbau</td>
<td>Landesanstalt für Wald und Forstwirtschaft</td>
</tr>
<tr>
<td>4281</td>
<td>HSWT</td>
<td>Hochschule Weihenstephan-Triesdorf</td>
</tr>
<tr>
<td>4299</td>
<td>Hochschulgemeinde Freising</td>
<td>Hochschulgemeinde</td>
</tr>
<tr>
<td>4353</td>
<td>LfL Laborgebäude 1</td>
<td>Landesanstalt für Landwirtschaft</td>
</tr>
<tr>
<td>4355</td>
<td>LfL Technologie VI</td>
<td>Landesanstalt für Landwirtschaft</td>
</tr>
<tr>
<td>Gebäude-ID</td>
<td>Bezeichnung</td>
<td>Zuordnung und/ oder Nutzung durch</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>4361</td>
<td>LfL Technologie V</td>
<td>Landesanstalt für Landwirtschaft</td>
</tr>
<tr>
<td>4362</td>
<td>LfL Mehrzweckgebäude 1</td>
<td>Landesanstalt für Landwirtschaft</td>
</tr>
<tr>
<td>4368</td>
<td>LfL Technologie III</td>
<td>Landesanstalt für Landwirtschaft</td>
</tr>
</tbody>
</table>

D. Verkehrsmittelschlüssel 2022

Tab. 39: Verkehrsmittelschlüssel der Entfernungskategorien auf Basis der Daten 2022

<table>
<thead>
<tr>
<th>Entfernungskategorie</th>
<th>Verkehrsmittel</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bis 500 km</td>
<td>Flugzeug</td>
<td>0 %</td>
</tr>
<tr>
<td>Bis 500 km</td>
<td>Bus</td>
<td>11 %</td>
</tr>
<tr>
<td>Bis 500 km</td>
<td>PKW</td>
<td>17 %</td>
</tr>
<tr>
<td>Bis 500 km</td>
<td>E-PKW</td>
<td>1 %</td>
</tr>
<tr>
<td>Bis 500 km</td>
<td>PKW (carpooling)</td>
<td>15 %</td>
</tr>
<tr>
<td>Bis 500 km</td>
<td>Motorrad</td>
<td>4 %</td>
</tr>
<tr>
<td>Bis 500 km</td>
<td>Bahn</td>
<td>53 %</td>
</tr>
<tr>
<td>Bis 500 km</td>
<td>Schiff</td>
<td>0 %</td>
</tr>
<tr>
<td>500 km bis 1.000 km</td>
<td>Flugzeug</td>
<td>11 %</td>
</tr>
<tr>
<td>500 km bis 1.000 km</td>
<td>Bus</td>
<td>4 %</td>
</tr>
<tr>
<td>500 km bis 1.000 km</td>
<td>PKW</td>
<td>19 %</td>
</tr>
<tr>
<td>500 km bis 1.000 km</td>
<td>E-PKW</td>
<td>1 %</td>
</tr>
<tr>
<td>500 km bis 1.000 km</td>
<td>PKW (carpooling)</td>
<td>8 %</td>
</tr>
<tr>
<td>500 km bis 1.000 km</td>
<td>Motorrad</td>
<td>0 %</td>
</tr>
<tr>
<td>500 km bis 1.000 km</td>
<td>Bahn</td>
<td>57 %</td>
</tr>
<tr>
<td>500 km bis 1.000 km</td>
<td>Schiff</td>
<td>0 %</td>
</tr>
<tr>
<td>1.000 km bis 1.500 km</td>
<td>Flugzeug</td>
<td>38 %</td>
</tr>
<tr>
<td>1.000 km bis 1.500 km</td>
<td>Bus</td>
<td>4 %</td>
</tr>
<tr>
<td>1.000 km bis 1.500 km</td>
<td>PKW</td>
<td>15 %</td>
</tr>
<tr>
<td>1.000 km bis 1.500 km</td>
<td>E-PKW</td>
<td>1 %</td>
</tr>
<tr>
<td>1.000 km bis 1.500 km</td>
<td>PKW (carpooling)</td>
<td>8 %</td>
</tr>
<tr>
<td>1.000 km bis 1.500 km</td>
<td>Motorrad</td>
<td>0 %</td>
</tr>
<tr>
<td>1.000 km bis 1.500 km</td>
<td>Bahn</td>
<td>34 %</td>
</tr>
<tr>
<td>1.000 km bis 1.500 km</td>
<td>Schiff</td>
<td>0 %</td>
</tr>
<tr>
<td>1.500 km bis 2.000 km</td>
<td>Flugzeug</td>
<td>78 %</td>
</tr>
<tr>
<td>1.500 km bis 2.000 km</td>
<td>Bus</td>
<td>6 %</td>
</tr>
<tr>
<td>1.500 km bis 2.000 km</td>
<td>PKW</td>
<td>2 %</td>
</tr>
<tr>
<td>1.500 km bis 2.000 km</td>
<td>E-PKW</td>
<td>0 %</td>
</tr>
<tr>
<td>1.500 km bis 2.000 km</td>
<td>PKW (carpooling)</td>
<td>5 %</td>
</tr>
<tr>
<td>1.500 km bis 2.000 km</td>
<td>Motorrad</td>
<td>0 %</td>
</tr>
<tr>
<td>1.500 km bis 2.000 km</td>
<td>Bahn</td>
<td>8 %</td>
</tr>
<tr>
<td>1.500 km bis 2.000 km</td>
<td>Schiff</td>
<td>0 %</td>
</tr>
<tr>
<td>2.000 km bis 2.500 km</td>
<td>Flugzeug</td>
<td>63 %</td>
</tr>
<tr>
<td>Entfernungskategorie</td>
<td>Verkehrsmittel</td>
<td>Prozent</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2.000 km bis 2.500 km</td>
<td>Bus</td>
<td>5 %</td>
</tr>
<tr>
<td>2.000 km bis 2.500 km</td>
<td>PKW</td>
<td>9 %</td>
</tr>
<tr>
<td>2.000 km bis 2.500 km</td>
<td>E-PKW</td>
<td>0 %</td>
</tr>
<tr>
<td>2.000 km bis 2.500 km</td>
<td>PKW (carpooling)</td>
<td>16 %</td>
</tr>
<tr>
<td>2.000 km bis 2.500 km</td>
<td>Motorrad</td>
<td>0 %</td>
</tr>
<tr>
<td>2.000 km bis 2.500 km</td>
<td>Bahn</td>
<td>8 %</td>
</tr>
<tr>
<td>2.000 km bis 2.500 km</td>
<td>Schiff</td>
<td>0 %</td>
</tr>
<tr>
<td>Ab 2.500 km</td>
<td>Flugzeug</td>
<td>100 %</td>
</tr>
<tr>
<td>Ab 2.500 km</td>
<td>Bus</td>
<td>0 %</td>
</tr>
<tr>
<td>Ab 2.500 km</td>
<td>PKW</td>
<td>0 %</td>
</tr>
<tr>
<td>Ab 2.500 km</td>
<td>E-PKW</td>
<td>0 %</td>
</tr>
<tr>
<td>Ab 2.500 km</td>
<td>PKW (carpooling)</td>
<td>0 %</td>
</tr>
<tr>
<td>Ab 2.500 km</td>
<td>Motorrad</td>
<td>0 %</td>
</tr>
<tr>
<td>Ab 2.500 km</td>
<td>Bahn</td>
<td>0 %</td>
</tr>
<tr>
<td>Ab 2.500 km</td>
<td>Schiff</td>
<td>0 %</td>
</tr>
</tbody>
</table>
E. Agenda der Workshops „Klimaschutz an der TUM – Gemeinsam gestalten“

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 min</td>
<td>Begrüßung und Einführung</td>
</tr>
<tr>
<td></td>
<td>• Begrüßung</td>
</tr>
<tr>
<td></td>
<td>• Ablauf und Ziel des Workshops</td>
</tr>
<tr>
<td></td>
<td>• Intro: Kurzvorstellung des Projektes</td>
</tr>
<tr>
<td></td>
<td>• Kernergebnisse der THG-Bilanz</td>
</tr>
<tr>
<td></td>
<td>– Gesamtergebnis TUM</td>
</tr>
<tr>
<td></td>
<td>– Ergebnis des jeweiligen Campus, inkl. Hervorheben der signifikanten Emissionsquellen</td>
</tr>
<tr>
<td>15 min</td>
<td>Arbeitsphase 1 (Stillarbeitsphase/ Einzelarbeit)</td>
</tr>
<tr>
<td></td>
<td>• Ziel: Sammlung von Maßnahmen für die THG-Reduktionspotentiale</td>
</tr>
<tr>
<td></td>
<td>• Aufgaben Teilnehmer:</td>
</tr>
<tr>
<td></td>
<td>– Alle Teilnehmenden schreiben auf Moderationskarten auf, welche Maßnahmen für die Re duktion der Treibhausgase in den einzelnen Themenfeldern als wichtig erachtet werden (10 min.). Maßnahmen können hochschulpolitische, individuelle oder techn. Maßnahmen sein.</td>
</tr>
<tr>
<td>10 min</td>
<td>Pause</td>
</tr>
<tr>
<td>80 min</td>
<td>Arbeitsphase 2 (Aufteilung in Kleingruppen)</td>
</tr>
<tr>
<td></td>
<td>• Ziel: Ideensammlung und Konkretisierung der Maßnahmen</td>
</tr>
<tr>
<td></td>
<td>• Aufgabe je Kleingruppe (5-8 Personen)</td>
</tr>
<tr>
<td></td>
<td>• Karten auf Pinnwand anbringen und in Handlungsfelder sortieren (durch Moderatoren)</td>
</tr>
<tr>
<td></td>
<td>• Bewertung des Potentials der Maßnahmen anhand von Punktesystem</td>
</tr>
<tr>
<td></td>
<td>– Alle Teilnehmenden können 5 Punkte zur Priorisierung der Maßnahmen vergeben (kein Häufeln), Maßnahmen mit höchster Punktzahl werden als erstes diskutiert.</td>
</tr>
<tr>
<td></td>
<td>– Im Zuge der Diskussion können weitere Maßnahmen hinzugenommen werden (Karten und Stifte liegen aus). Nur die Top 5 Maßnahmen konkret diskutieren.</td>
</tr>
<tr>
<td></td>
<td>• Diskussion über die Maßnahmen im Detail</td>
</tr>
<tr>
<td></td>
<td>– Welche Rahmenbedingungen müssen geschaffen werden, um diese umzusetzen?</td>
</tr>
<tr>
<td></td>
<td>– In wessen Einflussbereich liegen diese Maßnahmen?</td>
</tr>
<tr>
<td></td>
<td>– Woran könnte die Umsetzung scheitern (rechtlich, technisch, finanziell)</td>
</tr>
<tr>
<td></td>
<td>• Abschließend: Erneute Bewertung der Maßnahmen mit andersfarbigen Punkten (auch 5 Punkte) nach Priorität der Umsetzung aus Sicht der Teilnehmenden</td>
</tr>
<tr>
<td></td>
<td>• Exkurs: Falls zusätzlich Zeit zur Verfügung steht, Synergien zw. Maßnahmen anhand von Buchstaben in Ecken der Karten kennzeichnen</td>
</tr>
<tr>
<td>5 min</td>
<td>Pause</td>
</tr>
<tr>
<td>25 min</td>
<td>Abschlussrunde</td>
</tr>
<tr>
<td></td>
<td>• Jeder Moderator stellt die Top 3 Maßnahmen der jeweiligen Kleingruppe vor.</td>
</tr>
<tr>
<td></td>
<td>• Information zu den nächsten Schritten</td>
</tr>
<tr>
<td></td>
<td>• Hinweis, dass weitere Vorschläge auch bis 15. Juli 2023 über Wiki-Forms an die KSM herantragen</td>
</tr>
<tr>
<td></td>
<td>• am 28.6.23 Abschlussworte durch den Vice President Sustainable Transformation</td>
</tr>
</tbody>
</table>