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Abstract / Zusammenfassung

Several applications of molecular communications (MC) feature an event trigger
behavior for which the prevalent Shannon capacity may not be the appropriate mea-
sure for performance assessment. Thus, we motivate and establish the identification
capacity as an alternative metric for such systems. In particular, within the context
of MC systems, the Poisson and Binomial channel serves as a fundamental model
for the MC systems employing molecule-counting receivers. We addressed the de-
terministic identification (DI) for the discrete-time Poisson and Binomial channels
(DTPC & DTBC), subject to an average and a peak constraint on the molecule release
rate. It is established that the number of di↵erent messages that can be reliably iden-
tified for the DTPC and DTBC scales as 2

(n log n)R, where n and R are the codeword
length and coding rate, respectively. Lower and upper bounds on the DI capacity of
the DTPC and DTBC are developed.

In addition, we study the DI for the DTPC with inter-symbol interference (ISI)
where the transmitter is restricted to an average and a peak molecule release rate
constraint. Such a channel serves as a model for di↵usive MC systems featuring long
channel impulse responses and employing molecule counting receivers. We derive
lower and upper bounds on the DI capacity of the DTPC with ISI when the number
of ISI channel taps K may grow with the codeword length n (e.g., due to increasing
symbol rate). As a key finding, we establish that for deterministic encoding, the
codebook size scales as 2

(n log n)R assuming that the number of ISI channel taps scales
as K = 2

k log n, where R is the coding rate and k is the ISI rate.
Moreover, we determine bounds on the DI capacity of Gaussian channel with

slow and fast fading subject to average power constraints. It is found that the correct
size of the codebook for fading channels scale super exponentially in the codeword
length, i.e., ⇠ 2

(n log n)R. Furthermore, we fill a long standing gap in information
theory by establishing full characterization of the DI capacity for discrete memory-
less channel subject to average power constraint. In addition, generalized scheme of
DI problem called deterministic K-identification (DKI) for the the binary symmet-
ric (BSC) and Gaussian channel with slow fading (GSF) are developed. Specifically,
we establish full characterization of the DKI capacity for the BSC subject to a Ham-
ming weight constraint and also obtain bounds on the DKI capacity for the GSF with
average power constraint.





Abstract / Zusammenfassung

Mehrere Anwendungen der molekularen Kommunikation (MK) zeichnen sich
durch ein ereignisauslösendes Verhalten aus, für das die vorherrschende Shannon-
Kapazität möglicherweise nicht das geeignete Maß für die Leistungsbewertung ist.
Dahermotivieren und etablierenwir die Identifikationskapazität als alternativeMetrik
für solche Systeme. Insbesondere im Kontext von MC-Systemen dient der Poisson-
und Binomialkanal als grundlegendesModell fürMC-Systeme, die molekülzählende
Empfänger verwenden. Wir befassten uns mit der deterministischen Identifikation
(DI) für die zeitdiskreten Poisson- und Binomialkanäle (ZDPK & ZDBK), vorbe-
haltlich einer Durchschnitts- und einer Spitzenbeschränkung der Molekülfreiset-
zungsrate. Es wurde festgestellt, dass die Anzahl verschiedener Nachrichten, die
für die ZDPK- und ZDBK zuverlässig identifiziert werden können, 2

(n log n)R beträgt,
wobei n und R die Codewortlänge und die Codierungsrate sind. jeweils. Es werden
Unter- und Obergrenzen für die DI-Kapazität von ZDPK und ZDBK entwickelt.

Darüber hinaus untersuchen wir den DI für den ZDPK mit Intersymbolinter-
ferenz (ISI), bei dem der Sender auf eine durchschnittliche und einemaximaleMolekül-
freisetzungsratenbeschränkung beschränkt ist. Ein solcher Kanal dient als Modell
für di↵usive MC-Systeme mit langen Kanalimpulsantworten und dem Einsatz von
Molekülzählempfängern. Wir leiten Unter- und Obergrenzen für die DI-Kapazität
des ZDPKmit ISI ab, wenn die Anzahl der ISI-Kanalabgri↵e K mit der Codewortlänge
n wachsen kann (z. B. aufgrund einer zunehmenden Symbolrate). Als wichtig-
ste Erkenntnis stellen wir fest, dass die Codebuchgröße für die deterministische
Codierung 2

(n log n)R beträgt, vorausgesetzt, dass die Anzahl der ISI-Kanalabgri↵e
K = 2

k log n, wobei R die Kodierungsrate und k die ISI-Rate ist.
Darüber hinaus bestimmen wir Grenzen für die DI-Kapazität des Gaußschen

Kanals mit langsamem und schnellem Fading vorbehaltlich durchschnittlicher Leis-
tungsbeschränkungen. Es wurde festgestellt, dass die korrekte Größe des Code-
buchs für Fading-Kanäle superexponentiell in der Codewortlänge skaliert, d. h. ⇠
2
(n log n)R. Darüber hinaus schließen wir eine seit langem bestehende Lücke in der In-

formationstheorie, indem wir eine vollständige Charakterisierung der DI-Kapazität
für diskrete speicherlose Kanäle unter durchschnittlicher Leistungsbeschränkung er-
stellen. Darüber hinaus wird ein verallgemeinertes Schema des DI-Problems na-
mens deterministische K-Identifikation (DKI) für den binärsymmetrischen (BSK)
und den Gaußschen Kanal mit langsamem Fading (GLF) entwickelt. Insbesondere
erstellen wir eine vollständige Charakterisierung der DKI-Kapazität für den BSK,
der einer Hamming-Gewichtungsbeschränkung unterliegt, und erhalten außerdem
Grenzen für die DKI-Kapazität für den GSF mit einer durchschnittlichen Leistungs-
beschränkung.
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CHAPTER 1

“ A Journey of a Thousand Miles Begins With a Single Step.

”
Laozi,

1.1 | Molecular Communication

Molecular communication (MC) is a new communication strategy where information

carriers are signaling molecules [1–3]. The MC is deemed as a bio-inspired promising

paradigm for communication between nanomachines or di↵erent biological entities,
such as cells and organs [4] and realizes the exchange of information via the transmis-

sion, propagation, and reception of signaling molecules [1, 3]. Over the past decade,

synthetic MC has been investigated in a number of di↵erent directions including chan-

nel modeling [5, 6], modulation and detection design [7], biological building blocks

for transceiver design [8], and information-theoretical performance characterization

and relevant mathematical foundations [9–11]. Furthermore, several proof-of-concept

implementations for synthetic MC systems have been reported in the literature, see,

e.g., [12–14]. Furthermore, the ongoing progress in synthetic biology [8,15] is expected

to enable sophisticated MC systems in the future, capable of performing the complex

computation and communication tasks required for the realization of the Internet of

Bio-nano Things [16–19]. Also, the authentication problem [20] which exhibit a�nity

to the identification problem is considered in [21].

Recently, there have been significant advances inmolecular communication for com-

plex nano-networks. The interconnection of nanothings with the Internet is known as

the Internet of NanoThings (IoNT) and is the basis for various future healthcare and

military applications [22]. Furthermore, the concept of the Internet of Bio-NanoThings

(IoBNT) has been introduced in [16], where nanothings are biological cells that are cre-
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CHAPTER 1. INTRODUCTION 1.2. POST SHANNON COMMUNICATION

ated using tools from synthetic biology and nanotechnology. For the communication

between cells, molecular communication is well suited, since the natural exchange of

information between cells is already based on this paradigm. Molecular communica-

tion in cells is based on signal pathways (chains of chemical reactions) that process

information that is modulated into chemical characteristics, such as molecule concen-

tration.

1.2 | Post Shannon Communication

The identification problem [23] can be regarded as a Post Shannon [24] model where the

decoder does not perform an reproduction of the original message, but rather a binary

hypothesis test to decide between the hypotheses ‘sent’ or ‘not sent’, based on the obser-

vation of the channel output. As the sender has no knowledge of the desired message

that the receiver is interested in, the identification problem can be regarded as a test of

many hypotheses occurring simultaneously. The scenario where the receiver misses and

does not identify his message is called a type I error, or ‘missed identification’, whereas

the event where the receiver accepts a false message is called a type II error, or ‘false

identification’.

In particular, for object-finding or event-detection scenarios, where the receiver aims

to determine the presence of an object or determine the occurrence of an specific event

in terms of a reliable Yes /No answer, the so-called identification capacity is the key

applicable performance measure [23].

1.3 | XGWireless Networks

Several applications in the context of Post Shannon communications [25–27] for the

future-generation wireless networks (XG) horizon are either based on or give rise to the

event-triggered communication settings. Further discussions of the potentials of MC

and Post Shannon communication for the 6G can be found in [25]. In such systems,

Shannon’s message transmission capacity, as studied early by Shannon in [28] and by

others in [9–11, 29–37], may not be the appropriate performance metric, instead, the

identification capacity is regarded to be a key quantitative measure. In particular, for

event-recognition, alarm-prompt or object-finding problems, where the receiver aims to

recognize the occurrence of a specific event, determine an alarm, or realize the presence

8
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of an object in terms of a reliable Yes /No final decision, the so-called identification

capacity is the key applicable performance measure [23].

1.4 | Deterministic Identification

While in the Shannon’s communication paradigm [28], sender, encodes its message in

a manner such that the receiver can perform a reliable reproduction, in the identifica-

tion setting [23, 38], the coding scheme is designed to accomplish a di↵erent objective,
namely, to determine whether a particular message was sent or not. The identification

problem in communication theory is initiated1 by Ahlswede and Dueck [23] featuring

randomization, that is, a randomized encoder is employed, to select the codewords.

Therein, the codebook consists of distributions and as a salient property2, it was estab-

lished that providing local randomness at the encoder, reliable identification is yielded

a remarkable attribute regarding the codebook size, namely, the codebook size exhibit

a double-exponentially growth in the codeword length n, i.e., ⇠ 2
2

nR
[23], where R is

the coding rate. This observation is extremely di↵erent from the conventional mes-

sage transmission problem, which has an exponential codebook size in the codeword

length, i.e., ⇠ 2
nR. The realization of explicitly constructed randomized identifica-

tion (RI) codes entails extra complexity and is challenging for the applications; cf. [51,

see Sec. 1] for further details. The motivation of Ahlswede and Dueck to develop the

RI problem [23] is traced back to the work of JáJá [52] who considered deterministic

identification (DI)3, from a communication complexity4 perspective, that is, where the

codewords are determined by a deterministic function from the messages. Further, it

1 The identification problem has been studied in various setting of deterministic or randomized proto-
cols, in the context of communication complexity; see [39–42]

2 It is known that employing such resource (distributions) does not bring advantage in terms of a gain
in the Shannon’s message transmission (TR) capacity [43] or codebook size for the DMCs [43]. Beyond the
exponential gain on the codebook size in the RI, the extension of the problem to more advanced scenar-
ios reveals that the RI capacity stands di↵erent compared to the TR capacity [44–49]. For instance, the
feedback can increase the RI capacity [44] of a memoryless channel, as opposed to the TR capacity [50].

3 TheDI capacity in the literature is also referred to as the non-randomized identification (NRI) capacity
[53], the dID capacity [46], or also the identification without randomization [53].

4 An important observation regarding the behavior of the identification function has been well studied
in communication complexity where the out-performance of randomized protocols over the deterministic
protocols (exponential gap between the two class) for computing such function is established. For instance,
while the error-free deterministic complexity of the identification function is lower bounded by log m,
where m is the length of message, for the randomized protocol and when # error is allowed in computation
of the identification function, only O(log log m + 1

# ) bits su�ces; see [39,54] for further details.
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seems that Ahlswede and Dueck were inspired to show that employing randomness

similar to what has been accomplished in the communication complexity field, yield

an advantage of exponential gap over the DI problem5 in terms of the codebook size.

DI may be favored over the randomized identification (RI) [23] in the context of the

complexity-constrained applications. For instance, in the MC systems where develop-

ment and deploying of a huge number of random number generators may not be clearly

established. The construction of RI codes is considered in [55–61]. RI for the Gaussian

channels is studied in [46, 62–65]. Deterministic codes often benefit the advantage of

simpler implementation and simulation [66,67], explicit construction [68], and single-

block reliable performance. DI for the compound channels is studied by Ahlswede and

Cai in [53]. In [69] the DI problem with non-discrete additive white noise and noiseless

feedback under both average and peak power constraints, is analyzed, where the DI

capacity is shown to be infinite regardless of the scaling for the codebook size.

1.4.1 | Applications

Motivated by this discussion, in this paper, we investigate the fundamental perfor-

mance limits of identification problem in MC systems, which can be modelled by the

discrete time Poisson channel (DTPC) with inter-symbol interference (ISI).

2 Molecular Communications: It is not clear how the RI codes can be incorpo-

rated into the MC systems. It is unclear how much power is required for the ran-

dom number generators in the synthetic materials on an extremely small scales

in the range of micro / nano meters. In the case of Bio-NanoThings, it is uncer-

tain whether natural biological processes can be controlled or reinforced by the

local randomness at this level. Therefore, for the design of synthetic IoNT, or

for the analysis and utilization of IoBNT, identification with deterministic encod-

ing seems to be a more appropriate and applicable candidate. Concrete exam-

ples of the identification problem within the MC context include health monitor-

ing [4, 70, 71], where, e.g., one may desire in whether or not the pH value of the

cerebrospinal fluid of brain exceeds a crisis level; targeted drug delivery [4, 72]

and cancer treatment [70, 73–75], where, e.g., a nano-device’s purpose is to iden-

tify whether or not an specific cancer biomarker exist in the vicinity of the target

5 A detailed comparison of codebook sizes in DI and RI problem over various channel models can be
found in [51]
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tissue, whether a specific drug is released or not, whether another nano-device

has replicated itself, whether a certain molecule was detected, whether a target

location in the vessels is identified, or whether the molecular storage is empty, etc.

Moreover, identification problems can also be found in various natural MC sys-

tems. For instance, in bionic nose setting [76], or in natural pheromone communi-

cations [77, 78] where, e.g., animals involved in mating seeks sexual pheromones

to realize the presence of an opposite sex. In fact, the olfactory systems of ani-

mals have the capability of recognizing the presence of extremely large numbers

of di↵erent molecule mixtures (e.g., pheromones, odors, etc.) [79, 80], which has

inspired researchers to regard them as role models for the design of bio-inspired

synthetic MC systems [81].

2 Vehicle-to-XCommunications: A second application for the identification scheme

is the vehicle-to-X communications, where a vehicle that collects sensor data may

ask whether a certain alert message concerning the future movement of an adja-

cent vehicle was transmitted or not [82, Sec. VII].

2 Other Fields: Identification find as well overlapping applications with a num-

ber other fields, including identification plus transmission (point-to-multi-point

communication) [83], communication complexity [84], private interrogation the-

ory [85], the tactile internet [86], vehicle-to-X communications [87, 88], digital

watermarking [89–91], online sales [92,93], industry 4.0 [94–96], health care [97],

and other event-triggered systems.

1.5 | Main Contributions

Motivated by the mentioned applications, we establish the fundamental performance

limits of DI and DKI for various channel models. As our main objective, a full char-

acterization or capacity bounds are determined. In particular, we make the following

contributions:

⌃ Discrete Memoryless Channel: The DI problem for discrete memoryless channel

(DMC) where codewords are restricted by an average power constraint, is stud-

ied in [98, 99]. Therein, employing the method of types6 and standard techniques,

6 Themethod of type developed and promoted by Csiszar and Körner and treated in depth in [100,101].

11



CHAPTER 1. INTRODUCTION 1.5. MAIN CONTRIBUTIONS

it is established that the codebook size grows exponentially as a function of the

codeword length, i.e., ⇠ 2
nR [98, 99]. This result is early reported without a com-

plete proof in [23, 53]. This observation acknowledge that the codebook size of

DI over DMCs behaves similar to that of the message transmission problem [28],

however, the achievable identification rates are significantly higher compared to

the transmission rates [98,99].

⌃ Gaussian Channels With Fading: In [99, 105, 106], the DI problem for Gaus-

sian channels with slow and fast fading subject to the average power constraint is

addressed. A generalization of DI problem, called deterministic K-identification

(DKI) for the Gaussian channel with slow fading is studied in [107] where K-

depending bounds on the DI capacity are established.

⌃ Discrete Time Poisson Channel: In [108, 109], the discrete time Poisson channel

(DTPC) is studied and bounds on the DI capacity with a codebook size of super

exponentially large in the codeword length, are derived.

⌃ Discrete Memoryless Channel With Memory: Inter-symbol interference (ISI)-

aware discrete time Poisson channel (DTPC) is addressed in [110] where ISI-dependent

bounds on the DI capacity are calculated.

⌃ Discrete Time Binomial Channel: We derive lower and upper bounds on the DI

capacity of a discrete time Binomial channel (DTBC) in [111].

⌃ Binary Symmetric Channel: Generalized DI model called K-Identification for

the binary symmetric channel (BSC) with and without the Hamming weight con-

straints is developed and a full characterization of the deterministic K-identification

(DKI) is established in [112].

For all the continuous alphabet works, i.e., the Gaussian, Poisson (with/out ISI), and

Binomial models [99, 105, 108–110], a new observation regarding the codebook size is

obtained, namely, the codebook size scales super-exponentially in the codeword length,

i.e., ⇠ 2
(n log n)R which is di↵erent than the standard exponential [98] and double expo-

nential [23] behavior for DI and RI problems, respectively.

Such a method is regarded as a widely used and fundamental technique to obtain capacity results for
di↵erent source and channel coding settings within the context of mathematical information theory; see
[102] for further details with related topics on multi-user models. A survey of recent developments with
applications in statistics can found in [103]. Further examples and in-depth mathematical details with
applications to large deviation theory can be found in [104, Ch. 13].
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1.6 | Organizations

The remainder of this dissertation is structured as follows. In Chapter 2, results for

the DMC are introduced and a full characterization on the DI capacity is established.

Chapter 3 provides the main contributions and results on the DI capacity of the stan-

dard Gaussian channel without fading. Chapter 4 and Chapter 5 presents the capacity

results for the Gaussian channels with slow and fast fading, respectively. Chapter 6

brings forward the results for the DI capacity of the DTPC. In Chapter 7, extended

results including lower and upper bounds on the DI capacity of the DTPC with inter-

symbol interference (ISI) are obtained. Chapter 8 represents the results for the discrete

time Binomial channel (DTBC). In the last two chapters, i.e., Chapter 9 and Chapter 10,

generalized DI scheme are developed and bounds and closed form expressions on the

DKI capacity are established. Finally, Chapter 11 concludes with a summary and pos-

sible directions for the future research.

⇤ In the following chapters, we follow the notations provided in Appendix A
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CHAPTER 2

“ All Models Are Wrong, But Some Are Useful

”
George E. P. Box,

2.1 | Introduction

Ahlswede and Dueck [23] required randomized coding for their identification cod-

ing scheme. This means that a randomized source is available to the sender. The

sender can make his encoding dependent on the output of this source. It is known that

this resource cannot be used to increase the transmission capacity of discrete memo-

ryless channels [43]. A remarkable result of identification theory is that given local

randomness at the encoder, reliable identification can be attained such that the code

size, i.e., the number of messages, grows double exponentially in the block length n,
i.e., ⇠ 2

2
nR

[23]. This di↵ers sharply from the traditional transmission setting where

the code size scales only exponentially, i.e., ⇠ 2
nR. Beyond the exponential gain in

identification, the extension of the problem to more complex scenarios reveals that the

identification capacity has a very di↵erent behavior compared to the transmission ca-

pacity [44–49]. For instance, feedback can increase the identification capacity [44] of a

memoryless channel, as opposed to the transmission capacity [50]. Nevertheless, it is

di�cult to implement randomized-encoder identification (RI) codes that will achieve

such performance, because it requires the encoder to process a bit string of exponential

length. The construction of identification codes is considered in [55–59]. Identification

for Gaussian channels is considered in [46,62,63,65].

In the deterministic setup for a DMC, the number of messages scales exponentially

in the blocklength [23,52,53,113], as in the traditional setting of transmission. Never-

theless, the achievable identification rates are significantly higher than those of trans-
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mission. In addition, deterministic codes often have the advantage of simpler imple-

mentation and simulation [67], explicit construction [68], and single-block reliable per-

formance. In particular, JáJá [52] showed that the deterministic identification (DI) ca-

pacity1 of a binary symmetric channel is lower bounded (achievability) by 1 bit per

channel use. Ahlswede et al. [23, 53] stated that the DI capacity of a discrete memory-

less channel (DMC) with a stochastic matrix W is given by the logarithm of the number

of distinct row vectors of W (see Section IV. in [23] and abstract of [53]). Nonetheless,

an explicit proof for this result was not provided in [23, 53]. Instead, Ahlswede and

Cai [53] referred the reader to a paper [114] which does not include identification and

addresses a completely di↵erent model of an arbitrarily varying channel [114]. Since

then, the problem of proving this result has remained unsolved, since a straightforward

extension of the methods in [114], using decoding territories, does not seem to yield the

desired result on the DI capacity [115].

In this chapter, we establish the DI capacity of channels subject to an input con-

straint. Such a constraint is often associated with a limited power supply or regulation,

as in the case of the Gaussian channel. We consider the settings of a DMC and of Gaus-

sian channels with fast fading and slow fading, with CSI available at the decoder. For

a DMC, one may assume without loss of generality that the rows of the channel matrix

are distinct (see Remarks 2.3.1 and 2.3.3). Our first result is that the DI capacity of a

DMC W under this assumption, subject to the input constraint 1

n Ân
t=1

f(xt)  A, is

given by

CDI(W) = max
pX : E{f(X)}A

H(X) . (2.1)

We note that the DI capacity does not depend on the specific values of the transition

probabilities, as long as the rows of the channel matrix are distinct. This result has the

following geometric interpretation. At first glance, it may seem reasonable that for the

purpose of identification, one codeword could represent two messages. While identi-

fication allows overlap between decoding regions [116, 117], it turns out that overlap

at the encoder is not allowed for deterministic codes. However, if two messages are

represented by the same codeword, then the low probability of a type I error comes at

the expense of the high probability of a type II error, and vice versa. Thus, DI coding

1 TheDI capacity in the literature is also referred to as the non-randomized identification (NRI) capacity
[53] or the dID capacity [46].
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imposes the restriction that every message must have a distinct codeword. The con-

verse proof follows from this property in a straightforward manner, since the volume

of the input subset of sequences that satisfy the input constraint is ⇡ 2
nCDI(W). A sim-

ilar principle guides the direct part as well. The input space is covered such that each

codeword is surrounded by a sphere of radius ne to separate the codewords.

By providing a detailed proof for the DMC, we thus fill the gap in the previous anal-

ysis [23, 53] as well. In the proof, we use the method of types, while the derivation is

based on ideas that are analogous to the combinatoric analysis of Hamming distances

by JáJá [52]. Although the codebook construction is similar to that of Ahlswede’s cod-

ing scheme [114], the decoder is significantly di↵erent. In particular, we do not use
decoding territories as in [114], but rather perform a typicality check. Nonetheless,

the type-class intersection lemma and the message-set analysis in [114] turn out to be

useful in our analysis as well. Hence, our proof combines techniques and ideas from

both works, by JáJá [52] and by Ahlswede [114], to derive the DI capacity both with

and without an input constraint. The analysis for Gaussian channels also relies on

geometric considerations, using sphere packing. Based on fundamental properties of

packing arrangements [118], the optimal packing of non-overlapping spheres of radius
p

ne contains an exponential number of spheres, and by decreasing the radius of the

codeword spheres, the exponential rate can be made arbitrarily large. However, in the

derivation of our lower bound in the 2
n log(n)R-scale, we pack spheres of a sub-linear

radius
p

nen ⇠ n1/4, which results in ⇠ 2
1

4
n log(n) codewords.

This chapter is organized as follows: In Section 2.2 we give the definitions and a brief

review of related work. In Section 2.3 we address deterministic identification for the

DMC with and without an input constraint. In Subsection 2.3.1, a channel reduction

procedure is described such that high-cost identical rows are removed from the channel

matrix. The capacity theorem is stated in Subsection 2.3.2. The direct part is proved in

Subsection 2.3.3, and the converse proof is in Subsection 2.3.4. Section 2.4 is dedicated

to summary and discussion.

2.2 | Definitions and Related Works

In this section we introduce the channel model and coding definitions. Here we only

consider the discrete memoryless channel (DMC). The channel description and coding

definition for the Gaussian channel will be presented in Section 5.0.1.
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2.2.1 | Channel Description

A DMC (X ,Y , W) consists of finite input and output alphabets X and Y , respectively,

and a conditional pmf W(y|x). The channel is memoryless without feedback, and there-

fore Wn(yn|xn) = ’n
t=1

W(yt|xt). We denote a DMC by W = (X ,Y , W). Next, we

consider an input constraint. Let f : X ! [0, •) be some given bounded cost function,

and define

fn(xn) =
1

n

n

Â
t=1

f(xt) . (2.2)

Given an input constraint A > 0 corresponding to the cost function fn(xn), the channel

input xn must satisfy

fn(xn)  A . (2.3)

We may assume without loss of generality that 0  A  fmax, where fmax = max
x2X

f(x).

It is also assumed that for some x0 2 X , f(x0) = 0.

2.2.2 | Coding

The definitions for DI codes, achievable rates, and capacity are given below. In this

chapter we consider codes with di↵erent size orders. For instance when we discuss the

exponential scale, we refer to a code size that scales as L(n, R) = 2
nR. On the other

hand, in the double exponential scale, the code size is L(n, R) = 2
2

nR
. Later, in Sec-

tion 5.0.1 where we consider Gaussian channels, we will see that the appropriate scale

turns out to be neither exponential nor double exponential, but in between. Through-

out the paper we use the mathematical convention that L : N ⇥ R+ ! N denotes a

map, and L(n, R) 2 N is its value for a given blocklength n and rate R.

Definition 2.2.1. Let L1(n, R) and L2(n, R) be two coding scales. We say that L1 dominates

L2 if

lim
n!•

L2(n, b)
L1(n, a)

= 0 , (2.4)

for all a, b > 0. We will denote this relation by L2 � L1.

In complexity theory of computer science, the relation above is denoted by the ‘small

o-notation’, L2(n, 1) = o(L1(n, 1)) [119]. Beyond exponential, other orders that com-

monly appear in complexity theory are the linear, logarithmic, and polynomial scales,
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nR, log(nR), and (nR)k. The corresponding ordering is

log(nR) � nR � (nR)k � 2
nR � 2

n log(n)R � 2
2

nR
. (2.5)

Definition 2.2.2 (DMC DI Code). An (L(n, R), n) DI code for a DMC W under input con-
straint A, assuming L(n, R) is an integer, is defined as a system (U , D) that consists of a
codebook U = {ui}i2[[L(n,R)]], U ⇢ X n, such that

fn(ui)  A , for all i 2 [[L(n, R)]] , (2.6)

and a collection of decoding regions D = {Di}i2[[L(n,R)]] with
SL(n,R)

i=1
Di ⇢ Yn. Given a

message i 2 [[L(n, R)]], the encoder transmits ui. The decoder’s aim is to answer the following
question: Was a desired message j sent or not? Two types of errors may occur: Rejecting of
the true message, or accepting a false message. Those error events are often referred to as
type I and type II errors, respectively. Specifically, P(n)

e,1
(i) is the type I error probability for

rejecting the true message i, while P(n)
e,2

(i, j) is the type II error probability for accepting the
false message j, given that the message i was sent.

The error probabilities of the identification code (U , D) are given by

Pe,1(i) = Wn(Dc
i |ui) (missed-identification error), (2.7)

Pe,2(i, j) = Wn(Dj|ui) (false identification error). (2.8)

An (L(n, R), n, l1, l2) DI code further satisfies

Pe,1(i)  l1 , (2.9)

Pe,2(i, j)  l2 , (2.10)

for all i, j 2 [[L(n, R)]] such that i 6= j.
A rate R > 0 is called achievable if for every l1, l2 > 0 and su�ciently large n there exists

an (L(n, R), n, l1, l2) DI code. The operational DI capacity is defined as the supremum of
achievable rates and will be denoted by CDI(W , L).

As mentioned earlier, Ahlswede and Dueck [23] needed randomized encoding for

their identification-coding scheme. This means that a randomized source is available to

the sender. The sender can make his encoding dependent on the output of this source.

Therefore, a randomized-encoder identification (RI) code is defined in a similar man-

ner where the encoder is allowed to select a codeword Ui at random, according to some
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conditional input distribution Q(xn|i). The RI capacity is then denoted by CRI(W , L).
Given local randomness at the encoder, reliable identification can be attained such

that the number of messages grows double exponentially in the block length n, i.e.,
L(n, R) = Ldouble(n, R) , 2

2
nR

[23]. This di↵ers sharply from the traditional transmis-

sion setting where the code size scales only exponentially, i.e., L(n, R) = Lexp(n, R) ,
2

nR. Remarkably, in [23] it was shown that CRI(W , Ldouble) = CT(W , Lexp), where

CT(W , Lexp) denotes the transmission capacity of the channel in the exponential scale.

Remark 2.2.1. The code scale can also be thought of as a sequence of monotonically increas-
ing functions Ln(R) of the rate. Hence, given a code of size M = Ln(R), the coding rate
can be obtained from the inverse relation R = L�1

n (M). In particular, for the transmission
setting [28], or DI coding for a DMC [52], the coding rate is defined as

R =
1

n
log(M) . (2.11)

Whereas for RI coding [23], the rate was defined as

R =
1

n
log log(M) . (2.12)

On the other hand, using the scale L(n, R) = 2
n log(n)R as for Gaussian channels stated in

Theorem 5.0.1, the coding rate is

R =
log M
n log n

. (2.13)

Remark 2.2.2. It can be readily shown that in general, if the capacity in an exponential scale
is finite, then it is zero in the double exponential scale. Conversely, if the capacity in a double
exponential scale is positive, then the capacity in the exponential scale is +•. This principle
can be generalized to any pair of scales L1 and L2, where L2 is dominated by L1. We come
back to this in Subsection 5.0.4.

A geometric illustration for the type I and II error probabilities is given in Figure 2.1.

When the encoder sends the message i but the channel output is outside Di, then type

I error occurs. This kind of error is also considered in traditional transmission. In

identification, the decoding sets can overlap. A type II error covers the case where the

output sequence belongs to the intersection of Di and Dj for j 6= i.
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u2

u3

u4

u1

u5

u6

u7

input space output space

D5

D1

D6

D7

D2

D3

D4

correct identification

type I error

type II error

Figure 2.1: Geometric illustration of identification errors in the deterministic setting. The arrows indicate
three scenarios for the channel output, given that the encoder transmitted the codeword u1 corresponding
to i = 1. If we focus on the decoderD2, then the green arrow event corresponds to the correct identification
scenario since the output is observed in a decoder whose index is identical to the index of sent message,
i.e., 2. Now if we assume that the decoder D4 is the decision maker entity, then since the channel output
for orange arrow event is outside of D4, then a type I error has occurred for the decoder D4. However, for
the red arrow event, since the output is observed in the decoder D4 region, then it declares that its index,
i.e., 4 was the sent message which is di↵erent than the actual sent message, i.e., 6, therefore, we refer to
this event as the Type II error.

2.2.3 | Related Work

We briefly review Ahlswede and Dueck’s result [23] on the RI capacity, i.e., when the

encoder uses a stochastic mapping. As mentioned above, using RI codes, it is possible

to identify a double exponential number of messages in the block length n. That is,

given a rate R < CRI(W , L), there exists a sequence of (L(n, R) = 2
2

nR
, n) RI codes

with vanishing error probabilities. Despite the significant di↵erence between the def-

initions in the identification setting and in the transmission setting, it was shown that

the value of the RI capacity in the double exponential scale equals the Shannon capacity

of transmission.

Theorem 2.2.1 (see [23,83]). The RI capacity in the double exponential scale of a DMCW is
given by

CRI(W , L) = max
pX : E{f(X)}A

I(X; Y) , for L(n, R) = 2
2

nR
. (2.14)
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Hence, the RI capacity in the exponential scale is infinite, i.e.,

CRI(W , L) = • , for L(n, R) = 2
nR

. (2.15)

In the next sections, we will consider the identification setting when the encoder

does not have access to randomization.

Theorem 2.2.2 (see [23, 63]). Let G denote the standard Gaussian channel, where the input-
ouptut relation is given by Y = gX + Z, with Z ⇠ N (0, s2

Z) and a fixed known gain g > 0.
Then, the RI capacity in the double exponential scale is given by

CRI(G , L) =
1

2
log

 
1 +

g2A
s2

Z

!
, for L(n, R) = 2

2
nR

. (2.16)

Hence, the RI capacity in the exponential scale is infinite, i.e.,

CRI(G , L) = • , for L(n, R) = 2
nR

. (2.17)

2.3 | Main Result - DMC

We give ourmain results on the DI capacity of the DMC. For a DI code, as opposed to the

randomized case, the number of messages 2
nR is only exponential in the blocklength.

In this sense, DI codes are similar to transmission codes. However, the achievable rates

for identification are significantly higher, as the DI capacity is given in terms of the

input entropy instead of the mutual information.

2.3.1 | Channel Reduction

We begin with a procedure of channel reduction where we remove identical rows from

the channel matrix, so that the remaining input letters have a lower cost compared to

the deleted letters. As will be seen below, the DI capacity remains the same following

this reduction. The characterization of the DI capacity will be given in the next section

in terms of the reduced input alphabet.

We begin with the definition of the reduced channel.

Definition 2.3.1 (Reduced channel). Given a DMCW with a stochastic matrix W : X ! Y ,
we define the reduced DMC Wr as follows. Let {X (`)} be a partition of X into equivalent
classes, so that two letters x and x0 belong to the same equivalent class if and only if the
corresponding rows are identical, namely

x, x0 2 X (`) , W(y|x) = W(y|x0) 8y 2 Y . (2.18)
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For every class X (`), assign a representative element

z(`) = arg min
x2X (`)

f(x) , (2.19)

which is associated with the lowest input cost. If there is more than one letter that is as-
sociated with the lowest input cost in X (`), then choose one of them arbitrarily. Then the
reduced input alphabet is defined as

Xr = {z(`)} , (2.20)

and the reduced DMC Wr is defined by a channel matrix Wr : Xr ! Y , consisting of the
rows in Xr, i.e.,

Wr(y|x) = W(y|x) , (2.21)

for x 2 Xr and y 2 Y .

Lemma 2.3.1. The operational capacities of the reduced channelWr and the original channel
W are the same:

CDI(W , L) = CDI(Wr, L) , for L(n, R) = 2
nR

. (2.22)

We give the proof of Lemma 2.3.1 in Appendix E. As we will see shortly, the DI

capacity of a DMC W depends on W only through Xr. That is, the DI capacity does

not depend on the individual values of the channel matrix and depends solely on the

distinctness of its rows.

Remark 2.3.1. Based on Lemma 2.3.1, it is su�cient to consider a channel with distinct
rows. That is, if we establish the DI capacity for channels with distinct rows, we can then
determine the DI capacity for a general channel. In other words, in order to derive a capacity
result, we may assume without loss of generality that the channel rows are distinct.

2.3.2 | Capacity Theorem

In this section, we give our main result on the DI capacity of a channel subject to input

constraint. The capacity result is stated in terms of the reduced channel as defined in

the previous section. LetW be a DMC channel with input cost function f(x) and input

constraint A as specified in (2.3). Define

CDI(W) = max
pX : E{f(X)}A

H(X) , (2.23)

for X ⇠ pX.
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Theorem 2.3.1. The DI capacity of a DMC W under input constraint is given by

CDI(W , L) = CDI(Wr) , for L(n, R) = 2
nR

, (2.24)

where Wr denotes the reduced channel (see Definition 2.3.1). Hence, the DI capacity in the
double exponential scale is zero.

Weprove the direct part in Subsection 2.3.3 and the converse part in Subsection 2.3.4.

As can be seen in Subsection 2.3.4, the strong converse property holds for the DI capac-

ity [38, see Def. 3.5.1]. Notice that we have characterized the DI capacity of the DMC

W in terms of its reduced version, as specified in Lemma 2.3.1.

Corollary 2.3.1.1 (also in [23, 53]). The DI capacity of a DMC W without constraints, i.e.,
with A = fmax, is given by

CDI(W , L) = log

⇣
nrow(W)

⌘
, (2.25)

for L(n, R) = 2
nR where nrow(W) is the number of distinct rows of W.

The corollary above is an immediate consequence of Theorem 2.3.1. Indeed, for

A = fmax, we have

CDI(Wr) = max
pX0
2P(Xr)

H(X0)

= log |Xr|

= log

⇣
nrow(W)

⌘
, (2.26)

where X0 is a random variable, the support of which is in the reduced input alphabet

Xr as defined in Definition 2.3.1. The second equality holds since the maximal value of

H(X) is log |X |, and the last equality because the size of the reduced input alphabet is

|Xr| = nrow(W).

Remark 2.3.2. Ahlswede et al. [23, 53] stated the result in Corollary 2.3.1.1 on the DI ca-
pacity of a DMC without constraints (see Section IV. [23] and abstract of [53]), without
providing an explicit proof. A straightforward extension of the methods in [114], using de-
coding territories, does not seem to yield the desired result on the DI capacity. Thereafter, the
proof has remained an open problem.

Remark 2.3.3. An alternative expression for the DI capacity is as follows,

CDI(W , L) = max
pX0
2P(Xr) : E{f(X0)}A

H(X0) , (2.27)
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where X0 is as in (2.26). As explained in Remark 2.3.1, one may assume without loss of
generality that the channel has distinct rows. Under this assumption, the DI capacity formula
reduces to the formula in (2.1), i.e.,

CDI(W , L) = max
pX : E{f(X)}A

H(X) , (2.28)

for a channel W with distinct rows and L(n, R) = 2
nR.

To illustrate our results, we give the following example.

Example 2.3.1. Consider the binary symmetric channel (BSC),

Y = X + Z mod 2 , (2.29)

where X = Y = {0, 1}, Z ⇠ Bernoulli(e), with crossover probability 0  e  1

2
. Suppose

that the channel is subject to a Hamming weight input constraint,

1

n

n

Â
t=1

xt  A , (2.30)

with f(x) = x. Observe that for e = 1

2
, the rows of the channel matrix are identical.

Hence, the reduced input alphabet consists of one letter, and the DI capacity is zero (see
Definition 2.3.1).

Now, suppose that e < 1

2
. Then the rows of the channel matrix W =

0

@1� e e

e 1� e

1

A

are distinct, hence Wr = W . By Theorem 2.3.1, the DI capacity is given by

CDI(W , L) = CDI(W) = max
0pA

H2(p) , (2.31)

since the channel input is binary, where H2(p) = �(1� p) log(1� p) � p log(p) is the
binary entropy function. Therefore, the DI capacity of the BSC with Hamming weight con-
straint is

CDI(W , L) =

8
><

>:

H2(A) if A < 1

2

1 if A � 1

2

, for L(n, R) = 2
nR

. (2.32)

(See Figure 2.2). To show the direct part, set X ⇠ Bernoulli(A) if A < 1

2
and X ⇠

Bernoulli( 1

2
), otherwise. The converse part follows as the binary entropy function H2(p)

is strictly increasing on 0  p  1

2
, attaining its maximum value H2(

1

2
) = 1, and strictly

decreasing on 1

2
< p  1 (see Figure 2.2). The geometric interpretation is that the binary
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Hamming ball of radius np can be covered with codewords. As the volume of the Hamming
ball is approximately 2

nH2(p), one can achieve rates that are arbitrarily close to H2(p). With-
out an input constraint, i.e., for A = 1, we recover the result of JáJá [52],

CDI(W , L) = 1 . (2.33)

This example demonstrates that the DI capacity is discontinuous in the channel statistics, as
CDI(W , L) = 1 for e < 1

2
and CDI(W , L) = 0 for e = 1

2
.

0 1

2
1

0

1

Input Constraint, A

D
IC

ap
ac
ity

H2(A) CDI(W)

Figure 2.2: The deterministic identification (DI) capacity of the BSC as a function of the input constraint
A. The dashed red line indicates the binary entropy function, which is maximized in (2.31). The solid blue
line indicates the DI capacity.

2.3.3 | Achievability proof

Consider a DMCW . By Lemma 2.3.1 we can assume without loss of generality that the

channel matrix W : X ! Y has distinct row vectors. To prove achievability of the DI

capacity, we combinemethods and ideas from the work of JáJá [52] as well as techniques

by Ahlswede [114]. The analysis for the type II error is based on ideas that are analogous

to the combinatoric analysis of Hamming distances in [52]. The codebook construction

is similar to that of Ahlswede’s coding scheme [114], yet the decoder is significantly

di↵erent. Nonetheless, the type-class intersection lemma and the message-set analysis

in [114] are useful in our analysis for the type II error.

We extensively use the method of types [100, Ch. 2]. Here a brief review of the

definitions for type classes and d-typical sets is given. The type P̂xn of a given se-
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quence xn is defined as the empirical distribution P̂xn(a) = N(a|xn)/n for a 2 X ,

where N(a|xn) is the number of occurrences of the symbol a 2 X in the sequence

xn. The space of all types over X of sequences of length n is denoted by Pn(X ). The

d-typical set Td(pX) is defined as the set of sequences xn 2 X n such that for every

a 2 X : |P̂xn(a) � pX(a)|  d if pX(a) > 0, and P̂xn(a) = 0 if pX(a) = 0. A type

class is denoted by T (P̂) = {xn : P̂xn = P̂}. Similarly, a joint type is denoted by

P̂xn,yn(a, b) = N(a, b|xn
, yn)/n for (a, b) 2 X ⇥ Y , where N(a, b|xn

, yn) is the num-

ber of occurrences of the symbol pair (a, b) in the sequence (xi, yi)
n
i=1

, and as a con-

ditional type by P̂yn|xn(b|a) = N(a, b|xn
, yn)/N(a|xn). The conditional d-typical set

Td(pY|X|xn) is defined as the set of sequences yn 2 Yn such that for every b 2 Y :

|P̂yn|xn(b|a)� pY|X(b|a)|  d if pX,Y(a, b) > 0, and pX,Y(a, b) = 0 if pX(a) = 0.

The Codebook

First, we show that there exists a code such that the codewords are separated by a dis-

tance of ne. Let pX(x) be an input distribution on X , such that

E
�

f(X)
 
= Â

x2X
pX(x)f(x)  A� e0(d) (2.34)

for X ⇠ pX(x), where e0(d) ! 0 as d ! 0. We may assume without loss of generality

that pX is a type, due to the entropy continuity lemma [100, Lem. 2.7].

Lemma 2.3.2. Let R < H(X). Then, for su�ciently small e 2 (0, 1) and su�ciently large
n, there exists a codebook U ⇤ = {vi , i 2M}, which consists of |M| sequences in X n, such
that the following hold:

1. All the codewords belong to the type class T (pX), namely

vi 2 T (pX) for all i 2M . (2.35)

2. The codewords are distanced by ne, i.e.,

dH(vi, vj) � ne for all i 6= j . (2.36)

3. The codebook size is at least 1

2
· 2

nR, that is, |M| � 2
n(R� 1

n ).

Proof of Lemma 2.3.2. Denote

M , 2
nR

. (2.37)
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Let U1, ..., UM be independent random sequences, each uniformly distributed over the

type class of pX, i.e.,

Pr
�
Ui = xn� =

8
><

>:

1

|T (pX)| xn 2 T (pX) ,

0 xn
/2 T (pX) .

(2.38)

Next, define a new collection of sequences V1, ..., VM as follows,

Vi =

8
><

>:

Ui if dH(Ui, Uj) � ne 8i 6= j ,

∆ otherwise ,

(2.39)

where dH(·, ·) denotes the Hamming distance, and ∆ represents an idle sequence of no

interest. The assignment Vi = ∆ is interpreted as “dropping the ith word Ui." Consider

the following message set,

fM =
�

i : Vi 6= ∆, i 2 [[M]]
 

, (2.40)

corresponding to words that were not dropped, where we use the notation fM to indi-

cate that the set is random.

We show that even though we removed words from the original collection {Ui}i2[[M]]

(of size M), the rate decrease can be made negligible. Following the lines of [114], we

derive an upper-bound on Pr(| fM|  1

2
M) where fM defined in (2.40) is the operational

message set. To this end, we will use the following concentration lemma,

Lemma 2.3.3 (also in [114]). Let A1, . . . , AK be a sequence of discrete random variables.
Then,

Pr

 
1

K

K

Â
i=1

Ai � c

!
 2

�cK
K

’
i=1

max
ai�1

E

✓
2

Ai
��� Ai�1 = ai�1

◆
. (2.41)

Now, define an indicator for dropping the ith word by

V̂i =

8
><

>:

1 Vi = ∆ ,

0 Vi 6= ∆ ,

(2.42)

and notice the equivalence between the following events,

⇢��� fM
��� 

1

2
M
�

=

(
M

Â
i=1

V̂i >
1

2
M

)
. (2.43)
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Observe that V̂i = 1, if and only if Ui is inside an e-sphere of some other Uj. Namely,

V̂i = 1 i↵ Ui 2
S

j 6=i
Se(Uj). The selection of codewords can be viewed as an iterative

procedure. Specifically, define

Ai =

8
>><

>>:

1 Ui 2
S

j<i
Se(Uj) ,

0 otherwise ,

(2.44)

Bi =

8
>><

>>:

1 Ui 2
S

j>i
Se(Uj) ,

0 otherwise .

(2.45)

Now, since V̂i = 1 implies that either Ai = 1 or Bi = 1, it follows that the number of

dropped messages is bounded by

M�
��� fM

��� =
M

Â
i=1

V̂i


M

Â
i=1

Ai +
M

Â
i=1

Bi . (2.46)

Consider the event that

M

Â
i=1

V̂i >
1

2
M . (2.47)

If this holds, then the two sums in the right hand side of (2.46) cannot be smaller than
1

4
M together, that is, either ÂM

i=1
Ai � 1

4
M, or ÂM

i=1
Bi � 1

4
M, or both. Hence,

(
M

Â
i=1

V̂i >
1

2
M

)
✓
(

M

Â
i=1

Ai �
1

4
M

)
[
(

M

Â
i=1

Bi �
1

4
M

)
, (2.48)

and by the union bound,

Pr

✓ M

Â
i=1

V̂i >
1

2
M
◆
 Pr

✓ M

Â
i=1

Ai �
1

4
M
◆
+ Pr

✓ M

Â
i=1

Bi �
1

4
M
◆

= 2 Pr

✓ M

Â
i=1

Ai �
1

4
M
◆

, (2.49)

where the last line follows by symmetry, as the random variables Ā = ÂM
i=1

Ai and

B̄ = ÂM
i=1

Bi have the same probability distribution.
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Next we apply Lemma 2.3.3,

Pr

✓ M

Â
i=1

Ai �
1

4
M
◆
 2

� 1

4
M

M

’
i=1

max
ai�1

E
⇣

2
Ai |Ai�1 = ai�1

⌘
. (2.50)

Consider the conditional expectation above. Using the law of total expectation, we can

add conditioning on Ui�1 as well, i.e.,

E
⇣

2
Ai |Ai�1 = ai�1

⌘

= Â
ui�1

Pr(Ui�1 = ui�1|Ai�1 = ai�1) · E(2Ai |Ui�1 = ui�1
, Ai�1 = ai�1)

= Â
ui�1

Pr(Ui�1 = ui�1|Ai�1 = ai�1) · E(2Ai |Ui�1 = ui�1)

 max
ui�1

E(2Ai |Ui�1 = ui�1) , (2.51)

where the second equality holds since Ai, is a deterministic function of Ui�1 (see (2.44)).

Hence, by (2.50)-(2.51),

Pr

✓ M

Â
i=1

Ai �
1

4
M
◆

 2
� 1

4
M

M

’
i=1

max
ui�1

E
⇣

2
Ai |Ui�1 = ui�1

⌘

= 2
� 1

4
M

M

’
i=1

max
ui�1

✓
Pr

⇢
Ai = 0|Ui�1 = ui�1

�
+2 Pr

⇢
Ai = 1|Ui�1 = ui�1

�◆

 2
� 1

4
M

M

’
i=1

✓
1 + 2max

ui�1

Pr(Ai = 1|Ui�1 = ui�1)

◆
. (2.52)

We bound the probability term Pr(Ai = 1|Ui�1 = ui�1), as follows. For a Hamming

sphere of radius ne,

��Se(xn)
�� 

✓
n
ne

◆
· |X |ne  2

nq(e)
, (2.53)

for su�ciently large n, where

q(e) = H2(e) + e log |X | , (2.54)

tends to zero as e ! 0. The first inequality holds by a simple combinatoric argument.

Namely, counting the number of sequences with up to ne di↵erent entries compared

to a given xn, we have ( n
ne) optional choices for the locations of those entries, and |X |
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possible values for each of those entries. The last inequality follows from Stirling’s

approximation [120, Example 11.1.3]. Hence,
������

M[

j=1

Se(uj)

������
 M2

nq(e)

= 2
n(R+q(e))

, (2.55)

for every given collection of sequences, u1, . . . , uM 2 T (pX). Consider a random se-

quence X̄n that is uniformly distributed over the type class T (pX), and statistically

independent of U1, . . . , UM. We use this external sequence as an auxiliary in the deriva-

tion below. Then,

Pr

✓
Ai = 1

���Ui�1 = ui�1

◆
= Pr

0

@Ui 2
[

j<i
Se(uj)

1

A

= Pr

0

@X̄n 2
[

j<i
Se(uj)

1

A

 Pr

8
<

:X̄n 2
M[

j=1

Se(uj)

9
=

; . (2.56)

The first equality follows from the definition of Ai in (2.44) and because U1, . . . , UM

are statistically independent. The second equality holds because Ui and X̄n are both

uniformly distributed over the type class of pX. The inequality follows as Pr(F1) 
Pr(F1 [ F2) for every pair F1, F2 of probabilistic events. Since X̄n is uniformly dis-

tributed over T (pX), we have

Pr

8
<

:X̄n 2
M[

j=1

Se(uj)

9
=

; = Â
xn2T (pX) \

SM
j=1

Se(uj)

1��T (pX)
��

=
1��T (pX)

�� ·

������
T (pX) \

M[

j=1

Se(uj)

������

 2
n(R+q(e))
��T (pX)

��

 (n + 1)|X | · 2
n(R+q(e))

2nH(X)

 2
�n(H(X)�R�2q(e))

, (2.57)
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for su�ciently large n, where the first inequality follows from (2.55), and the second

is due to standard type class properties [120, Th. 11.1.3]. The last expression tends to

zero as n! •, provided that

R < H(X)� 3q(e) . (2.58)

Together with (2.56)-(2.57), this implies

Pr

✓
Ai = 1

���Ui�1 = ui�1

◆
 2

�nq(e)
. (2.59)

Now plugging (2.59) into (2.52) yields

Pr

 
M

Â
i=1

Ai �
1

4
M

!
 2

� 1

4
M
⇣

1 + 2 · 2
�nq(e)

⌘M

=
⇣

2
� 1

4 + 2
3

4 · 2
�nq(e)

⌘M
, (2.60)

for su�ciently large n, we have 2
3

4 · 2
�nq(e)  2

�5 hence,

2
� 1

4 + 2
3

4 · 2
�nq(e)  2

� 1

4 + 2
�5

= 0.8721

< 1 . (2.61)

Thus we have a double exponential bound

Pr

✓��� fM
��� 

1

2
M
◆
 2

�a1 M

= 2
�a12

nR
, (2.62)

for some a1 > 0. We deduce that there exists at least one codebook with the desired

properties. This completes the proof of Lemma 2.3.2.

We continue to the main part of the achievability proof. Let U ⇤ = {vi , i 2M} be a

codebook of size 2
n(R� 1

n ) as in Lemma 2.3.2. Consider the following DI coding scheme

for W .

2.3.3.1 | Encoding

Given a message i 2M at the sender, transmit xn = vi.
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2.3.3.2 | Decoding

Let d > 0, such that d! 0 as e! 0. Let j 2M be the message that the decoder wishes

to identify. To do so, the decoder checks whether the channel output yn belongs to the

corresponding decoding set Dj or not, where

Dj =
n

yn
: (vj, yn) 2 Td(pXW)

o
. (2.63)

Namely, given the channel output yn 2 Yn, if (vj, yn) 2 Td(pXW), then the decoder

declares that the message j was sent. On the other hand, if (vj, yn) /2 Td(pXW), it

declares that j was not sent.

Error Analysis

First, consider the error of type I, i.e., the event that Yn
/2 Di. For every i 2 M, the

probability of identification error of type I, Pe,1(i) = Pr((vi, Yn) /2 Td(pXW)) tends to

zero by standard type class considerations [121, Th. 1.2].

Wemove to the error of type II, i.e., when Yn 2 Dj for j 6= i. To bound the probability

of error Pe,2(i, j), we use the conditional type-class intersection lemma, due to Ahlswede

[114], as stated below.

Lemma 2.3.4 (see [114, Lem. I1]). Let W : X ! Y be a channel matrix of a DMC W with
distinct rows. Then, for every xn

, x0n 2 Td(pX) with dH(xn
, x0n) � ne,

|Td(pY|X|xn) \ Td(pY|X|x0n)|
|Td(pY|X|xn)|  2

�nL(e)
, (2.64)

with pY|X ⌘ W, for su�ciently large n and some positive function L(e) > 0 which is
independent of n.

Now, for short notation, denote the conditional d-typical set in Yn, given xn 2
T (pX), by

G(xn) ⌘ Td(W|xn) =
�

yn
: (xn

, yn) 2 Td(pXW)
 

. (2.65)

Then, for every i 6= j,

Pe,2(i, j) = Pr(Dj|xn = vi)

= Â
yn2G(vj)

Wn(yn|vi)
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= Â
yn2G(vj)\G(vi)

Wn(yn|vi) + Â
yn2G(vj)\(G(vi))c

Wn(yn|vi) . (2.66)

Observe that the second sum in the last line is bounded by the probability Pr(Yn
/2

Td(W|vi)|xn = vi), which in turn is bounded by 2
�a1(d)n as before, and tends to zero as

well.

To bound the first sum in (2.66), we first consider the cardinality of the set that the

sum acts upon (the domain). We note that since vi and vj belong to the type class T (pX)

by the first property of Lemma 2.3.2, it follows that they also belong to the d-typical set,

i.e., vi, vj 2 Td(pX). Further, according to the second property of Lemma 2.3.2, every

pair of codewords vi and vj satisfy dH(vi, vj) � ne. Finally, having assumed that the

rows of W are distinct, we have by Lemma 2.3.4,

|G(vj) \ G(vi)|  2
�nL(e)|G(vj)|

 2
n[H(Y|X)�L(e)]

, (2.67)

where X ⇠ pX, as we explained below. The second inequality in (2.67) holds since

the size of the conditional type class G(xn) = Td(W|xn) is bounded by 2
nH(Y|X) [100,

Lem. 2.5], as the type of vi and vj is pX. Furthermore, by standard type class properties

[121, Th. 1.2],

Wn(yn|vi)  2
�n[H(Y|X)�d log |Y|]

. (2.68)

Now by Equation (2.67) and (2.68),

Â
yn2G(vj)\G(vi)

Wn(yn|vi)  2
�n[L(e)�d log |Y|]

, (2.69)

which tends to zero as n ! • for su�ciently small d > 0, such that d log |Y| < L(e).
Thus, by (2.66) and (2.69), the probability of type II error is bounded by

Pe,2(i, j)  2
�na2(e,d)

, (2.70)

for su�ciently large n, where a2(e, d) = min{a1(d), L(e)� d log |Y|}. The proof follows

by taking the limits n! •, and e, d! 0.

2.3.4 | Converse Proof

To prove the converse part, we will use the following observation. Let R > 0 be an

achievable rate. We will assume to the contrary that there exist two di↵erent messages
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i1 and i2 that are represented by the same codeword, i.e., ui1 = ui2 = xn, and show that

this leads to error probabilities such that

Pe,1(i1) + Pe,2(i2, i1) = 1 . (2.71)

Hence the assumption is false. The number of messages 2
nR is thus bounded by the size

of the subset of input sequences that satisfy the input constraint fn(xn)  A. Then

we notice that the average cost of a codeword depends only on its type, and hence this

subset is in fact a union of type classes. This also implies that we have a strong converse

for the DI capacity.

Consider a sequence of (2nR
, n, l

(n)
1

, l
(n)
2

) codes (U (n)
,D(n)) such that l

(n)
1

and l
(n)
2

tend to zero as n! •.

Lemma 2.3.5. Consider a sequence of codes as described above. Then, given a su�ciently
large n, the codebook U (n) satisfies the following property. There cannot be two distinct
messages that are represented by the same codeword, i.e.,

i1 6= i2 ) ui1 6= ui2 , (2.72)

where i1, i2 2 [[2nR]].

Proof. Assume to the contrary that there exist two messages i1 and i2, where i1 6= i2,
such that

ui1 = ui2 = xn
, (2.73)

for some xn 2 X n. Since (U (n)
,D(n)) form a (2nR

, n, l
(n)
1

, l
(n)
2

) code, we have

Pe,1(i1) = Wn(Dc
i1 |x

n)  l
(n)
1

Pe,2(i2, i1) = Wn(Di1 |x
n)  l

(n)
2

. (2.74)

This leads to a contradiction as

1 = Wn(Dc
i1 |x

n) + Wn(Di1 |x
n)

= Pe,1(i1) + Pe,2(i2, i1)

 l
(n)
1

+ l
(n)
2

. (2.75)

Hence, the assumption is false, and i1 and i2 cannot have the same codeword.
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By Lemma 2.3.5, each message has a distinct codeword. Hence, the number of mes-

sages is bounded by the number of input sequences that satisfy the input constraint.

That is, the size of the codebook is upper-bounded as follows:

2
nR 

�����

(
xn

:
1

n

n

Â
t=1

f(xt)  A

)����� . (2.76)

Notice that the input cost of a given sequence xn depends only on the type of the se-

quence, since

1

n

n

Â
t=1

f(xt) = Â
a2X

P̂xn(a)f(a)

= E
n

f(X0)
o

, (2.77)

where the random variable X0 is distributed according to the type of xn, i.e., pX0 = P̂xn .

Therefore, the subset on the right hand side of (2.76) can be written as a union of type

classes:
�����

(
xn

:
1

n

n

Â
t=1

f(xt)  A

)����� =

������

[

pX0 2Pn(X ):
E{f(X0)}A

T (pX0)

������


��Pn(X )

�� max
pX0 2Pn(X ):

E{f(X0)}A

��T (pX0)
��


��Pn(X )

�� · 2
nH(X0)

 2
n(H(X0)+an)

 2
n(CDI(W)+an) , (2.78)

where an ! 0 as n ! •, where Pn(X ) denotes the space of all types over X of se-

quences of length n. The second inequality holds since the size of a type class T (pX0)

is bounded by |T (pX0)|  2
nH(X0) [120, Th. 11.1.3]. The third inequality holds since

the number of types on X is polynomial in n [120, Th. 11.1.1]. Thus, by (2.76) and

(2.78), the code rate is bounded by R  CDI(W) + an, which completes the proof of

Theorem 2.3.1.

2.4 | Summary and Discussion

We have established the deterministic identification (DI) capacity of a DMC subject to

an input constraint. For the DMC, the DI capacity formula is given in terms of the
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entropy of the reduced channel input (see Definition 2.3.1). The DI capacity charac-

terization does not depend on the specific transition probabilities corresponding to the

reduced input alphabet.

In the following, we compare and discuss di↵erent results from the literature on the

DI capacity. For the double exponential scale, or equivalently, when the rate is defined

as R = 1

n log log (# of messages), the DI capacity is

CDI(W , L) = 0 , (2.79)

for L(n, R) = 2
2

nR
, since the code size of DI codes scales only exponentially in block

length. On the other hand, as observed in [49], if one considers an average error

criterion instead of the maximal error, then the double exponential performance of

randomized-encoder codes can also be achieved using deterministic codes.

By providing a detailed proof for the DI capacity theoremwith and without an input

constraint, we have filled the gap in the previous analysis [23,53] as well. In particular,

in [53], Ahlswede and Cai asserted that the DI capacity for a compound channel is given

by

CDI(Wcompound, L) = max
pX

min
s

H(X̂(s)) , (2.80)

for L(n, R) = 2
nR, where s 2 S is the channel state, and the map X̂(s) is induced from

X by a partition of the input alphabet to equivalent classes as specified in [53, Sec. I.F].

This result immediately yields Corollary 2.3.1.1, since the DMC is a special case of a

compound channel with a single state value. Indeed, taking |S| = 1 and considering

the reduced channel Wr (see Definition 2.3.1), it can be readily shown that X̂(s) = X.

Nonetheless, a significant part of the proof in [53] is missing. At the beginning of Sec.

VII in [53], the following claim is given: “It was shown in [A’80] that for any channel

Ṽ : X ! Y without two identical rows, any u1, u2, e > 0, su�ciently large n and any

U ⇢ X n such that for all u, u0 2 U , dH(u, u0) > ne, there exists a family of subsets of

Yn, say Du, u 2 U , such that Ṽn(Du|u) > 1� u1 and Ṽn(Du|u0) < u2 for all u 6= u0,
where dH is the Hamming distance.", where [A’80] refers to a paper by Ahlswede [114]

on the arbitrarily varying channel, and does not include identification.

Alternatively, one may consider the e-capacity for a fixed 0 < e < 1. A rate R is

called e-achievable in an L-scale if there exists an (L(n, R), n, e, e) code for su�ciently

large n (see Definition 2.2.2). The DI e-capacity Ce
DI(W , L) is then defined as the supre-

mum of e-achievable rates. As the RI capacity in the double exponential scale has a
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strong converse [23,122,123], for L(n, R) = Ldouble(n, R) and 0 < e < 1

2
,

Ce
RI(W , Ldouble) = CRI(W , Ldouble) = max

pX
I(X; Y) . (2.81)

Based on Subsection 2.3.4, a strong converse holds for the DI capacity as well, hence

Ce
DI(W , Ldouble) = CDI(W , Ldouble) = 0 . (2.82)

On the other hand, for e � 1

2
we have

Ce
DI(W , Ldouble) = Ce

RI(W , Ldouble) = • . (2.83)

To understand (2.83), suppose e > 1

2
, and consider an arbitrary set of codewords with

a stochastic decoder that makes a decision for the identification hypothesis by flipping

a fair coin [23]. Both error probabilities of type I and II equal 1

2
, and are thus smaller

than e. Similarly, for the Gaussian channel, [46,62],

Ce
RI(G , Ldouble) = CRI(G , Ldouble) =

1

2
log

 
1 +

A
s2

Z

!
, for 0 < e <

1

2
, (2.84)

Ce
DI(G , Ldouble) = Ce

RI(G , Ldouble) = • , for e � 1

2
. (2.85)

Based on our result in Theorem 5.0.1, with Gt ⌘ 1 for all t, we have that

1

4
 CDI(G , L⇤)  Ce

DI(G , L⇤)  1 , (2.86)

with

L⇤(n, R) = 2
n log(n)R = nnR

. (2.87)

Hence, in the double exponential scale, Ce
DI(G , Ldouble) = CDI(G , Ldouble) = 0.
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CHAPTER 3

“ It is Not Knowledge, But The Act of Learning, Not Possession But

The Act of Ge�ing There, Which Grants The Greatest Enjoyment.

”
Carl Friedrich Gauss,

3.1 | Introduction

Modern communications require the transfer of enormous amounts of data in wireless

systems, for cellular communication [124], sensor networks [125], smart appliances

[126], and the internet of things [127], etc. Wireless communication is often modelled

by fading channels with additive white Gaussian noise [128–136].

We consider deterministic identification for Gaussian channels without the fading.

Applying discretization to our capacity result above; cf. (2.1), we obtain that the DI

capacity of the standard Gaussian channel is infinite in the exponential scale (as we

have recently observed in [98,137]). However, for a finite blocklength n, the number of

codewords must be finite. Thereby, the meaning of the infinite capacity result is that

the number of messages scales super-exponentially. This raises the question: What is

the true order of the code size. In mathematical terms, what is the scale L(n, R) for

which the DI capacity is positive yet finite. We address the exact derivation of such a

scale, in the next chapters which are dedicated for the fast and slow fading channels. In

this chapter, we aim to focus on the standard Gaussian channel which may be deemed

as a preliminary model for studying more advanced scenarios such as the slow or fast

fading channels. In this section, we consider the Gaussian channel G , specified by the

input-output relation

Y = x + Z . (3.1)
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with additive white Gaussian noise, i.e., when the noise sequence Z is i.i.d. ⇠ N (0, s2).

The transmission power is limited tokxk2  nA.

i Encoder + Decoder

j

Yes/No

Z

ui Y

Figure 3.1: Deterministic identification for the standard Gaussian channel.

3.1.1 | Coding For The Gaussian Channel

The definition of a DI code for the Gaussian channel is given below.

Definition 3.1.1 (Gaussian DI Code). A (2nR
, n) DI code for a Gaussian channel G under

input constraint A, assuming 2
nR is an integer, is defined as a system (U , D) consisting of a

codebook U = {ui}i2[[2nR]], U ⇢ X n, such that

kuik2  nA , (3.2)

for all i 2 [[2nR]] and a collection of decoding regions D = {Di}i2[[2nR]] with

2
nR[

i=1

Di ⇢ Rn
. (3.3)

Given a message i 2 [[2nR]], the encoder transmits ui. The decoder’s aim is to answer the
following question: Was a desired message j sent or not? There are two types of errors that
may occur: Rejecting of the true message, or accepting a false message. Those are referred to
as type I and type II errors, respectively.

The error probabilities of the identification code (U , D) are given by

Pe,1(i) = 1�
Z

Di
fZ(y� ui) dy correctness property , (3.4)

Pe,2(i, j) =
Z

Dj
fZ(y� ui) dy disjointedness property . (3.5)

with the noise formula given by

fZ(z) =
1

(2ps2)n/2
e�kzk

2
/2s2

, (3.6)
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(see Figure 2.1). A (2nR
, n, l1, l2) DI code further satisfies

Pe,1(i)  l1 , (3.7)

Pe,2(i, j)  l2 , (3.8)

for all i, j 2 [[2nR]], such that i 6= j.
A rate R > 0 is called achievable if for every l1, l2 > 0 and su�ciently large n, there

exists a (2nR
, n, l1, l2) DI code. The operational DI capacity of the Gaussian channel is

defined as the supremum of achievable rates, and will be denoted by CDI(G ).

3.1.2 | Main Result - Standard Gaussian Channel

Our DI capacity theorem for the Gaussian channel is stated below.

Theorem 3.1.1. The DI capacity of the Gaussian channel G subject to average power con-
straint ofkuik2  nA is given by

CDI(G ) = • . (3.9)

The proof of Theorem 3.1.1 is given below.

Proof. Consider the Gaussian channel G . To show that the capacity is infinite, it su�ces

to prove the direct part. We show here that the DI capacity of the Gaussian channel can

be achieved using a simple distance-decoder. A DI code for the Gaussian channel G is

constructed as follows. Since the decoder can normalize the output symbols by 1p
n , we

have an equivalent input-output relation,

Ȳ = x̄ + Z̄ , (3.10)

where the noise sequence Z̄ is i.i.d. ⇠ N
⇣

0,
s2

n

⌘
, and an input power constraint

kx̄k 
p

A , (3.11)

with x̄ = 1p
n x, Z̄ = 1p

n Z, and Ȳ = 1p
n Y.

3.1.2.1 | Codebook construction

Let S denote a sphere packing, i.e., an arrangement of L non-overlapping spheres

Sui(n, r0), i 2 [[L]], that cover a bigger sphere S0(n, r1), with r1 > r0. As opposed to
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standard sphere packing coding techniques, the small spheres are not necessarily en-

tirely contained within the bigger sphere (see Figure 3.2). That is, we only require

that the spheres are disjoint from each other and have a non-empty intersection with

S0(n, r1). The packing density Dn(S ) is defined as the fraction of the big sphere vol-

ume Vol
�
S0(n, r1)

�
that is covered by the small spheres, i.e.

Dn(S ) ,
Vol

⇣
S0(n, r1) \

SL
i=1

Sui(n, r0)
⌘

Vol(S0(n, r1))
, (3.12)

(see [138, Ch. 1]). A sphere packing is called saturated if no spheres can be added to the

arrangement without overlap. sphere packing is called saturated if no spheres can be

added to the arrangement without overlap.

We use a packing argument that has a similar flavor as in the Minkowski–Hlawka

theorem in lattice theory [138]. We use the property that there exists an arrange-

ment
SL

i=1
Sui(n,

p
en) of non-overlapping spheres inside S0(n,

p
A) with a density of

Dn(S ) � 2
�n [118, Lem. 2.1]. Specifically, consider a saturated packing arrangement of

L(n, R) = 2
nR spheres of radius r0 =

p
e covering the big sphere S0(n, r1 =

p
A�
p

e),

i.e., such that no spheres can be added without overlap. Then, for such an arrange-

ment, there cannot be a point in the big sphere S0(n, r1) with a distance of more than

2r0 from all sphere centers. Otherwise, a new sphere could be added. As a consequence,

if we double the radius of each sphere, the 2r0-radius spheres cover the whole sphere

p
A�
p

e

p
e

Figure 3.2: Illustration of a sphere packing, where small spheres of radius r0 =
p

e cover a bigger
sphere of radius r1 =

p
A�
p

e. The small spheres are disjoint from each other and have a non-empty
intersection with the big sphere. Some of the small spheres, marked in gray, are not entirely contained
within the bigger sphere, and yet they are considered to be a part of the packing arrangement. As
we assign a codeword to each small sphere center, the norm of a codeword is bounded by

p
A as

required.
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of radius r1. In general, the volume of a hyper-sphere of radius r is given by

Vol
�
Se(x, r)

�
=

p
n
2

G( n
2
+ 1)

· rn
, (3.13)

(see Eq. (16) in [138]). Hence, doubling the radius multiplies the volume by 2
n. Since

the 2r0-radius spheres cover the entire sphere of radius r1, it follows that the original

r0-radius packing has density at least 2
�n, i.e.,

Dn(S ) � 2
�n

. (3.14)

We assign a codeword to the center ui of each small sphere. The codewords satisfy

the input constraint as kuik  r0 + r1 =
p

A. Since the small spheres have the same

volume, the total number of spheres is bounded from below by

L =
Vol

⇣SL
i=1

Sui(n, r0)
⌘

Vol(Su1
(n, r0))

�
Vol

⇣
S0(n, r1) \

SL
i=1

Sui(n, r0)
⌘

Vol(Su1
(n, r0))

=
Dn(S ) ·Vol(S0(n, r1)))

Vol(Su1
(n, r0))

� 2
�n · Vol(S0(n, r1)))

Vol(Su1
(n, r0))

= 2
�n ·

rn
1

rn
0

, (3.15)

where the second equality is due to (3.12), the inequality that follows holds by (3.14),

and the last equality follows from (3.13). That is, the codebook size satisfies

L(n, R) = 2
nR

� 2
�n ·

 p
A�
p

ep
e

!n

. (3.16)

Hence,

R � 1

2
log

✓
A
e

◆
� 1 . (3.17)

3.1.2.2 | Encoding

Given a message i 2 [[2nR]], transmit x̄ = ūi.
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3.1.2.3 | Decoding

Let d > 0. To identify whether a message j 2M was sent, the decoder checks whether

the channel output y belongs to the following decoding set,

Dj =

⇢
ȳ 2 Rn

:

���ȳ� ūj

��� 
q

s2

Z + d

�
. (3.18)

3.1.2.4 | Error Analysis

Consider the type I error, i.e., when the transmitter sends ūi, yet Ȳ /2 Di. For every

i 2 [[2nR]], the type I error probability is bounded by

Pe,1(i) = Pr

✓��Ȳ� ūi
��2

> s2

Z + d
��� x̄ = ūi

◆

= Pr

⇣��Z̄

��2
> s2

Z + d
⌘

= Pr

 
n

Â
t=1

Z̄t
2 > s2

Z + d

!

 3s4

Z
nd2

 l1 , (3.19)

which tends to zero as n! •, where the last inequality holds by Chebyshev’s inequal-

ity.

Next, we address the type II error, i.e., when Ȳ 2 Dj while the transmitter sent ūi.

Then, for every i, j 2 [[2nR]], where i 6= j, the type II error probability is given by

Pe,2(i, j) = Pr

✓���Ȳ� ūj

���
2

 s2

Z + d
��� x̄ = ūi

◆

= Pr

✓���ūi � ūj + Z̄

���
2

 s2

Z + d

◆
. (3.20)

Observe that the square norm can be expressed as

���ūi � ūj + Z̄

���
2

=
���ūi � ūj

���
2

+
��Z̄

��2
+ 2

n

Â
t=1

(ūi,t � ūj,t)Zt . (3.21)

Then, define the event

E0 =

8
<

:

�����

n

Â
t=1

(ūi,t � ūj,t)Z̄t

����� >
d

2

9
=

; , (3.22)
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By Chebyshev’s inequality, the probability of this event vanishes,

Pr(E0) 
s2

Z Ân
t=1

(ūi,t � ūj,t)
2

n
⇣

d
2

⌘2

=
4s2

Z

���ūi � ūj

���
2

nd2

 16s2

Z A
nd2

 z , (3.23)

for su�ciently large n, where z > 0 is arbitrary constant, where the first inequality

holds since the sequence {Z̄t} is i.i.d. ⇠ N
⇣

0,
s2

Z
n

⌘
, and the second inequality follows

as
���ūi � ūj

���
2

 (kūik+
���ūj

���)2

 (
p

A +
p

A)2

= 4A , (3.24)

by the triangle inequality. Now let us define following event

Ai,j

⇣
s2

Z + d
⌘
⌘
⇢

Z̄ 2 Rn
:

���ūi � ūj + Z̄

���
2

 s2

Z + d

�
, (3.25)

Observe that given the complementary event E c
0
, we have

2

n

Â
t=1

(ūi,t � ūj,t)Z̄t � �d , (3.26)

hence, by (3.21), the event Ai,j

⇣
s2

Z + d
⌘
implies following event

E1 =

⇢
Z̄ 2 Rn

:

���ūi � ūj

���
2

+
��Z̄

��2  s2

Z + 2d

�
. (3.27)

Applying the law of total probability to (3.20), we have

Pe,2(i, j)
(a)
= Pr

 ⇢
Ai,j

⇣
s2

Z + d
⌘�
\ E0

!
+ Pr

 ⇢
Ai,j

⇣
s2

Z + d
⌘�
\ E c

0

!

(b)
 Pr(E0) + Pr

 ⇢
Ai,j

⇣
s2

Z + d
⌘�
\ E c

0

!

(c)
 z + Pr (E1) , (3.28)
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where (a) is due to (3.25), (b) holds since each probability is bounded by 1 and (c)
follows from (3.27). Based on the codebook construction, each codeword is surrounded

by a sphere of radius
p

e, which implies
���ūi � ūj

��� �
p

e , (3.29)

Hence,

�
���ūi � ūj

���
2

 �e . (3.30)

Thus, choosing d = e
3
, we obtain

Pe,2(i, j)  Pr

⇣��Z̄

��2  s2

Z � d
⌘
+ z

= Pr

 
n

Â
t=1

Z̄2

t � s2

Z  �d

!
+ z

 Ân
t=1

Var(Z̄2
t )

d2
+ z

 n · E{Z̄4
t }

d2
+ z

=
3s4

Z
nd2

+ z

 l2 , (3.31)

for su�ciently large n, where l2 > 0 is arbitrary constant, since the fourth moment of

a Gaussian variable V ⇠ N (0, s2

V) is E{V4} = 3s4

V .

We have thus shown that for every l1, l2 > 0 and su�cietnly large n, there exists

a (2nR
, n, l1, l2) code. The proof follows by taking the limits n ! •, then g, d ! 0,

hence e, b! 0 and R! • by (3.17).

3.1.3 | Alternative Proof: Discretization

In this subsection, we give a second proof for the DI capacity theorem of the Gaussian

channel, Theorem 3.1.1. We show that the theorem can be obtained from our result

on the DMC in Theorem 2.3.1, using discretization. We show that given a Gaussian

random variable X ⇠ N (0, A), the entropy of the discretized variable is approximately

1

2
log(2peA)� 2Dp

2pA
+ log

1

D
, (3.32)

where D > 0 is the discretization step. Therefore, as D tends to zero, the discretized

entropy grows to infinity.
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Our discretization procedure is similar to the one presented in [139, see Sec. 3.4.1].

Consider a Gaussian random variable X ⇠ N (0, A), hence

h(X) =
1

2
log(2peA) . (3.33)

Let J > 0 be arbitrarily large and D > 0 be arbitrarily small. Consider the discretized

variable

bX 2
�
�JD, �(J � 1)D, · · · , �D, 0, D, · · · , (J � 1)D, JD

 
, (3.34)

obtained by mapping X to the closest discretization point bX = gJ,D(X), such that | bX| 
|X|. Clearly, E( bX2)  E(X2) = A. More specifically,

gJ,D(x) =

8
>>>>>>><

>>>>>>>:

kD kD  x < (k + 1)D ,

�kD �(k + 1)D < x  �kD ,

JD x � JD ,

�JD x  �JD .

(3.35)

Let bY = bX + Z be the output corresponding to the input bX and let eY = gJ0,D(bY) be

a discretized version of bY defined in the same manner. Observe that the rows of the

discretized DMC from bX to eY are distinct for su�ciently large J and small D, since for

every pair of inputs x1, x2 2 R, x1 6= x2, we have

fZ(y� x1) 6= fZ(y� x2) , (3.36)

for some y 2 R (e.g. y = x1). Thus, based on Theorem 2.3.1, any rate

R = H( bX)� e , (3.37)

is achievable for the DMC with input bX and output eY under power constraint A, where

e > 0 is arbitrarily small. By (3.35), the probability distribution of the discretized

variable is specified by

Pr( bX = ±kD) =

8
>>>><

>>>>:

pk k 2 [[J � 1]] ,

Â•
k=J pk k 2 {J, J + 1, · · · } ,

2p0 k = 0 ,

(3.38)

where

pk =
Z (k+1)D

kD
fX(x) dx , (3.39)
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for k 2 {0, 1, · · · } and for the case k = 0 we have

Pr( bX = 0) =
Z D

0

fX(x) dx

=
1

2

Z D

�D
fX(x) dx , (3.40)

Thus, the corresponding entropy is bounded by

R + e = H( bX)

= �
J

Â
k=�J

Pr( bX = kD) log Pr( bX = kD)

� �
J�1

Â
k=�(J�1)

Pr( bX = kD) log Pr( bX = kD)

= �2p0 log(2p0)� 2

J�1

Â
k=1

pk log pk . (3.41)

Since the Gaussian density function fX is continuous, then, by the mean value theorem,

there exists a value xk within each discretization interval such that

fX(xk)D =
Z (k+1)D

kD
fX(x) dx

= pk , (3.42)

where the last equality holds by the definition of pk in (3.39). Plugging this into (3.41),

we obtain

H( bX) � �2 fX(x0)D log(2 fX(x0)D)� 2

J�1

Â
k=1

fX(xk)D log( fX(xk)D)

= �2 fX(x0)D log(2 fX(x0))� 2

J�1

Â
k=1

fX(xk)D log( fX(xk))

= �2 fX(x0)D log D� 2

J�1

Â
k=1

fX(xk)D log D . (3.43)

Then, taking J to infinity, we have

lim
J!•

H( bX)

� �2 fX(x0)D log(2 fX(x0))� 2

•

Â
k=1

fX(xk)D log( fX(xk))� log D

 
2

•

Â
k=0

fX(xk)D

!
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= �2 fX(x0)D� 2

•

Â
k=0

fX(xk)D log( fX(xk))� log D , (3.44)

since

2

•

Â
k=0

fX(xk)D =
•

Â
k=�•

Pr(X = kD)

= 1 , (3.45)

As the Gaussian pdf is bounded by fX(x)  (2pA)�1/2, the last bound, (3.44), implies

lim
J!•

H( bX) � �2

•

Â
k=0

D fX(xk) log( fX(xk))�
2p

2pA
D + log

1

D
. (3.46)

At last, we take the limit D ! 0
+. First, consider the sum. Since fX(x) log fX(x) is

Riemann integrable,

lim
D!0+

 
�2

•

Â
k=0

D fX(xk) log( fX(xk))

!
= �2

Z •

0

fX(x)D log( fX(x)) dx

= �
Z •

�•
fX(x) log fX(x) dx

= h(X)

=
1

2
log(2peA) . (3.47)

The second term in the right hand side of (3.46) tends to zero as d ! 0
+. Hence, as

J ! • and d! 0
+, we obtain R + e = H( bX) converges to

1

2
log(2peA) + lim

D!0+
log

1

D
, (3.48)

which tends to •. This completes the proof.

3.2 | Summary and Discussion

We have observed that the DI capacity of the standard memoryless Gaussian channel

Y = X + Z is infinite in the exponential scale, i.e.,

CDI(G , L) = • , (3.49)

for L(n, R) = 2
nR. However, for a finite blocklength n, the number of codewords must

be finite. Thereby, the meaning of the infinite capacity result is that the number of
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messages scales super-exponentially. This raises the question: What is the true order

of the code size. In mathematical terms, what is the scale L(n, R) for which the DI

capacity is positive yet finite. To answer this question, we will address the general

Gaussian channels with fading in the next two chapters andwill realize that the number

of messages scales as 2
(n log n)R. As a consequence, we have deduced that the DI capacity

of a standard Gaussian channel without fading is infinite only in the exponential scale

of the codebook, and zero in the double exponential scale, regardless of the channel

noise. Further discussions and analysis are provided in Chapter 4 and Chapter 5.
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CHAPTER 4

“ Slow is Smooth, Smooth is Fast ”
Mitsuyo Maeda,

In this section we consider Gaussian channels with slow fading. We will see that

the capacity characterization is inherently di↵erent in the sense that for the Gaussian

channel, the code size scales L(n, R) = 2
n log(n)R = nnR. We note that the scale of

the DI capacity can be viewed as a special case of a tetration function, as 2n = nn =

2
n log(n) [140, 141]. To prove this property, we establish lower and upper bounds in

this scale, both positive and finite. As a consequence, it follows that the capacity is

infinite in the exponential scale L(n, R) = 2
nR and zero in the double exponential scale

L(n, R) = 2
2

nR
.

4.0.1 | Fading Channels

Consider the Gaussian channel G fast with fast fading, specified by the input-output

relation

Y = G � x + Z , (4.1)

where G is a random sequence of fading coe�cients and Z is an additive white Gaus-

sian process (see Figure 4.1). Specifically, G is a sequence of i.i.d. continuous random

variables⇠ fG with finite moments, while the noise sequence Z is i.i.d. ⇠ N (0, s2

Z). It is

assumed that the noise sequence Z and the sequence of fading coe�cients G are statis-

tically independent, and that the values of the fading coe�cients belong to a bounded

set G, either countable or uncountable. The transmission power is limited tokxk2  nA.

In this section, we consider the Gaussian channel G slow with slow fading, specified

by the input-output relation

Yt = Gxt + Zt , (4.2)
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where G is a continuous random variable ⇠ fG(g). Suppose that the values of G belong

to a set G, and that G has finite expectation, and finite variance var(G) > 0. with

additive white Gaussian noise, i.e., where the noise sequence Z is i.i.d. ⇠ N (0, s2

Z). The

transmission power is limited tokxk2  nA.

i Enc ⇥ + Dec

j

Yes/No

fG

Zt

G

ui,t

G
Yt

Figure 4.1: End-to-end transmission chain for DI communication in a generic wireless communi-
cation system modelled as a slow fading channel. For fast fading, G = (Gt)•

t=1
is a sequence of

i.i.d. fading coe�cients ⇠ fG. For slow fading, the fading sequence remains constant throughout the
transmission block, i.e., Gt = G.

4.0.2 | Coding with Slow Fading

We move to the Gaussian channel with slow fading. In the compound channel model,

we consider the worst-case channel and the error is maximized over the set of the values

of the fading coe�cients (see [139, Sec. 23.3.1]). As a result, we will show that the

capacity is infinite as long as the set of fading values G does not include zero.

The definition of DI codes with CSI available at the decoder is given below.

Definition 4.0.1 (Slow fading DI code). An (L(n, R), n)DI code for a Gaussian channel G slow

with CSI at the decoder, assuming L(n, R) is an integer, is defined as a system (U , D) which
consists of a codebook U = {ui}i2[[L(n,R)]], U ⇢ Rn, such that

kuik2  nA , (4.3)

for all i 2 [[L(n, R)]] and a collection of decoding regions

D = {Di,g} , (4.4)

for i 2 [[L(n, R)]] and g 2 Gn with

L(n,R)[

i=1

Di,g ⇢ Rn
. (4.5)
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The error probabilities of the identification code (U , D) are given by

Pe,1(i) = sup

g2G

2

41�
Z

Di,g

 
n

’
t=1

fZ(yt � gui,t)

!
dy

3

5 , (4.6)

Pe,2(i, j) = sup

g2G

2

4
Z

Dj,g

 
n

’
t=1

fZ(yt � gui,t)

!
dy

3

5 , (4.7)

with fZ(z) = 1

(2ps2

Z)
1/2

e�z2
/2s2

Z (see Lemma 4.1). An (L(n, R), n, l1, l2) DI code is defined
in a similar manner as for fast fading (see Section 4.0.1)

A rate R > 0 is called achievable if for every l1, l2 > 0 and su�ciently large n, there
exists an (L(n, R), n, l1, l2) DI code. The operational DI capacity of the Gaussian channel
is defined as the supremum of achievable rates, and will be denoted by CDI(G slow, L).

Remark 4.0.1. Consider the Gaussian channel G slow with slow fading. When 0 2 cl(G), it
immediately follows that the DI capacity is zero. To see this, observe that if 0 2 cl(G), then
by (4.6)-(4.7),

Pe,1(i) + Pe,2(j, i)

= sup

g2G

2

41�
Z

Di,g

 
n

’
t=1

fZ(yt � gui,t)

!
dy

3

5+ sup

g2G

2

4
Z

Dj,g

 
n

’
t=1

fZ(yt � gui,t)

!
dy

3

5

�

2

41�
Z

Di,g

 
n

’
t=1

fZ(yt � gui,t)

!
dy

3

5

g=0

+

2

4
Z

Di,g

 
n

’
t=1

fZ(yt � guj,t)

!
dy

3

5

g=0

= 1 . (4.8)

Hence, in the sequel we suppose that 0 /2 cl(G).

4.0.3 | Main Result - Slow Fading

Our DI capacity theorem for the Gaussian channel with slow fading is stated below.

Theorem 4.0.1. The DI capacity of the Gaussian channel G slow with slow fading in the super-
exponential scale, i.e., for L(n, R) = 2

n log(n)R is bounded by

1

4
 CDI(G slow, L)  1 if 0 /2 cl(G) ,

CDI(G slow, L) = 0 if 0 2 cl(G) .
(4.9)
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Hence, the DI capacity is infinite in the exponential scale, if 0 /2 cl(G),

CDI(G slow, L) =

8
><

>:

0 if 0 2 cl(G) ,

• if 0 /2 cl(G) ,

(4.10)

and zero in the double exponential scale, i.e., for L(n, R) = 2
2

nR
, we have

CDI(G slow, L) = 0 . (4.11)

The derivation of the above result is similar to that of the proof for the fast fading

cases which will be given in Chapter 5. The proof of Theorem 4.0.1 is given in the

following.

4.0.4 | Lower Bound (Achievability Proof)

Consider the Gaussian channel G slow with slow fading. Based on Remark 4.0.1, when

0 2 cl(G), it immediately follows that the DI capacity is zero. Now, suppose that 0 /2
cl(G). We show here that the DI capacity of the Gaussian channel with slow fading can

be achieved using a dense packing arrangement and a simple distance-decoder.

A DI code for the Gaussian channel G slow with slow fading is constructed as follows.

Since the decoder can normalize the output symbols by 1p
n , we have an equivalent

input-output relation,

Ȳt = Gx̄t + Z̄t , (4.12)

where Gt = G ⇠ fG, and the noise sequence Z̄ is i.i.d. ⇠ N
✓

0,
s2

Z
n

◆
, with an input

power constraint

kx̄k 
p

A , (4.13)

with x̄ = 1p
n x, Z̄ = 1p

n Z, and Ȳ = 1p
n Y.

4.0.4.1 | Codebook Construction

As in our achievability proof for the fast fading setting (see Subsection 4.0.4.1), we use

a packing arrangement of non-overlapping hyper-spheres of radius
p

en over a hyper-

sphere of radius (
p

A�pen), with

en =
A

n
1

2
(1�b)

, (4.14)
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where b > 0 is an arbitrary small. As observed in Subsection 5.0.5, there exists an

arrangement
2

n log(n)R[

i=1

Sui(n,
p

en),

over S0(n,

p
A�pen) with a density of Dn � 2

�n [118, Lem. 2.1]. We assign a code-

word to the center of each small sphere ui. Since the small spheres have the same

volume, the total number of spheres, i.e., the codebook size, satisfies

2
n log(n)R =

Vol
✓
S

2
n log(n)R

i=1
Sui(n,

p
en)

◆

Vol(Su1
(n,
p

en))

� 2
�n · Vol(S0(n,

p
A�pen))

Vol(Su1
(n,
p

en))

= 2
�n ·

 p
A�penp

en

!n

, (4.15)

in a similar manner as in Subsection 4.0.4.1, hence,

R � 1

4
(1� b)� 2

log(n)
, (4.16)

which tends to 1

4
when n! • and b! 0.

4.0.4.2 | Encoding

Given a message i 2 [[L(n, R)]], transmit x̄ = ūi.

4.0.4.3 | Decoding

Let

dn =
g2en

3

=
Ag2

3n
1

2
(1�b)

, (4.17)

where b > 0 is an arbitrary small. To identify whether a message j 2 [[L(n, R)]] was

sent, given the fading coe�cient g, the decoder checks whether the channel output ȳ

belongs to the following decoding set,

Dj,g =

(
ȳ 2 Rn

:

n

Â
t=1

(ȳt � gūj,t)
2  s2

Z + dn

)
. (4.18)
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4.0.4.4 | Error Analysis

Consider the type I error, i.e., when the transmitter sends ūi, yet Ȳ /2 Di,G. For every

i 2 [[L(n, R)]], the type I error probability is given by

Pe,1(i) = sup

g2G

h
Pe,1

�
i |g

�i
, (4.19)

where we have defined

Pe,1

�
i |g

�
⌘ Pr

 
n

Â
t=1

(Ȳt � Gūi,t)
2 > s2

Z + dn

��� x̄ = (ūi,t)
n
t=1

, G = g

!

= Pr

 
n

Â
t=1

Z̄t
2 > s2

Z + dn

!
, (4.20)

for g 2 G, as the fading coe�cient G and the noise vector Z̄ are statistically indepen-

dent.

Now we can bound the type I error probability by

Pe,1

�
i |g

�
= Pr

 
n

Â
t=1

Z̄t
2 � s2

Z > dn

!

 3s4

Z
nd2

n

=
27s4

Z
A2g4nb

 l1 , (4.21)

for su�ciently large n and arbitrarily small l1 > 0, where the first inequality holds

by Chebyshev’s inequality and since the fourth moment of a Gaussian variable V ⇠
N (0, s2

V) is E{V4} = 3s4

V . Thus we have Pe,1

�
i |g

�
 l1 for all g 2 G. Hence, the type

I error probability satisfies Pe,1 (i)  l1 (see (4.19)).

Next we address the type II error, i.e., when Ȳ 2 Dj,G while the transmitter sent ūi.

Then, for every i, j 2 [[L(n, R)]], where i 6= j, the type II error probability is given by

Pe,2(i, j) = sup

g2G

h
Pe,2

�
i, j |g

�i
, (4.22)

where we have defined

Pe,2

�
i, j |g

�
⌘ Pr

 
n

Â
t=1

(Ȳt � Gūj,t)
2  s2

Z + dn

��� x̄ = (ūi,t)
n
t=1

, G = g

!
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= Pr

 
n

Â
t=1

(g(ūi,t � ūj,t) + Z̄t)
2  s2

Z + dn

!
(4.23)

for g 2 G, as the fading coe�cient G and the noise vector Z̄ are statistically indepen-

dent. Now we bound the probability within the square brackets.

We divide into two cases. First, consider g 2 G such that
���g

⇣
ūi � ūj

⌘��� > 2

q
s2

Z + dn.

Therefore, by the reverse triangle inequality,ka� bk �
��kak �kbk

��, we have
vuut n

Â
t=1

 ✓
g
⇣

ūi,t � ūj,t

⌘◆
+ Z̄t

!2

�
���g

⇣
ūi � ūj

⌘����
��Z̄

��

� 2

q
s2

Z + dn �
��Z̄

�� . (4.24)

Hence, for every g such that
���g

⇣
ūi � ūj

⌘��� > 2

q
s2

Z + dn, we can bound the type II error

probability by

Pe,2

✓
i, j

���g
◆
 Pr

✓��Z̄

�� �
q

s2

Z + dn

◆

= Pr

 
n

Â
t=1

Z̄t
2 > s2

Z + dn

!

 3s4

Z
nd2

n

=
27s4

Z
nb A2g4

 l2 , (4.25)

for su�ciently large n and arbitrarily small l2 > 0, where the second inequality follows

by Chebyshev inequality.

Now, we turn to the second case, i.e., when
���g

⇣
ūi � ūj

⌘���  2

q
s2

Z + dn . (4.26)

Observe that for every given g 2 G,
n

Â
t=1

(g(ūi,t � ūj,t) + Z̄t)
2 =

n

Â
t=1

g2(ūi,t � ūj,t)
2 +

n

Â
t=1

Z̄2

t + 2

n

Â
t=1

g(ūi,t � ūj,t)Zt . (4.27)

Then define the event

E0(g) =

(����
n

Â
t=1

g(ūi,t � ūj,t)Z̄t

���� >
dn
2

)
. (4.28)
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By Chebyshev’s inequality, the probability of this event vanishes,

Pr
�
E0(g)

�


g2 Ân
t=1

(ūi,t � ūj,t)
2E{Z̄2

t }⇣
dn
2

⌘2

=
4s2

Z

���g
⇣

ūi � ūj

⌘���
2

nd2
n


16s2

Z

⇣
s2

Z + dn

⌘

nd2
n

 t0 , (4.29)

for su�ciently large n and arbitrarily small t0 > 0, where the first inequality holds

since the sequence {Z̄t} is i.i.d. ⇠ N
✓

0,
s2

Z
n

◆
, and the second inequality follows from

(4.26). Furthermore, observe that given the complementary event E c
0
(g), we have

2

n

Â
t=1

g
⇣

ūi,t � ūj,t

⌘
Z̄t � �dn , (4.30)

Therefore, the event E c
0
, the type II error event in (4.23), and the identity in (4.27)

together imply that the following event occurs,

E1(g) =

(
n

Â
t=1

g2(ūi,t � ūj,t)
2 +

n

Â
t=1

Z̄2

t  s2

Z + 2dn

)
. (4.31)

Now lets define

Hn
i,j =

(
G 2 Gn

:

n

Â
t=1

(g(ūi,t � ūj,t) + Z̄t)
2  s2

Z + dn

)
. (4.32)

Therefore, applying the law of total probability to (4.33), we have

Pe,2

✓
i, j

���g
◆
= Pr

⇣
Hn

i,j \ E0(g)
⌘
+ Pr

⇣
Hn

i,j \ E c
0
(g)

⌘

 Pr(E0(g)) + Pr
�
E1(g)

�

 t0 + Pr
�
E1(g)

�
, (4.33)

where the last inequality holds by (4.29).

Now we focus on the second term in (4.33), i.e., Pr(E1(g)). To this end, observe that

based on the codebook construction, each codeword is surrounded by a sphere of radius
p

en, which implies that
���ūi � ūj

��� �
p

en . (4.34)
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Thus, we have

g2

���ūi � ūj

���
2

� g2en , (4.35)

where g is the minimal value in G. Hence, according to (4.33),

Pe,2

✓
i, j

���g
◆
 Pr

⇣��Z̄

��2  s2

Z + 2dn � g2en

⌘
+ t0

= Pr

⇣��Z̄

��2 � s2

Z  �dn

⌘
+ t0 , (4.36)

(see (4.17)). Therefore, by Chebyshev’s inequality,

Pe,2

✓
i, j

���g
◆
 Pr

 
n

Â
t=1

Z̄2

t � s2

Z  �dn

!
+ t0

 Ân
t=1

var(Z̄2
t )

d2
n

+ t0

 Ân
t=1

E{Z̄4
t }

d2
n

+ t0

=
3n

✓
s2

Z
n

◆2

d2
n

+ t0

=
3s4

Z
nd2

n
+ t0

=
27s4

Z
nb A2g4

+ t0

 l2 , (4.37)

for su�ciently large n. Based on (4.25) and (4.37), we have Pe,2

�
i, j |g

�
 l2 for all

g 2 G. Hence, the type II error probability satisfies Pe,2

�
i, j
�
 l2 (see (4.22)).

We have thus shown that for every l1, l2 > 0 and su�ciently large n, there exists a
(2n log(n)R

, n, l1, l2) code. As we take the limits of n ! •, and then b ! 0, the lower

bound on the achievable rate tends to 1

4
, by (4.16). This completes the achievability

proof for Theorem 4.0.1.

4.0.5 | Upper Bound (Converse Proof)

Suppose that R is an achievable rate in the L-scale for the Gaussian channel with slow

fading. Consider a sequence of (L(n, R), n, l
(n)
1

, l
(n)
2

) codes (U (n)
,D(n)), such that l

(n)
1

and l
(n)
2

tend to zero as n! •. We begin with the following lemma.
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Lemma 4.0.1. Consider a sequence of codes as described above. Let b > 0 be an arbitrarily
small constant that does not depend on n. Then there exists n0(b), such that for all n > n0(b),
every pair of codewords in the codebook U (n) are distanced by at least

p
nen, i.e.,

���ui1 � ui2

��� �
p

nen , (4.38a)

where

en =
A

n2(1+b) , (4.38b)

for all i1, i2 2 [[L(n, R)]], such that i1 6= i2.

Proof. Fix l1 and l2. Let k, q, z > 0 be arbitrarily small. Assume to the contrary that

there exist two messages i1 and i2, where i1 6= i2, such that
���ui1 � ui2

��� <
p

nen = an , (4.39)

where

an ⌘
p

A

n
1

2
(1+2b)

. (4.40)

Now let us define two subsets as follows

Bi1,i2 =

(
y 2 Di1,g :

n

Â
t=1

�
yt � gui2,t

�2  n
⇣

s2

Z + z
⌘)

(4.41)

Ci1,i2 =

(
y 2 Yn

:

n

Â
t=1

�
yt � gui2,t

�2  n
⇣

s2

Z + z
⌘)

. (4.42)

Observe that for every g 2 G,
Z

Di
1

,g

 
n

’
t=1

fZ

⇣
yt � gui1,t

⌘!
dy

=
Z

Bi
1

,i2

 
n

’
t=1

fZ

⇣
yt � gui1,t

⌘!
dy +

Z

Di,1,g\Bi
1

,i2

 
n

’
t=1

fZ

⇣
yt � gui1,t

⌘!
dy


Z

Bi
1

,i2

 
n

’
t=1

fZ

⇣
yt � gui1,t

⌘!
dy +

Z

Cc
i
1

,i2

 
n

’
t=1

fZ

⇣
yt � gui1,t

⌘!
dy . (4.43)

where the last inequality holds since

Cc
i1,i2 � Di1,g \Bi1,i2 , (4.44)
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with \ being the set minus operation. Consider the second integral, for which the do-

main is Cc
i1,i2 and where we denote

g ⌘ (g, g, . . . , g) . (4.45)

Then, by the triangle inequality,
��y� g � ui,1

�� �
��y� g � ui,2

���
��g � (ui,1 � ui,2)

��

=
��y� g � ui,2

��� g
��ui,1 � ui,2

��

>
q

n(s2

Z + z)� g
��ui,1 � ui,2

��

�
q

n(s2

Z + z)� gan . (4.46)

For su�ciently large n, this implies the following subset

Fc
i1,i2 =

(
yn 2 Yn

:
��y� g � ui,1

�� >

r
n
⇣

s2

Z + h
⌘)

, (4.47)

for h < z
2
. That is,

(
y :

��y� g � ui,2
�� �

r
n
⇣

s2

Z + z
⌘) implies�!

(
y :

��y� g � ui,1
�� �

r
n
⇣

s2

Z + h
⌘)

.

(4.48)

Thus we deduce that

Fc
i1,i2 � Cc

i1,i2 , (4.49)

Hence, the second integral in the right hand side of (4.43) is bounded by

Z

Fc
i
1

,i2

fZ(y� g � ui1)dy = Pr

 
��y� g � ui,1

�� �
r

n
⇣

s2

Z + h
⌘!

= Pr(kZk2 � ns2

Z > nh)

 3s4

Z
nh2

 k , (4.50)

for su�ciently large n, where the third line is due to Chebyshev’s inequality, followed

by the substitution of z ⌘ y� g � ui1 . Thus, by (4.43),

Z

Di
1

,g

 
n

’
t=1

fZ

⇣
yt � gui1,t

⌘!
dy 

Z

Bi
1

,i2

fZ

⇣
y� g � ui1

⌘
dy + k . (4.51)
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Now, we can focus on the first integral with domain of Bi1,i2 , i.e., when

��y� g � ui,2
�� 

q
n(s2

Z + z) . (4.52)

Observe that

fZ(y� g � ui1)� fZ(y� g � ui2)

= fZ(y� g � ui1)

2

41� e
� 1

2s2
Z

✓���y�g�ui2

���
2

�
���y�g�ui

1

���
2
◆3

5 . (4.53)

By the triangle inequality,
���y� g � ui1

��� 
��y� g � ui2

��+ g
���ui1 � ui2

��� . (4.54)

Taking the square of both sides, we have
���y� g � ui1

���
2


��y� g � ui2

��2
+ g2

���ui2 � ui1

���
2

+ 2
��y� g � ui2

�� · g
���ui2 � ui1

���


��y� g � ui2

��2
+ g2a2

n + 2gan

q
n(s2

Z + z)

=
��y� g � ui2

��2
+ g2a2

n + 2g

q
A(s2

Z + z)

nb , (4.55)

where the second line follows from (4.39) and (4.52), and the line is due to (4.40). Thus,

for su�ciently large n,
���y� g � ui1

���
2

�
��y� g � ui2

��2  q . (4.56)

Hence,

fZ(y� g � ui1)� fZ(y� g � ui2)  fZ(y� g � ui1)

 
1� e

� q
2s2

Z

!

 k fZ

⇣
y� g � ui1

⌘
, (4.57)

for su�ciently small q > 0, such that 1� e
� q

2s2
Z  k. Now by (4.51), we get,

l1 + l2

� Pe,1(i1) + Pe,2(i2, i1)
(a)
� sup

g2G

⇥
Pe,1(i1|g)

⇤
+ sup

g2G

⇥
Pe,2(i2, i1|g)

⇤
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(b)
� sup

g2G

⇥
Pe,1(i1|g) + Pe,2(i2, i1|g)

⇤

� sup

g2G

2

41�
Z

Di
1

,g

 
n

’
t=1

fZ

⇣
yt � gui1,t

⌘!
dy +

Z

Di
1

,g

 
n

’
t=1

fZ
�
yt � gui2,t

�
!

dy

3

5

(c)
� sup

g2G

"
1� k �

Z

Bi
1

,i2

fZ

⇣
y� g � ui1

⌘
dy +

Z

Di
1

,g
fZ(y� g � ui2) dy

#

� sup

g2G

"
1� k �

Z

Bi
1

,i2

fZ

⇣
y� g � ui1

⌘
dy +

Z

Bi
1

,i2

fZ

�
y� g � ui2

�
dy

#

= sup

g2G

"
1� k �

Z

Bi
1

,i2

✓
fZ

⇣
y� g � ui1

⌘
� fZ

�
y� g � ui2

�◆
dy

#
, (4.58)

where (a) follows by definitions given in (4.19) and (4.22), (b) holds since supremum

is sub-additive and (c) is due to (4.51). Hence, by (4.57),

l1 + l2 � 1� k � k inf
g2G

"Z

Bi
1

,i2

fZ

⇣
y� g � ui1

⌘
dy

#

� 1� 2k , (4.59)

which leads to a contradiction for su�ciently small k such that 2k < 1� l1 � l2. This

completes the proof of Lemma 4.0.1.

By Lemma 4.0.1 we can define an arrangement of non-overlapping spheres Sui(n,
p

nen)

of radius
p

nen centered at the codewords ui. Since the codewords all belong to a sphere

S0(n,

p
nA) of radius

p
nA centered at the origin, it follows that the number of packed

spheres, i.e., the number of codewords 2
n log(n)R, is bounded by

2
n log(n)R  Vol(S0(n,

p
nA +

p
nen))

Vol(Sui(n,
p

nen))

=

 p
A +
p

enp
en

!n

. (4.60)

Thus,

R  1

log n
log

 p
A +
p

enp
en

!

= 1 + b +
log

⇣
1 + 1

n1+b

⌘

log n
, (4.61)
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by the same arguments as in the proof for the Gaussian channel with fast fading (see

(5.75)), which tends to 1 + b as n ! •. Now, since b > 0 is arbitrarily small, an

achievable rate must satisfy R  1. This completes the proof of Theorem 4.0.1.

4.1 | Summary and Discussion

We have developed lower and upper bounds on the DI capacity of Gaussian chan-

nels with slow fading, where CSI is available at the decoder, in the scale L(n, R) =

2
n log(n)R = nnR, where n is the blocklength. We have thus established that the super-

exponential scale nnR is the appropriate scale for the DI capacity of the slow fading

Gaussian channels. That is, the DI capacity can only be positive and finite in this cod-

ing scale. This scale is sharply di↵erent from the usual scales in the transmission and

randomized-identification settings, where the codebook size scales exponentially and

double exponentially, respectively. Di↵erent non-standard scales are also observed in

other communication models, such as covert identification [142, 143], where the identi-

fication message is of size 2
2

p
nR
. We observed that for the slow fading channels, the DI

capacity in the exponential scale is infinite, unless the fading gain can be zero or arbi-

trarily close to zero (with positive probability), in which case the DI capacity is zero.

Note, however, that this scale is comparably lower than the double exponential scale of

RI coding.
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CHAPTER 5

“ He (Grigori Perelman) Was not Fast. Speed Means Nothing.

Math Doesn’t Depend on Speed. It is About Depth.

”
Yuri Burago,

5.0.1 | Introduction

Modern communications require the transfer of enormous amounts of data in wireless

systems, for cellular communication [124], sensor networks [125], smart appliances

[126], and the internet of things [127], etc. Wireless communication is often modelled

by fading channels with additive white Gaussian noise [128–136]. In the fast fading

regime, the transmission spans over a large number of coherence time intervals [144],

hence the signal attenuation is characterized by a stochastic process or a sequence of

random parameters [145–148]. In some applications, the receiver may acquire channel

side information (CSI) by instantaneous estimation of the channel parameters [149–

151]. On the other hand, in the slow fading regime, the latency is short compared to the

coherence time [144], and the behaviour is that of a compound channel [100,152–155].

In chapter 2; see [98, 137], we addressed deterministic identification for the DMC

subject to an input constraint and have also shown that the DI capacity of the standard

Gaussian channel, without fading, is infinite in the exponential scale. Our previous

results [98, 137] reveal a gap of knowledge in the following sense. For a finite block-

length n, the number of codewords must be finite. Thereby, the meaning of the infinite

capacity result is that the number of messages scales super-exponentially. The question

remains what is the true order of the code size. In mathematical terms, what is the scale

L for which the DI capacity is positive yet finite. Here, we will answer this question.

In this chapter, we consider deterministic identification for Gaussian channels with

fast fading and slow fading, where channel side information (CSI) is available at the de-
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coder. We show that for Gaussian channels, the number of messages scales as 2
n log(n)R,

and develop lower and upper bounds on the DI capacity in this scale. As a consequence,

we deduce that the DI capacity of a Gaussian Channel with fast fading is infinite in the

exponential scale, and zero in the double-exponential scale, regardless of the channel

noise. For slow fading, the DI capacity in the exponential scale is infinite, unless the

fading gain can be zero or arbitrarily close to zero (with positive probability), in which

case the DI capacity is zero. In comparison with the double exponential scale in RI

coding, the scale here is significantly lower.

The results have the following geometric interpretation. At first glance, it may seem

reasonable that for the purpose of identification, one codeword could represent two

messages. While identification allows overlap between decoding regions [117], overlap

at the encoder is not allowed for deterministic codes. We observe that when two mes-

sages are represented by codewords that are close to one another, then identification

fails. Thus, deterministic coding imposes the restriction that the codewords need to be

distanced from each other.

Based on fundamental properties of packing arrangements [118], [138], the opti-

mal packing of non-overlapping spheres of radius
p

ne contains an exponential num-

ber of spheres, and by decreasing the radius of the codeword spheres, the exponential

rate can be made arbitrarily large. However, in the derivation of our lower bound in

the 2
n log(n)R-scale, we pack spheres of a sub-linear radius

p
nen ⇠ n1/4, which re-

sults in ⇠ 2
1

4
n log(n) codewords. In this section we consider Gaussian channels with

either fast fading or slow fading. We will see that the capacity characterization is

inherently di↵erent in the sense that for the Gaussian channel, the code size scales

L(n, R) = 2
n log(n)R = nnR. We note that the scale of the DI capacity can be viewed

as a special case of a tetration function, as 2n = nn = 2
n log(n) [140, 141]. To prove

this property, we establish lower and upper bounds in this scale, both positive and fi-

nite. As a consequence, it follows that the capacity is infinite in the exponential scale

L(n, R) = 2
nR and zero in the double exponential scale L(n, R) = 2

2
nR
.

5.0.2 | Fading Channels

Consider the Gaussian channel G fast with fast fading, specified by the input-output

relation

Y = G � x + Z , (5.1)
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where G is a random sequence of fading coe�cients and Z is an additive white Gaus-

sian process (see Figure 4.1). Specifically, G is a sequence of i.i.d. continuous random

variables⇠ fG with finite moments, while the noise sequence Z is i.i.d. ⇠ N (0, s2

Z). It is

assumed that the noise sequence Z and the sequence of fading coe�cients G are statis-

tically independent, and that the values of the fading coe�cients belong to a bounded

set G, either countable or uncountable. The transmission power is limited tokxk2  nA.

Similarly, the Gaussian channel G slow with slow fading is specified by the input-

output relation

Yt = Gxt + Zt , (5.2)

where G is a continuous random variable ⇠ fG(g). Suppose that the values of G belong

to a set G, and that G has finite expectation and finite variance var(G) > 0 with ad-

ditive white Gaussian noise, i.e., where the noise sequence Z is i.i.d. ⇠ N (0, s2

Z). The

transmission power is limited tokxk2  nA.

i Enc � + Dec

j

Yes/No

fG
G

Z

ui

G

Y

Figure 5.1: Deterministic identification for the Gaussian channel with fast fading, where G is a sequence
of i.i.d. fading coe�cients ⇠ fG, and the noise sequence Z is i.i.d. ⇠ N (0, s2

Z).

5.0.3 | Coding For Fast Fading Channels

A code for the Gaussian channel with fast fading is defined below.

Definition 5.0.1 (Fast fading DI Code). An (L(n, R), n) DI code with channel side infor-
mation (CSI) at the decoder for a Gaussian channel G fast under input constraint A, as-
suming L(n, R) is an integer, is defined as a system (U , D) which consists of a codebook
U = {ui}i2[[L(n,R)]], U ⇢ Rn, such that

kuik2  nA , for all i 2 [[L(n, R)]] , (5.3)
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and a collection of decoding regions D = {Di,g}i2[[L(n,R)]] , g2Gn with

L(n,R)[

i=1

Di,g ⇢ Rn
. (5.4)

Given a message i 2 [[L(n, R)]], the encoder transmits ui. The decoder’s aim is to answer the
following question: Was a desired message j sent or not? There are two types of errors that
may occur: Rejecting the true message, or accepting a false message. Those are referred to as
type I and type II errors, respectively.

The error probabilities of the identification code (U , D) are given by

Pe,1(i) = 1�
Z

Gn
fG(g)

" Z

Di,g
fZ(y� g � ui)dy

#
dg , (5.5)

Pe,2(i, j) =
Z

Gn
fG(g)

" Z

Dj,g
fZ(y� g � ui) dy

#
dg , (5.6)

with fZ(z) = 1

(2ps2

Z)
n/2

e�kzk
2
/2s2

Z (see Figure 4.1). An (L(n, R), n, l1, l2) DI code further
satisfies

Pe,1(i)  l1 , (5.7)

Pe,2(i, j)  l2 , (5.8)

for all i, j 2 [[L(n, R)]], such that i 6= j. A rate R > 0 is called achievable if for every l1, l2 >

0 and su�ciently large n, there exists an (L(n, R), n, l1, l2) DI code. The operational DI
capacity in the L-scale is defined as the supremum of achievable rates, and will be denoted by
CDI(G fast, L).

Coding for the Gaussian channel with slow fading is defined as in the compound

channel model, considering the worst-case channel. Thus, the error is maximized over

the set of values of the fading coe�cients. A code for the Gaussian channel with slow

fading is defined in a similar manner as in Definition 5.0.1. However, the errors are

defined with a supremum over the values of the fading coe�cient G 2 G, namely,

Pe,1(i) = sup

g2G

2

41�
Z

Di,g

 
n

’
t=1

fZ(yt � gui,t)

!
dy

3

5 , (5.9)

Pe,2(i, j) = sup

g2G

2

4
Z

Dj,g

 
n

’
t=1

fZ
�
yt � gui,t

�
!

dy

3

5 . (5.10)

The capacity of the Gaussian channel with slow fading is denoted by CDI(G slow, L).

68



CHAPTER 5. DI FOR FAST FADING GAUSSIAN CHANNELS

5.0.4 | Main Results

We determine the coding scale for the DI capacity of Gaussian channels with fading.

Before we give our results, we make the following observation. Recall that we use the

notation of L2 � L1 for a coding scale L1 that dominates L2 (see Definition 2.2.1). The

following property readily follows from the definition. Suppose that the capacity in a

given scale is positive yet finite, i.e., 0 < CDI(G fast, L0) < • for a given L0. Then, for

every L� � L0,

CDI(G fast, L�) = • , (5.11)

and for every L+ � L0,

CDI(G fast, L+) = 0 . (5.12)

Our DI capacity theorem for the Gaussian channel with fast fading is stated below.

Theorem 5.0.1. Assume that the fading coe�cients are positive and bounded away from
zero, i.e., 0 /2 cl(G). The DI capacity of the Gaussian channel G fast with fast fading in the
2

n log(n)-scale, i.e., for L(n, R) = 2
(n log n)R is bounded by

1

4
 CDI(G fast, L)  1 . (5.13)

Hence, the DI capacity is infinite in the exponential scale and zero in the double exponential
scale, i.e.,

CDI(G fast, L) =

8
><

>:

• for L(n, R) = 2
nR

,

0 for L(n, R) = 2
2

nR
.

(5.14)

The proofs for the lower and upper bounds in the first part of Theorem 5.0.1 are

given in Subsection 5.0.5 and Subsection 5.0.6, respectively. The second part of the the-

orem is a direct consequence of the observation given at the beginning of this subsection

(see (5.11)-(5.12)).

Remark 5.0.1. Observe that Theorem 5.0.1 assumes that the fading coe�cients are positive
and bounded away from zero, i.e., 0 /2 cl(G). In practice, however, communication with
fading may involve small gain that can be close to zero. For instance, if the fading distribution
fG is Gaussian, then the probability Pr(|Gt| < e) is positive for arbitrarily small e > 0.
Hence, Gaussian fading does not meet the assumption in our theorem. Unfortunately, the case
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where the fading coe�cients can be arbitrarily close (or equal) to zero remains unsolved. We
give a rough explanation of how we use the assumption in the analysis. In the achievability
proof in Subsection 5.0.5, we assume that there exists g > 0 such that Gt > g for all t with
probability 1. The codebook is constructed such that the codewords are distanced from each
other by

p
nen. Then, in the analysis for the type II error, we consider an error event of the

form

kZk2  n(s2

Z + 2dn)�
���G � (ui � uj)

���
2

, (5.15)

(see (5.41)). Given our assumption, we have
���G � (ui � uj)

���
2

� g2

���ui � uj

���
2

. By choosing

en = 3dn
g2

, the error event in (5.15) implies

kZk2  n(s2

Z + 2dn � g2en) = n(s2

Z � dn) , (5.16)

or equivalently,

1

n Â
i=1

Z2

i � s2

Z  �dn . (5.17)

As the random sequence Z2

i is i.i.d. with E(Z2

i ) = s2

Z, we show that this probability tends to
zero using large deviations arguments. Further details are given in Subsection 5.0.5.

5.0.5 | Lower Bound (Achievability Proof for Theorem 5.0.1)

Consider the Gaussian channel G fast with fast fading. We show that the DI capacity

is bounded by CDI(G fast, L) � 1

4
for L(n, R) = 2

n log(n)R. Achievability is established

using a dense packing arrangement and a simple distance-decoder. A DI code for the

Gaussian channel G fast with fast fading is constructed as follows. Consider the normal-

ized input-output relation,

Ȳ = G � x̄ + Z̄ , (5.18)

where the noise sequence Z̄ is i.i.d. ⇠ N (0,
s2

Z
n ), and an input power constraint

kx̄k 
p

A , (5.19)

with x̄ = 1p
n x, Z̄ = 1p

n Z, and Ȳ = 1p
n Y. Assuming 0 /2 cl(G), there exists a positive

number g such that

|Gt| > g , (5.20)

for all t with probability 1.
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p
A�pen

p
en

Figure 5.2: Illustration of a sphere packing, where small spheres of radius r0 =
p

en cover a bigger
sphere of radius r1 =

p
A�pen. The small spheres are disjoint from each other and have a non-empty

intersection with the large sphere. Some of the small spheres, marked in yellow, are not entirely contained
within the bigger sphere, and yet they are considered to be a part of the packing arrangement. As we assign
a codeword to each small sphere center, the norm of a codeword is bounded by

p
A as required.

5.0.5.1 | Codebook Construction

We use a packing arrangement of non-overlapping hyper-spheres of radius
p

en in a

hyper-sphere of radius (
p

A�pen), with

en =
A

n
1

2
(1�b)

, (5.21)

where b > 0 is arbitrarily small.

Let S denote a sphere packing, i.e., an arrangement of L non-overlapping spheres

Sui(n, r0), i 2 [[L(n, R)]] that cover a bigger sphere S0(n, r1), with r1 > r0. As opposed

to standard sphere packing coding techniques, the small spheres are not necessarily

entirely contained within the bigger sphere. That is, we only require that the spheres

are disjoint from each other and have a non-empty intersection with S0(n, r1). See

illustration in Figure 5.2. The packing density �n(S ) is defined as the fraction of the

large sphere volume Vol
�
S0(n, r1)

�
that is covered by the small spheres, i.e.

�n(S ) ,
Vol

⇣
S0(n, r1) \

SL
i=1

Sui(n, r0)
⌘

Vol(S0(n, r1))
, (5.22)

( [138, see Ch. 1]). A sphere packing is called saturated if no spheres can be added to

the arrangement without overlap.

We use a packing argument that has a similar flavor as in the Minkowski–Hlawka

theorem in lattice theory [138]. We use the property that there exists an arrange-

ment
SL

i=1
Sui(n,

p
en) of non-overlapping spheres inside S0(n,

p
A) with a density
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of �n(S ) � 2
�n [118, Lem. 2.1]. Specifically, consider a saturated packing arrange-

ment of L(n, R) = 2
n log(n)R spheres of radius r0 =

p
en covering the large sphere

S0(n, r1 =
p

A�pen), i.e., such that no spheres can be added without overlap. Then,

for such an arrangement, there cannot be a point in the large sphere S0(n, r1) with a

distance of more than 2r0 from all sphere centers. Otherwise, a new sphere could be

added. As a consequence, if we double the radius of each sphere, the 2r0-radius spheres

cover the whole sphere of radius r1. In general, the volume of a hyper-sphere of radius

r is given by

Vol
�
Sx(n, r)

�
=

p
n
2

G( n
2
+ 1)

· rn
, (5.23)

(see Eq. (16) in [138]). Hence, doubling the radius multiplies the volume by 2
n. Since

the 2r0-radius spheres cover the entire sphere of radius r1, it follows that the original

r0-radius packing has a density of at least 2
�n, i.e.,

�n(S ) � 2
�n

. (5.24)

We assign a codeword to the center ui of each small sphere. The codewords satisfy

the input constraint as

kuik  r0 + r1

=
p

A . (5.25)

Since the small spheres have the same volume, the total number of spheres is bounded

from below by

L =
Vol

⇣SL
i=1

Sui(n, r0)
⌘

Vol(Su1
(n, r0))

�
Vol

⇣
S0(n, r1) \

SL
i=1

Sui(n, r0)
⌘

Vol(Su1
(n, r0))

=
�n(S ) ·Vol(S0(n, r1)))

Vol(Su1
(n, r0))

� 2
�n · Vol(S0(n, r1)))

Vol(Su1
(n, r0))

= 2
�n ·

rn
1

rn
0

, (5.26)

where the second equality is due to (5.22), the inequality that follows holds by (5.24),

and the last equality follows from (5.23). That is, the codebook size satisfies

L(n, R) = 2
n log(n)R
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� 2
�n ·

 p
A�penp

en

!n

. (5.27)

Hence,

R � 1

log(n)
log

 p
A�penp

en

!
� 1

log(n)

=
1

log(n)
log

⇣
n

1

4
(1�b) � 1

⌘
� 1

log(n)

� 1

log(n)

⇣
log n

1

4
(1�b) � 1

⌘
� 1

log(n)

=
1

4
(1� b)� 2

log(n)
, (5.28)

which tends to 1

4
when n! • and b! 0, where the second inequality holds, since

log(t� 1) � log t� 1 for t � 2 (5.29)

5.0.5.2 | Encoding

Given a message i 2 [[L(n, R)]], transmit x̄ = ūi.

5.0.5.3 | Decoding

Let

dn =
g2en

3
=

g2A

3n
1

2
(1�b)

. (5.30)

To identify whether a message j 2 [[L(n, R)]]was sent, given the sequence g, the decoder

checks whether the channel output ȳ belongs to the following decoding set,

Dj,g =

⇢
ȳ 2 Rn

:

���ȳ� g � ūj

��� 
q

s2

Z + dn

�
. (5.31)

5.0.5.4 | Error Analysis

Consider the type I error, i.e., when the transmitter sends ūi, yet Ȳ /2 Di,G. For every

i 2 [[L(n, R)]], the type I error probability is bounded by

Pe,1(i) = Pr

✓��Ȳ�G � ūi
��2

> s2

Z + dn

��� x̄ = ūi

◆

= Pr

⇣��Z̄
��2

> s2

Z + dn

⌘
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= Pr

 
n

Â
t=1

Z̄t
2 > s2

Z + dn

!

 Pr

 
n

Â
t=1

Z̄t
2 > s2

Z + dn

!

 3s4

Z
nd2

n

=
27s4

Z
nb A2g4

 l1 , (5.32)

for su�ciently large n and arbitrarily small l1 > 0, where the second inequality follows

by Chebyshev’s inequality, and since the fourth moment of a Gaussian variable V ⇠
N (0, s2

V) is E{V4} = 3s4

V .

Next we address the type II error, i.e., when Ȳ 2 Dj,G while the transmitter sent ūi.

Then, for every i, j 2 [[L(n, R)]], where i 6= j, the type II error probability is given by

Pe,2(i, j) = Pr

✓���Ȳ�G � ūj

���
2

 s2

Z + dn

��� x̄ = ūi

◆

= Pr

✓���G � (ūi � ūj) + Z̄

���
2

 s2

Z + dn

◆
. (5.33)

Observe that the square norm can be expressed as
���G � (ūi � ūj) + Z̄

���
2

=
���G � (ūi � ūj)

���
2

+
��Z̄

��2
+ 2

n

Â
t=1

Gt(ūi,t � ūj,t)Z̄t . (5.34)

Then, define the event

E0 =

8
<

:

�����

n

Â
t=1

Gt(ūi,t � ūj,t)Z̄t

����� >
dn
2

9
=

; . (5.35)

By Chebyshev’s inequality, the probability of this event vanishes,

Pr(E0) 
Ân

t=1
(ūi,t � ūj,t)

2E{G2
t }E{Z̄2

t }⇣
dn
2

⌘2

=
s2

Z(s
2

G + µ2

G)Ân
t=1

(ūi,t � ūj,t)
2

n
⇣

dn
2

⌘2

=
4s2

Z(s
2

G + µ2

G)
���ūi � ūj

���
2

nd2
n

, (5.36)
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where the first inequality holds since the sequences {Z̄t} and {Gt} are i.i.d. ⇠ N
✓

0,
s2

Z
n

◆

and ⇠ fG with

E{Gt} = µG and E{G2

t } = s2

G + µ2

G . (5.37)

By the triangle inequality,

���ūi � ūj

���
2


✓
kūik+

���ūj

���
◆2

 (
p

A +
p

A)2

= 4A , (5.38)

hence

Pr(E0) 
16As2

Z(s
2

G + µ2

G)

nd2
n

=
144s2

Z(s
2

G + µ2

G)

g4Anb

 h0 , (5.39)

for su�ciently large n, where h0 > 0 is arbitrarily small. Furthermore, observe that

given the complementary event E c
0
, we have

2

n

Â
t=1

Gt(ūi,t � ūj,t)Z̄t � �dn , (5.40)

Therefore, the event E c
0
, the type II error event in (5.33), and the identity in (5.34)

together imply that the following event occurs,

E1 =

⇢���G � (ūi � ūj)
���

2

+
��Z̄

��2  s2

Z + 2dn

�
. (5.41)

Now lets define

Gn
i,j =

⇢
G 2 Gn

:

���G � (ūi � ūj) + Z̄

���
2

 s2

Z + dn

�
. (5.42)

Therefore, applying the law of total probability to (5.33), we obtain

Pe,2(i, j) = Pr

⇣
Gn

i,j \ E0

⌘
+ Pr

⇣
Gn

i,j \ E c
0

⌘

 Pr (E0) + Pr(E1)

 h0 + Pr(E1) , (5.43)
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where the last inequality holds by (5.39).

Now we focus on the second term in (5.43), i.e., Pr(E1). To this end, observe that

based on the codebook construction, each codeword is surrounded by a sphere of radius
p

en, which implies that
���ūi � ūj

��� �
p

en . (5.44)

Then, by (5.20),
���G � (ūi � ūj)

���
2

� g2

���ūi � ūj

���
2

� g2en , (5.45)

where g is the minimal value in G. Hence, according to (5.43),

Pe,2(i, j)  Pr

⇣��Z̄

��2  s2

Z + 2dn � g2en

⌘
+ h0

 Pr

⇣��Z̄

��2  s2

Z � dn

⌘
+ h0 , (5.46)

where the last line holds, since 2dn � g2en = �dn by (5.30). Therefore, by Chebyshev’s

inequality,

Pe,2(i, j)  Pr

 
n

Â
t=1

Z̄2

t � s2

Z  �dn

!
+ h0

 Ân
t=1

var(Z̄2
t )

d2
n

+ h0

 Ân
t=1

E{Z̄4
t }

d2
n

+ h0

=
3n

✓
s2

Z
n

◆2

d2
n

+ h0

=
27s4

Z
g4A2nb + h0

 l2 , (5.47)

for su�ciently large n, where l2 is arbitrarily small.

We have thus shown that for every l1, l2 > 0 and su�ciently large n, there exists a
(2n log(n)R

, n, l1, l2) code. As we take the limits of n ! •, and then b ! 0, the lower

bound on the achievable rate tends to 1

4
, by (5.39). This completes the achievability

proof for Theorem 5.0.1.

76



CHAPTER 5. DI FOR FAST FADING GAUSSIAN CHANNELS

5.0.6 | Upper Bound (Converse Proof for Theorem 5.0.1)

We show that the capacity is bounded by CDI(Gfast, L)  1. We note that in the

converse proof, we do not normalize the sequences. Suppose that R is an achievable

rate in the L-scale for the Gaussian channel with fast fading. Consider a sequence of

(L(n, R), n, l
(n)
1

, l
(n)
2

) codes (U (n)
,D(n)) such that l

(n)
1

and l
(n)
2

tend to zero as n! •.

We begin with the following lemma.

Lemma 5.0.1. Consider a sequence of codes as described above. Let b > 0 be an arbitrarily
small constant that does not depend on n. Then there exists n0(b), such that for all n > n0(b),
every pair of codewords in the codebook U (n) are distanced by at least

p
nen, i.e.,

���ui1 � ui2

��� �
p

nen , (5.48a)

where

en =
A

n2(1+b) , (5.48b)

for all i1, i2 2 [[L(n, R)]] such that i1 6= i2.

Proof. Fix l1 and l2. Let k, q, z > 0 be arbitrarily small. Assume to the contrary that there

exist two messages i1 and i2, where i1 6= i2, such that
���ui1 � ui2

��� <
p

nen = an , (5.49)

where

an =

p
A

n
1

2
(1+2b)

. (5.50)

Observe that

E

⇢���G � (ui1 � ui2)
���

2
�

=
n

Â
t=1

E
n

G2

t

o ⇣
ui1,t � ui2,t

⌘2

= E
n

G2

o���ui1 � ui2

���
2

, (5.51)

and consider the subset

Ai1,i2 = {g 2 Gn
:

���g � (ui1 � ui2)
��� > dn} , (5.52)

where

dn =

p
A

n
1

2
(1+b)

. (5.53)
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By Markov’s inequality, the probability that the fading sequence G belongs to this set is

bounded by

Pr

⇣
G 2 Ai1,i2

⌘
= Pr

✓���G � (ui1 � ui2)
���

2

> d2

n

◆

(a)


E{G2}
���ui1 � ui2

���
2

d2
n

(b)
 E{G2}a2

n
d2

n

=
E{G2}

nb

 k , (5.54)

for su�iciently large n where (a) holds since the sequence {Gt}n
t=1

is i.i.d. and (b) is due to
(5.49).

Then, observe that

1� Pe,1(i1) =
Z

Gn
fG(g)

" Z

Di
1

,g

fZ(y� g � ui1)dy

#
dg


Z

Ac
i
1

,i2

fG(g)

" Z

Di
1

,g

fZ(y� g � ui1)dy

#
dg + Pr(G 2 Ai1,i2)


Z

Ac
i
1

,i2

fG(g)

" Z

Di
1

,g

fZ(y� g � ui1)dy

#
dg + k . (5.55)

Now let us define two subsets as follows

Bi1,i2 =

(
y 2 Di1,g :

��y� g � ui,2
�� 

r
n
⇣

s2

Z + z
⌘)

, (5.56)

Ci1,i2 =

⇢
y 2 Yn

:
��y� g � ui,2

�� 
q

n(s2

Z + z)

�
. (5.57)

Hence,

1� k � Pe,1(i1)


Z

Ac
i
1

,i2

fG(g)

"Z

Di
1

,g

fZ(y� g � ui1)dy

#
dg

=
Z

Ac
i
1

,i2

fG(g)
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
Z

Ac
i
1

,i2

fG(g)

2

4
Z

Bi
1

,i2

fZ(y� g � ui1)dy +
Z

Cc
i
1

,i2

fZ(y� g � ui1)dy

3

5 dg . (5.58)

where the last inequality holds since

Cc
i1,i2 � Di1,g \ Bi1,i2 , (5.59)

with \ being the set minus operation. Consider the second integral, for which the domain is

Cc
i1,i2 . Then, by the triangle inequality
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��
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Z + z)� dn , (5.60)

for every g 2 Ac
i1,i2 (see (5.49)). For su�iciently large n, this implies the following subset

F c
i1,i2 =

(
yn 2 Yn

:
��y� g � ui,1
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r
n
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, (5.61)

for h < z
2
. That is,
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(5.62)

Thus, we deduce that for every g 2 Ac
i1,i2 ,

F c
i1,i2 � Cc

i1,i2 , (5.63)

Hence, the second integral in the right hand side of (5.58) is bounded by

Z
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 k , (5.64)
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for su�iciently large n, where the third line is due to Chebyshev’s inequality, followed by the

substitution of z ⌘ y� g � ui1 . Thus, by (5.58),

1� 2k � Pe,1(i1) 
Z

Ac
i
1

,i2

fG(g)

"Z

Bi
1

,i2

fZ(y� g � ui1)dy

#
dg . (5.65)

Now, we can focus on the inner integral with domain of Bi1,i2 , i.e., when

��y� g � ui,2
�� 

q
n(s2

Z + z) . (5.66)
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By the triangle inequality,
���y� g � ui1
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Taking the square of both sides, we have
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where the last inequality follows from the definition of Ai1,i2 and Bi1,i2 according to (5.52) and (5.56), respectively. Thus, for su�i-

ciently large n,
���y� g � ui1

���
2

�
��y� g � ui2

��2  q . (5.70)

Hence,

fZ(y� g � ui1)� fZ(y� g � ui2)  fZ(y� g � ui1)(1� e
� q

2s2
Z )

 k fZ(y� g � ui1) , (5.71)

for su�iciently small q > 0 such that 1� e
� q

2s2
Z  k. Now by (5.65) we get

l1 + l2
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Hence, by (5.71),
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which leads to a contradiction for su�iciently small k such that 3k < 1� l1 � l2. This

completes the proof of Lemma 5.0.1.

By Lemma 5.0.1, we can define an arrangement of non-overlapping spheres Sui(n,
p

nen)

of radius
p

nen centered at the codewords ui. Since the codewords all belong to a sphere

S0(n,

p
nA) of radius

p
nA centered at the origin, it follows that the number of packed

spheres, i.e., the number of codewords 2
n log(n)R, is bounded by

2
n log(n)R  Vol(S0(n,

p
nA +

p
nen))

Vol(Sui(n,
p

nen))

=

 p
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p

enp
en

!n

. (5.74)

Thus,
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log n
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n1+b

⌘

log n
, (5.75)

which tends to 1 + b as n ! •. Therefore, R  1 + b. Now, since b > 0 is arbitrarily

small, an achievable rate must satisfy R  1. This completes the proof of Theorem 5.0.1.

5.1 | Summary and Discussion

We have developed lower and upper bounds on the DI capacity of Gaussian channels

with fast fading fading, where CSI is available at the decoder, in the scale L(n, R) =

2
n log(n)R = nnR, where n is the blocklength. We have thus established that the super-

exponential scale nnR is the appropriate scale for the DI capacity of the fast fading
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Gaussian channels. That is, the DI capacity can only be positive and finite in this cod-

ing scale. This scale is sharply di↵erent from the usual scales in the transmission and

randomized-identification settings, where the codebook size scales exponentially and

double exponentially, respectively. Di↵erent non-standard scales are also observed in

other communication models, such as covert identification [142, 143], where the identi-

fication message is of size 2
2

p
nR
.

84



CHAPTER 6

“ Life is Good For Only Two Things:

To Do Mathematics and To Teach it.

”
Siméon Denis Poisson,

6.1 | Introduction

Molecular communication (MC) is a new paradigm in communication engineering where

information is transmitted via signaling molecules [1, 3]. Over the past decade, syn-

thetic MC has been extensively studied in the literature from di↵erent perspectives in-
cluding channel modeling [5], modulation and detection design [7], biological building

blocks for transceiver design [8], and information-theoretical performance character-

ization [9, 10]. Moreover, several proof-of-concept implementations of synthetic MC

systems have been reported in the literature, see, e.g., [12–14]. Moreover, the ongoing

progress in synthetic biology [8, 15] is expected to enable sophisticated MC systems in

the future, capable of performing the complex computation and communication tasks

needed for realizing the internet of bio-nano things [16].

Information-theoretical analysis of MC systems is useful not only for the characteri-

zation of their performance limits, but also for guidingMC system design and assessing

the e�ciency of practical designs against these performance limits. In this context, a

mathematical foundation for information-theoretical analysis of di↵usion-based MC is

established in [11] where a channel coding theorem is proved. The information rate

capacity of di↵usion-based MC was studied in [30] where both channel memory and

molecular noise are taken into account. For di↵usion-based MC, the capacity limits

of molecular timing channels are investigated in [29] and lower and upper bounds

on the corresponding capacity are reported. In [31], a new characterization of capac-
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ity limits and capacity achieving distributions for the particle-intensity channel are

studied. Capacity bounds for point-to-point communication are studied in [10] and a

corresponding mathematical framework is established. A comprehensive overview of

mathematical challenges and relevant mathematical tools for studying MC channels is

provided in [9]. In particular, one of the basic and widely-accepted abstract models

for MC systems with molecule counting receivers is the discrete-time Poisson channel

(DTPC) model [9, 156, 157]. The DTPC model has been used to study MC systems in

several setups. For example, bounds on the transmission capacity of the DTPC with

memory are developed in [32,33]. An upper bound on the transmission capacity of the

compound DTPC is determined in [34,35]. A lower bound on the transmission capacity

of the DTPC is reported in [36]. Analytical lower and upper bounds on the transmission

capacity of the DTPC with input constraints and memory are provided in [37].

Various applications of MC within the framework of sixth generation wireless net-

works (6G) [26,27] are associated with event-triggered systems, where Shannon’s mes-

sage transmission capacity, as considered in [9–11, 29–31], may not be the appropri-

ate performance metric. In particular, in event-detection scenarios, where the receiver

wishes to decides about the occurrence of a specific event in terms of a reliable Yes /No

answer, the so-called identification capacity is the relevant performance measure [23].

Specific examples of the identification problem in the context of MC can be found in

targeted drug delivery [4,72] and cancer treatment [73–75], where, e.g., a nano-device’s

objective may be to identify whether or not a specific cancer biomarker is present

around the target tissue; in health monitoring [70, 71] where, e.g., one may be inter-

ested in whether or not the pH value of the blood exceeds a critical threshold. Moreover,

identification problems can also be found in various natural MC systems. For instance,

in natural pheromone communications [77, 78] where, e.g., a male insect searches for

sex pheromones indicating the presence of a nearby female insect. In fact, the olfac-

tory systems of animal have the capability of detecting the presence of extremely large

numbers of di↵erent molecule mixtures (e.g., pheromones, odors, etc.) [79, 80], which

has motivated researchers to use them as inspiration for the design of synthetic MC

systems [81]. Considering the above discussion, in this chapter, we investigate the fun-

damental performance limits of identification in MC systems, that can be modelled by

the DTPC.
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6.1.1 | Related Work on Identification Capacity

In Shannon’s communication paradigm [28], a sender, Alice, encodes her message in

a manner that will allow the receiver, Bob, to reliably recover the message. In other

words, the receiver’s task is to determine which message was sent. In contrast, in the

identification setting, the coding scheme is designed to accomplish a di↵erent objec-
tive [23]. The decoder’s main task is to determine whether a particular message was

sent or not, while the transmitter does not know which message the decoder is inter-

ested in. Ahlswede and Dueck [23] introduced a randomized-encoder identification

(RI) scheme, in which the codewords are tailored according to their corresponding ran-

dom source (distributions). It is well-known that such distributions do not increase the

transmission capacity for Shannon’s message transmission task [43]. On the other hand,

Ahlswede and Dueck [23] established that given local randomness at the encoder, reli-

able identification is accomplished with a codebook size that is double-exponential in

the codeword length n, i.e.,⇠ 2
2

nR
[23], where R is the coding rate. This behavior di↵ers

radically from the conventional message transmission setting, where the codebook size

grows only exponentially, with the codeword length, i.e., ⇠ 2
nR. Therefore, RI yields

an exponential gain in the codebook size compared to the transmission problem.

The construction of RI codes is considered in [60, 61]. For example, in [61], a bi-

nary code was constructed based on a three-layer concatenated constant-weight codes.

Nevertheless, realizing RI codes can be challenging in practice since they require the

implementation of a random mapping function. Therefore, from a practical point of

view, it is of interest to consider the case where the codewords are not selected based

on a distribution but rather by means of a deterministic mapping from the message set

to the input space. In the literature, this approach is also referred to as identification

without randomization [53] or deterministic identification (DI) [98,99,105]. DI may be

preferred over RI in those complexity-constrained applications of MC systems where

the generation of random codewords in a controlled manner according to a specific

distribution is challenging.1

In the deterministic coding setup for identification, for DMCs, the codebook size

grows only exponentially in the codeword length, similar to the conventional trans-

mission problem [23, 52, 53, 98, 113]. However, the achievable identification rates are

1On the other hand, we note that the biological hardware of MC systems (e.g., using reaction networks)
features an inherent stochastic nature [158] which can potentially be exploited for realizing RI.
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significantly higher compared to the transmission rates [98, 99]. Deterministic codes

often have the advantage of simpler implementation and simulation [66, 67] and ex-

plicit construction [68]. In chapter 2, 4 and 5 [98, 99, 105], we have considered DI for

channels with an average power constraint, including DMCs and Gaussian channels

with fast and slow fading, respectively. In the Gaussian case, we have shown that the

codebook size scales as 2
(n log n)R, by deriving bounds on the DI capacity. Furthermore,

DI for Gaussian channels is also studied in [46,64,69,105].

6.1.2 | Contributions

In this chapter, we consider MC systems employing molecule counting receivers, where

the received signal has been shown to follow the Poisson distribution2when the number

of released molecules is large, see [5, Sec. IV], [33, 162] for details. Thereby, our main

objective is to investigate the fundamental performance limits of DI over the DTPC.

Specifically, this chapter makes the following contributions:

} We formulate the problem of DI over the DTPC under average and peak power

constraints to account for the limited molecule production / release rates of the

transmitter. To the best of the authors’ knowledge, the DI capacity of the DTPC

has not been studied in the literature, yet. Moreover, to model the diverse appli-

cations of coded identification in the context of MC, we introduce two approaches

to realize the channel uses within each codeword, namely spatial and temporal

channel uses. For the latter, di↵erent channel uses for each codeword are realized

by releasing the same type of molecules in di↵erent time instances, whereas, for

the former, a di↵erent type of signaling molecule is used for each channel use.

The spatial channel use can be used to model molecule-mixture communications

in mammalian and insect olfactory systems, where a given mixture of di↵erent
types of molecules represents a codeword [81,163].

} We derive lower and upper bounds on the DI capacity of the DTPC, which are

the main results of this chapter. In particular, as a key finding, we establish that

the codebook size for deterministic encoding scales as 2
(n log n)R. This result is in

contrast with the scaling of the codebook size for conventional transmission (i.e.,

2 The DTPC has been used to model other communication systems such as optical communication
systems with direct-detection receivers [159–161].
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2
nR [28]) and RI (i.e., 2

2
nR

[23]). The enlarged codebook size of the identification

problem compared to the transmission problemmay have interesting implications

for MC system design. For instance, it may help explain the extremely large iden-

tification capability of natural olfactory systems and guide the design of olfactory-

inspired synthetic MC systems [81] by e.g. determining the maximum number of

identifiable molecule mixtures.

} The general tools used in this chapter to derive the bounds on the capacity are sim-

ilar to those for Gaussian channels in [105]. However, the explicit techniques used

in the analysis are di↵erent. In particular, to obtain the proposed lower bound,

we exploit the existence of an appropriate sphere packing within the input space

where the distance between the centers of the spheres does not fall below a cer-

tain value. However, we consider the packing of hyper spheres with radius ⇠ n
1

4

inside a larger hyper cube. While the radius of the small spheres in the Gaus-

sian case [105] tends to zero, here the radius grows in the codeword length, n.
Yet, we show that we can pack a super-exponential number of spheres within the

larger cube. For the proposed upper bound, we assert a certain minimum dis-

tance between the codewords of any given sequence of codes with vanishing error

probabilities. However, for the DTPC, the derivation of the upper bound on the

capacity is more involved compared to that for the Gaussian channel [105] and

leads to a larger upper bound. In fact, instead of establishing a minimum distance

between the codewords (codeword-wise distance), as in the Gaussian case [105],

we use a criterion imposed on the symbols of every two codewords, namely, we

show that for each pair of codewords, there exists at least one index for which the

ratio of the corresponding symbols is di↵erent from 1 (symbol-wise distance).

} We note that our theoretical results target the capacity of the DI channel in the

standard asymptotic definition, i.e., as n ! •, and the explicit construction of

identification codes is beyond the scope of this chapter. However, to gain in-

sights into the performance of practical codes, we provide simulation results for

a simple heuristic code where the size of the corresponding codebook is super-

exponential in n. Surprisingly, our simulation results reveal that the error rate

of the considered sub-optimal code decays fast already at small codeword length,

e.g., n = 20� 30, which is agreement with our asymptotic theoretical results.
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6.1.3 | Organization

The remainder of this chapter is structured as follows. In Section 6.2, scenarios for

application of DI in the context of MC are discussed and the required preliminaries

regarding DI codes are established. Section 6.2.4 provides the main contributions and

results on the message identification capacity of the DTPC. Section 6.3 presents simu-

lation results for the empirical type I and type II error rates. Finally, Section 6.4 of the

paper concludes with a summary and directions for future research.

6.2 | SystemModel and MC Scenarios for DI

In this section, we present the adopted system model, introduce MC scenarios for DI,

and establish some preliminaries regarding DI coding.

6.2.1 | SystemModel

We focus on an identification setup, where the decoder wishes to reliably determine

whether or not a particular message was sent by the transmitter, while the transmit-

ter does not know which message the decoder is interested in, see Figure 6.1. To

achieve this objective, we establish coded communication between the transmitter and

the receiver over n channel uses of an MC channel. We consider a stochastic release

model, where for the t-th channel use, the transmitter releases molecules with rate

xt (molecules/second) over a time interval of Trls seconds into the channel [9]. These

molecules propagate through the channel via di↵usion and/or advection, andmay even

be degraded in the channel via enzymatic reactions [5]. We assume a counting-type

receiver which is able to count the number of received molecules. Examples include

the transparent (perfect monitoring or passive) receiver, which counts the molecules

at a given time within its sensing volume [14], the fully absorbing (perfect sink) re-

ceiver, which absorbs and counts the molecules hitting its surface within a given time

interval [164], and the reactive (ligand-based) receiver which counts the number of

molecules bound to the ligand proteins on its sensing surface at a given time [165].

Assuming that the release, propagation, and reception of individual molecules are

statistically similar but independent of each other, the received signal follows Poisson

statistics when the number of released molecules is large, i.e., xtTrls � 1 [5, Sec. IV].

Let X 2 R�0 and Y 2 N0 denote random variables (RVs) modeling the rate of molecule

release by the transmitter and the number of molecules observed at the receiver, respec-
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Information
Source

Transmi�er

Encoding Release
Mechanism

Di�usion/Advection/Reaction
Processes

Physical Channel Receiver

Reception
Mechanism

Decoding Yes/No

j

i ui Y

Figure 6.1: End-to-end transmission chain for DI communication in a generic MC system modelled as a
DTPC. Relevant processes in the molecular channel include di↵usion, advection, and chemical reactions.
Transmitter maps message i onto a codeword ui. Receiver is provided with an arbitrary message j and
given the channel output vector Y, asks whether j is identical to i or not.

tively. For the DTPC, the channel output Y is related to the channel input X according

to

Y = Pois
�
rX + l

�
, (6.1)

where rX is the mean number of observed molecules due to their release by the trans-

mitter, r = p chTrls, and p ch 2 (0, 1] denotes the probability that a given molecule

released by the transmitter is observed at the receiver. The value of p ch depends on

the propagation environment (e.g., di↵usion, advection, and reaction processes) and

the reception mechanism (e.g., transparent, absorbing, or reactive receiver) as well as

the distance between transmitter and receiver, see [5, Sec. III] for the characterization

of p ch for various setups. Moreover, l 2 R>0 is the mean number of observed interfer-

ing molecules originating from external noise sources which employ the same type of

molecule as the considered MC system.

The letter-wise conditional distribution of the DTPC output is given by

W(y|x) = e�(rx+l)(rx + l)y

y!
. (6.2)

Standard transmission schemes employ strings of letters (symbols) of length n, referred
to as codewords, that is, the encoding schemes use the channel in n consecutive times

to transmit one message. As a consequence, the receiver observes a string of length n,
referred to as output vector (received signal). We assume that di↵erent channel uses
are orthogonal. This assumption is justified for di↵erent MC scenarios in Section 6.2.2.

Therefore, for n channel uses, the transition probability law reads

Wn(y|x) =
n

’
t=1

W(yt|xt) =
n

’
t=1

e�(rxt+l)(rxt + l)yt

yt!
, (6.3)
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where x = (x1, . . . , xn) and y = (y1, . . . , yn) denote the transmit codeword and the

received signal, respectively. The codewords are subject to peak and average power

constraints as follows

0  xt  Pmax and
1

n

n

Â
t=1

xt  Pavg , (6.4)

respectively, 8t 2 [[n]], where Pmax > 0 and Pavg > 0 constrain the rate of molecule

release per channel use and over the entire n channel uses in each codeword, respec-

tively. We note that while the average power constraint for the Gaussian channel is a

non-linear (square) function of the symbols (signifying the signal energy), here for the

DTPC, it is a linear function (signifying the number of released molecules) [9].

6.2.2 | Spatial vs. Temporal Channel Uses

The coded communication considered in this chapter requires n independent uses of

the MC channel; however, how the MC channel is accessed for each channel use may

depend on the application of interest. In the following, we introduce two application

scenarios, which employ spatial and temporal channel uses, respectively.

2 Spatial Channel Use: In olfactory-based communications, signalling chemicals

are, e.g., odorants and pheromones. Odorants belong to large chemical substance

classes with a high diversity of chemical features that share a certain degree of

volatility and both polar and nonpolar properties. They can be as diverse as being

esters, alcohols, thiols, terpenoids, and aromatic substances to name a few [80].

Pheromones are chemical molecule substances that are used for communication

among the individuals of a species and can regulate their behavior [77]. Odor-

ants and pheromones are often not composed of only one type of molecule but

a mixture of various molecule types [163]. Therefore, the olfactory-based com-

munication using odorants and pheromones is referred to as “molecule mixture"

communication [81]. The Ahlswede-Dueck identification problem applies to nat-

ural olfaction since each molecular mixture conveys a particular message that

the receiver may be interested in. The molecule mixtures can be interpreted as

codewords since the structural composition of these mixtures enables their reli-

able identification by the olfactory systems even at very low concentrations [80].

Motivated by this, we consider a communication scenario, where the transmitter
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releases a mixture of n di↵erent types of molecules to convey a message to the re-

ceiver, see Figure 6.2. The receiver is equipped with a dedicated type of receptor

for each type of molecule, which ensures the orthogonality of the n channel uses.

The receiver’s task is to determine whether or not a desired message (molecular

mixture) has been sent by the transmitter.

2 Temporal Channel Use: For spatial channel uses, the complexity of transmitter

and receiver may be high as they have to be able to generate and detect n di↵er-
ent types of molecules, respectively. To avoid this complexity, one may employ

only one type of molecule and access the MC channel at di↵erent time instances.

Thereby, transmitter and receiver have to be equipped with memory for genera-

tion and processing of all n channel uses, respectively. In addition, due to the dis-

persive nature of the di↵usive MC channel, the channel has memory and proper

measures have to be taken to ensure the orthogonality of di↵erent channel uses.
An immediate approach is to make the symbol duration su�ciently large such

that the channel response (practically) decays to zero within each symbol interval.

However, this may lead to an ine�cient design due to the reduction of the rate of

channel access. More e�cient approaches proposed in the literature include the

use of enzymes [166] and reactive cleaning molecules [157] to generate a concen-

trated channel response for the desired signaling molecules, see, e.g., [5, Fig. 15].

93



C
H
A
PTER

6.
D
IFO

R
PO

ISSO
N
C
H
A
N
N
ELS

6.2.
SYSTEM

M
O
D
EL

A
N
D
M
C
SC

EN
A
RIO

S
FO

R
D
I

TX RX

Figure 6.2: Illustration of an olfactory-inspired MC system, where three orthogonal molecule types, namely type square, triangle, and circle, are
shown. The transmitter secretes a mixture of these molecules corresponding to a particular message. Each receptor located on the receiver surface is
sensitive to only one type of molecule. The receiver’s task is to determine whether or not a desired message (molecular mixture) has been sent by the
transmitter.
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Remark 6.2.1. We note that in the case of the spatial channel use, each type of molecules
may be observed at the receiver over a period of time. Hence, the receiver might use multiple
temporal observation samples for each type of molecules, which can be combined to improve
the overall quality of the received signal. However, the temporal samples still correspond to
one spatial channel use and does not contain new information.

6.2.3 | DI Coding for the DTPC

The definition of a DI code for the DTPC is given below.

Definition 6.2.1 (Poisson DI Code). An
�

L(n, R), n, l1, l2

�
DI code for a DTPC W under

average and peak power constraints of Pave and Pmax, respectively, and for integer L(n, R),
where n and R are the codeword length and coding rate, respectively, is defined as a system
(U , D) which consists of a codebook U = {ui}i2[[L]] ⇢ Rn, such that

0  ui,t  Pmax and
1

n

n

Â
t=1

ui,t  Pavg , (6.5)

8i 2 [[L]], 8t 2 [[n]], and a collection of decoding regions D = {Di}i2[[L]] with

L(n,R)[

i=1

Di ⇢ Nn
0

.

Given a message i 2 [[L]], the encoder transmits ui, see Figure 6.1, the decoder’s aim is to
answer the following question: Was a desired message j sent or not? There are two types of
errors that may occur: Rejection of the true message or acceptance of a false message. These
errors are referred to as type I and type II errors, respectively.
The corresponding error probabilities of the identification code (U , D) are given by

Pe,1(i) = 1� Â
y2Di

Wn
✓

y

���ui

◆
(miss-identification error) , (6.6)

Pe,2(i, j) = Â
y2Dj

Wn
✓

y

���ui

◆
(false identification error) . (6.7)

and satisfy the following bounds

Pe,1(i)  l1 and Pe,2(i, j)  l2 , (6.8)

8 i, j 2
i 6=j

[[L]] and every l1, l2 > 0. A rate R > 0 is called achievable if for every l1, l2 > 0

and su�ciently large n, there exists an (L(n, R), n, l1, l2) DI code. The operational DI

95



CHAPTER 6. DI FOR POISSON CHANNELS 6.2. SYSTEM MODEL AND MC SCENARIOS FOR DI

capacity of the DTPC is defined as the supremum of all achievable rates, and is denoted by
CDI(W , L).

In this section, we first present our main results, i.e., lower and upper bounds on

the achievable identification rates for the DTPC. Subsequently, we provide the detailed

proofs of these bounds.

6.2.4 | Main Results

The DI capacity theorem for the DTPC is stated below.

Theorem 6.2.1. The DI capacity of the DTPC W subject to average and peak power con-
straints of the form n�1 Ân

t=1
ui,t  Pave and 0  ui,t  Pmax, respectively, in the super-

exponential scale, i.e., L(n, R) = 2
(n log n)R, is bounded by

1

4
 CDI(W , L)  3

2
. (6.9)

Proof. The proof of Theorem 6.2.1 consists of two parts, namely the achievability and

the converse proofs, which are provided in Sections 6.2.5 and 6.2.6, respectively.

Before we provide the proof, we highlight some insights obtained fromTheorem 6.2.1

and its proof.

Scale: Theorem 6.2.1 shows a di↵erent behavior compared to the traditional scaling

of the codebook size with respect to codeword length n. The bounds given in Theo-

rem 6.2.1 are valid in the super-exponential scale of L = 2
(n log n)R which is in between

the conventional exponential and double exponential codebook sizes (see Figure 6.3).

In other words, Theorem 6.2.1 reveals that for the capacity to assume informative non-

zero finite values, the coding rate should be defined in the following scale in terms of

n:

R =
log L

n log n
. (6.10)

The capacity values in the standard codebook sizes, i.e., exponential and double expo-

nential, are infinite (limn!•
log L

n = •) and zero (limn!•
log log L

n = 0), respectively [98,

see Rem. 1].
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Figure 6.3: Spectrum of codebook sizes for di↵erent transmission and identification setups. Apart from the conventional exponential and double
exponential codebook sizes for transmission [28] and RI [23], respectively, di↵erent non-standard codebook sizes are observed for other communica-
tion tasks, such as covert communication [167,168] or covert identification [142] for the binary-input DMC (BIDMC), where the codebook size scales as
2

p
nR and 2

2

p
nR
, respectively. For the Gaussian DI channel with feedback [64,69], the codebook size can be arbitrarily large.
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Budget for Molecule Release: The proposed capacity bounds in the super exponen-

tial scale are independent of the values of Pave and Pmax as long a the codeword length

n grows su�ciently large, i.e., n ! •. However, for finite n, the codebook size is in-

deed a function of Pave and Pmax. This can be readily seen from the achievability proof,

where the codebook size in its raw form (see (6.23)) before division by the dominant

term reads

L(n, R) = 2
(n log n)R+n(log

A
e
p

a )+o(n)
. (6.11)

where A = min (Pave, Pmax) and a > 0 is a parameter of the codebook construction,

cf. (6.14). In other words, the codebook size increases as A increases; however, since A
appears in a term that is exponential in n, i.e., ⇠ 2

n(log
A

e
p

a ), the influence of A becomes

negligible compared to the dominant super-exponential term, i.e., 2
(n log n)R as n! •3.

While the proof of Theorem 6.2.1 mainly concerns the asymptotic regime of n! •, we

are still able to get some insight for finite n, too. For instance, the error constraints in

(6.8) can be met by the proposed achievable scheme even for finite n if A is su�ciently

large and a = W(A2), cf. (6.33), (6.43), and (6.45). A comprehensive study of the achiev-

able DI rates for finite n constitutes an interesting research topic for future work, but is

beyond the scope of this chapter.

Adopted Decoder: For the achievability proof, we adopt a decoder that upon ob-

serving an output sequence y, declares that the message j was sent if the following

condition is met
���� ky�E(Y|uj)k2 �kyk

1

����  ndn , (6.12)

where uj = [uj,1, . . . , uj,n] is the codeword associated withmessage j and dn is a decoding

threshold. In contrast to the popular distance decoder used for the Gaussian channels

[105] that includes only the distance term ky�E(Y|uj)k , the proposed decoder in (7.25)

comprises the additional correction termkyk
1

. This choice stems from the fact that the

noise in the DTPC is signal dependent [5]. Therefore, the variance of ky� E(Y|uj)k
depend on the adopted codeword uj which implies that unlike the Gaussian channel,

here the radius of the decoding region is not constant for all the codewords. To account

for this fact, we include a correction term ofkyk
1

.

3 It is interesting to recall that the codebook size for the transmission capacities of both the DTPC [169,
see Eq. (5)] and the Gaussian channel [170,171] scale with 2

n log

p
A in terms of A.
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6.2.5 | Achievability

Consider DTPCW . We show achievability of (6.9) using a packing of hyper spheres and

a distance decoder. We pack hyper spheres with radius⇠ n
1

4 inside a larger hyper cube.

While the radius of the spheres in a similar proof for Gaussian channels vanishes, as n
increases [105], the radius here diverges to infinity. Yet, we can obtain a positive rate

while packing a super-exponential number of spheres satisfying the power and error

constraints in (6.8). A DI code for the DTPC W is constructed as follows.

6.2.5.1 | Codebook construction

Let

A = min (Pave, Pmax) . (6.13)

In the following, we restrict ourselves to codewords that meet the condition 0  xt  A,

8 t 2 [[n]]. We argue that this condition ensures both the average and the peak power

constraints in (6.4). In particular, when Pave � Pmax, then A = Pmax and the constraint

0  xt  A automatically implies that the constraint 1

n Â xt  Pave is met, hence, in

this case, the setup with average and peak power constraints simplifies to the case with

only a peak power constraint. On the other hand, when Pave < Pmax, then A = Pave

and by 0  xt  A, 8 t 2 [[n]], both power constraints are met, namely 1

n Â xt  Pave

and 0  xt  Pmax, 8 t 2 [[n]]. Hence, in the following, we restrict our considerations to

a hyper cube with edge length A.

We use a packing arrangement of non-overlapping hyper spheres of radius r0 =
p

nen in a hyper cube with edge length A, where

en =
a

n
1

2
(1�b)

, (6.14)

and a > 0 is a non-vanishing fixed constant and 0 < b < 1 is an arbitrarily small

constant4.

Let S denote a sphere packing, i.e., an arrangement of L non-overlapping spheres

Sui(n, r0), i 2 [[L]], that are packed inside the larger cube Q0(n, A) with an edge length

A, see Figure 6.4. As opposed to standard sphere packing coding techniques [138], the

spheres are not necessarily entirely contained within the cube. That is, we only require

4 We note that our achievability proof is valid for any b 2 (0, 1); however, arbitrarily small values of b
leads to the tightest lower bound and hence are of interest here.
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A/2

p
nen

A
p

n

Figure 6.4: Illustration of a saturated sphere packing inside a cube, where small spheres of radius
r0 =

p
nen cover a larger cube. Yellow colored spheres are not entirely contained within the larger

cube, and yet they contribute to the packing arrangement. As we assign a codeword to each sphere
center, the 1-norm and arithmetic mean of a codeword are bounded by A as required.

that the centers of the spheres are inside Q0(n, A) and are disjoint from each other and

have a non-empty intersection withQ0(n, A). The packing density Dn(S ) is defined as

the ratio of the saturated packing volume to the cube volume Vol
⇥
Q0(n, A)

⇤
, i.e.,

Dn(S ) ,
Vol

⇣SL
i=1

Sui(n, r0)
⌘

Vol
⇥
Q0(n, A)

⇤ . (6.15)

Sphere packing S is called saturated if no spheres can be added to the arrangement

without overlap. In particular, we use a packing argument that has a similar flavor as

that observed in the Minkowski–Hlawka theorem for saturated packing [138]. Specifi-

cally, consider a saturated packing arrangement of

L(n,R)[

i=1

Sui(n,
p

nen) (6.16)

spheres with radius r0 =
p

nen embedded within cube Q0(n, A). Then, for such an ar-

rangement, we have the following lower [118, Lem. 2.1] and upper bounds [138, Eq. 45]

on the packing density

2
�n  Dn(S )  2

�0.599n
. (6.17)

We use the above lower bound in our subsequent analysis which can be proved as fol-

lows: For the saturated packing arrangement given in (6.16), there cannot be a point in

the larger cube Q0(n, A) with a distance of more than 2r0 from all sphere centers. Oth-

erwise, a new sphere could be addedwhich contradicts the assumption that the union of

L(n, R) spheres with radius
p

nen, are saturated. Now, if we double the radius of each

sphere, the spheres with radius 2r0 cover thoroughly the entire volume of Q0(n, A),
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that is, each point inside the hyper cube Q0(n, A) belongs to at least one of the small

spheres. In general, the volume of a hyper sphere of radius r is given by [138, Eq. (16)]

Vol
�
Sx(n, r)

�
=

p
n
2

G( n
2
+ 1)

· rn
. (6.18)

Hence, if the radius of small spheres is doubled, the volume of
SL(n,R)

i=1
Sui(n,

p
nen) is

increased by 2
n. Since the spheres with radius 2r0 cover the Q0(n, A), it follows that

the original r0-radius packing has a density of at least 2
�n 5. We assign a codeword

to the center ui of each small sphere. The codewords satisfy the input constraint as

0  ui,t  A, 8t 2 [[n]], 8i 2 [[L]], which is equivalent to

kuik•  A . (6.19)

Since the volume of each sphere is equal to Vol(Su1
(n, r0)) and the centers of all spheres

lie inside the cube, the total number of spheres is bounded from below by

L =
Vol

⇣SL
i=1

Sui(n, r0

⌘

Vol(Su1
(n, r0))

=
Dn(S ) ·Vol

⇥
Q0(n, A)

⇤

Vol(Su1
(n, r0))

� 2
�n · An

Vol(Su1
(n, r0))

, (6.20)

where the first inequality holds by (6.15) and the second inequality holds by (6.17).

The above bound can be further simplified as follows

log L � log

 
Pn
ave

Vol
�
Su1

(n, r0)
�
!
� n

(a)
� n log

 
Pavep

pr0

!
+ log

 
G

✓
n
2
+ 1

◆!
� n

(b)
� n log Pave � n log r0 +

�
n
2

⌫
log

 �
n
2

⌫!
�
�

n
2

⌫
log e + o

 �
n
2

⌫!
� n , (6.21)

where (a) exploits (6.18) and (b) follows since

G

✓
n
2
+ 1

◆
(a)
=

n
2

G

✓
n
2

◆
(b)
�

�
n
2

⌫
G

 �
n
2

⌫! (c)

,
�

n
2

⌫
! , (6.22)

5 We note that the proposed proof of the lower bound in (6.17) is non-constructive in the sense that,
while the existence of the respective saturated packing is proved, no systematic construction method is
provided.
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where (a) holds by the recurrence relation of the Gamma function for a positive real

argument (n
2
2 R) [172] and (b) follows from

j
n
2

k
 n

2
for positive integer n and

the monotonicity of the Gamma function for n � 4 ⌘
j

n
2

k
2 [z1, •) where z1 ⇡

1.46 is the first root of the Digamma function [172]; and (b) follows from the Stirling’s

approximation, that is, log n! = n log n� n log e + o(n) with e being the Euler number,

for integer n (n  
j

n
2

k
2 Z), [173, P. 52]; see Appendix B for detailed elaborations.

Now, for r0 =
p

nen =
p

an
1+b

4 , we obtain

log L
(a)
� n log

Pavep
a
� 1

4
(1 + b) n log n +

✓
n
2
� 1

◆
log

✓
n
2
� 1

◆
�
�

n
2

⌫
log e + o

✓
n
2

◆
� n

(b)
� n log

Pavep
a
� 1

4
(1 + b) n log n +

1

2
n log n� 2n� log n� n

2
log e + o

✓
n
2

◆

=

✓
1� b

4

◆
n log n + n

 
log

Pavep
ae

!
� 2n + o

✓
n
2

◆

=

✓
1� b

4

◆
n log n + n

 
log

Pavep
ae

!
+O(n) , (6.23)

where (a) follows by
j

n
2

k
> n

2
� 1 for integer n and (b) holds since log(t� 1) � log t� 1

for t � 2 and
j

n
2

k
 n

2
for integer n, and (c) follows since base of the logarithm is 2.

Observe that the dominant term in 6.23 is of order n log n. Hence, for obtaining a

finite value for the lower bound of the rate, R, (6.23) induces the scaling law of L to be

2
(n log n)R. Therefore, we obtain

R � 1

n log n

2

4
✓

1� b
4

◆
n log n + n log

 
A

e
p

a

!
+ o(n)

3

5 , (6.24)

which tends to 1

4
when n! • and b! 0.

6.2.5.2 | Encoding

Given message i 2 [[L]], transmit x = ui.

6.2.5.3 | Decoding

Let

dn = cr2en = cr2an
1

2
(b�1)

, (6.25)
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where 0 < b < 1 is an arbitrarily small constant and 0 < c < 2 is a constant. To identify

whether message j 2 M was sent, the decoder checks whether the channel output y

belongs to the following decoding set:

Dj =
n

y 2 Yn
: |D(y; uj)|  dn

o
, (6.26)

where

D(y; uj) =
1

n

n

Â
t=1

(yt � (ruj,t + l))2 � yt , (6.27)

is referred to as the decoding metric evaluated for observation vector y and codeword

uj.

6.2.5.4 | Error Analysis

Consider the type I errors, i.e., the transmitter sends ui, yet Y /2 Di. For every i 2 [[L]],
the type I error probability is bounded by

Pe,1(i) = Pr(|D(Y; ui)| > dn |ui) , (6.28)

where the condition means that x = ui was sent. In order to bound Pe,1(i), we apply

Chebyshev’s inequality, namely

Pr

✓��D(Y; ui)�E
�

D(Y; ui) |ui
 �� > dn

���ui

◆


var
�

D(Y; ui) |ui
 

d2
n

. (6.29)

First, we derive the expectation of the decoding metric as follows

E
�

D(Y; ui) |ui
 
=

1

n

n

Â
t=1

h
var

�
Yt | ui,t

 
� E

⇥
Yt | ui,t

⇤i
= 0 . (6.30)

Now, since the channel is memoryless, we can compute the variance as follows

var
�

D(Y; ui) |ui
 
=

1

n2

n

Â
t=1

var

(⇣
Yt �

�
rui,t + l

�⌘2
���� ui,t

)
� var

(
Yt

���� ui,t

)

(a)
=

1

n2

n

Â
t=1

var

(⇣
Yt �

�
rui,t + l

�⌘2
���� ui,t

)
� 1

n2

n

Â
t=1

rui,t + l

(b)
 1

n2

n

Â
t=1

var

(⇣
Yt �

�
rui,t + l

�⌘2
���� ui,t

)
� l

n
, (6.31)

where (a) holds since var{Yt | ui,t} = rui,t + l and (b) follows since ui,t � 0 , 8t 2 [[n]],
8i 2 [[L]]. Next, to establish an upper bound on the first sum in (6.31), we present a

useful lemma.
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Lemma 6.2.1. Let Z ⇠ Pois(lZ) be a Poisson RV with mean lZ. The following inequality holds

E{(Z� lZ)
4}  7

⇣
l4

Z + l3

Z + l2

Z + lZ

⌘
.

Proof. The proof is provided in Appendix C.

Using the above lemma, we bound the variance of the decoding metric as follows

E{|D(Y; ui)|2 |ui}
(a)
= var{D(Y; ui) |ui}
(b)
 E{|D(Y; ui)|4 |ui}�

l

n
(c)
=

1

n
E

"⇣
Yt�

�
rui,t +l

�⌘4
����ui,t

#
� l

n

 7

n

⇣�
rA+l

�4
+
�
rA+l

�3
+
�
rA +l

�2
+
�
rA + l

�⌘
� l

n
. (6.32)

where (a) follows since E{D(Y; ui)} = 0, (b) follows since var{Z}  E{Z2}, and
(c) holds by letting Z = (Yt � (rui,t + l))2 and exploiting an upper bound on the

fourth non-central moment of a Poisson random variable (see Appendix C). Therefore,

exploiting (6.29), (6.30) and (6.32), we can bound the type I error probability in (6.28)

as follows

Pe,1(i) = Pr

⇣��D(Y; ui)
�� > dn|ui

⌘


7

⇣�
rA + l

�4
+
�
rA + l

�3
+
�
rA + l

�2
+ l

⌘

nd2
n

=
7

⇣�
rA + l

�4
+
�
rA + l

�3
+
�
rA + l

�2
+ l

⌘

c2r4a2nb

 l1 , (6.33)

for su�ciently large n and arbitrarily small l1 > 0.

Next, we address type II errors, i.e., when Y 2 Dj while the transmitter sent ui.

Then, for every i, j 2 [[L]], where i 6= j, the type II error probability is given by

Pe,2(i, j) = Pr

✓���D(Y; uj)
���  dn |ui

◆
. (6.34)

where

D(Y; uj) =
1

n

n

Â
t=1

✓
Yt �

�
rui,t + l

�
+ r

⇣
ui,t � uj,t

⌘◆2

| {z }
, b

� 1

n

n

Â
t=1

Yt

| {z }
, a

. (6.35)
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Observe that term b can be expressed as follows

b =
1

n

��Y�
�
rui + l1n

���2
+
���r

⇣
ui � uj

⌘���
2
�

| {z }
, b1

+
2r

n

n

Â
t=1

⇣
ui,t � uj,t

⌘⇣
Yt �

�
rui,t + l

�⌘

| {z }
, b2

.

(6.36)

Then, define the following events

Hj
i =

(
��b� a

��  dn

����ui

)
, E0 =

(
��b2

�� > dn

����ui

)
, E1 =

(
b1 � a  2dn

����ui

)
.

(6.37)

Exploiting the reverse triangle inequality, i.e., |b|� |a|  |b� a|, we obtain the follow-

ing upper bound on the type II error probability

Pe,2(i, j) = Pr

⇣
Hj

i

⌘

= Pr

 
|b� a|  dn

����ui

!

 Pr

 
|b|� |a|  dn

����ui

!

(a)
= Pr

 
b� a  dn

����ui

!
, (6.38)

where (a) follows since a � 0 and b � 0. Now, applying the law of total probability to

event B =
n

b� a  dn|ui

o
over E0 and its complement E c

0
, we obtain

Pe,2(i, j)  Pr (B \ E0) + Pr
�
B \ E c

0

�

(a)
 Pr (E0) + Pr

�
B \ E c

0

�

(b)
 Pr (E0) + Pr (E1) , (6.39)

where inequality (a) follows from B\E0 ⇢ E0 and inequality (b) follows from Pr
�
B \ E c

0

�


Pr (E1), which is proved in the following. Observe,

Pr
�
B \ E c

0

�
= Pr

✓n
b� a  dn

o
\
n
|b2|  dn

o���ui

◆

= Pr

✓n
b1 � a  dn � b2

o
\
n
|b2|  dn

o���ui

◆

105



CHAPTER 6. DI FOR POISSON CHANNELS 6.2. SYSTEM MODEL AND MC SCENARIOS FOR DI

(a)
 Pr

✓n
b1 � a  2dn

o���ui

◆

= Pr (E1) , (6.40)

where inequality (a) holds since dn � b2  2dn conditioned on |b2|  dn.

We now proceed with bounding Pr (E0). By Chebyshev’s inequality, the probability

of this event can be bounded as follows

Pr(E0) 
var

⇢
Ân

t=1

⇣
ui,t � uj,t

⌘ ⇣
Yt �

�
rui,t + l

� ⌘ ���ui

�

n2d2
n/(4r2)

=
4r2 Ân

t=1
(ui,t � uj,t)

2 · var{Yt | ui,t}
n2d2

n

=
4r2 Ân

t=1
(ui,t � uj,t)

2 · (rui,t + l)

n2d2
n


4r2(rA + l)Ân

t=1
(ui,t � uj,t)

2

n2d2
n

=
4r2(rA + l)

���ui � uj

���
2

n2d2
n

. (6.41)

Observe that
���ui � uj

���
2 (a)


✓
kuik+

���uj

���
◆2

(b)


✓p
nkuik• +

p
n
���uj

���
•

◆2

(c)


⇣p
nA +

p
nA

⌘2

= 4nA2
, (6.42)

where (a) holds by the triangle inequality, (b) follows sincek·k 
p

nk·k•, and (c) is
valid by (6.19). Hence, we obtain

Pr(E0) 
16nr2(rA + l)A2

n2d2
n

=
16r2(rA + l)A2

nd2
n

=
16(rA + l)A2

c2r2a2nb

=
16(rA + l)

rnb
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 z0 , (6.43)

for su�ciently large n, where z0 > 0 is an arbitrarily small constant.

We now proceed with bounding Pr (E1) as follows. Based on the codebook construc-

tion, each codeword is surrounded by a sphere of radius
p

nen, that is

���ui � uj

���
2

� 4nen . (6.44)

Thus, we can establish the following upper bound for event E1:

Pr(E1) = Pr

0

@ 1

n

"
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��2
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⌘ ���
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�Yt

�

�
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�2
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
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�4
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�
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�
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+ l

⌘

n
�
2(c� 2)r2en

�2
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7
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rA + l

�4
+
�
rA + l

�3
+
�
rA + l

�2
+ l

⌘

4(c� 2)2r4a2nb

 z1 , (6.45)

for su�ciently large n, where z1 > 0 is an arbitrarily small constant. Here, (a) fol-

lows from (6.44) and (6.25), (b) holds by Chebyshev’s inequality as given in (6.29), and

(c) follows by Lemma 6.2.1. Therefore, Pe,2(i, j)  Pr(E0) + Pr(E1)  z0 + z1  l2.

We have thus shown that for every l1, l2 > 0 and su�ciently large n, there exists an

(L(n, R), n, l1, l2) code.

6.2.6 | Converse Proof

We show that the capacity is bounded by CDI(W , L)  3

2
. The derivation of this upper

bound for the achievable rate of the DTPC is more involved than the derivation in the
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Gaussian case [105]. In chapter 4 and 5 on the Gaussian channels with fading [105],

the converse proof was based on establishing a minimum distance between each pair of

codewords. Here, on the other hand, we use the stronger requirement that the ratio of

the letters of every two di↵erent codewords is di↵erent from 1 for at least one index.

We begin with the following lemma on the ratio of the letters of every pair of code-

words.

Lemma 6.2.2. Suppose that R is an achievable rate for the DTPC. Consider a sequence of
(L(n, R), n, l

(n)
1

, l
(n)
2

) codes (U (n)
,D(n)) such that l

(n)
1

and l
(n)
2

tend to zero as n ! •.
Then, given a su�ciently large n, the codebook U (n) satisfies the following property. For
every pair of codewords, ui1 and ui2 , there exists at least one letter t 2 [[n]] such that

�����1�
rui2,t + l

rui1,t + l

����� > e0n , (6.46)

for all i1, i2 2 [[L]], such that i1 6= i2, with

e0n =
Pmax

n1+b , (6.47)

where b > 0 is an arbitrarily small constant.

Proof. In the following, we provide the proof of Lemma 6.2.2. The method of proof is

by contradiction, namely, we assume that the condition given in (6.46) is violated and

then we show that this leads to a contradiction (sum of the type I and type II error

probabilities converge to one).

Fix l1, l2 > 0. Let k, d > 0 be arbitrarily small constants. Assume to the contrary

that there exist two messages i1 and i2, where i1 6= i2, meeting the error constraints in

(6.8), such that for all t 2 [[n]], we have
�����1�

vi2,t
vi1,t

�����  e0n , (6.48)

where vik,t = ruik,t + l, k = 1, 2. In order to show contradiction, we will bound the

sum of the two error probabilities, Pe,1(i1) + Pe,2(i2, i1), from below. To this end, define

Bi1 =

(
y 2 Di1 :

1

n

n

Â
t=1

yt  rPmax + l + d

)
. (6.49)

Then, observe that

Pe,1(i1) + Pe,2(i2, i1) = 1� Â
y2Di

1

Wn
✓

y

���ui1

◆
+ Â

y2Di
1

Wn
✓

y

���ui2

◆
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� 1� Â
y2Di

1

Wn
✓

y

���ui1

◆
+ Â

y2Di
1
\Bi

1

Wn
✓

y

���ui2

◆
. (6.50)

Now, consider the sum over Di1 in (6.50),

Â
y2Di

1

Wn
✓

y

���ui1

◆
= Â

y2Di
1
\Bi

1

Wn
✓

y

���ui1

◆
+ Â

y2Di
1
\Bc

i
1

Wn
✓

y

���ui1

◆

 Â
y2Di

1
\Bi

1

Wn
✓

y

���ui1

◆
+ Pr

0

@ 1

n

n

Â
t=1

Yt > rPmax + l + d

�����ui1

1

A .

(6.51)

Next, we bound the probability on the right hand side of (6.51) as follows

Pr

 
1

n

n

Â
t=1

Yt �
1

n

n

Â
t=1

E{Yt} > rPmax + d� 1

n

n

Â
t=1

E{Yt}
!

(a)


var
⇢

1

n Ân
t=1

Yt

���ui1

�

⇣
rPmax + d� 1

n Ân
t=1

E{Yt}
⌘2

(b)
=

1

n2 Ân
t=1

(rui1,t + l)
⇣

rPmax + d� 1

n Ân
t=1

rui1,t + l
⌘2

(c)
 rPmax + l

nd2

 k , (6.52)

for su�ciently large n, where inequality (a) follows from Chebyshev’s inequality, for

equality (b), we exploited var{Yt|ui1,t} = E{Yt|ui1,t} = rui1,t + l, and for inequality

(c), we used the fact that ui1,t  Pmax , 8 t 2 [[n]].
Returning to the sum of error probabilities in (6.50), exploiting the bound (6.52)

leads to

Pe,1(i1) + Pe,2(i2, i1) � 1� Â
y2Di

1
\Bi

1

"
Wn

✓
y

���ui1

◆
�Wn

✓
y

���ui2

◆#
� k . (6.53)

Now, let us focus on the summand in the square brackets in (6.53). By (6.3), we have

Wn
⇣

y

���ui1

⌘
�Wn

⇣
y

���ui2

⌘
= Wn

⇣
y

���ui1

⌘
·
"

1�Wn
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y

���ui2

◆
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✓
y

���ui1

◆#
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= Wn
⇣

y

���ui1

⌘
·

2

41�
n

’
t=1

e�(vi2,t�vi
1

,t)

 
vi2,t
vi1,t

!yt
3

5

= Wn
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���ui1

⌘
·
"

1�
n

’
t=1

e�e0nvi
1

,t
⇣

1� e0n
⌘yt

#
, (6.54)

where for the last inequality, we employed vi2,t � vi1,t 
���vi2,t � vi1,t

���  e0nvi1,t and

1� vi2,t
vi

1
,t


���1�
vi2,t
vi

1
,t

���  e0n, which follow from (6.48). Now, we bound the product term

inside the bracket as follows:
n

’
t=1

e�e0nvi
1

,t
⇣

1� e0n
⌘yt

= e�e0n Ân
t=1

vi
1

,t ·
⇣

1� e0n
⌘Ân

t=1
yt

(a)
� e�ne0n(rPmax+l) ·

⇣
1� e0n

⌘n(rPmax+l+d)

= ene0nd · e�ne0n(rPmax+l+d) ·
⇣

1� e0n
⌘n(rPmax+l+d)

(b)
� ene0nd · e�ne0n(rPmax+l+d) ·

⇣
1� ne0n

⌘rPmax+l+d

� ene0nd · f (ne0n)

(c)
> f (ne0n)

(d)
� 1� 3

�
rPmax + l + d

�
ne0n

= 1�
3
�
rPmax + l + d

�
Pmax

nb

� 1� k . (6.55)

for su�ciently large n. For inequality (a), we used vi1,t  rPmax + l , 8 t 2 [[n]], and

Ân
t=1

yt  n
�
rPmax + l + d

�
, where the latter inequality follows from y 2 Bi1 , cf. (6.49).

For (b), we used Bernoulli’s inequality (1 � x)r � 1 � rx for all x > �1 and r > 0

[174, see Ch. 3]. For (c), we exploited ene0nd > 1 and the following definition: f (x) =

e�cx(1� x)c with c = l + rPmax + d. Finally, for (d), we used the Taylor expansion

f (x) = 1� 2cx +O(x2) to obtain the upper bound f (x) � 1� 3cx for su�ciently small

values of x.
Equation (6.54) can then be written as follows

Wn
⇣

y

���ui1

⌘
�Wn

⇣
y

���ui2

⌘
Wn

⇣
y

���ui1

⌘
·

1� e�e0n Ân
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1
,t·
⇣

1� e0n
⌘Ân
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�

 k · Wn
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y

���ui1

⌘
. (6.56)
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Combining, (6.53), (6.54), and (6.56) yields

Pe,1(i1) + Pe,2(i2, i1)
(a)
� 1� Â

y2Bi
1

"
Wn

✓
y

���ui1

◆
�Wn

✓
y

���ui2

◆#
� k

= 1� Â
y2Bi

1

"
k · Wn

✓
y

���ui1

◆#
� k

(b)
� 1� 2k , (6.57)

where for (a), we replaced y 2 Bi1 \Di1 by y 2 Bi1 to enlarge the domain and for (b), we

used Ây2Bi
1

Wn(y |ui1)  1. Clearly, this is a contradiction since the error probabilities

tend to zero as n! •. Thus, the assumption in (6.48) is false. This completes the proof

of Lemma 6.2.2.

6.3 | Simulation Results

We emphasize that the main result of this chapter is the characterization of fundamen-

tal performance bounds in terms of the DI capacity for the DTPC (cf. Theorem 6.2.1),

which by definition holds for asymptotically large codewords, i.e., as n ! •. Explicit

code construction for the DTPC is not the focus of this chapter and hence the purpose of

this section is not the evaluation/verification of our achievability proof in Section III6.

Nonetheless, we are interested in studying whether our key finding, i.e., the possibility

of reliable identification for super-exponentially large codebook sizes, also holds for a

heuristically-designed (structure-less) finite-length code.

6.3.1 | Heuristic Codebook Construction

The codebook construction is briefly sketched in the following. At first, codewords are

generated uniformly, that is, the value of each symbol is chosen uniformly distributed

between 0 and A. Next, in order to realize the minimum distance property of the code-

book, once a codeword is created, before adding it to the codebook, it is verifiedwhether

it has at least a minimum Euclidean distance of 2
p

nen from all previously generated

codewords or not. In the course of codeword generation, if a codeword violates the

6 In fact, our achievability proof in Section 6.2.5 shows only the existence of codes and does not provide
any explicit construction of the codebook. That is, although we prove that a saturated arrangement of
sphere exists, we do not know the coordinates of their centers explicitly for a given codeword length n.
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Table 6.1: Parameters of The Simulations - Poisson Channel

Description Notation Value

Minimum of power constraints A = min (Pave, Pmax) 1000 molecules/s

Release time Trls 1 s

Prob. molecules reaching the receiver pch 0.01

Expected number of interfering molecules l 0.2

Code rate R 0.1

Codeword length n [19 - 28]

Codebook size L = 2
(n log n)R [268 - 11273]

Codebook parameters a, b, c 10
5, 0.99, 1

3

Codebook precision en = an
1

2
(b�1) [9.853 - 9.834]

Decoding threshold dn = cr2en [3.284 - 3.278]

Codebook minimum distance 2
p

nen [27.36 - 33.18]

Number of iterations - 7⇥ 10
5

minimum distance property, it is discarded and a new codeword is generated and the

procedure is repeated until the desired codebook size is obtained. To simulate the re-

ceiver’s task, the distance decoder in (6.12) is implemented and the empirical type I and

type II error rates for finite codeword lengths are obtained via Monte Carlo simulation.

We focus on a range of small codeword lengths, i.e., 19  n  28, since the above simple

look-up table code construction and full search decoding are not scalable for large n.
Moreover, since rates R � 1

4
are achievable by the proposed scheme only as n! •, we

choose a smaller rate, i.e., R = 0.1, for codebook generation for finite n. However, we

study a codebook with super-exponential size in n, i.e., L = 2
(n log n)R, which is the key

element of Theorem 6.2.1. Without loss of generality, we assume that the transmitter

sends message i = 1 and denote the empirical type I and type II error rates (average and

maximum) by ē1(i), and ēave
2

, ēmax
2

, respectively. The values of the parameters used in

the proposed simulation setup and codebook construction are summarized in Table 6.1.
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6.3.2 | Results and Discussions

Figures 6.5 and 6.6 show respectively the empirical type I and type II error rates versus

the codeword length. The results in Figures 6.5 and 6.6 show that fast-decaying error

rates are attainable for the considered codebook which has a super exponentially large

size in codeword length n even though the code construction is sub-optimal and n is

finite. This is an interesting observation given the fact that our theoretical results only

prove that asymptotically as n ! •, reliable identification with super-exponentially

large codebook size in n is achievable. Furthermore, the simulation results in Fig-

ures 6.5 and 6.6 show the general trend of the empirical error rates as functions of

the codeword length is well captured by the analytical upper bounds. However, the

achieved error rates for the constructed code with R = 0.1, decay faster than the theo-

retical upper bounds provided in (6.33), (6.43), and (6.45) evaluated for b = 0.99. We note

that since our theoretical bounds are derived for n ! •, it is not contradictory if the

slopes of the empirical error rates are slightly higher for the simulated curves at finite

n.
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Figure 6.5: Impact of codeword length on the empirical type I error rate. Larger lengths decrease the
empirical type I error rate.
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Figure 6.6: Impact of codeword length on the empirical type II error rate. Larger lengths decrease
the empirical type II error rate.

6.4 | Summary

In this chapter, we studied the DI problem over the DTPC, which may serve as a model

for event-triggered based tasks in the context of MC for applications such as targeted

drug delivery, health condition monitoring, olfactory systems, etc. In particular, we

derived lower and upper bounds on the DI capacity of the DTPC subject to average

and peak power constraints in the codebook size of L(n, R) = 2
(n log n)R = nnR. Our

results revealed that the super-exponential scale of nnR is the appropriate scale for the

DI capacity of the DTPC, which was proved by finding a suitable sphere packing ar-

rangement embedded in a hyper cube. We emphasize that this scale is sharply di↵erent
from the ordinary scales in transmission and RI settings, where the codebook size grows

exponentially and double exponentially, respectively.
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CHAPTER 7

“ The True Art of Memory is The Art of A�ention.

”
Samuel Johnson,

7.1 | Introduction

One of the basic and widely-accepted abstract models for MC systems with molecule

counting receivers is the discrete-time Poisson channel (DTPC) model with inter-symbol
interference (ISI) model [9, 156, 157]. The DTPC model with memory has been used to

study the performance limits of MC systems. Despite the recent theoretical and tech-

nological advancements in the field of MCs, the transmission capacity of most MC sys-

tems with DTPC with memory model are still unknown [9]. However, a number of

approaches to examining the behavior of Poisson channel are being explored. For in-

stance, an analytic expression for the transmission capacity of a DTPC with memory

under an average power constraint alone, is still open [9, 175, 176]. However, several

bounds and asymptotic behaviors for the DTPC with memory in di↵erent setups have
been established. For instance, analytical lower and upper bounds on the transmission

capacity of the DTPC with input constraints and memory are provided in [37]. Bounds

on the transmission capacity of the DTPC with memory are developed in [32, 33]. The

design of optimal code for DTPC with memory under a peak and average power con-

straint is studied in [177]. In [178], the impact of memory on the performance for a

di↵usive MC channel is characterized. Performance analysis of modulation schemes

for di↵usive MC with memory is considered in [179] and impact of degree of memory

on the performance is shown. Design of the filter and detector parts in a receiver for

Poisson channel with time-varying mean when transmitted symbols are exposed to the

ISI is studied in [180]. The code design problem for di↵usive MC channel under ISI
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is considered in [181] where influence of the ISI is incorporated into the code design.

The authors in [51, 108] studied the DTPC in absence of ISI, i.e., K = 1, and estab-

lished lower and upper bounds on the DI capacity where the codebook size scales as

⇠ 2
(n log n)R.

7.1.1 | Related Work on The Transmission Capacity of ISI-Poisson Channel

In the following we present previous result for DTPC with bKc degree of ISI.
Capacity of the di↵usiveMC networks over linear time-invariant Poisson (LTI-Poisson)

channel is considered in [33] where LTI-Poisson model as generalization of classical

memoryless Poisson channel where they defined a class of memory limited networks

that generalizes both the linear ISI channel and the LTI-Poisson model. They provide

the following result for a memory-limited network: A network is called memory lim-

ited network (MLN) of order K if the input-output relation satisfies

p
�
yK+1:n | x1:n

�
=

n

’
t=K+1

p
�
yt | xt:t�K

�
. (7.1)

Given an MLN defined by (7.1) and r 2 N, a block memoryless channel is defined as

follows

p
�
yK+1:k+r | x1:K+r

�
=

K+r

’
t=K+1

p
�
yt | xt:t�K

�
. (7.2)

For an arbitrary r 2 N, capacity of a MLN is bounded by

r
K + r

Cr  C  Cr , (7.3)

where Cr = 1

r fraction of the capacity region of a block memoryless system of size r.
In [182], transmission of a bit over DTPC with memory is studied and problem of

code design is presented as follows: Consider a DTPC with memory of order K and

interference signal level l > 0. Assume that n � K + 1. Further assume that code-

words ci and cj associated to the two messages satisfy maximum power constraint of

the form Ân
t=1

ci,t  Pmax. Then the following codeword pairs is optimal in the sense of

minimizing maximum likelihood decoder error probability:

0

@c1

c2

1

A =

0

BB@

Pmax 0 . . . 0 0 0 . . . 0

0 0 . . . 0 Pmax 0 . . . 0

0 0 . . . 0 Pmax 0 . . . 0

1

CCA

| {z }
K

| {z }
n� K

. (7.4)
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In [178], impact of the amount of memory on the performance for a di↵usion-based
MC channel modelled by Poisson channel with memory is characterized and a simple

memory-limited decoder is proposed.

7.1.2 | Contributions

In this chapter, we consider MC systems employing molecule counting receivers with

a large number of released molecules at the transmitter, see [5, Sec. IV]. Further,

we assume that the received signal experiences ISI and follows the Poisson distribu-

tion. We formulate the problem of DI over the DTPC with memory under average

and peak molecule release rate constraints to account for the limited molecule produc-

tion / release rates of the transmitter. As our main objective, we investigate the fun-

damental performance limits of DI over the DTPC with ISI. In particular, this chapter

makes the following contributions:

} Generalized ISI Model: In MC systems, often the number of channel taps K can

be large, particularly for non-degrading signalling molecules in bounded envi-

ronments, which leads to a long channel impulse response (CIR). In addition, the

value of K increases not only with the dispersiveness of the channel but also with

the symbol rate. Therefore, it is of interest to investigate the asymptotic limits of

the system for large symbol rates (leading to large K) and large codeword lengths

n. To do so, we consider a generalized ISI model that captures the ISI-free chan-

nel (i.e., K = 1), ISI channels with constant K > 1, and ISI channels for which K
increases with the codeword length n (e.g., due to increasing symbol rate). To the

best of the authors’ knowledge, such a generalized ISI model has not been studied

in the literature, yet.

} Codebook Scale: We establish that the codebook size of the DTPC with ISI for

deterministic encoding scales in n similar to the memoryless DTPC [51], namely

super-exponentially in the codeword length (⇠ 2
(n log n)R), even when the number

of ISI taps scale as K = 2
k log n for any k 2 [0, 1), which we refer to as the ISI rate.

This observation suggests that memory does not change the scale of the codebook

derived for memoryless DTPC [51] and Gaussian channels [105].
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} Capacity Bounds: We derive DI capacity bounds for the DTPC with constant

K � 1 and growing ISI K = 2
k log n, respectively. We show that for constant K,

the proposed lower and upper bounds on R are independent of K, whereas for

growing ISI, they are functions of the ISI rate k. Moreover, we show that optimiz-

ing k leads to an e↵ective identification rate [bits/s] that scales linearly with n,
which is in contrast to the typical transmission rate [bits/s] that is independent of

n.

} Technical Novelty in The Capacity Proof: To obtain the proposed lower bound,

the existence of an appropriate sphere packing within the input space, for which

the distance between the centers of the spheres does not fall below a certain value,

is guaranteed. This packing incorporates the e↵ect of ISI as a function of k. In

particular, we consider the packing of hyper spheres inside a larger hyper cube,

whose radius grows in both the codeword length n and the ISI rate k, i.e., ⇠ n
1+k

4 .

For derivation of the upper bound, we assume that for given sequences of codes

with vanishing error probabilities, a certain minimum distance between the code-

words is asserted, where this distance depends on the ISI rate and decreases as K
grows.

7.1.3 | Organization

The remainder of this chapter is structured as follows. In Section 7.2, system model

is explained and the required preliminaries regarding DI codes are established. Sec-

tion 7.3 provides the main contributions and results on the message identification ca-

pacity of the DTPCwith ISI. Finally, Section 7.4 of the paper concludes with a summary

and directions for future research.

7.2 | SystemModel and Preliminaries

In this section, we present the adopted system model and establish some preliminaries

regarding DI coding.

7.2.1 | SystemModel

We consider an identification-focused communication setup, where the decoder seeks

to accomplish the following task: Determining whether or not an specific message was
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Messages

TX

Enc Release Di�usion / Advection / Reaction Processes

ISI Channel RX

Reception Dec

j

Yes /No
i ci Y

Figure 7.1: End-to-end transmission chain for DI communication in a generic MC system modelled
as a DTPC. Relevant processes in the molecular channel include di↵usion, advection, and chemical
reactions. The transmitter maps message i onto a codeword ci. The receiver is provided with an
arbitrary message j, and given the channel output vector Y, it asks whether j is identical to i or not.

sent by the transmitter1; see Figure 7.1. To attain this objective, a coded communication

between the transmitter and the receiver over n channel uses of an MC channel2 is

established. We consider the Poisson channel P which arises as a channel model in the

context of MC for molecular counting receivers [9]. Let X 2 R�0 and Y 2 N0 denote

random variables (RVs) modeling the rate of molecule release by the transmitter and

the number of molecules observed at the receiver, respectively. We consider a stochastic

release model, where for the t-th channel use, the transmitter releases molecules with

rate xt (molecules/second) over a time slot of Ts seconds into the channel [9]. These

molecules propagate through the channel via di↵usion and/or advection, andmay even

be degraded in the channel via enzymatic reactions [5]. The receive is assumed to be

equipped with a counting-type mechanism which is able to enumerate the number of

received molecules observed in a determined volume.

The channel memory is modelled by a length K sequence of probability values, i.e.,

p = [p0, p1, . . . , pK�1]. The value pk in specifies the probability that a given molecule

released by the transmitter at the beginning time slot t, is observed at the receiver

during time slot t + k and depends on the propagation environment (e.g., di↵usion,
advection, and reaction processes) and the reception mechanism (e.g., transparent, ab-

sorbing, or reactive receiver) as well as the distance between transmitter and receiver,

see [5, Sec. III] for the characterization of p for various MC setups. Let rk
def
= pkTs

where the value pk 2 (0, 1] denotes the probability that a given molecule released by

the transmitter at the beginning time slot t, is observed at the receiver during time slot

1 We assume that the transmitter does not know which message the decoder is interested in. This as-
sumption is justified by the fact that otherwise, entire communication setting is specialized to transmission
of only one indicator bit between Alice and Bob.

2 The proposed performance bounds works regardless of whether or not an specific code is used for
communication, although proper codes may be required to approach such performance limits.
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t + k.
When the number of released molecules is large but only a small fraction of them

arrives at the receiver, the relation of channel output Y and input X is characterized as

follows [5,9]:

Yt = Pois
⇣

Xr
t + l

⌘
, (7.5)

where

Xr
t

def
=

K�1

Â
k=0

rkXt�k , (7.6)

is the mean number of observed molecules; see Figure 7.2, due to the release of the

transmitter and the constant l 2 R>0 is the mean number of observed interfering

molecules originating from external noise sources which employ the same type ofmolecule

as the considered MC system. Let x
⇤
t

def
= (xt�K+1, . . . , xt) be the vector of the K most re-

cently released symbols. Then, the letter-wise transition probability law is given by

V(yt|x⇤t ) =
e�(xr

t +l)
⇣

xr
t + l

⌘yt

yt!
. (7.7)

We assume that di↵erent channel uses given any K previous input symbols are statis-

tically independent, which is a valid assumption for, e.g., fully absorbing receivers [5].

Therefore, for n channel uses, the transition probability law is given by

Vn̄(y|x) =
n̄

’
t=1

V(yt|x⇤t ) =
n̄

’
t=1

e�(xr
t +l)

⇣
xr

t + l
⌘yt

yt!
, (7.8)

where x = (x1, . . . , xn) and y = (y1, . . . , yn̄) denote the transmitted codeword and the

received signal, respectively, with n̄ = n + K� 1. We assume that xt = 0 when t > n or

t < 0. The peak and average molecule release rate constraints on the codewords are

0  xt  Pmax and
1

n

n

Â
t=1

xt  Pavg , (7.9)

respectively, 8t 2 [[n]], where Pmax > 0 and Pavg > 0 constrain the rate of molecule re-

lease per channel use and over the entire n channel uses in each codeword, respectively.

Remark 7.2.1 (Input Constraint Interpretation). We note that while the average power con-
straint for the Gaussian channel is a non-linear (square) function of the symbols (signifying
the signal energy), here for the DTPC, it is a linear function (signifying the number of re-
leased molecules) [9].
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ui,1 ui,2 ui,3 ui,4 ui,5 p0 p1

0.5 0.5

ui YDTPC with 2-ISI

y1 y2 y3 y4 y5 y6

Figure 7.2: A DTPC with 2-ISI channel with p = (0.5, 0.5). Channel takes an input sequence of
non-negative real numbers and outputs a sequence with length n + K� 1 = 5 + 2� 1 = 6 of integer
numbers where each integer is a Poisson distributed random variable whose mean is sum of previous
marked as accumulation of di↵erent colors. The constant interference l is depicted in black.

7.2.2 | DI Coding For The DTPCWith Memory

The definition of a DI code for the DTPC P is given below.

Definition 7.2.1 (ISI-Poisson DI Code). An (n, M(n, R), K(n, k), e1, e2) DI code for a DTPC
P under average and peak molecule release rate constraints of Pave and Pmax, respectively,
and for integers M(n, R) and K(n, k), respectively, where n and R are the codeword length
and coding rate, respectively, is defined as a system (C, T ), which consists of a codebook
C = {ci}i2[[M]] ⇢ Rn

+, such that

0  ci,t  Pmax and
1

n

n

Â
t=1

ci,t  Pavg , (7.10)

8i 2 [[M]], 8t 2 [[n]], and a collection of decoding regions T = { i}i2[[M]] with

M(n,R)[

i=1

i ⇢ Nn̄
0

, (7.11)

and 1  K = K(n, R) < n being the number of ISI channel taps3. Given a message i 2 [[M]],
the encoder transmits ci, and the decoder’s aim is to answer the following question: Was a

3 While in the definition of a DI code, no specific restriction on the functional form of K(n, R) is im-
posed, in our capacity results, it will be turned out that for at most a sub-linear form of ⇠ nk/4 for
0  k < 1/4 being an arbitrary constant approaching 1/4, non-trivial achievability results would be
yielded.
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desired message j sent or not? There are two types of errors that may occur: Rejection of
the true message (type I) or acceptance of a false message (type II). The corresponding error
probabilities of the DI code (C, T ) are given by

Pe,1(i) = 1� Â
y2 i

Vn̄(y | ci) and Pe,2(i, j) = Â
y2 j

Vn̄(y | ci) , (7.12)

and satisfy the following bounds Pe,1(i)  e1 and Pe,2(i, j)  e2, 8 i, j 2
i 6=j

[[M]] and every e1,

e2 > 0. A rate R > 0 is called achievable if for every e1, e2 > 0 and su�ciently large n, there
exists an (n, M(n, R), K(n, k), e1, e2) DI code. The DI capacity of the DTPC P is defined as
the supremum of all achievable rates, and is denoted by CDI(P , M, K).

7.3 | DI Capacity of DTPCWith Memory

In this section, we first present our main results, i.e., lower and upper bounds on the

achievable identification rates for the DTPC with ISI. Subsequently, we provide the

detailed proofs of these bounds.

7.3.1 | Main Results

The DI capacity theorem for DTPC with ISI P is stated below.

Theorem 7.3.1. Consider the DTPC with ISI, P , and assume that the number of ISI channel
taps grow sub-linearly with the codeword length, i.e., K(n, k) = 2

k log n where k 2 [0, 1/4).

Then, the DKI capacity of P subject to average and peak molecule release rate constraints
of the form n�1 Ân

t=1
c i,t  Pave and 0  c i,t  Pmax, respectively, with i 2 [[M]] and a

codebook of super-exponential scale, i.e., M(n, R) = 2
(n log n)R

, is bounded by

1� 4k

4
 CDI(P , M, K)  3

2
+ k . (7.13)

Proof. The proof of Theorem 7.3.1 consists of two parts, namely the achievability and

the converse proofs, which are provided in Sections 7.3.2 and 7.3.3, respectively.

Remark 7.3.1. The result in Theorem 7.3.1 comprises the following three special cases in
terms of K:

2 Unit K = 1: This cases accounts for an ISI-free setup (k = 0), which is valid when the
symbol duration is large (Ts � Tcir), and implies K = 1 and k = 0. Thereby, R̄eff scales
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logarithmically with the codeword length n. This is in contrast to the transmission
setting in which R̄eff is independent of n (e.g., the well-known Shannon formula for the
Gaussian channel). This result is known in the identification literature [23,51].

2 Constant K > 1: When Ts is constant and Ts < Tcir, we have constant K > 1 which
implies k ! 0 as n ! •. Surprisingly, our capacity result in Theorem 7.3.1 reveals
that the bounds for the DTPC with memory are in fact identical to those for the memo-
ryless DTPC given in [51].

2 Growing K: Our capacity results reveal that reliable identification is possible even
when K scales with the codeword length as ⇠ 2

k log n. Moreover, the impact of ISI
rate k is reflected in the capacity lower and upper bounds in (7.13), where the bounds
respectively decrease and increase in k. While the upper bound on Reff increases in k,
too, the lower bound in (7.16) suggests a trade-o↵ in terms of k, which is investigated in
the Corollary 7.3.1.2.

Corollary 7.3.1.1 (E�ective Identification Rate). Let us assume that the physical length of
the CIR interval is fixed and given by Tcir. Further, assume that the K ISI taps span the CIR
interval, Tcir. Then, the following relation between the symbol duration, TS, and the number
of ISI taps, K holds:

TS = Tcir/K = Tcir2
�k log n

, (7.14)

for some k 2 [0, 1/4). Now, let the e↵ective identification rate, R̄eff, be defined as follows

R̄eff
def
=

log M(n, R)
nTS

(7.15)

(in bits/s). Then, the e↵ective identification rate subject to average and peak molecule release
rate constraints is bounded by

(1� 4k) nk
log n

4Tcir
 R̄eff 

(3 + 2k) nk
log n

2Tcir
. (7.16)

Proof. The proof follows directly by substituting the capacity results in Theorem 7.3.1

into the definition of the e↵ective rate and making further mathematical simplifica-

tions.

Corollary 7.3.1.2 (Optimum ISI Rate). The lower bound given in Corollary 7.3.1.1 is maxi-
mized for the following ISI rate

lmax(n) =
1

4

✓
1� 4

ln n

◆
, (7.17)
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where n 2 N. Moreover, the maximum ISI rate, lmax, provided in (7.17) yields the following
lower bound on the e↵ective identification rate, R̄eff(n):

R̄eff(n) �
log e
eTcir

· n
1

4
(1�k)

. (7.18)

Thereby, the normalized e↵ective identification rate is lower bounded as follows

lim inf
n!•

R̄eff(n)

n
1

4
(1�k)

� log e
eTcir

. (7.19)

Proof. The proof follows from di↵erentiating the lower bound in Corollary 7.3.1.1 with

respect to k and equating it to zero.

The e↵ective identification rate R̄eff [bits/s] in (7.15) consists of two terms, namely

the identification rate per symbol log M(n,R)
n [bits/symbol] (which decreases with k for

the lower bound in (7.13)) and the symbol rate 1

Ts
[symbol/s] (which increases with k).

The above corollary reveals that in order to maximize R̄eff, it is optimal to set the trade-

o↵ for k such that the identification rate, i.e.,

log M(n, R)
n

=
(1� 4kmax) log n

4
= log e, (7.20)

becomes independent of n but the symbol rate scales polynomially with fractional ex-

ponent in n, i.e.,

1/TS = n
1

4
(1�k)

/Tcir = 2
O(log n)

. (7.21)

As a result, in contrast to the typical transmission settings where the e↵ective rate is

independent of n, here, the e↵ective identification rate R̄eff for the optimal k linearly

grows in n. This completes the proof of Corollary 7.3.1.2.

Before we provide the proof, we highlight some insights obtained fromTheorem 7.3.1

and corresponding proof.

Codebook Scale: Theorem 7.3.1 reveals a di↵erent behavior compared to the tra-

ditional scaling of the codebook size as a function of codeword length n. The bounds

given in Theorem 7.3.1 are valid in the super-exponential scale of M = 2
(n log n)R which

is in between the conventional exponential and double exponential codebook sizes (see

Figure 7.3). Therefore, Theorem 7.3.1 induces that the relevant coding rate for DI ca-

pacity should be defined as

R =
log M
n log n

. (7.22)
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to guarantee that the capacity bounds represent informative non-zero finite values. The

capacity values in the standard codebook sizes, i.e., exponential and double exponen-

tial, are infinite and zero, respectively [98, see Rem. 1].
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Figure 7.3: Double exponent of DI for DTPC with memory lies in between the conventional expo-
nential and double exponential codebook sizes for transmission [28] and RI [23]. Even though the
distance between double exponents of DI and TR decreases when in asymptotic regime of n! •, still
this distance is large enough that DI capacity with a codebook size of exponentially in the codeword
length becomes infinite. The double exponent distance between DI and RI when n ! • increases
which means that RI in the asymptotic regime is much stronger than DI in terms of having a larger
codebook size. Therefore, although the DI codebook scale lies in the middle of TR and RI, it is more
inclined to the TR’s exponential scale.

Molecule Budget: Our proposed capacity bounds with a codebook size of super-

exponentially large in the codeword length n does not reflect the key values on the

input constraints Pave and Pmax in the asymptotic regime of n! • and becomes inde-

pendent of such values as n increases. However, for finite n, the codebook size is indeed

a function of Pave and Pmax. This observation can be drawn from our analysis in the

achievability proof, where the codebook size before division by the dominant term (see

(7.45)) is

M(n, R) = 2
(n log n)R+n(log

A
e
p

a )+o(n)
, (7.23)
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where A = min (Pave, Pmax) and a > 0 is a parameter of the codebook construction. In

other words, the codebook size increases as A increases; however, since A appears in a

term that is exponential in n, i.e., ⇠ 2
n(log

A
e
p

a ), the influence of A becomes negligible

compared to the dominant super-exponential term, i.e., 2
(n log n)R as n! •4. While the

proof of Theorem 7.3.1 mainly concerns the asymptotic regime of n ! •, we are still

able to get some insight for finite n, too. For instance, the error constraints in (7.12) can

be met by the proposed achievable scheme even for finite n if A is su�ciently large and

a = W(A8) A comprehensive study of the achievable DI rates for finite n constitutes an

interesting research topic for future work, but is beyond the scope of this chapter.

Memory: Our derived capacity bounds in the super-exponential scale incorporate

the impact of memory degree K in terms of memory rate k. Such a rate is di↵erent
than the identification coding rate and characterize strength of the ISI e↵ect by a scalar

k 2 [0,
1

2
] defined as

k =
log K
log n

= log
K
n

, (7.24)

Roughly, the DI capacity of Poisson channels whose ISI is of order at strictly less than
p

n have non-zero lower bounds. k-dependent lower and upper bounds for the capacity

reveal that when ISI is stronger, bounds are weaker and when ISI is weak, bounds are

tight and optimum. See Remark7.3.1 for further discussion on di↵erent functional

forms of K.

Adopted Decoder: Before going through the details of the achievability proof, we

will present some insight into the proposed decoder. In particular, in the proposed

achievable scheme, we adopt a distance decoder that decides in favour of a candidate

codeword based on the distance between the received vector and expected value of the

received vector if such a candidate codeword was really sent by the transmitter. More

specifically, upon observing an output sequence y at the receiver, the decoder declares

that message j was sent if the following condition is met
���� ky�E(Y|cj)k2 �kyk

1

����  n̄dn, (7.25)

where dn is referred to as a decoding threshold and cj = [cj,1, . . . , cj,n] is the codeword as-

sociated with message j. Unlike the distance decoder used for Gaussian channels [105],

4 Recall that the codebook size for the transmission capacities of both the DTPC [169, see Eq. (5)] and
the Gaussian channel [170,171] scale with 2

n log

p
A in terms of A.
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which includes only the distance term ky�E(Y|cj)k, the proposed decoder provided in

(7.25) requires subtraction of an additional correction termkyk
1

. This correction term

stems from the fact that the noise in the DTPC with ISI is signal (input codeword)

dependent [5]. Therefore, the variance of ky�E(Y|cj)k depends on the adopted code-

word cj which implies that, unlike for the Gaussian channel, here the radius of the de-

coding region is not constant for all the codewords. To account for this fact, we include

the correction termkyk
1

.

7.3.2 | Achievability

The achievability proof consists of the following two steps.

2 Step 1: We propose a codebook construction and derive an analytical lower bound

on the corresponding codebook size using inequalities for the sphere packing den-

sity.

2 Step 2: We prove that this codebook leads to an achievable rate by proposing a

decoder and showing that the corresponding type I and type II error probabilities

vanish as n! •.

A DI code for the DTPC, P , is constructed as follows.

Input constraint adaptation: We restrict ourselves to codewords that meet the con-

dition 0  ci,t  Pave, 8 i 2 [[M]] , 8 t 2 [[n]], which ensures that both average and peak

constraints in (7.10) are met for Pave > Pmax and Pave  Pmax:

1. Pave > Pmax: In this case, the condition 0  ci,t  Pmax, 8 i 2 [[M]], 8 t 2 [[n]],
yields n�1 Ân

t=1
ci,t  Pave. In this case, the average constraint trivially holds and

we exclude this scenario from the analysis.

2. Pave  Pmax: Then, the condition 0  ci,t  Pave, 8 i 2 [[M]], 8 t 2 [[n]], implies

both 0  ci,t  Pmax and n�1 Ân
t=1

ci,t  Pave.

Thus, for the construction of the codebook in the next steps, we only require that 0 
ci,t  Pave, 8 i 2 [[M]] , 8 t 2 [[n]].

Convoluted codebook construction: In the following, instead of directly construct-

ing the original codebook C = {ci} ⇢ Rn
+, with i 2 [[M]], we present a construction

of a codebook called convoluted codebook and show that the original codebook can be

uniquely reconstructed for a convoluted codebook. In particular, the convoluted code-

book is denoted by Cr = {c
r
i } ⇢ Rn

+, with i 2 [[M]], where each c
r
i , (c

r
i,1, . . . , c

r
i,n) is
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referred to as a convoluted codeword whose symbols are formed as a linear combina-

tion (convolution) of the L most recent symbols of codeword ci , (ci,1, . . . , ci,n) and CIR

vector r, i.e.,

cr
i,t ,

K�1

Â
l=0

rkci,t�k. (7.26)

Observe that the convoluted symbol cr
i,t represents the expected value of the signal ob-

served at the receiver after the release of ci,t molecules by the transmitter. The proposed

convoluted codebook construction is motivated by the structure of the ISI channel and

the choice of the distance decoder given in (7.25). More specifically, the term E(Y | cj)

for j 2 [[M]] given in (7.25) is the center of the distance decoder and includes the convo-

luted codeword, i.e., c
r
j .

In order to use the convoluted codebook, we have to show that the original code-

words ci can be uniquely derived from the convoluted codewords c
r
i , i.e., there is a

one-to-one mapping between the convoluted and the original codebooks. To show this,

let us first define the set of feasible original and convoluted codewords, respectively,

as:

0 = Q0(n,Pave) ,
n

ci 2 Rn
: 0  c i,t  Pave, 8 i 2 [[M]], 8 t 2 [[n]]

o
(7.27)

r
0
,
n

c
r
i 2 Rn

: cr
i,t ,

K�1

Â
l=0

rkci,t�k, ci 2 0, 8 i 2 [[M]]
o

. (7.28)

Unfortunately, unlike the feasible set of the original codewords 0, the feasible set of

the convoluted codewords r
0
lacks the simple structure and geometry needed for the

calculation of the volume and rate analysis. To cope with this issue, we target a subset
of r

0
that enjoys a suitable structure with well-known geometry and analytic volume

formula, namely the following hyper cube:

0(n, P̄ave) = {c
r
i : 0  cr

i,t  P̄ave, 8 i 2 [[M]], 8 t 2 [[n]]}, (7.29)

where

P̄ave , min
i2[[M]];

c
r
i 2 1\ c

2

min
t2[[n]];

t�K+1t̄t

cr
i,t , (7.30)

where t̄ is a specific symbol index for which the corresponding input symbol yields a

non-zero number of released molecules from the transmitter, i.e.,
j

TRci,t̄

k
� 1. More-

over, sets 1 and 2 are given by

1 = Q0(n, P0ave) ,
n

c
r
i 2 Rn

: 0  cr
i,t  P0ave, 8 i 2 [[M]], 8 t 2 [[n]]

o
,
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2 =
n

c
r
i 2 Rn

: c i,t � 0, 8 i 2 [[M]], 8 t 2 [[n]]
o

, (7.31)

where P0ave , r0Pave.

Next, we have to show that the volume of 0(n, P̄ave) is non-zero (i.e., P̄ave is bounded

away from zero) and 0(n, P̄ave) ✓ r
0
. The former follows from the fact that P̄ave tends

to zero only if all symbols of at least one of the original codewords are arbitrary close

to zero. Such a single all-zero codeword can be excluded without a↵ecting the rate

analysis. To prove 0(n, P̄ave) ✓ r
0
, we show that the original codeword ci obtained

from c
r
i 2 0(n, P̄ave) belongs to 0, namely the extracted original symbols must meet

0  c i,t  Pave. We first show that c i,t � 0 holds via contradiction. In other words, we

assume c
r
i 2 0(n, P̄ave) but the corresponding original codeword meets ci 2 c

2
. This

already contradicts the fact that P̄ave > 0, see (7.30). To show c i,t  Pave, we use the

following chain of inequalities assuming c
r
i 2 0(n, P̄ave):

r0ci,1  P̄ave  P0ave
r0ci,2 + r1ci,1  P̄ave  P0ave

r0ci,3 + r1ci,2 + r2ci,1  P̄ave  P0ave
.
.
.

r0ci,n + r1ci,n�1 + . . . + rK�1ci,n�K+1  P̄ave  P0ave, (7.32)

where P̄ave  P0ave holds since 0(n, P̄ave) ⇢ 1, see (7.30). The above inequalities can

be rewritten as follows

ci,1  P0ave/r0 = Pave

ci,2 
P0ave � r0ci,1

r0

 P0ave/r0 = Pave

.

.

.

ci,n 
P0ave �ÂK�1

t=1
rkci,t�k

r0

 P0ave/r0 = Pave, (7.33)

where we used the fact that ci,t � 0. Hence, condition kcik•  Pave holds for the ex-

tracted original codewords. In summary, we showed that for convoluted codewords

c
r
i 2 0(n, P̄ave), there is a unique feasible original codeword ci 2 0(n, Pave). There-

fore, the rate analysis of the convoluted codebook is also valid for the original codebook.

Calculation of the codebook size/rate: We use a packing arrangement of non-

overlapping hyper spheres of radius r0 =
p

nen in a hyper cube with edge length P̄ave,
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P̄ave/2

p
nen

P̄ave
p

n

Figure 7.4: Illustration of a saturated sphere packing inside a cube, where small spheres of radius
r0 =

p
nen cover a larger cube. Dark gray colored spheres are not entirely contained within the larger

cube, and yet they contribute to the packing arrangement. As we assign a codeword to each sphere
center, the 1-norm and arithmetic mean of a codeword are bounded by P̄ave as required.

where

en =
3a

4n
1

2
(1�(b+4k))

, (7.34)

and a > 0 is a non-vanishing fixed constant, 0 < b < 1 is an arbitrarily small constant,

and 0  k < 1/4.

Let S denote a sphere packing, i.e., an arrangement of M non-overlapping spheres

S
c

r
i
(n, r0), i 2 [[M]], that are packed inside the larger cube 0(n, P̄ave) with edge length

P̄ave, see Figure 7.4. As opposed to standard sphere packing coding techniques [138],

the spheres are not necessarily entirely contained within the cube. That is, we only

require that the centers of the spheres are inside 0(n, P̄ave), the spheres are disjoint

from each other, and they have a non-empty intersection with 0(n, P̄ave). The pack-

ing density �n(S ) is defined as the ratio of the saturated packing volume to the cube

volume Vol
�

0(n, P̄ave)
�

, i.e.,

�n(S ) ,
Vol

✓
SM

i=1
S

c
r
i
(n, r0)

◆

Vol
�

0(n, P̄ave)
� . (7.35)

Sphere packing S is called saturated if no spheres can be added to the arrangement

without overlap. In particular, we use a packing argument that has a similar flavor

as that for the Minkowski–Hlawka theorem for saturated packings [138]. Specifically,

consider the saturated packing arrangement of

M(n,R)[

i=1

S
c

r
i
(n,
p

nen) (7.36)
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spheres with radius r0 =
p

nen embedded within cube 0(n, P̄ave). Then, for such an ar-

rangement, we have the following lower [118, Lem. 2.1] and upper bounds [138, Eq. 45]

on the packing density

2
�n  �n(S )  2

�0.599n
. (7.37)

In particular, in our subsequent analysis, we employ the lower bound given in (7.37),

which can be proved as follows: For the saturated packing arrangement given in (7.36),

there cannot be a point in the larger cube 0(n, P̄ave) with a distance of more than 2r0

from all sphere centers. Otherwise, a new sphere could be added which contradicts

the assumption that the union of M(n, R) spheres with radius
p

nen is saturated. Now,

if we double the radius of each sphere, the spheres with radius 2r0 cover thoroughly

the entire volume of 0(n, P̄ave), that is, each point inside the hyper cube 0(n, P̄ave)

belongs to at least one of the small spheres. In general, the volume of a hyper sphere of

radius r is given by [138, Eq. (16)]

Vol
�
Sx(n, r)

�
=

p
n
2

G( n
2
+ 1)

· rn
. (7.38)

Hence, if the radius of the small spheres is doubled, the volume of

M(n,R)[

i=1

S
c

r
i
(n,
p

nen)

is increased by 2
n
. Since the spheres with radius 2r0 cover 0(n, P̄ave), it follows that

the original r0-radius packing5 has a density of at least 2
�n

. We assign a convoluted

codeword to the center c
r
i of each small hyper sphere. The convoluted codewords satisfy

the input constraint as 0  cr
i,t  P0ave, 8t 2 [[n]], 8i 2 [[M]], which is equivalent to

���c
r
i

���
•
 P̄ave. (7.39)

Since the volume of each sphere is equal to Vol(S
c

r
1

(n, r0)) and the centers of all spheres

lie inside the cube, the total number of spheres is bounded from below by

M =
Vol

✓
SM

i=1
S

c
r
i
(n, r0)

◆

Vol(S
c

r
1

(n, r0))
=

�n(S ) ·Vol
�

0(n, P̄ave)
�

Vol(S
c

r
1

(n, r0))

5 We note that the proposed proof of the lower bound in (7.37) is non-constructive in the sense that,
while the existence of the respective saturated packing is proved, no systematic construction method is
provided.
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� 2
�n · Pn

ave
Vol(S

c
r
1

(n, r0))
, (7.40)

where the inequality holds by (7.37). The bound in (7.40) can be written as follows

log M � log

✓
P̄n
ave /Vol

⇣
S

c
r
1

(n, r0)
⌘◆
� n

� n log

⇣
P̄ave/

p
pr0

⌘
+ log

⇣
G (n/2 + 1)

⌘
� n, (7.41)

where the last inequality exploits (7.38). The above bound can be further simplified as

follows

log M � n log

⇣
P̄ave/

p
pr0

⌘
+ log

⇣
bn/2c!

⌘
� n, (7.42)

where the equality exploits the following relation:

G
⇣

n/2 + 1

⌘ (a)
=

n
2

G
⇣

n/2

⌘ (b)
� bn/2c G

⇣
bn/2c

⌘ (c)

, bn/2c!. (7.43)

In the above equation, (a) holds by the recurrence relation of the Gamma function

[172] for real n/2, (b) follows from bn/2c  n/2, the monotonicity of the Gamma

function [172] for bn/2c � 1.46 ⌘ n � 4, and (c) holds since for positive integer

bn/2c , we have G
⇣
bn/2c

⌘
= (bn/2c � 1)!, cf. [172]. Next, we proceed to simplify

the factorial term given in (7.42). To this end, we exploit Stirling’s approximation, i.e.,
log n! = n log n� n log e + o(n) [173, p. 52] with the substitution of n = bn/2c , where

bn/2c 2 Z. Thereby, we obtain

log M � n log P̄ave � n log r0 + bn/2c log

⇣
bn/2c

⌘

� bn/2c log e + o
⇣
bn/2c

⌘
� n, (7.44)

Therefore, for r0 =
p

nen =
p

a0n
1+b+4k

4 , where a0 , 3a/4, we have

log M
(a)
� n log

P̄avep
pa0
�
✓

1 + b + 4k

4

◆
n log

p
an

+(n/2� 1) log

⇣
n/2� 1

⌘
�bn/2c log e+ o

⇣
n/2�1

⌘
�n

(b)
� n log

P̄avep
pa0
�
✓

1 + b + 4k

4

◆
n log

p
an

+
1

2
n log n� 2n� log n� n

2
log e + o

⇣
n/2

⌘

=

 
1� (b + 4k)

4

!
n log n + n

✓
log P̄ave/

p
pa0e

◆
+ O(n), (7.45)
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where (a) follows from
j

n
2

k
> n

2
� 1 and (b) holds since log(t� 1) � log t� 1 for t � 2

and
j

n
2

k
 n

2
for integer n. Observe that the dominant term in (7.45) is of order n log n.

Hence, to obtain a finite value for the lower bound on the rate, R, (7.45) reveals that the

scaling law of M is 2
(n log n)R

. Therefore, we obtain

R � 1

n log n

" 
1� (b + 4k)

4

!
n log n + n

 
log

P̄avep
pa0e

!
+ O(n)

#
, (7.46)

which tends to (1� 4k)/4 when n! • and b! 0.

Encoder: Given message i 2 [[M]], transmit x = ci.

Proposed decoder: In order to analyze the error performance of the proposed code-

book, we need to adopt a decoder which is introduced next. Before we proceed, for the

sake of a concise analysis, we introduce the following conventions. Let:

2 Yt(i) ⇠ Pois(cr
i,t + l) denote the channel output at time t given that x = ci.

2 The output vector is the vector of symbols, i.e., Y(i) = (Y1(i), . . . , Yn̄(i)).

2 ȳt(i) , yt(i)� (cr
i,t + l), where yt(i) is a realization of Yt(i).

Furthermore, let

dn , 4en/3 = 4a/(3n
1

2
(1�(b+4k))), (7.47)

where 0 < b < 1 is an arbitrarily small constant and 0  k < 1/4 with k being the ISI

rate. To identify whether a message j 2 [[M]] was sent, the decoder checks whether the

channel output y belongs to the following decoding set,

j =

⇢
y 2 Nn̄

0
:

���T(y, cj)
���  dn

�
, (7.48)

where

T(y; cj) =
1

n̄

n̄

Â
t=1

⇣
yt �

⇣
cr

j,t + l
⌘⌘2

� yt, (7.49)

is referred to as the decoding metric evaluated for observation vector y and codeword cj.

Finally, let e1, e2 > 0 and z0, z 0
0
, z1, z 0

1
> 0 be arbitrarily small constants.

Error analysis:

In the following, we exploit Chebyshev’s inequality in order to establish upper bounds

for the type I and type II error probabilities.
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Type I error analysis: Consider the type I errors, i.e., the transmitter sends ci, yet

Y /2 i. For every i 2 [[M]], the type I error probability is bounded as

Pe,1(i) = Pr
�
Y(i) 2 c

i
�
= Pr

⇣ ���T(Y(i), cj)
��� > dn

⌘
, (7.50)

In order to bound Pe,1(i1) in (7.50), we apply Chebyshev’s inequality, namely

Pr

⇣��T(Y(i), ci)�E
⇥
T(Y(i), ci)

⇤�� > dn

⌘


Var
⇥
T(Y(i), ci)

⇤

d2
n

. (7.51)

First, we calculate the expectation of the decoding metric as follows

E
⇥
T(Y(i), ci)

⇤ (a)
=

1

n̄

n̄

Â
t=1

E
h⇣

Yt(i)�
⇣

cr
i,t + l

⌘⌘2i
�E

⇥
Yt(i)

⇤

(b)
=

1

n̄

n̄

Â
t=1

Var
⇥
Yt(i)

⇤
�
⇣

cr
i,t + l

⌘

(c)
=

1

n̄

n̄

Â
t=1

⇣
cr

i,t + l
⌘
�
⇣

cr
i,t + l

⌘
= 0, (7.52)

where (a) follows from the linearity of expectation, (b) holds since E[(Yt(i)�E[Yt(i)])2] =

Var[Yt(i)] and E[Yt(i)] = cr
i,t + l, and (c) follows since Var[Yt(i)] = E[Yt(i)] = cr

i,t + l.

Second, in order to compute the upper bound in (7.51), we proceed to compute the

variance of the decoding metric. Let us define

yVar ,
n̄

Â
t=1

Var
h
Y2

t (i)�Yt(i)
i
. (7.53)

Since, conditioned on ci, the channel outputs conditioned on the L most recent input

symbols are uncorrelated, we obtain

Var
⇥
T(Y(i); ci)

⇤
=

yVar

n̄2
. (7.54)

Next, we proceed to establish an upper bound yUB
Var for yVar. To this end, let us define

yVar , Var
h
Y2

t (i)�Yt(i)
i

(a)
= Var


Y2

t (i)�
⇣

2

⇣
cr

i,t + l
⌘
+ 1

⌘
Yt(i)

�

(b)
= Var

h
Y2

t (i)
i
+
⇣

2

⇣
cr

i,t + l
⌘
+ 1

⌘2

Var
⇥
Yt(i)

⇤

�
⇣

4

⇣
cr

i,t + l
⌘
+ 2

⌘
Cov

h
Y2

t (i), Yt(i)
i

, (7.55)
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where (a) holds since Ȳt(i) , Yt(i) � (cr
i,t + l) and the decomposition in (b) follows

from the following identity for constants a and b:

Var
h

aX� bY
i
= a2Var[X] + b2Var[Y]� 2abCov[X, Y]. (7.56)

Next, let us define

yCov ,
⇣

4

⇣
K̄Pavg + l

⌘
+ 2

⌘r
exp(8/l)

⇣
K̄Pavg + l

⌘
= O(K3/2), (7.57)

with K̄ , KTR. Now, we proceed to establish an upper bound on (7.55) as follows

yVar
(a)
 E

h
Y4

t (i)
i
+
⇣

2

⇣
cr

i,t + l
⌘
+ 1

⌘2⇣
cr

i,t + l
⌘

+
⇣

4

⇣
cr

i,t + l
⌘
+ 2

⌘r
E
h
Y4

t (i)
i
Var

⇥
Yt(i)

⇤

(b)

⇣

K̄Pavg + l
⌘4

exp(8/l)+
⇣

2

⇣
K̄Pavg + l

⌘
+ 1

⌘2

+yCov, (7.58)

where (a) follows from the triangle inequality, i.e., a� b  |a� b|  |a|+ |b| for real
a and b, Var[Y2

t (i)]  E[Y4
t (i)],Var[Yt(i)] = cr

i,t + l, and Cov[X, Y] 
p

Var[X] ·Var[Y]
for RVs with finite variances, (b) follows from c i,t  Pavg, 8i 2 [[M]], 8t 2 [[n]], for a

Poisson RV Yt(i) ⇠ Pois
⇣

l
⌘

, an upper bound on the non-centered moments:

E[Yk
t (i)]  Ek[Yt(i)] · exp(k2

/2 E[Yt(i)]), (7.59)

(see [183, Th. 1]), and (7.57). Thereby, exploiting (7.51)–(7.55) and (7.58), we can estab-

lish the following upper bound on the type I error probability given in (7.50):

Pe,1(i1) = Pr

⇣ ���T(Y(i), cj)
��� > dn

⌘

(a)


⇣
K̄Pavg+l

⌘4

exp(8/l)+
⇣

2

⇣
K̄Pavg+l

⌘
+1

⌘2

+yCov

⌘

nd2
n

(b)
=

9

⇣⇣
K̄Pavg+l

⌘4

exp(8/l)+
⇣

2

⇣
K̄Pavg+l

⌘
+1

⌘2

+yCov

⌘⌘

16a2nb+4k

=
O(K4)

nb+4k
=

O(1)

nb+4k

 e1, (7.60)

for su�ciently large n and arbitrarily small e1, where (a) follows from (7.51), (7.54)

and (7.58), and (b) follows from (7.47).
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Type II error analysis: Next, we address type II errors, i.e., when Y(i) 2 j while the

transmitter sent ci . Then, for every i, j 2 [[M]] , where i 6= j , the type II error probability

is given by

Pe,2(i, j) = Pr

⇣
Y(i) 2 j

⌘
 max

1jK
Pr

✓���T(Y(i); cj)
���  dn

◆
, (7.61)

where T(Y(i); cj) is a random variable modeling the decoding metric in (7.49), i.e.,

T(Y(i); cj) =
1

n̄

n̄

Â
t=1

⇣
Yt(i)�

⇣
cr

j,t + l
⌘⌘2

�Yt(i). (7.62)

Next, we establish an upper bound on the RHS of (7.61), while we assume that j can be

an arbitrary value from set [[K]]. Further, let

j̃ , arg max

1jM
Pr

✓���T(Y(i); cj)
���  dn

◆
. (7.63)

We note that if our analysis gives an upper bound on Pr(|T(Y(i); cj)|  dn) for arbitrary

j 2 [[M]], then the same upper bound is valid for Pr(|T(Y(i); c j̃)|  dn). That is, we

immediately obtain an upper bound for max
1jM

Pr(|T(Y(i); cj)|  dn) in (7.61).

Observe that (7.62) for j = j̃ can be rewritten as follows

T(Y(i); c j̃) =
1

n̄

n̄

Â
t=1

⇣
Yt(i)�

⇣
cr

i,t + l
⌘
+
⇣

cr
i,t � cr

j̃,t

⌘⌘2

| {z }
, fi, j̃,t

�Yt(i). (7.64)

Observe that fi, j̃,t in (7.64) can be expressed as

fi, j̃,t = Ȳt(i)2 + y2

i, j̃,t + 2Ȳt(i)yi, j̃,t, (7.65)

where

Ȳt(i) = Yt(i)�
⇣

cr
i,t + l

⌘
and yi, j̃,t = cr

i,t � cr
j,t. (7.66)

Then, define the following events

Ei, j̃ =

⇢����
n̄

Â
t=1

⇣
Ȳt(i) + yi, j̃,t

⌘2

�Yt(i)
����  n̄dn

�
,

E 0i, j̃ =
⇢ n̄

Â
t=1

⇣
Ȳt(i) + yi, j̃, t

⌘2

�Yt(i)  n̄dn

�
,

E 00i, j̃ =
⇢����

n̄

Â
t=1

Ȳt(i)yi, j̃,t

���� > n̄dn/2

�
,
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E 000i, j̃ =

⇢ n̄

Â
t=1

Ȳt(i)2 + y2

i, j̃,t �Yt(i)  2n̄dn

�
. (7.67)

Hence,

Pe,2(i, j)  Pr

⇣
Ei, j̃

⌘

= Pr

✓����
n̄

Â
t=1

⇣
Ȳt(i) + yi, j̃,t

⌘2

�Yt(i)
����  n̄dn

◆

(a)
 Pr

✓ n̄

Â
t=1

⇣
Ȳt(i) + yi, j̃,t

⌘2

�Yt(i)  n̄dn

◆

= Pr

⇣
E 0i, j̃

⌘
, (7.68)

where (a) holds since a � b  |a � b| for real a, b. Now, we apply the law of total

probability to event E 0i, j̃ with respect to the pair of (E 00i, j̃, E
00c
i, j̃ ), and obtain the following

upper bound on the type II error probability,

Pe,2(i, j)  K · Pr

⇣
E 0i, j̃

⌘

= K ·


Pr

⇣
E 0i, j̃ \ E 00i, j̃

⌘
+ Pr

⇣
E 0i, j̃ \ E 00ci, j̃

⌘�

(a)
 K ·


Pr

⇣
E 00i, j̃

⌘
+ Pr

⇣
E 0i, j̃ \ E 00ci, j̃

⌘�

(b)
= K ·


Pr

⇣
E 00i, j̃

⌘
+ Pr

⇣
E 000i, j̃

⌘�
, (7.69)

where (a) follows from E 0i, j̃ \ E 00i, j̃ ⇢ E 00i, j̃ and (b) holds since the event E 0i, j̃ \ E 00ci, j̃ yields

event E 000i, j̃ , with the following argument. Observe that,

Pr

✓
E 0i, j̃ \ E 00ci, j̃

◆
(a)
 Pr

✓ n̄

Â
t=1

Ȳt(i)2 + y2

i, j̃,t �Yt(i)  2n̄dn

◆

= Pr

⇣
E 000i, j̃

⌘
, (7.70)

where (a) holds since given the complementary event E 00ci, j̃ , we obtain

�n̄dn/2 
n̄

Â
t=1

Ȳt(i)yi, j̃,t  n̄dn/2,

which implies that �2 Ân̄
t=1

Ȳt(i)yi, j̃,t  n̄dn. That is, event E 0i, j̃ \ E 00ci, j̃ yields the event

n̄

Â
t=1

Ȳt(i)2 + y2

i, j̃,t �Yt(i)  2n̄dn.
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Now, we establish an upper bound on Pr(E 00i, j̃) by exploiting Chebyshev’s inequality:

Pr(E 00i, j̃) = Pr

✓����
n̄

Â
t=1

Ȳt(i)yi, j̃,t

���� > n̄dn/2

◆


Var

h
Ân̄

t=1
Ȳt(i)yi, j̃,t

i

(n̄dn)2

=
Ân̄

t=1
Var

h
Ȳt(i)yi, j̃,t

i

(n̄dn)2
, (7.71)

where the last equality holds since the variance of the sum of uncorrelated RVs is the

sum of the respective variances. Thereby,

Pr(E 00i, j̃) 
Ân̄

t=1
y2

i, j̃,tVar
⇥
Ȳt(i)

⇤

(n̄dn)2

=
Ân̄

t=1

⇣
cr

i,t � cr

j̃,t

⌘2

Var
⇥
Ȳt(i)

⇤

(n̄dn)2

(a)


Ân̄
t=1

⇣
cr

i,t + cr

j̃,t

⌘2

Var
⇥
Ȳt(i)

⇤

(n̄dn)2

(b)
=

Ân̄
t=1

⇣
cr

i,t + cr

j̃,t

⌘2

(cr
i,t + l)

(n̄dn)2

(c)

kcr

i + c
r

j̃ k
2(K̄Pave + l)

(n̄dn)2
, (7.72)

where (a) exploits the triangle inequality, i.e.,
���cr

i,t � cr

j̃,t

��� 
���cr

i,t + cr

j̃,t

���, (b) follows since

Var[Ȳt(i)] = cr
i,t + l, 8t 2 [[n̄]], and (c) follows since cr

i,t  K̄Pave + l. Now, observe that

���c
r
i + c

r

j̃

���
2 (a)


⇣���c
r
i

���+
���c

r

j̃

���
⌘2

(b)


⇣p
n
���c

r
i

���
•
+
p

n
���c

r

j̃

���
•

⌘2

(c)


⇣p
nK̄Pavg +

p
nK̄Pavg

⌘2

= 4K̄2nP2

avg, (7.73)

where (a) holds by the triangle inequality, (b) follows sincek·k 
p

nk·k• , and (c) is
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valid by the definition of c
r
i , i.e., c

r
i = ÂK�1

l=0
rkci,t�k, and (7.39). Hence,

Pr(E 00i, j̃) 
kcr

i + c
r

j̃ k
2(K̄Pave + l)

(n̄dn)2


4K̄2P2

avg(K̄Pave + l)

nd2
n

=
9K̄3P2

avg(Pavg + l)

4a2nb+k+4l

=
O(K3)

nb+k+4l

, z0. (7.74)

We now proceed with bounding Pr

⇣
E 000i, j̃

⌘
as follows. Based on the convoluted codebook

construction, each convoluted codeword is surrounded by a sphere of radius
p

nen, that

is
���c

r
i � c

r

j̃

���
2

� 4nen = 3n̄dn, (7.75)

where the last equality exploits (7.47). Thus, we can establish the following upper bound

for event E 000i, j̃ :

Pr(E 000i, j̃ ) = Pr

✓ n̄

Â
t=1

Ȳt(i)2 + y2

i, j̃,t �Yt(i)  2n̄dn

◆

= Pr

✓ n̄

Â
t=1

Ȳt(i)2 �Yt(i)  2n̄dn � y2

i, j̃,t

◆

(a)
 Pr

✓ n̄

Â
t=1

Ȳt(i)2 �Yt(i)  2n̄dn � 3n̄dn

◆

(b)


Var


Ân̄
t=1

Ȳt(i)2 �Yt(i)
�

n̄2d2
n

(c)
=

Var
⇥
T(Y(i), ci)

⇤

d2
n

(d)
=

9

⇣⇣
K̄Pavg+l

⌘4

exp(8/l)+
⇣

2

⇣
K̄Pavg+l

⌘
+1

⌘2

+yCov

⌘

16a2nb+4k

, z1, (7.76)

where (a) follows from (7.75), (b) holds from applying Chebyshev’s inequality, (c) fol-
lows from similar arguments as provided for the type I error probability, i.e., the calcu-

lations provided in (7.53) and (7.54), (d) holds by (7.58).
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To sum up, recalling (7.74), we obtain

z0 =
9K̄3P2

avg(Pavg + l)

4a2nb+4k

(a)
=

O(K3)

nb+4k

(b)
=

O(1)

nb+k
, z 0

0
, (7.77)

where (a) exploits K = nk
. On the other hand, recalling (7.76), we obtain

z1 =
9

⇣⇣⇣
K̄Pavg+l

⌘4

exp(8/l)+
⇣

2

⇣
K̄Pavg+l

⌘
+1

⌘2

+yCov

⌘⌘⌘

16a2nb+4k

(a)
=

O(K4)

nb+4k

(b)
=

O(1)

nb , z 0
1
, (7.78)

where (a) exploits K = nk
. Therefore, recalling (7.69) and (7.74), and (7.76) we obtain

Pe,2(i, j)  Pr

⇣
E 00i, j̃

⌘
+ Pr

⇣
E 000i, j̃

⌘

 z0 + z1

= z 0
0
+ z 0

1

 e2, (7.79)

hence, Pe,2(i, j)  e2 holds for su�ciently large n and arbitrarily small e2 > 0.

We have thus shown that for every e1, e2 > 0 and su�ciently large n, there exists an

(n, M(n, R), K(n, k), e1, e2)-ISI-Poisson DI code.

Remark 7.3.2. In the error analysis, we established upper bounds on the type I (cf. (7.60)) and

type II error probabilities (cf. (7.77) and (7.78)). These results reveal that the fastest scales for the

number of ISI taps K(n, k) which ensure the vanishing of the type I and type II error probabilities

as n! •, are allowed to be defined as follows: K(n, k) = 2
nk = nk

.

7.3.3 | Upper Bound (Converse Proof)

Before we start with the converse proof, for the sake of a concise presentation of the

analysis, we introduce the following notations. Let:

2 Ix

t , l + ÂK�1

l=1
rkxt�l .

2 di,t = r0c i,t + Ici
t , 8t 2 [[n]].

The converse proof consists of the following two main steps.

2 Step 1: First, we show in Lemma 7.3.1 that for any achievable DKI rate (for which

the type I and type II error probabilities vanish as n ! •), the distance between

any selected entry of one codeword and any entry of another codeword is at least

larger than a threshold.
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2 Step 2: Employing Lemma 7.3.1, we then derive an upper bound on the codebook

size of DI codes.

We start with the following lemma on the ratio of di2,t/di1,t for two distinct messages i1
and i2, with i1, i2 2 [[M]].

Lemma 7.3.1 (Shi�ed Symbol Distance). Suppose that R > 0 is an achievable DKI rate for
the DTPC with ISI, P . Consider a sequence of (n, M(n, R), K(n, k), e(n)

1
, e(n)

2
)-ISI-Poisson

codes (C(n)
, T (n)), where K(n, k) = 2

k log n with k 2 [0, 1/4) such that e(n)
1

and e(n)
2

tend to
zero as n ! •. Then, given a su�ciently large n, the codebook C(n) satisfies the following
property. For every pair of codewords, ci1 and ci2 , there exists at least one letter t 2 [[n]] such
that

����1�
di2,t
di1,t

���� > qn, (7.80)

for all i1, i2 2 [[M]], such that i1 6= i2, with

qn , Pmax

Kn1+b =
Pmax

n1+b+k
, (7.81)

where b > 0 is an arbitrarily small constant.

Proof. The method of proof is by contradiction, namely, we assume that the condition given

in (7.80) is violated and then we show that this leads to a contradiction, namely the sum of the

type I and type II error probabilities converges to one, i.e.,

lim
n!•

⇥
Pe,1(i1) + Pe,2(i1, i2)

⇤
= 1.

Let e1, e2 > 0 and h0, h1, h2, d > 0 be arbitrarily small constants. Assume to the contrary

that there exist two messages i1 and i2, where i1 6= i2, meeting the error constraints in (10.22)

and (10.23), such that 8t 2 [[n]], we have
����1�

d i2,t
d i1,t

����  qn. (7.82)

In order to show contradiction, we bound the sum of the two error probabilities, Pe,1(i1) +
Pe,2(i1, i2), from below. Then, observe that

Pe,1(i1) + Pe,2(i1, i2) =


1� Â
y2 i

1

Vn̄
⇣

y

��� ci1

⌘�
+ Â

y2 i
1

Vn̄
⇣

y

��� ci2

⌘
. (7.83)
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To bound the error, let us define

i1 =

⇢
y 2 i1 : n̄�1

n̄

Â
t=1

Yt � I
ci

1

t  r0Pmax + d

�
, (7.84)

where i1 ✓ Nn̄
0
is the decoding set adopted6 for the set of target messages .

Now, consider the sum inside the bracket in (7.83),

Â
y2 i

1

Vn̄
⇣

y

��� ci1

⌘
= Â

y2 i
1
\ i

1

Vn̄
⇣

y

��� ci1

⌘
+ Â

y2 i
1
\ c

i
1

Vn̄
⇣

y

��� ci1

⌘
, (7.85)

where the equality follows from applying the law of total probability on i1 with respect to

( i1 ,
c
i1
).

Now, we proceed to establish an upper bound on the RHS sum in (7.85) as follows

Â
y2 i

1
\ c

i
1

Vn̄
⇣

y

��� ci1

⌘
= Pr

✓
i1 \

c
i1

◆
 Pr

 
n̄�1

n̄

Â
t=1

Yt(i1)� I
ci

1

t > r0Pmax + d

!
.

(7.86)

Next, we apply Chebyshev’s inequality to the probability term in (7.86) and obtain

Â
y2 i

1
\ c

i
1

Vn̄
⇣

y

��� ci1

⌘ (a)
 Pr

 
n̄�1

n̄

Â
t=1

Yt(i1)� n̄�1

n̄

Â
t=1

E[Yt(i1)] > r0Pmax + d

!

(b)


Var
h
n̄�1 Ân̄

t=1
Yt(i1)

i

�
r0Pmax + d

�2

(c)
=

n̄�2 Ân̄
t=1

r0c i1,t + I
ci

1

t�
r0Pmax + d

�2

(d)
 TRPmax + l + (K� 1)TRPmax

nd2

 KTRPmax + l

nd2
=

O(K)
nd2

(e)
=

O(1)

n1�kd2
, h0, (7.87)

for su�iciently large n, where (a) holds since E[Yt(i1)] = I
ci

1

t , for inequality (b), we exploited
Chebyshev’s inequality, and for equality (c), we used the fact that Var[Yt(i1)] = E[Yt(i1)] =

6 We note that in the achievability proof given in Section 7.3.2 we impose a specific structure on the
decoding set i1

, namely, we defined i1
to be the union of the individual decoding set corresponding to

messages that belong to set , i.e., i1
=

S
i12 i1

. In contrast, in the converse proof, we do not impose
any structure on i1

and treat the decoding set i1
as a general choice i1

✓ Nn̄
0

.
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r0c i1,t + I
ci

1

t , 8 t 2 [[n]]. Inequality (d) employs c i1,t  Pmax, 8 i1 2 [[M]], 8 t 2 [[n]], r0 
TR, n  n̄ and (e) exploits K = nk

. Thereby, recalling (7.85) and (7.87), we obtain

Â
y2 i

1

Vn̄
⇣

y

��� ci1

⌘
 Â

y2 i
1
\ i

1

Vn̄
⇣

y

��� ci1

⌘
+ Â

y2 i
1
\ c

i
1

Vn̄
⇣

y

��� ci1

⌘

 Â
y2 i

1
\ i

1

Vn̄
⇣

y

��� ci1

⌘
+ h0. (7.88)

Next, recalling the sum of error probabilities in (7.83), where i1 2 and i2 /2 , we obtain

Pe,1(i1) + Pe,2(i1, i2) =


1� Â
y2 i

1

Vn̄
⇣

y

��� ci1

⌘�
+ Â

y2 i
1

Vn̄
⇣

y

��� ci2

⌘

(a)
� 1� h0 �Â

i
1

Vn̄
⇣

y

��� ci1

⌘
+ Â

i
1

Vn̄
⇣

y

��� ci2

⌘

� 1� h0 �Â
i
1


Vn̄

⇣
y

��� ci1

⌘
�Vn̄

⇣
y

��� ci2

⌘�
, (7.89)

where (a) holds by (7.88) and (b) follows since i1 ⇢ i1 . Now, let us focus on the summand

in the square brackets in (7.89). Employing (7.8), we have

Vn̄
⇣

y

��� ci1

⌘
�Vn̄

⇣
y

��� ci2

⌘
= Vn̄

⇣
y

��� ci1

⌘
·


1�Vn̄
⇣

y

��� ci2

⌘
/ Vn̄

⇣
y

��� ci1

⌘�

= Vn̄
⇣

y

��� ci1

⌘
·


1�
n̄

’
t=1

e�(d i2,t�di
1

,t)
✓

d i2,t
d i1,t

◆Yt�

= Vn̄
⇣

y

��� ci1

⌘
·


1�
n̄

’
t=1

e�qndi
1

,t (1� qn)
Yt

�
, (7.90)

where for the last inequality, we exploited

d i2,t � di1,t 
���d i2,t � di1,t

���  qndi1,t (7.91)

and

1�
d i2,t
di1,t

����1�

d i2,t
di1,t

����  qn, (7.92)

which holds by (7.82). Now, we bound the product term inside the bracket in (7.90) for space

y 2 i1 as follows:

n̄

’
t=1

e�qndi
1

,t (1� qn)
Yt = e�qn Ân̄

t=1
di

1
,t · (1� qn)

Ân̄
t=1

Yt
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(a)
� e

�n̄qn

✓
r0Pmax+n̄�1 Ân̄

t=1
I
ci

1
t

◆

(1� qn)
n̄
✓

r0Pmax+n̄�1 Ân̄
t=1

I
ci

1
t +d

◆

= en̄qnd · e
�n̄qn

✓
r0Pmax+n̄�1 Ân̄

t=1
I
ci

1
t +d

◆

(1� qn)
n̄
✓

r0Pmax+n̄�1 Ân̄
t=1

I
ci

1
t +d

◆

(b)
� en̄qnd · e

�n̄qn

✓
r0Pmax+n̄�1 Ân̄

t=1
I
ci

1
t +d

◆

(1� n̄qn)
r0Pmax+n̄�1 Ân̄

t=1
I
ci

1
t +d

(c)
= en̄qnd · f (n̄qn) � enqnd · f (n̄qn)

(d)
> f (n̄qn)

(e)
� 1� 3

✓
r0Pmax +

n̄

Â
t=1

I
ci

1

t + d

◆
n̄qn

( f )
� 1�

3

⇣
TRPmax + l + (K� 1)TRPmax + d

⌘
Pmax

nb+k
· n̄

n

= 1� O(K)
nb+k

·
✓

1 +
O(K)

n

◆

= 1� O(1)

nb+k
� O(K2)

n1+b+k

(g)
= 1�

 
O(1)

nb+k
+

O(1)

n1+b�k

!

(h)
= 1� h1, (7.93)

for su�iciently large n. We used the following facts for the above inequalities:

2 Inequality (a) follows since

di1,t  r0Pmax + I
ci

1

t , 8 t 2 [[n]], (7.94)

and
n̄

Â
t=1

Yt  n̄
✓

r0Pmax + n̄�1

n̄

Â
t=1

I
ci

1

t + d

◆
, (7.95)

where the la�er inequality follows from y 2 i1 , cf. (7.84).

2 For (b), we used Bernoulli’s inequality [174, Ch. 3]:

(1� x)r � 1� rx , 8 x > �1 , 8r > 0. (7.96)

2 For (c), we used the following definition:

f (x) = e�cx(1� x)c
, (7.97)

with c = r0Pmax + n̄�1 Ân̄
t=1

I
ci

1

t + d.
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2 For (d), we used the fact that

enqnd = ePmaxd/nb+k
> 1. (7.98)

2 For (e), we used the Taylor expansion

f (n̄qn) = 1� 2cn̄qn + O((n̄qn)
2) (7.99)

to obtain the upper bound f (n̄qn) � 1� 3cn̄qn for su�iciently small values of n̄qn, i.e.,

n̄qn =
Pmax

n1+b+k
· (n + K� 1) =

Pmax

nb+k
· n̄

n

=
Pmax

nb+k
·
✓

1 +
O(K)

n

◆
=

Pmax

nb+k
+

O(1)

nb+k
. (7.100)

2 Inequality ( f ) exploits (7.81).

2 Equality (g) employs K = nk
, with k 2 [0, 1/4).

2 Finally, (h) follows from
O(1)

nb+k
+

O(1)

n1+b�k
, h1.

Thereby, (7.90) can then be wri�en as follows

Vn̄
⇣

y

��� ci1

⌘
�Vn̄

⇣
y

��� ci2

⌘
 Vn̄

⇣
y

��� ci1

⌘
·


1� e�qn Ân̄
t=1

di
1

,t · (1� qn)
Ân̄

t=1
Yt

�

 h1 · Vn̄
⇣

y

��� ci1

⌘
. (7.101)

Next, observe that for every pair of distinct messages (i1, i2) we have the following upper

bounds on the type I and type II error probabilities

Pe,1(i1) = Vn̄( c
i1 | xn = ci1)  e(n)

1
,

Pe,2(i1, i2) = Vn̄( i1 | xn = ci2)  e(n)
2

. (7.102)

Hence,

e(n)
1

+ e(n)
2
� Pe,1(i1) + Pe,2(i1, i2)
(a)
� 1� h0 �Â

i
1


Vn̄

⇣
y

��� ci1

⌘
�Vn̄

⇣
y

��� ci2

⌘�

(b)
� 1� h0 � h1 Â

i
1

Vn̄
⇣

y

��� ci1

⌘
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(c)
� 1� h0 � h1

(d)
= 1� h2, (7.103)

where (a) follows from (7.89), and (b) holds by (7.101), (c) exploits Â i
1

Vn̄
⇣

y

��� ci1

⌘
= Pr( i1)

 1, (d) holds since h2 , h0 + h1.

Therefore, e(n)
1

+ e(n)
2
� 1� h0� h2 which is a contradiction. In other words, Lemma 7.3.1

states that every given sequence of ISI-Poisson DI codes (C(n)
, T (n)) with the parameters (n,

M(n, R), K(n, k) = 2
k log n

, e(n)
1

, e(n)
2

) endows the following property: For an arbitrary pair of

distinct messages (i1, i2) the upper bounds on the type I and type II error probabilities vanish,

i.e., e(n)
1

and e(n)
2

tend to zero as n ! •. However, we show that if the condition given in

(7.80) does not hold, then the sum of the corresponding upper bounds on the type I and type II

errors is lower bounded by one, i.e., e(n)
1

and e(n)
2

do not vanish. This is clearly a contradiction

and implies that the inequality given in (7.82) does not hold. This completes the proof of

Lemma 7.3.1.

Next, we use Lemma 7.3.1 to prove the upper bound on the DKI capacity. Observe

that since

di,t = r0c i,t + Ici
t > l, (7.104)

Lemma 7.3.1 implies

r0

���c i1,t � c i2,t

��� =
���di1,t � d i2,t

���
(a)
> qndi1,t

(b)
> lqn, (7.105)

where (a) follows from (7.80) and (b) holds by (7.104). Now, since
���ci1 � ci2

��� �
���c i1,t � c i2,t

��� ,

we deduce that the distance between every pair of codewords satisfies
���ci1 � ci2

��� > lqn/r0. (7.106)

Thus, we can define an arrangement of non-overlapping spheres Sci(n, lqn/2r0), i.e.,

spheres of radius r0 = lqn/2r0 that are centered at the codewords ci. Since all code-

words belong to a hyper cube 0(n, Pmax) with edge length Pmax, it follows that the

number of packed small spheres, i.e., the number of codewords M, is bounded by

M =
Vol

⇣SM
i=1

Sci(n, r0)
⌘

Vol(Sc1
(n, r0))

=
�n(S ) ·Vol

�
0(n, Pmax)

�

Vol(Sc1
(n, r0))

 2
�0.599n · Pn

max
Vol(Sc1

(n, r0))
, (7.107)
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where the last inequality follows from (7.37). Thereby,

log M  log

 
Pn
max

Vol
�
Sc1

(n, r0)
�
!
� 0.599n

= n log(Pmax)� log

⇣
Vol

�
Sc1

(n, r0)
� ⌘
� 0.599n

(a)
= n log Pmax � n log r0 � n log

p
p + log

⇣
G (n/2 + 1)

⌘
(7.108)

where (a) exploits (7.38). Next, we proceed to establish an upper bound on the last term

in (7.108). Observe that

G (n/2 + 1)
(a)
= (n/2)G (n/2)

(b)
<

⇣
bn/2c+ 1

⌘
G (bn/2c+ 1)

(c)
=

⇣
bn/2c+ 1

⌘
!, (7.109)

where (a) holds by the recurrence relation of the Gamma function [172] for real n/2,

(b) follows since n/2 < bn/2c+ 1 for real n/2, and (c) holds since for positive integer
bn/2c , we have G

⇣
bn/2c + 1

⌘
= (bn/2c)!, cf. [172]. Next, we proceed to simplify

the factorial term given in (7.109). To this end, we exploit Stirling’s approximation, i.e.,
log n! = n log n � n log e + o(n) [173, p. 52] with the substitution of n = bn/2c + 1,

where bn/2c 2 Z. Thereby, we obtain

log

⇣
G (n/2 + 1)

⌘
<
⇣
bn/2c+1

⌘
log

⇣
bn/2c+1

⌘
�
⇣
bn/2c+1

⌘
log e+o

⇣
bn/2c

⌘

(a)


⇣
n/2 + 1

⌘
log

⇣
n/2 + 1

⌘
�
⇣

n/2

⌘
log e + o

⇣
bn/2c

⌘
, (7.110)

where (a) follows from
j

n
2

k
 n

2
and

j
n
2

k
> n

2
� 1, for integer n. Therefore, merg-

ing (7.108)–(7.110), we obtain

log M  n log Pmax � n log r0 � n log
p

p

+
⇣

n/2 + 1

⌘
log

⇣
n/2 + 1

⌘
�
⇣

n/2

⌘
log e + o

⇣
bn/2c

⌘

= n log Pmax�n log(lPmax/(2r0))+(1 + b + l + k) n log n

� n log
p

p +
⇣

n/2 + 1

⌘
log

⇣
n/2 + 1

⌘

�
⇣

n/2

⌘
log e + o

⇣
bn/2c

⌘
, (7.111)

where for the equality we used

r0 =
lqn
2r0

=
lPmax

2r0n1+b+k
. (7.112)
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The dominant term in (7.108) is again of order n log n. Hence, to ensure a finite value for

the upper bound of the rate, R, (7.108) induces the scaling law of M to be 2
(n log n)R

. By

setting M(n, R) = 2
(n log n)R, we obtain

R  1

n log n

"✓
1

2
+ (1 + b + k)

◆
n log n� n

✓
1

2
+ log(l

p
pe/(2r0))

◆
+ o(n)

#
, (7.113)

which tends to 3

2
+ k as n! • and b! 0. This completes the proof of Theorem 7.3.1.

Example 7.3.1 (logarithmic-ISI DTPC). Let Plog n denotes a DTPC with K = log n degree of
memory with n being the codeword length. Find DI capacity bounds for such a channel.

Solution: We set log n = nk and find k as follows:

log log n = k log n) k =
log log n

log n
, (7.114)

Now since n! • we derive limit of k as n! •, i.e.,

lim
n!•

log log n
log n

Hop
= lim

n!•

1

log n
= 0 . (7.115)

Hence, Plog n is equivalent to PK with K = nk=0 = 1 and share identical capacity bounds,
i.e.,

1

4
 CK

DI(Plog n, M)  3

2
. (7.116)

7.4 | Summary

In this chapter, we studied the DI problem over the DTPCwith K number of ISI channel

taps. We assumed that K = K(n, k) = 2
k log n = nk where k 2 [0, 1) scales sub-linearly

with the codeword length n. In practice, the DTPC exhibits memory [9], therefore,

our results in this chapter may serve as a model for event-triggered based tasks in the

context of many practical MC applications. Especially, we obtained lower and upper

bounds on the DI capacity of the DTPCwithmemory subject to average and peak power

constraints with the codebook size of M(n, R) = 2
(n log n)R = nnR. Our results for the DI

capacity of the DTPC with memory revealed that the super-exponential scale of nnR is

the appropriate scale for codebook size. This scale coincides the scale that was observed

in chapter 4 and 5 for codebook of memoryless DTPC and Gaussian channels; see [99,

105], and stands considerably di↵erent from the traditional scales as in transmission

148



CHAPTER 7. DI FOR POISSON CHANNELS WITH MEMORY 7.4. SUMMARY

and RI setups where corresponding codebooks size grows exponentially and double

exponentially, respectively.

We show the achievability proof using a packing of hyper spheres and a distance

decoder. In particular, we pack hyper spheres with radius ⇠ n
1+4k

4 where

k := logn K 2 [0, 1/4) ,

is the ISI rate, inside a larger hyper cube. While as observed in chapter 3, the radius

of the spheres in a similar proof for Gaussian channels vanishes, as n increases [105],

the radius here similar to the case for memoryless DTPC in chapter 6 diverges to in-

finity. Yet, likewise as in chapter 6 we can obtain a positive rate while packing a

super-exponential number of spheres fulfilling the molecule release rates and error

constraints.

For the converse proof, we follow a similar approach as in chapter 6 for the memory-

less DTPC [51]. In chapter 6, we established a minimum distance between each pair

of shifted codewords when the amount of shift was the constant interference signal

l > 0. Here, we let the value of shift vary according to the related codeword where it

is lower bounded by l > 0. In general, the derivation here is more involved than the

derivation in the Gaussian case [105]. In chapters 4 and 5 on the Gaussian channels

with fading [105], the converse proof was based on establishing a minimum distance

between each pair of codewords (with no shift). Here, on the other hand, we use the

stricter requirement that the ratio of the letters of every two di↵erent shifted codewords

is di↵erent from 1 for at least one index.
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CHAPTER 8

“ Probability is Degree of Certainty and Di�ers From Absolute Cer-

tainty as The Part Di�ers From The Whole.

”
Jacques Bernoulli,

8.1 | Introduction

In the context ofMC, information can be encoded in the concentration (rate) of molecules

released by transmitter and can be decoded based on the number of molecules reach-

ing the receiver. Assuming that the release, propagation, and reception of di↵erent
molecules are independent from each other, the MC systems with molecule counting

receivers are characterized by the Binomial channel. The transmission capacity of the

Binomial channel is studied in [184, 185]. In [186] and [31], the Binomial channel

law is used in modelling with imperfect particle intensity modulation and detection, is

exploited for an MC channel. In the literature, the Binomial channel is often approxi-

mated by the Poisson channel when the number of released molecules, denoted by N,

is large [5, Sec. IV], for which bounds on the DI capacity are studied in [51]. However,

to the best of the authors’ knowledge, the fundamental performance limits of DI for

the original Binomial channel, which does not rely on very large N, has not been so far

investigated in the literature.

A method is in [185] is developed to compute the capacity of Binomial channel.

Transmission capacity of Binomial channel in any finite order n is computed in [184].

In [31,186] the Binomial channel law is used inmodelling with imperfect particle inten-

sity modulation and detection is exploited for an MC channel where biological trans-

mitter may attempt to transmit mt = bltc particles for communication where l is a
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fixed rate for molecule generation and t reads the symbol duration1. To the best of

the authors’ knowledge, the fundamental performance limits of DI for the Binomial

channels has not been so far studied in the literature.

8.1.1 | Contributions

In this chapter, we consider identification systems employing deterministic encoder

and receivers that are interested to accomplish the identification task, namely, finding

an object in a set of size M where M = 2
(n log n)R. We assume that the communication

over n channel uses are independent of each other. Further, we assume that the CIR is

available at the decoder. We formulate the problem of DI over the Binomial channel

under average and peak power constraint which account for the restricted molecule

numbers in the transmitter. As our main objective, we investigate the fundamental

performance limits of DI over the Binomial channel. In particular, this chapter makes

the following contributions:

} Problem Formulation: We formulate the problem of DI over the DTBC under

average and peak power constraints to account for the limited molecule produc-

tion / release rates of the transmitter. To the best of the authors’ knowledge, the

DI capacity of the DTBC has not been studied in the literature, yet.

} Codebook Scale: We establish that the codebook size of DI problem over the Bino-

mial channels with average and peak power constraints for deterministic encoding

scales super-exponentially in the codeword length (⇠ 2
(n log n)R). This result is in

contrast with the scaling of the codebook size for conventional transmission (i.e.,

2
nR [28]) and RI (i.e., 2

2
nR

[23]). The enlarged codebook size of the identification

problem compared to the transmission problemmay have interesting implications

for MC system design. For instance, it may help explain the extremely large iden-

tification capability of natural olfactory systems and guide the design of olfactory-

inspired synthetic MC systems [81] by, e.g., determining the maximum number of

identifiable molecule mixtures.

1 In our setup, we assume that the rate at which transmitter generate the molecules for di↵erent time
slots, vary according the deterministic letter xt, that is, the number of released molecules intended for
communication is mTs = bxtTsc. For the sake of analysis, we assume throughout the paper, that xtTs is an
integer number.
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} Capacity Bounds: We derive lower and upper bounds on the DI capacity of the

DTBC, which are the main results of this chapter. Such bounds does not reflect

the impact of power constraints Pave, Pmax in the super-exponential scale, unless

requiring them to be positive and finite values.

} Technical Novelty: To obtain the proposed lower bound, the existence of an ap-

propriate sphere packing within the input space, for which the distance between

the centers of the spheres does not fall below a certain value, is guaranteed. While

the radius of the small spheres in the Gaussian case [105] tends to zero, here the

radius grows in the codeword length, n. Yet, we show that we can pack a super-

exponential number of spheres within the larger cube. In particular, we consider

the packing of hyper spheres with radius ⇠ n
1

4 inside a large hyper cube, whose

radius grows in both the codeword length n. For derivation of the upper bound,

we assume that for given sequences of codes with vanishing error probabilities, a

certain minimum distance between the codewords is asserted, where this distance

decreases as n grows. Here, the derivation of the upper bound is less involved

compared to that for the Gaussian [105] and Poisson channels [108,109].

8.1.2 | Organization

The remainder of this chapter is structured as follows. In Section 8.2, system model

is explained and the required preliminaries regarding DI codes are established. Sec-

tion 8.3 provides the main contributions and results on the message K-identification

capacity of the slow fading channel. Finally, Section 8.4 of the paper concludes with a

summary and directions for future research.

8.2 | SystemModel and Preliminaries

In this section, we present the adopted system model and establish some preliminaries

regarding DI coding.

8.2.1 | SystemModel

We address an identification-focused communication setup, where the decoder’s pur-

pose is accomplishing the following task: Determining whether or not a target message

was sent by the transmitter; see Figure 8.1. To attain this objective, a coded commu-

nication between the transmitter and the receiver over n channel uses of an MC chan-
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nel is established. We assume that for a given channel use, the transmitter generates

N = bTsXc molecules where X is the rate for molecule generation and Ts denotes the

symbol duration. The generated molecules are released instantaneously into the chan-

nel at the beginning of the next symbol interval. Let p denote the probability that a

molecule released by the transmitter, is observed at the receiver, whose value depends

on the parameters such as the di↵usion coe�cient of the molecules D, the distance

between the transmitter and the receiver d, and the type of reception (e.g. absorbing

or transparent receivers); see [5] for further details. For instance, assuming molecule

propagation via di↵usion in an unbounded three-dimensional environment and under

the approximation of uniform concentration within the reception volume of a transpar-

ent receiver, p at sampling time t after the release of molecules is obtained as [5]

p =
Vrx

(4pDt)3/2
e�

d2

4Dt , (8.1)

where Vrx is the reception volume size. Assuming that the release, propagation, and

reception of molecules are independent from each other, probability of observing Y
molecules at the receiver follows a Binomial distribution2, i.e.,

Binom
�
bTsXc, p

�
=

✓
bTsXc

Y

◆
pY(1� p)bTsXc�Y

. (8.2)

While in principle, MC channels are dispersive, the contribution of ISI can be made

negligible if the symbol intervals are chosen su�ciently large such that the channel

impulse response (CIR) fully decays to zero within one symbol interval. Alternatively,

enzymes [188] and reactive information molecules, such as acid / base molecules [189],

[157], may be used to speed up the decay of the CIR as a function of time, which would

increase the accuracy of this assumption. Therefore, in such scenarios, we can assume

that the MC channel between transmitter and receiver is characterized by a memoryless

Binomial channel B, that is, the n channel uses are independent. Hence, the transition

probability law for n channel uses is given by

Wn(y|x) =
n

’
t=1

✓
bTsxtc

yt

◆
pyt(1� p)bTsxtc�yt , (8.3)

where x = (x1, . . . , xn) and y = (y1, . . . , yn) denote the transmitted codeword and the

received signal, respectively.

2 The Binomial channel can be approximated by the Poisson channel (for large N and small Np) and the
Gaussian channel (for large N and large Np); cf. [5,9,187]. However, here, we study the Binomial channel
which does not rely on the assumption of large N.
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The peak and average release rate constraints on the codewords x = (xt)
���
n

t=1

are 0 
xt  Pmax and n�1 Ân

t=1
xt  Pavg , respectively, 8t 2 [[n]], where Pmax > 0 and Pavg > 0

constrain the maximum value of molecule release rate per channel use and average

molecule release rate over the entire n channel uses in each codeword, respectively.

While, unlike the Poisson and Gaussian approximations, the Binomial model does

not require that the number of released molecules to be very large [5], in practice, the

number of released molecules cannot be too small either for reliable communication.

This observation motivates us to adopt the approximation bTsxtc ⇡ Tsxt in the remain-

ing part, since the relative error

Tsxt � bTsxtc
Tsxt

 1

Tsxt

become su�ciently small for reasonably large Tsxt.

8.2.2 | DI Coding For The Binomial Channel

The definition of a DI code for the Binomial channel B is given below.

Definition 8.2.1 (Binomial DI Code). An (n, M(n, R), K(n, k), e1, e2) DI code for a Binomial
channel B under average and peak power constraints of Pave and Pmax, and for integers
M(n, R) and K(n, k), where n and R are the codeword length and coding rate, respectively,
is defined as a system (C, T ), which consists of a codebook C = {ci}i2[[M]] ⇢ Rn

+, such that

0  ci,t  Pmax and
1

n

n

Â
t=1

ci,t  Pavg , (8.4)

8i 2 [[M]], 8t 2 [[n]] and a collection of decoding regions T = { i}i2[[M]] where

M(n,R)[

i=1

i ⇢ Nn
0

. (8.5)

Given a message i 2 [[M]], the encoder sends ci, and the decoder’s task is to address a binary
hypothesis: Was a target message j 2 sent or not? There exist two types of errors that may
happen (see Figure 8.2):

2 Type I: Rejection of the actual message; i 2 [[M]] .

2 Type II: Acceptance of a wrong message; j 6= i .
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i Enc Binomial Channel Dec

j

Yes /No
ci,t Yt

Figure 8.1: End-to-end transmission chain for DI communication in a generic molecular communi-
cation system modelled as a Binomial channel. The transmitter maps message i onto a codeword
ci = (ci,t)|nt=1

. The receiver is provided with an arbitrary message j, and given the channel output
vector Y = (Yt)|nt=1

, it asks whether j is identical to i or not.

The associated error probabilities of the DI code (C, T ) reads

Pe,1(i) = 1� Â
y2 i

Wn(y | ci) (miss-identification error) , (8.6)

Pe,2(i, j) = Â
y2 j

Wn(y | ci) (false identification error) . (8.7)

and satisfy the following bounds Pe,1(i)  e1 , 8i 2 [[M]] and Pe,2(i, j)  e2 , 8i 6= j, and
every e1, e2 > 0.

A rate R > 0 is called achievable if for every e1, e2 > 0 and su�ciently large n, there
exists an (n, M(n, R), K(n, k), e1, e2) DI code. The operational DI capacity of the Binomial
channel B is defined as the supremum of all achievable rates, and is denoted by CDI(B, M).

8.3 | DI Capacity of The Binomial Channel

In this section, we first present our main results, i.e., lower and upper bounds on the

achievable identification rates for the Binomial channel. Subsequently, we provide the

detailed proofs of these bounds.

8.3.1 | Main Results

The DI capacity theorem for the Binomial channel B is stated below.

Theorem 8.3.1. Consider the Binomial channel B subject to average and peak power con-
straints of the form n�1 Ân

t=1
ci,t  Pave and 0  ci,t  Pmax, respectively. Then, the DI

capacity in the super-exponential scale, i.e., M(n, R) = 2
(n log n)R, is bounded by

1

4
 CDI(B, M)  3

2
. (8.8)
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c2

c3

c4

c1

c5

c6

c7

Input Space Output Space

5

1

6

7

2

3

4

Correct Identification

Type I Error

Type
II Err

or

Figure 8.2: Illustration of a deterministic identification setting. Assuming that the decision maker is
the decoder 2, in the correct identification scenario, channel output is observed in the decoder 2

whose index coincide the sent message. Type I (miss-identification) error occurs if the channel output
is detected in the complement of the decoder whose index is identical to the sent message and type
II error (false identification) happens where the index of decoder for which channel output belongs
to, di↵ers from the sent message.

Proof. The proof of Theorem 8.3.1 consists of two parts, namely the achievability and

the converse proofs, which are provided in Sections 8.3.2 and 8.3.3, respectively.

8.3.2 | Lower Bound (Achievability Proof)

The achievability proof consists of the following two main steps.

2 Step 1: First, we propose a codebook construction and derive an analytical lower

bound on the corresponding codebook size using inequalities for sphere packing

density.

2 Step 2: Then, to prove that this codebook leads to an achievable rate, we propose

a decoder and show that the corresponding type I and type II error rates vanished

as n! •.

8.3.2.1 | Codebook Construction

Let A = min (Pmax, Pave). In the following, we confine ourselves to codewords that

meet the condition 0  ct  A, 8 t 2 [[n]]. We argue that this condition ensures both the

average and the peak power constraints in (8.4). In particular,
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2 Case 1: Pmax  Pave, then A = Pmax and the constraint 0  ct  A 8 t 2 [[n]] yields
1

n Ân
t=1

ct  A = P2
max  Pave, that is the average power constraint 1

n Ân
t=1

ct 
Pave is met. Furthermore, condition 0  ct  A 8 t 2 [[n]] implies 0  ct 
Pmax 8 t 2 [[n]], i.e., the peak power constraint is attained.

2 Case 2: Pmax > Pave, then A = Pave. Now by 0  ct  A 8 t 2 [[n]], we obtain
1

n Ân
t=1

ct  A = Pave, that is, the average power constraint is fulfilled. Further-

more, the condition 0  ct  A 8 t 2 [[n]] implies 0  ct  Pave  Pmax 8 t 2 [[n]],
that is, the peak power constraint is accomplished.

Hence, in the following, we restrict our considerations to a hyper cube with edge length

A. We use a packing arrangement of non-overlapping hyper spheres of radius r0 =
p

nen in a hyper cube with edge length A, where

en =
a

n
1

2
(1�b)

, (8.9)

and a > 0 is a non-vanishing fixed constant and 0 < b < 1 is an arbitrarily small

constant3.

Let S denote a sphere packing, i.e., an arrangement of L non-overlapping spheres

Sci(n, r0), i 2 [[L]], that are packed inside the larger cube Q0(n, A) with an edge length

A, see Figure 8.3. As opposed to standard sphere packing coding techniques [138], the

spheres are not necessarily entirely contained within the cube. That is, we only require

that the centers of the spheres are inside Q0(n, A) and are disjoint from each other and

have a non-empty intersection withQ0(n, A). The packing density �n(S ) is defined as

the ratio of the saturated packing volume to the cube volume Vol
�
Q0(n, A)

�
, i.e.,

�n(S ) ,
Vol

⇣SL
i=1

Sci(n, r0)
⌘

Vol
�
Q0(n, A)

� . (8.10)

Sphere packing S is called saturated if no spheres can be added to the arrangement

without overlap. In particular, we use a packing argument that has a similar flavor as

that observed in the Minkowski–Hlawka theorem for saturated packing [138].

Specifically, consider a saturated packing arrangement of

M(n,R)[

i=1

Sci(n,
p

nen) (8.11)

3 We note that our achievability proof is valid for any b 2 (0, 1); however, arbitrarily small values of b
leads to the tightest lower bound and hence are of interest here.
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A/2

p
nen

A
p

n

Figure 8.3: Illustration of a saturated sphere packing inside a cube, where small spheres of radius
r0 =

p
nen cover a larger cube. Yellow colored spheres are not entirely contained within the larger

cube, and yet they contribute to the packing arrangement. As we assign a codeword to each sphere
center, the 1-norm and arithmetic mean of a codeword are bounded by A as required.

spheres with radius r0 =
p

nen embedded within cube Q0(n, A). Then, for such an ar-

rangement, we have the following lower [118, Lem. 2.1] and upper bounds [138, Eq. 45]

on the packing density

2
�n  �n(S )  2

�0.599n
. (8.12)

In our subsequent analysis, we use the above lower bound which can be proved as fol-

lows: For the saturated packing arrangement given in (8.11), there cannot be a point in

the larger cube Q0(n, A) with a distance of more than 2r0 from all sphere centers. Oth-

erwise, a new sphere could be added which contradicts the assumption that the union

of M(n, R) spheres with radius
p

nen is saturated. Now, if we double the radius of each

sphere, the spheres with radius 2r0 cover thoroughly the entire volume of Q0(n, A),

that is, each point inside the hyper cube Q0(n, A) belongs to at least one of the small

spheres. In general, the volume of a hyper sphere of radius r is given by [138, Eq. (16)]

Vol
�
Sx(n, r)

�
=

p
n
2

G( n
2
+ 1)

· rn
. (8.13)

Hence, if the radius of the small spheres is doubled, the volume of

M(n,R)[

i=1

Sci(n,
p

nen) , (8.14)

is increased by 2
n. Since the spheres with radius 2r0 cover Q0(n, A), it follows that

the original r0-radius packing has a density of at least 2
�n 4. We assign a codeword

4 We note that the proposed proof of the lower bound in (8.12) is non-constructive in the sense that,

159



CHAPTER 8. DI FOR BINOMIAL CHANNEL 8.3. DI CAPACITY OF THE BINOMIAL CHANNEL

to the center ci of each small sphere. The codewords satisfy the input constraint as

0  ci,t  A, 8t 2 [[n]], 8i 2 [[L]], which is equivalent to

kcik•  A . (8.15)

Since the volume of each sphere is equal to Vol(Sc1
(n, r0)) and the centers of all spheres

lie inside the cube, the total number of spheres is bounded from below by

M =
Vol

⇣SL
i=1

Sci(n, r0)
⌘

Vol(Sc1
(n, r0))

=
�n(S ) ·Vol

�
Q0(n, A)

�

Vol(Sc1
(n, r0))

� 2
�n · An

Vol(Sc1
(n, r0))

, (8.16)

where the first inequality holds by (8.10) and the second inequality holds by (8.12).

The above bound can be further simplified as follows

log M � log

 
An

Vol
�
Sc1

(n, r0)
�
!
� n

(a)
� n log

 
Ap
pr0

!
+ log

 �
n
2

⌫
!

!
� n

(b)
= n log A� n log r0 +

�
n
2

⌫
log

 �
n
2

⌫!
�
�

n
2

⌫
log e + o

 �
n
2

⌫!
� n , (8.17)

where (a) exploits (8.13) and

G

✓
n
2
+ 1

◆
(a)
=

n
2

G

✓
n
2

◆

(b)
�

�
n
2

⌫
G

 �
n
2

⌫!

,
�

n
2

⌫
! , (8.18)

where (a) holds by the recurrence relation of the Gamma function for a positive real

argument and (b) follows from
j

n
2

k
 n

2
for positive integer n and the monotonicity

while the existence of the respective saturated packing is proved, no systematic construction method is
provided.
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of the Gamma function for n � 4 ⌘
j

n
2

k
2 [z1, •) where z1 ⇡ 1.46 is the first root of

the Digamma function; and (b) follows from Stirling’s approximation, that is, log n! =

n log n � n log e + o(n) for integer n, [173, P. 52]. Now, for r0 =
p

nen =
p

an
1+b

4 , we

obtain

log M

� n log
Ap

a
� 1

4
(1 + b) n log n +

�
n
2

⌫
log

 �
n
2

⌫!
�
�

n
2

⌫
log e + o

 �
n
2

⌫!
� n

(a)
> n log

Ap
a
� 1

4
(1 + b) n log n +

✓
n
2
� 1

◆
log

✓
n
2
� 1

◆
�
�

n
2

⌫
log e + o

✓
n
2
� 1

◆
� n

(b)
� n log

Ap
a
� 1

4
(1 + b) n log n +

✓
n
2
� 1

◆ 
log

✓
n
2

◆
� 1

!
� n

2
log e + o

✓
n
2
� 1

◆
� n

(c)
= n log

Ap
a
� 1

4
(1 + b) n log n +

1

2
n log n� 2n� log n� n

2
log e + o

✓
n
2
� 1

◆

=

✓
1� b

4

◆
n log n + n

 
log

A
e
p

a

!
� 2n� log n� n

2
log e + o

✓
n
2
� 1

◆
, (8.19)

where (a) holds by
j

n
2

k
> n

2
� 1 for integer n, (b) holds since log(t� 1) � log t� 1 for

t � 2 and
j

n
2

k
 n

2
for integer n, and (c) follows since base of logarithm is 2. Observe

that the dominant term (8.19) is of order n log n. Hence, for obtaining a finite value

for the lower bound of the rate, R, (8.19) induces the scaling law of M to be 2
(n log n)R.

Therefore, we obtain

R � 1

n log n

2

4
✓

1� b
4

◆
n log n + n log

 
A

e
p

a

!
� 2n� log n� n

2
log e + o

✓
n
2
� 1

◆3

5 ,

(8.20)

which tends to 1

4
when n! • and b! 0.

8.3.2.2 | Encoding

Given a message i 2 [[M]], transmit x = ci.

8.3.2.3 | Decoding

Fix e1, e2 > 0 and let z0, z1 > 0 be arbitrarily small constants. Before we proceed, for

the sake of brevity of analysis, we introduce the following conventions. Let:
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2 Yt(i) ⇠ Binom(ci,tTs,p) denote the channel output at time t conditioned that x = ci

was sent.

2 Y(i) = (Y1(i), . . . , Yn(i))

Let

dn =
A

n
1

2
(1�b)

, (8.21)

where 0 < b < 1 is an arbitrarily small constant. To identify whether a message j 2
[[M]] was sent, given the sequence g, the decoder checks whether the channel output y

belongs to the following decoding set,

j =

⇢
y 2 Nn

0
:

���T(y, cj)
���  dn

�
. (8.22)

where

T(y, cj) =
1

n

n

Â
t=1

⇣
yt � pTscj,t

⌘2

� (1� p)yt , (8.23)

is referred to as the decoding metric evaluated for observation vector y and codeword cj.

162



C
H
A
PTER

8.
D
IFO

R
B
IN

O
M
IA
L
C
H
A
N
N
EL

8.3.
D
IC

A
PAC

ITY
O
F
TH

E
B
IN

O
M
IA
L
C
H
A
N
N
EL

8.3.2.4 | Error Analysis

Consider the type I error, i.e., when the transmitter sends ci, yet Y /2 i. For every i 2 [[M]], the type I error probability is

bounded by

Pe,1(i) = Pr

✓���T(Y(i), cj)
��� > dn

◆
, (8.24)

In order to bound Pe,1(i), we apply the Chebyshev’s inequality, namely

Pr

✓���T(Y(i), cj)�E
h

T(Y(i), cj)
i��� > dn

◆


Var
h

T(Y(i), cj)
i

d2
n

. (8.25)

First, we calculate the expectation of the decoding metric as follows

E

"
1

n

n

Â
t=1

�
Yt(i)� pTsci,t

�2 � (1� p)Yt(i)

#
=

1

n

n

Â
t=1

E
h�

Yt(i)� pTsci,t
�2 � (1� p)Yt(i)

i

=
1

n

n

Â
t=1

E
h�

Yt(i)� pTsci,t
�2
i
�E

⇥
(1� p)Yt(i)

⇤

=
1

n

n

Â
t=1

Var
⇥
Yt(i)

⇤
�E

⇥
Yt(i)

⇤
(1� p)

=
1

n

n

Â
t=1

pTsci,t(1� p)� pTsci,t(1� p)

= 0 . (8.26)

Second, since the channel is memoryless, we can derive the variance of decoding metric as follows

Var

"
1

n

n

Â
t=1

�
Yt(i)� pTsci,t

�2 � (1� p)Yt(i)

#
=

1

n2
Var

"
n

Â
t=1

�
Yt(i)� pTsci,t

�2 � (1� p)Yt(i)

#
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(a)
=

1

n2

n

Â
t=1

Var
h�

Yt(i)� pTsci,t
�2 � (1� p)Yt(i)

i

=
1

n2

n

Â
t=1

Var
h
Y2

t (i)�
�
2pTsci,t + 1� p

�
Yt(i)

i
, (8.27)

where (a) holds since the channel is memoryless. Now we apply the identity Var
h

aX � bY
i
= a2Var[X] + b2Var[Y] �

2abCov[X, Y] to summand in (8.27), namely,

Var
h
Y2

t (i)�
�
2pTsci,t + 1� p

�
Yt(i)

i

= Var
h
Y2

t (i)
i
+
�
2pTsci,t + 1� p

�2 Var
⇥
Yt(i)

⇤
�
�
2pTsci,t + 1� p

�
Cov

h
Y2

t (i), Yt(i)
i

. (8.28)

Now, in order to bound (8.27), we use the following three knowledge. First, observe that for a Binomial variable Yt(i) ⇠
Binom(ci,tTs,p), we have Var[Y2

t (i)]  E[Yt(i)4]. Second, the identity Cov[X, Y] 
p

Var[X] ·Var[Y], provide upper bound
for covariance of variables with finite variances. Third, triangle inequality provide upper bound for summation of terms

with di↵erent sign, i.e., a� b  |a� b|  |a|+ |b|. Therefore,
1

n2

n

Â
t=1

Var
h
Y2

t (i)�
�
2pTsci,t + 1� p

�
Yt(i)

i

 1

n2

n

Â
t=1

E
h
Y4

t (i)
i
+
�
2pTsci,t + 1� p

�2 pTsci,t +
�
2pTsci,t + 1� p

�
r

E
h
Y4

t (i)
i
· pTsci,t(1� p)

(a)
=

n
n2


(ci,tTs)

4
exp

�
8/pTsci,t

�
+ (2ATs + 1)2 ATs + (2ATs + 1)

q
(pTsci,t)4 exp

�
8/pTsci,t

�
ATs

�

 1

n


A4T4

s exp
�
8/pTsci,t

�
+ (2ATs + 1)2 ATs + (2ATs + 1) A2T2

s

q
exp

�
8/pTsci,t

�
ATs

�
. (8.29)

where (a) holds since since 0 < p < 1; and for a Binomial variable Yt(i) ⇠ Binom(ci,tTs,p), the non-centered moments are

upper bounded as follows

E
h
Yk

t (i)
i
 Ek

h
Yt(i)

i
· exp

✓
k2

/2E
h
Yt(i)

i◆
. (8.30)
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Therefore, exploiting (8.25), (8.26) and (8.29), we can establish the following upper bound on the type I error probability

given in (8.24), namely

Pe,1(i) = Pr

✓���T(Y(i), cj)
��� > dn

◆

=
A4T4

s exp
�
8/pTsci,t

�
+ (2ATs + 1)2 ATs + (2ATs + 1) A2T2

s

q
exp

�
8/pTsci,t

�
ATs

nd2
n

(a)
=

A4T4
s exp

�
8/pTsci,t

�
+ (2ATs + 1)2 ATs + (2ATs + 1) A2T2

s

q
exp

�
8/pTsci,t

�
ATs

nb

 e1 , (8.31)

where (a) follows from (8.21).

Next, we address the type II error, i.e., when Y 2 j while the transmitter sent ci. Then, for every i, j 2 [[M]], where

i 6= j, the type II error probability is given by

Pe,2(i, j) = Pr

✓���T(Y(i); cj)
���  dn

◆
. (8.32)

where

T(Y(i); cj) =
1

n

n

Â
t=1

⇣
Yt(i)� pTscj,t

⌘2

� (1� p)Yt(i) . (8.33)

Observe that (8.33) can be expressed as follows

T(Y(i); cj) =
1

n

n

Â
t=1

⇣
Yt(i)� pTsci,t + (ci,t � cj,t)pTs

⌘2

� (1� p)Yt(i) . (8.34)

Observe that the sum in (8.34) can be expressed as
n

Â
t=1

⇣
Yt(i)� pTsci,t + (ci,t � cj,t)pTs

⌘2

=
n

Â
t=1

�
Yt(i)� pTsci,t

�2
+

n

Â
t=1

⇣
(ci,t � cj,t)pTs

⌘2
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+ 2

n

Â
t=1

�
Yt(i)� pTsci,t

� ⇣
(ci,t � cj,t)pTs

⌘
. (8.35)

Then, define the following events

E0 =

8
<

:Y 2 Nn
0

:

�����

n

Â
t=1

�
Yt(i)� pTsci,t

� ⇣
(ci,t � cj,t)pTs

⌘����� > ndn

9
=

; , (8.36)

E1 =

(
Y 2 Nn

0
:

n

Â
t=1

�
Yt(i)� pTsci,t

�2
+

n

Â
t=1

⇣
(ci,t � cj,t)pTs

⌘2

� (1� p)Yt(i)  2ndn

)
, (8.37)

Ei,j =

8
<

:Y 2 Nn
0

:

�����

n

Â
t=1

⇣
Yt(i)� pTsci,t + (ci,t � cj,t)pTs

⌘2

� (1� p)Yt(i)  ndn

�����

9
=

; (8.38)

E 0i,j =
(

Y 2 Nn
0

:

n

Â
t=1

⇣
Yt(i)� pTsci,t + (ci,t � cj,t)pTs

⌘2

� (1� p)Yt(i)  ndn

)
, (8.39)

Then,

Pe,2(i, j) = Pr

⇣
Ei,j

⌘

= Pr

0

@
�����

n

Â
t=1

⇣
Yt(i)� pTsci,t + (ci,t � cj,t)pTs

⌘2

� (1� p)Yt(i)

�����  ndn

1

A

(a)
 Pr

0

@
�����

n

Â
t=1

⇣
Yt(i)� pTsci,t + (ci,t � cj,t)pTs

⌘2

������
�����

n

Â
t=1

(1� p)Yt(i)

�����  ndn

1

A

(b)
 Pr

 
n

Â
t=1

⇣
Yt(i)� pTsci,t + (ci,t � cj,t)pTs

⌘2

�
n

Â
t=1

(1� p)Yt(i)  ndn

!

= Pr

⇣
E 0i,j

⌘
, (8.40)
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where (a) exploits the reverse triangle inequality, |a|� |b|  |a� b|, and (b) holds since a, b � 0.

Now, we apply the law of total probability to event E 0i,j over E0 and its complement E c
0
, and obtain the following upper

bound on the type II error probability,

Pe,2(i, j)  Pr

⇣
E 0i,j

⌘

= Pr

⇣
E 0i,j \ E0

⌘
+ Pr

⇣
E 0i,j \ E c

0

⌘

(a)
 Pr

⇣
E0

⌘
+ Pr

⇣
E 0i,j \ E c

0

⌘

(b)
= Pr

⇣
E0

⌘
+ Pr

⇣
E1

⌘
, (8.41)

where (a) follows from E 0i,j \ E0 ⇢ E0 and (b) holds since the event E 0i,j \ E c
0
yields the event E1, with the following argument.

Observe that,

Pr

⇣
E 0i,j \ E c

0

⌘
= Pr

 
n

Â
t=1

�
Yt(i)� pTsci,t

�2
+

n

Â
t=1

⇣
(ci,t � cj,t)pTs

⌘2

� (1� p)Yt(i)  ndn � (�ndn)

!

(a)
= Pr

 
n

Â
t=1

�
Yt(i)� pTsci,t

�2
+

n

Â
t=1

⇣
(ci,t � cj,t)pTs

⌘2

� (1� p)Yt(i)  2ndn

!

(b)
= Pr

⇣
E1

⌘
, (8.42)

where (a) holds since given the complementary event E c
0
, we obtain

n

Â
t=1

�
Yt(i)� pTsci,t

� ⇣
(ci,t � cj,t)pTs

⌘
� �ndn , (8.43)

and (b) follows from (8.37).
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Now, we proceed to bound Pr(E0). By Chebyshev’s inequality, we can establish the

following upper bound on Pr(E0) as follows

Pr(E0) = Pr

0

@
�����

n

Â
t=1

�
Yt(i)� pTsci,t

� ⇣
(ci,t � cj,t)pTs

⌘����� > ndn

1

A


Var


Ân

t=1

�
Yt(i)� pTsci,t

� ⇣
(ci,t � cj,t)pTs

⌘�

(ndn)2

=
Ân

t=1
Var

�
Yt(i)� pTsci,t

� ⇣
(ci,t � cj,t)pTs

⌘�

(ndn)2

=
Ân

t=1

⇣
(ci,t � cj,t)pTs

⌘2

Var
h�

Yt(i)� pTsci,t
�i

(ndn)2

=
T2

s p2 Ân
t=1

⇣
ci,t � cj,t

⌘2

Var
⇥
Yt(i)

⇤

(ndn)2


T2

s p2 Ân
t=1

⇣
ci,t � cj,t

⌘2

· ApTs(1� p)

(ndn)2

=
AT3

s p3(1� p)
���ci � cj

���
2

(ndn)2
, (8.44)

Observe that
���ci � cj

���
2 (a)


✓
kcik+

���cj

���
◆2

(b)


✓p
nkcik• +

p
n
���cj

���
•

◆2

(c)


⇣p
nA +

p
nA

⌘2

= 4nA2
, (8.45)

where (a) holds by the triangle inequality, (b) follows since k.k 
p

nk.k• and (c) is
valid by (8.15). Hence,

Pr(E0) 
T3

s p3A(1� p)
���ci � cj

���
2

(ndn)2

 4A2T3
s p3A(1� p)n

n2d2
n
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 4A3T3
s p3(1� p)
nd2

n

=
4A3T3

s p3(1� p)
nb

, z0 , (8.46)

We now proceed with bounding Pr (E1) as follows. Based on the codebook construction,

each pair of codeword are distanced by at least r0 =
p

nen, hence,
���pTs(ci � cj)

���
2

� T2

s p2nen

= 3ndn , (8.47)

where the equality holds by (8.21). Thus, we can establish the following upper bound

for event E1:

Pr(E1)


 

n

Â
t=1

�
Yt(i)� pTsci,t

�2 � (1� p)Yt(i)  2ndn �
���pTs(ci � cj)

���
2

!


 

n

Â
t=1

�
Yt(i)� pTsci,t

�2 � (1� p)Yt(i)  2ndn � 3ndn

!

=

 
n

Â
t=1

�
Yt(i)� pTsci,t

�2 � (1� p)Yt(i)  �ndn

!

(a)


Var
h
Ân

t=1

�
Yt(i)� pTsci,t

�2 � (1� p)Yt(i)
i

n2d2
n

(b)
=

A4T4
s exp

�
8/pTsci,t

�
+ (2ATs + 1)2 ATs + (2ATs + 1) A2T2

s

q
exp

�
8/pTsci,t

�
ATs

nb

, z1 , (8.48)

where (a) follows from applying Chebyshev’s inequality, (b) holds by similar line of

arguments as we made in type I error probability analysis, see (8.25) and the derivations

afterward.

Therefore, recalling (8.41), we obtain

Pe,2(i, j)  Pr(E0) + Pr(E1)  z0 + z1  e2 , (8.49)

hence, Pe,2(i, j)  e2 holds for su�ciently large n and arbitrarily small e2 > 0. We

have thus shown that for every e1, e2 > 0 and su�ciently large n, there exists an

(n, M(n, R), K(n, k), e1, e2) code.
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8.3.3 | Upper Bound (Converse Proof)

The converse proof consists of the following two main steps.

2 Step 1: We show in Lemma 8.3.1 that for any achievable rate (for which the type I

and type II error probabilities vanish as n ! •), the distance between every pair

of codeword should be at least larger than a threshold.

2 Step 2: Employing Lemma 8.3.1, we derive an upper bound on the codebook size

of achievable DI codes.

We start with the following lemma which establish a lower bound on the letter-wise

ratio for every pair of codewords.

Lemma 8.3.1. Suppose that R is an achievable rate for the Binomial channel B. Consider a
sequence of (n, M(n, R), K(n, k), e(n)

1
, e(n)

2
) codes (C(n)

, T (n)) such that e(n)
1

and e(n)
2

tend to
zero as n ! •. Then, given a su�ciently large n, the codebook C(n) satisfies the following
property. For every pair of codewords, ci1 and ci2 , such that i1, i2 2 [[M]] and i1 6= i2, there
exist t 2 [[n]], such that,

���ci1,t � ci2,t

��� > e0n , (8.50)

where

e0n =
Pmax

n1+b , (8.51)

with b > 0 being an arbitrarily small constant.

In the following, we provide the proof of Lemma 8.3.1. The method of proof is by

contradiction, namely, we assume that the condition given in (8.50) is violated and then

we show that this leads to a contradiction, namely, sum of the type I and type II error

probabilities converge to one, i.e., limn!•
⇥
Pe,1(i1) + Pe,2(i2, i1)

⇤
= 1.

Proof. Fix e1 and e2. Let µ, q, h, z be arbitrarily small positive. Assume to the contrary

that there exist two messages i1 and i2, where i1 6= i2, such that,
���ci1,t � ci2,t

���  e0n , (8.52)

which implies

ci1,t � ci2,t � �e0n , (8.53)

ci2,t � ci1,t � �e0n , (8.54)
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ci1,t � ci2,t  e0n , (8.55)

ci2,t � ci1,t  e0n . (8.56)

Observe that

Pe,1(i1) + Pe,2(i2, i1) =

2

41� Â
y2 i

1

Wn
⇣

y

��� ci1

⌘
3

5+ Â
y2 i

1

Wn
⇣

y

��� ci2

⌘
. (8.57)
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41�
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ci2,t�ci

1
,t

⌘3

5

= Wn
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⌘
2

41�
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t=1

Tsci2,t!
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·
(Tsci1,t � yt)!

(Tsci2,t � yt)!
· (1� p)

Ts

⇣
ci2,t�ci

1
,t

⌘3

5 . (8.58)

In order to bound (8.58), we exploit the following useful double-inequality regarding

ratio of two Gamma functions [190, Eq. 4.15]. For 0 < a < b, we have

min

⇢
a,

a + b� 1

2

�

 

G(a)
G(b)

! 1

a�b

 max

⇢
a,

a + b� 1

2

�
. (8.59)

To analyze more accurately, we divide into three cases.

2 Case 1: Where ci1,t < ci2,t , 8t 2 [[n]]

2 Case 2: Where ci2,t < ci1,t , 8t 2 [[n]]

2 Case 3:

8
><

>:

ci1,t < ci2,t for n1�1 indices

ci2,t < ci1,t for n2�1 indices
, n1 + n2 = n
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8.3.4 | Case 1

Consider the case 1, i.e, where ci1,t < ci2,t , 8t 2 [[n]]. Then, we set a = Tsci1,t + 1 and

b = Tsci2,t + 1. Now, condition 0 < a < b is met and we obtain

Tsci2,t!

Tsci1,t!
=

G(Tsci2,t + 1)

G(Tsci1,t + 1)

=
G(b)
G(a)

�

0

B@
1
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n
a,

a+b�1

2

o

1

CA

a�b

=

0
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1
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2

�

1
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�

0
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2

o

1
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Ts(ci
1
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�
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◆Ts(ci
1
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. (8.60)

and

Tsci2,t!

Tsci1,t!
=

G(Tsci2,t + 1)

G(Tsci1,t + 1)

=
G(b)
G(a)



0

B@
1
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2
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=

0
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2
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 2
Ts(ci

1
,t�ci2,t) . (8.61)
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Second, we set a = Tsci1,t � yt + 1 and b = Tsci2,t � yt + 1. Now, again condition 0 <

a < b is met and we obtain

(Tsci1,t � yt)!

(Tsci2,t � yt)!
=

G(Tsci1,t � yt + 1)

G(Tsci2,t � yt + 1)

=
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�
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and
(Tsci1,t � yt)!
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=
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Now, observe that
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✓
1

2(ATs + 1)

◆Ân
t=1

Ts(ci
1

,t�ci2,t)

·
 

1

1� p

!Ân
t=1

Ts(ci
1

,t�ci2,t)

=

✓
1� 2ATs + 1

2(ATs + 1)

◆Ân
t=1

Ts(ci
1

,t�ci2,t)

·
 

1

1� p

!Ân
t=1

Ts(ci
1

,t�ci2,t)

(a)
�

✓
1� 2ATs + 1

2(ATs + 1)

◆�Ân
t=1

Tse0n
·
 

1

1� p

!�Ân
t=1

Tse0n

=

0

BB@
1

⇣
1� 2ATs+1

2(ATs+1)

⌘Ân
t=1

Tse0n

1

CCA ·
✓�

1� p
�Ân

t=1
Tse0n

◆

(b)
�

0

B@
1⇣

1� 2ATs+1

2(ATs+1) · Ân
t=1

Tse0n
⌘

1

CA ·

0

@
 

1� p ·
n

Â
t=1

Tse0n

!1

A

(c)
�

0

B@
1⇣

1� 2ATs+1

2(ATs+1) · Ân
t=1

Tse0n
⌘

1

CA ·
⇣

1� pTsne0n
⌘

(d)
�

0

B@
1⇣

1� 2ATs+1

2(ATs+1) · Ân
t=1

Tse0n
⌘

1

CA ·
✓

1� pTsPmax

nb

◆

(e)
� 1

1� 0
· (1� k)

� 1� k . (8.64)

where (a) holds by (8.53), (b) follows from the Bernoulli inequality, i.e., (1� x)r  1+ rx
for x � �1 and 0  8r2R  1, (c) holds since Ân

t=1
Tse0n = Tsne0n, (d) holds by (8.51),

and (e) follows from Ân
t=1

Tse0n � 0.

On the other hand, to provide an upper bound, we have
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 (1 + 2ATs)
TsPmax/nb

(c)
 1 + 2ATs · TsPmax/nb

 1 + k . (8.65)

where (a) holds since 1� p  1, (b) follows from (8.56), and (c) holds by the Bernoulli

inequality, i.e., (1� x)r  1 + rx for x � �1 and 0  8r2R  1.

8.3.5 | Case 2

Consider the case 2, i.e, where ci2,t < ci1,t , 8t 2 [[n]]. Then, we set a = Tsci2,t + 1 and

b = Tsci1,t + 1. Now, condition 0 < a < b is met and we obtain
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and
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Second, we set a = Tsci2,t � yt + 1 and b = Tsci1,t � yt + 1. Now, again condition 0 <

a < b is met and we obtain
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Now, observe that
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where (a) holds by (8.54), (b) follows from the Bernoulli inequality, i.e., (1� x)r  1+ rx
for x � �1 and 0  8r2R  1, and (c) holds since Ân

t=1
Tse0n � 0.

On the other hand, to provide an upper bound, we have
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(b)
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where (a) holds since 1� p  1, (b) follows from (8.56), and (c) holds by the Bernoulli

inequality, i.e., (1� x)r  1 + rx for x � �1 and 0  8r2R  1.

8.3.6 | Case 3

Consider the case 3, i.e., where for n1 indices we have ci1,t < ci2,t and for n2 indices we

have ci2,t < ci1,t such that the total indices sum up to n, i.e., n1 + n2 = n. Therefore,

for n1 indices the rule (corresponding inequalities) of case 1 applies and for n2 indices

the rule (corresponding inequalities) of case 2 applies. That is, we have (follow the

continuation in the landscape page in below)

Therefore,
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�Ts(n1+n2)e
0
n · (1� p)Ts(n1+n2)e

0
n

�

=


(1 + 2ATs)

TsPmax/nb
· (1� p)TsPmax/nb

�

(b)
 (1 + 2ATs)

TsPmax/nb (c)
 1 + 2ATs · TsPmax/nb

 1 + k . (8.75)

where (b) follows since 1� p  1, and (c) follows from the Bernoulli inequality, i.e., (1� x)r  1 + rx for x � �1 and

0  8r2R  1,
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Therefore,

e1 + e2 � 1� k , (8.74)

which leads to a contradiction since for su�ciently small µ and vanishing error proba-

bilities we obtain k < 1� e1 � e2. This completes the proof of Lemma 8.3.1.

Next, we employ Lemma 8.3.1 to determine the upper bound on scale of codebook

size for B. Observe that Lemma 8.3.1 implies that the distance between every pair of

codewords fulfill
���ci1 � ci2

��� �
���ci1,t � ci1,t

���

� e0n

=
Pmax

n1+b , (8.76)

Thus, we can define an arrangement of non-overlapping spheres Sci(n, e0n), i.e., spheres

of radius e0n that are centered at the codewords ci. Since the codewords all belong to

a hyper cube Q0(n, Pmax) with edge length Pmax, it follows that the number of packed

small spheres, i.e., the number of codewords M, is bounded by

M =
Vol

⇣SL
i=1

Sui(n, r0)
⌘

Vol(Sc1
(n, r0))

=
�n(S ) ·Vol

�
Q0(n, Pmax)

�

Vol(Sc1
(n, r0))

 2
�0.599n · Pn

max
Vol(Sc1

(n, r0))
, (8.77)

where the last inequality follows from inequality (8.12). Thereby,

log M  log

 
Pn
max

Vol
�
Sc1

(n, r0)
�
!
� 0.599n

= n log Pmax � n log r0 � n log
p

p +
1

2
n log

n
2
� n

2
log e + o(n)� 0.599n , (8.78)

where the dominant term is again of order n log n. Hence, for obtaining a finite value

for the upper bound of the rate, R, (8.78) induces the scaling law of M to be 2
(n log n)R.

Hence, by setting M(n, R) = 2
(n log n)R and r0 = e0n = Pmax/n1+b, we obtain

R 
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1

n log n


n log Pmax � n log r0 � n log

p
p +

1

2
n log

n
2
� n

2
log e + o(n)� 0.599n

�
=

1

n log n

"✓
1

2
+ (1 + b)

◆
n log n� n

⇣
log Pmax

p
pe + 1.099

⌘
+ o(n)

#
, (8.79)

which tends to 3

2
as n! • and b! 0. This completes the proof of Theorem 8.3.1.

8.4 | Summary

In this chapter, we studied the DI problem over the Binomial channel. We assume

that the transmitter is subject to both the average and peak molecule release rate con-

straints. Our results in this chapter may serve as a model for event-triggered based

tasks in the context of future XG applications. In particular, we obtained lower and

upper bounds on the DI capacity of the Binomial channel with the codebook size of

M(n, R) = 2
(n log n)R = nnR. Our results for the DI capacity of the Binomial channel

revealed that the super-exponential scale of nnR = 2
(n log n)R is again the appropri-

ate scale for codebook size. This scale coincides as of the codebook for the memoryless

Gaussian channels [99,105] and Poisson channels [51,108] and stands considerably dif-

ferent from the traditional scales in transmission and RI setups where corresponding

codebooks size grows exponentially and double exponentially, respectively.

We show the achievability proof using a sphere packing arrangement of hyper spheres

and a distance decoder. In particular, we pack hyper spheres with radius
p

nen ⇠ n
1

4 ,

inside a larger hyper sphere, which results in ⇠ 2
1

4
n log n codewords. For the converse

proof, we follow a similar approach as in chapter 4 and 5 for the DI over the Gaussian

channels [99, 106]. That is, given a certain condition imposed on the codebook, using

the continuity of the channel law, we reach to a contradiction on sum of the error prob-

abilities. In general, the derivation here is more involved than the derivation in the

DI case [105] and entails employing of new analysis and inequalities. Here, proving

the continuity of Binomial law requires dealing with binomial coe�cients and factorial

terms. We used inequalities on the ratio of two Gamma function depending on the re-

lation of two codeword’s symbols with each other in all possible cases. In chapter 4 and

5 on Gaussian channels with fading [105], the converse proof was based on establish-

ing a minimum distance between Euclidean norm of each pair of codewords. Here, we

consider a distance (absolute value norm) between symbols of two di↵erent codeword

in the relevant Lemma; cf. (8.50).
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CHAPTER 9

“ If The Stone Does Not Want to Shake, If it is Stuck,

First Move The Stones Around it.

”
Ludwig Witgenstein,

9.1 | Introduction

Modern communications within the scope of future generation wireless networks (XG)

[26, 27] require the transfer of extensive amount of data in wireless communication,

including smart applications for internet of things [127], cellular communication, sen-

sor networks, etc. One of the basic and abstract models for wireless communication

systems is the fading channel [128, 144]. Unlike the fast fading setting, where the

coherence time of the channel is small relative to the latency requirement of the ap-

plication [144, 191], in the slow fading regime, the latency is short compared to the

coherence time [144, 191]. In some appliances, the receiver may acquire channel side

information (CSI) by instantaneous estimation of the channel parameters [149,192].

In the (standard) identification problem [23], the receiver is interested in a single
message which we refer to as the target message in the rest of the paper. However, for

the K-identification problem [193], the receiver aims to determine the presence of a

single message within a set of messages referred to as the target message set1. The K-

identification scenario may be understood as the generalization of the original identifi-

cation problem within this interpretation: the target message (singleton) is substituted

with a set of more than one element with size K. The first result for K-identification is

1 For instance, the K-identification scenario may be used whenever a person aims to determine whether
a winner is among their favourite teams or within the context of lottery prize; when people seek to know
if a lottery number is among their collection of numbers.
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derived by Ahlswede for a DMC W with randomized encoder setting as follows: As-

sume that K = 2
kn, then the set of all achievable coding and target identification rate

pairs, i.e., (R, k) with a codebook of double exponentially large, i.e., M = 2
2

nR
, con-

tains
�
(R, k) : 0  R, k; R + 2k  CRI(W , M, K)

 
; see [193, Th. 1]. DI for block fading

channels without CSI is studied in [194]. To the best of the authors’ knowledge, the fun-

damental performance limits of DKI for the Gaussian channels has not been studied in

the literature, yet.

9.1.1 | Contributions

In this chapter, we consider identification systems employing deterministic encoder

and receivers that are interested to accomplish the K-identification task, namely, find-

ing an object in a target message set of size K where K = 2
k log n for k 2 [0, 1) scales

sub-linearly in the codeword length n. We assume that the noise is additive Gaussian

and the signal experiences slow fading process. Further, we assume that the channel

side information (CSI) is available at the decoder. We formulate the problem of DKI

over the GSF under average power constraint which account for the restricted signal

energy in the transmitter. As our main objective, we investigate the fundamental per-

formance limits of DKI over the slow fading channel. In particular, this paper makes

the following contributions:

} Generalized Identification Model: In several identification systems, often the

size of target message set K can be large, particularly when one by one compari-

son is not demanded due to the delay constraint. In addition, the value of K may

increases with the codeword lengths n. To do so, we consider a generalized iden-

tification model that captures the standard channel (i.e., K = 1), identification

channels with constant K > 1, and identification channels for which K increases

with the codeword length n. To the best of the authors’ knowledge, such a gen-

eralized deterministic identification model has not been studied in the literature,

yet.

} Codebook Scale: We establish that the codebook size of DKI problem over the

Gaussian channels with slow fading for deterministic encoding scales in n similar

to the DI problem (K = 1) [99, 105], namely super-exponentially in the codeword

length (⇠ 2
(n log n)R), even when the size of target message set scale as K = 2

k log n

for any k 2 [0, 1), which we refer to as the target identification rate. This observa-
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tion suggests that increasing the number of target messages does not change the

scale of the codebook derived for DI over the Gaussian channels [105].

} Capacity Bounds: We derive DKI capacity bounds for the slow fading channel

with constant K � 1 and growing size of the target message set K = 2
k log n, re-

spectively. We show that for constant K, the proposed lower and upper bounds on

R are independent of K, whereas for growing number of target messages, they are

functions of the target identification rate k.

} Technical Novelty: To obtain the proposed lower bound, the existence of an ap-

propriate sphere packing within the input space, for which the distance between

the centers of the spheres does not fall below a certain value, is guaranteed. This

packing incorporates the e↵ect of number of target messages as a function of k. In

particular, we consider the packing of hyper spheres inside a larger large hyper

sphere, whose radius grows in both the codeword length n and the target identifi-

cation rate k, i.e., ⇠ n
1+k

4 . For derivation of the upper bound, we assume that for

given sequences of codes with vanishing error probabilities, a certain minimum

distance between the codewords is asserted, where this distance depends on the

target identification rate and decreases as K grows.

9.1.2 | Organization

The remainder of this paper is structured as follows. In Section 9.2, system model is

explained and the required preliminaries regarding DKI codes are established. Sec-

tion 9.3 provides the main contributions and results on the K-identification capacity of

the slow fading channel. Finally, Section 9.4 of the paper concludes with a summary

and directions for future research.

9.2 | SystemModel and Preliminaries

In this section, we present the adopted system model and establish some preliminaries

regarding DKI coding.

9.2.1 | SystemModel

We consider an identification-focused communication setup, where the decoder seeks

to accomplish the following task: Determining whether or not an specific message be-
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longs2 to a set of messages called target message set; see Figure 9.1. We assume that the

signal experiences an additive Gaussian noise and slow fading process.

i Enc ⇥

fG

+ Dec Yes / No

Zt

={j1, . . . , jK}

ci,t

G

G

Yt

Figure 9.1: End-to-end transmission chain for DKI communication in a wireless communication
system modelled as a GSF. The transmitter maps message i onto a codeword ci = (ci,1, . . . , ci,n). The
receiver is provided with an arbitrary target message set = {j1, . . . , jK}, and given the channel
output vector Y, it asks whether the sent message i belong to set of K messages {j1, . . . , jK} or not.

To attain this objective, a coded communication between the transmitter and the

receiver over n channel uses of a Gaussian channel with slow fading is established3. We

consider the slow fading channel Gslow which arises as a channel model in the context

of wireless communication [144] where the input-output relation is given by

Yt = Gxt + Zt , (9.1)

where Gt = G ⇠ fG is a continuous random variable ⇠ fG(g), and the noise sequence

Z̄
i.i.d.⇠ N

⇣
0,

s2

Z
n

⌘
where s2

Z > 0 is bounded away from zero. We assume that G has finite

expectation and variance var(G) > 0. Further, assume that the values of G belong to a

set G where g
def
= inf

G2G
|G|, that is, the set G has a constant infimum or equivalently, the

fading coe�cients are bounded away from zero, i.e., |Gt| > g , 8t 2 [[n]]with probability

1.

The average power constraint on the codewords is

1

n
kxk2  Pavg , (9.2)

where Pavg > 0 constrain the energy of codeword over the entire n channel uses.

9.2.2 | DI Coding For The GSF

The definition of a DKI code for the GSF Gslow is given below.

2 We assume that the transmitter does not know which specific K messages the decoder is interested
in. This assumption is justified by the fact that otherwise, entire communication setting is specialized to
transmission of only one indicator bit between Alice and Bob.

3 The proposed performance bounds works regardless of whether or not an specific code is used for
communication, although proper codes may be required to approach such performance limits.
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c2

c3

c4

c1

c5

c6

c7

input space output space

5

1

6

7

2

3

4

correct identification

type I error

type II error

Figure 9.2: Illustration of a deterministic 3-identification setting with target message set = {2, 3, 4}.
In the correct identification scenario, channel output is observed in the union of individual decoder j,g
where j belongs to the target message set. Type I error occurs if the channel output is detected in the
complement of union of individual decoders for which the index of codeword at the lest belongs to. The
case where the index of codeword at the left does not match to any of the individual decoders for which
the channel output belongs to the their union, is referred to as the type II error.

Definition 9.2.1 (Slow Fading DKI code). An (n, M(n, R), K(n, k), e1, e2)DKI code for a GSF
Gslow under average power constraint of Pave, and for integers M(n, R) and K(n, k), where
n and R are the codeword length and coding rate, respectively, with CSI at the decoder is
defined as a system (C, T ), which consists of a codebook C = {ci}i2[[M]] ⇢ Rn, such that

1

n
kcik2  Pavg , (9.3)

8i 2 [[M]] and a decoder

T =
[

j2
j,g , (9.4)

where j,g ⇢ Rn, for j 2 [[M]], g 2 G, and 2 (M
K )

4. Given a message i 2 [[M]], the encoder
transmits ci, and the decoder’s aim is to answer the following question: Was a desired message
j 2 sent or not? There are two types of errors that may occur (see Figure 9.2): Rejection of
the true message for i 2 (type I), or acceptance of a false message for i /2 (type II). The
corresponding error probabilities of the DKI code (C, T ) are given by

Pe,1(i) = sup

g2G

"
Pr

✓
Y 2 T c

��� x = ci

◆#

i2
= sup

g2G

"
1�

Z

T
fZ(y� gci)dy

#

i2
(9.5)

4 We recall that (M
K ) is the family of all subsets of [[M]] with size K and DKI code definition applies to

every possible choice of set with K arbitrary messages from the original message set [[M]].
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Pe,2(i, ) = sup

g2G

"
Pr

✓
Y 2 T

��� x = ci

◆#

i/2
= sup

g2G

"Z

T
fZ(y� gci)dy

#

i/2
(9.6)

where

fZ(z) = fZ(y� gci)

=
n

’
t=1

fZ(yt � gci,t)

=
n

’
t=1

1

(2ps2

Z)
1/2

e�z2
t /2s2

Z

=
1

(2ps2

Z)
n/2

e�kzk
2
/2s2

Z , (9.7)

(see Figure 9.1) and satisfy the following bounds Pe,1(i)  e1 , 8i 2 and Pe,2(i, ) 
e2 , 8i /2 , where 2 (M

K ) and every e1, e2 > 0.
A rate R > 0 is called achievable if for every e1, e2 > 0 and su�ciently large n, there exists

an (n, M(n, R), K(n, k), e1, e2) DKI code. The DKI capacity of the GSF Gslow is defined as
the supremum of all achievable rates, and is denoted by CDI(Gslow, M, K).

Remark 9.2.1. If the fading coe�cients can be zero or arbitrarily close to zero, i.e., 0 2
cl(G), then it immediately follows that the DKI capacity is zero. To see this, observe that if
0 2 cl(G), then

Pe,1(i) + Pe,2(i, ) = sup

g2G

"
1�

Z

T
fZ(y� gci) dy

#
+ sup

g2G

"Z

T
fZ(y� gci) dy

#

�
"

1�
Z

T
fZ(y� gci) dy

#

g=0,

i2

+

"Z

T
fZ(y� gci) dy

#

g=0,

i/2

= 1 . (9.8)

9.3 | DKI Capacity of The GSF

In this section, we first present our main results, i.e., lower and upper bounds on the

achievable identification rates for the GSF. Subsequently, we provide the detailed proofs

of these bounds.

9.3.1 | Main Results

The DKI capacity theorem for GSF Gslow is stated below.
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Theorem 9.3.1. Consider the GSF Gslow and assume that the fading coe�cients are bounded
away from zero, i.e., 0 /2 cl(G). Further, assume that the number of target messages scales
sub-linearly with codeword length n, i.e., K(n, k) = 2

k log n, where k 2 [0, 1). Then the
DKI capacity of Gslow subject to average power constraint of the formkcik2  nPave and a
codebook of super-exponential scale, i.e., M(n, R) = 2

(n log n)R, is bounded by

1� k

4
 CDI(Gslow, M, K)  1 + k . (9.9)

Proof. The proof of Theorem 9.3.1 consists of two parts, namely the achievability and the con-

verse proofs, which are provided in Sections 9.3.2 and 9.3.3, respectively.

Remark 9.3.1. The result in Theorem 9.3.1 comprises the following three special cases in
terms of K:

2 Unit K = 1: This cases accounts for a standard identification setup (k = 0), that is, when
the target message set is a degenerate case = {i}i2[[M]], i.e., K = | | = 1. Therefore, the
identification setup as studied in [23] can be regarded as a special case of K-identification.
This result is known in the identification literature [23,99,105,106].

2 Constant K > 1: Constant K > 1 implies k ! 0 as n ! •. Surprisingly, our capacity
result in Theorem 9.3.1 reveals that the bounds for the GSF with constant finite K > 1 are
in fact identical to those for the memoryless GSF given in [99,105,106].

2 Growing K: Our capacity results reveal that reliable identification is possible even when K
scales with the codeword length as ⇠ 2

k log n for k 2 [0, 1). Moreover, the impact of target
identificaiton rate k is reflected in the capacity lower and upper bounds in (9.9), where the
bounds respectively decrease and increase in k.

9.3.2 | Achievability

The achievability proof consists of the following two main steps.

2 Step 1: We propose a codebook construction and derive an analytical lower bound

on the corresponding codebook size using inequalities for sphere packing density.

2 Step 2: To prove that this codebook leads to an achievable rate, we propose a

decoder and show that the corresponding type I and type II error rates vanished

as n! •.
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9.3.2.1 | Normalization

Since the decoder can normalize the output symbols by
p

n, we have an equivalent

input-output relation,

Ȳt = Gx̄t + Z̄t , (9.10)

where Gt = G ⇠ fG, and the noise sequence Z̄
i.i.d.⇠ N

⇣
0,

s2

Z
n

⌘
, with an input power

constraint

kx̄k 
p

A , (9.11)

where A def
= Pave and

x̄ =
1p
n

x , Z̄ =
1p
n

Z , Ȳ =
1p
n

Y . (9.12)

9.3.2.2 | Codebook Construction

We use a packing arrangement of non-overlapping hyper spheres of radius r0 =
p

qn in

a large hyper sphere with radius
p

A�
p

qn, with

qn =
A
p

K

n
1

2
(1�b)

=
A

n
1

2
(1�(b+k))

, (9.13)

where 0 < b < 1 is an arbitrarily small constant5, and k 2 [0, 1).

Let S denote a sphere packing, i.e., an arrangement of M non-overlapping spheres

Sc̄i(n, r0), i 2 [[M]], that are packed inside the larger sphere S0(n,

p
A �
p

qn) with

radius
p

A�
p

qn. As opposed to standard sphere packing in coding techniques [138],

the spheres are not necessarily entirely contained within the larger sphere. That is,

we only require that the centers of the spheres are inside S0(n,

p
A �
p

qn) and are

disjoint from each other and have a non-empty intersection with S0(n,

p
A �
p

qn).

The packing density �n(S ) is defined as the ratio of the saturated packing volume to

the larger sphere’s volume Vol
⇣
S0(n,

p
A�
p

qn)
⌘
, i.e.,

�n(S ) ,
Vol

⇣
S0(n,

p
A�
p

qn) \
SM

i=1
Sc̄i(n, r0)

⌘

Vol
⇣
S0(n,

p
A�
p

qn)
⌘ . (9.14)

5 we recall that our achievability proof works for any b 2 (0, 1); however, arbitrarily small values of b
are of interest since they result in the tightest lower bound.
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p
A�
p

qn

p
A

p
qn

Figure 9.3: Illustration of a saturated sphere packing inside a hyper sphere, where small spheres of radius
r0 =

p
qn cover a larger hyper sphere. The small spheres are disjoint from each other and have a non-empty

intersection with the large sphere. Some of the small spheres, colored in green, are not entirely contained
within the larger sphere, and yet they are considered to be a part of the packing arrangement, since their
centers fulfill the power constraint in 9.11. Yellow colored spheres whose centers exactly lies on the circle
with radius A do not contribute to the packing. As we assign a codeword to each sphere center (white and
green), the 2-norm of a codeword is bounded by

p
A as required.

Sphere packing S is called saturated if no spheres can be added to the arrangement

without overlap.

In particular, we use a packing argument that has a similar flavor as that observed

in the Minkowski–Hlawka theorem for saturated packing [138]. Specifically, consider

a saturated packing arrangement of

M(n,R)[

i=1

Sci(n,

p
qn) (9.15)

spheres with radius r0 =
p

qn embedded within sphere S0(n,

p
A �
p

qn). Then, for

such an arrangement, we have the following lower [118, Lem. 2.1] and upper bounds

[138, Eq. 45] on the packing density

2
�n  �n(S )  2

�0.599n
. (9.16)

In our subsequent analysis, we use the above lower bound which can be proved as

follows: For the saturated packing arrangement given in (9.15), there cannot be a point

in the larger sphere S0(n,

p
A�
p

qn) with a distance of more than 2r0 from all sphere

centers. Otherwise, a new sphere could be added which contradicts the assumption

that the union of M(n, R) spheres with radius
p

qn is saturated. Now, if we double the

radius of each sphere, the spheres with radius 2r0 cover thoroughly the entire volume

of S0(n,

p
A�
p

qn), that is, each point inside the large hyper sphere S0(n,

p
A�
p

qn)
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belongs to at least one of the small spheres. In general, the volume of a hyper sphere of

radius r is given by [138, Eq. (16)]

Vol
�
Sx(n, r)

�
=

p
n
2

G( n
2
+ 1)

· rn
. (9.17)

Hence, if the radius of the small spheres is doubled, the volume of

M(n,R)[

i=1

Sci(n,

p
qn)

is increased by 2
n. Since the spheres with radius 2r0 cover S0(n,

p
A�
p

qn), it follows

that the original r0-radius packing has a density of at least 2
�n 6. We assign a codeword

to the center ci of each small sphere. The codewords satisfy the input constraint as

kc̄ik 
p

A . (9.18)

Since the volume of each sphere is equal to Vol(Sc1
(n, r0)) and the centers of all

spheres lie inside the sphere, the total number of spheres is bounded from below by

M =
Vol

⇣SM
i=1

Sc̄i(n, r0)
⌘

Vol(Sc1
(n, r0))

�
Vol

⇣
S0(n,

p
A�
p

qn) \
SM

i=1
Sc̄i(n, r0)

⌘

Vol(Sc̄1
(n, r0))

=
�n(S ) ·Vol

⇣
S0(n,

p
A�
p

qn)
⌘

Vol(Sc̄1
(n, r0))

� 2
�n ·

Vol
⇣
S0(n,

p
A�
p

qn)
⌘

Vol(Sc̄1
(n, r0))

, (9.19)

where the first inequality holds by (9.14) and the second inequality holds by (9.16). The

above bound can be further simplified as follows

log M
(a)
� log

 p
A�
p

qn
r0

!n

� n

(b)
= n log

 p
A�
p

qnp
qn

!
� n

6 We note that the proposed proof of the lower bound in (9.16) is non-constructive in the sense that,
while the existence of the respective saturated packing is proved, no systematic construction method is
provided.
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= n log

0

@
s

A
qn
� 1

1

A� n

(c)
� 1

2
n log

✓
A
qn

◆
� 2n , (9.20)

where (a) exploits (9.17), (b) follows from r0 =
p

qn, and (c) holds by log(t � 1) �
log t� 1 , 8t � 2. Therefore, for qn = A/n

1

2
(1�(b+k)), we obtain

log M � 1

2
n log n

1

2
(1�(b+k)) � 2n

=

✓
1� (b + k)

4

◆
n log n� 2n , (9.21)

where the dominant term is of order n log n. Hence, for obtaining a finite value for the

lower bound of the rate, R, (9.21) induces the scaling law of M to be 2
(n log n)R. Therefore,

we obtain

R � 1

log n

"✓
1� (b + k)

4

◆
log n� 2

#
, (9.22)

which tends to 1�k
4

when n! • and b! 0.

9.3.2.3 | Encoding

Given message i 2 [[M]], transmit x̄ = c̄i.

9.3.2.4 | Decoding

Let

tn =
g2qn

3
=

Ag2

3n
1

2
(1�(b+k))

, (9.23)

where 0 < b < 1 is an arbitrarily small constant, 0 < c < 2 is a constant, k 2 [0, 1), and

g is the infimum value of all fading coe�cients g.
To identify whether message j 2 M was sent, given the fading coe�cient g, the

decoder checks whether the channel output ȳ belongs to the following decoding set:

T =
[

j2
j,g , (9.24)

where

Tj,g =

(
ȳ 2 Rn

:

n

Â
t=1

(ȳt � gc̄j,t)
2  s2

Z + tn

)
. (9.25)
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is referred to as the individual decoding territory evaluated for observation vector y

and codeword cj.

9.3.2.5 | Error Analysis

Fix e1, e2 > 0 and let z0, z1 > 0 be arbitrarily small constants. Before we proceed, for

the sake of brevity of analysis, we introduce the following conventions:

2 Let Yt(.|i, g) denote the channel output at time t given that x̄ = c̄i and G = g.

2 Y(.|i, g) = (Y1(.|i, g), . . . , Yn(.|i, g)).

Consider the type I errors, i.e., the transmitter sends c̄i, yet Y(.|i, g) /2 ,g. For

every i 2 [[M]], the type I error probability is given by

Pe,1(i) = sup

g2G

h
Pe,1

�
i |g

�i
, (9.26)

where

Pe,1

�
i |g

�
= Pr

⇣
Ȳ(.|i, g) 2 c

,g

⌘

= Pr

0

B@Ȳ(.|i, g) 2

0

@[

i2
i,g

1

A
c
1

CA

(a)
= Pr

0

@Ȳ(.|i, g) 2
\

i2

c
i,g

1

A

(b)
 Pr

⇣
Ȳ(.|i, g) 2 c

i,g

⌘

(c)
⌘ Pr

 
n

Â
t=1

(Ȳt(.|i, g)� Gc̄i,t)
2 > s2

Z + tn

!

(d)
= Pr

 
n

Â
t=1

Z̄t
2 > s2

Z + tn

!
, (9.27)

where (a) follows by De Morgan’s law for finite number of unions, i.e.,
⇣S

i2 i,g

⌘c
=

T
i2

c
i,g, (b) holds since

T
i2

c
i,g ⇢ i,g, (c) follows by definition of the individual

decoding territory in (9.25), and (d) holds since the fading coe�cient G and the noise

vector Z̄ are statistically independent.

Now, in order to bound Pe,1

�
i |g

�
, we apply Chebyshev’s inequality, namely

Pe,1

�
i |g

�
 Pr

 
n

Â
t=1

Z̄t
2 � s2

Z > tn

!
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(a)
 3s4

Z
nt2

n

(b)
=

27s4

Z
A2g4nk+b

 e1 , (9.28)

where (a) holds since the fourth moment of a Gaussian variable V ⇠ N (0, s2

V) is

E[V4] = 3s4

V and (b) follows from (9.23). Hence, Pe,1

�
i |g

�
 e1 , 8g 2 G holds for

su�ciently large n and arbitrarily small e1 > 0. Thereby, the type I error probability

satisfies Pe,1 (i)  e1; see (9.26).

Next, we address type II errors, i.e., when Ȳ(.|i, g) 2 ,g while the transmitter sent

c̄i with i /2 . Then, for every 2 (M
K ), where i /2 , the type II error probability is

given by

Pe,2(i, ) = sup

g2G

h
Pe,2

�
i, |g

�i
, (9.29)

where

Pe,2

�
i, |g

�
= Pr

⇣
Ȳ(.|i, g) 2 ,g

⌘

= Pr

0

B@Ȳ(.|i, g) 2

0

@[

j2
j,g

1

A

1

CA

⌘ Pr

0

@[

j2

(
n

Â
t=1

⇣
Ȳt(.|i, g)� Gc̄j,t

⌘2

 s2

Z + tn

)1

A

(a)
= Pr

0

@[

j2

(
n

Â
t=1

✓
g
⇣

c̄i,t � c̄j,t

⌘
+ Z̄t

◆2

 s2

Z + tn

)1

A

(b)
 Â

j2
Pr

 
n

Â
t=1

✓
g
⇣

c̄i,t � c̄j,t

⌘
+ Z̄t

◆2

 s2

Z + tn

!
, (9.30)

where (a) hold since the fading coe�cient G and the noise vector Z̄ are statistically

independent and (b) follows by the union bound, i.e., the probability of union of events

is upper bounded by sum of probability of the individual events.

In order to bound (9.30), we divide into two cases. First, consider g 2 G such that

kg(c̄i � c̄j)k > 2

q
s2

Z + tn. Therefore, by the reverse triangle inequality, ka� bk �
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��kak �kbk
��, we have

vuut n

Â
t=1

 ✓
g
⇣

c̄i,t � c̄j,t

⌘◆
+ Z̄t

!2

�
���g

⇣
c̄i � c̄j

⌘����
��Z̄

��

� 2

q
s2

Z + tn �
��Z̄

�� . (9.31)

Hence, for every g such that kg
⇣

c̄i � c̄j

⌘
k > 2

q
s2

Z + tn, we can bound the type II error

probability by

Pe,2

✓
i,

���g
◆
 Â

j2
Pr

✓��Z̄

�� �
q

s2

Z + tn

◆

= Â
j2

Pr

 
n

Â
t=1

Z̄t
2 > s2

Z + tn

!

 3Ks4

Z
nt2

n

=
27s4

Z
A2g4nb

 e2 , (9.32)

where (a) follows from applying Chebyshev’s inequality and since the fourth moment

of a Gaussian variable V ⇠ N (0, s2

V) is E[V4] = 3s4

V and (b) follows from (9.23). Hence,

Pe,1

�
i |g

�
 e1 , 8g 2 G holds for su�ciently large n and arbitrarily small e1 > 0.

Thereby, the type I error probability satisfies Pe,2 (i, )  e2; see (9.26).

Now, we focus on the second case, i.e., when
���g

⇣
c̄i � c̄j

⌘���  2

q
s2

Z + tn . (9.33)

Observe that for every given g 2 G,
n

Â
t=1

(g(c̄i,t � c̄j,t) + Z̄t)
2 =

n

Â
t=1

g2(c̄i,t � c̄j,t)
2 +

n

Â
t=1

Z̄2

t + 2

n

Â
t=1

g(c̄i,t � c̄j,t)Zt . (9.34)

Then define the event

E0(Z|g) =
(

Z 2 Rn
:

����
n

Â
t=1

g(c̄i,t � c̄j,t)Z̄t

���� >
tn
2

)
, (9.35)

Now, in order to bound Pr(E0(Z|g)), we apply Chebyshev’s inequality, namely

Pr
�
E0(Z|g)

�


Var
h
Ân

t=1
g(c̄i,t � c̄j,t)Z̄t

i

(tn/2)2
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(a)
=

4 Ân
t=1

g2(c̄i,t � c̄j,t)
2E[Z̄2

t ]

t2
n

(b)
=

4s2

Zkg(c̄i � c̄j)k2

nt2
n

(c)
=

16s2

Z

⇣
s2

Z + tn

⌘

nt2
n

=
144s2

Z

⇣
s2

Z + tn

⌘

A2g4nk+b

def
= z0 , (9.36)

where (a) and (b) holds since the noise sequence Z̄
i.i.d.⇠ N

⇣
0,

s2

Z
n

⌘
, that is, Var[Z̄t] =

E[Z̄2
t ]�E2[Z̄t] =

s2

Z
n , and (c) follows from (9.33). Observe that given the complementary

event E c
0
(Z|g), we have

2

n

Â
t=1

g
⇣

c̄i,t � c̄j,t

⌘
Z̄t � �tn . (9.37)

Therefore, the event E c
0
(Z|g), the type II error event in (9.30), and the identity in (9.33)

together imply that the following event occurs,

E1(Z|g) =
(

Z 2 Rn
:

n

Â
t=1

g2(c̄i,t � c̄j,t)
2 +

n

Â
t=1

Z̄2

t  s2

Z + 2tn

)
. (9.38)

Now lets define

Hi,j(Z|g) =
(

Z 2 Rn
:

n

Â
t=1

(g(c̄i,t � c̄j,t) + Z̄t)
2  s2

Z + tn

)
. (9.39)

Therefore, applying the law of total probability to (9.40), we have

Pe,2(i, | g) = Â
j2


Pr

⇣
Hi,j(Z|g) \ E0(Z|g)

⌘
+ Pr

⇣
Hi,j(Z|g) \ E c

0
(Z|g)

⌘�

 Â
j2

h
Pr(E0(Z|g)) + Pr

�
E1(Z|g)

�i

 K
h
z0 + Pr

�
E1(Z|g)

�i
, (9.40)

where the last inequality holds by (9.36).

We now proceed with bounding Pr(E1(Z|g)) as follows. Based on the codebook

construction, each codeword is surrounded by a sphere of radius
p

qn, that is
���c̄i � c̄j

��� �
p

qn . (9.41)

197



CHAPTER 9. DKI FOR SLOW FADING CHANNELS 9.3. DKI CAPACITY OF THE GSF

which implies

g2

���c̄i � c̄j

���
2

� g2qn , (9.42)

where g is the infimum value in G. Thus, we can establish the following upper bound

for event E1(Z|g):

Pr(E1(Z|g))  Pr

⇣��Z̄
��2  s2

Z + 2tn � g2qn

⌘

= Pr

⇣��Z̄

��2 � s2

Z  �tn

⌘

= Pr

 
n

Â
t=1

Z̄2

t � s2

Z  �tn

!

(a)
 Ân

t=1
Var[Z̄2

t ]

t2
n

(b)
 Ân

t=1
E[Z̄4

t ]

t2
n

=
3n

✓
s2

Z
n

◆2

t2
n

=
3s4

Z
nt2

n

(c)
=

27s4

Z
A2g4nk+b

def
= z1 , (9.43)

where (a) follows from applying Chebyshev’s inequality, (b) holds since the fourth

moment of a Gaussian variable V ⇠ N (0, s2

V) is E[V4] = 3s4

V and (c) follows from

(9.23) and (9.36). Therefore, we can proceed to bound the rightmost in (9.40) as follows

Pe,2(i, )  K
⇥
Pr(E0(Z|g)) + Pr(E1(Z|g))

⇤

 K [z0 + z1]

=
144Ks2

Z

⇣
s2

Z + tn

⌘

A2g4nk+b +
27Ks4

Z
A2g4nk+b

=
144s2

Z

⇣
s2

Z + tn

⌘
+ 27s4

Z

A2g4nb

 e2 , (9.44)
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hence, Pe,2

�
i, |g

�
 e2 , 8g 2 G holds for su�ciently large n and arbitrarily small

e2 > 0. Thereby, the type II error probability satisfies Pe,2 (i, )  e2; see (9.29).

We have thus shown that for every e1, e2 > 0 and su�ciently large n, there exists an
(n, M(n, R), K(n, k), e1, e2) code.

9.3.3 | Converse Proof

The converse proof consists of the following two main steps.

2 Step 1: We show in Lemma 9.3.1 that for any achievable rate (for which the type I

and type II error probabilities vanish as n ! •), the distance between every pair

of codeword should be at least larger than a threshold.

2 Step 2: Employing the Lemma 9.3.1, we derive an upper bound on the codebook

size of achievable DKI codes.

We start with the following lemma which establish a lower bound on the Euclidean

norm of two di↵erent codewords’ di↵erence.

Lemma 9.3.1. Suppose that R is an achievable rate for the GSF Gslow and let b > 0 be an
arbitrarily small constant that does not depend on codeword length n. Consider a sequence
of (n, M(n, R), K(n, k), e(n)

1
, e(n)

2
) codes (C(n)

, T (n)) such that e(n)
1

and e(n)
2

tend to zero as
n ! •. Then there exists n0(b), such that for all n > n0(b), every pair of codewords in the
codebook C(n) satisfies the following property.

For every pair of codewords, ci1 and ci2 ,
���ci1 � ci2

��� � 2

p
ne0n , (9.45a)

for all i1, i2 2 [[M]], such that i1 6= i2, with

e0n =
A

n2(1+k+b) , (9.45b)

The proof is given in the following.

Proof. In the following, we provide the proof of Lemma 9.3.1. The method of proof is

by contradiction, namely, we assume that the condition given in (9.45a) is violated and

then we show that this leads to a contradiction, namely, sum of the type I and type II

error probabilities converge to one, i.e., limn!•
⇥
Pe,1(i1) + Pe,2(i2, )

⇤
= 1. Fix e1 and
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e2. Let z, h, µ, p > 0 be arbitrarily small constants. Assume to the contrary that there

exist two messages i1 and i2, where i1 6= i2, such that
���ci1 � ci2

��� < 2

p
ne0n = an , (9.46)

where

an ⌘
2

p
A

n
1

2
(1+2(k+b)

. (9.47)

Now let us define the following subsets

i1,i2 =

(
y 2 i1,g :

��y� gci2
�� 

r
n
⇣

s2

Z + z
⌘)

, (9.48)

i1,i2 =

(
y 2 Yn

:
��y� gci2

�� 
r

n
⇣

s2

Z + z
⌘)

. (9.49)

Then, observe that

Pe,1(i1) + Pe,2(i2, )

= sup

g2G

"
1�

Z

T
fZ(y� gci1) dy

#

i12
+ sup

g2G

"Z

T
fZ(y� gci2) dy

#

i2 /2
. (9.50)

Now consider the first integral in (9.50) where for every g 2 G we have,
Z

T
fZ(y� gci1) dy

(a)


Z
S

i
1
2

i
1

,g
fZ(y� gci1) dy

(a)
=

Z
0

@ S

i
1
2

i
1

,g

1

A\ i
1

,i2

fZ(y� gci1) dy +
Z
0

@ S

i
1
2

i
1

,g

1

A\ c
i
1

,i2

fZ(y� gci1) dy

(b)


Z
S

i
1
2

⇣
i
1

,g\ i
1

,i2

⌘ fZ(y� gci1) dy +
Z

S

i
1
2

✓
i
1

,g\ c
i
1

,i2

◆ fZ(y� gci1) dy

(c)


Z
S

i
1
2

i
1

,i2

fZ(y� gci1) dy +
Z

S

i
1
2

c
i
1

,i2

fZ(y� gci1)dy , (9.51)

where (a) holds by the union bound, (b) follows by the following
0

@ [

i12
i1,g

1

A \ i1,i2 ⇢
[

i12

⇣
i1,g \ i1,i2

⌘
, (9.52a)
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and
0

@ [

i12
i1,g

1

A \ c
i1,i2 ⇢

[

i12

⇣
i1,g \ c

i1,i2

⌘
, (9.52b)

and (c) holds since

c
i1,i2 � i1,g \ c

i1,g . (9.53)

Consider the second integral in (9.51). Then, by the triangle inequality,
��y� gci,1

�� �
��y� gci,2

���
��g(ci,1 � ci,2)

��

=
��y� gci,2

��� g
��ci,1 � ci,2

��

>
q

n(s2

Z + z)� g
��ci,1 � ci,2

��

�
q

n(s2

Z + z)� gan . (9.54)

For su�ciently large n, this implies the following subset

c
i1,i2 =

(
yn 2 Yn

:
��y� gci,1

�� >

r
n
⇣

s2

Z + h
⌘)

, (9.55)

for h < z
2
. That is,

(
y :

��y� gci,2
�� �

r
n
⇣

s2

Z + z
⌘) implies�!

(
y :

��y� gci,1
�� �

r
n
⇣

s2

Z + h
⌘)

.

(9.56)

Thus we deduce that

c
i1,i2 �

c
i1,i2 , (9.57)

Hence, the second integral in the right hand side of (9.51) is bounded by
Z

S

i
1
2

c
i
1

,i2

fZ(y� gci1)dy 
Z

S

i
1
2

c
i
1

,i2

fZ(y� gci1)dy

= Â
i12

Pr

 
��y� gci,1

�� �
r

n
⇣

s2

Z + h
⌘!

= K · Pr(kZk2 � ns2

Z > nh)

(a)
 3s4

Z
n1�kh2
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 µ , (9.58)

for su�ciently large n with k 2 [0, 1), where (a) holds by Chebyshev’s inequality, fol-

lowed by the substitution of z ⌘ y� gci1 . Thus, by (9.51),
Z

T
fZ(y� gci1) dy 

Z
S

i
1
2

i
1

,g
fZ(y� gci1) dy


Z

S

i
1
2

i
1

,i2

fZ(y� gci1) dy + µ . (9.59)

Now, let us focus on the first integral in (9.51) with domain of i1,i2 , i.e., where

��y� gci,2
�� 

q
n(s2

Z + z) . (9.60)

Observe that

fZ(y� gci1)� fZ(y� gci2) = fZ(y� gci1)

2

41� e
� 1

2s2
Z

✓���y�gci2

���
2

�
���y�gci

1

���
2
◆3

5 . (9.61)

By the triangle inequality,
���y� gci1

��� 
��y� gci2

��+ g
���ci1 � ci2

��� . (9.62)

Taking the square of both sides, we have
���y� gci1

���
2


��y� gci2

��2
+ g2

���ci2 � ci1

���
2

+ 2
��y� gci2

�� · g
���ci2 � ci1

���
(a)

��y� gci2

��2
+ g2a2

n + 2gan

q
n(s2

Z + z)

(b)
=
��y� gci2

��2
+

4Ag2

n1+2(k+b) +
4g
q

A(s2

Z + z)

nk+b , (9.63)

where (a) follows from (9.46) and (9.60), and (b) holds by (9.47). Now, in order to

bound (9.63), let us define,

Nmax

def
= 2s2

Z · max

✓
4Ag2

, 8g
q

A(s2

Z + z)

◆
. (9.64)

Therefore, (9.63) is bounded as follows

���y� gci1

���
2

�
��y� gci2

��2  4Ag2

n1+2(k+b) +
4g
q

A(s2

Z + z)

nk+b

 2s2

Z Nmax

nk+b , (9.65)
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where the last inequality holds since n1+2(k+b) � nk+b for a given k and b, and every n.
Now let us define

wn
def
=

Nmax

nk+b . (9.66)

Then we employ inequality 1� 1

x  ln x , 8x > 0 ( [195, Eq. 1]) by setting x = 1

1�wn
and

provide an upper bound on wn as follows

wn  ln

✓
1

1�wn

◆

= ln

 
nk+b

nk+b � Nmax

!
, (9.67)

where conditions x > 0 and wn < 1 are fulfilled for su�ciently large n. Therefore by

(9.65) we obtain

���y� gci1

���
2

�
��y� gci2

��2  2s2

Z · ln

 
nk+b

nk+b � Nmax

!
, (9.68)

Hence,

fZ(y� gci1)� fZ(y� gci2)  fZ(y� gci1)

 
1� e

� wn
2s2

Z

!

 fZ

⇣
y� gci1

⌘
0

@1� e
� ln

✓
nk+b

nk+b�Nmax

◆1

A

 fZ

⇣
y� gci1

⌘ 
1� nk+b � Nmax

nk+b

!

 fZ

⇣
y� gci1

⌘
· Nmax

nk+b

= fZ

⇣
y� gci1

⌘
· wn , (9.69)

Now we obtain,

e1 + e2 � Pe,1(i1) + Pe,2(i2, )

(a)
� sup

g2G

⇥
Pe,1(i1|g)

⇤
+ sup

g2G

⇥
Pe,2(i2, |g)

⇤

(b)
� sup

g2G

⇥
Pe,1(i1|g) + Pe,2(i2, |g)

⇤

(c)
= sup

g2G

"
1�

Z

T
fZ(y� gci1) dy +

Z

T
fZ(y� gci2) dy

#
(9.70)
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where (a) follows by (9.26) and (9.29), (b) holds since supremum is sub-additive and (c)
is due to definitions of error in (9.5) and (9.6). Nowwe proceed to bound (9.70) as follows

sup

g2G

"
1�

Z

T
fZ(y� gci1) dy +

Z

T
fZ(y� gci2) dy

#

(a)
� sup

g2G

2

641� µ�
Z

S

i
1
2

i
1

,i2

fZ(y� gci1) dy +
Z

S

i
1
2

i
1

,g
fZ(y� gci2) dy

3

75

(b)
� sup

g2G

2

641� µ�
Z

S

i
1
2

i
1

,i2

fZ(y� gci1) dy +
Z

S

i
1
2

i
1

,i2

fZ(y� gci2) dy

3

75

(c)
= sup

g2G

2

641� µ�
Z

S

i
1
2

i
1

,i2

h
fZ(y� gci1)� fZ(y� gci2)

i
dy

3

75

(9.71)

where (a) holds by (9.59) and (b) follows from i1,i2 ⇢ i1,g. Now we proceed to bound

(9.71) as follows

sup

g2G

2

641� µ�
Z

S

i
1
2

i
1

,i2

h
fZ(y� gci1)� fZ(y� gci2)

i
dy

3

75

(a)
� sup

g2G

2

641� µ�wn

Z
S

i
1
2

i
1

,i2

fZ(y� gci1) dy

3

75

(b)
� sup

g2G

2

41� µ�wn Â
i12

Z

i
1

,i2

fZ(y� gci1) dy

3

5

(c)
� sup

g2G

⇥
1� µ�wn · | |

⇤

(d)
= sup

g2G


1� µ� KNmax

nb+k

�

(e)
� sup

g2G

⇥
1� µ� p

⇤

= 1� 2µ� p , (9.72)
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where (a) follows by (9.69), (b) holds by the union bound, (c) follows from

Z

i
1

,i2

fZ(y� gci1) dy = Pr

 ���y� gci1

��� 
r

n
⇣

s2

Z + z
⌘!
 1 , (9.73)

and (c) follows since | | = K = nk, (d) follows from (9.66), and (e) holds since KNmax

nb+k =
1

nb  p for su�ciently large n. Thereby, recalling (9.70),(9.71),(9.72) we obtain

e1 + e2 � 1� 2µ� p . (9.74)

Clearly, this is a contradiction since the error probabilities tend to zero as n ! •.

Thus, the assumption in (9.46) is false. This completes the proof of Lemma 9.3.1.

Next, we use Lemma 9.3.1 to prove the upper bound on the DKI capacity. Observe

that Lemma 9.3.1 implies that the distance between every pair of codewords satisfies
���ci1 � ci2

��� � 2

p
ne0n . (9.75)

Thus, we can define an arrangement of non-overlapping spheres Sci(n,
p

ne0n), i.e.,

spheres of radius
p

ne0n that are centered at the codewords ci. Since the codewords all

belong to a large hyper sphere S0(n,

p
nA) of radius

p
nA, it follows that the number

of packed small spheres, i.e., the number of codewords M, is bounded by

M =
Vol

⇣SM
i=1

Sci(n, r0)
⌘

Vol(Sc1
(n,

p
nA + r0))

(a)
= �n(S ) ·

Vol
⇣
S0(n,

p
nA + r0)

⌘

Vol(Sc1
(n, r0))

(b)
 2

�0.599n ·
Vol

⇣
S0(n,

p
nA + r0)

⌘

Vol(Sc1
(n, r0))

, (9.76)

where (a) holds by definition of packing density, (b) follows from inequality (9.16).

The above bound can be further simplified as follows

log M
(a)
 log

 p
nA + r0

r0

!n

� 0.599n

 n log

 p
nA + r0

r0

!
� 0.599n

(b)
=

1

2
n log

✓
A
e0n

+ 1

◆
� 0.599n , (9.77)
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where (a) exploits (9.17) and (b) follows from r0 = 1

2
(2
p

ne0n). Therefore, for e0n =

A/n2(1+k+b), we obtain

log M  1

2
n log

⇣
n2(1+k+b) + 1

⌘
� 0.599n

=
1

2
n log

✓
n2(1+k+b)

⇣
1 + 1/n2(1+k+b)

⌘◆
� 0.599n

=
1

2
n log

⇣
n2(1+k+b)

⌘
+

1

2
n log

⇣
1 + 1/n2(1+k+b)

⌘
� 0.599n

= (1 + k + b) n log n +
1

2
n log

⇣
1 + 1/n2(1+k+b)

⌘
� 0.599n , (9.78)

where the dominant term is again of order n log n. Hence, for obtaining a finite value

for the upper bound of the rate, R, (9.77) induces the scaling law of M to be 2
(n log n)R.

Hence, we obtain

R  1

n log n


(1 + k + b) n log n +

1

2
n log

⇣
1 + 1/n2(1+k+b)

⌘
� 0.599n

�

= 1 + k + b + log

⇣
1 + 1/n2(1+k+b)

⌘
/ log n� 0.599/ log n , (9.79)

which tends to 1 + k as n! • and b! 0. This completes the proof of Theorem 9.3.1.

9.4 | Summary

In this chapter, we studied the DKI problem over the GSF with K number target mes-

sages. We assumed that K = K(n, k) = 2
k log n = nk where k 2 [0, 1) scales sub-linearly

with the codeword length n. In practice, the receiver sometimes suspend the exact

matching task as is considered for the standard identification [99,99] and requires only

to spot an object among a group, therefore, our results in this chapter may serve as a

model for event-triggered based tasks in the context of many practical XG applications

where population of the target group scales sub-linearly in the codeword length. Es-

pecially, we obtained lower and upper bounds on the DKI capacity of the GSF with

K = 2
k log n many target messages subject to average power constraint with the code-

book size of M(n, R) = 2
(n log n)R = nnR. Our results for the DKI capacity of the GSF

revealed that the super-exponential scale of nnR = 2
(n log n)R is again the appropriate

scale for codebook size. This scale coincides as of the codebook for the memoryless

GSF and Gaussian channels [99, 105] and stands considerably di↵erent from the tradi-

tional scales in transmission and RI setups where corresponding codebooks size grows

exponentially and double exponentially, respectively.
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We show the achievability proof using a packing of hyper spheres and a distance

decoder. In particular, we pack hyper spheres with radius
p

nqn ⇠ n
1+k

4 where k 2
[0, 1) is the target identification rate, inside a larger hyper sphere, which results in

⇠ 2
((1�k)/4)n log n codewords. For the converse proof, we follow a similar approach as

in the chapter 3 for the standard identification over the slow fading channel [99, 106].

In general, the derivation here is more involved than the derivation in the standard

identification case [105] and entails employing of new analysis and inequalities. In

chapter 4 on Gaussian channels with slow fading [105], the converse proof was based

on establishing a minimum distance between each pair of codewords. Here, we in-

corporate e↵ect of the number of target messages into the minimum distance in the

relevant Lemma; see Eq. 1 9.3.1.
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CHAPTER 10

“ Few, But Ripe.

”
Carl Friedrich Gauss,

“ TheMathematical Theory of InformationHadCome Into BeingWhen

It Was Realized That The Flow of Information Can be Expressed Nu-

merically in The Same Way as Distance, Mass, Temperature, etc.

”
Alfréd Rényi,

10.1 | Introduction

The binary symmetric channel (BSC) is deemed as a basic mathematical model through

which one bit per unit of time can be transmitted. The capacity of such a channel is

attained by Bernoulli input with 1/2 success probability, i.e., X ⇠ Bern(1/2). In [196]

consider the BSC and used a random linear code for the achievability proof which result

in a exponential search in the decoding.

10.1.1 | Previous Results

In the (standard) identification problem [23], the receiver aims to identify the occur-

rence of a single message. However, there exist a generalized variation of the DI prob-

lem, called the K-Identification problem [193], in which the receiver may seek to deter-

mine the presence of a single message within a set of messages (subset of the message
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set) referred to as the target message set. The K-Identification problem can be under-

stood as the generalization of the original identification problem in the following fash-

ion: The target message (singleton set) is enlarged to be a general set of K>1 messages.

Ahlswede in [114,193, Th. 1,Propos. 1] showed that the number of target messages for

RI problem over a DMC scales exponentially in the codeword length n, i.e., K = 2
kn and

proved that the set of all deterministic K-identification (DKI) achievable pairs contains

�
(R, k) : 0  R, k ; R + 2k  CTR

 
, (10.1)

where CTR is the message transmission capacity of the DMC.

The DKI problem for the slow fading channels Gslow, assuming that the number

of target messages scales sub-linearly with codeword length n, i.e., K(n, k) = 2
k log n,

subject to an average power constraint and a codebook size of super-exponential scale,

i.e., M(n, R) = 2
(n log n)R, is studied in [197] where the following K-depending bounds

on the DKI capacity are derived:

1� k

4
 CDKI(Gslow, M, K)  1 + k . (10.2)

10.1.2 | Contributions

In this chapter, we consider identification systems employing deterministic encoder

and receivers that are interested to accomplish the K-Identification task, namely, find-

ing an object in a target message set of size K = 2
kn for k 2 [0, 1). We assume that the

communication over n channel uses are independent of each other. We assume that the

noise is additive Bernoulli process and formulate the problem of DKI over the DTBC

under Hamming weight input constraint.

To the best of the authors’ knowledge, the fundamental performance limits of DKI

for the BSC model has not been so far studied in the literature. As our main objec-

tive, we investigate the DKI capacity of the BSC. In particular, this chapter makes the

following contributions:

} Generalized Identification Model: In several identification systems, often the size

of target message set K can be large, particularly when one by one comparison is not

demanded due to the delay constraint. In addition, the value of K may increases as a

function of the codeword lengths n. To address these cases, we consider a generalized
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identification model1 that captures the standard (i.e., K = 1), identification channels

with constant K > 1, and identification channels for which K increases with the

codeword length n.

} Codebook Scale: We establish that the codebook size of the DKI problem over the

BSC for deterministic encoding scales exponentially in the codeword length n, i.e.,
⇠ 2

nR, even when the size of target message set scales as K = 2
kn for some k 2 [0, 1)

(see Theorem 10.3.1 for exact upper bound on the k), which we refer to as the target
identification rate. Such an exponential scale for the codebook size coincide with that

of the message transmission problem [28] and the standard identification problem

(DI) in which K = 2
0 = 1 [52, 98, 99] and is lower than the super-exponential scale

for that of the DKI problem over the slow fading channels [197]. This observation

suggests that increasing the number of target messages does not change the scale of

the codebook derived for DI scheme over the BSC [52,98,99].

} Capacity Formula: We derived a closed form analytical function for the DKI capacity

for the BSC, which are the main results of this chapter. Such formula does reflect the
impact of the input constraint Pave in the optimal scale of the codebook size, i.e.,

2
nR. This observation is in contrast to the result obtained for the DKI problem for

the slow fading channel [197] or the DI problem for Gaussian and Poisson channels

[99, 105, 108, 110]. We derive the DKI capacity formula for the BSC with constant

K � 1 and growing size of the target message set K = 2
kn, respectively. We show

that for both cases of the constant K and the growing number of target messages, the

proposed capacity expression is not a function of the target identification rate k and

remains only as a function of the Hamming weight constraint.

} Technical Novelty: To obtain the proposed lower bound, the existence of an appro-

priate ball packing within the input space, for which the Hamming distance between

the centers of the balls does not fall below a certain value, is established. In partic-

ular, we consider the packing of hyper balls inside a larger n-dimensional Hamming

hyper ball, whose radius grows in the codeword length n, i.e., nA. For the achievabil-

ity proof, we exploit a greedy construction similar to theGilbert boundmethod. While

1 The proposed generalized identification setting may be used in a more advanced scheme called gen-
eralized identification with decoding [198, Ch. 1] where first the K-Identification and second, the standard
identification are accomplished to find an object. Furthermore, generalized identification should be distin-
guished from multiple object identification [199] where K objects whose corresponding target message sets
are unknown to the receiver, are identified at once.
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the radius of the small balls in the DKI problem for the slow fading channel [197],

grows in the codeword length n as n! •, here, the radius similar to the DI problem

for the Gaussian channel with slow and fast fading [105] tends to zero. In general,

the derivation of lower bound for the BSC is more involved compared to that for the

Gaussian [105] and Poisson channels with/out memory [108] and entails exploiting

of new analysis and inequalities. Here, the error analysis in the achievability proof

requires dealing with several combinatorial arguments and using of bounds on the

tail of the cumulative distribution function of the Binomial distribution.

10.1.3 | Organization

The remainder of this chapter is structured as follows. In Section 10.2, system model

is explained and the required preliminaries regarding DKI codes are established. Sec-

tion 10.3 provides the main contributions and results on the message DKI capacity of

the BSC. Finally, Section 10.4 of the paper concludes with a summary and directions

for future research.

10.2 | SystemModel and Preliminaries

In this section, we present the adopted system model and establish some preliminaries

regarding TR and DKI coding.

10.2.1 | SystemModel

We address an identification-focused communication setup, for which the objective of

the decoder is defined as follows: Determining whether or not a desired message was

sent by the transmitter; see Figure 10.1. To accomplish this purpose, a coded com-

munication between the transmitter and the receiver over n channel uses of a binary

symmetric channel is established2. Let X 2 {0, 1} and Y 2 {0, 1} indicate random

variables (RVs) which model the input and output of the channel. Each binary input

symbol is flipped with probability 0 < # < 1

2

3. The stochastic flipping of the input sym-

bol is modelled via an additive Binary Bernoulli noise, i.e., Z 2 {0, 1}; see Figure 10.1.

2 The proposed capacity formula works regardless of whether or not a specific code is used for commu-
nication, although proper explicit constructed codes may be required to approach the capacity limits.

3 The extreme cases of # = 0 or # = 1

2
result in CTR = 1 and CTR = 0, respectively, hence these cases are

commonly excluded from the analysis.
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Therefore, the input-output relation of channel reads: Y = X� Z, where� indicate the

modulo two addition. Throughout the paper, the considered binary symmetric channel

with crossover probability 0 < # < 1

2
is denoted by W#. We consider the BSC channel

W# which arises as a basic channel model in the context of information theory where

the noise distribution, i.e., the probability of observing channel output Y at the receiver

given that channel input X was sent at the transmitter, is characterized as follows:

W(Y|X) =

8
><

>:

1� # Y = X

# Y 6= X
. (10.3)

for all x, y 2 {0, 1} and 0 < # < 1

2
.

We assume that W# is memoryless, that is, the di↵erent channel uses are indepen-

dent. Hence, the transition probability law for n channel uses is given by

Wn(y|x) =
n

’
t=1

W(yt|xt) = #dH(x,y)(1� #)n�dH(x,y)
, (10.4)

where x = (x1, . . . , xn) and y = (y1, . . . , yn) denote the transmitted codeword and the

received signal, respectively. Observe that dH(x, y) is a random variable and follows a

Binomial distribution; see Remark10.2.1.

10.2.2 | Message Transmission Coding For BSC

The definition of a TR code for the BSC W# is given below.

Definition 10.2.1 (BSC-TR Code). An (n, M(n, R), e1)-BSC-TR code for a BSC W# for inte-
ger M(n, R), where n and R are the codeword length4 and coding rate, respectively, is defined
as a system (C, T ), which consists of a codebook C = {ci}i2[[M]], with ci = (ci,t)|nt=1

⇢
{0, 1}n, such that

1

n

n

Â
t=1

ci,t  A , (10.5)

8 i 2 [[M]], and a collection of decoders T = { i}i2[[M]], where i ⇢ {0, 1}n, such that the
decoders are mutually disjoint, i.e.,

i \ j = ? , (10.6)

4 This code definition restricts itself to codewords of the same length for di↵erent messages, which
sometimes in the literature is called as the block codes. Throughout this chapter, we always assume that
di↵erent TR or DKI codes are block codes.
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for every i, j 2 [[M]] such that i 6= j. Given a message i 2 [[M]], the encoder transmits
codeword ci, and the decoder’s task is to address a multiple hypothesis as follows: Which
message î 2 [[M]] was sent? There exist one type of error that may happen:

2 Error Event: Rejection of the actual message; i 2 [[M]].

The associated error probability of the BSC-TR code (C, T ) reads

Pe,1(i) = 1� Â
y2 i

Wn
⇣

y

��� ci

⌘
, (10.7)

see Figure 10.1; and satisfy the following bounds Pe,1(i)  e1 , 8i 2 [[M]] , 8e1 > 0 .

i Enc +

mod 2

Dec î

Z ⇠ Bern(e)

ci Y

Figure 10.1: System model of message transmission for the binary symmetric channel. Message m is
mapped to the codeword ci where it is flipped with a probability of #. Decoder employs the output
vector y to declare a reconstructed version of the original sent message m, denoted by î in a reliably
form.

Next we define the achievable TR rate and the TR capacity.

Definition 10.2.2 (Achievable Rate). A TR rate R > 0 is called achievable if 8e1 > 0 and
su�ciently large n, there exists an (n, M(n, R), e1)-BSC-TR code. The operational TR ca-
pacity of the BSC W# is defined as the supremum of all achievable rates, and is denoted by
CTR(W#, M, K).

10.2.3 | Message Transmission Capacity of BSC

In this Subsection we introduce the message transmission problem for the BSC which

was introduced originally by Shannon [28] and introduce some fundamental results on

the achievability and the converse proofs.

Theorem 10.2.1 (see [200, Ch. 5 - Corrol. 2]). Assume the binary symmetric channel B with
cross-over probability # and message transmission capacity of CTR(W#) = 1 � H(#) and
consider an (n, M(n, R), e1)-BSC-TR code for which the codebook size scales exponentially
in the codeword length n, i.e., M(n, R) = 2

nR where R is the message transmission coding
rate. Then 0  8R < CTR(W#) is achievable, namely, there exists a coding and decoding
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Figure 10.2: Depiction of the error exponent for a BSC. For a given crossover probability 0 < # < 1

2
,

and The di↵erence between the tangent line to the binary entropy function and the binary entropy
function itself is referred to as the error exponent.

scheme, that is, the existence of a codebook with size M(n, R) = 2
nR is guaranteed and the

maximum type I error probability converge to zero as n! •, i.e.,

Pe,1(i)  2
�nEr(R)+2

, (10.8)

for every i 2 [[M]], where Er(R) > 0 is a positive, decreasing and convex function5 of R.

Here, we restrict ourselves to the following settings: Let the probability assignment

on the channel input symbols 0 and 1 be the uniform probability mass function. Fur-

ther, for the sake of accurate analysis of the Er(R), depending on the range of d, we

divide in two cases as follows:

Er(R) =

8
<

:
T#(d)� H(d) #  d 

p
#/(
p

# +
p

1� #) (10.9)

1� R� log(
p

#/(
p

# +
p

1� #))
p

#/(
p

# +
p

1� #) < d < 1

2
(10.10)

where the corresponding values for rate R are given by

5 The function Er(R) in the literature is referred to as the random coding exponent. Even for the simple
BSC, there is no simple way to express the Er(R) in an analytic functional way for all the values of 0  R <
C except than in parametric form. Cf. [200] for further properties of such function. Further discussion are
explained in 10.10
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1. Case 10.9 ) 1� H(
p

#/(
p

# +
p

1� #))  R = 1� H(d)  CTR(W#)

2. Case 10.10 ) R < 1� H(
p

#/(
p

# +
p

1� #))

Corollary 10.2.1.1. For the BSC consider a message set consisting of 2
m messages6 and let the

length of the associated codewords be n = m(1 + H(#)/(1� H(#)) + r), where r > 0 is an
arbitrarily small constant. Then a codebook consisting of codewords with length n. Further,
the maximum error probability over the entire message set is upper bounded as follows

max
i2[[M]]

⇥
Pe,1(i)

⇤
 2

�na(r,#)+log q(r,#)
. (10.11)

Proof. Let d > # be such that

H(d) =
r + (1� r)H(#)
r + 1� rH(#)

, (10.12)

assuming r > 0 is su�ciently small such that the condition d 
p

#/(
p

# +
p

1� #)

as required by Theorem 10.2.1 is fulfilled. Then the exponent a(R) provided in Theo-

rem 10.2.1 can be taken to be

a = T#(d)� H(d) . (10.13)

Observe that the exponent given in 10.13 can not be improved by the following theo-

rem.

Theorem10.2.2 (see [200, Th. 5.8.5]). Consider the BSCwith crossover probability #;W# with
the message transmission capacity of CTR(W#) = 1� H(#). Further assume an (n, M(n,

R), e1)-BSC-TR code where the codebook size scales exponentially in the codeword length n,
i.e., 2

m = M(m) = M(n, R) = 2
nR where R is the message transmission coding rate. Now

if

log M(n, R)
n

= R > CTR(W#) , (10.14)

then the average error probability of BSC-TR code is lower bounded as follows

P̄e,1 � 1� 4L
n(R�CTR(W#))2

� 2
� n(R�CTR(W#))

2 , (10.15)

where L > 0 is a finite positive constant depending on the channel statistics # and does not
depend on the codeword length7.

6 Each message is a binary sequence of length m, which yields a total of 2
m message sequences, called

the message set.
7 The lower bound given in 10.15 converges to 1 from left as n! •.
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Corollary 10.2.2.1. If codeword length n satisfies

n < m

 
1 +

H(#)
1� H(#)

!
, (10.16)

then there exists at least one message for which the error probability can not be upper
bounded by any constant q < 1.

Proof. Observe that (10.16) implies a chain of equations as follows

n < m

 
1 +

H(#)
1� H(#)

!
)

= m

 
1� H(#) + H(#)

1� H(#)

!

= m
✓

1

1� H(#)

◆

=
m

1� H(#)
(a)
=

m
CTR

=
log 2

m

CTR

(b)
=

log M(m)
CTR

, (10.17)

where (a) employs CTR(W#) = 1 � H(#) and (b) holds by M(m) = 2
m = M(n, R).

Thereby exploiting M(m) = M(n, R) into (10.17) yields,

log M(n, R)
n

= R > CTR(W#) . (10.18)

Therefore, by Theorem 10.2.2 we conclude that the average error probability converges

to 1 which implies that there exist at least one message whose maximum error probabil-

ity converges to 1 or can not be upper bounded by any constant q < 1. This completes

the proof of Corollary 10.2.2.1.

Corollary 10.2.2.2. Let l > 0 be an arbitrarily finite large constant. Then, 0 < 9 # < 1

2
,

such that no code of length n < lm can guarantee any bound q < 1 on the maximum error
probability of message transmission.

Proof. Choose an # where 0 < # < 1

2
, so that the following condition is fulfilled

H(#) = 1� 1

l
. (10.19)
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Now, apply the Corollary 10.2.2.1.

10.2.4 | DKI Coding For BSC

The definition of a DKI code for the BSC W# is given below.

Definition 10.2.3 (BSC-DKI Code). An (n, M(n, R), K(n, k), e1, e2)-BSC-DKI code for a BSC
W# for integers M(n, R) and K(n, k), where n and R are the codeword length and coding rate,
respectively, is defined as a system (C, T ), which consists of a codebook C = {ci}i2[[M]] ⇢
{0, 1}n, with ci = (ci,t)|nt=1

⇢ {0, 1}n, such that

1

n

n

Â
t=1

ci,t  Pavg , (10.20)

8i 2 [[M]] and a decoder8

T =
[

j2
j , (10.21)

where j ⇢ {0, 1}n is the decoding set corresponding to the single message cj, 8 2
�

X ✓ [[M]] ; |X| = K
 
where is an arbitrary subset9 with size K. Given a message i 2

[[M]], the encoder transmits codeword ci, and the decoder’s task is to address a binary hy-

pothesis: Was a target message j 2 sent or not? There exist two types of errors that may
happen:

2 Type I Error Event: Rejection of the actual message; i 2

2 Type II Error Event: Acceptance of a wrong message; i /2 .

The associated error probabilities of the DKI code (C, T ) reads

Pe,1(i) = Pr

✓
Y 2 T c

��� x = ci

◆

i2
= 1� Â

y2T

Wn
⇣

y

��� ci

⌘

i2
(Miss-Identification) ,

(10.22)

8 We recall that the decoding sets for the DKI problem may have in general intersection, a behaviour
similar to that of the RI problem. However to guarantee a vanishing type II error probability we will
observe that size of such intersection becomes negligible asymptotically, i.e., as n! •

9 We recall that
�

X ✓ [[M]] ; |X| = K
 
is the system (family) of all subsets of the set [[M]], with size K.

Observe that in general we have
���X ✓ [[M]] ; |X| = K

 �� = (M
K ) and the error requirement as imposed by

the DKI code definition applies to each possible choice of the set with K arbitrary messages among all
(M

K ) cases.
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Pe,2(i, ) = Pr

✓
Y 2 T

��� x = ci

◆

i/2
= Â

y2T

Wn
⇣

y

��� ci

⌘

i/2
(False Identification) .

(10.23)

(see Figure 10.4) and satisfy the following bounds

Pe,1(i)  e1 , 8i 2 , (10.24)

Pe,2(i, )  e2 , 8i /2 . (10.25)

where 2
�

X ✓ [[M]] ; |X| = K
 
is an arbitrary K-size subset of [[M]] and 8e1, e2 > 0.

c2

c3

c4

c1

c5

c6

c7

Input Space Output Space

1

6

7

3

2

4

5

Correct Identification

Type I Error

Type II Error

Figure 10.3: Depiction of a deterministic 3-identification setting with target message set =
{2, 3, 5}. In the correct identification event, channel output is detected in the union of the indi-
vidual decoder j where j belongs to the target message set. Type I error event occurs if the channel
output is observed in the complement of the union of individual decoders for which the index of the
codeword belongs to. The case where the index of codeword does not coincide to any of the indi-
vidual decoders for which the channel output belongs to the their union, is referred to as the type II
error.

Next we define the achievable DKI rate and the DKI capacity.

Definition 10.2.4 (Achievable Rate). A DKI rate R > 0 is called achievable if 8e1, e2 > 0 and
su�ciently large n, there exists an (n, M(n, R), K(n, k), e1, e2) DKI code. The operational
DKI capacity of the BSCW# is defined as the supremum of all achievable rates, and is denoted
by CDKI(W#, M, K).
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i Enc +

mod 2

Dec Yes /No

Z ⇠ Bern(#) ={j1, . . . , jK}

ci Y

Figure 10.4: System model for DKI communication setting in a BSC. Employing a deterministic
encoder in the transmitter, the message i is mapped onto the codeword ci = (ci,t)|nt=1

using a deter-
ministic known function. The decoder at the receiver is provided with an arbitrary target message
set , and given the channel output vector Y = (Yt)|nt=1

, it asks whether i belong to or not.

Remark 10.2.1. Assuming that codeword ci is sent and channel output y is observed at
receiver, the number of crossovers (flips) that occur in the channel is dH(y, ci). Therefore, the
probability that k crossovers among the n channel uses occur, follows a Binomial distribution
with parameters n and #, as follows

Pr
�
dH(Y, ci) = k

�
=

✓
n
k

◆
#k(1� #)n�k

, (10.26)

10.3 | DKI Capacity of The BSC

In this section, we present our main results, i.e., achievability and converse proofs for

the BSC. Subsequently, we provide the detailed proofs.

10.3.1 | Main Results

The DKI capacity theorem for the BSC channel W# is stated below.

Theorem 10.3.1. Let W# indicate a BSC with cross-over probability 0 < # < 1

2
and let

b > 0 be an arbitrary small positive. Further let H(p) indicate the binary entropy function

and T#(p) = H(#) + (p � #)
dH(p)

dp
|p=# specify the tangent to H(p) at point # . Then the

deterministic K-Identification capacity of W# subject to the Hamming weight constraint of
the form n�1 Ân

t=1
xt  A with exponentially large target message set, i.e., K(n, k) = 2

kn

where the target identificaiton rate k satisfy

0  k < T#

⇣�
1� b

�
# + b/2

⌘
� H

⇣�
1� b

�
# + b/2

⌘
, (10.27)

and in the exponential codebook size, i.e., M(n, R) = 2
nR, is given by

CDKI (W#, K) =

8
><

>:

H(A) if A < 1

2

1 if A � 1

2
.

(10.28)
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Proof. The proof of Theorem 10.3.1 consists of two parts, namely the achievability and

the converse proofs, which are provided in Sections 10.3.2 and 10.3.3, respectively.

10.3.2 | Lower Bound (Achievability Proof)

The achievability proof consists of the following two main steps.

2 Step 1: First, we propose a greedy-wise codebook construction and derive an ana-

lytical lower bound on the corresponding codebook size using similar argument as

provided in the Gilbert-Varshamov (GV) bound10 for packing of non-overlapping

balls embedded in the input space.

2 Step 2: Then, to prove that this codebook leads to an achievable rate, we propose

a decoder and show that the corresponding type I and type II error rates vanished

as n! •.

10.3.2.1 | Codebook Construction

Let A = Pave. In the following, we confine ourselves to codewords that meet the condi-

tion n�1 Ân
t=1

ci,t  A, 8 i 2 [[M]].

2 Case 1 - With Hamming Weight Constraint: A  1, then the condition n�1 Ân
t=1

ci,t  1 , i 2 [[M]] is non-trivial in the sense that it induces a strict subset of the

entire input space H
n. We denote such subset by B0(n, nA) and is equivalent to

kcik1
 A.

2 Case 2 - Without Hamming Weight Constraint: A � 1, then each codeword

belonging to the n-dimensional Hamming cube H
n fulfilled the Hamming weight

constraint, since 1

n Ân
t=1

ci,t  1  A , i 2 [[M]]. Therefore, we address the entire

input space H
n = {0, 1}n as the possible set of codewords and attempt to exhaust

it in a brute-force manner in the asymptotic, i.e., as n! •.

⇤ Analysis For Case 1: Observe that within this case, we again divide into two cases:

1. 0 < A < 1

2

2. A � 1

2

10 The early introduction of such bound in the literature is accomplished by Gilbert in [201].
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The argument for the need of such division is that the binary entropy function is mono-

tonic increasing only for 0  A  1

2
and for A � 1

2
is decreasing. That is, in the latter

case, we can introduce an alternative Bernoulli process which result in a larger volume

space, and at the same time, it guarantees the Hamming weight constraint.

For the sub-case 1, i.e., where 0 < A < 1

2
, we restrict our considerations to an n-

dimensional Hamming hyper ball with edge length A. We use a packing arrangement

of overlapping hyper balls of radius r0 =
⌅
nb

⇧
in an n-dimensional Hamming hyper

ball B0(n, nA), where

Lemma 10.3.1. Let R < H(A) and let b > 0 be an arbitrary small constant. Then for
su�ciently large codeword length n, there exist a codebook C = {ci}i2[[M]] ⇢ {0, 1}n, with
ci = (ci,t)|nt=1

⇢ {0, 1}n, which consists of M sequences in the n-dimensional Hamming
hyper ball B0(n, nA), such that the following holds:

2 Hamming Distance Property: dH(ci, cj) �
⌅
nb

⇧
+ 1 8i, j 2 [[M]] where i 6= j .

2 Codebook Size: The codebook size is at least 2
nR�1, that is, M � 2

n(R� 1

n ) .

Proof. Recall that the minimum Hamming distance of a code C is given by

dmin , min
(i,j)2[[M]]⇥[[M]]

dH(ci, cj) . (10.29)

We begin to obtain some codeword that fulfill the Hamming weight constraint, namely,

1

n

n

Â
t=1

ct  A . (10.30)

First, we generate a codeword C
i.i.d⇠ Bernoulli(A)11. Since E [Ct] = A, by the weak law

of large numbers, we obtain

lim
n!•

Pr

0

@
�����
1

n

n

Â
t=1

Ct � A

�����  t

1

A = 1 , (10.31)

11 Such a random generation should not be confused with a similar procedure as is accomplished in
the encoding stage of the RI problem. While therein, each message is mapped to a codeword through a
random distribution, here for the DI problem, we first solely restrict ourselves to generation of codewords
through the Bernoulli distribution to guarantee the Hamming weight constraint, and employ them in the
next procedure called the greedy construction up to an exhaustion. Then, after the exhaustion, we establish
a deterministic mapping between the message set and the codebook, that is, each message is associated to
a codeword. Further, in the RI problem, it is in general possible that two di↵erent message are mapped
to a common codeword, however, considering the DI problem in here, there exist a one-to-one mapping
between the set of messages and the set of codewords.

222



CHAPTER 10. DKI FOR BINARY SYMMETRIC CHANNEL 10.3. DKI CAPACITY OF THE BSC

⌅
nb

⇧
+ 1

nA

⌅
nb

⇧

Figure 10.5: Illustration of an exhausted greedy-wise ball packing inside a hyper ball in 1-norm,
where union of the small balls of radius r0 =

⌅
nb

⇧
cover a larger cube. As the codewords are assigned

to the center of each ball lying inside a larger hyper ball according to the greedy construction, the
1-norm of a codeword is bounded by nA as required.

where t > 0 is an arbitrary small positive. Therefore, for su�ciently large codeword

length n, the event
���n�1 Ân

t=1
Ct � A

���  t occurs with probability 1, which implies

1

n

n

Â
t=1

Ct  A + t . (10.32)

Now, observe that since (10.32) holds for arbitrary values of t, it implies that the follow-

ing condition for su�ciently large n, is fulfilled

1

n

n

Â
t=1

Ct  A , (10.33)

which is the Hamming weight constraint as required.

Next, we begin with the greedy procedure as follows: Let denote the first codeword

determined by the Bernoulli distribution by c1 and assign it to message with index 1.

Then, we remove all the sequences that have a Hamming distance of less or equal than
⌅
nb

⇧
from c1. That is, we delete all the codewords that lies inside the Hamming ball

with center c1 and radius r =
⌅
nb

⇧
. Then, we generate a second codeword by the

Bernoulli distribution and repeat this procedure until all the sequences belonging to

the legit subspace, i.e., the Hamming hyper ball in 1-norm; B0(n, nA), are exhausted.

Therefore, such a construction fulfill the property provided in Lemma 10.3.1 regarding

the minimum Hamming distance of the code, i.e.,

dH(ci, cj) �
⌅
nb

⇧
+ 1 . (10.34)
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In general, the volume of a Hamming ball of radius r, assuming that the alphabet size

is q, is the number of codewords that it encompass and is given by [202, see Ch. 1]

Vol
�
Bx(n, r)

�
=

r

Â
i=0

✓
n
i

◆
(q� 1)i

. (10.35)

Let B denote the obtained ball packing after the exhaustion of the entire Hamming

hyper ball B0, i.e., an arrangement of M overlapping small hyper balls Bci(n, r0), with

radius r0 =
⌅
nb

⇧
where i 2 [[M]], that cover the entire Hamming hyper ball in 1-

norm; B0(n, nA), where their centers are coordinated inside the B0(n, nA), and the

distance between the closest centers is
⌅
nb

⇧
+ 1; see Figure 10.5. As opposed to the

standard ball packing observed in coding techniques [138], the balls here are neither

necessarily entirely contained within the Hamming hyper ball, nor disjoint. That is, we

only require that the centers of the balls are inside B0(n, nA) and have a non-empty

intersection with B0(n, nA), which is rather a ball covering problem.

Th ball packing B is called exhausted if no point within the input space; B0(n, nA),

is remained as an isolated point, that is, with the property that it does not belong to at
least one of the small Hamming hyper balls.

In particular, we use a covering argument that has a similar flavor as that observed in

the GV bound [203, Th. 5.1.7]. Specifically, consider an exhausted packing arrangement

of

M(n,R)[

i=1

Bci(n,
⌅
nb

⇧
) , (10.36)

balls with radius r0 =
⌅
nb

⇧
embedded within the space B0(n, nA). According to the

greedy construction, the center ci of each small Hamming hyper ball, corresponds to a

codeword. Since the volume of each hyper ball is equal to Vol(Bc1
(n, r0)), the centers of

all balls lie inside the space B0(n, nA), and the Hamming hyper balls overlap with each

other, the total number of balls is bounded from below by

M �
Vol

⇣SM
i=1

Bci(n, r0)
⌘

Vol(Bc1
(n, r0))

(a)
�

Vol
�
B0(n, nA)

�

Vol(Bc1
(n, r0))

(b)
�

ÂbnAc
j=0

(n
j)

Vol(Bc1
(n, r0))

, (10.37)
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where (a) holds since the Hamming hyper balls may have in general intersection and (b)
follows by (10.35) with setting q = 2 and since bnAc  nA. Now, the bound in (10.37)

can be further simplified as follows

log M � log

0

B@
ÂbnAc

j=0
(n

j)

Vol(Bc1
(n, r0))

1

CA

(a)
� nH(A) + o

�
log n

�
� nH(b) . (10.38)

where (a) exploits (I.1) for setting radius r = bn#c = bnAc and q = 2 , and (J.1) with

r0 = bn#c =
⌅
nb

⇧
. Now, we obtain

log M � nH(A) + o
�
log n

�
� nH

�
b
�

, (10.39)

where the dominant term has an order of n. Therefore, in order to obtain finite value

for the lower bound on the DKI rate, R, (10.39) induces the scaling law of codebook size,

M, to be 2
nR. Hence, we obtain

R � 1

n

h
nH(A) + o

�
log n

�
� nH

�
b
�i

,

= H(A) +
o
�
log n

�

n
� H

�
b
�

, (10.40)

which tends to H(A) as n! • and b! 0 .

Now, we proceed to the sub-case 2, i.e., where A � 1

2
. In this case, instead of sticking

to generation of codewords ⇠ Bernoulli(A), we generate the codewords according to

Bernoulli process with success probability of 1

2
, that is, C

i.i.d⇠ Bernoulli( 1

2
). Observe

that now the required Hamming weight constraint given in (10.30) is met, since for

E [Ct] = 1

2
we have

1

n

n

Â
t=1

ct 
1

2
 A . (10.41)

Therefore, following similar line of arguments as provided for the sub-case 1, we obtain

the following lower bound on the DKI rate, R,

R � 1

n

"
nH

✓
1

2

◆
+ o

�
log n

�
� nH

�
b
�
#

,

= H
✓

1

2

◆
+

o
�
log n

�

n
� H

�
b
�

, (10.42)

which tends to H
⇣

1

2

⌘
= 1 as n! • and b! 0 .
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⇤ Analysis For Case 2:

Lemma 10.3.2 (see [52, Claim 1]). The entire Hamming cube H
n can be exhausted asymp-

totically as the codebook, that is, all the message sequences, i.e., the indices between 1 and 2
m

can be coded with binary sequences of length n, subject to the Hamming distance property,
i.e.,

dH(ci, cj) �
⌅
nb

⇧
+ 1 . (10.43)

for every i, j 2 [[M]], where i 6= j and with b > 0 being an arbitrary small positive.

Proof. Recall that the minimum Hamming distance of a code C is given by

dmin , min
(i,j)2[[M]]⇥[[M]]

dH(ci, cj) . (10.44)

Next, we begin with the greedy procedure as follows: Let denote the first codeword

determined by the Bernoulli distribution by c1 and assign it to message with index 1.

Then, we remove all the sequences that have a Hamming distance of less or equal than
⌅
nb

⇧
from c1. That is, we delete all the codewords that lies inside the Hamming ball

with center c1 and radius r =
⌅
nb

⇧
. Then, we generate a second codeword by the

Bernoulli distribution and repeat this procedure until all the sequences are exhausted.

Let B denote the obtained ball packing after the exhaustion of the entire input space

H
n = {0, 1}n, i.e., an arrangement of M overlapping small hyper balls Bci(n, r0), with

radius r0 =
⌅
nb

⇧
where i 2 [[M]], that cover n-dimensional Hamming cube H

n =

{0, 1}n, where their centers are coordinated inside H
n, and the distance between the

closest centers is
⌅
nb

⇧
+ 1. As opposed to the standard ball packing observed in coding

techniques [138], the balls here are neither necessarily entirely contained within the

Hamming hyper ball, nor disjoint. That is, we only require that the centers of the balls

are inside H
n and have a non-empty intersection with H

n, which is rather a ball covering
problem. The ball packing B is called exhausted if no point within the input space; H

n,

is remained as an isolated point, that is, with the property that it does not belong to at
least one of the small Hamming hyper balls.

In particular, we use a covering argument that has a similar flavor as that observed in

the GV bound [203, Th. 5.1.7]. Specifically, consider an exhausted packing arrangement

of

M(n,R)[

i=1

Bci(n,
⌅
nb

⇧
) , (10.45)
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balls with radius r0 =
⌅
nb

⇧
embedded within the space H

n. According to the greedy

construction, the center ci of each small Hamming hyper ball, corresponds to a code-

word. Since the volume of each hyper ball is equal to Vol(Bc1
(n, r0)), the centers of all

balls lie inside the space H
n, and the Hamming hyper balls overlap with each other, the

total number of balls is bounded from below by

M �
Vol

⇣SM
i=1

Bci(n, r0)
⌘

Vol(Bc1
(n, r0))

(a)
� Vol (Hn)

Vol(Bc1
(n, r0))

(b)
� |X |n

Vol(Bc1
(n, r0))

, (10.46)

where (a) holds since the Hamming hyper balls may have in general intersection and

(b) follows since Vol (Hn) = |X n| = |X |n. Now, the bound in (10.46) can be further

simplified as follows

log M � log

 
|X |n

Vol(Bc1
(n, r0))

!

(a)
� n log |X |+ o

�
log n

�
� nH(b)

(b)
� n + o

�
log n

�
� nH(b) . (10.47)

where (a) exploits (J.1) with # = b . Now for b > 0 being an arbitrary small positive, we

obtain

log M � n + o
�
log n

�
� nH

�
b
�

= n
⇣

1� H
�

b
�⌘

+ o
�
log n

�
, (10.48)

where the dominant term has an order of n. Therefore, in order to obtain finite value

for the lower bound on the DKI rate, R, (10.39) induces the scaling law of codebook size,

M, to be 2
nR. Hence, we obtain

R � 1

n


n
⇣

1� H
�

b
�⌘

+ o
�
log n

��
,

= 1� H
�

b
�
+

o
�
log n

�

n
, (10.49)

which tends to 1 as n! • and b! 0 .
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10.3.2.2 | Encoding

Given a message i 2 [[M]], transmit x = ci.

10.3.2.3 | Decoding

Let define db 6= 1

2
as follows

db =
�
1� b/2

�
# + b/4 , (10.50)

which is referred to as the decoding threshold with b > 0 being an arbitrary small. Ob-

serve that given 0 < # < 1/2 and (10.50), we obtain the following double bound on the

db

# < db < (1� b) # + b/2 . (10.51)

To identify whether message j 2 [[M]]was sent, the decoder checks whether the channel

output y belongs to the decoding set T =
S

j2 j, or not, with

j =

⇢
y 2 H

n
; T(y, cj) 

j
ndb

k �
, (10.52)

where

T(y, cj) = dH(y, cj) ,
n

Â
t=1

db(yt, cj,t) , (10.53)

is referred to as the decoding metric evaluated for observation vector y and the individual

codeword cj, with db(., .) being the Kronecker delta. That is, given the channel output

vector y 2 H
n, if there exist at least one j 2 such that dH(y, cj) 

j
ndb

k
, then the

decoder declares that the message j was sent. And for the other case, i.e., where for

each index j 2 , the inequality dH(y, cj) >
j

ndb

k
holds, then the decoder decides that

j was not sent.

Remark 10.3.1. Adopted Decoder: For the achievability proof, we adopt a decoder which
upon observing an output sequence y, it declares that the message j 2 was sent if the
output vector y belongs to the following set

[

j2

⇢
y 2 H

n
; dH(y, cj) 

j
ndb

k �
, (10.54)

where cj = [cj,1, . . . , cj,n] is the codeword associated with message j and db is a decoding
threshold. We notice that the decoder in (10.54) combine the elements of set through a
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fundamental union operator. Such a simple operator may feature a penalty with respect
to the error exponents for the type I/II error probabilities or the obtained achievable rates.
Therefore, we recall that in principle a more optimum decoder for the K-Identification scheme
which guarantee vanishing type I/II error probabilities, might demand a more complicated
algebraic operators between the realization of members for each specific set and entails
advanced dependencies on the elements of set .

10.3.2.4 | Error Analysis

Fix e1, e2 > 0 and let z0, z1 > 0 be arbitrarily small constants. Further, let introduce the

following conventions:

2 Yt(i) denote the channel output at time t conditioned that the sent codewords was

x = ci, that is, Yt(i) = ci,t � Zt

2 The output vector is defined as the vector of symbols, i.e., Y(i) , (Y1(i), . . . , Yn(i))

Consider the type I error, i.e., the transmitter sends ci, yet y /2 T for every i 2 . The

type I error probability is given by

Pe,1(i) = Pr
�
Y(i) 2 T c�

= Pr

0

B@Y(i) 2

0

@[

j2
j

1

A
c
1

CA

(a)
= Pr

0

@Y(i) 2
\

j2

c
j

1

A

(b)
 Pr

�
Y(i) 2 c

i
�

= Pr

✓
T(Y(i), ci) >

j
ndb

k◆
, (10.55)

where (a) holds byDeMorgan’s law for a finite number of union of set, i.e., (
S

i2 i)
c =

T
i2

c
i and (b) follows since

T
j2

c
j ⇢ i. Now, observe that

Pr

✓
T(Y(i), ci) >

j
ndb

k◆ (a)
= Pr

✓
dH(Y(i), ci) >

j
ndb

k◆

(b)
=

n

Â
l=

j
ndb

k
+1

✓
n
l

◆
#l(1� #)n�l

. (10.56)
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where (a) follows by (10.53) and (b) holds by (10.26). In order to bound (10.56), we

proceed to apply the bound provided in (L.1) given in Lemma L.0.1: Observe that

l
n
=

j
ndb

k
+ 1

n
(a)
>

ndb

n
= db

(b)
> # , (10.57)

where (a) follows since x < bxc + 1 for real x and (b) holds by (10.51). On the other

hand,

l
n
=

j
ndb

k
+ 1

n


max

j
ndb

k
+ 1

n

(a)
<

$
n max

✓
# + b

⇣
1

2
� #

⌘◆%
+ 1

n
(b)
<
bn/2c+ 1

n
n�3

< 1 , (10.58)

where (a) follows by (10.51) and (b) holds since # + b
⇣

1

2
� #

⌘
is upper bounded by the

boundary value of #, i.e., where # = 1

2
. Observe that the last inequality in (10.58) holds

for su�ciently large n. Now, since the inequalities provided in (10.57) and (10.58) fulfill

the conditions in Lemma L.0.1, we employ Lemma L.0.1 to establish the following lower

bound on (10.56) as follows

Pr

✓
T(Y(i), ci) >

j
ndb

k◆

=
n

Â
l=

j
ndb

k
+1

✓
n
l

◆
#l(1� #)n�l
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

2

6664

✓j
ndb

k
+ 1

◆
(1� #)

✓j
ndb

k
+ 1

◆
(1� #)�


n� (

j
ndb

k
+ 1)

�
#

3

7775
· 2

�n

2

4T#

 j
ndb

k
+1

n

!
�H

 j
ndb

k
+1

n

!3

5

.

(10.59)

Observe that the denominator in (10.59) is always a strict positive term, since assuming

we arrive to a trivial inequality as follows
✓j

ndb

k
+ 1

◆
(1� #) >


n� (

j
ndb

k
+ 1)

�
#() (10.60)

j
ndb

k
+ 1� #

j
ndb

k
� # > n#� #

j
ndb

k
� #() (10.61)

j
ndb

k
+ 1 > n#() (10.62)

j
ndb

k
+ 1

n
> # , (10.63)

which is already verified in (10.57). Now, we proceed to find a simplified upper bound

on the left hand side coe�cient in the bracket given in (10.59) as follow
✓j

ndb

k
+ 1

◆
(1� #)

✓j
ndb

k
+ 1

◆
(1� #)�


n� (

j
ndb

k
+ 1)

�
#

(a)
=

⇣
ndb + 1

⌘
(1� #)

✓j
ndb

k
+ 1

◆
� #

✓j
ndb

k
+ 1

◆
� n# + #

✓j
ndb

k
+ 1

◆



⇣
ndb + 1

⌘
(1� #)

✓j
ndb

k
+ 1

◆
� n#

(b)


⇣
ndb + 1

⌘
(1� #)

ndb � n#
, (10.64)

where (a) holds by exploiting x  bxc for real x and simplifying the denominator by

distributing # over the bracket, and (b) follows since

ndb <
j

ndb

k
+ 1() (10.65)

ndb � n# <
j

ndb

k
+ 1� n#() (10.66)

231



CHAPTER 10. DKI FOR BINARY SYMMETRIC CHANNEL 10.3. DKI CAPACITY OF THE BSC

1

ndb � n#
>

1j
ndb

k
+ 1� n#

. (10.67)

where the first inequality follows since x < bxc + 1 for real x. Thereby, employing

(10.64) unto (10.59), we obtain

Pr

✓��T(Y(i), ci)
�� >

j
ndb

k◆
=

n

Â
l=

j
ndb

k
+1

✓
n
l

◆
#l(1� #)n�l



⇣
ndb + 1

⌘
(1� #)

ndb � n#
· 2

�n

2

4T#

 j
ndb

k
+1

n

!
�H

 j
ndb

k
+1

n

!3

5

=

⇣
db +

1

n

⌘
(1� #)

db � #
· 2

�n

2

4T#

 j
ndb

k
+1

n

!
�H

 j
ndb

k
+1

n

!3

5

, z1,n . (10.68)

Observe that the exponent of exponential term is always strictly positive, since for # 2
(0,

1

2
), the arguments of T#(.) and H(.) are strictly less than 1

2
. That is, we have the

following

T#

0

B@

j
ndb

k
+ 1

n

1

CA > H

0

B@

j
ndb

k
+ 1

n

1

CA , (10.69)

The argument is as follows

l
n
=

j
ndb

k
+ 1

n


max

j
ndb

k
+ 1

n

(a)
<

$
n max

✓
# + b

⇣
1

2
� #

⌘◆%
+ 1

n
(b)
<
bn/2c+ 1

n
(c)
 n/2 + 1

n
(c)


n
⇣

1

2
+ 1/n

⌘

n
, (10.70)
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which is strictly less than 1

2
in the asymptotic, i.e., as n! •, where (a) and (b) follows

by the same arguments given for (10.58), and (c) follows since bxc  x for real x.
Therefore, the di↵erence for the evaluation of T#(.) and H(.) is always a strict positive

value; see Figure 10.1. Hence, Pe,1(i)  e1 , 8i 2 holds for su�ciently large n and

arbitrarily small e1 > 0. Thereby, the type I error probability satisfies Pe,1(i)  z1,n  e1.

This complete the analysis for the type I error probability.

Next, we address type II errors, i.e., when Y(i) 2 while the transmitter sent ci

with i /2 . Then, for each possible (M
K ) cases of , where i /2 , the type II error

probability is given by

Pe,2 (i, ) = Pr
�
Y(i) 2

�

= Pr

0

@Y(i) 2
[

j2
j

1

A

(a)
= Pr

0

@[

j2

⇢
T(Y(i), cj) 

j
ndb

k �
1

A

(b)
= Pr

0

@[

j2

⇢
dH(Y(i), cj) 

j
ndb

k �
1

A

(c)
 Â

j2
Pr

✓
dH(Y(i), cj) 

j
ndb

k◆

 K · Pr

✓
dH(Y(i), cj) 

j
ndb

k◆
(10.71)

where (a) follows by (10.52), (b) holds by (10.53) and (c) follows by the union bound, i.e.,
the probability of union of events is upper bounded by the sum of probability of the

individual events. Let define the following events

Fdb
(i) ,

⇢
Y 2 H

n
; dH(Y(i), ci) 

j
ndb

k�
, (10.72)

Fdb
(i, j) ,

⇢
Y 2 H

n
; dH(Y(i), cj) 

j
ndb

k�
. (10.73)

Next, employing the law of total probability with respect to the event
n

dH(Y(i), ci) 
j

ndb

k o
, we establish an upper bound on Pr

✓
dH(Y(i), cj) 

j
ndb

k◆
given in (10.71) as

follows

Pr

✓
dH(Y(i), cj) 

j
ndb

k◆ (a)
= Pr

⇣
Fdb

(i, j) \Fdb
(i)
⌘
+ Pr

⇣
Fdb

(i, j) \F c
db
(i)
⌘
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(b)
 Pr

⇣
Fdb

(i, j) \Fdb
(i)
⌘
+ Pr

⇣
F c

db
(i)
⌘

(c)
= Pr

⇣
Fdb

(i, j) \Fi(db)
⌘
+ Pr

✓
dH(Y(i), ci) >

j
ndb

k◆

(d)
 Pr

⇣
Fdb

(i, j) \Fdb
(i)
⌘
+ z1,n , (10.74)

where (a) holds by the law of total probability, (b) follows since F c
i (db) � Fdb

(i, j) \
F c

i (db), (c) holds by (10.72), and (d) exploits (10.68).
Now we focus on the event Fdb

(i, j) \Fdb
(i). Let

d , dH(ci, cj)

(a)
�

⌅
nb

⇧
+ 1 . (10.75)

where (a) follows by the assumption made in the code construction regarding the mini-

mumHamming distance; see Lemma 10.3.1 and (10.43). Now, without loss of generality,

we may assume that the two sequence ci and cj di↵er in the first d symbols, i.e.,

ci =
⇣

ci1 , ci2 , . . . , cid , cid+1
, . . . , cin

⌘

cj =
⇣

cj1 , cj2 , . . . , cjd , cjd+1
, . . . , cjn

⌘

y =
�
y1, y2, . . . , yd, yd+1, . . . , yn

�
, (10.76)

where y is the realization of vector Y(i). Therefore, the n� d last symbols (bits) of ci

and cj are identical. Observe that the event
⇢

dH(Y(i), ci) 
j

ndb

k�
implies that the

received vector y and ci di↵er in p bits, where p 
j

ndb

k
, i.e.,

dH(y, ci) = p 
j

ndb

k
. (10.77)

Now, we assume that p1 bits out of the p bits happens in the first d bits, i.e.,

dH(y|d1, ci|d1) = p1 , (10.78)

where

ci|d1 ,
⇣

ci1 , ci2 , . . . , cid

⌘

y|d
1
,
�
y1, y2, . . . , yd

�
, (10.79)

and p2 bits with p2 = p� p1 happens in last n� d bits, i.e.,

dH(y|nd+1
, ci|nd+1

) = p2 , (10.80)
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where

ci|nd+1
,
⇣

cid+1
, . . . , cin

⌘

y|nd+1
,
�
yd+1, . . . , yn

�
, (10.81)

Observe that since the symbols of sequences are bits, i.e., either 0 or 1, therefore, d =

dH(ci, cj) implies that the two sequences ci and cj are complementary for the first d bits.

Now, we infer that if the two sequences y|d
1
and ci|d1 di↵er in p1, then y|d

1
and ci|d1 are

identical in those p1 bits. Hence,

dH(y|d1, cj|d1) = d� p1 , (10.82)

Now, if we collect all the positions for which y|n
1
and cj|n1 di↵er, we obtain

dH(y, cj) = dH(y|n1 , cj|n1)

= dH(y|d1, cj|d1) + dH(y|nd+1
, cj|nd+1

)

= d� p1 + p2 . (10.83)

Observe that since we restrict ourselves to the event

Fdb
(i, j) \F c

i (db) ,
⇢

dH(Y(i), cj) 
j

ndb

k�
\
⇢

dH(Y(i), ci) 
j

ndb

k�
, (10.84)

we deduce that dH(y|n1 , cj|n1), therefore by (10.83), we obtain

d� p1 + p2 
j

ndb

k
)

p2 
j

ndb

k
� d + p1 . (10.85)

On the other hand, since dH(y, cj) 
j

ndb

k
, we obtain

p 
j

ndb

k
) (10.86)

p1 + p2 
j

ndb

k
) (10.87)

p2 
j

ndb

k
� p1 . (10.88)

Now in order to calculate Pr(dH(Y(i), cj) 
j

ndb

k
) in (10.71), we first fix p1 and then

sum up over all possible cases for the p2, then we would have a second sum which runs

for values of p1 from 0 to d. Observe that the p2 has two upper bounds given in (10.85)

and (10.86), therefore, in the calculation, we restrict ourselves to the minimum of those

two upper bounds. Let define

pUB
2

, min

⇢j
ndb

k
� p1,

j
ndb

k
� d + p1

�
(10.89)
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Thereby,

Pr

⇣
Fdb

(i, j) \Fdb
(i)
⌘

(a)


d

Â
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✓
d
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✓
n� d
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◆
#p2(1� #)n�d�p2

3

75 , (10.90)

where (a) holds since p = p1 + p2, and (b) follows since every expression that is inde-

pendent of the sum’s variable can be shifted left behind the inner sum. In (b), we have

added 0 = d� d , to obtain the correct form for the two binomial distribution expres-

sions. Now, observe that the first sum is the Binomial cumulative distribution function

at point x = d and can be upper bounded by 1, i.e.,

d

Â
p1=0

✓
d
p1

◆
#p1(1� #)d�p1 = Pr

�
p1  d

�

= BX(x)|x=d

= BX(d)

= 1 . (10.91)

Now, let focus on the second sum in (10.90) for which we establish an upper bound by

maximizing pUB
2

through setting p1 =
j

d
2

k
, i.e.,

arg max

p1

pUB
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=

�
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⌫
(10.92)
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;
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=
j

ndb

k
� d +

�
d
2

⌫
, (10.93)

where the last equality holds since by
j

d
2

k
 d

2
for real d

2
, we obtain d

2
 d�

j
d
2

k
.

Now, we exploit the inequality (M.1) given in LemmaM.0.1 to obtain an upper bound

for the second sum in (10.90) as follows: First we check whether the required condition

in LemmaM.0.1 are satisfied or not. Namely, we set k =
j

ndb

k
� d+

j
d
2

k
and n = n� d.

Now we calculate their ratio as follow

k
n� d
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n� d
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<

db � b
2
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, t , (10.94)

where (a) holds since bxc  x for real x and (b) holds by the following argument: We

assume that (b) holds and assuming that db 6= 1

2
, we resulted in a trivial inequality,

namely, d > nb, i.e,

db � d
2n

1� d
n

<
db � b

2

1� b
) (10.95)
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n
) (10.98)

b

✓
1

2
� db

◆
<

d
n

✓
1

2
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◆
) (10.99)

nb < d , (10.100)

which can be deduced from the assumption made in the code construction given in
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(10.43) and (10.43), i.e.,

dH(ci, cj) �
⌅
nb

⇧
+ 1

(a)
> nb� 1 + 1

= nb . (10.101)

where (a) holds since
⌅
nb

⇧
> nb� 1 for real nb. Now, we exploit (10.51), to show that

(10.94) is upper bounded by # as follows

db < # + b

✓
1

2
� #

◆
)

db < # +
b

2
� b#)
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< # . (10.102)

Thereby, we apply safely the LemmaM.0.1 with parameters j = p2, k = pUB
2

,
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ndb

k
�

d +
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d
2

k
and n = n� d, and obtain
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. (10.103)

Let focus on the coe�cient in (10.103). In the following, assuming an upper bound for

it, we arrive to a trivial inequality, therefore, the upper bound is valid.

#
⇣

1� k
n�d

⌘

#� k
n�d

<
#(1� t)

#� t
. (10.104)

Observe that (10.104) yield the following chain of expressions:

1� k
n�d

#� k
n�d

<
1� t

#� t
) (10.105)

#� t � k#

n� d
+

kt

n� d
< #� k
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� #t +
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) (10.106)

�t � k#
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< � k

n� d
� #t ) (10.107)
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k
n� d

(1� #) < t (1� #)) (10.108)

k
n� d

< # , (10.109)

which is trivial since it is already proved in 10.94. Now, observe that for 0 < k
n�d <

t < #, the following holds

H
✓

k
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◆
� T#

✓
k

n� d

◆
< H(t)� T#(t) , (10.110)

see Figure 10.2. Therefore, since t always yield a smaller exponent, we obtain an upper

bound on the sum in (10.103) as follows
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#
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1� k
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⌘

#� k
n�d

· 2
n[H(t)�T#(t)]

, z0,n , (10.111)

where (a) exploits (10.104) and (b) follows by (10.110). Thereby, recalling (10.90) and

employing (10.91), we obtain

Pr

⇣
Fdb

(i, j) \Fdb
(i)
⌘
 1 ·

k

Â
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✓
n� d

j

◆
#j(1� #)n�d�j

<
#(1� t)

#� t
· 2

n[H(t)�T#(t)]

, z0,n . (10.112)
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Hence, recalling (10.71) and (10.74) we obtain
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, (10.113)

which implies that both the exponential factors given in (10.113) should yields strict positive exponents, that is, we obtain

two separate upper bounds on the k as follows

k < T#(t)� H(t) and k < T#

0

B@

j
ndb

k
+ 1

n

1

CA� H

0

B@

j
ndb

k
+ 1

n

1

CA , (10.114)
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Therefore,

k < min

8
><

>:
T#(t)� H(t), T#

0

B@

j
ndb

k
+ 1

n

1

CA� H
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B@

j
ndb
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1

CA

9
>=

>;
, (10.115)

Now we focus on the first argument in (10.115). In order to find an asymptotic value

for the argument t, we calculate the following

lim
b!0

t
(a)
= lim

b!0

db � b
2

1� b

= db , (10.116)

where (a) holds by (10.94). Thereby,

lim
n!•

T#(t)� H(t) = T#

⇣
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⌘
� H

⇣
db

⌘
, (10.117)

Now we focus on the second argument in (10.115) and provide the following asymptotic

behavior:
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where the equality holds since T#(.) and H(.) are continuous functions of db. Now,

observe that since
j

ndb

k
� 1 <

j
ndb

k
 ndb for real ndb, we obtain

lim
n!•

ndb � 1 + 1

n
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where (a) holds by the squeeze theorem. Thereby,
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Therefore, recalling (10.115), we obtain the following upper bound on the target identi-

fication rate k:

k < min

8
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T#(t)� H(t), T#
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where the equality holds since T#(.) and H(.) are continuous functions of db. Therefore,

recalling (10.113), we obtain

Pe,2(i, j)  Pr

⇣
Fdb

(i, j) \Fdb
(i)
⌘
+ Pr

✓
dH(Y(i), ci) >

j
ndb

k◆

 z0,n + z1,n

 z0 + z1

 e2 , (10.122)

hence, Pe,2(i, j)  e2 holds for su�ciently large n and arbitrarily small e2 > 0. We

have thus shown that for every e1, e2 > 0 and su�ciently large n, there exists an

(n, M(n, R), K(n, k), e1, e2) code.

10.3.3 | Upper Bound (Converse Proof)

The converse proof consists of employing the following lemma on the size of a DKI

code. In particular, depending on whether or not a Hamming weight constraint is

present, we divide in two cases and address them separately. More specifically, we use

the following observation. Let R > 0 be a DKI achievable rate. We assume to the con-

trary that there exist two distinct messages i1 and i2 that are represented by a common

codeword, i.e., ci1 = ci2 = xn, and show that this assumption result in a contradiction,

namely, the sum of type I and type II error probabilities converges to one from left, i.e.,

lim
n!•

Pe,1(i1) + Pe,2(i2, ) = 1 . (10.123)

Hence our assumption is false and the number of messages 2
nR is bounded by either the

size of the subset of the input sequences that satisfy the input constraint or the entire

input space.
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Lemma 10.3.3. Consider a sequence of (n, M(n, R), K(n, k), e(n)
1

, e(n)
2

) codes (C(n)
, T (n))

such that e(n)
1

and e(n)
2

tend to zero as n! •. Then, given a su�ciently large n, the codebook
C(n) satisfies the following property: There cannot be two distinct messages i1, i2 2 [[M]] that
are represented by the same codeword, i.e.,

i1 6= i2 ) ci1 6= ci2 . (10.124)

Proof. Assume to the contrary that there exist two messages i1 and i2, where i1 6= i2,
such that

ci1 = ci1 = xn
, (10.125)

for some xn 2 X n. Since (C(n)
, T (n)) forms a (n, M(n, R), K(n, k), e(n)

1
, e(n)

2
) code, it im-

plies that for every possible arrangement of
n

,
c
o
, e1 and e2 tends to zero. Therefore,

the existence of a desired arrangement of
n

,
c
o
where ✓ [[M]] with the property

that i1 2 and i2 2 c, is guaranteed. Thereby, we obtain

Pe,1(i1) = Wn(T c | xn = ci1)i12  e(n)
1

,

Pe,2(i2, ) = Wn(T | xn = ci2)i2 /2  e(n)
2

. (10.126)

This leads to a contradiction since

1 = Wn(T c | xn) + Wn(T | xn)

= Pe,1(i1) + Pe,2(i2, )

 e(n)
1

+ e(n)
2

, (10.127)

where the last inequality exploits the definition of type I/II error probabilities given in

(10.22) and (10.23). Hence, the assumption is false, and distinct messages i1 and i2 cannot
share the same codeword.

⇤ Case 1 - With HammingWeight Constraint (0 < A < 1): By Lemma 10.3.3, each

message has a distinct codeword. Hence, the number of messages is bounded by the

number of input sequences that satisfy the input constraint. We divide in two cases,

namely, where 0 < A < 1

2
and 1

2
 A < 1. For the first case, we obtain the following

upper bound on the size of the DKI codebook:

2
nR 

��B0(n, nA)
��

=

�����

(
x 2 H

n
: 0 

n

Â
t=1

xt  nA

)�����
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(a)
 2

nH(A)
, (10.128)

where (a) exploits the upper bound on the volume of the Hamming ball provided in

Lemma J.0.1 for 0 < A < 1/2. Thereby, (10.128) implies

R  H(A) . (10.129)

Now, we proceed to calculate the upper bound on the size of the DKI codebook where

1/2  A < 1. We argue that this case is equivalent to having a Hamming weight

constraint of the form A⇤ = 1/2. That is, the codewords with constraint Ân
t=1

xt  nA⇤

where A⇤ = 1/2 fulfilled the same constraint with 1

2
 A < 1. The new Bernoulli input

process has 1/2 success probability, i.e., X ⇠ Bern(1/2). Therefore, again employing

Lemma J.0.1 for the critical point # = 1/2, we obtain

2
nR 

��B0(n, nA⇤)
��

=

�����

(
x 2 H

n
: 0 

n

Â
t=1

xt  nA⇤
)�����

 2
nH(A⇤=1/2)

, (10.130)

which implies

R  H
�

A⇤ = 1/2
�
= 1 . (10.131)

⇤ Case 2 -Without HammingWeight Constraint ( A � 1): In this case, the number

of messages is bounded by the number of the input sequences, that is, the size of entire

input space, i.e., |X |n. Therefore, we can establish the following upper bound on the

size of the DKI codebook 2
nR  |X |n which for |X | = 2 implies

R  1

n
log |X |n

= 1 . (10.132)

This completes the proof of Lemma 10.3.1.

Thus, by (10.129), (10.131) and (10.132), and exploiting the fact that DKI capacity is

supremum of all achievable rate, the DKI coding rate is upper bounded by

CDKI (W#, K) 

8
><

>:

H(A) if 0 < A < 1/2

1 if A � 1/2 ,

(10.133)

which completes the proof of Theorem 10.3.1.
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10.4 | Summary

In this chapter, we studied the DKI problem over the binary symmetric channel. We

assume that the transmitter is subject to a Hamming weight constraint A. Our results

in this chapter may serve as a model for event-triggered based tasks in the context of

future XG applications. In particular, we obtained the DKI capacity of the BSC with the

codebook size of M(n, R) = 2
nR equals to the entropy of the Hamming constraint value,

i.e., H(A). Our results for the DKI capacity of the BSC revealed that the conventional

exponential scale of 2
nR which is used in the standard message transmission setting, is

again the appropriate scale for codebook size. Further, we find out that the BSC features

an exponentially large set of target messages set, in the codeword length, n, i.e., 2
kn; and

characterize all the possible valid range on the DKI target rate k which depending on

the value of channels statistic may varies.

We show the achievability proof using a Hamming distance decoder and employing

packing arrangement of hyper balls in the same line of arguments as is conducted for

the basic Gilbert bound method. In particular, in the presence of a Hamming weight

constraint A, we pack hyper balls with radius
⌅
nb

⇧
, inside a larger Hamming hyper

ball, which results in ⇠ 2
nH(A) codewords.

For the converse part, a similar approach as chapter 2 for the DMC [98,99,137] is fol-

lowed. That is, for the case where a non-trivial Hamming weight constraint is present

(0 < A < 1), we establish an injection (one-to-one mapping) between the message set

and the subset that is induced by the Hamming weight constraint. However, here we

exploit the impact of generalized type I and type II error probability definitions with

respect to the set of the target messages in the course of the proof, namely, for any

two distinct messages, there exist an arrangement of { ,
c} into which the two mes-

sages are categorized. In particular, we exploit the method of proof by the contradiction.
Namely, we first assume that two generic di↵erent messages i1 and i2 share the common

codewords, and then show that such an assumption leads to a contradiction regarding

the sum of the error probabilities, i.e., we derive that the sum of type I and type II error

probabilities converges to one from left. Hence the falsehood of the early assumption is

guaranteed. Therefore, the total number of messages M = 2
nR is bounded by the size

of the induced subset, i.e., M  2
nH(A). For the case where A � 1, that is, in the absent

of a Hamming weight constraint, a similar line of argument can be applied in order to

establish the injective function.
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CHAPTER 11

“ I Shall Know That The Conclusions Dwell in The Introduction. The

Hegelian Dialectic Between The Two, Illuminates On The Next Step

in Research.

”
M. J. Salariseddigh,

11.1 | Achieved Aims and Objectives

We develop the DI and DKI capacity for several channel models, including the basic

scenarios such as the BSC, DMC or standard Gaussian or practical models such as the

Poisson with/out memory, Binomial and fading channels. We determine the full char-

acterization for DI or DKI capacity for the BSC [112] and DMC models, and derive

lower and upper bounds for the Poisson, Binomial and the fading models. As our main

objective, we obtained the fundamental performance limits of DI and DKI capacity for

several settings which might be useful for the practical synthetic MC designs and pro-

vide insight for the code construction, performance evaluation, etc.

11.2 | Future Works

The results presented in this chapter can be extended in several directions, some of

which are listed in the following as potential topics for future research works:

⌃ Continuous Alphabet Conjecture: Our observations for the codebook size of fol-

lowing studies

– DI for the standard Gaussian channels without memory [105,106],

– DI for the Poisson channels without memory [51,108,109],
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– DI for the Poisson channels with memory [110],

– DKI for the slow fading channel without memory [197],

– DKI for Binomial channel [111],

lead us to conjecture that the codebook size for every continuous input alphabet
channel either for DI or DKI and with / out memory is a super-exponential func-

tion, i.e., 2
(n log n)R. However, a formal proof of this conjecture remains unknown.

⌃ Memory Impact: We assumed that the channel uses are orthogonal, which implies

a memoryless channel and independent molecule reception for temporal and spa-

tial channel use schemes, respectively. In practice, however, the DTBC may ex-

hibit memory [6,9] and non-orthogonal molecule reception [79], the investigation

of which constitutes an interesting research problem.

⌃ DKI For Fast Fading Gaussian Channel: The results in this chapter can be ex-

tended to the Gaussian channels with fast fading model.

⌃ Maximum Power Constraint: Our achievability proof for the Gaussian channels

with fading [99, 105] consider only the average power constraint, however, an in-

teresting future research may include both the average and maximum power con-

straints at the same time which seems more practical.

⌃ Multi User: This study has focused on a point-to-point system and may be ex-

tended to multi-user scenarios (e.g., broadcast and multiple access channels) or

multiple-input multiple-output channels may seems more relevant in applica-

tions of complex MC nano-networks within the future generation wireless net-

works (XG). Recently, DI for multiple access channel has been studied in [204].

⌃ Fekete’s Lemma: Investigation of the behavior of the DI capacity in the sense of

Fekete’s Lemma [205]: To verify whether the pessimistic capacity,

C = lim inf
n!•

log M(n, R)
n log n

,

and the optimistic capacity

C = lim sup

n!•

log M(n, R)
n log n

,

[206] coincide or not; see [205] for more details.
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⌃ Channel Reliability Function: We note that to fully characterize the asymptotic

behavior of the decoding errors as a function of the codeword length for every

value of the rate 0 < R < C, knowledge of the corresponding channel reliability

function (CRF) is required [207]. To the best of the authors’ knowledge, the CRF

for DI has not been studied in the literature so far, neither for the Gaussian channel

[99] nor the Poisson channel [51,108,109]. We note that even for the conventional

message transmission problem, the characterization of the CRF is di�cult, as the

corresponding channel reliability function is not Turing computable [207].

⌃ Explicit Code Construction: Our main focus in this dissertation was the estab-

lishment of fundamental performance limits of DI or DKI for various channel

models, where an explicit code construction was not considered. Therefore, in-

teresting directions for future research include the systematic design and explicit

construction of DI and DKI codes and the development of low-complexity en-

coding and decoding schemes for practical applications. The e�ciency of these

designs can be evaluated against the performance bounds derived in this chapter.

⌃ Memory Gain: We have not exploited the ISI knowledge in the decoding pro-

cedure. For instance, for the DTPC model with constant degree of ISI, capacity

bounds coincide the bounds as of the memoryless DTPC. This observation sug-

gest that testing a di↵erent decoding method which takes e↵ect of ISI into account

by conducting a symbol by symbol detection and exploits the previous K input

symbols might probably yields di↵erent and more accurate capacity bounds.
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Appendix A

We use the following notation conventions throughout all the chapters: Calligraphic

letters X ,Y ,Z , . . . and blackboard bold letters , , , . . . are used for finite alpha-

bet sets. Lower case letters x, y, z, . . . stand for constants and values (realization) of

random variables, and uppercase letters X, Y, Z, . . . stand for random variables. Lower

case bold symbol x and y stand for row vectors of size n, that is, x = (x1, . . . , xn) and

y = (y1, . . . , yn). We use symbol , to specify a definition convention. The probabil-

ity distribution function (PMF) of a discrete random variable X is specified by pX(x)
over a finite set X . The distribution of a real random variable X is specified by a cu-

mulative distribution function (CDF) FX(x) = Pr(X  x) for x 2 R, or alternatively,

by a probability density function (pdf) fX(x), when it exists. A random sequence X

and its distribution FX(x) are defined accordingly. The cumulative distribution func-

tion (CDF) of a Binomial random variable is indicated by BX(x) , Pr(X  x). We use

xj = (x1, x2, . . . , xj) to denote a sequence of letters from X . A random sequence Xn and

its distribution pXn(xn) are defined accordingly. Bold symbol 1n indicates the all-one

row vector of size n. The set of whole numbers is denoted by N0 , {0, 1, 2, . . .}. The set
of real and non-negative numbers are denoted by R and R+, respectively.

The Gamma function for non-positive integer x is denoted by G(x) and is defined as

G(x) = (x� 1)!, where (x� 1)! , (x� 1)⇥ (x� 2)⇥ · · ·⇥ 1. The set of all PMFs over

X is denoted by P(X ). I(X; Y) indicate the mutual information. All logarithms and

information quantities are taken to the base 2. The set of consecutive natural numbers

from 1 through M is denoted by [[M]]. The Hamming distance between two sequences

an and bn is defined as the number of positions for which the sequences have di↵erent
symbols, i.e., dH(an

, bn) = |{t 2 [[n]] ; at 6= bt}|. The Hamming metric (distance)

between two sequences x1 and x2 is defined as the number of positions for which the

corresponding symbols are not identical, i.e.,

dH(x1, x2) ,
n

Â
t=1

d(xi1,t, xi2,t) , (A.1)
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where d(., .) the Kronecker delta and is defined as follows

d(xi, xj) =

8
><

>:

1 xi 6= xj

0 xi = xj

(A.2)

The n-dimensional Hamming sphere of radius ne centered at an is defined as

Se(an) = {xn 2 X n
: dH(xn

, an) < ne} . (A.3)

We denote the hyper-sphere of radius r around x0 with respect to the `2-norm (used for

Gaussian channel in chapters 3, 4, 5) by

Sx0
(n, r) =

n
x 2 Rn

:kx� x0k  r
o

, (A.4)

and its volume by Vol(S). The closure of a set A is denoted by cl(A). The element-

wise product of vectors is denoted by x � y = (xtyt)n
t=1

. We use the small O no-

tation, f (n) = o(g(n)), to indicate that f (n) is dominated by g(n) asymptotically,

that is, limn!•
f (n)
g(n) = 0. The big O notation, f (n) = O(g(n)), is used to indicate

that | f (n)| is bounded above by g(n) (up to constant factor) asymptotically, that is,

lim supn!•
| f (n)|
g(n) < •. We use the big Omega notation, f (n) = W(g(n)), to indicate

that f (n) is bounded below by g(n) asymptotically, that is, g(n) = O( f (n)). The the

`1-norm, `2-norm and `•-norm of vector x are denoted bykxk
1
,kxk, andkxk•, respec-

tively. We use 0 , (0, . . . , 0) to represent coordination of the origin. An n-dimensional

cube with center (A/2, . . . , A/2) and a corner at the origin, i.e., 0, whose edges have

length A is denoted by Q0(n, A) =
n

x 2 Rn
+ : 0  xt  A, 8 t 2 [[n]]

o
.

The n-dimensional Hamming hyper ball of radius r for integers n, r such that n �
r � 1, in the binary alphabet, that is centered at x0 = (x0,t)|nt=1

is defined as

Bx0
(n, r) =

�
xn 2 X n

: dH(x, x0)  r
 

. (A.5)

Volume of the Hamming hyper ball Bx0
(n, r) in the q-ary alphabet is defined as the num-

ber of points that lies inside the ball and is denoted by Vol
�
Bx0

(n, r)
�
. The Hamming

cube is defined as the set of sequences with length n and is denoted by H
n = {0, 1}n.

The n-dimensional Hamming hyper ball Bx0
(n, r) for the choice of x0 = 0 and r = nA,

is denoted by B0(n, nA) and is referred to as the n-dimensional Hamming hyper ball

in 1-norm with a corner at the origin, i.e., 0 = (0, . . . , 0), and radius equal to nA. The

definition of B0(n, nA) is given as follows

B0(n, nA) =

(
x 2 H

n
: 0 

n

Â
t=1

xt  nA

)
. (A.6)
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The q-ary entropy function Hq : [0, 1] ! R for q � 2; a positive integer, is defined

as Hq(#) , x logq(q� 1)� x logq x � (1� x) logq(1� x). The binary entropy function

as a special case of the q-ary entropy function Hq(.) is denoted by H(.) or H2(.) and

is defined as H(#) , �# log(#) � (1� #) log(1� #). We denote the DTPC with K ISI

channel taps, Binomial channel, and GSF with K number of target messages by P , B,
and Gslow.
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Appendix B

To solidify the idea of packing spheres within a hyper cube, we reveal and explain a

counter-intuitive phenomenon regarding the packing of hyper spheres with growing

radius in the codeword length inside a hyper cube. We observe that despite the fact

that the hyper sphere’s radius tends to infinity as the codeword length goes to infinity

⇠ n
1

4 its volume tends to zero super-exponentially inverse, i.e.,⇠ n�
n
4 . This allows us to

accommodate super-exponential number of such hyper spheres inside the hyper cube.

The ratio of the spheres in our construction grows with n, as ⇠ n
1

4 . It is well-known

that the volume of an n-dimensional unit-hyper sphere, i.e., with a radius of r0 = 1,

tends to zero, as n! • [138, Ch. 1, Eq. (18)]. Nonetheless, we observe that the volume

still tends to zero for a radius of r0 = nc, where 0 < c < 1

2
. More precisely,

lim
n!•

Vol
�
Su1

(n, r0)
�
= lim

n!•

p
n
2

G( n
2
+ 1)

· rn
0

= lim
n!•

p
n
2

n
2

!
· rn

0

= lim
n!•

 r
2p

n
r0

!n

, (B.1)

where the last equality follows by Stirling’s approximation [173, P. 52], that is, log n! =

n log n� n log e + o(n). The last expression in (B.1) tends to zero for all r0 = nc with

c 2 (0,
1

2
). Observe that when n ! •, the volume of a hyper cube Q0(n, A) with edge

length A is given by

lim
n!•

Vol
⇥
Q0(n, A)

⇤
= lim

n!•
An =

8
>><

>>:

0 A < 1 ,

1 A = 1 ,

• A > 1 .

(B.2)

Now, to derive how many spheres can be packed inside the hyper cube Q0(n, A) we
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derive the log-ratio of the volumes as follows

log

 
Vol

⇥
Q0(n, A)

⇤

Vol
�
Su1

(n, r0)
�
!

= log

 
An

p
n
2 rn

0

· n
2

!

!

= n log

 
Ap
pr0

!
+ log

✓
n
2

!

◆

= n log A� n log r0 � n log
p

p +
1

2
n log

n
2
� n

2
log e + o(n)

=

✓
1

2
� c

◆
n log n + n

 
log

Ap
pe
� 3

2

!
+ o(n) , (B.3)

where the last equality follows from r0 = nc. Now, since the dominant term in (B.3)

involves n log n, we deduce that codebook size should be L(n, R) = 2
(n log n)R, thereby

by (9.19) we obtain

R � 1

n log n

2

4log

 
Vol

⇥
Q0(n, A)

⇤

Vol
�
Su1

(n, r0)
�
!
� n

3

5

=
1

n log n

2

4
✓

1

2
� c

◆
n log n + n

 
log

Ap
pe
� 3

2

!
+ o(n)

3

5 , (B.4)

which tends to 1

2
� c when n! •.
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Appendix C

The moment-generating function (MGF) of a Poisson variable Z ⇠ Pois(lZ) is GZ(a) =

elZ(ea�1). Hence, for X = Z� lZ, the MGF is given by GX(a) = elZ(ea�1�a). Since the

fourth non-central moment equals the fourth order derivative of the MFG at a = 0, we

have

E{X4} =
d4

da4
GX(a)

�����
a=0

= lZ

⇣
l3

Ze3a + 6l2

Ze2a + 7lZea + 1

⌘
ea+lZea�lZ

�����
a=0

= l4

Z + 6l3

Z + 7l2

Z + lZ  7

⇣
l4

Z + l3

Z + l2

Z + lZ

⌘
.
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Appendix D

In this Appendix, we review known results for the capacity of a DTPC in the asymp-

totic regimes of Pavg ! 0 and Pavg ! •. DTPC is an important channel model in

optical communication and is addressed several times within the last decades. All of

such investigation consider the well-known model of Shannon transmission. None of

these models so far considered the identification problem for it. Therefore, in order to

obtain a ground knowledge and basic insight about DTPC from the Shannon scheme

perspective and observe the behavior of this model from a number of aspects such as

presence of power constraints, working in extreme/asymptotic regions of key parame-

ter (l, Pavg and Pmax), and capacity achieving distributions we survey some of the best

existing results in the literature. A second reason for studying such existing known

results for the DTPC might be a technical issue regarding knowing the known and

working techniques and analysis methods for a code construction, decoding rules and

any smart methods aiming at tightening the bounds.

The asymptotic capacity with an average-power constraint Pavg, when Pavg ! •
and Pavg

l is fixed was studied in [208]. Furthermore, the same problem for a constant l,

with and without an additional peak power constraint was studied in [209]. The first-

order asymptotic capacity for Pavg ! 0, both when Pavg
l is kept constant and when l is

fixed, with and without a peak power constraint, was determined in [210]. Later, the

previously obtained first-order capacity approximation when Pavg = l is constant were

improved in [211] where a refined approximation was determined, including an exact

characterization of the second-order term, as well as an asymptotic characterization of

the third-order term with respect to the dark current, l. Asymptotic upper bounds

for the DTPC capacity with an average-power constraint were given in [33, 209–211].

Explicit asymptotic and non-asymptotic capacity lower bounds for several settings were

given in [209–214].

Previously, the best known non-asymptotic upper bound, which was in fact the best
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capacity upper bound outside the limiting case Pave ! 0, was derived in [212]. How-

ever, the proof su↵ers a small gap, as mentioned in [209], and is not considered com-

pletely rigorous. Later, in [215, Th. 8] strictly tighter upper bounds than the bound

in [212] for all Pavg > 0 which are considered the best current capacity upper bounds

for the DTPC with zero dark current term, i.e., l = 0 subject to an average power con-

straint Pavg for all values of Pavg outside the limiting case Pavg ! 0. In the same paper,

the result of [212] was recovered as an special (sub-optimal) case, thus yielding a rig-

orous proof for the bound proposed in [212]. As well, the same authors in [216, Th. 1]

showed derived a significantly improved non-asymptotic upper bound on the capacity

of the DTPCwith constant positive dark current l � 0 and an average power constraint

Pavg in non-asymptotic regimes of Pavg.

D.0.1 | Capacity-Achieving Distributions

There has been an enormous literature focusing on the properties of capacity achieving

distributions for di↵erent channels. This problem is well-understood for quite general

classes of additive noise channels under several input constraints (see, e.g., the early

works [160,217,218] and the recent works [219–221]). For the DTPC, in the absence of

input constraints, capacity is infinite. The DTPC under a peak power constraint alone

was addressed in [222], and was shown that the support size is of an order between
p

Pmax and ⇠ Pmax log
2 Pmax. In particular, they characterized the capacity in terms

of the output optimal distribution where capacity equals � log PY⇤(0) for PY⇤(0) to be

the optimal output distribution. An analytic expression for the transmission capacity

of a the DTPC with an average power constraint alone, is still open. However, several

bounds and asymptotic behaviors for the DTPC in di↵erent setups have been estab-

lished. For instance, it was shown that a capacity-achieving input distribution for the

DTPC under an average power constraint must have a finite support. The number of

mass points depends on the average and the peak power constraints, and increases to

infinity as the constraints are relaxed [160]. It was conjectured by Shamai [160] that

the support of such a distribution must be countably infinite. The result was extended

in [175, 176] and it was stated that the support of such a distribution for the DTPC

under an average-power constraint must have an unbounded support. Moreover, they

also proved that such a distribution has a non-zero mass at x = 0, and, if a peak power

constraint Pmax is present, at x = Pmax as well. Unlike additive noise channels, less

is known about the capacity-achieving distributions of a DTPC when there is only an
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average-power constraint. In [215] it was shown that such a distribution for the DTPC

with an arbitrary l � 0, under an average-power constraint and/or a peak power con-

straint, is discrete (see the conjecture by Shamai [160]). It was further shown that the

support of such a capacity-achieving distribution for the DTPC under an average-power

constraint and/or a peak power constraint has a finite intersection with every bounded

interval [215, see Th. 14]. Further discussions on the capacity-achieving distributions

are provided in [223]. Here, we will consider the identification setting, where the re-

ceiver is not required to determined the message, but rather identifies a specific task.

D.0.2 | Asymptotic Characterizations

In the sequel, we denote the capacity under an average power constraint Pave, a peak

power constraint Pmax and the dark current l by C (l, Pave, Pmax). For small values of

Pave, in [210] it was shown that the asymptotic capacity of the DTPC, i.e., when the

average input power tends to zero while the peak-power, if finite, is fixed, scales as

�Pave log Pave, i.e.,

lim
Pave!0

C(l = cPave, Pave, Pmax)
Pave log Pave

= �1 , (D.1)

for any c 2 [0, •) and Pmax 2 (0, •]. Furthermore, they provided the following upper

bound

C(0, Pave, •)  �Pave log p� log(1� p) +
Pave

b

+ Pave · max

0

BBB@
0,

0

BB@
1

2
log b + log

0

B@
G
⇣

1

2
, 1/b

⌘

p
p

+
1

2b

1

CA

1

CCA

1

CCCA
, (D.2)

where p 2 (0, 1) and b > 0 are arbitrary constants and G(.) is the upper incomplete

Gamma function. Later, in [211], for a small value of Pave the higher order asymptotic

behavior for C(Pave) was characterized and given by

C(l = cPave, Pave, Pmax) = �Pave log Pave � Pave log
�
� log Pave

�
+O(Pave) , (D.3)

where c 2 [0, •). This upper bound holds irrespective of whether a peak power con-

straint is imposed or not as long as Pmax is positive and does not approach zero together

with e. Also the following upper bound was stated.

C(l = cPave, Pave, Pmax) Pave�Pave log log Pave � log(1� Pave)
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� Pave log

 
1� 1

log Pave

!
+Pave · sup

x�0

fµ(x) ,

which matches the asymptotic behavior given in (D.3) where

fµ(x) :=
1� e�x

x
log

 
�x

Pave log Pave

!
. (D.4)

For a large value of Pave, and in the absence of a peak power constraint, it was shown

in [169] that

lim
Pave!•


C(l, Pave, •)� 1

2
log Pave

�
= 0 , (D.5)

where the dark current is a non-negative constant, i.e., l � 0. Expressions for the

capacity, based on the ratio of the average and the peak power constraint, i.e., a = Pave
Pmax

was provided in [224] as follows

C(l, Pave, Pmax)

=

8
><

>:

1

2
log Pmax + (a� 1)u� log

⇣
1

2
� au

⌘
� 1

2
log (2pe) +O(1) 0 < a < 1

3
,

1

2
log Pmax � 1

2
log

pe
2
+O(1) 1

3
 a  1 ,

(D.6)

for u is the non-zero solution to

p
p erf

⇣p
u
⌘✓

1

2
� au

◆
�
p

ue�u = 0 , (D.7)

with erf(.) being the Gauss error function. Observe that a ⌧ 1 represents the regimes

of very weak peak power constraints, whereas a = 1 corresponds to the absence of an

average power constraint. Also, the term O(1) vanishes as Pave, Pmax ! • where a is

considered to be constant.

The previously best upper bound in the presence of only average power constraint

Pave in any regime outside the regime Pave ! 0 was derived [212, see Eq. (10)] and is

given by

C (l, Pave, •)


✓

Pave +
1

2

◆
log

✓
Pave +

1

2

◆
� Pave log Pave �

1

2
+ log

 
1 +

p
2e� 1p

1 + 2Pave

!
, (D.8)

which is strictly less than the upper bound given in (D.2) for all Pave > 0 and tends

to 1

2
log(1 + Pave) for Pave ! •. However, recently, authors in [215] yielded the best
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known upper bound on the capacity C (0, Pave, •) in the absence of dark current, i.e.,

l = 0 for any Pave outside the asymptotic regime Pave ! 0, as follows

C (0, Pave, •)  Pave ln

0

B@
1 +

⇣
1 + e1+g

⌘
Pave + 2P2

ave

e1+gPave+ 2P2
ave

1

CA

+ ln

0

B@1+
1p
2e

0

@
s

1 +
�
1 + e1+g

�
Pave + 2P2

ave
1 + Pave

� 1

1

A

1

CA (D.9)

where g ⇡ 0.5772 is the Euler-Mascheroni constant. This bound outperforms the pre-

viously best upper bound given in (D.8) and recovers that result with a rigorous proof.

Further, in [216, Th. 1], the best upper bound on the capacity C (l, Pave, •) for a posi-

tive dark current term, i.e., l � 0 is given by

C (l, Pave, •)  ln

0

@dl +
1p
2e

 
1p

1� ql,Pave

� 1

!1

A� (Pave + l) ln ql,Pave (D.10)

where dl = e�lelE1(l), with E1(z) being the exponential integral function and ql,Pave

given by

ql,Pave = 1� 1

1 + e1+g (Pave + l) + 2�e1+g

1+Pave+l (Pave + l)2
(D.11)

where g is the Euler-Mascheroni constant.

Poisson channel under an average power constraint alone is considered in [208,225]

where it was assumed that both Pave and l tend to infinity while their ratio, Pave
l , de-

fined as SNR, is kept constant. Namely, for every e > 0 capacity is lower bounded

by

C (l, Pave, •) � 1

2
log

Pave

2p
� 1

2
log

✓
1 +

1

SNR

◆
� e , (D.12)

and upper bounded by

C (l, Pave, •)  1

2
log

Pave

2p
+ log

 
p
SNR

✓
1 +

1

Pe

◆
+

1p
SNR

!
+ 1 + log

3

2
+ e ,

(D.13)

where the Pe < Pave is a large constant depending on e but strictly less that the average

power constraint Pave.
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An upper bound on the capacity of a point-to-point DTPC W(y|x) under an average

power constraint Pave and dark current l was proposed in [33, Example 2] where it was

shown that the Shannon capacity satisfies

C (l, Pave, •) = max
X : E[X]Pave

I(X, Y)

 max
X : E[X]Pave

Cov
�
X + l , log (X + l)

�
, (D.14)

with Y ⇠ Pois(l + X) and Cov(X, Y) = E [XY]�E [X]E [Y]. Further, for a DTPC with

an average input constraint Pave and peak power constraint Pmax, the following upper

bound was reported

C (l, Pave, Pmax) = max
X : E[X]Pave ,

0XPmax

I(X, Y)



8
><

>:

Pave
Pmax

(Pmax � Pave) log( Pmax
l + 1) Pave  Pmax

2
,

Pmax
4

log( Pmax
l + 1) Pave � Pmax

2
.

(D.15)

The capacity of the direct-detection Poisson photon-counting channel with fading (Pois-

son fading channel) is established in [226] where a single-letter characterization of the

capacity, assuming a perfect CSI at the receiver is provided with perfect and no CSI at

the transmitter. Also, the limiting behavior of the capacity in the high and low peak-

signal-to-dark-noise ratio (SNR) regimes, namely in the limits as l ! 0 and l ! • is

addressed. The capacity for perfect CSI at the transmitter is reported to be

C (l, Pave, Pmax) = max
µ : R⇤

0
![0,1] ,

E[µ(S)s]

E
h
µ(S)z (Sa, l)� z

�
µ(S)Sa, l

�i
, (D.16)

where z(x, y) := (x + y) ln(x + y)� y ln y for x, y > 0 with 0 ln 0 := 0. The 0  s  1 is

the ratio of average to peak power constraint, and S is a distribution satisfying following

conditions

Pr [S > 0] = 1 , (D.17)

E [S] < • , (D.18)

E
⇥
|z(Sa, l)|

⇤
< • . (D.19)

Finally, the capacity for no CSI at the transmitter is given by

C (l, Pave, Pmax) = max
0µs

E
h
µz (Sa, l)� z

�
µSa, l

�i
. (D.20)
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Lower and upper bounds on the constrained capacity in di↵usion-basedMC is provided

in [227]. Capacities and optimal input distributions for particle-intensity channels

(PIC) as a more general formulation of the DTPC is discussed in [31]. In [36, Lem. 4], it

has been shown that the capacity C of a di↵usion channel under the PAM modulation

with symbol duration D and peak and average power constraints A and µA (µ 2 [0, 1])

is lower bounded as

C � 1

D
max

Pl2P(A,µ)
I(g; y) , (D.21)

where gD/h0 is distributed as Pl 2 P(A, µ) and y is the output of WD with input

g + L̃/D, where L̃ is the maximum inter-symbol interference (ISI) term given by

L̃ def
= gAD

Z •

D
G(r, s) ds , (D.22)

with g being coe�cient in function f (x) = gx describing how the rate of Poisson recep-

tion process at the receiver is related to the particle concentration r(r, t), that is,

g(t) = f (r(r, t)) = gr(r, t) . (D.23)

Observe that r here is the receiver coordination and G(x, t) is the fundamental solution

(free space and impulse release) to the Fick’s second law of di↵usion and is given by

G(x, t) =
1q

(4pDt)3

· exp

(
� |x|2

4Dt

)
, (D.24)

where r is the coordination. In [36, Th. 5] further it was shown that for any e, D > 0,

there exists A0 2 R+ such that the capacity C of the di↵usion channel with peak and

average power constraints of A and µA, respectively, is lower bounded

C �
✓

1

2
� e

◆
log A

D
, (D.25)

For A � A0. Furthermore, the lower bound can be achieved by deploying a PAM

modulation scheme with symbol duration D at the input. A closed form solution for

capacity of a di↵usion-based molecular communication system with channel memory

and molecular noise is addressed and obtained in [30] as follows

C =2W

0

@1 + log

 
PH

3WKbT

!
� 2 log (pDd)

1

A� 4d
3 ln 2

r
pW
D
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� 2W
2PHRVR

9W2dKbT
� 2W ln

⇣
Wtp

⌘
� 2W ln

0

@G

 
2PHRVR

9W2dKbT

!1

A

� 2W

 
1�

2PHRVR

9W2dKbT

!
y

 
2PHRVR

9W2dKbT

!
, (D.26)

where PH is the average thermodynamic power spent by the transmitter, Kb is the Boltz-

mann constant, T is the absolute temperature of the system, W is the bandwidth of the

transmitted signal X, tp is the time interval in which we consider a quasi-constant par-

ticle distribution, y(.) is the digamma function, D is the di↵usion coe�cient, d is the

distance between the transmitter and the receiver, RVR and is the radius of the spherical

receiver volume VR. In this model, the environment is assumed to be three dimensional

space with an infinite extension to all directions. Transmitter is point-wise and trans-

mitted signal is the number of particles that are emitted by transmitter into the space.

Receiver is an ideal type where the received signal is defined as time varying number

of particles that are present inside its volume.

Further, lower and upper bounds for the constrained capacity of a di↵usive MC sys-

tem in the case where the information is associated with the concentration of molecules

released by the transmitter is investigated in [227].
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�

Let W be a given DMC, with a stochastic matrix W : X ! Y and its reduced version

Wr : Xr ! Y as defined in Definition 2.3.1. Observe that the capacity of the original

channel is lower bounded by that of the reduced channel, i.e.,

CDI(W , L) � CDI(Wr, L) , (E.1)

since every code for Wr can also be used for W. Hence, it remains to be shown that

CDI(Wr, L) � CDI(W , L) . (E.2)

Assume without loss of generality that the input alphabet of the original channel W
is given by X = {1, 2, · · · , |X |}. Let s : X ! Xr denote the projection of the input

alphabet onto the equivalent classes,

s[x] = z(`) i↵ x 2 X (`) . (E.3)

Now let (U ,D) be an (L(n, R), n, l1, l2) code forW . Then the type I probability of error

can be expressed as

PW
e,1
(i) = Â

yn /2Di

Wn(yn|ui) = Â
yn /2Di

n

’
t=1

W(y(t)|ui(t)) , (E.4)

where we use the notation yn =
⇣

y(t)
⌘n

t=1

and ui =
⇣

ui(t)
⌘n

t=1

. Next we define a code

( eU ,D) for the channel Wr, where the codebook consists of the following codewords,

ũi =
⇣

s[ui(t)]
⌘n

t=1

. (E.5)

Now recall that we have defined the equivalence classes such that input letters in the

same equivalence class correspond to identical rows in the channel matrix W (see Def-

inition 2.3.1). Thus, by definition,

Wr(y|s[x]) = W(y|x) , (E.6)
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for all x 2 X and y 2 Y . Hence, the error probability of type I for the reduced channel

Wr satisfies

PWr
e,1

(i)
(a)
= Â

yn /2Di

Wr(yn|ũi)

(b)
= Â

yn /2Di

n

’
t=1

Wr

⇣
y(t)|s[ui(t)]

⌘

(c)
= Â

yn /2Di

n

’
t=1

W(y(t)|ui(t))

(d)
= Â

yn /2Di

Wn(yn|ui)

(e)
= PW

e,1
(i) , (E.7)

for all i, where (a) and (e) are due to (2.7); (b) and (d) hold since the channel is

memoryless, and (c) follows from (E.6). By the same considerations, we also have

PWr
e,2

(i, j) = PW
e,2
(i, j) for all j 6= i. That is, the error probabilities of the code ( eU ,D)

are the same as those of the original code forW . Therefore, the code constructed above

for Wr is also an (L(n, R), n, l1, l2) code, and the proof of Lemma 2.3.1 follows.
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�

In the following, a rigorous proof for comparing the capacity value in di↵erent scale is
given. In particular, we assume that given a known scale for the codebook size used in

the course of the capacity theorem, we try to set a scale for the codebook which has a

higher scale and then, we try to calculate the capacity value for the higher scale. More

specifically, we would show that if the capacity is finite and positive in the scale of L1,

then the capacity is zero in the scale L2, where L2 dominate the L1 for asymptotic n, i.e.,
when n! •.

Proof. The proof is straightforward. Let CDI(Gfast, L0) = c0, where c0 > 0 is a finite

number. Then, for every l1, l2, and su�ciently large n, there exists an (Mn, n, l1, l2)

code where the number of messages is

Mn = L0(n, c0 � e) (F.1)

where e > 0 is arbitrarily small.

Assume to the contrary that in the L�-scale, the DI capacity CDI(Gfast, L�) = c� is

also finite. Then, the converse for this claim implies that the number of messages is

bounded by

Mn  L�(n, c� + e) (F.2)

Hence, by (F.1) and (F.2),

L0(n, c0 � e)  L�(n, c� + e) (F.3)

which contradicts the assumption that L� � L0 (see Definition 2.2.1). Hence, CDI(Gfast, L�)
is infinite.

Assume to the contrary that in the L+-scale, the DI capacity is positive, i.e.,

CDI(Gfast, L+) = c+ > 0 ,
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Then, for every l1, l2, and su�ciently large n, there exists an (M+
n , n, l1, l2) code

where the number of messages is

M+
n = L+(n, c+ � e) (F.4)

Now, by the converse part for the C0-scale,

M+
n  L0(n, c0) (F.5)

Hence, by (F.4) and (F.5),

L+(n, c+ � e)  L0(n, c0) (F.6)

which contradicts the assumption that L0 � L+ (see Definition 2.2.1). Hence, CDI(Gfast, L+)

is zero.
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�

Let Yt(i) ⇠ Pois
⇣

r0ci,t + Ici
t

⌘
denote the channel output at time t given that x = ci. Recall that yt(i)

def
= yt(i)� (r0ci,t + l),

then we have
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i

(c)
 E

h
Y4

t (i)
i
� 4lE

h
Y3

t (i)
i
+ 6(r0ci,t + l)2E

h
Y2

t (i)
i
� 4(r0ci,t + l)3E

⇥
Yt(i)

⇤
+ (r0ci,t + l)4

(d)
 E

h
Y4

t (i)
i
� 4lE

h
Y3

t (i)
i
+ 6(A + l)2E

h
Y4

t (i)
i
� 4(r0ci,t + l)3E

⇥
Yt(i)

⇤
+ (A + l)4

(e)
 E

h
Y4

t (i)
i
+ 4lE

h
Y4

t (i)
i
+ 6(A + l)2E

h
Y4

t (i)
i
+ 4(A + l)3E

h
Y4

t (i)
i
+ (A + l)4

 E
h
Y4

t (i)
i ⇣

1 + 4l + 6(A + l)2 + 4(A + l)3

⌘
+ (A + l)4

( f )
 (A + l)4e

8

l

⇣
1 + 4l + 6(A + l)2 + 4(A + l)3

⌘
+ (A + l)4
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✓
1 + e

8

l

⇣
1 + 4l + 6(A + l)2 + 4(A + l)3

⌘◆

= 6(A + l)4

✓
1 + e

8

l

⇣
1 + (A + l) + (A + l)2 + (A + l)3

⌘◆
, (G.1)

where (a) follows from Var{Z}  E[Z2
t ] with Zt =

⇣
Yt �

�
r0ci,t + l

�⌘2

, (b) holds by the 8-th order binomial expansion,

(c) follows by the linearity of the expectation operator, (d) and (e) follows from ci,t  A , 8t 2 [[n]], and since expectation

is an increasing function, that is, for integers p, q we have

Yp
t (i) < Yq

t (i)) E
h
Yp

t (i)
i
< E

h
Yp

t (i)
i

, (G.2)

( f ) holds by employing an upper bound on the non-central moment of a Poisson random variable with mean lZ as follows

(see [228, Coroll. 1])

E
h

Zk
i
 lk

Z exp

(
k2

2lZ

)
. (G.3)
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�

To solidify the idea of packing spheres within a hyper cube, we explain about the pack-

ing of hyper spheres with growing radius in the codeword length n. Despite the fact

that radius of the hyper sphere’s diverges to infinity as n ! • as ⇠ n
1+k

4 , still the as-

sociated volume converges to zero super-exponentially inverse as of order ⇠ n�
(1+k)n

4 .

This makes an accommodation of super-exponential number of such hyper spheres in-

side the hyper cube possible. The ratio of the spheres in our construction grows with n,
as ⇠ n

1+k
4 . Volume of an n-dimensional unit-hyper sphere, i.e., with a radius of r0 = 1,

tends to zero, as n! • [138, Ch. 1, Eq. (18)]. Nonetheless, we observe that the volume

still tends to zero for a radius of r0 = nc, where 0 < c < 1

2
. More precisely,

lim
n!•

Vol
�
Sc1

(n, r0)
�
= lim

n!•

p
n
2

G( n
2
+ 1)

· rn
0

= lim
n!•

p
n
2

n
2

!
· rn

0

= lim
n!•

 r
2p

n
r0

!n

, (H.1)

where the last equality follows by Stirling’s approximation [173, P. 52], that is, log n! =

n log n� n log e + o(n). The last expression in (H.1) tends to zero for all r0 = nc with

c 2 (0,
1

2
). Observe that when n ! •, the volume of a hyper cube Q0(n, A) with edge

length A when A < 1 tends to zeros, that is,

lim
n!•

Vol
�
Q0(n, A)

�
= lim

n!•
An = 0 .

Now, to count the number of spheres that can be packed inside the hyper cube
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Q0(n, A), we derive the log-ratio of the volumes as follows

log

 
Vol

�
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�

Vol
�
Sc1

(n, r0)
�
!

= log
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p
n
2 rn
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2
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✓
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2
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◆

= n log A� n log r0 � n log
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2
n log
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2
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2
log e + o(n)

=

✓
1

2
� c

◆
n log n + n

0

@log

 
Ap
pe

!
� 3

2

1

A+ o(n) , (H.2)

where the last equality follows from r0 = nc. Now, since the dominant term in (H.2)

involves n log n, we deduce that codebook size should be M(n, R) = 2
(n log n)R, thereby

by (9.19) we obtain

R � 1

n log n

2

4log

 
Vol

�
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�
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�
Sc1

(n, r0)
�
!
� n

3

5

=
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n log n
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64
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1

2
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◆
n log n + n

0

@log

 
Ap
pe

!
� 3

2

1

A+ o(n)

3

75 , (H.3)

which tends to 1

2
� c when n ! •. As a result, (H.3) induces that condition c < 1

2
with

c not being arbitrary approaching 1

2
to derive a meaningful (non-zero) lower bound.

Since c = 1+k
4

we obtain

1 + k

4
<

1

2
) k < 1 . (H.4)
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Appendix I

Lemma I.0.1. Let n, q � 2 be positive integers and assume a real p where 0  bn#c /n 
1� 1/q . Then, volume of the Hamming ball in the q-ary alphabet is lower bounded as follows

Vol
�
Bx0

(n, r)
�
,
bn#c

Â
j=0

✓
n
j

◆
(q� 1)j � qHq

⇣
bn#c

n

⌘
�o

⇣
logq n

⌘

. (I.1)

Proof. Observe that the Stirling’s approximation [229] gives the following double bound

on n!

p
2np

✓
n
e

◆n
el1(n)  n! 

p
2np

✓
n
e

◆n
el2(n) . (I.2)

Now, we have
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(b)
=

Res(n)
⇣
bn#c

n

⌘bn#c
·
⇣

1� bn#c
n

⌘n
⇣

1�bn#c
n

⌘ (I.3)

where (a) holds since we let

Res(n) , e
l1(n)�l2(bn#c)�l2
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1�bn#c
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r
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and (b) holds since

ebn#c · en
⇣

1�bn#c
n

⌘

en = 1 . (I.5)

Next, we proceed to bound the Hamming ball as follows: Observe that the volume of

Hamming ball as provided in (I.1) is lower bounded by the Binomial coe�cient for the

largest index, i.e., j = bn#c. Therefore,
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⌘
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Now by letting l1(n) = 0 and l2(n) = 1/(12n), we obtain

Res(n) =
e�

1

12bn#c�
1

n�bn#c
r

2p bn#c
⇣

1� bn#c
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⌘
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(a)
 e�

1

12bn#c�
1

n�bn#c
p

2p bn#c (1� #)
(b)
= K(#) bn#c�

1

2 e�
1

12bn#c�
1

n�bn#c , (I.7)

where (b) follows for su�ciently large n, since bn#c (b) holds for K(#) = 1p
2p(1�#)

.

Therefore,

logq Res(n) = logq K(#)� 1

2
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n� bn#c
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⇣
logq n
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which implies that

lim
n!•

logq Res(n)
logq n

= 0 . (I.9)

Thereby,
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Lemma J.0.1 (see [230, Lem. 16.19]). Let integer n � 1 and 0 < #  1

2
with n > bn#c � 1.

Then, volume of the Hamming ball in the binary alphabet is upper bounded as follows

Vol
�
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(n, r)
�
,
bn#c

Â
j=0

✓
n
j

◆
 2

nH(#)
, (J.1)

Proof. Observe that for 0 < #  1

2
, the logit function, i.e., H(#) , log

⇣
#

1�#

⌘
is non-positive.

That is,

H(#) = log

✓
#

1� #

◆
= log #� log(1� #)  0 . (J.2)

Next, notice that for i 2 [0, bn#c] we obtain the following

i log # + (n� i) log(1� #) � �nH(#) , (J.3)

where H(#) is the binary entropy function. Hence, #i(1� #)n�i � 2
�nH(#). Now,
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Therefore, we obtain
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,
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� 1

Lemma K.0.1 (see [200, Probl. 5.8� (c)]). Let 0 < # < 1 and # < k
n < 1. Then,
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k(1� #)� (n� k)#

#
.

(K.1)

Proof. The proof for the lower bound is trivial and obvious. For proving the upper bound, we

employ the provided hints given in [200, P. 531] as follows: Observe that
✓

n
j + 1

◆
=

✓
n
j
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n� k
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◆
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✓
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n� (k + m� 1)
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◆
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✓
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k

◆
, (K.3)

Using the induction, we obtain
✓

n
k + m

◆
<

✓
n
k

◆✓
n� k

k

◆m
, (K.4)

Now let us sum over j by using a geometric series. Next, we combine this results with the result

of part (a) in the Problem 5.8 of [200, Probl. 5.8], and we obtain the desired upper bound. That

is,
r

n
8k(n� k)

enH(k/n)+k log #+(n�k) log(1�#)
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� 2

Lemma L.0.1. Let 0 < # < 1 and # < k
n < 1. Then,

n

Â
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n
h
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k(1� #)� (n� k)#

#
. (L.1)

Proof. Recall that the equation of the tangent line to the binary entropy function H(d)

at the specific point d = # is given by

T#(d)

(a)
= H(#) + (d� #)

dH(d)
dd

����
d=#
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= �d log(#)� (1� d) log(1� #) , (L.2)

where (a) holds by definition of a tangent line to a function at specific point, (b) follows

since derivative of the entropy function reads the negative of the logit function, i.e.,

dH(d)
dd

= �logit (d) , � log

✓
d

1� d

◆
, (L.3)

for 0 < d < 1, and (c) holds by definition of the entropy function, i.e.,

H(#) , �# log #� (1� #) log(1� #) . (L.4)
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Therefore exploiting (L.2) we obtain,
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n
) log(1� #) , (L.5)

which implies �nT#( k
n ) = k log(#) + (n� k) log(1� #). Thereby,
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n ) = #k(1� #)n�k
. (L.6)

Now, observe that the Binomial coe�cient (n
k) where k � 1 and n� k � 1, can be upper

bounded as follows [120, see P. 353]
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where (a) holds by (L.6) and (b) follows by exploiting (L.6). Now, recalling (L.1), we

obtain
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This completes the proof of Lemma L.0.1
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Lemma M.0.1. Let 0 < # < 1 and k < n with k
n < #. Then,
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Proof. Let define
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i.e., k$ k0 and #$ #0 or equivalently

k$ n� k ,
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Now, observe that
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Furthermore, by definition of the binary entropy function and its tangent line, we have
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where (M.5) follows by (L.4) and (M.6) holds by (L.5).

Now applying the variable exchange of j$ n� j unto (L.1), we obtain
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Observe that since the index of sum in (L.1) runs form k to n, i.e., k  j  n, in the

new system we have k  n� j  n which is equivalent to 0  j  n� k. Further, the
Binomial coe�cient satisfy
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for 0  j  n. Thereby,
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Now, applying the exchange of variables given in (M.3) unto (M.9), we obtain
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where the equality holds by (M.5) and (M.6). Therefore,
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Now we focus on the bracket in (M.10) which can be simplified as follows
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where the first equality follows by dividing both sides in the left side by factor n.
Thereby,
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This completes the proof of Lemma M.0.1.
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