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Abstract I

Abstract

We consider three different inventory models in combination with shipment consolidation.
In each model, stochastic demand is accumulated at a warehouse before being dispatched
to customers. In two of these models, customers share advance demand information,
which is taken into account at the time of shipment. We jointly optimize the inventory
and shipment policy parameters and also provide structural insights into the optimal
outbound shipment quantities for a time-based dispatch scheme.

Firstly, we present a model for a one-warehouse-multi-retailer inventory system that
receives stochastic demand. The warehouse satisfies retailer demand using a hybrid time-
and-quantity-based shipment consolidation policy. Shipments are dispatched according
to a time-based schedule; however, additional quantity-based shipments may occasionally
be dispatched in between if the number of accumulated demands reaches a specific
consolidation quantity to reduce retailer waiting time. We derive the probability mass
function of the inventory level at each retailer, enabling efficient computation of the
system’s inventory and shipment costs. After evaluating various inventory and shipment
policies, we demonstrate how the optimal policy parameters can be computed. A
numerical study shows that using the pure time-based or pure quantity-based policy
instead of the dominating hybrid policy can be implemented without significant total
cost increases in most instances.

Secondly, an inventory model is introduced that incorporates shipment decisions and
advance demand information to analyze a flexible time-based shipment policy. The orders
of a production facility are accumulated at the warehouse, and shipments leave based on
a periodic dispatch scheme. Even though orders arrive with a due date, the warehouse
is allowed to fulfill these orders ahead of this due date to increase the utilization of
transportation means. We provide analytical, approximate expressions for the inventory
and shipment costs, enabling the evaluation of various inventory and shipment policies.
Moreover, we demonstrate how to optimize the policy parameters. Our approximation



Abstract II

reaches sufficient accuracy and is validated through comparison with results obtained by
simulation. Our findings indicate that advance demand information not only reduces the
safety stock needed at the warehouse but also enables cost savings by integrating flexible
deliveries into already familiar and adopted shipment policies.

Finally, we formulate a Markov decision process to model an inventory system receiving
advance demand information and where shipments are dispatched according to a time-
based schedule. The aim is to answer the question about the optimal outbound shipment
quantities when flexible deliveries are allowed. Since large-scale instances cannot be
solved to optimality as the number of dimensions increases, a deep reinforcement learning
algorithm is implemented to observe the structure of the (near-)optimal shipment policy.
Building on this insight, we propose an approximated threshold policy, which is compared
to simple benchmark policies and shows great performance across a wide range of
instances.
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i ∈ {1, 2, . . . ,N}

Ôi Number of units outstanding for retailer i ordered before τ − Li,
i ∈ {1, 2, . . . ,N}

Ôm Number of units outstanding for retailers in retailer group m

ordered before τ − Li, m ∈ {1, 2, . . . ,M}, i ∈ {1, 2, . . . ,N}
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Tm Shipment interval to retailer group m in the multi-echelon inven-
tory system, m ∈ {1, 2, . . . ,M}



List of Abbreviations and Symbols XX

Tm∗ Optimal shipment interval to retailer group m in the multi-echelon
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variable on the interval [0, T ]

Uniform(a, b) Uniform distribution with parameters a and b

V Shipment delay due to the shipment policy

V (S̄t) Value function of the pre-decision state S̄t
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i
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ȳn
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λ = (λ1, λ2, . . . , λN )

λi Expected demand per time unit at retailer i in the multi-echelon
inventory system, i ∈ {1, 2, . . . ,N}
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t , . . . , ω

M
t )

ωm
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1
Chapter

Introduction

As supply chains grow in complexity, it becomes increasingly important to hedge against
sources of uncertainties, e.g., demand, supply, and lead time uncertainties. Keeping safety
stock is one strategy to protect against these uncertainties and prevent stockouts that
could result in customer dissatisfaction or production losses. However, keeping inventory
on stock causes significant holding costs that can reduce profitability if not managed
effectively. Therefore, deciding on the number of units to stock is a critical decision
for any business, as it directly impacts both operational efficiency and financial health.
Therefore, finding the right balance between holding sufficient inventory to meet demand
and minimizing inventory holding costs is far from a trivial task. Consequently, inventory
management has been a pivotal area of practice and research for decades.

Moreover, environmental awareness has increased significantly in recent years, underlining
the growing importance of designing sustainable supply chains and distribution systems.
OECD (2023) emphasizes this objective by highlighting the challenging trade-off arising
from the simultaneous increase in transport demand and the need to reduce CO2 emissions.
This is particularly relevant considering that the transport sector is responsible for 23 %
of global energy-related CO2 emissions (OECD, 2023). Additionally, Doherty and Hoyle
(2009) point out that the average load factor of the maximum gross weight is only 57 %,
without taking into account empty truck runs. To achieve a potential reduction of up to
72 % in freight emissions compared to 2015, OECD (2021) suggests transformations of
current processes, such as enhancing freight consolidation and strengthening collaborations
within supply chains, leading, among other things, to higher load factors.

However, in research, inventory and shipment decisions are often analyzed separately
due to reasons of complexity. Consequently, when evaluating inventory policies, it is
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common to assume that demand is satisfied immediately. Although replenishment policies
can be strategically applied to aggregate demand from downstream stock points into
batches, these demand batches are assumed to be satisfied directly, and in cases of
stockouts, partial deliveries are made. Any unfulfilled demand is satisfied as soon as
inventory is replenished at the upstream stock point, see, e.g., Axsäter (2000). In the area
of transportation science, assumptions are often reversed. For instance, the stochastic
inventory problem is characterized by the fact that demand from several downstream stock
points is satisfied within a single route, and the inventory levels at these downstream stock
points are taken into account. However, it is assumed that there is ample supply at the
upstream stock point from where the routes are planned, ensuring that all requirements
can be met. As a result, stockouts on shipment days are not considered within the
analysis, as exemplified by Sonntag et al. (2023).

Hence, there has been a growing body of research in the field of inventory manage-
ment with integrated shipment decisions for more than 30 years. Nevertheless, several
questions within this field remain unanswered. Furthermore, Malmberg and Marklund
(2023) recently emphasize that the joint analysis of inventory and shipment decisions in
distribution systems is significant for sustainable and economical actions.

Finally, enhancing collaborations within the supply chains, such as exchanging information,
presents a promising strategy to further improve shipment and inventory decisions. For
instance, information about future demand can be shared, leading to increased utilization
of transportation means and reducing demand uncertainties. Advance demand information
(ADI) can be efficiently modeled by a demand lead time as demonstrated in Wang and
Toktay (2008).

Based on the aforementioned facts, we contribute to the field of inventory control with
integrated shipment decisions and ADI by deriving new mathematical models to analyze
systems with different shipment consolidation strategies. On the one hand, we analyze
continuous review inventory systems integrating heuristic shipment consolidation strategies.
For these systems, the aim is to find optimal inventory and shipment parameters to
minimize the total cost of the system. On the other hand, we derive a near-optimal
outbound shipment strategy for a periodic inventory system, considering a positive
demand lead time, a time-based dispatch strategy, and ample supply at the distribution
center.

Before outlining the contribution and methodologies, and stating the research questions
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answered in this work, we establish essential terminology and fundamentals required for
modeling various inventory systems.

1.1 Terminology and Fundamentals of Inventory
Management

The objective of inventory management is to develop control strategies that minimize
the costs within the inventory system while ensuring the availability of sufficient stock on
hand to receive a high customer service level. To balance both objectives, the flow of
goods within the inventory system has to be managed. That encompasses not only the
questions of when and how much to order, but it is equally important to consider the
questions of when and how much to dispatch.

The purpose of this chapter is to offer a concise introduction to inventory control theory,
in particular, to introduce the fundamental definitions and concepts that are relevant
to this thesis. We discuss structures of inventory systems, the definition of supply
lead times, types of review periods and customer demand. Additionally, we present
established replenishment, dispatch and allocation policies within inventory systems.
We also provide a short summary of demand lead times in inventory systems. Lastly,
we introduce measures used to evaluate the performance of inventory systems. The
contents presented in this chapter are based on the textbooks Tempelmeier (2006) and
Axsäter (2015). For a broader overview of the field of inventory management, we refer
to Tempelmeier (2006), Axsäter (2015) and Silver et al. (2016).

1.1.1 Structures of Inventory Systems

To manage the flow of goods through an inventory system, it is substantial to define the
topology, which encompasses the number of stock points linked together and the flow of
goods and information through this system. In Figure 1.1, we present an inventory system
consisting of a single stock point, commonly refereed to as a single-echelon inventory
system. The stock point is illustrated as a triangle, whereas material and information
flow are represented as solid arrows and dashed arrows, respectively. The stock point
receives customer demand and places orders at an outside supplier, represented by dashed
arrows. Solid arrows symbolize replenishment deliveries and the dispatch of units to the
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customers. It is noteworthy that the outside supplier and the customers are not explicitly
modeled as stock points.

Figure 1.1: A single-echelon inventory system

Inventory systems encompassing several connected stock points at different stages are
referred to as multi-echelon inventory systems. These multi-echelon inventory systems
can be categorized based on the links between the stock points, in particular into serial,
convergent, divergent, or general inventory systems.

In a serial inventory system, each stock point has at most one immediate predecessor
and at most one immediate successor. The most upstream stock point is characterized
by ample supply, whereas the most downstream stock point is of substantial importance
since it receives random demand from external customers. For example, a serial inventory
system may consist of one central warehouse, one local warehouse, and one retailer.
Figure 1.2 provides an illustration of a three-echelon serial inventory system.

Figure 1.2: A serial multi-echelon inventory system

As inventory systems grow in complexity, multiple predecessors or successors may occur.
In the case of a pure convergent inventory system, each stock point is linked to multiple
immediate predecessors but, at most, to one immediate successor. These systems are
used to model assembly and production environments, where various components are
needed to create a final product. One example where a product is assembled out of three
distinct components is illustrated in Figure 1.3.

Conversely, in a pure divergent inventory system each stock point is connected to, at
most, one predecessor but may have multiple successors. One specific structure discussed
in the literature is the one-warehouse-multiple-retailer (OWMR) distribution inventory
system. In this system, several retailers (or local warehouses) fulfill random customer
demand and place orders at a central warehouse. The central warehouse, in turn, satisfies
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Figure 1.3: A convergent multi-echelon inventory system

retailers’ orders and replenishes its own inventory from an external supplier with ample
stock. Such an inventory system benefits from the pooling effect at the central warehouse
because it allows for a reduction in inventories without compromising the performance of
the system. Figure 1.4 represents an OWMR distribution system with three retailers.

Figure 1.4: A divergent multi-echelon inventory system

In real-world scenarios, the topology of supply chains or production systems is often
significantly more complex, and each stock point may be linked to multiple successors
and predecessors. An example of a general multi-echelon inventory system is illustrated
in Figure 1.5.

Figure 1.5: A general multi-echelon inventory system
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A mathematical analysis may often not be achievable when inventory problems become
highly complex. Therefore, it is essential to capture the key characteristics and trade-offs
of a complex inventory problem by incorporating them into tractable models. For this
purpose, depending on the aspects to be examined, single-echelon and OWMR inventory
systems are often considered in the literature. For instance, single-echelon inventory
systems may be used to obtain the optimal replenishment structure for an inventory system
with ADI and flexible deliveries (Wang and Toktay, 2008), or to obtain the optimal
outbound shipment times (Higginson and Bookbinder, 1995). In constrast, OWMR
distribution systems may be used when applying heuristic inventory replenishment or
shipment policies, with the objective of optimizing its policy parameters (Marklund, 2011).
These simplified models are valuable tools for understanding and addressing complex
inventory control challenges.

1.1.2 Supply Lead Times in Inventory Systems

The supply (or replenishment) lead time defines the time from placing an order until the
order is available at the ordering stock point. It includes several components as the time
for production, transportation, and material handling activities such as picking, loading,
receiving, and inspecting. Furthermore, it also includes the waiting time due to delays
incurred at the preceding stock point. It may happen that the preceding stock point
lacks inventory to fulfill an order immediately. This order is then backlogged until the
inventory at the preceding stock point is replenished, leading to waiting times due to
stockouts. Moreover, it may also happen that a specific shipment strategy is applied
at the preceding stock point, such as consolidating orders or delivering orders only at
certain times.

When considering an OWMR distribution system, it becomes feasible to explicitly model
waiting times due to stockouts or shipment consolidation strategies at the retailers.
Additionally, a deterministic time for transportation and material handling from the
warehouse to the retailers may be added. For the first stock point within any inventory
system, it is common to aggregate transportation, material handling and waiting times
into a constant supply lead time.
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1.1.3 Review Periods and Demand Modeling in Inventory
Systems

Inventory systems can be divided into periodic review and continuous review systems.
If the stock levels are monitored periodically, for instance, once a day or once a week,
replenishment orders can only be placed at such a review period. On the other hand,
stock levels can also be monitored continuously so that, if necessary, a replenishment
order can be placed immediately after the arrival of customer demand.

In general, a periodic review inventory system with a short review period closely approxi-
mates the continuous case. Nevertheless, both review approaches offer their respective
advantages. Periodic review benefits from coordinating order placements, especially when
the demand rate is high. However, in periodic review systems, the safety stock must
hedge against demand uncertainties not only during the supply lead time but also during
the review period itself. Therefore, safety stocks tend to be higher in periodic review
systems compared to continuous review systems. Modern information technologies enable
access to real-time data, which has massively reduced monitoring costs in continuous
review systems. The advantage of coordinated order placement in a periodic review
system can be transferred to a continuous review system by implementing strategies that
enable the integration of coordinated dispatches. For instance, one strategy is time-based
shipment consolidation, as discussed in Marklund (2011). To summarize, periodic review
systems are typically used when the demand rate is high, while continuous review systems
are preferred when the demand rate is low.

In practical scenarios, inventory systems usually deal with stochastic customer demand,
which is the focus of this work. The way of modeling the customer demand of an
inventory system depends on the review period.

In periodic review inventory systems, the demand during the review period is typically
modeled as a continuous random variable, even when dealing with a discrete demand
pattern. For items with high demand, continuous distributions such as a normal or
gamma distribution closely approximate the discrete demand. Even though the normal
distribution has been applied in practice and research for a long time, it is worth noting
that there remains a small probability of negative demand occurrences. However, if the
coefficient of variation is at most 0.3, the probability of negative demand is 0.04 % and
can be neglected (Thonemann, 2015). If the coefficient of variation exceeds 0.3, it is
advisable to use a distribution where only non-negative demand is possible. An example
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is the gamma distribution. In case of a low demand items, demand can be modeled using
a discrete distribution, such as a Poisson distribution.

In continuous review inventory systems, the timing of customer arrivals is of importance.
Therefore, the focus lies on modeling the arrival process of the customer demand. The
inter-arrival times between consecutive customers are modeled as stochastic variables,
which are assumed to be independent of each other. Such a stochastic process is
known as the renewal process. If the inter-arrival times can be described by identically,
independently and exponentially distributed random variables and exactly one demand
occurs at a time, we define a (pure) Poisson process. A generalization of the Poisson
process is the compound Poisson process, where the number of customer demand follows
an arbitrary discrete distribution and independence of demand quantities is assumed. The
characteristics of the Poisson process offer several analytical advantages, which is why it
is often applied in literature when low-demand items are considered.

1.1.4 Replenishment Policies in Inventory Systems

The inflow of goods into a stock point must be managed to ensure that customer demand
can be satisfied. Therefore, determining when and how many units should be replenished
is of immense importance. However, such a replenishment decision cannot be made
based on the physical stock on hand available at the stock point. It is also necessary
to consider outstanding orders - replenishment orders that have been placed but have
not yet arrived at the stock point. Furthermore, a stock point may run out of inventory
and, therefore, cannot satisfy customer demand immediately. Assuming that this demand
is not lost, it is backordered until a sufficient quantity of units has been replenished.
These so-called backorders also influence the replenishment decision at the stock point.
In summary, stock points base their replenishment decisions on the inventory position,
which is defined by stock on hand plus outstanding orders minus backorders.

We further define the inventory level as stock on hand minus backorders to facilitate the
calculation of holding and backorder costs within an inventory system. Holding costs arise
if the inventory level is positive, meaning physical stock is on hand (IL+ = max(IL, 0)).
In contrast, backorder costs are incurred if the inventory is negative, indicating the
presence of unfulfilled customer demand (IL− = max(−IL, 0)).

Two frequently applied replenishment strategies are the (R,Q) and the (s, S) policies.
When applying the (R,Q) policy, a replenishment order of size Q is triggered whenever



Introduction 9

0

5

10

15

20

25

30 R+Q = 30

R = 10

Supply
lead timeQ Inventory level

Inventory position

Time

Le
ve

l

Figure 1.6: Continuous review (R,Q) replenishment policy
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Figure 1.7: Continuous review (s, S) replenishment policy

the inventory position IP falls below or equals the reorder level R (IP ≤ R). If the
demand size is consistently equal to one, the inventory position exactly hits the reorder
level. Consequently, in a continuous review inventory system with order size one, the
inventory position will always reach R + Q after placing a replenishment order. An
example for a continuous review (R,Q) with random demand, a positive supply lead
time, reorder level R = 10 and order quantity Q = 20 is shown in Figure 1.6.

The main difference between the (R,Q) and the (s, S) policies is the order quantity.
When applying the (s, S) policy, an order is placed as soon as the inventory position IP
reaches the reorder level s. The inventory position is then raised to S, why the order
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quantity is changing and equal to S − IP . An example for a continuous review (s, S)
with random demand, a positive supply lead time, reorder level s = 10 and base-stock
S = 30 is shown in Figure 1.7.

Both policies are equivalent if an inventory system with continuous review and a demand
process with demand quantity equal to one is considered. A special case of both policies
is the base-stock policy or one-for-one replenishment policy with base-stock level S. If
at least one unit is demanded, an order is placed and the inventory position is raised to
S. This policy can be expressed by using either the (s, S) policy with s = S − 1 or the
(R,Q) policy with R = S − 1 and Q = 1.

The optimality of the (s, S) policy is proven for a single-echelon inventory system in which
holding, backorder and, ordering costs are considered (Scarf et al., 1960; Iglehart, 1963;
Veinott, 1966).

1.1.5 Dispatch and Allocation Policies in Inventory Systems

Most conventional inventory models assume that demanded units are shipped to down-
stream stock points immediately if sufficient inventory is available. In cases of stockouts,
demanded units are satisfied as soon as possible after a replenishment order arrives,
resulting in partial deliveries. Consolidating demands can be effectively integrated through
strategically implementing replenishment policies like the (R,Q) or the (s, S) policy at
downstream stock points. Nevertheless, partial deliveries may occur due to the model
assumptions, and consolidating demands across several stock points is not possible
because replenishment decisions are made per stock point.

By contrast, the integration of shipment policies at upstream stock points can handle the
consolidation of customer demand across several downstream stock points and additionally
the dispatch time, meaning that partial deliveries between regular shipments are not
allowed. Higginson and Bookbinder (1994) define the time-based, the quantity-based
and the hybrid time-and-quantity-based shipment consolidation policies. The time-based
shipping strategy consolidates demand of downstream stock points based on a fixed
shipment interval Tc. Shipments to the stock points leave every Tc time units. Random
customer demand results in a random shipment quantity at each shipment time. This
strategy is widely adopted in industry due to its advantages in scheduling, administration
and coordination of processes (Marklund, 2011). When applying the quantity-based
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policy, the upstream stock point consolidates customer demand until a fixed consolidation
quantity of Qc units is requested and available at the stock point. The consolidation
quantity Qc may be related to a full truckload or container. Therefore, this strategy
leads to a high utilization of the transportation mean. However, the time between two
consecutive shipments is random why long waiting times for the customer may occur.
The hybrid policy is a combination of the time-based and quantity-based policy, meaning
that shipments are dispatched when the end of the shipment interval Tc is reached or
the quantity of Qc units has been consolidated.

When sufficient inventory is available at an upstream stock point when a shipment is
dispatched, all customer demand is satisfied immediately. However, in cases where the
upstream stock point runs out of stock at the moment of shipment, the question arises
of how to allocate units to the downstream stock points after a replenishment order has
arrived. A widespread and straightforward allocation decision rule commonly found in
literature and practice is the first-come-first-serve (FCFS) policy. This policy ensures that
backorders are fulfilled in the sequence of order arrival. FCFS is considered an equitable
approach and offers analytical advantages, particularly in the field of exact analysis of
continuous review inventory systems.

Nonetheless, the FCFS allocation policy may not be optimal, as it does not take into
account real-time information regarding the shipment timing, inventory levels at down-
stream stock points and pipeline inventory. Instead of relying on the straightforward
FCFS rule, the upstream stock point may solve an optimization problem each time a
shipment is dispatched to the downstream stock points. Since such a decision depends
on several aspects, no general optimal allocation policy has been found yet. However,
especially in the context of time-based shipment consolidation, Howard and Marklund
(2011) and Howard (2013) demonstrate that the FCFS policy performs very well in most
cases.

1.1.6 Demand Lead Times in Inventory Systems

In contrast to the supply lead time, which delays the arrival of a replenishment after
ordering, the demand lead time gives information about demand in advance. The demand
lead time is one way of modeling ADI and was first introduced in Hariharan and Zipkin
(1995). At the time point where an order occurs, the inventory system gets information
about future demand. The due date of this order is exactly after the positive demand
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lead time. If the order is due, we call it demand and it is then satisfied directly provided
stock on hand is available. In Figure 1.8, we show a representation of a positive and
constant demand lead time and the corresponding terminologies.

order due date of order
demand

demand lead time

Figure 1.8: Graphical representation of the demand lead time

In a system where the demand lead time is equal to or greater than the supply lead
time, the inventory system is able to order units just in time because there is no demand
uncertainty. In this case, all demand can be met immediately without the need of keeping
inventory. If the demand lead time is smaller than the supply lead time, the demand
uncertainty during the supply lead time is reduced by the demand lead time. Therefore,
Hariharan and Zipkin (1995) conclude that in a conventional inventory system, a reduction
of a constant supply lead time has the same effect as an increase of a constant demand
lead time.

When considering a system with a positive demand lead time, the inventory position has
to be adapted accordingly. In the moment of customer order arrival, a unit is usually
directly allocated to this order even if it is satisfied in the future. Therefore, Gallego and
Özer (2001) first define the modified inventory position which is equal to stock on hand
plus outstanding orders minus backorders minus observed orders. Replenishment orders
are then placed based on the modified inventory position.

Instead of adhering to the conventional assumption that orders can only be fulfilled
once their due date has been reached, Wang and Toktay (2008) propose the concept of
flexible deliveries. This approach allows orders to be fulfilled immediately after they have
occurred.

1.1.7 Performance of Inventory Systems

Two approaches are typically applied to measure the performance of a conventional
inventory system that allows unsatisfied demand to be backordered: The cost-oriented
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approach and the service-oriented approach. The service-oriented approach aims to
minimize the sum of holding costs and ordering costs within the system while adhering
to a service constraint. A commonly used service level is the fill rate, which indicates the
proportion of demand that can be fulfilled directly from physical stock. In this work, we
focus on the cost-oriented approach, with the objective of minimizing the sum of the
cost associated with the considered inventory system.

Keeping inventory on stock incurs costs for several reasons. The major part of the holding
costs represent opportunity costs for tied up capital. Additionally, material handling,
storage, damage and obsolesce, insurance and taxes are included. In summary, holding
costs include all costs that vary with the inventory level and are related to warehousing.
For instance, if the warehouse space is rented, and more stock would lead to more rented
warehouse space, these costs need to be included. The holding costs occur per unit and
time unit.

In conventional inventory systems, ordering costs are associated with fixed costs of a
replenishment order. These costs may include expenses for transportation, material
handling, and administrative tasks. Consequently, considering these costs leads to batch
ordering to reduce the total cost of the inventory system. However, in this work, we
study the integration of shipment policies in inventory systems to consolidate the demand
of downstream stock points rather than relying on batch ordering policies. Therefore, we
do not consider ordering costs; instead, fixed and variable shipment costs associated with
transportation and material handling are included.

Backorder costs occur if a demand cannot be satisfied from the physical inventory
immediately. In such a case, additional costs for administrative tasks, price discounts,
and material handling arise. Backorder costs are usually measured per unit and time unit;
however, the main challenge lies in determining the cost level.

1.2 Contribution, Methodology and Research Questions

While there is an extensive body of literature addressing inventory control with integrated
shipment decisions, the majority focuses on single-echelon inventory systems, such as
those by Çetinkaya and Lee (2000) and Çetinkaya et al. (2008). These studies often do
not explicitly model inventory levels at customer stock points; instead, they include waiting
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penalties. Marklund (2011) is the first to explore a time-based consolidation strategy
within a multi-echelon distribution system. Furthermore, Malmberg and Marklund (2023)
highlight that a quantity-based consolidation strategy results in increased safety stock
levels at downstream stock points to hedge against demand uncertainty during extended
lead times and show the importance of considering multi-echelon inventory systems.

We aim to contribute to the literature on multi-echelon inventory control by investigating
the general case of a hybrid shipment consolidation policy. This shipment strategy offers
the advantage of enabling us to analyze under which cost conditions a pure time-based or
a pure quantity-based policy could be applied instead, without significant cost increases
compared to the dominating hybrid policy. Therefore, our first question is as follows:

Research Question 1: Under which conditions could a multi-echelon in-
ventory distribution system apply a pure time-based or a pure quantity-based
instead of using the dominant hybrid consolidation policy?

In Chapter 3, we study an inventory system consisting of one warehouse and several
retailers, each of the latter receiving stochastic demand from external customers. The
warehouse replenishes the retailers’ stock according to a time-and-quantity-based shipment
consolidation policy, meaning that a shipment is dispatched either when a time-based
shipment day is reached or when a consolidation quantity is achieved. Inventory, backorder,
and shipment costs are considered in this distribution system. Our main contribution
is, on the one hand, the derivation of a new mathematical model which is based on
probability theory and aims to compute the exact total cost of the inventory system. After
optimizing inventory levels and shipment policy parameters of the distribution system
across different instances, we can address the first research question. This chapter is
based on Malmberg et al. (2024).

The three consolidation policies presented by Higginson and Bookbinder (1994) are applied
both in the literature and in practice. However, despite their widespread application,
these heuristic policies may not be reasonable if, e.g., ADI is available. When ADI is
modeled as a demand lead time, Wang and Toktay (2008) presented the promising
option to satisfy orders before the corresponding due date is reached, known as flexible
deliveries. However, they do not apply a consolidation scheme for outbound deliveries.
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We contribute to the field of inventory control with integrated shipment decisions by
considering a positive demand lead time and answering the following questions:

Research Question 2: What is the value of incorporating ADI and allowing
for flexible deliveries in a single-echelon inventory system when satisfying
external orders according to a flexible time-based shipment consolidation
policy? What is the effect on the optimal inventory and shipment policy
parameters?

In Chapter 4, we consider a single-echelon inventory system with stochastic orders from
an external production facility which are due after a positive demand lead time. The
time-based consolidation strategy is adjusted so that orders can be taken ahead of
the due date if there is remaining transportation capacity available. We derive a new
mathematical model based on probability theory to calculate the total costs of the
system. The shipment consolidation policy leads to delayed deliveries to the production
facility, who must keep more safety stocks to maintain the same service level. Therefore,
late-delivery costs are incurred when a unit is dispatched after its corresponding due date.
In contrast, the production facility has to hold stock in advance if units are dispatched
before the due date is reached. For this reason, we consider early-delivery costs for all
units shipped ahead of its corresponding due date. After optimizing the inventory levels
and the shipment interval of the inventory system for numerous instances, we can answer
the second research question. This chapter is based on Ralfs and Kiesmüller (2022).

However, after using a heuristic flexible time-based consolidation policy, the question
arises whether the proposed shipment policy is a reasonable choice under various cost
conditions. Therefore the following question arises:

Research Question 3: What is the (near-)optimal structure of the outbound
shipment policy under time-based dispatching in inventory systems considering
ADI and flexible deliveries?

In Chapter 5, we show how the structural properties of the near-optimal shipment policy
for a single-echelon inventory system when external orders are dispatched on a time-based
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schedule. Therefore, we model the system as a Markov decision process (MDP), where
an inventory manager can decide about the consolidation quantity on each shipment day.
In order to find the near-optimal shipment policy excluding the influence of backorders
at the warehouse, ample stock is assumed at the warehouse. Late and early deliveries
will be penalized with costs. Small-scale instances can be solved exactly using value
iteration (VI); however large-scale instances cannot be solved with VI because the state
space explodes. Therefore, we develop a deep reinforcement learning (DRL) algorithm to
estimate the value of the post-decision state. After obtaining the near-optimal outbound
shipment policy for numerous large-instances, we can answer the third research question.
This chapter is based on Ralfs et al. (2024).

To conclude, Chapter 6 summarizes the main insights of our research. Additionally, we
discuss limitations of our models and highlight opportunities for future research.



2
Chapter

Literature Review

The foundation of this work lies in extensive research within the field of stochastic
inventory management, with a particular focus on shipment consolidation and ADI. So
far, these areas have been examined independently within the existing literature. In the
field of inventory management with integrated shipment decisions, demand is due directly.
Conversely, in literature focusing on inventory management with positive demand lead
times, dispatches take place immediately without consolidating demand. Therefore, the
literature relevant to these topics is discussed separately in this work. Key research
findings, demonstrating relevance to addressing the research questions, are integrated
accordingly. Furthermore, the concluding chapter of the literature review provides a brief
overview of literature relating to DRL methods applied to inventory problems.

2.1 Inventory Management with Shipment
Consolidation

The three main applied shipment consolidation policies, as detailed in Section 1.1.5,
are the time-based, the quantity-based and the hybrid time-and-quantity-based policies.
Higginson and Bookbinder (1994) consider a single-echelon inventory system with Poisson
demand, linear inventory and fixed shipment costs. They assume ample stock and focus
on the outbound dispatch. Through discrete-event simulation, they determine the mean
cost per unit and the mean order delay under all three policies, and compare various
shipment intervals and consolidation quantities, but they do not optimize these policy
parameters.

Further literature on heuristic shipment policies under stochastic demand, although not
explicitly integrating inventory decisions, can be found, e.g., in Çetinkaya and Bookbinder
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(2003), Bookbinder and Higginson (2002), Mutlu et al. (2010), and Çetinkaya et al.
(2014). The former examine the two pure shipment consolidation schemes under private
and common carriage, deriving expressions for obtaining the shipment policy parameters
under time-based and quantity-based dispatch strategies when inventory and shipment
costs are incurred. Inventory holding costs arise from the moment of order arrival until
dispatch, while the structure of the shipment costs depends on the type of carriage. Private
carriage cause total shipment costs comprising fixed and linear cost components, whereas
common carriage only entails weight-dependent linear shipment costs. Bookbinder and
Higginson (2002) and Mutlu et al. (2010) focus on hybrid shipment consolidation, offering
analytical models to determine the optimal shipment policy parameters Tc and Qc. The
latter study provides analytical expressions for the total cost, enabling a comparison of
the three heuristic shipment policies, with Tc → ∞ and Qc → ∞ denoting the pure
quantity-based and the pure time-based policy, respectively. Their findings show that the
hybrid policy with Tc →∞ is preferable in terms of cost. Finally, Çetinkaya et al. (2014)
derive expressions to obtain the probability distributions of the maximum and average
waiting time of an order for all three shipment policies.

Çetinkaya and Lee (2000) present an analytical model for a stochastic single-echelon
inventory system with Poisson demand and time-based shipment consolidation. The
stock point applies an (s, S) replenishment policy with reorder level s = −1, and a
zero supply lead time is assumed, guaranteeing sufficient stock on hand at the moment
of dispatch. The total cost consists of linear inventory, linear waiting, linear and fixed
replenishment, and linear and fixed dispatching costs. Waiting costs represent the delay
in satisfying customer demand, resulting in a penalty for the loss of goodwill. They
develop an approximate method to determine near-optimal inventory and shipment policy
parameters. In contrast, Axsäter (2001) derives an exact method to obtain the optimal
base-stock level S and shipment interval.

For this basic inventory system, several extensions have been published. Çetinkaya
et al. (2006) derive close-form expressions for the total cost under a quantity-based
consolidation scheme, enabling the optimization of base-stock level S and the shipment
quantity. Additionally, they compare the time-based and quantity-based strategies
under optimal inventory and shipment decisions, finding that the quantity-based scheme
outperforms the time-based scheme in terms of total costs. However, the time-based policy
specifies an upper bound on the customers’ maximum waiting time. They further suggest
hybrid policies with different approximate inventory and shipment policy parameters by
combining the parameter values of the two optimal pure policies and compute the total
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cost by simulation. Çetinkaya et al. (2008) provide easy-to-compute approximations for
the base-stock level S and the shipment quantity for the same inventory system assuming
a compound renewal process and quantity-based shipment consolidation, highlighting
significant cost savings through shipment consolidation. Finally, Wei et al. (2023) present
analytical expressions for the hybrid policy, including the special cases of a pure time-
based and pure quantity-based policy, for the same single-echelon inventory system with
Poisson demand. They compare all three policy under a fixed consolidation cycle length
and a fixed replenishment cycle length, without optimization of inventory and shipment
decisions. In these circumstances, the pure quantity-based policy outperforms the other
policies in average total cost, average order delay and average inventory rate. However,
the other policies limit the maximum waiting time.

Previously mentioned papers assume private carriage, while Mutlu and Çetinkaya (2010)
investigate the common carriage case with quantity discounts for dispatches for the same
basic inventory system as introduced in Çetinkaya and Lee (2000). Quantity discounts
result in non-linear shipment costs, motivating the development of search algorithms to
determine the optimal inventory and shipment policy parameters for the pure time-based
and pure quantity-based strategies.

Chen et al. (2005) adapt the problem setting in Çetinkaya and Lee (2000) by assuming
an (R,Q) replenishment policy in a single-echelon inventory system. Moreover, they
contribute by not constraining the reorder level to be R = −1, but optimizing it, allowing
backorders to occur if the inventory position is negative but still above the reorder
level R. They derive simple and exact solution approaches to obtain the expected total
cost per time unit and identify the optimal inventory and shipment policy parameters
under time-based and quantity-based shipment consolidation. Similar to aforementioned
literature, they find that the quantity-based strategy can outperform the time-based
strategy in term of total cost, while the reverse is not true.

There is also a recently growing body of literature on multi-echelon inventory systems
and shipment consolidation. Marklund (2011) considers a stochastic divergent inventory
system comprising one warehouse and several groups of retailers, combined with a
time-based consolidation scheme, Poisson arrivals, and FCFS allocation. The warehouse
manages the inventory using an (R,Q) policy, while retailers apply base-stock policies.
He develops an exact recursive evaluation procedure and applies a bounded enumeration
to determine the optimal inventory and shipment policy parameters by minimizing the
expected total system cost, which includes linear shipment, inventory and backorder costs.
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Additionally, two simple yet effective heuristics are presented to compute near-optimal
shipment intervals.

Several extensions have been explored in the literature. In contrast to Marklund (2011),
who considers the computationally attractive FCFS policy at the warehouse, Howard and
Marklund (2011) investigate more general allocation policies. They propose two state-
dependent myopic allocation rules and evaluate their cost performance using simulation.
With the first policy, allocation is postponed until the moment of shipment, while with
the second policy, allocation takes place at the moment of delivery to a group of retailers.
Although the state-dependent myopic policies outperform the FCFS policy in special
cases, they conclude that the FCFS allocation is a reasonable policy due to its simple
implementation.

Stenius et al. (2016) and Johansson et al. (2020) both explore OWMR inventory systems
with time-based shipment consolidation and compound Poisson arrivals. The main
contribution of Stenius et al. (2016) is the derivation of exact probability distribution for
inventory levels at all retailers, enabling the computation of the expected total cost of the
system. In contrast, Johansson et al. (2020) consider the same type of inventory system,
but develop several approximation methods to mitigate computational complexity.

Stenius et al. (2018) extend the basic OWMR distribution system with time-based
shipment consolidation by incorporating non-linear shipment costs. They derive the
probability mass function (PMF) for the shipment quantity to a group of retailers,
enabling the analysis of any shipment costs structure that is based on the shipment
quantity. Sonntag et al. (2023) investigate an inventory routing problem with time-based
shipment consolidation and demonstrate how retailer groups should be formed.

Kiesmüller and de Kok (2005) and Malmberg and Marklund (2023) investigate the
trade-off between quantity-based shipment consolidation policies and inventory levels in
multi-echelon distribution systems. The former provides approximations for computing
policy parameters under a given fill-rate, while the latter offers an exact method for
evaluating the total system cost subject to a fill-rate constraint. They show that
simultaneously optimizing inventory and shipment decisions is highly important, as
increasing consolidation quantities result in a significant increase in base-stock levels at
the retailers but only a slight decrease in the inventory level at the warehouse.

The literature discussed above examines heuristic consolidation policies and optimizes
their policy parameters. Contrary, Higginson and Bookbinder (1995) model a MDP
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to analyze the optimal outbound shipment quantities for common and private carriage
under the assumption of ample stock at the single stock point. They restrict the action
space to include only two options: wait or ship. Inventory holding costs are charged
when no shipment is dispatched and orders are further consolidated, while shipment
costs arise otherwise. By incorporating a minimum weight required to receive a volume
discount on shipments to reflect common carriage, they observe that the optimal policy
follows a triangular pattern. This pattern indicates that shipments are dispatched only
if the accumulated load is below a first threshold or above a second higher threshold.
If the accumulated load is below the first threshold, the time required to accumulate a
sufficient quantity may be lengthy, making it favorable to send these units to customers
immediately. Conversely, if the accumulated load exceeds the second threshold, holding
costs overweight shipment costs, resulting in a dispatch of a shipment. Under private
carriage, only constant and fixed shipment costs are considered, and a maximum shipment
capacity is assumed, which cannot be exceeded. Therefore, a control-limit policy is
optimal, dispatching a shipment once a certain limit is reached. However, due to the
curse of a large state space, Higginson and Bookbinder (1995) propose aggregating the
states of the MDP to efficiently solve the problem.

Papadaki and Powell (2003) investigate a similar dispatch problem assuming ample stock
at the stock point for a multi-item setting. They consider individual linear inventory
holding costs for the items awaiting for being dispatched to customers and fixed shipment
costs for vehicle dispatch with limited capacity. Items of the same class are shipped
according to the FCFS principle. While they also model the problem as a discrete-time
MDP, they face challenges due to the multidimensionality of states, outcomes and actions.
Therefore, they approximate the value function using an adaptive dynamic programming
algorithm to observe the optimal dispatch policy. Similar to Higginson and Bookbinder
(1995), they conclude that applying a control-limit policy is optimal, prioritizing customer
orders based on their holding costs in descending sequence. A comparable shipment
consolidation problem involving two heterogeneous customers with distinct waiting costs
are explored in Satır et al. (2018). Additionally, they focus on the uncapacitated problem
by modeling it as a continuous-time MDP. Their finding reveals that the optimal policy
is a control-limit policy with linear-stepwise thresholds.

The previous literature overview highlights the potential advantages of consolidating ship-
ments, summarizes comparisons of the heuristic policies, and underscores the importance
of exploring inventory models that integrate shipment decisions. This thesis analyzes a
multi-echelon inventory with hybrid time-and-quantity-based shipment consolidation and
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determines the corresponding optimal inventory and shipment decisions. Through this
exploration, we broaden the scope of findings and yield valuable insights into heuristic
shipment policies that are preferable across various scenarios. As there is no research on
the joint consideration of shipment consolidation with ADI, this thesis also investigates
inventory systems that integrate a time-based consolidation strategy alongside a positive
demand lead time, guiding to the discussion about literature on inventory management
with ADI.

2.2 Inventory Management with Advance Demand
Information

ADI can be modeled in different ways, for example, with dynamic forecast updates, as
shown in Toktay and Wein (2001), Schoenmeyr and Graves (2009), and Papier (2016).
However, in this work, we model ADI with a positive demand lead time, thus focusing
specifically on this aspect within the literature review.

Hariharan and Zipkin (1995) were the first to model ADI using a demand lead time
for a single-echelon continuous review inventory system. They assume perfect ADI,
meaning that neither the size or the time of demand can be changed, nor can a demand
be canceled. Demand arrives according to a Poisson process, is satisfied according to
the FCFS policy, and stockouts are backordered. The total cost in the system consists
of inventory holding and backorder costs. Based on probability theory, they find that
increasing the demand lead time has the same effect as decreasing the supply lead time,
effectively shortening the effective supply lead time. As a result, safety stocks can be
reduced. If the supply lead time is smaller than the demand lead time, a buy-to-order
situation occurs, and no stock keeping is required. Furthermore, they prove a base-stock
policy to be optimal for this conventional inventory system without fixed ordering costs.

Following this initial research, a considerable body of literature was developed. Ahmadi
et al. (2019b) consider a similar inventory system, but they additionally compensate
for ADI by incorporating commitment costs that are strictly increasing with respect to
the length of the demand lead time. These costs may represent a bonus for retailers
or production facilities accepting a preorder strategy. They optimize the length of the
demand lead time and the base-stock level, finding that either a buy-to-stock strategy
(standard base-stock policy with no demand lead time) or buy-to-order strategy (no
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inventory holding since demand lead time equals supply lead time) is optimal. Ahmadi
et al. (2019a) find similar results for an assemble-to-order system with two components,
while Ahmadi et al. (2020) investigate the same inventory system subject to a time-based
service level constraint, revealing that an increase of the demand lead time decreases the
average waiting time and increases the service level of a customer. Furthermore, Lu et al.
(2003) examine an assemble-to-order system where product orders arrive according to
Poisson processes and products may consist of m different components. Components are
replenished based on base-stock policies, and the supply lead time is stochastic. They
demonstrate that increasing the demand lead time is more effective than decreasing the
supply lead time in terms of order fill rates.

In contrast to the the aforementioned literature, Marklund (2006), Du and Larsen (2017),
and Figueira et al. (2023) focus on allocation policies when customers order with non-
identical demand lead times. Marklund (2006) investigates a continuous-time OWMR
distribution system, replenishing stock based on base-stock policies and facing Poisson
demand. He proposes a general reservation policy where a reservation time is set for
each retailer, along with two simpler policies. One policy assumes that the allocation
takes place as soon as the order is known (complete reservation policy), while the other
policy assumes that the allocation takes place when the order is dispatched (last-minute
reservation policy). He finds that the general policy outperforms the others, and that the
last-minute policy prevents incorrect prioritization of customers compared to the compared
to the complete reservation policy. Building on the work of Chen (2001), Du and Larsen
(2017) include a revenue component that decreases with an increasing demand lead time,
and draw similar conclusions as Marklund (2006). Figueira et al. (2023) emphasize that
customers should be incentivized to share orders early by receiving a higher individual
service. However, late-minute allocation may lead to the opposite effect. Thus, they
propose a new strategy based on complete reservation while additionally considering the
arrival of the supply pipeline.

In contrast to continuous review inventory systems with ADI, Gallego and Özer (2001)
initiated discussions on stochastic single-echelon models with periodic review, non-identical
demand lead times, and fixed ordering costs. They were the first to make a replenishment
decision based on a modified inventory position. The main difference is that a unit is
already reserved for one order at the time of arrival, why the classical definition of the
inventory position is adapted accordingly (modified inventory position equals stock on
hand plus outstanding orders minus backorders minus observed orders). Moreover, they
prove optimality for a state-dependent (s, S) policy.
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Several extensions of this initial work have been studied. For instance, Gallego and
Özer (2003) investigate a stochastic serial inventory system with periodic review, non-
identical demand lead times and a centralized decision maker. They show that a
state-dependent base-stock policy is optimal when fixed ordering costs are not included.
Özer (2003) examine a divergent inventory system, introduce a heuristic replenishment
policy, reaffirming that ADI substitutes inventories or supply lead times. Delving into
inventory systems with limited production capacity and ADI, Özer and Wei (2004) find
that a state-dependent threshold policy is optimal, indicating that it is optimal either not
to produce or produce the full capacity depending on the threshold. Additionally, they
conclude that ADI cannot only serve as a substitute for inventory but also for capacity. In
a multi-echelon assembly system with ADI, Angelus and Özer (2016) identify the optimal
replenishment policy as a state-dependent double-tiered base-stock policy if orders are
allowed to expedited through the system for a penalty. Wang and Toktay (2008) were
the first to allow orders to be satisfied before the due date, known as flexible deliveries.
For identical demand lead times, they prove through dynamic programming that an (s, S)
policy is optimal, where the policy parameters depend on the total advance demands.
However, in contrast to previous literature demonstrating the equivalence of supply and
demand lead times, they illustrate that increasing the demand lead time is preferable to
reducing the supply lead time caused by the inclusion of flexible deliveries.

There is also a field of literature considering imperfect ADI, wherein orders can be changed
in size or due date, or even cancelled completely. For instance, see Bourland et al. (1996),
Thonemann (2002), Tan et al. (2007), Tan et al. (2009), and Topan et al. (2018).

All the literature above demonstrates the significant potential and value of inducing
customers to share ADI, as it can reduce uncertainties in the system and, therefore, stock
can be reduced without compromising a reduction of customer fill rate. Combining a
shipment consolidation policy with ADI and flexible deliveries yields novel insights into
logistic processes. This work, therefore, focuses, firstly, on the joint consideration of
shipment consolidation and ADI applying a heuristic time-based shipment policy, and
secondly, on optimizing the shipment quantities when shipments leave according to
time-based intervals and flexible deliveries are allowed.
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2.3 Deep Reinforcement Learning in Inventory Control

DRL combines deep learning techniques and reinforcement learning principles, and has
developed in recent years into a powerful tool for sequential decision-making. It enables
learning to make optimal actions in complex, dynamic, and uncertain environments.
Although inventory problems have been analyzed for decades, there are only a small
number of problems for which the optimal replenishment policy is known, as analytical
derivations are often intractable. For small-scale problems, numerical approaches such
as value or policy iteration may solve these problems to optimality. However, these
approaches are limited and cannot handle large-scale instances as the dimensions increase.
In such cases, DRL is a promising tool to determine structural insights into near-optimal
policies for well-known inventory problems. Boute et al. (2022) are convinced that DRL
offers significant potential to determine structural insights into near-optimal policies for
well-known inventory problems, and provide comprehensive implementation guidelines.
To apply DRL methods to inventory problems, it is necessary to model the considered
problem as an MDP. As the state and action space expand, for example due to increasing
supply lead time, the value or policy function can be efficiently approximated by neural
networks to obtain solutions.

Vanvuchelen et al. (2020) analyze the near-optimal policy of the joint replenishment
problem using the proximal policy optimization algorithm. This fundamental inventory
problem involves jointly replenishing several products from one supplier, while considering
a limited truck capacity and inventory, backorders, and ordering costs. They benchmark
the DRL policy against heuristic policies and demonstrate that the DRL policy performs
closely to optimal in small-scale instances and outperforms the heuristic policies. The
proximal policy optimization algorithm is also utilized in van Hezewijk et al. (2023) and
performs very well to solve the stochastic capacitated lot sizing problem.

Gijsbrechts et al. (2022) focus on three well-known inventory problems: lost sales, dual
sourcing, and multi-echelon inventory problems. For all three models, they employ
the asynchronous advantage actor-critic DRL algorithm. In the lost sales model, the
near-optimal order quantity needs to be determined considering inventory, lost sales,
and ordering costs for a single product. Their algorithm beats most available heuristics,
especially with high constant supply lead times. In the dual-source inventory model,
replenishments can be made from two sources with different costs and supply lead
times, while incurring inventory and backorder costs. The DRL-policy performs very well,
achieving an optimality gap of less than 2 %. Lastly, they consider the OWMR inventory
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models to find the near-optimal replenishment strategy for all locations, accounting
for holding, lost sales and expedited delivery costs, and maximum location capacity.
Their DRL algorithm surpasses base-stock policies with constant base-stock levels. In
conclusion, after initial tuning, the DRL algorithm demonstrates strong performance
across all three inventory problems. However, there is a noted lack of structural policy
insights.

Oroojlooyjadid et al. (2022) propose a shaped-reward deep Q-network algorithm to obtain
near-optimal replenishment quantities in the beer game with a positive and constant supply
lead time. The beer game illustrates the bullwhip effect, a phenomenon occurring in a
serial supply chain where decentralized orders at each stage lead to amplified fluctuations.
De Moor et al. (2022) further enhance the deep Q-network by potential-based reward
shaping, and apply this algorithm on a perishable inventory model. Their objective is to
identify near-optimal replenishment decisions under stochastic demand and a positive
and constant supply lead time. In addition to ordering, holding and shortage costs, costs
for perishing are incurred.

All of the previously mentioned methods have in common that they rely on a learned
policy network to make decisions. However, in this paper, we present an alternative
approach. We focus on estimating the value of the post-decision state, as described in
Powell (2022). This method offers the advantage of accommodating a flexible set of
feasible decisions across various epochs. By exploiting the value of the post-decision
state, we not only facilitate decision-making in the current period but also enable rapid
policy evaluation by introducing the current policy. This approach has been shown to be
significantly more efficient than learning the values of pre-decision states, which typically
requires extensive forward simulations at each epoch.



3
Chapter Hybrid Shipment Policy in

Multi-Echelon Inventory
System

The following chapter is based on Malmberg et al. (2024). This chapter analyzes the ad-
vantages of shipment consolidation policies in a continuous review multi-echelon inventory
system. In Section 3.1, we present a detailed formulation of the investigated inventory
system and the hybrid time-and-quantity-based shipment policy, which generalizes the
pure time-based and the pure quantity-based policy. Section 3.2 presents the evaluation
of the expected total cost for given inventory and shipment parameters. The main
contribution of this chapter is the derivation of the PMF of the inventory level at the
retailers, which is essential for computing the expected total cost. The evaluation of the
inventory level at a specific retailer is presented in Section 3.3. In Section 3.4, we outline
the procedure to optimize inventory and shipment decisions simultaneously. Finally,
Section 3.5 offers a numerical study that investigates the conditions under which a pure
time-based or pure quantity-based policy can be applied instead of the dominating hybrid
shipment consolidation policy without significantly increasing the expected total cost.
The chapter concludes in Section 3.6 with the main findings and remarks.

3.1 Problem Formulation

We study a centralized continuous review OWMR inventory system where N non-identical
retailers are clustered in M different retailer groups to which shipments are consolidated.
A retailer can only be part of one consolidation group, and Ωm denotes the set of retailers
belonging to retailer group m (m = 1, 2, . . . ,M).

The warehouse uses an (R0, Q0) policy to replenish its stock from an outside supplier
with a constant supply lead time L0. This means a replenishment order of Q0 units is
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placed when the inventory position (= stock on hand + outstanding replenishment orders
− backorders) reaches the reorder level R0. The order quantity Q0 is determined by
set-up costs and restrictions at the outside supplier. There is free access to point-of-sales
data from all the retailers, meaning that there are no economic incentives for the retailers
to order in batches. As a consequence, each retailer acts according to a base-stock policy
with base-stock level Si. However, there are fixed costs associated with the material
handling and shipping of units between the warehouse and the retailers, reflected in
shipment costs.

The retailers face demand that can be modeled as independent Poisson processes, and
λi denotes the demand rate for retailer i. Consequently, the demand rate of group m is
λm = ∑

i∈Ωm λi. Moreover, since demand at the retailers is immediately converted to
retailer orders, the warehouse faces the superposition of all demand processes, i.e., a
Poisson process with rate Λ = ∑N

i=1 λi.

Complete backordering is assumed at all stock points, and demand is served according
to the FCFS policy, meaning that a unit is immediately allocated to satisfy a specific
demand.

A distinguishing feature is that the warehouse uses a hybrid time-and-quantity-based
shipment consolidation policy to dispatch shipments to retailers in the same consolidation
group. This policy combines periodic time-based shipments to consolidation group m
every Tm time units with quantity-based shipments of full load carriers of Qm units in
between. We refer to Tm as the shipment interval and Qm as the consolidation quantity
for retailer group m, and the hybrid shipment policy to retailer group m is defined by the
tuple (Tm, Qm).

A time-based shipment contains all units at the warehouse that are qualified for shipment
at the time of dispatch. A qualified unit is a unit that has been demanded by a retailer
and is available at the warehouse. The shipment intervals may differ for different retailer
groups and can, for instance, represent daily or weekly dispatches. The shipment intervals
cap the waiting time between shipments to a specific retailer group. In addition, there
may be shipments of full quantities, Qm, dispatched during the shipment intervals if
the number of qualified units reaches the consolidation quantity Qm. This quantity
typically represents the size of a load carrier, e.g., a full truckload, a container, or a
pallet. The periodic dispatch schedule is not altered or restarted by the occurrence of
a quantity-based shipment. Having periodic shipment schedules fixed over a specified
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planning horizon or constant period is often desirable in practice. However, to optimize
system performance, joint consideration of Tm and Qm is key.

Note that using the hybrid policy (Tm, Qm) with Qm = 1 corresponds to a system
without any shipment consolidation policy. Moreover, if Qm → ∞, the shipment
consolidation policy becomes a pure time-based consolidation policy, and for Tm →∞,
the system becomes a pure quantity-based shipment consolidation policy. Hence, our
present work generalizes the existing literature on shipment consolidation in OWMR
systems by combining the studied time-based and quantity-based policies into a hybrid
policy that dominates the existing policies when optimized.

The number of units in a time-based shipment to a retailer group m, Im, is a random
variable that can never be larger than Qm − 1. Otherwise, a quantity-based shipment of
Qm units would already have been dispatched. Furthermore, the number of quantity-based
shipments within a shipment interval Tm is random and denoted by Jm.

The transportation time from the warehouse to retailer i, Li, is constant and the same
for all shipments (time-based and quantity-based shipments). This implies that units
shipped to retailer i cannot cross in time. However, transportation times may vary across
retailers.

The shipment consolidation policy and the FCFS allocation imply that the stock on hand
at the warehouse can be divided into; (i) unreserved stock on hand (IL+

0 > 0) that has
not yet been demanded by a retailer, and (ii) reserved stock on hand that has qualified
for shipment and awaits transport on the next available time-based or quantity-based
shipment. The reserved stock on hand at the warehouse for retailer i, denoted by Wi.

If there is no stock available at the warehouse at the moment a retailer places an
order, the demand is backordered until the replenishment with the reserved unit arrives.
The backorder is then cleared, and the unit is assigned to the reserved stock on hand.
The inventory level of the unreserved stock at the warehouse is IL0 = IL+

0 − IL−
0 ,

where IL−
0 denotes the backorders. Similarly, the inventory level at retailer i is denoted

by ILi = IL+
i − IL−

i , where IL+
i denotes the stock on hand and IL−

i denotes the
backorders.

In accordance with the existing literature, we focus on the expected total cost per time
unit in the system, TCM , defined in Equation (3.1). The total cost includes the expected
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holding costs at the central warehouse and all the retailers, expected backorder costs at
all retailers, and expected shipment costs from the warehouse to each retailer in every
retailer group. The holding costs rate per unit and time unit at stock point i is denoted
by hi, and pi denotes the backorder costs rate per unit and time unit at retailer i. The
shipment costs consist of fixed costs per time-based shipment to consolidation group
m, ωm

t , and fixed costs for each quantity-based shipment, ωm
q . Furthermore, there are

variable shipment costs of cm
t per shipped unit in a time-based shipment and cm

q for each
shipped unit in a quantity-based shipment. Note that the variable shipment costs are
only relevant for decision-making if cm

t ̸= cm
q .

Figure 3.1 shows an exemplary graphical representation of the distribution system.
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Figure 3.1: Flow of information and goods in the OWMR inventory system

TCM is a function of the warehouse reorder R0, the retailers’ base-stock levels S =
(S1, S2, . . . , SN ), the shipment intervals T = (T 1, T 2, . . . , TM), and the consolidation
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quantities Q = (Q1, Q2, . . . , QM) as shown in Equation (3.1).

TCM(R0,S,T,Q) = h0

(
E[IL+

0 ] +
N∑

i=1
E[Wi]

)

+
N∑

i=1

(
hiE[IL+

i ] + piE[IL−
i ]
)

+
M∑

m=1

1
Tm

(
ωm

t + ωm
q E [Jm]

)

+
M∑

m=1

1
Tm

(
cm

t E [Im] + cm
q E [Jm]Qm

)
(3.1)

In order to determine the cost-minimizing combination of the decision variables, we
formulate the following non-linear optimization problem:

min TCM(R0,S,T,Q) R0,S ∈ Z,T ∈ Q>0,Q ∈ N0 (3.2)

3.2 Evaluating of the Total Cost

In this section, we explain how to compute the expected total cost as described in
Equation (3.1), assuming the PMFs of all inventory levels, ILi for i ∈ {1, 2, . . . ,N}, are
known. Section 3.3 subsequently presents the method for obtaining these PMFs.

The first two terms of the expected total costs per time unit in Equation (3.1) are the
expected holding costs at the warehouse, divided into costs for expected unreserved
stock on hand (h0E[IL+

0 ]) and expected reserved stock on hand (h0
∑N

i=1 E[Wi]). It
is noteworthy that the unreserved stock on hand at the warehouse and the backorders
at the warehouse are not affected by the shipment consolidation policy. The expected
unreserved stock on hand can, therefore, be computed in the same way as in a system
without shipment consolidation, see Axsäter (2015).

E[IL+
0 ] = E[IL−

0 ] +R0 + Q0 + 1
2 − ΛL0 (3.3)

To compute the expected number of backordered units at the warehouse, E[IL−
0 ], we

use that in a system without shipment consolidation, all units outstanding at retailer i
are either backordered at the warehouse or under transport from the warehouse to this
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retailer. Letting E[ILi|Qm = 1] denote the expected inventory level at retailer i in a
system without shipment consolidation, the expected number of outstanding orders at
retailer i in the system is Si − E[ILi|Qm = 1]. Subtracting the expected number of
units under transport to retailer i, i.e., λiLi, renders the expected number of backorders
for retailer i at the warehouse. We therefore get

E[IL−
0 ] =

N∑
i=1

(Si − E[ILi|Qm = 1]− λiLi) . (3.4)

The expected reserved stock on hand at the warehouse destined for retailer i, E[Wi], can
be obtained from Proposition 1.

Proposition 1. Let E[ILi|Qm = 1] be the expected inventory level for retailer i in group
m in a system without shipment consolidation. Furthermore, let E[ILi|Tm, Qm] be the
expected inventory level at retailer i when using a hybrid shipment consolidation policy
with shipment interval Tm and consolidation quantity Qm.

The expected reserved stock on hand at the warehouse for retailer i is given by

E[Wi] = E[ILi|Qm = 1]− E[ILi|Tm, Qm]. (3.5)

The proof of Proposition 1 is given in Appendix 3.7.1 and follows the same logic as in
Malmberg and Marklund (2023) for quantity-based shipment consolidation.

The next set of terms of the expected total cost in Equation (3.1) consists of the
summation of the retailers’ expected holding costs (hiE[IL+

i ]) and backorder costs
(piE[IL−

i ]). These are directly obtained from the PMF of the inventory level at the
respective retailer, thus,

E
[
IL+

i

]
=

Si∑
j=0

jPr(ILi = j) (3.6)

E
[
IL−

i

]
=

∞∑
j=0

jPr(ILi = −j). (3.7)

The final two terms in Equation (3.1) are the shipment costs for moving items from
the warehouse to the retailers. Both the expected number of units in a time-based
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shipment, E[Im], and the expected number of quantity-based shipments during the
shipment interval TM , E[Jm], can be derived from the PMF of the number of units that
qualify for shipment between two arbitrary time-based shipments to group m, denoted by
Km. It is noteworthy that Km under the hybrid policy is exactly the same as in a system
with a pure time-based shipment consolidation policy. Thus, Km can be computed using
the method presented in Stenius et al. (2018). A brief summary of their approach is
provided in Appendix 3.7.2.

Note that every multiple of Qm units that have been qualified for shipment between two
time-based shipments will be part of a quantity-based shipment. Thus, the expected
number of quantity-based shipments that occur for each time-based shipment is given by
the quotient of the Euclidean division of Km and Qm. Thus,

E [Jm] =
∞∑

j=0

⌊
j

Qm

⌋
Pr(Km = j). (3.8)

Moreover, the expected number of units shipped on a time-based shipment is given
by the remainder of the same division in Equation (3.9). The remainder is defined as
modn (x) = x− n⌊x

n
⌋, such that we obtain

E [Im] =
∞∑

j=0
modQm (j)Pr(Km = j). (3.9)

3.3 Evaluating the Inventory Level at the Retailers

In this section, we present the method for obtaining the PMF of the inventory level at each
retailer. We focus on retailer N in consolidation group M, but the same methodology
applies to any retailer within any consolidation group.

The approach is based on considering the system at an arbitrary time, τ , just before a
customer arrives at retailer N . Based on the PASTA (Poisson arrivals see time averages)
property of Poisson arrivals (Wolff, 1982), the arriving customers see the steady-state
distribution of the inventory level at retailer N , ILN . Because the inventory position,
IPN , equals SN at all times, ILN is uniquely determined by the outstanding units that
have been ordered by retailer N but have not yet arrived, ON , as ILN = SN − ON .
Thus, by deriving the PMF of the number of outstanding units for retailer N at time τ ,
we get the PMF of ILN for any base-stock level SN .
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To simplify the analysis, we divide the total number of outstanding units for retailer N
at time τ into units ordered before time τ − LN , denoted by ÔN , and units ordered
after time τ − LN , denoted by ÕN . For a unit to arrive at retailer N before τ , it must
have been dispatched from the warehouse no later than τ − LN . It follows that any unit
ordered after τ −LN is outstanding at τ . However, units ordered before τ −LN are only
outstanding if their shipment has been delayed until after τ − LN . This delay at the
warehouse can be caused by a stock-out and/or a shipment delay due to the consolidation
policy. ÕN and ÔN are independent random variables as they are determined by customer
demand in disjoint time intervals, and ON = ÕN + ÔN . Consequently, the PMF of ILN

can be obtained from Equation (3.10).

Pr(ILN = j) = Pr(SN −ON = j)

=
SN −j∑
x=0

Pr(ÕN = SN − j − x)Pr(ÔN = x) (3.10)

By definition, the outstanding units at time τ ordered after τ − LN , ÕN , correspond to
the demand during the transportation time LN . As the demand at retailer N follows a
Poisson process with rate λN , we know that ÕN is Poisson distributed with parameter
λNLN .

The distribution of ÔN is more challenging to obtain as it directly depends on the
stock availability at the warehouse and the shipment consolidation policy. To derive
this distribution, we first let ÔM denote the total number of outstanding units for the
retailers in group M (where retailer N resides) at time τ that have been ordered before
τ − LN . As a consequence of the Poisson demand and FCFS allocation, we can assert
that the distribution of ÔN can be obtained from a binomial disaggregation of ÔM, as
given in Equation (3.11).

Pr(ÔN = x|ÔM = y) =
(
y

x

)(
λN

λM

)x (
1− λN

λM

)y−x

, x ≤ y (3.11)

The PMF of ÔN can then easily be obtained from the PMF of ÔM by the law of total
probability. To facilitate this derivation of ÔM, we let τ ′ = τ − LN and focus on what
happens in the system before τ ′ since nothing that happens after τ ′ affects ÔM. All
units ordered by retailer group M before τ ′ can be placed in a priority list with the
priorities determined by the FCFS policy. The priority is defined such that the most
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recently ordered unit before τ ′ has priority 1 (i.e., lowest priority), the unit ordered before
that has priority 2, and so on. The priority list (1,2,3,. . . ) contains all units ordered by
retailer group M before τ ′.

The approach we follow is to consider an arbitrary unit with priority n, referred to as
the considered nth unit, and determine the probability that this unit is dispatched to
retailer group M before (or after) τ ′. Note that there are n− 1 units ordered after the
considered nth unit and before τ ′. Hence, if the considered nth unit is dispatched before
τ ′, there can be at most n− 1 outstanding units at the warehouse for retailer group M
at time τ ′. This implies

Pr(ÔM ≤ n− 1) =

Pr(the considered nth unit has been dispatched before τ ′). (3.12)

It follows that the PMF of ÔM can be determined as

Pr(ÔM = x) = Pr(ÔM ≤ x)− Pr(ÔM ≤ x− 1). (3.13)

Following from Equation (3.10) and Equation (3.11), we can use Equation (3.12) and
Equation (3.13) to obtain the PMF of ILN for any SN . In the following, we focus
on determining the probability that the considered nth unit in the priority list has been
dispatched from the warehouse to retailer group M before τ ′. In Section 3.3.1, we
present the steps in the general method for determining the probabilities Pr(ÔM ≤ n−1)
for all n (n = 1, 2, 3, . . . ) in Equation (3.12). For these steps, we define probabilities,
which are explained and derived in Section 3.3.2 and Section 3.3.3.

3.3.1 Determining Pr(ÔM ≤ n− 1)

To proceed with the analysis, recall that a qualified unit refers to a unit that is both
available at the warehouse and demanded by one of the retailers. In a system without
shipment consolidation, qualified units are immediately dispatched from the warehouse.
Conversely, in a system with a shipment consolidation policy, qualified units may need to
wait at the warehouse before a shipment is dispatched. For the considered hybrid policy,
there are two important observations regarding how and when units will be shipped:
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1. All units qualified for shipment before the dispatch of a time-based shipment will
either be shipped before or with this time-based shipment.

2. If the number of qualified units reaches the consolidation quantity, all of these
units are dispatched on a quantity-based shipment the moment the last unit in this
shipment qualifies for shipment.

Based on these two observations, we can identify two possible events where the
considered nth unit is dispatched before τ ′. The first possibility is that the consid-
ered nth unit is shipped with (or before) the most recent time-based shipment before τ ′.
This event is referred to as Shipment Option 1 (ShipOp1).

The second possibility is that the considered nth unit is dispatched with a quantity-based
shipment after the most recent time-based shipment but before τ ′. This event, referred
to as Shipment Option 2 (ShipOp2), requires that the considered nth unit qualifies for
shipment after the most recent time-based shipment before τ ′ and that the last unit
in the same quantity-based shipment as the considered nth unit qualifies for shipment
before τ ′. The definitions of these two events for the considered nth unit are summarized
below, together with some important time instances that we use in the analysis. See also
the illustration in Figure 3.2 and Figure 3.3.

time
τ ′ − TI − L0 τ ′ − TI τ ′ − L0 τ ′

L0 TI − L0 L0

TI
TI

Figure 3.2: Timeline with the four mentioned time instances for Case A, TI > L0

time
τ ′ − TI − L0 τ ′ − L0 τ ′ − TI τ ′

TI L0 − TI TI

L0
L0

Figure 3.3: Timeline with the four mentioned time instances for Case B, TI ≤ L0
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τ ′ − TI The time of dispatch for the most recent time-based shipment to
retailer group M before τ ′

τ ′ − L0 The latest time an order can be placed by the warehouse so that the
units in this order are available at the warehouse at τ ′

τ ′ − TI − L0 The latest time an order can be placed by the warehouse so that the
units in this order are available at the warehouse at τ ′ − TI

ShipOp1 The considered nth unit is either part of the most recent time-based
shipment before τ ′ dispatched at time τ ′− TI , or it belongs to another
shipment (time-based or quantity-based shipment) dispatched earlier.
This implies that the considered nth unit is qualified for shipment at
or before the most recent time-based shipment dispatched before τ ′.

ShipOp2 The considered nth unit is part of a quantity-based shipment dispatched
after the most recent time-based shipment but before τ ′. This can
only occur if the last unit in this quantity-based shipment qualifies for
shipment prior to τ ′ and the considered nth unit qualifies for shipment
after τ ′ − TI .

We can express the probability of interest from Equation (3.12) using the events ShipOp1
and ShipOp2,

Pr(the considered nth unit is dispatched before τ ′) =

Pr (ShipOp1 ∪ ShipOp2) . (3.14)

For the considered nth unit to be shipped with a time-based shipment according to
ShipOp1, it must qualify for shipment before τ ′ − TI . This means it must be demanded
by a retailer before τ ′ − TI and ordered by the warehouse before τ ′ − TI − L0. Similarly,
for the considered nth unit to be shipped with a quantity-based shipment according to
ShipOp2, the last unit in the quantity-based shipment, including the considered nth unit,
must qualify for shipment before τ ′. Thus, the last unit must be demanded by a retailer
before τ ′ and ordered by the warehouse before τ ′ − L0.
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By definition, a time-based shipment occurs every TM time units independently of the
stochastic demand. Because the latter follows independent Poisson processes, τ ′ may
occur with equal probability at any time between two consecutive time-based shipments.
Consequently, TI is a uniform random variable on the interval [0, TM]. It follows that
in case TM > L0, it is possible for TI to be smaller than, equal to, or larger than L0.
This means there are two cases to consider, see Figure 3.2 and Figure 3.3: Case A,
where TI > L0 and, thus, τ ′ − TI occurs before τ ′ − L0, and Case B, where TI ≤ L0

and τ ′ − TI occurs after (or at the same time as) τ ′ − L0. Moreover, as illustrated in
Figure 3.2 and Figure 3.3, the lengths of the intervals also depend on TI .

If TM ≤ L0, only Case B can occur. If TM > L0, we know that TI ∼ Uniform(0, TM),
where Uniform denotes the uniform distribution, and L0 is constant, why we have
Pr(Case A) = Pr(TI > L0) = 1− L0

T M and Pr(Case B) = 1−Pr(TI > L0). Moreover,
given Case A, we have TI ∼ Uniform(L0, T

M), and given Case B, we have TI ∼
Uniform

(
0,min(L0, T

M)
)
. As the sequence of the events differs between these two

cases, they will be treated separately. We may use the law of total probability to rewrite
Equation (3.14) as

Pr(the considered nth unit is dispatched before τ ′) =

Pr(ShipOp1 ∪ ShipOp2|Case A)Pr(Case A)

+Pr(ShipOp1 ∪ ShipOp2|Case B)Pr(Case B). (3.15)

Henceforth, we focus on the conditional probability of ShipOp1 and ShipOp2 given Case
A and Case B, respectively.

For Case A and Case B, the defined time instances form three non-overlapping time
intervals, see Figure 3.2 and Figure 3.3. These intervals differ for Case A and Case B
with respect to the sequence in which the time instances occur. Moreover, the length of
the intervals differs with respect to the random variable TI . However, for the analysis, it
is the demand in each of the three time intervals that is of importance rather than the
length of the interval. We may consider the demand in each interval to be stochastic
variables determined by the (random) length of the interval and the stochastic customer
arrival process. When analyzing the outstanding units for retailer group M, we do
not have to distinguish between the remaining retailer groups. Only the aggregated
demand from these retailer groups influences the number of outstanding units for retailer
group M. Therefore, without loss of generality, when considering retailer group M,
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Table 3.1: Demand realizations during the three time intervals given Case A and Case B
Case A Case B

Retailer
group M

Interval 1 DM(τ ′ − L0, τ
′) = αA

1 DM(τ ′ − TI , τ
′) = αB

1
Interval 2 DM(τ ′ − TI , τ

′ − L0) = αA
2 DM(τ ′ − L0, τ

′ − TI) = αB
2

Interval 3 DM(τ ′ − TI − L0, τ
′ − TI) = αA

3 DM(τ ′ − TI − L0, τ
′ − L0) = αB

3

Other retailer
groups M

Interval 1 DM(τ ′ − L0, τ
′) = βA

1 DM(τ ′ − TI , τ
′) = βB

1
Interval 2 DM(τ ′ − TI , τ

′ − L0) = βA
2 DM(τ ′ − L0, τ

′ − TI) = βB
2

Interval 3 DM(τ ′ − TI − L0, τ
′ − TI) = βA

3 DM(τ ′ − TI − L0, τ
′ − L0) = βB

3

we will refer to all the remaining retailer groups as group M. We let DM(s, t) denote
the random number of demands in time interval (s, t] at retailer group M. Similarly,
DM(s, t) denotes the demand that occurs at the other retailer groups in the same time
interval.

By conditioning on the demand in each of the three time intervals for both Case A and
Case B, we can derive the conditional probability of ShipOp1 and ShipOp2. The demand
realizations for each interval are defined in Table 3.1.

Following the notations in Table 3.1, we refer to the most recent time interval before τ ′

as Interval 1. The second most recent interval is referred to as Interval 2, and the last
interval is Interval 3. Figure 3.4 and Figure 3.5 illustrate the three time intervals for Case
A and Case B, respectively. These figures also depict two possible demand realizations
for retailer group M and the other retailer groups M.

The demand realizations during these intervals are summarized in the vectors αi =
(αi

1, α
i
2, α

i
3) and βi = (βi

1, β
i
2, β

i
3) where i = A for Case A and i = B for Case B.

Recall that all units ordered by retailer group M prior to τ ′ are enumerated in a priority
list. By relating the priority of a unit to the demand realizations from retailer group M,
αi, we can determine in which interval the demand for this unit takes place. To exemplify,
let us consider Case B (Figure 3.5). If αB

1 ≥ n > 0, we know that the considered nth unit
is ordered in Interval 1 and thus after τ ′ − TI , that is, after the dispatch of the most
recent time-based shipment before τ ′. Therefore, it cannot be part of this shipment.

In addition to the number of demands in the respective time intervals, we also condition
the analysis on the number of backorders at the warehouse destined for retailer group
M at time τ ′ − TI , denoted by BM

0 (τ ′ − TI). If the considered nth unit is one of these
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time
τ ′ − TI − L0 τ ′ − TI τ ′ − L0 τ ′

αA
3 αA

2 αA
1

βA
3 βA

2 βA
1

← Demand realizations from
retailer group M

← Demand realizations from
the other groups M

L0 TI − L0 L0

TI
TI

Figure 3.4: Illustration of time instances and events in the corresponding intervals for Case A,
i.e., TI > L0.

time
τ ′ − TI − L0 τ ′ − L0 τ ′ − TI τ ′

αB
3 αB

2 αB
1

βB
3 βB

2 βB
1

← Demand realizations from
retailer group M

← Demand realizations from
the other groups M

TI L0 − TI TI

L0
L0

Figure 3.5: Illustration of time instances and events in the corresponding intervals for Case B,
i.e., TI ≤ L0.

backordered units, we know that it cannot be part of the time-based shipment at τ ′ − TI

as it is not available at the warehouse at this time. Moreover, we condition the analysis on
the inventory position at the warehouse at time τ ′−TI−L0, denoted by IP0(τ ′−TI−L0).
The reason is that when considering the last unit in a possible quantity-based shipment
containing the considered nth unit, we need to determine the time this last unit was
ordered by the warehouse.
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We define the realizations’ of these random variables as

IP0 (τ ′ − TI − L0) = ip

BM
0 (τ ′ − TI) = bM

0 .

Note that the total number of backorders at the warehouse at time τ ′ − TI depends on
the inventory position at the warehouse and the demand realizations between τ ′−TI−L0

and τ ′ − TI . These dependencies are dealt with in the derivation of the joint PMF of
αi,βi, ip and bM

0 in Section 3.3.3. For convenience, we will use the notation Pi(x) =
Pr(X = x|Case i) when it is unambiguously defined from other notations that x is
a realization of the random variable X conditioned on Case i ∈ {A,B}. In the same
spirit, we will use Pi(x|y) to denote Pr(X = x|Y = y,Case i), and Pi(x, y) to denote
Pr(X = x and Y = y|Case i).

Let us define the joint PMF as Pi(αi,βi, ip, bM
0 ) for Case i ∈ {A,B}. The condi-

tional probabilities for ShipOp1 ∪ ShipOp2 (i.e., that the considered nth unit is dis-
patched before or at τ ′) for Case A and Case B are given by Pi

(
ShipOp1|αi, bM

0

)
+

Pi

(
ShipOp2|αi,βi, ip, bM

0

)
, i ∈ {A,B}, respectively. Note that we condition the analy-

sis on αi,βi, ip, and bM
0 . However, for ShipOp1 we get sufficient information from αi

and bM
0 ; thus, Pi

(
ShipOp1|αi, bM

0

)
= Pi

(
ShipOp1|αi,βi, ip, bM

0

)
.

Using these probabilities, we can apply the law of total probability to derive an expression
for the unconditional probability of the considered nth unit being dispatched before τ ′.

Pr(the considered nth unit is dispatched before τ ′) =

Pr(Case A)
∑

(αA,βA,ip,bM
0 )∈ΘA

(
PA

(
ShipOp1|αA, bM

0

)

+ PA

(
ShipOp2|αA,βA, ip, bM

0

))
PA

(
αA,βA, ip, bM

0

)
+ Pr(Case B)

∑
(αB ,βB ,ip,bM

0 )∈ΘB

(
PB

(
ShipOp1|αB, bM

0

)

+ PB

(
ShipOp2|αB,βB, ip, bM

0

) )
PB

(
αB,βB, ip, bM

0

)
, (3.16)

where ΘA and ΘB are the sets of feasible combinations of values in the support of the
joint PMF for Case A and Case B, respectively. Note that the possible values of the
realizations of the random variables are given by αi ≥ 0, βi ≥ 0, R0 +1 ≤ ip ≤ R0 +Q0,
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bM
0 ≥ 0. αi, βi, and ip are random vectors/variables independent of each other while
bM

0 depends on the other random variables, as shown in Equation (3.25).

In Section 3.3.2, we derive the conditional probabilities of ShipOp1 and ShipOp2 given
demand realizations in the different intervals (αi,βi), the warehouse inventory position
(ip), and the number of backorders at the warehouse for retailer group M (bM

0 ). The
random variable TI is accounted for when deriving the joint PMF of these realizations,
Pi(αi,βi, ip, bM

0 ), for Case A and Case B, respectively. This is done in Section 3.3.3.

3.3.2 Deriving the Conditional Probability for Shipment Option 1
and Shipment Option 2

In this section, we derive the conditional probability that the warehouse dispatches the
considered nth unit on the time-based shipment at τ ′ − TI or before, referred to as
Pi(ShipOp1|αi, bM

0 ), and the conditional probability that the warehouse dispatches the
considered nth unit after τ ′ − TI but before τ ′ on a potential quantity-based shipment,
referred to as Pi(ShipOp2|αi,βi, ip, bM

0 ). The analysis is performed conditioned on the
realizations: αi, βi, ip, and bM

0 for i ∈ {A,B}.

The Probability Pi(ShipOp1|αi, bM
0 ):

We first focus on Pi(ShipOp1|αi, bM
0 ), i.e., the probability that the considered nth unit

is qualified for shipment prior to τ ′ − TI . As mentioned, all units qualified for shipment
at or before the dispatch of a time-based shipment will be on this shipment or an earlier
shipment. Consequently, the event ShipOp1 occurs if the considered nth unit is both
demanded by a retailer and available at the warehouse no later than τ ′ − TI , i.e., the
time of the most recent time-based shipment before τ ′.

We start by considering whether the considered nth unit is demanded before or after
τ ′ − TI . Recall that the considered nth unit is the nth most recent unit ordered by
retailer group M prior to τ ′. From Figure 3.4 and Figure 3.5, we can see that this
considered nth unit is demanded before τ ′ − TI if and only if n > αA

1 + αA
2 in Case A

and n > αB
1 in Case B.

Next, we consider if the considered nth unit is available prior to time τ ′ − TI . At time
τ ′ − TI , there are bM

0 backordered units at the warehouse for retailer group M. These
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backordered units will satisfy the bM
0 demands with the lowest priority among the demands

occurring before τ ′ − TI (i.e., the most recent demands before τ ′ − TI).

The considered nth unit must be available at the warehouse at τ ′ − TI if it is not
backordered at this time. This must be the case if the considered nth unit is ordered
before the bM

0 backordered units. The conditions under which this is true differ between
Case A and Case B. In Case A, the condition is true if and only if n > αA

1 + αA
2 + bM

0 ,
whereas in Case B, the condition is n > αB

1 + bM
0 . When interpreting these conditions,

it is essential to keep in mind that n denotes the priority of the considered nth unit,
counting backward in time from τ ′, bM

0 correspond to the most recent demands from
retailer group M prior to τ ′ − TI , and the demand at retailer group M in time interval
(τ ′ − TI , τ

′] is αA
1 + αA

2 for Case A and αB
1 for Case B. Note that by definition, bM

0 ≥ 0.
We summarize these arguments in the following Lemma.

Lemma 1. Assume that the realizations bM
0 , αA, and αB are known for Case A and

Case B, respectively; then the probability that the considered nth unit is dispatched with
or before the time-based shipment at time τ ′ − TI is

Pr
(
ShipOp1|αA, bM

0

)
=

 1 if n > αA
1 + αA

2 + bM
0

0 otherwise
for Case A (3.17)

Pr
(
ShipOp1|αB, bM

0

)
=

 1 if n > αB
1 + bM

0

0 otherwise.
for Case B. (3.18)

The Probability Pi(ShipOp2|αi,βi, ip, bM
0 ):

In this section, we focus on Pi(ShipOp2|αi,βi, ip, bM
0 ), i.e., the probability that the

warehouse dispatches the considered nth unit on a quantity-based shipment after τ ′− TI

and before τ ′. As noted before, this requires that the last unit in a quantity-based
shipment, including the considered nth unit, is qualified for shipment before time τ ′.

We first consider if the last unit is demanded by retailer group M before τ ′. Recall the
priority list of units ordered before τ ′ by retailer groupM, where the unit that will satisfy
the most recent demand before τ ′ has priority 1, the unit that will satisfy the second
most recent demand before τ ′ has priority 2, and so on. We define the priority of the last
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unit as q. Note that q > 0 means that the demand that this unit will satisfy takes place
before τ ′. Conversely, if q ≤ 0, the demand for the last unit occurs after τ ′, which means
it can never be dispatched in time for the event ShipOp2 to occur. Also note that if the
last unit in a shipment with QM units has priority q, the considered nth unit belongs to
the same quantity-based shipment if and only if n− q ≤ QM − 1. For example, if the
last unit in a shipment with QM = 4 units has priority q = 5 the other units in the batch
will have priorities 6,7 and 8. Thus, in order for the considered nth unit to be part of this
quantity-based shipment, n must equal 5,6,7 or 8. A general expression for q given n is
provided in Proposition 2. A proof of Proposition 2 is provided in Appendix 3.7.3.

Proposition 2. Given that the considered nth unit was not dispatched before or at
τ ′ − TI , the last unit in a possible quantity-based shipment, including the considered nth

unit, corresponds to priority q for retailer group M at time τ ′, where

q =

n−Q
M + 1 + modQM

(
bM

0 + αA
1 + αA

2 − n
)

for Case A

n−QM + 1 + modQM

(
bM

0 + αB
1 − n

)
for Case B.

(3.19)

It remains to be determined if the last unit is available for shipment from the warehouse
before or at τ ′. This will be the case if and only if the warehouse orders the last unit,
with priority q > 0, no later than τ ′ − L0. As the warehouse faces demand from all
retailer groups, the time of the warehouse order depends on the total demand at the
warehouse (i.e., the demand sequence from all retailers). It also depends on the number
of backorders at time τ ′ − TI , bM

0 , since this is influenced by the conditioned warehouse
inventory position at time τ ′ − TI − L0, IP0(τ ′ − TI − L0) = ip. To account for these
dependencies, we determine when the last unit is ordered by the warehouse relative to
the time instance τ ′ − TI − L0.

To proceed, we start by determining which unit the last unit corresponds to, counting
the demands of all retailer groups, starting from τ ′ − TI − L0 until (and including) the
last unit. We define

Ψ(q) The number of system demands that occur from τ ′ − TI − L0 until (and
including) the demand for the last unit with priority q takes place at retailer
groupM. It should be noted that Ψ(q) < 0 if the last unit is demanded before
τ ′ − TI − L0, i.e., q > αi

1 + αi
2 + αi

3.
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In other words, Ψ(q) identifies the last unit in terms of the system demands that take
place between τ ′ − TI − L0 and the retailer order from retailer group M that demands
the last unit. For a given warehouse inventory position at time τ ′− TI −L0, Ψ(q) makes
it possible to relate the retailer demand of the last unit to the warehouse order containing
this unit. By defining the time of the retailer order of the last unit as tro (ro = retailer
order), it follows that for Ψ(q) > 0, Ψ(q) denotes the system demand from τ ′ − TI − L0

up until (and including) the demand that occurs at tro, denoted by D0(τ ′− TI −L0, tro).
If Ψ(q) < 0, we have Ψ(q) = −D̃0(tro, τ

′−TI −L0), where D̃(tro, τ
′−TI −L0) denotes

the system demand from (and including) the demand that occurs at tro to τ ′ − TI − L0.
Figure 3.6 visualizes Ψ(q) > 0 in a timeline including the important time points.

However, since we do not know the sequence of demands from the respective retailer
groups within an interval, we do not know how many of the demands from the other
retailer groups occur before (and after) the demand of the last unit. As a consequence,
Ψ(q) is a stochastic variable. We derive the distribution of Ψ(q) in Proposition 3 and
Proposition 4.

For given realizations of Ψ(q) = ψ and IP0(τ ′ − TI − L0) = ip, we can determine the
time when the warehouse orders the last unit, denoted by two, and relate that to time
tro when it is ordered by a retailer in group M. This is done by determining how many
system demands occur after time two (when the warehouse orders the unit satisfying the
ψth system demand after τ ′ − TI − L0) until time tro (when the ψth system demand is
ordered by a retailer in group M counting from τ ′ − TI − L0). We define this quantity
by ϕ(ψ|ip).

ϕ(ψ|ip) The number of system demands that occur after the warehouse orders the
unit that will satisfy the ψth system demand after τ ′ − TI − L0, until (and
including) the ψth system demand, given that IP0(τ ′ − TI − L0) = ip. It
should be noted that ϕ(ψ|ip) ≤ 0 if the warehouse orders the replenishment
batch, including the last unit, after (or at the same time) the retailer group
M orders the last unit.

ϕ(ψ|ip) may take values in {R0 + 1, R0 + 2, . . . , R0 +Q0}. Thus, if the warehouse uses
a negative reorder point, ϕ(ψ|ip) may take both positive and negative values. A positive
value implies that the warehouse orders the last unit from the outside supplier before
the retailer orders it from the warehouse. Conversely, a negative value indicates that the
warehouse orders the last unit after the retailer orders it. Similarly, if ϕ(ψ|ip) = 0, the
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time
τ ′ − TI − L0 two τ ′ − L0 tro

δ(ψ|ψp) = D0(τ ′ − TI − L0, two) ϕ(ψ|ψp) = D0(two, tro)

Ψ(q) = ψ = D0(τ ′ − TI − L0, tro)

Figure 3.6: A timeline illustrating how δ(ψ|ip),Ψ(q) = ψ and ϕ(Ψ(q)|ip) relate to each other
when all variables are positive.

warehouse order and the retailer order of the last unit occur simultaneously. Consequently,
if R0 ≥ −1, the retailer will always order units from the warehouse after or at the same
time as the warehouse orders the same units from the outside supplier.

Lastly, we will determine if two takes place before or after τ ′ − L0, meaning that the last
unit will be available at the warehouse at time τ ′. To do so, we define the time of the
warehouse order in terms of the number of demands at the warehouse after τ ′ − TI − L0

up until (and including) the demand that triggers the warehouse order. This quantity is
referred to as

δ(ψ|ip) The number of system demands between τ ′ − TI − L0, until (and including)
the demand that triggers the warehouse order that includes the last unit,
given that IP0(τ ′ − TI − L0) = ip. It should be noted that δ(ψ|ip) < 0 if
the warehouse orders the replenishment batch, including the last unit, before
τ ′ − TI − L0.

Thus, if δ(ψ|ip) > 0, δ(ψ|ip) = D0(τ ′ − TI − L0, two). If δ(ψ|ip) < 0, we have
δ(ψ|ip) = −D̃0(two, τ

′ − TI − L0). By definition of Ψ(q) and ϕ(ψ|ip), we have

δ(Ψ(q)|ip) = Ψ(q)− ϕ(Ψ(q)|ip). (3.20)

Figure 3.6 illustrates a timeline for how δ(ψ|ip),Ψ(q) = ψ and ϕ(Ψ(q)|ip) relate to each
other if all variables are positive.

Since the number of demands at the warehouse in the interval (τ ′ − TI − L0, τ
′ − L0]

is known from αi and βi, we can compare this quantity to δ(ψ|ip) to determine if the
warehouse order of the last unit at two takes place before or after τ ′−L0. From Figure 3.4,
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we can see that, for Case A two ≤ τ ′ − L0 if and only if δ(ψ|ip) ≤ αA
3 + βA

3 + αA
2 + βA

2 .
Similarly, for Case B, Figure 3.5 illustrates that two ≤ τ ′ − L0 if and only if δ(ψ|ip) ≤
αB

3 + βB
3 . Moreover, since ShipOp2 can never occur if ShipOp1 occurs, ShipOp2 is only

relevant if n ≤ αA
1 + αA

2 + bM
0 in Case A and n ≤ αA

1 + bM
0 in Case B. These arguments

are summarized in Lemma 2.

Lemma 2. Assume that bM
0 , ip, αi, and βi are known for Case A and Case B, respectively;

then the probability that the considered nth unit is dispatched with a quantity-based
shipment after τ ′ − TI and before τ ′ is given for Case A by Equation (3.21) and Case B
by Equation (3.22).

Pr
(
ShipOp2|αA,βA, ip, bM

0

)
=Pr

(
δ(Ψ(q)|ip) ≤ αA

3 + αA
2 + βA

3 + βA
2

)
if q > 0 and n ≤ αA

1 + αA
2 + bM

0

0 otherwise

Pr
(
ShipOp2|αB,βB, ip, bM

0

)
=Pr

(
δ(Ψ(q)|ip) ≤ αB

3 + βB
3

)
if q > 0 and n ≤ αB

1 + bM
0

0 otherwise

(3.21)

(3.22)

The remaining part of this section explains how to determine ϕ(ψ|ip) and Pr(Ψ(q) = ψ)
using Proposition 3, Proposition 4, and Proposition 5. The detailed derivations of the
last two propositions are deferred to Appendix 3.7.4 and Appendix 3.7.5.

We begin with Ψ(q), i.e., the total number of demands in the system from τ ′ − TI − L0

up until (and including) the demand of the last unit with priority q. The expression for
this quantity depends on the time interval in which the last unit is ordered by retailer
group M (see Figure 3.4 and Figure 3.5).
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Proposition 3. The number of system demands from τ ′ − TI −L0 until (and including)
the demand for the last unit with priority q was ordered by retailer group M is given as

Ψ(q) =



αi
3 + αi

2 + αi
1 − q + 1 + βi

3 + βi
2 +Xβi

1
if 0 < q ≤ αi

1

αi
3 + αi

2 + αi
1 − q + 1 + βi

3 +Xβi
2

if αi
1 < q ≤ αi

1 + αi
2

αi
3 + αi

2 + αi
1 − q + 1 +Xβi

3
if αi

1 + αi
2 < q ≤ αi

1 + αi
2 + αi

3

αi
3 + αi

2 + αi
1 − q −Xβi

4
if q > αi

1 + αi
2 + αi

3,

(3.23)

where

Xβi
j

for j ∈ {1, 2, 3} is the (random) number of demands among the βi
j demands

from the other retailer groups M in the same time interval as the last unit was
ordered, that occur before retailer group M orders the last unit. Note that
these random variables are only relevant for q ≤ αi

1 + αi
2 + αi

3,

Xβi
4

is the (random) number of demands from the other retailer groups M that
have been ordered after the last unit but before τ ′ − TI − L0. Note that these
random variables are only relevant for q > αi

1 + αi
2 + αi

3.

The fourth expression in Equation (3.23) considers the instance when the last unit is
demanded prior to τ ′−TI−L0, i.e., before the three time intervals. Recall that Ψ(q) takes
negative values in this case. Moreover, note that Ψ(q) is stochastic, as the expression
for Ψ(q) involves the random variable Xβi

j
. The distribution of Xβi

j
is presented in

Proposition 4.

Proposition 4. The random variable Xβi
j

can be obtained as

Xβi
j

= ξ +X, (3.24)

where ξ is a constant and X ∼ Betabin(k, α, β), and Betabin denotes the beta-binomial
distribution. The value of ξ and the parameters k, α, and β differ depending on different
cases with respect to ip and αi

j and βi
j. The parameters for every special case can be

found in Table 3.2.

In Table 3.2, we consider different cases depending on how many backordered demands
there are at time τ ′ − TI , i.e., B0(τ ′ − TI) = b0. Note that the realization b0 is uniquely
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given from the realization of IP0(τ ′ − TI − L0) = ip and the demand realizations αi

and βi, especially the demand realizations during the supply lead time from the outside
supplier to the warehouse. Since we have conditioned the analysis on fixed values of ip,
αi, and βi, we can formulate

b0 =


(
ip− αA

3 − βA
3

)−
for Case A(

ip− αB
2 − αB

3 − βB
2 − βB

3

)−
for Case B.

(3.25)

Finally, Proposition 5 shows how to obtain ϕ(ψ|ip), i.e., the number of system demands
that occur between the time when the warehouse orders the unit that will satisfy the ψth

system demand at retailer groupM after τ ′−TI −L0 and the time when it is demanded
by retailer group M.

Proposition 5. Consider an arbitrary unit ordered by the warehouse at some time two.
The retailer demand for this unit occurs at time tro and corresponds to the ψth system
demand after time τ ′− TI −L0. Assume that the inventory position at the warehouse at
time τ ′ − TI − L0 is equal to ip. Then the demand that triggered the warehouse order
at two occurred ϕ(ψ|ip) system demands prior to the demand at time tro.

ϕ(ψ|ip) = R0 +Q0 − modQ0 (ip− ψ) (3.26)

3.3.3 The Joint Probability Mass Function of α,β, ip, and bM0

This section explains the approach for determining the joint PMF of the random vari-
ables with the realizations αi,βi, ip, and bM

0 , conditioned on Case i ∈ {A,B}, i.e.,
Pi(αi,βi, ip, bM

0 ).

A first observation is that IP0(τ ′ − TI − L0) is independent of the demand that occurs
after time τ ′ − TI − L0 in the three time intervals we consider, see Figure 3.4 and
Figure 3.5. Thus, we first derive the PMF of the demand and the inventory position
individually. Subsequently, we derive the marginal PMF of BM

0 (τ ′ − TI) given αi, βi,
and ip. Finally, we obtain the joint PMF by combining these results:

Pi(αi,βi, ip, bM
0 ) = Pi(bM

0 |αi, βi, ip)Pi(αi, βi)Pi(ip). (3.27)

Let us first consider the PMF of the inventory position at the warehouse, Pi(ip). As
previously mentioned, ip represents a realization of IP0(τ ′ − TI − L0). Because the
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replenishment orders in the system are independent of the shipment consolidation policy,
the inventory position at the warehouse behaves in exactly the same way as in a system
without shipment consolidation. It has been well established in the literature (see e.g.,
Axsäter (2015)) that the inventory position in such a system is uniformly distributed on
the integers [R0 + 1, R0 + 2, . . . , R0 +Q0] not only for Poisson demand. Hence,

Pi(ip) = 1
Q0

∀ ip ∈ {R0 + 1, R0 + 2, . . . , R0 +Q0}. (3.28)

We now turn to the demand in the three time intervals, Pi(αi, βi). If the lengths of
these intervals are fixed, the number of demands in the different intervals is independent
of each other. However, when the lengths of the intervals are stochastic, there is a
dependency between αi

j and βi
j through their mutual dependency of the random interval

length. To facilitate the derivation of these random variables, we first focus on the
system demand in Interval j, denoted by γi

j = αi
j + βi

j . If we derive the joint distribution
Pi(γi) = Pi(γi

1, γ
i
2, γ

i
3), the number of demands among the γi

j demands that belong to
retailer group M can be obtained by binomial disaggregation:

Pi(αi
j|γi

j) =
(
γi

j

αi
j

)(
λM

Λ

)αi
j
(

1− λM

Λ

)γi
j−αi

j

(3.29)

βi
j is then obtained by βi

j = γi
j − αi

j. The relationships between αi
j, β

i
j, and γi

j allows us
to formulate

Pi(αi,βi) = Pi(αi
1|γi

1)Pi(αi
2|γi

2)Pi(αi
3|γi

3)Pi(γi
1, γ

i
2, γ

i
3). (3.30)

We now consider the joint PMF of the system demands in each of the three intervals,
i.e., Pi(γi

1, γ
i
2, γ

i
3). This derivation differs depending on which of the two cases (Case

A and Case B) we consider. In Case A, we have three disjoint time intervals. Two of
them (Interval 1 and Interval 3) are of fixed length L0, and the third (Interval 2) is of
stochastic length TI − L0, see Figure 3.4. The fixed interval length of all but one of the
intervals means that γA

1 , γ
A
2 , and γA

3 are realizations from independent random variables.

In Case B, we can see from Figure 3.5 that we have two intervals of length TI (Interval
1 and Interval 3) and a third interval of length L0 − TI . Since the lengths of all three
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intervals depend on TI , the number of demands in these intervals (γB
1 , γ

B
2 , and γB

3 ) are
all dependent through their mutual dependency on TI .

Let us start with the simpler Case A. As mentioned above, there are two time intervals
of fixed length L0. Since the demand occurs according to Poisson processes, the total
number of demands in the system during the fixed time intervals (Interval 1 and Interval
3) are independent and identically distributed with a Poisson distribution with rate ΛL0.

PA(γA
1 , γ

A
3 ) = PA(γA

1 )PA(γA
3 ) = e−2ΛL0(ΛL0)(γA

1 +γA
3 )

(γA
1 + γA

3 )! (3.31)

Moreover, the number of demands in these time intervals is independent of the number of
demands in Interval 2. In other words, PA(γA

1 , γ
A
2 , γ

A
3 ) = PA(γA

1 , γ
A
3 )PA(γA

2 ). To obtain
PA(γA

2 ), i.e., Pr(DA(τ ′−TI , τ
′−L0) = γA

2 ) we first condition on the value of TI and then
take the expectation across all possible values, i.e., for group M, TI ∈

(
L0, T

M
)
. Note

that we only consider Case A, i.e., TI > L0. We formulate the following Proposition 6,
with its proof provided in Appendix 3.7.6.

Proposition 6. For Case A, the PMF Pr(DA(τ ′ − TI , τ
′ − L0) = γA

2 ) = PA(γA
2 ) is

given by

PA(γA
2 ) = 1

Λ(TM − L0)
[
1− F

(
γA

2 ,Λ(TM − L0)
)]
, (3.32)

where F λ(k) is the cumulative distribution function of the Poisson distribution with
parameter λ, i.e.,

F λ(k) = e−λ
k∑

j=0

λj

j! . (3.33)

In Case B, the demand in all three time intervals are mutually dependent on TI . We
therefore directly formulate the joint PMF of γB

1 , γ
B
2 , and γB

3 in Proposition 7. The
proposition is derived in a similar way, conditioning on the random variable TI and then
taking the expectation across all TI ∈ [0,min(L0, T

m)]. The derivation is found in
Appendix 3.7.7.
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Proposition 7. For Case B, the joint PMF Pr(DB(τ ′ − TI , τ
′) = γB

1 , D
B(τ ′ −L0, τ

′ −
TI) = γB

2 , D
B(τ ′ − TI − L0, τ

′ − L0) = γB
3 ) = PB(γB

1 , γ
B
2 , γ

B
3 ) = PB(γB) is given by

PB(γB
1 ,γ

B
2 , γ

B
3 ) = 1

b

(ΛL0)γB
2

γB
1 !γB

2 !γB
3 !

e−ΛL0

Λ

·
γB

2∑
k=0

(
γB

2
k

)( −1
ΛL0

)k

(γB
1 + γB

3 + k)!
[
1− FΛb(γB

1 + γB
3 + k)

]
, (3.34)

where b = min(L0, T
M) and F λ(k) is defined as in Equation (3.33).

We finally turn to the number of backorders for retailer group M at time τ ′ − TI , i.e.,
BM

0 (τ ′ − TI) = bM
0 . Recall that B0(τ ′ − TI) = b0 is directly obtained from ip and the

system demand during (τ ′ − TI − L0, τ
′ − TI) as shown in Equation (3.25).

The proportion among the b0 backorders that are associated with retailer group M
depends on the proportions between αi and βi. To handle this dependency, we formulate
the Proposition 8, with its derivation provided in Appendix 3.7.8.

Proposition 8. The PMF Pi(bM
0 |αi,βi, ip) is given by

Pi(bM
0 |αi,βi, ip) = Pr(X = bM

0 − κ), (3.35)

where κ is a constant and X is a random variable. For Case A, κ and X is given by

κ =

 0 for b0 ≤ αA
3 + βA

3

αA
3 for b0 > αA

3 + βA
3

(3.36)

and

X ∼

Hyp(α
A
3 + βA

3 , α
A
3 , b0) for b0 ≤ αA

3 + βA
3

Bin(b0 − αA
3 − βA

3 ,
λM

Λ ) for b0 > αA
3 + βA

3 ,
(3.37)

where Hyp and Bin denote the hypergeometric and binomial distribution, respectively.
For Case B we have

κ =


0 for b0 ≤ αB

2 + βB
2

αB
2 for αB

2 + βB
2 < b0 ≤ αB

2 + βB
2 + αB

3 + βB
3

αB
2 + αB

3 for b0 > αB
2 + βB

2 + αB
3 + βB

3

(3.38)
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and

X ∼


Hyp(αB

2 + βB
2 , α

B
2 , b0) for b0 ≤ αB

2 + βB
2

Hyp(αB
3 + βB

3 , α
B
3 , b0 − αB

2 − βB
2 ) for αB

2 + βB
2 < b0 ≤ αB

2 + βB
2 + αB

3 + βB
3

Bin(b0 − αB
2 − βB

2 − αB
3 − βB

3 ,
λM

Λ ) for b0 > αB
2 + βB

2 + αB
3 + βB

3 .

(3.39)

3.4 Optimization

In this section, we explain how the expected total cost function, TCM(R0,S,T,Q),
can be minimized with respect to the warehouse reorder level R0, the retailers’ base-
stock levels S = {S1, S2, . . . , SN}, the shipment intervals T = {T 1, T 2, . . . , TM},
and the shipment quantities Q = {Q1, Q2, . . . , QM}. It is easy to show by example
that TCM(R0,S,T,Q) is not jointly convex in these decision variables. However, for
given R0, T, and Q, TCM is separable and convex in the retailers’ base-stock levels,
Si ∀ i ∈ {1, 2, . . . ,N}. This follows as S does not affect the warehouse demand,
replenishment, and allocation processes in steady-state. Consequently, the warehouse
delays are also unaffected and the optimal base-stock levels S∗ = (S∗

1 , S
∗
2 , . . . , S

∗
N ) can

be obtained for a given R0,T, and Q. Using this property, TCM is optimized by a
bounded search over R0,T, and Q.

The search space is bounded by the sets of feasible shipment intervals Tm ∈ T m

and shipment quantities Qm ∈ Qm ∀ m ∈ {1, 2, . . . ,M}, and all relevant values of
R0 ∈ {Rl

0, R
l
0 + 1, . . . , Ru

0}, where Rl
0 and Ru

0 denote a lower and upper bound on the
optimal reorder level R∗

0. Rl
0 = −Q0 is a well-known lower bound (see, e.g., Axsäter

(1998) and Marklund (2011)). An upper bound, Ru
0 , can be found when the warehouse

stock-out probability is small enough for further decreases to be of no consequence for
the other decision variables (see, e.g., Axsäter (1990) and Stenius et al. (2016)). Thus,

Ru
0 = min{R0 : Pr(D0(0, L0) > R0) < ε}, (3.40)

where ε is a small positive number close to zero.

The optimal warehouse reorder level R∗
0, the optimal retailers’ base-stock levels S∗ =

(S∗
1 , S

∗
2 , . . . , S

∗
N ), the optimal shipment intervals T∗ = {T 1∗, T 2∗, . . . , TM∗}, and the
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optimal consolidation quantities Q∗ = {Q1∗, Q2∗, . . . , QM∗} can be found by minimizing
the expected total cost over the bounded search space.

3.5 Numerical Study

The main purpose of the numerical study is to provide insights regarding the benefits and
total cost performance of the hybrid consolidation policy compared to the time-based and
quantity-based counterparts when jointly optimizing inventory and shipment decisions in
OWMR inventory distribution systems.

The numerical study is based on a test series consisting of 24 different problems. The
inventory system consists of a single warehouse and four retailers in two consolidation
groups. Retailers 1 and 2 belong to retailer group 1, while retailers 3 and 4 belong to
group 2. Our investigation encompasses various combinations of the following system
parameters: The order quantity at the warehouse, backorder, and shipment costs, and
the transportation times from the warehouse to the retailers. The order quantity at
the warehouse is set at two levels, Q0 ∈ {1, 10}. We define two levels each for the
backorder costs rate, p = (p1, p2, p3, p4), and for the fixed shipment cost for quantity-
based shipments, ωq = (ω1

q , ω
2
q). In order to investigate varying relationships between

the fixed costs associated with time-based and quantity-based shipments, ωt = (ω1
t , ω

2
t )

is studied at three different levels, each depending on the value of ωm
q . Specifically,

we consider p ∈ {(10, 10, 10, 10), (50, 50, 50, 50)}, ωq ∈ {(5, 5), (50, 50)}, and ωt ∈
{0.4ωq, 0.7ωq,ωq}.

The unit holding costs rate, hi, the demand rates, λ = (λ1, λ2, λ3, λ4), the supply
lead time, L0, and the transportation times from the warehouse to the retailers, L =
(L1, L2, L3, L4), are set as follows: hi = 1 ∀ i = {0, 1, 2, 3, 4}, λ = (0.4, 0.6, 0.1, 0.9),
L0 = 2, and L = (1, 1.2, 1, 1.2).These values are considered as constants in our analysis.

Further, we define the sets for the possible shipment policy parameters as T m =
{1, 2, 3, 5, 7, 10,∞} and Qm = {1, 3, 5, 10, 20,∞} ∀ m ∈ {1, 2}.

Our method allows the calculation of many hybrid policies (Tm, Qm), but the pure
quantity-based policy with Tm → ∞ cannot be evaluated. Therefore, the results for
pure quantity-based shipment policies are obtained based on the method presented in
Malmberg and Marklund (2023).
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Table 3.3: Relative increase in expected total cost of using a pure time-based or a pure
quantity-based consolidation policy instead of the hybrid policy

Pure time-based policy Pure quantity-based policy

Parameters Value
Minimum cost Maximum cost Average cost Minimum cost Maximum cost Average cost

increase increase increase increase increase increase
in % in % in % in % in % in %

Q0 1 0.00 18.16 6.29 0.00 28.14 5.31
10 0.00 14.81 6.65 0.00 26.56 6.70

p (10,10,10,10) 0.00 18.16 6.21 0.00 28.14 6.93
(50,50,50,50) 0.37 17.22 6.73 0.00 21.20 5.07

ωq (5,5) 0.13 18.16 9.41 0.00 11.76 2.75
(50,50) 0.00 12.48 3.53 0.00 28.14 9.25

ωt 0.4ωq 0.00 7.11 1.78 3.64 28.14 15.62
0.7ωq 0.00 9.47 4.56 0.00 4.65 2.39

ωq 7.92 18.16 13.07 0.00 0.00 0.00
Total 0.00 18.16 6.47 0.00 28.14 6.00

When analyzing the results from our numerical study, we first the cost performance of
the proposed hybrid policy to pure time-based and quantity-based shipment consolidation
policies. Table 3.3 summarizes the minimum, maximum, and average increase in expected
total cost for the optimized OWMR system when using a pure time-based or a pure
quantity-based consolidation policy instead of the dominanting hybrid policy. We can
see that the performance gap between the hybrid policy and a pure time-based policy
ranges from 0 % to 18.16 % with an average of 6.47 % in our study. Thus, the expected
shipment, inventory holding and backorder costs for the optimized OWMR system is on
average 6.47 % higher when using a pure time-based policy instead of the hybrid policy.
Similarly, for the optimal quantity-based policy, the relative increase in expected total
costs range from 0 % to 28.14 % with an average of 6.00 %. This shows that there are
substantial cost benefits of using the hybrid policy.

Looking more carefully at the results for different fixed costs per shipment (i.e., ωt ∈
{0.4ωq, 0.7ωq,ωq}) in Table 3.3, we can see that if the fixed costs per shipment
is the same for the time-based and quantity-based shipments, i.e., ωt = ωq, the
optimal pure quantity-based policy performs very well with 0 % cost increase across all
examples. However, in practice, using periodic dispatches often offer advantages from
a coordination perspective both for the in-house material handling activities, and by
providing opportunities to coordinate activities across multiple items and warehouses
(e.g., by cross-docking or similar set-ups). This suggests that time-based shipments may
have lower fixed costs than the quantity-based shipments, i.e., ωt < ωq, motivating the
inclusions of such scenarios in the study. Table 3.3 shows that in problems where the
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Table 3.4: Optimal decision variables for all 24 instances
Instance Q0 pj ωq ωt R∗

0 T 1∗ T 2∗ Q1∗ Q2∗ S∗
1 S∗

2 S∗
3 S∗

4 TC

1

1

(10,10,10,10)
(5,5)

0.4ωq 3 1 2 10 5 2 3 1 5 14.10
2 0.7ωq 3 ∞ ∞ 3 3 2 3 1 4 14.69
3 ωq 3 ∞ ∞ 3 3 2 3 1 4 14.69
4

(50,50)
0.4ωq 2 5 5 ∞ ∞ 4 5 1 7 26.73

5 0.7ωq 2 5 5 ∞ ∞ 4 5 1 7 32.73
6 ωq 2 ∞ ∞ 10 10 5 7 2 10 34.25
7

(50,50,50,50)
(5,5)

0.4ωq 4 2 1 3 5 3 4 1 5 18.23
8 0.7ωq 4 ∞ ∞ 3 3 3 4 2 5 18.89
9 ωq 4 ∞ ∞ 3 3 3 4 2 5 18.89
10

(50,50)
0.4ωq 3 5 5 10 10 5 7 2 9 32.42

11 0.7ωq 3 5 5 10 10 5 7 2 9 38.42
12 ωq 4 ∞ ∞ 5 5 4 5 2 7 39.23
13

10

(10,10,10,10)
(5,5)

0.4ωq -3 2 2 5 5 3 4 1 5 14.79
14 0.7ωq -4 3 3 5 5 3 4 1 6 15.97
15 ωq 0 ∞ ∞ 3 3 2 3 1 4 16.53
16

(50,50)
0.4ωq -3 5 5 ∞ 20 4 6 1 8 28.16

17 0.7ωq -3 5 7 ∞ 20 4 6 2 10 34.14
18 ωq -2 ∞ ∞ 10 10 5 7 2 10 35.64
19

(50,50,50,50)
(5,5)

0.4ωq -1 2 2 3 5 3 4 2 6 19.34
20 0.7ωq -3 3 3 5 5 4 5 2 7 20.69
21 ωq 1 ∞ ∞ 3 3 3 4 2 6 20.98
22

(50,50)
0.4ωq -1 5 5 10 10 5 7 2 9 34.02

23 0.7ωq -1 5 5 10 10 5 7 2 9 40.02
24 ωq 0 ∞ ∞ 5 10 4 6 3 11 41.23

fixed cost for a time-based dispatch is 40 % of the fixed cost of a quantity-based dispatch,
(i.e., ωt = 0.4ωq) the optimal pure time-based policy performs well with an average
performance gap of 1.78 % compared to the optimal hybrid policy. In these examples,
the optimal pure quantity-based policy performs poorly, with an average cost increase of
15.62 % compared to the hybrid policy. If the relative cost difference between time-based
and quantity-based shipments is more moderate, i.e., ωt = 0.7ωq, the quantity-based
policy has a better average performance than the time-based policy. However, for
individual problems the results are more ambiguous (see Table 3.4). Sometimes, a pure
time-based policy performs better than a pure quantity-based policy and vice versa. By
definition, the optimal hybrid policy is always best.
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3.6 Summary and Outlook

This chapter considers an OWMR inventory distribution system where retailers are
clustered into several predefined retailer groups. The retailers face Poisson demand and
are replenished by the warehouse. The warehouse receives real-time point-of-sales data
from the retailers, why the inventory replenishment process at each retailer is modeled
using a continuous review (Si − 1, Si) policy. The warehouse uses an (R0, Q0) inventory
replenishment policy. Shipments from the warehouse to the retailer groups are dispatched
according to a hybrid time-and-quantity-based shipment consolidation policy. This means
that a shipment is dispatched either when a scheduled time-based shipment day is reached,
or a specific consolidation quantity is accumulated.

Our main contribution is the derivation of the PMF of the inventory level at each retailer,
which enables the exact evaluation of the expected total inventory, backorder, and
shipment costs of the system. Afterwards, we are able to jointly optimize the inventory
and shipment policy parameters under this heuristic shipment strategy.

The numerical study demonstrates that there exist scenarios where the dominant hybrid
policy can be effectively replaced by either the pure time-based or pure quantity-based
consolidation policy. In particular, the pure time-based policy performs very well when
the fixed costs for time-based shipments are significantly lower than those for quantity-
based shipments, resulting in an average total cost increase of only 1.78 %. Conversely,
the optimization of the hybrid policy (Tm, Qm) leads to the special case of a pure
quantity-based policy with Tm →∞ for all investigated instances when the fixed costs
for time-based and quantity-based shipments are equal.

The complexity of our model could be extended by including a compound Poisson demand
process or multi-item settings. However, more complex problem settings will increase the
computational times for exact solution approaches, making the consideration of heuristics
advisable.
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3.7 Appendix

3.7.1 Proof of Proposition 1

Proof of Proposition 1. Units corresponding to outstanding orders at retailer i can either
be:

(i) Outstanding at the warehouse

(ii) Waiting for a shipment to be dispatched (reserved stock on hand at the warehouse)

(iii) In transit between the warehouse and retailer i

Note that the expected number of units in (i) and in (iii) are independent of the shipment
policy. Consequently, the only change in outstanding orders to retailer i when analyzing
a system with the shipment policy compared to a system without the shipment policy is
the units corresponding to the reserved stock on hand. As a result

E[Wi] = E[Oi|system with the proposed shipment policy]

− E[Oi|system without a shipment policy]. (3.41)

Equation (3.5) then follows from E[ILi] = Si − E[Oi].

3.7.2 Derivation of Km

In this section, we will derive the PMF of the stochastic variable Km∀m ∈ {1, 2, . . . ,M},
i.e., the number of units that qualify for shipment to retailer group m between two
consecutive time-based dispatches. It is noteworthy that in a system with a hybrid policy,
Km is independent of the consolidation quantity. As a consequence, Km can be derived
by using the exact same method as in a system with a pure time-based consolidation
policy.

Stenius et al. (2018) present an exact analysis to obtain the PMF for the number of units
that qualify for shipment in between two arbitrary consecutive time-based shipments to
retailer group m in a system with a pure time-based consolidation policy. They do not
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consider the possibility of dispatching quantity-based shipments between the periodic
dispatches. However, as all their other modeling assumptions apply to our method, we
may directly use their approach to get the distribution of Km. In this appendix, we
recapitulate the main idea of the approach presented in Stenius et al. (2018). For a more
detailed explanation, we refer to their paper.

The key to their analysis is to first compute the PMF of the total number of units that
have been qualified between two arbitrary consecutive shipments dispatched at time t0
and t1 = t0 − Tm, respectively. We denote this quantity by K; thus, the stochastic
variable K is the number of units that qualify for shipment to all retailers in the interval
(t1 = t0 − Tm, t0]. The PMF of the number of qualified units corresponding to retailer
group m, Km, is then obtained by binomial disaggregation.

Pr(Km = km) =
∞∑

k=km

Pr(K = k)
(
k

km

)(
λm

Λ

)km (
1− λm

Λ

)k−km

(3.42)

It remains to derive Pr(K = k). Similar to Stenius et al. (2018), let us define:

D0(s, t) Demand at the central warehouse in time interval (s, t], s < t, Poisson
distributed with mean Λ(t− s)

IP−
0 (t) Inventory position at the central warehouse at time t, uniformly distributed

on [R0 + 1, R0 +Q0]

mod
R0,Q0

(x) x+ nQ0, where n is an integer such that R0 < x+ nQ0 ≤ R0 +Q0

To determine the number of qualified units to all retailer groups between two consecutive
shipments, t1 = t0− Tm and t0, we also need to take into account the last time instance
where the central warehouse can place a replenishment order which will arrive before the
respective time-based dispatch. In order for a unit to arrive at the warehouse before t1 it
must have been ordered by the warehouse before t1 − L0. Similarly, in order for a unit
to arrive at the warehouse before t0 it must have been ordered by the warehouse before
t0 − L0.

These four time instances t0, t1, t0−L0, and t1−L0 form three time intervals. Depending
on the length of Tm and L0, these time instances occur in different sequences. As a
consequence, we have to consider two cases: Tm ≤ L0 and Tm > L0.
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When Tm ≤ L0, the final expression to obtain the total number of qualified units between
t1 and t0 is given by

K = D0(t1, t0 − L0) +D0(t0 − L0, t0)

+
(
IP0(t1 − L0)−D0(t1 − L0, t1)

)−

−
(

mod
R0,Q0

(
IP0(t1 − L0)−D0(t1 − L0, t1)

−D0(t1, t0 − L0)
)
−D0(t0 − L0, t0)

)−
, (3.43)

whereas if Tm > L0, the expression changes and K is obtained by

K = D0(t1, t0) +
(
IP0(t1 − L0)

−D0(t1 − L0, t0 − L0)−D0(t0 − L0, t1)
)−

−
(

mod
R0,Q0

(
IP0(t1 − L0)−D0(t1 − L0, t0 − L0)

)
−D0(t0 − L0, t1)−D0(t1, t0)

)−
. (3.44)

It is valid for both cases that all the stochastic variables are independent of each other.
Therefore, the PMF for the total number of units qualified between (t1, t0] (i.e., to all
retailer groups) can be obtained by convolutions.

3.7.3 Proof of Proposition 2

Proof of Proposition 2. If the considered nth unit is shipped in a potential quantity-based
shipment, it is the uth (u ∈ {1, 2, . . . , QM}) unit to be qualified for shipment among the
units in the same shipment. In other words, the last unit in the potential quantity-based
shipment containing the considered nth unit is the (QM − u)th unit to be qualified for
shipment after the considered nth unit. This means that the priority of the last unit is
given by

q = n− (QM − u). (3.45)

It remains to determine u.

We first define x = DM(τ ′ − TI , τ
′), i.e., the demand from retailer group M between

the time-based shipment dispatched at τ ′ − TI and τ ′. Moreover, when the time-based
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shipment is dispatched at τ ′ − TI , we assume that there are in total bM
0 units that have

been ordered by retailers in retailer group M before τ ′ − TI that are not included in this
shipment due to a stock-out. In other words, these units are backordered at time τ ′− TI .

There are bM
0 + x units that have been ordered before τ ′ and that qualify for shipment

after τ ′ − TI . We know that n ≤ bM
0 + x since otherwise the considered nth unit would

have been dispatched on (or before) the time-based shipment at τ ′ − TI . This means
that there are (bM

0 +x−n) units with higher priority than the considered nth unit among
these bM

0 + x units.

From Figure 3.4 and Figure 3.5 we can see that

x =

α
A
1 + αA

2 for Case A

αB
1 for Case B.

(3.46)

If we now consider the Euclidian division (bM
0 + x− n)/QM, the quotient will represent

the number of full (potential) quantity-based shipment that are dispatched before the
potential quantity-based shipment with the considered nth unit is dispatched. As a
consequence, the remainder of the division is the number of units among (bM

0 + x− n)
units (with higher priority than the considered nth unit) that will be in the same potential
quantity-based shipment as the considered nth unit. Since the considered nth unit is the
next unit to be qualified for shipment after these units have qualified, we get

u = 1 + modQM(bM
0 + x− n). (3.47)

Putting Equation (3.45), Equation (3.46), and Equation (3.47) together we get Equa-
tion (3.19) in Proposition 2.

3.7.4 Derivation of Proposition 4

In this section, we derive the distributions of Xβi
j
∀ i, j presented in Proposition 4. We

first need to establish some useful results in Proposition 9 and Corollary 1. Thereafter,
we provide the actual derivation of Proposition 4.
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Proposition 9. For a time interval (t0, t1] assume that we know the number of re-
tailer demands from retailer group M and the other retailer groups respectively, i.e.,
DM(t0, t1) = α and DM(t0, t1) = β. Then the probability that exactly X demands from
the other retailer groups occur before the kth demand from retailer group M is given by
a beta-binomial distribution with PMF

Pr(X = x|k, α, β) =
(
β

x

)
B(x+ k, β − x+ α− k + 1)

B(k, α− k + 1) , (3.48)

where B(m1,m2) is the Beta-function defined for positive integers m1 and m2 as

B(m1,m2) = (m1 − 1)!(m2 − 1)!
(m1 +m2 − 1)! . (3.49)

We denote the distribution of X by X ∼ Betabin(k, α, β).

Proof of Proposition 9. Properties of the Poisson process assure that the arrival times for
a fixed number of demand arrivals during a fixed time interval have a uniform distribution
on the considered time interval (t0, t1].

As a consequence, the kth demand from the retailers in retailer group M can be seen as
the k-order statistic from α uniform random variables. Using properties of the k-order
statistic among uniform random variables, we know that the proportion of time until the
kth demand occurs, denoted by b, is beta-distributed with parameters

b ∼ Beta(k, α− k + 1). (3.50)

The arrival times for the β demands from the other retailer groupsM also have a uniform
distribution over the considered time interval (t0, t1]. Therefore, for a given value of b,
the number of demands from the other retailers M that occur before b, is given by a
binomial distribution with

X ∼ Bin(β, b). (3.51)

Because the parameter b in this distribution is, in fact, a beta-distributed random variable,
the distribution of X is given by a binomial distribution with a beta-distributed random
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parameter. Such distribution is often referred to as a beta-binomial distribution

X ∼ Betabin(k, α, β) (3.52)

with PMF

Pr(X = x|k, α, β) =
(
β

x

)
B(x+ k, β − x+ α− k + 1)

B(k, α− k + 1) , (3.53)

where B(m1,m2) is the Beta-function defined for positive integers m1 and m2 as

B(m1,m2) = (m1 − 1)!(m2 − 1)!
(m1 +m2 − 1)! . (3.54)

We also need the following Corollary to Proposition 9.

Corollary 1. Considering the time interval (t−z, t0) where t0 is an arbitrary point in time,
and t−z is the time instance when the zth system demand before t0 took place. Out of
the z − 1 units demanded in this interval, it is known that α demands originate from
retailer group M and β originate from the other retailer groups M.

Then the probability that exactly X ≤ β demands from the other retailer group occur
before the kth earliest demand counted backwards from t0 from retailer group M is
given by a beta-binomial distribution

X ∼ Betabin(k, α, β), (3.55)

where 0 ≤ k ≤ α.

Moreover, the probability that exactly X ≤ β demands from the other retailer groups
occur after the kth most recent demand from retailer group M is given by a beta-
binomial distribution

X ∼ Betabin(k, α, β), (3.56)

where 0 ≤ k ≤ α.
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Proof of Corollary 1. When considering a fixed time interval, it is well known that the
arrival times of a known number of Poisson arrivals within this time interval, have a
uniform distribution on the considered time interval. In Corollary 1, one end-point of
the time interval is fixed and the other is determined by the zth demand before the
fixed endpoint. By showing that the arrival times of the z − 1 demands are uniformly
distributed between the time of the zth demand and the fixed endpoint, the results follow
directly from the proof of Proposition 9.

Let U1, U2, . . . , UJ be J uniform random variables on a fixed arbitrary interval [t0, t(J+1)].
Moreover, we introduce the notations t0 ≡ U(0) and t(J+1) ≡ U(J+1) for the endpoints of
the interval. We also define the order statistics of the J uniform random variables and
the endpoints as

t0 ≡ U(0), U(1), U(2), . . . , U(J), U(J+1) ≡ t(J+1). (3.57)

It is easy to show that, given the maximum value, U(J) = tJ , the first J − 1 order
statistics are distributed as J − 1 order statistics from J − 1 uniform random variables
in the interval [t0, tJ ]. By repeating this argument, we know that given U(k) = tk the
k − 1 order statistics smaller than U(k) are distributed as the order statistics of k − 1
uniform random variables on the interval [t0, tk]. This is true for any k = 2, 3, . . . , J .
Due to the symmetry, we also know that U(J−z) = t(J−z) the z − 1 order statistics larger
than U(J−z) are distributed as the order statistics of z uniform random variables on the
interval [tJ−z, t(J+1)]. Moreover, this means that the arrival times of the z − 1 demands
are uniformly distributed between the time of the zth demand and the fixed endpoint t0
and, thus, the proposition follows directly from Proposition 9.

Derivation of Proposition 4

In this section, we will focus on determining the distribution of Xβi
j

from Proposition 4
in Section 3.3.2. We start by recapitulating the definition of Xβi

j
.

Xβi
j

is the (random) number of demands, among the βi
j demands from the other

retailer groups M, that occur in Interval j ∈ {1, 2, 3}, before the last unit is
ordered by retailer groupM. Note that these random variables are only relevant
for q ≤ αi

1 + αi
2 + αi

3.
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Xβi
4

is the number of demands from the other retailer groups M that have been
ordered after the last unit but before τ ′ − TI − L0. Note that these random
variables are only relevant for q > αi

1 + αi
2 + αi

3.

We will start by considering Xβi
j

for j ∈ {1, 2, 3}, and then we continue with Xβi
4
. Finally,

we summarize the derivation by providing Table 3.2 with distributions and parameters for
different cases and situations.

Derivation of Xβi
j

for j ∈ {1, 2, 3}

Let us first consider Xβi
j

for j ∈ {1, 2, 3}. By design, the different values of j represent
the time interval in which the retailer demand of the last unit takes place. If the retailer
demand takes place in time Interval j, Xβi

j
denotes how many of the βi

j demands that
take place before the retailer demand of the last unit.

A key insight to determining Xβi
j

is that b0 and bM
0 (i.e., the number of backorders at

time τ ′− TI) may provide us with information on the order of the demands in an interval
from retailer group M and the other groups M, respectively. As we have conditioned
the analysis on fixed realizations of the number of backorders, we have to take this into
account in the derivation.

The FCFS allocation assures that the demands that are backordered at τ ′ − TI are the
demands that have occurred most recently before this time. As a consequence, we know
that out of the b0 most recent demands to have occurred before τ ′ − TI , bM

0 must have
been demanded by retailer group M (and b0 − bM

0 have been demanded by the other
retailer groups M). In situations where some of the demands during the interval are
backordered, and some are not backordered, we need to take into consideration that b0

and bM
0 will influence how many of the βi

j demands from the retailers inM that occurred
before the demand for the last unit, i.e., the random variable Xβi

j
.

To proceed with the analysis, we will distinguish between three different situations:

Situation 1 The demands that have occurred in the same interval as the last unit
are all backordered at time τ ′ − TI
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Situation 2 None of the demands that have occurred in the same interval as the
last unit are backordered at time τ ′ − TI .

Situation 3 Some of the demands that have occurred in the same interval as the last
unit are backordered at time τ ′ − TI and some are not.

Situation 1 and Situaion 2 are the most straightforward to consider, i.e., when either all
demands in the same interval as the last unit was demanded are backordered at τ ′ − TI ,
or none of the demands in the same interval are backordered at τ ′ − TI . It is worth
noting that the latter is always true if the last unit was ordered after τ ′−TI . In these two
situations, knowing that bM

0 out of the b0 backorders belong to retailer group M does
not provide any additional information. We may, therefore, directly apply Proposition 9
to obtain the distribution of Xβi

j
. This is done by letting the last unit be the kth demand

from retailer group M counted from the beginning of the time interval that the demand
occurs and replacing α and β in Equation (3.48) with αi

j and βi
j for the corresponding

interval and case. To conclude, in the special case where the system demands in Interval
j (i.e., the interval in which the last unit is demanded) are either all backordered at time
τ ′ − TI or none are backordered at this time, the distribution of Xβi

j
is given by

Xβi
j
∼ Betabin(k, αi

j, β
i
j), (3.58)

where k depend on which interval the last unit was demanded in, i.e.,

k =


αi

1 − q + 1 0 < q ≤ αi
1

αi
1 + αi

2 − q + 1 αi
1 < q ≤ αi

1 + αi
2

αi
1 + αi

2 + αi
3 − q + 1 αi

1 + αi
2 < q ≤ αi

1 + αi
2 + αi

3.

(3.59)

To exemplify, in Case A, if k = 4 and the last unit is demanded in Interval 2, i.e. in
(τ ′− TI , τ

′−L0]. The last unit is the fourth unit to be demanded counting from τ ′− TI .
It should be noted that the three different cases in the expression for k Equation (3.59)
simply determine the time interval in which retailer group M demands the last unit,
see Figure 3.4 and Figure 3.5 in Section 3.3.1. Moreover, XβA

2
is then the number of

demands among the βA
2 demands that occur before the fourth demand from retailer

group M occurs.

We will now focus on Situation 3, i.e., when some of the system demands in the same
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time interval as the last unit is demanded are backordered at time τ ′ − TI and some
are not backordered, i.e., are dispatched with (or before) the time-based shipment. For
Case A, this situation may only occur if the last unit is demanded in Interval 3. Similarly,
for the situation to occur in Case B, the last unit must have been demanded in either
Interval 2 or Interval 3. Note that if the last unit is demanded by retailer group M after
τ ′ − TI , none of the retailer demands in the same time interval can be backordered at
time τ ′ − TI , thus Situation 2 from above applies. See Figure 3.4 and Figure 3.5.

Moreover, as we only need to consider the situation where the considered nth unit is
backordered (otherwise it would have been dispatched on a time-based shipment), and
the last unit is demanded after the considered nth unit, we know that the last unit is
also backordered (or not yet demanded at time τ ′ − TI). As a consequence, we know
that all the demands from the other retailers that are not backordered at time τ ′ − TI

must have been demanded before the last unit. We denote this demanded quantity by ξ.
We start by determining ξ.

ξ =


βA

3 − (b0 − bM
0 ) for Case A and αA

1 + αA
2 < q ≤ αA

1 + αA
2 + αA

3

βB
2 − (b0 − bM

0 ) for Case B and αB
1 < q ≤ αB

1 + αB
2

βB
2 + βB

3 − (b0 − bM
0 ) for Case B and αB

1 + αB
2 < q ≤ αB

1 + αB
2 + αB

3

(3.60)

Note that the value of ξ is a known, deterministic value for given values of b0, bM
0 , αi,

and βi. The remaining part of Xβi
j

(i.e., of the units that are ordered before the last unit
in the same interval) are units among the backordered demands from the other retailer
groups M that have been ordered before the last unit. We use Corollary 1 to get this
quantity.

To apply Corollary 1, we identify the most recent demand out of all the demands that
are not backordered at time τ ′ − TI . Moreover, this demand takes place in the same
time interval as the last unit (otherwise we would not be in Situation 3). Following the
notations from Corollary 1, this time interval ends with the time instance t0. We know
that

t0 =


τ ′ − TI for Case A and αA

1 + αA
2 < q ≤ αA

1 + αA
2 + αA

3

τ ′ − TI for Case B and αB
1 < q ≤ αB

1 + αB
2

τ ′ − L0 for Case B and αB
1 + αB

2 < q ≤ αB
1 + αB

2 + αB
3 .

(3.61)
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Using the notation, z, from Corollary 1, the most recent demand out of all the demands
that are not backordered at time τ ′−TI , is the zth most recent demand to have occurred
prior to t0 (note that z counts the total demand in the system and not only the demand
at retailer group M).

Moreover, α and β are the backordered demands (from retailer group M and the other
retailer groups respectively) that were demanded in the same interval as the last unit
(note that z = α + β + 1). Thus, using these notations and Corollary 1, we have

Xβi
j

= ξ +X (3.62)

where

X ∼ Betabin(k, α, β) (3.63)

and ξ is given by Equation (3.60). α and β take different values depending on which
interval the last unit is demanded in and which of Case A and Case B that we consider.
Recall that for Case A, the situations that we consider can only happen if αA

1 + αA
2 <

q ≤ αA
1 + αA

2 + αA
3 . Thus, the α and β parameters for the beta-binomial distribution

equals all the backordered demands at time τ ′ − TI for retailer group M and the other
retailer groups respectively, i.e.,

α = bM
0 αA

1 + αA
2 < q ≤ αA

1 + αA
2 + αA

3 (3.64)
β = b0 − bM

0 αA
1 + αA

2 < q ≤ αA
1 + αA

2 + αA
3 . (3.65)

For Case B, the last unit can be demanded in both the second and the third interval;
thus,

α =

 b
M
0 αB

1 < q ≤ αB
1 + αB

2

bM
0 − αB

2 αB
1 + αB

2 < q ≤ αB
1 + αB

2 + αB
3

(3.66)

β =

 b0 − bM
0 αB

1 < q ≤ αB
1 + αB

2

b0 − bM
0 − βB

2 αB
1 + αB

2 < q ≤ αB
1 + αB

2 + αB
3 .

(3.67)

Moreover, the kth unit is only counted among the backordered demand from retailer
group M in this interval. The value of k also depends on which interval the last unit is
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ordered in

k =

α
i
1 + bM

0 − q + 1 αi
1 < q ≤ αi

1 + αi
2

αi
1 + αi

2 + bM
0 − q + 1 αi

1 + αi
2 < q ≤ αi

1 + αi
2 + αi

3.
(3.68)

Derivation of Xβi
4

We now focus on Xβi
4
, i.e., when the last unit is demanded by retailer group M prior to

τ ′ − TI − L0 (before Interval 3). Since the considered nth unit is backordered at time
τ ′− TI , the last unit must also be backordered at this time. In this case, Xβi

j
determines

how many of the demands from the other retailer groups M that are demanded after
the last unit, but before τ ′ − TI − L0. Note that there is not a closed interval in this
case. However, in line with the previous notations, we refer to this as Xβi

4
, i.e., j = 4,

since it occurs before Interval 3.

Corollary 1 can be directly applied to this situation. The notations correspond to
t0 = τ ′ − TI −L0 and z − 1 as the total number of demands that have occurred prior to
t0 and are still backordered at time τ ′ − TI . The parameters α and β are the number
of demands, from retailer group M and the other retailers M respectively, that have
occurred before τ ′ − TI − L0 and are still backordered at time τ ′ − TI . This means that

α =

 b
M
0 − αA

3 for Case A
bM

0 − αB
3 − αB

2 for Case B
(3.69)

β =

 (b0 − bM
0 )− βA

3 for Case A
(b0 − bM

0 )− βB
3 − βB

2 for Case B.
(3.70)

Moreover, the last unit is the kth most recent demand at retailer group M to occur
before τ ′ − TI − L0, i.e., in both Case A and Case B, we have

k = q − αi
3 − αi

2 − αi
1. (3.71)

We summarize the above derivation of Xβi
j

in Table 3.2 by letting Xβi
j

= ξ +X, where
X ∼ Betabin(k, α, β) with the parameters given in Table 3.2.
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3.7.5 Proof of Proposition 5

Proof of Proposition 5. Recall that the analysis is conditioned on IP0(τ ′−TI−L0) = ip.
Moreover, the retailer demand that occurs at time t is the ψth demand after τ ′−TI −L0,
i.e., D0(τ ′ − TI − L0, t) = ψ. Let IP0(t) denote the inventory position at the central
warehouse just before t.

Let us first consider y such that ip = R0 +Q0 − y, i.e.,

y = R0 +Q0 − ip, (3.72)

where y represents the number of demands that have occurred since the inventory position
most recently was equal to R0 +Q0. As IP0(t) ∈ {R0 + 1, R0 + 2, . . . , R0 +Q0}, we
have y ∈ {0, 1, . . . , Q0 − 1}.

IP0(t) represents the warehouse inventory position after an additional ψ − 1 demands
from the retailers. As a consequence,

IP0(t) = R0 +Q0 − modQ0(y + (ψ − 1))

= R0 +Q0 − modQ0(R0 +Q0 − ip+ (ψ − 1))

= R0 +Q0 − modQ0(R0 − ip+ (ψ − 1)). (3.73)

Just before the retailer order at time t takes place the inventory position is IP0(t). By
definition of ϕ, the warehouse order including the unit that will satisfy this retailer order
takes place ϕ(ψ|ip) system demands prior to t. As IP0(t) is known from Equation (3.73)
we want to determine ϕ for a given IP0(t).

Let x be the number of demands prior to t when the most recent warehouse order took
place, i.e.,

IP0(t) = R0 +Q0 − x. (3.74)

This means that the second most recent warehouse order took place x+Q0 demands
prior to t and the third most recent warehouse order took place x+ 2Q0 demands prior
to t. In general, the kth most recent warehouse order took place x+ (k− 1)Q0 demands
prior to t. Note that k = 0 if the warehouse order took place after t (this situation is
only relevant for R0 < 0).
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After the warehouse order takes place, the unit will satisfy the demands occurring
R0 + 1, R0 + 2, . . . , R0 +Q0 demands later. As a consequence, the unit that satisfies
a demand at time t must have been ordered ϕ = R0 + 1 + y demands earlier where
y = 0, 1, . . . , Q0 − 1. Since this warehouse order took place x + (k − 1)Q0 demands
earlier (or later in case k = 0), we know that R0 + 1 + y = x+ (k − 1)Q0. This means
that

y = x−R0 − 1 + (k − 1)Q0 (3.75)

where k is chosen such that y = 0, 1, . . . Q0 − 1. Since x = R0 +Q0 − ip we have

y = kQ0 − ip, (3.76)

where again n is chosen such that y = 0, 1, . . . Q0 − 1.

Thus,

ϕ(ψ|ip) = R0 + 1 + y

= R0 + 1 + modQ0(−ip)

= R0 +Q0 − modQ0(ip− 1). (3.77)

We plug in Equation (3.73) into Equation (3.77) and simplify the expression

ϕ(ψ|ip) = R0 +Q0 − modQ0 (R0 +Q0 − modQ0(R0 − ip+ (ψ − 1))− 1)

= R0 +Q0 − modQ0 (R0 − 1− modQ0(R0 − 1− ip+ ψ))

= R0 +Q0 − modQ0 (ip− ψ) (3.78)

3.7.6 Proof of Proposition 6

Proof of Proposition 6. In Case A, Interval 2, i.e., (τ ′ − TI , τ
′ − L0] depends on the

random variable TI . As a consequence, the length of Interval 2 is uniformly distributed
on (0, TM − L0), whereas all the other time intervals have a fixed length of L0 (see
Figure 3.4 for details). Let X be the random length of Interval 2; this means that

DA(τ ′ − TI , τ
′ − L0) ∼ Poisson(ΛX), where X ∼ Uniform(0, TM − L0). (3.79)
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Thus, the number of demands in this interval is distributed according to a Poisson
distribution with a uniformly distributed parameter. The objective is to derive the PMF
of this distribution, i.e., PA(γA

2 ) = Pr(DA(τ ′ − TI , τ
′ − L0) = γA

2 ). By using the law of
total probability, we get

PA(γA
2 ) =

∫ T M−L0

0
Pr(DA(τ ′ − TI , τ

′ − L0) = γA
2 )Pr(TI − L0 = x)dx

= 1
TM − L0

∫ T M−L0

0

(Λx)γA
2

γA
2 ! e−Λxdx

= 1
TM − L0

ΛγA
2

γA
2 !

∫ T M−L0

0
xγA

2 e−Λxdx. (3.80)

The latter integral can be solved analytically by repeated use of integration by parts
(Gradštejn et al., 1994). The result has the form

∫ b

0
xne−axdx = n!

an+1

[
1− e−ab

n∑
i=0

(ab)i

i!

]
. (3.81)

By further simplifying Equation (3.80), using Equation (3.81) and b = TM − L0, we get

PA(γA
2 ) = 1

b

ΛγA
2

γA
2 !

 γA
2 !

ΛγA
2 +1

1− e−Λb
γA

2∑
i=0

(Λb)i

i!


= 1

Λb

1− e−Λb
γA

2∑
i=0

(Λb)i

i!


= 1

Λb
[
1− FΛb(γA

2 )
]
, (3.82)

where F λ(k) = e−λ∑k
j=0

λj

j! .

3.7.7 Proof of Proposition 7

Proof of Proposition 7. Focusing on Case B, the reader should remember that all three
time intervals depend on the random variable TI (see Figure 3.5). Moreover, since we
condition on TI ≤ L0, we know that TI ∼ Uniform (0, b) where b = min(L0, T

M).
To derive the proposition, we condition on TI = x and take the expectation across all
possible values of x, i.e., [0, b]. This means that Interval 1 and Interval 3 are of length x
and Interval 2 is of length L0 − x, see Figure 3.5 for details. With a fixed interval length,
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the number of demands in the respective time interval are independent Poisson random
variables. Thus we have
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(3.83)

where F λ(k) = ∑k
j=0

λje−λ

j! .

Note that the integral on line 7 is essentially the same as Equation (3.81).

3.7.8 Proof of Proposition 8

Proof of Proposition 8. First, recall that B0(τ ′ − TI) = b0 is directly obtained from ip

and the demand during (τ ′ − TI − L0, τ
′ − TI ], i.e., the demand during the lead-time

from the outside supplier. As the lead-time demand is obtained from αi and βi, we have

b0 =


(
ip− αA

3 − βA
3

)−
for Case A(

ip− αB
2 − αB

3 − βB
2 − βB

3

)−
for Case B.

(3.84)

Deriving the deterministic part of the expression in Proposition 8, i.e., κ, is straightforward
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as it corresponds to intervals where all the demands are backordered. For example, let
us consider Case B. If b0 > αB

2 + βB
2 + αB

3 + βB
3 , we know that all demands for both

retailer group M and the other retailer groups M, in both Interval 2 and Interval 3
are backordered. In particular, bM

0 > αB
2 + αB

3 , and thus we can focus on determining
how many additional backorders there are for retailer group M except for the αB

2 + αB
3

backorders.

Next, we consider the stochastic part of the expression, i.e., the number of backorders
for retailer group M in intervals where not all the demands are backordered. To proceed
with the analysis, we first note that the b0 backorders have different priorities according
to the FCFS policy. The backorder with the highest priority corresponds to the earliest
demand that was not satisfied, which is among the demands backordered at time τ ′− TI .
Looking backward in time from τ ′ − TI , this demand was the bth

0 most recent demand to
occur prior to τ ′ − TI . The remaining derivation hinges upon whether the bth

0 demand
prior to τ ′ − TI takes place before or after τ ′ − TI − L0. In the context of Case A, this
translates to a comparison between b0 and αA

3 + βA
3 to determine if it is smaller or larger.

Conversely, for Case B, we compare b0 to αA
3 + αA

2 + βA
3 + βA

2 .

If the bth
0 demand takes place prior to τ ′ − TI − L0 (i.e., before the third interval as

defined in Figure 3.4 and Figure 3.5) we need to determine how many of the backordered
units demanded before τ ′ − TI − L0 that belong to retailer group M and to the other
retailer groups M respectively. Looking at these backordered units one at a time, the
independent Poisson demand processes and the FCFS ensure that the destination for
each backordered unit is independent of each other. Thus, a unit is destined to retailer
group M with probability λM/Λ and to the other retailer groups M with probability
1− λM/Λ. Consequently, the probability that k out of y backordered units (demanded
prior to τ ′ − TI − L0) are destined to retailer group M, is obtained from the binomial
distribution Bin(y, λM/Λ).

If the bth
0 demand takes place after τ ′−TI −L0, we know that this demand occurs in one

of the previously defined intervals (see Figure 3.4 and Figure 3.5). Thus, it is necessary
to determine how many of the backorders, in the same interval as the bth

0 demand takes
place, that belong to retailer group M and to the other retailer groups M respectively.
If the bth

0 demand takes place in Interval j, we know that given Case i, there are αi
j

demands in the interval from retailer group M and βi
j demands from the other retailer

groups M. Following from the properties of independent Poisson demand and FCFS, we
know that the sequential order of these αi

j and βi
j demands is random and can therefore
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be regarded as a sample of units with two features, retailer group M and the other
retailer groups M, from a finite population without replacement. Thus, the probability
that x out of the backordered demands in this interval belongs to retailer group M is
given by the hypergeometric distribution Hyp(αi

j + βi
j, α

i
j, b

∗), where b∗ is the number
of backordered demands in the jth interval.



4
Chapter Heuristic Time-based

Shipment Policy with
Flexible Deliveries

The following chapter is based on Ralfs and Kiesmüller (2022). This chapter primarily
focuses on inventory control with the integration of shipment consolidation and ADI. We
analyze the value of incorporating ADI in a single-echelon inventory system when external
orders are satisfied under a flexible time-based shipment consolidation policy. Further,
we investigate the influence on the optimal inventory and shipment policy parameters. In
Section 4.1, we start with a detailed formulation of the general problem. We consider a
continuous-time single-echelon inventory system where outbound shipments are dispatched
according to a time-based shipment scheme. ADI is modeled as a demand lead time,
and flexible deliveries are allowed, meaning that orders may be fulfilled ahead of their
due date. We present the analysis of the shipment and inventory costs of the inventory
system in Section 4.2. The computation of the shipment costs is based on convolutions
in combination with a procedure to approximate a specific random variable. The exact
inventory costs can be obtained based on a unit-tracking approach. Section 4.3 explains
how the joint optimization of inventory and shipment parameters is performed. Moving
on to Section 4.4, we not only validate the proposed approximate solution approach but
also present managerial insights and results. This section highlights the necessity not only
to optimize safety stocks separately but also to incorporate and optimize other processes,
such as transportation, to achieve higher cost reductions. Lastly, Section 4.5 summarizes
the main contributions and findings of this chapter.

4.1 Problem Formulation

We consider a single-item continuous review inventory system composed of one warehouse,
which receives random orders from a production facility both belonging to the same
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company. The warehouse supplies this production facility, which orders according to
a Poisson process with rate λ. Note that an extension to several production facilities
within one retailer group and similar transportation times is straightforward due to the
properties of the Poisson process. The inventory at the warehouse is replenished from an
outside supplier with ample capacity and a constant supply lead time Ls according to an
(R,Q) policy, indicating that a replenishment order of Q units is placed if the modified
inventory position (= stock on hand + outstanding replenishment orders − backorders
− observed orders) reaches the reorder level R. The inventory manager has to determine
the value of R, and we assume that Q is fixed due to a contract with the outside supplier.
As an approximation, Q can also be predetermined by applying the EOQ formula, which
has been shown to be close to optimal in previous research (Axsäter, 2015). Therefore,
Q is not a decision variable in our model.

The company uses a preorder strategy, and therefore, the production facility is forced to
place each order Ld time units before the actual demand occurs, indicating that each
order is combined with a due date. The time between order placement and the due
date is known as the demand lead time Ld. For clarity, we call orders that have not
reached the due date orders and orders that have reached the due date demands. At
the moment when the due date is reached, the warehouse is obligated to satisfy this
demand with the next delivery if sufficient stock on hand is available. Companies accept
such a preorder strategy when they receive a bonus, e.g., in the form of lower unit costs.
Since the warehouse and the facility belong to the same company, we do not include the
bonus in our model. This also makes it possible to determine the pure value of inserting
ADI. We further assume a constant and identical demand lead time for all production
facility orders. Moreover, we focus on perfect order information, meaning that the order
quantity and due date are certain and cannot be changed after order placement. Order
cancellations may occur, but due to associated high cancellation costs, we assume that
this happens very seldom, and we exclude imperfect ADI for the sake of simplicity. In this
chapter, we investigate the case in which Ld ≤ Ls (make-to-stock) because otherwise
there is no need to keep stock at the warehouse (make-to-order).

In contrast to other studies that consider ADI, the warehouse does not satisfy demands
immediately but applies a time-based shipment consolidation policy. After a fixed time
period T , referred to as the shipment interval, a load with all accumulated demands
is dispatched from the warehouse to the production facility. In the case of stock-outs,
demand is backordered on the shipment day. When sufficient inventory is available again,
backorders are satisfied with the next scheduled shipment. Time-based shipping strategies
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are popular in the industry because scheduling, administration, and coordination of
processes at the production facility are easy to manage.

Due to a stochastic order process, it is evident that the number of accumulated demands
during a shipment interval, resulting in shipment quantity M , is also random. The
warehouse does not have its own fleet of trucks and, therefore, engages a third-party
logistics service provider (3PL) for the transportation from the warehouse to the production
facility. Although 3PL can react quickly to requests, this flexible strategy is quite costly.
To reduce costs, companies negotiate contracts in which a fixed transportation capacity is
reserved for a lower price. Thus, we consider a primary and an alternative transportation
option. The primary transportation option reflects the capacity reserved at the 3PL for
periodic shipments from the warehouse to the production facility, which is limited to
a self-chosen capacity reservation Cap and can be extended by the alternative option,
which has ample capacity but is more expensive. The alternative option can only be
used on scheduled shipment days and if the reserved capacity is exhausted. For the
primary option, fixed costs ω(Cap) per shipment occur, which depend on the chosen
reserved transportation capacity. The fixed shipment costs represent nothing more
than variable shipment costs that have to be paid for each reserved transportation
capacity unit (c1 · Cap). However, these costs are charged independently of the realized
shipment quantity. If the realized shipment quantity exceeds the reserved capacity of
the primary transportation option, the warehouse has to pay variable costs c2 for each
unit shipped by the alternative option. Note that c2 > c1 to reflect that the alternative
transportation is more expensive than a capacity reservation per unit. Dispatching,
sorting, and consolidating costs are included in the before-mentioned shipment costs paid
to the 3PL. As we focus on the inventory and transportation decisions at the warehouse,
and demand has to be satisfied, the transportation time from the warehouse to the
production facility is not relevant to the decision and, therefore, is not included in the
model.

Considering that the production facility orders in advance, the question arises regarding
how to include information about future demand in the transportation schedule. It is
allowed that orders can be satisfied before their due date is reached, known as flexible
delivery. In our approach, demand must be shipped to the production facility on the
upcoming shipment day, if necessary, using the alternative transportation option. In
contrast, orders can only be dispatched if there is remaining capacity at the primary
transportation option. However, it is only allowed to ship an order one shipment date
ahead because the production facility cannot keep a large amount of additional stock.
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Figure 4.1: Flow of information and goods in the considered inventory system

The application of this approach results in increased utilization of the reserved capacity.
At the same time, the usage of the expensive transportation option can be reduced if
the reserved capacity is not fully exhausted on average. At the warehouse, orders and
demands are allocated according to the FCFS principle.

In addition to the shipment costs, three other types of costs occur and influence the
decision-making. First, inventory holding costs h are charged for each unit on stock
per time unit. Second, late-delivery costs l arise for each unit that waits due to the
shipment consolidation policy per time unit. These costs are related to a discount for
the production facility since it must hold more safety stock to reach the same service
level. Backorder costs at the warehouse are included in the late-delivery costs because
backorders lead to a longer waiting time. Third, costs for early deliveries are considered,
compensating the facility that requires more space to store units shipped prior to the
due date. Early-delivery costs e are charged for each early shipped unit per time unit. In
the following, we use the term inventory costs for the sum of these three types of costs,
which are assumed to be linear. An overview of the problem is presented in Figure 4.1.

We assume a central control of the system where the inventory manager has to determine
the shipment interval as well as the amount of safety stock needed at the warehouse. He
or she can further determine in advance how much transportation capacity to reserve for
a low price. To summarize, the system’s expected total cost per time unit TC(R, T, Cap)
is composed of the expected inventory costs TIC(R, T, Cap) and expected shipment
costs TSC(R, T, Cap).

TC(R, T, Cap) = TIC(R, T, Cap) + TSC(R, T, Cap) (4.1)
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A low stock level at the warehouse leads to high late-delivery and shipment costs because
orders can hardly ever be shipped in advance; thus, the flexible delivery option cannot be
used at all. However, a high stock level would cause high inventory holding and early-
delivery costs at the warehouse since there is always sufficient stock to dispatch orders
before the due date. Conversely, a small shipment interval results in low late-delivery and
early-delivery costs but leads to high shipment costs. The right balance between these
types of costs must be found; therefore, the following optimization problem is formulated:

minTC(R, T, Cap) R ∈ Z, T ∈ N, Cap ∈ N0 (4.2)

To determine the optimal policy parameters R∗, T ∗, and Cap∗, it is necessary to be able
to evaluate a policy; therefore, mathematical expressions for the expected total cost must
be derived, which are the focus of the next section.

4.2 Analysis

In this section, we derive expressions for the expected shipment costs TSC(R, T, Cap) per
time unit and the expected inventory costs TIC(R, T, Cap) per time unit. Our analysis
of the latter relies on the unit tracking methodology introduced by Axsäter (1990), where
each unit going through the system is observed separately, which enables us to calculate
the related expected costs for each unit. However, we must adapt this methodology for
a situation with ADI, limited transportation capacity, and flexible deliveries.

4.2.1 Expected Shipment Costs

First, we focus on the expected shipment costs per time unit, where fixed costs ω(Cap)
occur for each shipment to reflect the reservation costs at the 3PL. If the capacity of the
primary transportation option is exceeded on the shipment day, variable costs c2 arise for
(m − Cap)+ demanded units shipped by the alternative option, where m denotes the
realized shipment quantity. Note that m = 0 also causes fixed costs (reservation at the
3PL); thus, we assume that fixed costs for the primary option are charged for m ∈ N0,
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yielding the following expression for the expected shipment costs per time unit:

TSC(R, T, Cap) = 1
T

∞∑
m=0

Pr(M = m)
(
ω(Cap) + c2(m− Cap)+

)
= 1
T

∞∑
m=0

Pr(M = m)
(
c1Cap+ c2(m− Cap)+

)
, (4.3)

where M is defined as a random variable representing the shipment quantity from the
warehouse to the production facility on the day of shipment. Hence, Pr(M = m)
represents the PMF of the shipment quantity on a shipment day.

To obtain TSC(R, T, Cap), the PMF of M is needed first. For the case without a
preorder strategy (Ld = 0), we refer to Stenius et al. (2018), whereas Ld > 0 and the
extension with early deliveries is studied in this chapter. As already mentioned, units
that have reached their due date before the shipment date (which are demanded) must
be shipped, and units that have not reached the due date (which are ordered) can be
shipped in case of available capacity on the primary transportation option, provided that
the warehouse has sufficient stock. To describe this shipment policy mathematically, we
introduce the following variables:

M(t) Shipment quantity from the warehouse to the production facility at time t

K(t) Remaining units that cannot be shipped at time t due to a lack of stock at
the warehouse or limited transportation capacity

D(s, t) Orders at the warehouse during the time interval (s, t], s < t

IL(t) Inventory level at time t

IP (t) Inventory position at time t

In the following, we show how the PMF of the shipment quantity can be approximately
computed. For this analysis, we distinguish between different cases, which can be
separated depending on the length of Ld, Ls and T , and they are shown in Table 4.1. A
detailed explanation of all different situations will be provided during the analysis.
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Table 4.1: Ranges for different calculations of remaining units
Case Range of Ld Range of Ls

1

Ld ≤ T

Ls ≤ T
2 T < Ls ≤ T + Ld

3 T + Ld < Ls ≤ 2T
4 Ls > 2T

5
T < Ld ≤ 2T

T < Ls ≤ 2T
6 2T < Ls ≤ T + Ld

7 Ls > T + Ld

8 2T < Ld ≤ 3T 2T < Ls ≤ T + Ld

9 Ls > T + Ld

10
Ld > 3T 3T < Ls ≤ T + Ld

11 Ls > T + Ld

The Cases Ld ≤ T :

We start our discussion with Case 1 in which Ld ≤ T and Ls ≤ T , also illustrated in
Figure 4.2, where tn (tn = nT, n ∈ N) represents the nth shipment day.

The shipment quantity M(tn) is composed of the following parts. First, the remaining
units K(tn−1) of the previous shipment day are included in the shipment quantity. These
units were backordered due to a lack of stock at the warehouse or ordered units when
the due date was not reached, and there was not sufficient capacity available to ship
them in advance. Since Ls ≤ T , all backordered units at time tn−1 can be shipped at
tn, and all ordered units before tn−1 must at the latest be shipped at tn. Second, all
orders and demands during the interval (tn−1, tn] can be shipped at tn if there is sufficient
stock and shipment capacity available. Otherwise, backordered or ordered units will be
left behind, indicating that we must subtract K(tn). These considerations lead to the
following expression for the shipment quantity at tn

M(tn) = D(tn−1, tn) +K(tn−1)−K(tn). (4.4)

This expression reveals that we must characterize the stochastic process describing the
remaining units at shipment tn, denoted by K(tn). As mentioned above, there are two
reasons why units cannot be shipped. First, if there is a lack of stock at the warehouse,
then even demanded units cannot be shipped, and IL(tn)− units are backordered. Second,
all units that are ordered but not demanded must wait until the subsequent shipment
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time
tn−2 tn−1 tn
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Figure 4.2: Shipment cycle when Ld < T and Ls ≤ T

dispatches if there is not enough reserved capacity at tn available. The total number
of units that exceeds the capacity of the primary transportation option is given as
(Cap−D(tn−1, tn)−K(tn−1))−, but since all demanded units must be shipped by the
alternative transportation option, at maximum, all orders D(tn − Ld, tn) remain at the
warehouse and must wait until the next shipment. Doing so yields

K(tn) = max
(
IL(tn)−,min

(
D(tn − Ld, tn),(

Cap−D(tn−1, tn)−K(tn−1)
)−
))
. (4.5)

It is easy to see that the following limit holds,

K∞(tn) := lim
Cap→∞

K(tn) = IL(tn)− (4.6)

which shows that, in the case of high capacity, the shipment policy strives to ship all
units earlier because only in the case of a lack of stock at the warehouse backorders have
to wait until the next dispatch time. In contrast, no early deliveries will occur in the case
of small available capacity, as seen in Equation (4.7).

K0(tn) := lim
Cap→0

K(tn) = max
(
IL(tn)−, D(tn − Ld, tn)

)
(4.7)

For the remaining analysis, we split the time interval (tn−1, tn] into several subintervals,
and we express the number of backorders at time tn based on the inventory position at
time tn − Ls, IP (tn − Ls), because tn − Ls is the last time when a replenishment order
can be placed that arrives before or at tn. Reformulating Equation (4.5) leads to

K(tn) = max
((
IP (tn − Ls)−D(tn − Ls, tn − Ld)−D(tn − Ld, tn)

)−
,

min
(
D(tn − Ld, tn),

(
Cap−D(tn−1, tn − Ls)−D(tn − Ls, tn − Ld)

−D(tn − Ld, tn)−K(tn−1)
)−
))
. (4.8)
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Although the distributions of the demand and the inventory position are known and inde-
pendent, the conditional distribution Pr(K(tn) = j|K(tn−1) = i) has to be considered;
therefore, the PMF of K(tn) cannot be computed directly by applying Equation (4.8).
When computing K(tn−1), the number of backorders is obtained based on the inventory
position at tn−1 − Ls, which is why we must also include information about the demand
and the inventory position before time tn−1, and we replace IP (tn − Ls) with

IP (tn − Ls) = mod
R,Q

(
IP (tn−1 − Ls)−D(tn−1 − Ls, tn − Ls)

)
. (4.9)

We obtain

K(tn) = max
((

mod
R,Q

(
(IP (tn−1 − Ls)−D(tn−1 − Ls, tn−1 − Ld)

−D(tn−1 − Ld, tn−1)−D(tn−1, tn − Ls)
)
−D(tn − Ls, tn − Ld)

−D(tn − Ld, tn)
)−
,min

(
D(tn − Ld, tn),

(
Cap−D(tn−1, tn − Ls)

−D(tn − Ls, tn − Ld)−D(tn − Ld, tn)−K(tn−1)
)−
))
. (4.10)

To obtain K(tn), we first have to compute K(tn−1), which can be specified as

K(tn−1) = max
(

(IP (tn−1 − Ls)−D(tn−1 − Ls, tn−1 − Ld)

−D(tn−1 − Ld, tn−1))−,min(D(tn−1 − Ld, tn−1), (Cap

−D(tn−2, tn−1 − Ls)−D(tn−1 − Ls, tn−1 − Ld)

−D(tn−1 − Ld, tn−1)−K(tn−2))−)
)
. (4.11)

This expression means that the number of remaining units K(tn) depends on the number
of remaining units of all previous shipment intervals. We assume that the impact of these
quantities decreases the further we look back into the past; therefore, we only include
the information of the previous two shipment intervals to determine K(tn). However, we
have to deal with K(tn−2). We suggest replacing it with a constant value and providing
more information about this approximation at the end of this section.

Hence, the shipment quantity given in Equation (4.4) can be modified, and we replace
in Equation (4.12) the expressions for K(tn) and K(tn−1) with Equation (4.10) and
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Figure 4.3: Shipment cycle when Ld ≤ T and T < Ls ≤ T + Ld

Equation (4.11) to compute the PMF for the shipment quantity.

M(tn) = D(tn−1, tn − Ls) +D(tn − Ls, tn − Ld)

+D(tn − Ld, tn) +K(tn−1)−K(tn) (4.12)

As the demand follows a Poisson process, the demand during a specific time interval
is Poisson distributed. Further, IP (tn−1 − Ls) is uniformly distributed between R + 1
and R + Q (Axsäter, 2015). Since all random variables are independently distributed,
convolutions can be used to calculate the PMF of the shipment quantity M . For the
determination of K(tn−2), we rely on an approximation presented at the end of this
section. Due to our simplifying assumptions, the obtained distribution is an approximation.
Its performance is tested in a numerical study in Section 4.4.

We obtain three additional cases when Ld ≤ T and Ls > T based on the length of Ls, as
shown in Table 4.1. In Case 2, the supply lead time is in the range of T < Ls ≤ T + Ld,
which is why the time point tn−1−Ld is before tn−Ls, as illustrated in Figure 4.3. The
sequence of the latter time points changes if T + Ld < Ls ≤ 2T , which legitimates Case
3. Case 4 occurs if Ls > 2T because tn − Ls is before tn−2. The main difference from
Case 1 is that the time point tn − Ls of the last warehouse replenishment order, which
will arrive at the latest at tn, is before the previous shipment day at tn−1, which is why
we cannot assure that all backorders at an arbitrary shipment date can be satisfied by the
following shipment day. This change in sequences leads to different time intervals during
tn−1 − Ls and tn and, therefore, to different formulas of K(tn) and K(tn−1), which are
shown in Appendix 4.6.1.
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Figure 4.4: Shipment cycle when T < Ld ≤ 2T and T < Ls ≤ 2T

The Cases Ld > T :

Now, we focus on all seven cases in which Ld > T . To express the differences between
Ld ≤ T and Ld > T , we investigate Case 5 with T < Ld ≤ 2T, T < Ls ≤ 2T , as
illustrated in Figure 4.4 in more detail. The other situations can be handled similarly.
The shipment policy only allows for shipping an ordered unit one shipment date earlier
to the production facility. As long as Ld ≤ T , this assumption is fulfilled automatically.
However, this is not true for Ld > T . Orders during (tn+1 − Ld, tn] cannot be shipped
at tn because their official shipment date is at tn+2. The earliest shipment date for these
orders is tn+1. Therefore, the demand during tn+1 − Ld and tn is directly added to the
number of remaining units at tn, which can be obtained by

K(tn) = D(tn+1 − Ld, tn) + max
((

mod
R,Q

(
IP (tn−1 − Ls)

−D(tn−1 − Ls, tn−1 − Ld)−D(tn−1 − Ld, tn−2)−D(tn−2, tn − Ls)
)

−D(tn − Ls, tn − Ld)−D(tn − Ld, tn−1)−D(tn−1, tn+1 − Ld)
)−
,

min
(
D(tn − Ld, tn−1) +D(tn−1, tn+1 − Ld),

(
Cap−D(tn−1, tn+1 − Ld)

−K(tn−1)
)−
))
. (4.13)

This property can also be applied for determining K(tn−1), where the orders D(tn −
Ld, tn−1) will be considered on the shipment day at tn. Doing so yields

K(tn−1) = D(tn − Ld, tn−1) + max
((
IP (tn−1 − Ls)−D(tn−1 − Ls, tn−1 − Ld)

−D(tn−1 − Ld, tn−2)−D(tn−2, tn − Ls)−D(tn − Ls, tn − Ld)
)−
,

min
(
D(tn−1 − Ld, tn−2) +D(tn−2, tn − Ls) +D(tn − Ls, tn − Ld),(

Cap−K(tn−2)
)−
))
. (4.14)
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The shipment quantity is the sum of demands during the considered shipment interval
plus K(tn−1) minus K(tn), as given in Equation (4.4).

M(tn) = D(tn−1, tn+1 − Ld) +D(tn+1 − Ld, tn)

+D(tn − Ld, tn) +K(tn−1)−K(tn) (4.15)

When considering the range T < Ld ≤ 2T for the demand lead time, the sequence of
time points changes depending on the length of Ls, which is why Case 6 and Case 7
arise. The time point tn − Ls is between tn−1 − Ld and tn−2 if 2T < Ls ≤ T + Ld and
accordingly between tn−1 − Ls and tn−1 − Ld if T + Ld < Ls. Similarly, all ranges for
the remaining cases can be obtained. All formulas for K(tn) and K(tn−1) can be found
in Appendix 4.6.1.

Iterative Procedure to Determine K(tn−2)

While we have derived expressions for K(tn) and K(tn−1), it remains to determine
K(tn−2) to be able to compute the PMF of the shipment quantity M(tn). As mentioned
before, we neglect the remaining units of prior shipment days before tn−2 and use a
fixed value K̄ for K(tn−2), which is updated in an iterative procedure. The idea is to
replace the number of remaining units with its expectation. Therefore, we start with a
given value of K̄, determine the PMF of K(tn), and use it to compute the expectation
of K(tn). We also consider a factor that reflects the capacity utilization of the vehicle
when we update the value for K̄. In general, the obtained value for K̄ is not an integer,
rendering the computation of the convolutions impossible. As a solution, we determine
the PMF for the shipment quantity and the remaining units at tn two times. First, we
use the rounded-down value ⌊K̄⌋ and the second time the rounded-up value ⌈K̄⌉. Both
results are merged as follows:

Pr(M(tn) = m) =
(
⌈K̄⌉ − K̄

)
Pr
(
M(tn) = m|⌈K̄⌉

)
+
(
K̄ − ⌊K̄⌋

)
Pr
(
M(tn) = m|⌊K̄⌋

)
(4.16)

As a starting value for the iterative procedure, we have chosen (Cap− λT − 1
2λLd)−,

which is obtained by replacing the random demand in the expression with the total
number of units, which exceeds the capacity of the primary transportation option, with
its expectation. Furthermore, the remaining units K(tn−1) are replaced with 50 % of the
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expected number of ordered units with a due date after the shipment time. In summary,
we provide a sketch of the algorithm to compute the expected shipment costs.

Step 1: Start with K̄ =
(
Cap− λT − 1

2λLd

)−

Step 2: Compute for ⌈K̄⌉ the PMF of K(tn) from Equation (4.10) and Equation (4.11)
for Case 1, or use the corresponding formulas for the other cases

Step 3: Compute for ⌊K̄⌋ the PMF of K(tn) from Equation (4.10) and Equation (4.11)
for Case 1, or use the corresponding formulas for the other cases

Step 4: Compute the PMF of K(tn), similar to Equation (4.16)

Step 5: Compute the expected number of remaining units at tn by
K̄(tn) = ∑∞

j=0 jPr(K(tn) = j)

Step 6: If |K̄ − K̄(tn)Cap
λT
| < 0.1, go to step 7; otherwise set K̄ =

⌊
K̄(tn)Cap

λT
· 10

⌉
: 10

and go to step 2

Step 7: Compute the PMF of the shipment quantity according to Equation (4.16)

Step 8: Compute TSC(R, T, Cap) with current PMF of the shipment quantity by
Equation (4.3).

4.2.2 Expected Inventory Costs at the Warehouse

For the analysis of the expected inventory costs per time unit, we adapt the methodology
introduced in Marklund (2011), who studied an inventory system with time-based shipment
consolidation without ADI and without flexible deliveries, reflecting the Case Ld = 0.
Therefore, we only discuss the Case Ld > 0 with flexible deliveries in this chapter. We
observe each unit going through the system separately, calculate the cost for each unit,
and then consider the expectation of this cost. In the first step, we show how the (R,Q)
policy is connected to a base-stock policy with base-stock level S because we use this
relationship in our further analysis.
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Let us denote by tr the time when the warehouse just placed a replenishment order of
size Q at the outside supplier, which arrives after a supply lead time Ls. The units of
this order are then consumed in the defined order 1, 2, . . . , Q. The first unit of this batch
is needed for the (R + 1)th order at the warehouse after tr because, at tr, there are
still R units on stock that are used first. The observation of the first unit represents
the situation in which the warehouse uses an (S − 1, S) policy with base-stock level
S = R + 1. Similarly, we can relate a base-stock policy to each unit of the batch, for
example, using a base-stock level of S = R+ 2 for the second unit and finally S = R+Q

for the final unit of the batch. Thus, one possibility for obtaining the system’s expected
total inventory costs is to replace the (R,Q) policy with Q base-stock policies with
base-stock levels S = R + 1, R + 2, . . . , R +Q. Therefore, the expected inventory costs
of the system using an (R,Q) policy can be calculated as shown in Equation (4.17),
where TIC(S, T, Cap) represents the expected inventory cost of the system per time
unit when using a base-stock policy with base-stock level S and a shipment interval T
with a capacity reservation of Cap units.

TIC(R, T,Cap) = 1
Q

R+Q∑
S=R+1

TIC(S, T, Cap) (4.17)

In Case S > 0, the warehouse orders the considered unit at the outside supplier before a
facility orders it, whereas Case S ≤ 0 implies that the warehouse orders the considered
unit at the outside supplier after or at the same time at which the facility orders it at the
warehouse. These two cases have to be discussed separately, and we have to introduce
some additional notation for further analysis:

Ω(x) Length of the time interval between the replenishment moment at the ware-
house and the moment when the xth order from the production facility arrives
at the warehouse, random variable

V Shipment delay, defined as the length of the time interval between the time
when a unit is demanded and available for a shipment and the subsequent
shipment day, random variable

Gx(t) Cumulative distribution function of an Erlang (x, λ) distribution

gx(t) Probability density function of an Erlang (x, λ) distribution
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U(t) Cumulative distribution function of a uniformly distributed random variable on
the interval [0, T ]

u(t) Probability density function of a uniformly distributed random variable on the
interval [0, T ]

We call a unit prequalified if it is available and ordered because it can be shipped before it
is actually demanded since we allow for early deliveries. A unit is qualified if it is available
and demanded and thus has to be shipped with the primary or alternative transportation
option on the subsequent shipment day.

The Case S > 0:

Observing a specific unit on its way through the system, we recognize four essential time
instances. First, a unit is available for satisfying demand at the warehouse exactly Ls

time units after the replenishment order was placed, thus at time ta = tr +Ls. The next
important event is the time when the facility order for this unit arrives at the warehouse,
which is given as to = tr + Ω(S), where Ω(S) represents the time until the Sth facility
order occurs. The third interesting time is when the status of the unit changes from an
order to a demand, which occurs at td = tr + Ω(S) + Ld. Finally, there is the time ts
when the unit is shipped to the production facility, depending on the available reserved
transportation capacity.

Which types of costs occur and to what extent depend on the sequence of the events.
For the derivation of the formulas, we have to distinguish all possible Situations i ∈
{A,B,C,D,E, F,G}. Situation A is illustrated in Figure 4.5, and we explain all of
the situations in the following in more detail. The associated figures are illustrated in
Appendix 4.6.2.

The first three situations (Situation A, Situation B, Situation C) are related to a situation
in which the unit is available when the order occurs, which means that ta < to. Otherwise,
the unit is ordered while there is no available stock for the considered unit at the warehouse
(Situation D, Situation E, Situation F, Situation G). We further differentiate between
the situations in which prequalification and qualification occur at different points in time
(Situation D, Situation E, Situation F) and at the same time (Situation G), whereby



Heuristic Time-based Shipment Policy with Flexible Deliveries 92

time
tr ta tn−1 to td tn

LdΩ(S)
Ls

Figure 4.5: Important moments in time in Situation A

the latter situation only occurs if the unit is available after it is demanded. If the unit
is available before demand occurs, then the unit is prequalified at time max(ta, to) and
qualified at time td. In the following, tn ∈ N denotes an arbitrary shipment day.

A ta < to, tn−1 < to < td < tn, ts = tn

Since prequalification and qualification occur in the same shipment interval, the
unit must be shipped on the next shipment day (ts = tn), indicating there are
no early-delivery costs, and the unit must wait V time units. Holding costs are
charged for a time interval with length Ω(S)− Ls + Ld + V .

B ta < to, to < tn−1 < td < tn, ts = tn−1

This situation can only occur if there is sufficient reserved transportation capacity
available at tn−1 to initiate an early delivery, which is then associated with early-
delivery costs for T − V time units. The unit is kept on stock for Ω(S) − T −
Ls + Ld + V time units.

C ta < to, to < tn−1 < td < tn, ts = tn

There is not sufficient transportation capacity available to allow for early delivery
of the considered unit in this situation. Then, late-delivery costs for V time units
are due, and holding costs are incurred for Ω(S)− Ls + Ld + V time units.

D to ≤ ta, tn−1 < ta < td < tn, ts = tn

Similar to Situation A, there are no early-delivery costs, and late-delivery costs are
incurred for V time units. The unit is kept on stock for Ω(S)−Ls +Ld + V time
units, which is shorter than A because the unit is available after tn−1.

E to ≤ ta, ta < tn−1 < td < tn, ts = tn−1

This situation can only occur if there is sufficient reserved transportation capacity
available at tn−1 to initiate an early delivery, which is then associated with early-
delivery costs for T − V time units. The unit is kept on stock for Ω(S) − T −
Ls + Ld + V time units.
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Table 4.2: Holding, late-delivery, and early-delivery costs expressions for all situations
Situation i Holding costs Late-delivery costs Early-delivery costs

A h(Ω(S)− Ls + Ld + V ) lV 0
B h(Ω(S)− T − Ls + Ld + V ) 0 e(T − V )
C h(Ω(S)− Ls + Ld + V ) lV 0
D h(Ω(S)− Ls + Ld + V ) lV 0
E h(Ω(S)− T − Ls + Ld + V ) 0 e(T − V )
F h(Ω(S)− Ls + Ld + V ) lV 0
G hV l(V + Ls − Ld − Ω(S)) 0

F to ≤ ta, ta < tn−1 < td < tn, ts = tn

This situation is comparable to C such that late-delivery costs for V time units
are, due and holding costs are incurred for Ω(S)− Ls + Ld + V time units.

G to ≤ ta, to < td < ta < tn, ts = tn

Since prequalification and qualification occur at the same moment in time, there
are no early-delivery costs. Inventory holding costs only occur for V time units, and
late-delivery costs (including the backorder costs) are charged for V +Ls−Ld−Ω(S)
time units.

In summary, we provide all of the cost expressions for situations
i ∈ {A,B,C,D,E, F,G} in Table 4.2.

Obviously, for a given S, T , and Cap, the inventory costs depend on the random variables
Ω(S) and V and the available reserved transportation capacity at tn. However, we only
know the PMF of the shipment quantity at tn after all demands and orders of the consid-
ered shipment interval occurred, which again is why we rely on an approximation. We
denote the inventory costs for Case S > 0 in the following analysis by C(Ω(S), V,M(tn)).
Denoting the joint density function of Ω(S), V and M(tn) by f(x, y, z), we can obtain
the expected inventory costs by

E[C(Ω(S), V,M(tn))] =
∫ ∞

0

∫ T

0

∫ ∞

0
C(x, y, z)f(x, y, z)dz dy dx

=
∑

i∈{A,B,C,
D,E,F,G}

∫ ∞

0

∫ T

0

∫ ∞

0
Ci(x, y, z)fi(x, y, z) dz dy dx, (4.18)

which means that we can split the derivation into several parts, where each part corre-
sponds to one of the aforementioned situations. For the following analysis, we neglect
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the dependency between M(tn) and the other random variables such that we obtain

E[C(Ω(S), V,M(tn))] =
∑

i∈{A,B,C,
D,E,F,G}

∫ ∞

0

∫ T

0

∫ ∞

0
Ci(x, y, z)fi(x, y)f(z)dz dy dx. (4.19)

Therefore, we can reformulate Equation (4.19) as

E[C(Ω(S), V,M(tn))]

=
∑

i∈{A,B,C,
D,E,F,G}

∫ ∞

0

∫ T

0

∫ ∞

0
Ci(x, y)fi(x, y)f(z)dz dy dx

=
∑

i∈{A,D,G}

∫ ∞

0

∫ T

0
Ci(x, y)fi(x, y) dy dx

+ Pr(M(tn) < Cap)
∑

i∈{B,E}

∫ ∞

0

∫ T

0
Ci(x, y)fi(x, y) dy dx

+ Pr(M(tn) ≥ Cap)
∑

i∈{C,F }

∫ ∞

0

∫ T

0
Ci(x, y)fi(x, y) dy dx, (4.20)

where Ci(x, y) and fi(x, y) represent the inventory costs depending on Ω(S) and V and
the joint probability density function of Ω(S) and V for Situation i ∈ {A,B,C,D,E, F,G},
respectively.

Since the cost expressions can easily be derived from Table 4.2, it remains to determine
the functions fi(x, y), i ∈ {A,B,C,D,E, F,G}. It can be shown that the functions
fi(x, y), are positive on different domains (see Table 4.3). Further, in the range where
they are unequal to zero, the functions have the form gS(x)u(y) for all Situations
i ∈ {A,B,C,D,E, F,G}. In the following, we show the derivation for Situation A,
whereas the remaining derivations are given in Appendix 4.6.2.

Table 4.3: Range for x and y dependent on Situation i ∈ {A,B,C,D,E, F,G}
Situation i x y

A Ls < x <∞ 0 ≤ y ≤ (T − Ld)+

B Ls < x <∞ (T − Ld)+ < y ≤ T
C Ls < x <∞ (T − Ld)+ < y ≤ T
D Ls − Ld < x ≤ Ls 0 ≤ y ≤ (T − Ld + Ls − x)+

E Ls − Ld < x ≤ Ls (T − Ld + Ls − x)+ < y ≤ T
F Ls − Ld < x ≤ Ls (T − Ld + Ls − x)+ < y ≤ T
G 0 ≤ x ≤ Ls − Ld 0 ≤ y ≤ T
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The joint cumulative distribution function of Ω(S) and V is denoted by Fi(x, y) for
Situation i ∈ {A,B,C,D,E, F,G} and for Situation A given by

FA(x, y) = Pr
(
Ω(S) ≤ x, V ≤ y, ta < to, tn−1 < to < td < tn, ts = tn

)
= Pr

(
Ω(S) ≤ x, V ≤ y, tr + Ls < tr + Ω(S),

tn−1 < tr + Ω(S) < tr + Ω(S) + Ld < tn
)

= Pr
(
Ω(S) ≤ x, V ≤ y, Ls < Ω(S),

0 < tr + Ω(S)− tn−1 < tr + Ω(S) + Ld − tn−1 < tn − tn−1
)

= Pr
(
Ω(S) ≤ x, V ≤ y, Ls < Ω(S),

0 < tr + Ω(S)− tn−1 < tr + Ω(S) + Ld − tn−1 < T
)
. (4.21)

Since T = V + Ld + tr + Ω(S) − tn−1 (see Figure 4.5), we obtain for x > Ls and
y ≤ (T − Ld)+.

FA(x, y) = Pr
(
Ls < Ω(S) ≤ x, V ≤ y,

0 < tr + Ω(S)− tn−1 < tr + Ω(S) + Ld − tn−1 < T
)

= Pr
(
Ls < Ω(S) ≤ x, V ≤ y, 0 < T − V − Ld < T − V < T

)
= Pr

(
Ls < Ω(S) ≤ x, V ≤ y, V < (T − Ld)+

)
= Pr

(
Ls < Ω(S) ≤ x, V ≤ y

)
=
(
GS(x)−GS(Ls)

)
U(y) (4.22)

V is uniformly distributed between [0, T ] (Tijms, 2003), which is why the upper bound of
y cannot be smaller than 0. Thus, fA(x, y) is given as the partial derivative with respect
to x and y

fA(x, y) =

 g
S(x)u(y) Ls < x <∞, 0 ≤ y ≤ (T − Ld)+

0 otherwise.
(4.23)

Since demand follows a Poisson process, Ω(S) is Erlang distributed with the parameters
S and λ and is independent of the shipment delay V (Tijms, 2003). Therefore, the
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expectation of the inventory costs for each situation can be computed, and the results for

E[Ci(Ω(S), V )] =∫ ∞

0

∫ T

0
Ci(x, y)fi(x, y) dy dx ∀ i ∈ {A,B,C,D,E, F,G} (4.24)

are given in Table 4.4 and Table 4.5. Since the range for y depends on T and Ld, we must
consider Case Ld ≤ T and Case Ld > T separately. The derivation is again reported in
Appendix 4.6.2.

The Case S ≤ 0:

If S = 0, then the considered unit is ordered by the production facility at the same time
that the warehouse orders it from the outside supplier. Thus, no safety stock is kept
at the warehouse. Focusing on S < 0, the warehouse orders the considered unit at the
outside supplier after the next |S|th facility orders occur. Due to Ld ≤ Ls, both cases
imply that the considered unit is always demanded before it is available for shipment.
Therefore, warehouse holding costs arise for the time interval V , whereas late-delivery
costs occur for the time interval V + Ls − Ld + Ω(|S|). As ta ≥ td, the flexible delivery
option cannot be used. Therefore, inventory costs C̃(Ω(S), V ) for Case S ≤ 0 are
independent of M(tn), and the expectation of this cost can be obtained by

E[C̃(Ω(S), V )] = h
T

2 + l

(
|S|
λ

+ Ls − Ld + T

2

)
. (4.25)

In summary, the expected inventory costs of the system are given by

TIC(S, T, Cap) =

λE
[
C(Ω(S), V,M(tn))

]
, for S > 0

λE
[
C̃(Ω(S), V )

]
, for S ≤ 0.

(4.26)

4.3 Approximation Method

This section shows how to minimize the expected total cost TC(R, T, Cap) per time
unit when Ld ≥ 0 by determining the near-optimal reorder level R∗

app, the near-optimal
shipment interval T ∗

app as well as the near-optimal capacity reservation Cap∗
app.
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Examples reveal that TC(R, T, Cap) is not jointly convex in R, T , and Cap. How-
ever, during all of our numerical experiments, we could not find any example in which
TC(R, T, Cap) was not convex in T for a fixed R and Cap (not convex in Cap for
a fixed R and T ). Using this property, we perform a bounded enumeration. In our
numerical study, we focus on the optimization of R∗

app and T ∗
app for a fixed Cap and on

the optimization of R∗
app and Cap∗

app for a fixed T , respectively. T and Cap are highly
dependent on each other since high utilization of the reserved transportation capacity
mainly depends on the expected number of orders during a shipment interval, thus on
λT . In general, a modified given Cap changes the optimal T ∗

app, and inversely, a modified
given T changes the optimal Cap∗

app. To limit the computational time, we assume that
either Cap or T is given. This is also sufficient to answer the research questions.

First, we define a lower and an upper bound on the optimal decision variable R∗
app, denoted

by Rl and Ru, respectively. A proven lower bound is Rl = −Q (Axsäter, 1998). When
increasing R, there is a point at which another increase in R does not influence the waiting,
early-delivery, and shipment costs because the stock on hand remains sufficient to always
satisfy all orders and demands; thus, the flexible delivery option is already used to some
extent. The only effect then is an increase in inventory holding costs. The reorder level
is high enough when the demand during the supply lead time never exceeds R, indicating
that backorders do not occur. Therefore, Ru = min(R : Pr(D(0, Ls) > R) < ε), where
ε is a small number close to zero. Note that the bounds do not depend on T or on Cap.

4.3.1 Determination of R∗app and T ∗app for a given Cap

Since the shipment interval can only take natural numbers, we define the lower bound
on T ∗

app as T l = 1. The upper bound on T ∗
app is T u(R,Cap) and can be found for

each R and a given Cap individually, where we use the convexity property. For a given
R ∈ {Rl, Rl + 1, . . . , Ru} and Cap, we increase T by 1 until TC(R, T − 1, Cap) <
TC(R, T, Cap).

Step 1: Determine Ru = min(R : Pr(D(0, Ls) > R) < ε) and Rl = −Q, and fix Cap

Step 2: For all given R ∈ {Rl, Rl + 1, . . . , Ru}, compute TC(R, T, Cap) with
T = T l = 1

Step 3: Increase T by 1 and compute TC(R, T, Cap) for all relevant R
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Step 4: If TC(R, T − 1, Cap) < TC(R, T, Cap) for all R = Rl, Rl + 1, . . . , Ru, go to
step 5; else continue with step 3

Step 5: Find R∗
app and T ∗

app, which minimize the expected total cost TC(R, T, Cap) for
a fixed Cap.

4.3.2 Determination of R∗app and Cap∗app for a given T

Obviously, the transportation capacity reserved cannot be negative and has to be in-
teger. Therefore, the lower bound on Cap∗

app is Capl = 0, where only the alternative
transportation option can be used why early deliveries are not allowed at all. The upper
bound on Cap∗

app is Capu(R, T ) and can be found for each R and a given T individually,
where we use the convexity property. For a given R ∈ {Rl, Rl + 1, . . . , Ru} and T , we
increase Cap by 1 until TC(R, T, Cap− 1) < TC(R, T, Cap).

Step 1: Determine Ru = min(R : Pr(D(0, Ls) > R) < ε) and Rl = −Q, and fix T

Step 2: For all given R ∈ {Rl, Rl + 1, . . . , Ru}, compute TC(R, T, Cap) with Cap =
Capl = 0

Step 3: Increase Cap by 1 and compute TC(R, T, Cap) for all relevant R

Step 4: If TC(R, T, Cap− 1) < TC(R, T, Cap) for all R = Rl, Rl + 1, . . . , Ru, go to
step 5; else continue with step 3

Step 5: Find R∗
app and Cap∗

app, which minimize the expected total cost TC(R, T, Cap)
for a fixed T.

4.4 Numerical Study

In this section, we first present the results of a numerical study to investigate the perfor-
mance of the applied approximation for the expected total cost
TC(R, T, Cap). Second, we investigate the influences of ADI and the flexible ship-
ment consolidation program on the expected total cost, as well as on the variables to be
optimized.
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In the numerical study, we focus on bulky and expensive items to show how a company
can apply the presented model. We start with a definition of a base case, where the
parameters related to the inventory system are in a similar range as in Marklund (2011)
and other references. The order rate of the item at the warehouse is given as λ = 2. The
holding costs parameter h at the warehouse equals 1 per unit and time unit, whereas the
late-delivery and early-delivery costs parameters at the warehouse are fixed to l = 2 and
e = 2 per unit and time unit, respectively. Due to a time-based shipment consolidation
program, the production facility must hold more safety stock, wherefore we consider
late-delivery costs. Early-delivery costs represent holding costs at the production facility.
Both reasons justify costs parameters l and e close to h. We rely on similar ranges for
late-delivery costs, as, e.g., in Çetinkaya et al. (2008). The order quantity Q equals 10
to limit computational time, and the transportation capacity is fixed at Cap = 10, which
is reasonable for a bulky product. Shipment costs depend on the fixed costs parameter
ω(Cap) for reserved transportation capacity and the variable costs parameter c2 in case
the reserved capacity is exceeded. In our base case, we fix the variable reservation cost
to c1 = 10 and obtain in the base case for Cap = 10 a value for the fixed shipment costs
ω(Cap) = 100. Additionally, variable shipment costs depend on c1 according to c2 = 2c1.
When the primary transportation capacity is fully utilized, a cost of c1 arises per unit
shipped for the primary transportation option. We double the unit shipment costs for the
alternative transportation option for the base case. A reasonable supply lead time from
the outside supplier to the warehouse is Ls = 2, whereas Ld = 1 time units.

4.4.1 Performance of the Approximation

Before deriving managerial insights, we validate our approximation method with a
simulation study. For this study, we focus on the optimization of R and T for a given
Cap. Therefore, we define a mixed-level fractional factorial design, which relates to the
base case. For parameters λ, Cap, w

h
and e

h
, the base case defines the medium level,

which is extended by low and high levels. Since h, l, and e represent inventory holding
costs at the warehouse and indirectly at the production facility, we only investigate a
changed relation between h and l (between h and e). For parameters c2, Ld and Ls,
we define low and high levels as follows: c2 = xc1 with x ∈ {1.5, 2}, Ld ∈ {1, 2}
and Ls ∈ {2, 4}. We do not vary c1 since the relation of cost for reservations and
spontaneous shipments changes by modifying c2. Additionally, we fix the order quantity
Q as mentioned in the base case because the replenishment costs do not have an influence
on the optimal decisions. This yields 34 · 23 = 648 instances.
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For these 648 instances, we determine the parameters R∗
app and T ∗

app, solving the opti-
mization problem in Equation (4.2), relying on the results of Section 4.2 and Section 4.3.
We use a simulation to evaluate the system’s expected total cost of a policy and call
this cost the exact expected total cost to validate these results. The length of each
simulation run is 52000 days, while the last 50000 days are used for the cost computation.
We use sequential sampling and stop if the half-width of the 95 % confidence interval of
the average total cost is smaller than 0.5 % of the average total cost of the considered
instance.

To determine the optimal policy parameters (R∗, T ∗), we combine the simulation with a
neighborhood search and use R∗

app and T ∗
app as initial values. The neighborhood includes

all points (R∗
app + g, T ∗

app + G) with g,G ∈ {−1, 0, 1}. If the neighborhood offers a
better average total cost value than the initials, the neighborhood search is repeated
for the best value in the neighborhood. This iterative procedure can be stopped if no
better average total cost value can be found. The obtained policy parameters are locally
optimal and define the optimal decision (R∗, T ∗).

We are interested in the relative average total cost increase caused by not making the
optimal decision with our approach. Therefore, we calculate the relative total cost
difference between the average total cost of the optimal policy TCsim(R∗, T ∗) and the
average total cost of the policy determined by our approach TCsim(R∗

app, T
∗
app) for all

instances. TCsim(R, T ) represents the average total cost computed by simulation, which
we assume to be the correct average total cost value. We define the relative cost difference
as

δTCsim =
TCsim(R∗

app, T
∗
app)− TCsim(R∗, T ∗)

TCsim(R∗, T ∗) 100 (4.27)

and also compute aggregate values. In Table 4.6, the aggregated results of all 648 examples
are provided to investigate the impact of the input parameters on the performance. The
average (maximum) total cost deviation is 0.20 % (10.54 %). The worst case is observed
in a situation in which the reserved transportation capacity is small compared to the
average demand. In these situations, K(tn−2) has a more significant influence on the
shipment quantity at tn, explaining the decreasing performance. However, from an
economic point of view, a small reserved capacity is only acceptable if the demand is
comparatively low.

For 598 of 648 instances, we found the optimal policy parameters using our approximate
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Table 4.6: Average and maximum of the relative cost deviation for all examples

Parameters Value
Average relative Maximum relative
cost deviation cost deviation

in % in %

Late-delivery costs l 1 0.12 10.28
2 0.10 5.34
5 0.38 10.54

Early-delivery costs e 1 0.24 10.54
2 0.22 10.28
5 0.14 7.63

Shipment costs c2 1.5c1 0.18 10.54
2c1 0.22 10.28

Demand rate λ 1 0.00 0.42
2 0.04 1.32
4 0.56 10.54

Demand lead time Ld 1 0.00 0.00
2 0.40 10.54

Supply lead time Ls 2 0.27 10.54
4 0.13 10.35

Capacity Cap 5 0.58 10.54
10 0.01 0.98
20 0.00 0.34

Total 0.20 10.54

approach. Only in 7.72 % of the instances could we not find the optimal values; however,
for 31 of these 50 examples, the optimal values were located in the direct neighborhood
(R∗

app + g, T ∗
app +G) with g,G ∈ {−1, 0, 1}. For only 19 examples, larger deviations in

the optimal policy parameters were observed. The maximum deviation between R∗
app and

R∗ for all 648 examples is four, whereas the deviation between T ∗
app and T ∗ is one at

maximum.

Focusing only on the 50 examples in which we do not derive the optimal policy parameter,
we observe an average (a maximum) total cost increase of 2.58 % (10.54 %). A more
detailed look at the results also reveals that a non-optimal shipment interval has a
larger effect on the expected total cost than a non-optimal reorder level. Choosing a
shipment interval that is one day shorter (longer) than the optimal shipment interval
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means that more demands must be shipped by the alternative transportation option (the
transportation capacity is less utilized on average), explaining this observation.

In summary, we conclude that our approximation has an excellent performance for most
of the relevant cases, and even in the other situations, it is acceptable. Therefore, we
can use our model to generate managerial insights.

4.4.2 Managerial Insights

In this section, we quantify the added value of ADI under flexible shipment consolidation
and investigate the impact of the demand lead time on the optimal shipment interval
and on the optimal capacity of the primary transportation option. Therefore, we use
a different experimental design to reduce computational time without losing insights
and reduce the level for the order rate (λ ∈ {1, 2}) while we increase the levels for the
demand lead time Ld ∈ {0, 2, 4, 6, 8} and fix Ls to 10. The other parameters are the
same as in the base case and the former study.

Cost Improvements by Advance Demand Information and Flexible Deliveries

First, we focus on a given capacity and on the influence of an increasing demand lead
time on the expected total cost. We compute the average marginal relative decrease
in the expected total cost when the demand lead time Ld is stepwise increased by two
time units while the other parameters are fixed. The results are presented in Table 4.7
and indicate that large cost reductions can be achieved if customers are willing to place
orders in advance. In general, it can be seen that the longer the demand lead time, the
greater the total cost reductions. The maximal marginal relative cost reduction when
Ld is increased from 0 to 2 is 20.29 %, whereas we can achieve a maximum decrease of
the expected total cost when Ld is increased from 0 to 8 of 35.57 %. Further, it can be
observed that an increase in the demand lead time of two time units can have a different
effect depending on the starting point. For example, coming from the situation where
Ld = 0 to a situation where Ld = 2, on average, the expected total cost per time unit
can be decreased from 62.01 to 55.54 (10.43 %), whereas the expected total cost per
time unit can be reduced from 55.54 to 52.91 (4.74 %) when increasing the demand
lead time from 2 to 4. Thus, the marginal value of the ADI decreases with an increasing
amount of information.
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Table 4.7: Marginal relative cost reduction enabled by ADI and flexible deliveries

Parameter Value

Marginal relative Marginal relative Marginal relative Marginal relative Relative cost
cost difference cost difference cost difference cost difference difference

in % in % in % in % in %
Ld = 0→ Ld = 2 Ld = 2→ Ld = 4 Ld = 4→ Ld = 6 Ld = 6→ Ld = 8 Ld = 0→ Ld = 8

l 1 6.11 2.27 0.71 0.32 9.19
2 8.42 3.88 1.58 0.64 13.91
5 15.01 7.36 3.57 1.63 25.32

e 1 11.17 6.09 3.26 1.66 20.63
2 10.73 5.20 2.31 0.9 18.13
5 9.40 2.96 0.67 0.13 12.79

c2 1.5c1 9.93 4.73 2.02 0.92 16.70
2c1 10.91 4.74 2.10 0.89 17.66

λ 1 9.53 5.85 3.11 1.57 18.77
2 11.00 4.01 1.39 0.49 16.17

Cap 5 11.36 2.66 0.96 0.34 14.83
10 10.90 4.35 1.25 0.45 16.22
20 9.33 6.61 3.58 1.74 19.78

Total 10.43 4.74 2.06 0.90 17.18

There are two possible sources for the cost reduction. First, as already observed in
(Hariharan and Zipkin, 1995), a longer demand lead time reduces the effective supply
lead time (Ls−Ld) and, therefore, the safety stock. Second, due to the flexible shipment
policy, a longer demand lead time results in more orders available to be shipped in
advance. Thus, better utilization of transportation capacity can be achieved, reducing
the need for emergency deliveries. Since early deliveries are only allowed when enough
remaining transportation capacity is available, it is clear that the reserved capacity must
have an impact on the benefit of ADI in our setting. It can be observed that the marginal
relative cost reduction decreases more than average with increasing Ld in instances where
Cap = 5 (see Table 4.7). The mentioned effect is below-average in instances where
Cap = 20. Although the marginal relative cost reduction also decreases as Ld increases,
it decreases much less, and even when the demand lead time is increased from 2 to 4,
6.61 % of the expected total cost can still be saved. With a large reserved transportation
capacity, there is a higher probability of unused capacity for orders being available. In
situations with a small reserved transportation capacity, the capacity is already fully
utilized on many shipping days when Ld = 2, so further information will not result in
additional early deliveries in many cases. Since the reserved capacity seems to be an
important variable, we will also determine the optimal reserved capacity later.

To investigate the proportion of the average total cost decrease caused by reducing the
safety stock at the warehouse and by early shipments, respectively, we computed the
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Figure 4.6: Average total cost per time unit across all instances

expected total cost for the same 540 examples when flexible deliveries are not allowed at
all, but ADI is still available.

Additionally, we are interested in the question of whether the cost can be reduced even
more if all orders are dispatched regardless of the remaining transportation capacity.
Thus, the primary transportation option may already be exhausted, but additional orders
will also be shipped to the facility using the alternative option. Our analysis can be easily
adapted to obtain formulas for the computation of the expected total cost because the
remaining units will only occur when the warehouse is running out of stock.

In Figure 4.6, we depict the average total cost for all three policies as a function of Ld.
It can be seen that a shipment policy without flexible deliveries performs worst. For such
a policy, we observe an almost linear cost decrease with an increasing demand lead time
of approximately 0.7 % due to a reduction in the effective supply lead time, resulting in
less safety stock at the warehouse.

Significant cost savings can be obtained with the introduction of flexible deliveries.
However, shipping all orders one shipment day ahead and neglecting the available capacity
can further be improved by our shipment policy, which takes the reserved capacity into
account when deciding on the shipment quantity. Then, an increase in the demand lead
time from 0 to 2 results in a decrease of the average total cost by more than 10 %,
indicating that a reduction of approximately 9.5 % is caused by adapting the time-based
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Figure 4.7: Marginal relative total cost reduction across all instances

shipment consolidation policy and allowing for flexible deliveries. We can conclude that
the more significant part of the cost reduction is induced by the flexible delivery option
and not by reducing the safety stock.

With increasing Ld, this effect is reduced until we reach a point at which additional ADI
will only decrease the stock because the flexible delivery option is used to its extent. This
can be seen in Figure 4.7 , where we illustrate the marginal relative cost reduction of all
three policies.

We can also observe that the cost difference between the two flexible delivery concepts is
increasing with increasing demand lead time. The marginal relative total cost reduction
for the simple policy is even lower than for the shipment policy without flexible deliveries
because, for large demand lead times, the alternative transportation option has to be
used too often, which prevents further cost reductions.

Optimal Length of the Shipment Interval

Moreover, to enable early deliveries, even more safety stock is kept at the warehouse
compared to a situation without flexible deliveries. This situation is illustrated in Table 4.8,
where the optimal policy parameters R∗ and T ∗ are presented for different values of
the reserved transportation capacity, demand lead time, and order rate. The remaining
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Table 4.8: Optimal reorder level and optimal shipment interval
(R∗, T ∗) shipment policy (R∗, T ∗) without flexible deliveries

Cap λ Ld = 0 Ld = 2 Ld = 4 Ld = 6 Ld = 8 Ld = 0 Ld = 2 Ld = 4 Ld = 6 Ld = 8
5 1 (8,5) (7,5) (5,5) (4,5) (2,5) (8,5) (6,5) (4,5) (2,5) (0,5)

2 (20,3) (16,3) (12,3) (7,3) (3,3) (20,3) (15,3) (11,3) (6,3) (2,3)
4 (41,2) (37,1) (29,1) (20,1) (11,1) (41,2) (32,2) (23,2) (14,2) (8,1)

10 1 (6,9) (6,8) (5,8) (3,9) (2,9) (6,9) (4,8) (2,8) (0,8) (-2,8)
2 (16,5) (14,5) (11,5) (8,5) (4,5) (16,5) (12,5) (8,5) (4,5) (0,5)
4 (37,3) (30,3) (22,3) (14,3) (6,3) (37,3) (29,3) (20,3) (12,3) (4,3)

20 1 (6,15) (5,15) (5,15) (4,15) (3,15) (6,15) (4,15) (2,15) (0,15) (-2,15)
2 (17,9) (15,9) (14,9) (11,9) (7,9) (17,9) (12,9) (8,9) (4,9) (0,9)
4 (37,5) (34,5) (26,5) (17,5) (12,4) (37,5) (29,5) (20,5) (12,5) (4,5)

parameters are fixed at h = 1, w = 2, e = 2, c1 = 20, c2 = 2 ω
Cap

, and Ls = 10. While
the demand lead time Ld has a significant impact on the numerical value of the reorder
level, the influence on the optimal shipment interval is much less. This condition holds
for both situations, with and without flexible deliveries. The optimal shipment interval
is influenced by the shipment costs, as well as by the relationship between the average
demand and the capacity. An increasing order rate raises the reorder level and reduces
the shipment interval to utilize the reserved transportation capacity and avoid expensive
additional shipments.

Optimal Transportation Capacity

We are further interested in the influence of flexible deliveries on the optimal capacity
of the primary transportation option for a given shipment interval. In Table 4.9, it
can be seen that flexible deliveries lead to equal or larger reorder levels for a fixed and
given shipment interval. This means that more safety stock is required to enable flexible
deliveries. Additionally, more reserved transportation capacity Cap∗ is needed in situations
with large values of T to exploit the benefit of flexible deliveries fully. However, the
influence of flexible deliveries on the optimal capacity to be reserved is negligible.

4.4.3 Impact of the Policy Assumption

When we defined the flexible shipment consolidation policy, we only allowed orders to
be shipped one shipment day ahead. They have to be shipped if enough stock and the
remaining reserved transportation capacity is available. This assumption could be limiting
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Table 4.9: Optimal reorder level and optimal capacity of the primary transportation option
(R∗, Cap∗) with flexible deliveries (R∗, Cap∗) without flexible deliveries

T λ Ld = 0 Ld = 2 Ld = 4 Ld = 6 Ld = 8 Ld = 0 Ld = 2 Ld = 4 Ld = 6 Ld = 8
3 1 (9,3) (8,3) (7,3) (4,3) (2,3) (9,3) (7,3) (5,3) (2,3) (0,3)

2 (20,6) (19,6) (15,6) (11,6) (7,6) (20,6) (15,6) (11,6) (6,6) (2,6)
4 (38,11) (38,12) (25,12) (20,12) (10,12) (38,11) (30,11) (22,12) (14,12) (6,12)

5 1 (8,5) (7,5) (6,5) (4,5) (2,5) (8,5) (6,5) (4,5) (2,5) (0,5)
2 (16,10) (17,10) (15,10) (11,10) (6,10) (16,10) (12,10) (8,10) (4,10) (0,10)
4 (37,20) (37,21) (23,20) (20,20) (21,21) (37,20) (29,20) (20,20) (12,20) (4,20)

10 1 (6,10) (6,10) (6,11) (5,11) (4,11) (6,10) (4,10) (2,10) (0,10) (-2,10)
2 (16,20) (17,21) (16,22) (16,22) (14,22) (16,20) (12,20) (8,20) (4,20) (0,20)
4 (37,40) (36,42) (36,43) (37,43) (40,42) (37,40) (29,40) (20,40) (12,40) (4,40)

in situations where Ld is much larger than T because orders could potentially be shipped
several shipment days in advance. We want to investigate the impact of this assumption
on the optimal decision and expected total cost. Therefore, we compare our policy with
a policy where early shipments are always allowed if stock and capacity are available.
That means orders are shipped as early as possible. For a fair comparison, we have to
determine the optimal reorder level and the optimal shipment interval, which is done by
a simulation-based approach.

We concentrate on a large demand lead time (Ld = 8) and a large demand rate (λ = 4)
because, in these situations, it is more likely that the optimal shipment interval is smaller
than Ld. Ls is fixed to 10 to reflect make-to-stock situations, and different reserved
capacities are considered.

We expect a larger impact if late-delivery and early-delivery costs are high and therefore
select the following cost parameters to test our conjecture: l ∈ {2, 10, 100} and e ∈
{2, 10, 100}. The remaining parameters correspond to the base case.

The Table 4.10 columns two and three show the optimal decisions with and without the
shipment assumption, while the last column presents the relative total cost deviation
according to

δTCasm = TCsim(R∗
asm, T

∗
asm)− TCsim(R∗, T ∗)

TCsim(R∗, T ∗) 100, (4.28)

where TCsim(R∗, T ∗) represents the minimal total cost without the shipment assumption
and TCsim(R∗

asm, T
∗
asm) the minimal total cost with shipment assumption both determined
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Table 4.10: Influence of shipment assumption on optimal reorder level and optimal shipment
interval
(R∗, T ∗) with shipment (R∗, T ∗) without shipment Relative total cost

assumption assumption deviation
Cap l e = 2 e = 10 e = 100 e = 2 e = 10 e = 100 e = 2 e = 10 e = 100

5 2 (10,2) (6,3) (4,3) (9,2) (6,3) (4,3) -0.5647 -0.0191 0.0107
10 (15,2) (10,2) (8,3) (14,2) (9,2) (8,3) -1.8850 -2.8433 -0.4990
100 (18,2) (18,2) (11,1) (20,2) (16,2) (9,2) 4.6285 -15.7399 -14.5374

10 2 (8,2) (5,3) (2,3) (7,2) (5,3) (2,3) -0.7968 -0.0074 -0.1349
10 (13,2) (8,2) (6,3) (12,2) (7,2) (6,3) -2.1444 -4.5346 -0.6919
100 (18,2) (18,2) (10,1) (19,2) (14,2) (7,2) 4.6304 -18.5438 -21.7269

20 2 (8,2) (4,3) (2,3) (5,3) (4,3) (2,3) -1.7276 -0.0583 -0.2639
10 (11,2) (8,2) (5,3) (10,2) (7,2) (4,3) -2.1704 -6.6513 -0.5613
100 (17,2) (16,2) (9,1) (18,2) (13,2) (5,2) 4.3675 -19.8509 -23.2847

by simulation.

Our numerical experiments reveal that the shipment assumption impacts the optimal
reorder level. If early shipments are allowed only one shipment day ahead, then more
safety stock is needed at the warehouse to enable flexible deliveries in many situations.
On the other hand, if early shipments are not restricted, then the early-delivery costs are
controlled by a reduction of the optimal reorder level, making early deliveries less likely
as stock-outs occur more frequently.

A contrary effect can be observed if the late-delivery costs parameter is very high (l = 100)
and the early-delivery costs parameter is very low (e = 2). In such a situation, early
deliveries are preferred to avoid waiting times, which results in larger safety stocks.

Our numerical results also show that the optimal shipment interval is relatively robust
against the shipment assumption. Thus, total cost differences are induced by the different
safety stock quantities at the warehouse. Although the reorder level can control the
number of early deliveries, the opportunities are limited. This explains the lower minimal
total cost when early deliveries are permitted only one shipment day ahead. Only in
situations where early deliveries are much cheaper than late-delivery costs is it more
beneficial to allow shipments as early as possible. However, it is unlikely that such large
differences occur in reality since early-delivery and late-delivery costs are related to holding
costs and, therefore, pretty much the same.

Based on our numerical study, we can conclude that, in line with the existing literature,
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ADI can lead to large cost reductions in inventory management. However, to fully exploit
the benefit of ADI, the shipment policy should also be adapted, and flexible deliveries
should be integrated into shipment consolidation programs. Doing so could entail larger
inventories, but the savings due to a more efficient transportation policy far exceed the
cost increases due to larger safety stocks.

4.5 Summary and Outlook

In this chapter, we have investigated a single-echelon inventory model with ADI and
a flexible time-based shipment consolidation program with a reserved transportation
capacity. We derive approximate mathematical expressions to compute shipment and
inventory costs at the warehouse and thus are able to determine the warehouse reorder
level and the shipment consolidation cycle length for the given situation. We have shown
in a simulation study that our approximations have excellent performance and can be
used to determine near-optimal policy parameters because the optimal decisions are found
in more than 90 % of our instances, and the average total cost deviation is 0.1988 %.

The main finding is that companies can benefit greatly from ADI in the context of
inventory management. However, they will miss opportunities if they only focus on
the reduction of safety stocks and on logistic processes separately. Cost reductions
can be further enhanced when logistic processes are connected, such as the shipment
consolidation policy with flexible deliveries. In the investigated setting, the largest part
of the cost reduction is induced by the flexible delivery option. Thus, the full potential of
ADI can only be exploited if whole logistic processes are adapted.

Although not extensively explored in this chapter, we believe that our integrated logistic
approach not only reduces costs but also has environmental benefits by increasing the
utilization of the reserved transportation capacity. Further research can elaborate on
these environmental aspects in more detail. It would be very interesting to understand
how the optimal policy parameters and the optimal reserved transportation capacity
behave if, besides the minimization of cost, the minimization of carbon emissions is also
an aim.

We have assumed perfect ADI and identical demand lead times in our model. A logical
next step is to replace the limiting assumptions and allow imperfect ADI as well as



Heuristic Time-based Shipment Policy with Flexible Deliveries 112

non-identical demand lead times. This increases the complexity of the model and requires
a completely new analysis; therefore, it was not possible to investigate these aspects
within the scope of this work.

Another direction for future research is an extension of the inventory system. Instead of
only studying one warehouse, a divergent inventory system can be the object of future
research. Another extension can be a more general demand model, such as a compound
Poisson process.

However, we are convinced that these extensions will not change the main finding of
this chapter, that ADI should not only be used to reduce stock levels but also to adapt
related logistic processes. We expect all extensions to come with more complexity and
require a heuristic solution approach.
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4.6 Appendix

4.6.1 Derivation of the Probability Mass Function of the
Shipment Quantity

We have to consider eleven cases to evaluate the shipment costs for various parameters. As
stated in Section 4.2.1, the shipment quantity, M(t), is always the sum of demands/orders
during tn−1 and tn plus the remaining units at tn−1, K(tn−1), minus the remaining units
at tn, K(tn). However, the formulas for the remaining units differ from case to case.
In the following, we present the graphics and explanations considering the cases not
discussed in Section 4.2.1.

Case 2 Ld ≤ T and T < Ls ≤ T + Ld:

The main difference to Case 1 is that it cannot be assured that backorders are satisfied
on the subsequent shipment day. Based on Figure 4.8, the formula for K(tn) can be
expressed by

K(tn) = max
((

mod
(R,Q)

(
IP (tn−1 − Ls)−D(tn−1 − Ls, tn−2)−D(tn−2, tn−1 − Ld)

−D(tn−1 − Ld, tn − Ls)
)
−D(tn − Ls, tn−1)−D(tn−1, tn − Ld)

−D(tn − Ld, tn)
)−
,min

(
D(tn − Ld, tn),

(
Cap−D(tn−1, tn − Ld)

−D(tn − Ld, tn)−K(tn−1)
)−
))

, (4.29)

whereas the remaining units at tn−1 can be computed by

K(tn−1) = max
((
IP (tn−1 − Ls)−D(tn−1 − Ls, tn−2)−D(tn−2, tn−1 − Ld)

−D(tn−1 − Ld, tn − Ls)−D(tn − Ls, tn−1)
)−
,

min
(
D(tn−1 − Ld, tn − Ls) +D(tn − Ls, tn−1),

(
Cap

−D(tn−2, tn−1 − Ld)−D(tn−1 − Ld, tn − Ls)−D(tn − Ls, tn−1)

−K(tn−2)
)−
))

. (4.30)
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time
tn−2 tn−1 tn

Ld

Ld
Ls

Ls

Figure 4.8: Shipment cycle when Ld ≤ T and T < Ls ≤ T + Ld

Case 3 Ld ≤ T and T + Ld < Ls ≤ 2T :

Compared to Case 2, tn−Ls is before tn−1−Ld which is illustrated in Figure 4.9. Based
on the given sequence of time points, the remaining units at tn can be obtained by

K(tn) = max
((

mod
R,Q

(
IP (tn−1 − Ls)−D(tn−1 − Ls, tn−2)−D(tn−2, tn − Ls)

)
−D(tn − Ls, tn−1 − Ld)−D(tn−1 − Ld, tn−1)−D(tn−1, tn − Ld)

−D(tn − Ld, tn)
)−
,min

(
D(tn − Ld, tn),

(
Cap−D(tn−1, tn − Ld)

−D(tn − Ld, tn)−K(tn−1)
)−
))

(4.31)

and the remaining units at tn−1 by

K(tn−1) = max
((
IP (tn−1 − Ls)−D(tn−1 − Ls, tn−2)−D(tn−2, tn − Ls)

−D(tn − Ls, tn−1 − Ld)−D(tn−1 − Ld, tn−1)
)−
,

min
(
D(tn−1 − Ld, tn−1),

(
Cap−D(tn−2, tn − Ls)

−D(tn − Ls, tn−1 − Ld)−D(tn−1 − Ld, tn−1)−K(tn−2)
)−
))

. (4.32)

time
tn−2 tn−1 tn

Ld

Ld
Ls

Ls

Figure 4.9: Shipment cycle when Ld ≤ T and T + Ld < Ls ≤ 2T



Heuristic Time-based Shipment Policy with Flexible Deliveries 115

Case 4 Ld ≤ T and Ls > 2T :

Case 4 is the last case where Ld ≤ T because as soon as Ls > 2T , the sequence of
events is the same for each length of Ls. In Figure 4.10, an example is shown. The
remaining units K(tn) can be computed by

K(tn) = max
((

mod
(R,Q)

(
IP (tn−1 − Ls)−D(tn−1 − Ls, tn − Ls)

)
−D(tn − Ls, tn−2)

−D(tn−2, tn−1 − Ld)−D(tn−1 − Ld, tn−1)−D(tn−1, tn − Ld)

−D(tn − Ld, tn)
)−
,min

(
D(tn − Ld, tn),

(
Cap−D(tn−1, tn − Ld)

−D(tn − Ld, tn)−K(tn−1)
)−
))

, (4.33)

whereas the remaining units at tn−1 can be obtained by

K(tn−1) = max
((
IP (tn−1 − Ls)−D(tn−1 − Ls, tn − Ls)−D(tn − Ls, tn−2)

−D(tn−2, tn−1 − Ld)−D(tn−1 − Ld, tn−1)
)−
,min

(
D(tn−1 − Ld, tn−1),(

Cap−D(tn−2, tn−1 − Ld)−D(tn−1 − Ld, tn−1)−K(tn−2)
)−
))

. (4.34)

time
tn−2 tn−1 tn

Ld

Ld
Ls

Ls

Figure 4.10: Shipment cycle when Ld ≤ T and Ls > 2T



Heuristic Time-based Shipment Policy with Flexible Deliveries 116

Case 6 T < Ld ≤ 2T and 2T < Ls ≤ T + Ld:

Similar to Case 5, we now investigate cases where T < Ld ≤ 2T , which means orders are
known more than one shipment interval earlier. However, the shipment policy only allows
units to be shipped to the production facility one shipment interval ahead. Therefore,
all orders occurring during tn+1 and tn cannot be shipped at tn and are added to the
remaining units directly. Considering the sequence of events given in Figure 4.11, we get

K(tn) = D(tn+1 − Ld, tn) + max
((

mod
R,Q

(
IP (tn−1 − Ls)

−D(tn−1 − Ls, tn−1 − Ld)−D(tn−1 − Ld, tn − Ls)
)
−D(tn − Ls, tn−2)

−D(tn−2, tn − Ld)−D(tn − Ld, tn−1)−D(tn−1, tn+1 − Ld)
)−
,

min
(
D(tn − Ld, tn−1) +D(tn−1, tn+1 − Ld),

(
Cap−D(tn−1, tn+1 − Ld)

−K(tn−1)
)−
))

, (4.35)

and

K(tn−1) = D(tn − Ld, tn−1) + max
((
IP (tn−1 − Ls)−D(tn−1 − Ls, tn−1 − Ld)

−D(tn−1 − Ld, tn − Ls)−D(tn − Ls, tn−2)−D(tn−2, tn − Ld)
)−
,

min
(
D(tn−1 − Ld, tn − Ls) +D(tn − Ls, tn−2) +D(tn−2, tn − Ld),

(
Cap−D(tn−2, tn − Ld)−K(tn−2)

)−
))

. (4.36)

time
tn−2 tn−1 tn tn+1

Ld

Ld Ld

Ls

Ls

Figure 4.11: Shipment cycle when T < Ld ≤ 2T and 2T < Ls ≤ T + Ld
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Case 7 T < Ld ≤ 2T and Ls > T + Ld:

Case 7 is close to Case 6; however, Ls has to be larger than T + Ld. In Figure 4.12, we
can observe that tn−1 − Ls and tn − Ls are the earliest time points, which is why an
increase of Ls will not change the sequence of time points anymore. Therefore, we can
obtain the remaining units at tn by

K(tn) = D(tn+1 − Ld, tn) + max
((

mod
R,Q

(
IP (tn−1 − Ls)−D(tn−1 − Ls, tn − Ls)

)
−D(tn − Ls, tn−1 − Ld)−D(tn−1 − Ld, tn−2)−D(tn−2, tn − Ld)

−D(tn − Ld, tn−1)−D(tn−1, tn+1 − Ld)
)−
,min

(
D(tn − Ld, tn−1)

+D(tn−1, tn+1 − Ld),
(
Cap−D(tn−1, tn+1 − Ld)−K(tn−1)

)−
))

. (4.37)

and the remaining units at tn−1 by

K(tn−1) = D(tn − Ld, tn−1) + max
((
IP (tn−1 − Ls)−D(tn−1 − Ls, tn − Ls)

−D(tn − Ls, tn−1 − Ld)−D(tn−1 − Ld, tn−2)−D(tn−2, tn − Ld)
)−
,

min
(
D(tn−1 − Ld, tn−2) +D(tn−2, tn − Ld),

(
Cap−D(tn−2, tn − Ld)

−K(tn−2)
)−
))

. (4.38)

time
tn−2 tn−1 tn tn+1

Ld

Ld Ld

Ls

Ls

Figure 4.12: Shipment cycle when T < Ld ≤ 2T and Ls > T + Ld
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Case 8 2T < Ld ≤ 3T and 2T < Ls ≤ T + Ld:

Now, we consider situations where 2T < Ld ≤ 3T . Case 8 is illustrated in Figure 4.13
which helps us to determine K(tn) and K(tn−1). The remaining units at tn can be
computed by

K(tn) = D(tn+1 − Ld, tn−1) +D(tn−1, tn) + max
((

mod
R,Q

(
IP (tn−1 − Ls)

−D(tn−1 − Ls, tn−1 − Ld)−D(tn−1 − Ld, tn − Ls)
)

−D(tn − Ls, tn − Ld)−D(tn − Ld, tn−2)−D(tn−2, tn+1 − Ld)
)−
,

min
(
D(tn − Ld, tn−2) +D(tn−2, tn+1 − Ld),

(
Cap+D(tn+1 − Ld, tn−1)

−K(tn−1)
)−
))

, (4.39)

whereas the remaining units at tn can be computed by

K(tn−1) = D(tn − Ld, tn−2) +D(tn−2, tn+1 − Ld) +D(tn+1 − Ld, tn−1)

+ max
((
IP (tn−1 − Ls)−D(tn−1 − Ls, tn−1 − Ld)

−D(tn−1 − Ld, tn − Ls)−D(tn − Ls, tn − Ld)
)−
,

min
(
D(tn−1 − Ld, tn − Ls) +D(tn − Ls, tn − Ld),

(
Cap

−K(tn−2)
)−
))

. (4.40)

time
tn−2 tn−1 tn tn+1

Ld

Ld
Ld

Ls

Ls

Figure 4.13: Shipment cycle when 2T < Ld ≤ 3T and 2T < Ls ≤ T + Ld
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Case 9 2T < Ld ≤ 3T and Ls > T + Ld:

Compared to Case 8, tn − Ls is before tn−2 − Ld which is shown in Figure 4.14.
Summarizing, the remaining units at tn for Case 9 can be obtained by

K(tn) = D(tn+1 − Ld, tn−1) +D(tn−1, tn) + max
((

mod
R,Q

(
IP (tn−1 − Ls)

−D(tn−1 − Ls, tn − Ls)
)
−D(tn − Ls, tn−1 − Ld)−D(tn−1 − Ld, tn − Ld)

−D(tn − Ld, tn−2)−D(tn−2, tn+1 − Ld)
)−
,min

(
D(tn − Ld, tn−2)

+D(tn−2, tn+1 − Ld),
(
Cap+D(tn+1 − Ld, tn−1)−K(tn−1)

)−
))

, (4.41)

and the remaining units at tn−1 by

K(tn−1) = D(tn − Ld, tn−2) +D(tn−2, tn+1 − Ld) +D(tn+1 − Ld, tn−1)

+ max
((
IP (tn−1 − Ls)−D(tn−1 − Ls, tn − Ls)

−D(tn − Ls, tn−1 − Ld)−D(tn−1 − Ld, tn − Ld)
)−
,

min
(
D(tn−1 − Ld, tn − Ld),

(
Cap−K(tn−2)

)−
))

. (4.42)

time
tn−2 tn−1 tn tn+1

Ld

Ld
Ld

Ls

Ls

Figure 4.14: Shipment cycle when 2T < Ld ≤ 3T and Ls > T + Ld
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Case 10 Ld > 3T and 3T < Ls ≤ T + Ld:

As soon as Ls > 3T , tn+1−Ld will always be before tn−2, why this is the last range fore
Ld. Again, we have to consider the length of Ls compared to T + Ld. In Figure 4.15,
the considered case is illustrated, which leads to

K(tn) = D(tn+1 − Ld, tn−2) +D(tn−2, tn−1) +D(tn−1, tn)

+ max
((

mod
R,Q

(
IP (tn−1 − Ls)−D(tn−1 − Ls, tn−1 − Ld)

−D(tn−1 − Ld, tn − Ls)
)
−D(tn − Ls, tn − Ld)

−D(tn − Ld, tn+1 − Ld)
)−
,min

(
D(tn − Ld, tn+1 − Ld),

(
Cap+D(tn+1 − Ld, tn−2) +D(tn−2, tn−1)−K(tn−1)

)−
))

, (4.43)

and

K(tn−1) = D(tn − Ld, tn+1 − Ld) +D(tn+1 − Ld, tn−2) +D(tn−2, tn−1)

+ max
((
IP (tn−1 − Ls)−D(tn−1 − Ls, tn−1 − Ld)

−D(tn−1 − Ld, tn − Ls)−D(tn − Ls, tn − Ld)
)−
,

min
(
D(tn−1 − Ld, tn − Ls) +D(tn − Ls, tn − Ld),

(
Cap

−K(tn−2)
)−
))

. (4.44)

time
tn−2 tn−1 tn tn+1

Ld

Ld
Ld

Ls

Ls

Figure 4.15: Shipment cycle when Ld > 3T and 3T < Ls ≤ T + Ld
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Case 11 Ld > 3T and Ls > T + Ld:

Case 11 is shown in Figure 4.16 and represents the last case for the determination of the
PMF of the shipment quantity. The remaining units at tn can be computed by

K(tn) = D(tn+1 − Ld, tn−2) +D(tn−2, tn−1) +D(tn−1, tn)

+ max
((

mod
R,Q

(
IP (tn−1 − Ls)−D(tn−1 − Ls, tn − Ls)

)
−D(tn − Ls, tn−1 − Ld)−D(tn−1 − Ld, tn − Ld)

−D(tn − Ld, tn+1 − Ld)
)−
,min

(
D(tn − Ld, tn+1 − Ld),

(
Cap

+D(tn+1 − Ld, tn−2) +D(tn−2, tn−1)−K(tn−1)
)−
))

, (4.45)

and the remaining units at tn−1 by

K(tn−1) = D(tn − Ld, tn+1 − Ld) +D(tn+1 − Ld, tn−2) +D(tn−2, tn−1)

+ max
((
IP (tn−1 − Ls)−D(tn−1 − Ls, tn − Ls)

−D(tn − Ls, tn−1 − Ld)−D(tn−1 − Ld, tn − Ld)
)−
,

min
(
D(tn−1 − Ld, tn − Ld),

(
Cap−K(tn−2)

)−
))

. (4.46)

time
tn−2 tn−1 tn tn+1

Ld

Ld

Ld
Ls

Ls

Figure 4.16: Shipment cycle when Ld > 3T and Ls > T + Ld
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4.6.2 Derivation of the Expected Inventory Costs when S > 0

In this section, we derive the cost expressions for the inventory costs for all possible
situations. Therefore, we first determine the joint distribution function fi(x, y), i ∈
{A,B,C,D,E, F,G}.

Situation A:

The derivation for fA(x, y) is already given in Section 4.2.2. Based on that, the inventory
costs can be derived.

E[CA(Ω(S), V )] =
∫ ∞

0

∫ T

0
CA(x, y)fA(x, y) dy dx

=
∫ ∞

Ls

∫ (T −Ld)+

0

(
h(x− Ls + Ld + y) + ly

)
gS(x)u(y) dy dx

=
∫ ∞

Ls

(T − Ld)+

T

(
h
S

λ
gS+1(x) + h(Ld − Ls)gS(x)

)

+ (h+ l)

(
(T − Ld)+

)2

2T gS(x)dx

= h
(T − Ld)+

T

(
(Ld − Ls)

(
1−GS(x)

)
+ S

λ

(
1−GS+1(Ls)

))

+ (h+ l)

(
(T − Ld)+

)2

2T
(
1−GS(Ls)

)
= h

(T − Ld)+

T

(Ld − Ls + (T − Ld)+

2

)(
1−GS(Ls)

)

+ S

λ

(
1−GS+1(Ls)

)+ l

(
(T − Ld)+

)2

2T
(
1−GS(Ls)

)
(4.47)

The further derivation depends on the length of T and Ld, why we separate in Ld ≤ T
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and Ld > T . For Ld ≤ T we get

E[CA(Ω(S), V )] = h
T − Ld

T

(Ld − Ls + T − Ld

2

)(
1−GS(Ls)

)

+ S

λ

(
1−GS+1(Ls)

)
+ l

(T − Ld)2

2T
(
1−GS(Ls)

)
= h

T − Ld

T

(T + Ld

2 − Ls

)(
1−GS(Ls)

)
+ S

λ

(
1−GS+1(Ls)

)
+ l

(T − Ld)2

2T
(
1−GS(Ls)

)
, (4.48)

whereas Ld > T lead to

E[CA(Ω(S), V )] = h
0
T

(Ld − Ls + 0
2

)(
1−GS(Ls)

)
+ S

λ

(
1−GS+1(Ls)

)
+ l

02

2T
(
1−GS(Ls)

)
= 0. (4.49)

Summarizing, we get

E[CA(Ω(S), V )] =



hT −Ld

T

((
T +Ld

2 − Ls

)(
1−GS(Ls)

)
+S

λ

(
1−GS+1(Ls)

))
+l (T −Ld)2

2T

(
1−GS(Ls)

)
, if Ld ≤ T

0, otherwise.

(4.50)

time
tr ta tn−1 to td tn

Ld V A = WWCAΩA(S)

Ls WHCA

Figure 4.17: Timeline with the important time instances for Situation A when S > 0
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Situation B:

To obtain the joint probability function fB(x, y), we determine the cumulative distribution
function for Situation B by

FB(x, y) = P
(
Ω(S) ≤ x, V ≤ y, ta < to, to < tn−1 < td < tn, ts = tn−1). (4.51)

Thus,

FB(x, y) = P
(
Ω(S) ≤ x, V ≤ y, tr + Ls < tr + Ω(S),

tr + Ω(S) < tn−1 < tr + Ω(S) + Ld < tn
)

= P
(
Ω(S) ≤ x, V ≤ y, Ls < Ω(S),

Ω(S) < tn−1 − tr < Ω(S) + Ld < tn − tr
)
. (4.52)

It holds that T = tr + Ω(S) + Ld − tn−1 + V , which leads to

FB(x, y) = P
(
Ls < Ω(S) ≤ x, V ≤ y,

Ω(S) < Ω(S) + Ld + V − T < Ω(S) + Ld < tn − tn−1 + tn−1 − tr
)

= P
(
Ls < Ω(S) ≤ x, V ≤ y,

Ω(S) < Ω(S) + Ld + V − T < Ω(S) + Ld < Ω(S) + Ld + V
)

= P
(
Ls < Ω(S) ≤ x, V ≤ y, 0 < Ld + V − T < Ld < Ld + V

)
= P

(
Ls < Ω(S) ≤ x, (T − Ld)+ < V ≤ y

)
. (4.53)

For x ≥ Ls and y ≥ (T − Ld)+, we get

FB(x, y) = P
(
Ls < Ω(S) ≤ x, V ≤ y

)
=
(
GS(x)−GS(Ls)

)(
U(y)− U(T − Ld)

)
. (4.54)

Thus, the partial derivative with respect to both variables is given as

fB(x, y) =

 g
S(x)u(y) Ls < x <∞, (T − Ld)+ < y ≤ T

0 otherwise.
(4.55)
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We get the expected costs

E[CB(Ω(S), V )]

=
∫ ∞

0

∫ T

0
CB(x, y)fB(x, y) dy dx

=
∫ ∞

Ls

∫ T

(T −Ld)+

(
hx+ h(Ld − T − Ls) + eT + (h− e)y

)
gS(x)u(y) dy dx

=
∫ ∞

Ls

T − (T − Ld)+

T

(
h
S

λ
gS+1(x) +

(
h(Ld − T − Ls) + eT

)
gS(x)

+ (h− e)
T 2 −

(
(T − Ld)+

)2

2T gS(x)
)
dx

= T − (T − Ld)+

T

(
h
S

λ

(
1−GS+1(Ls)

)
+
(
h(Ld − T − Ls) + eT

)
·

(
1−GS(Ls)

)
+ (h− e)

T 2 −
(
(T − Ld)+

)2

2T
(
1−GS(Ls)

))
. (4.56)

Assuming Ld ≤ T , we get

E[CB(Ω(S), V )]

= Ld

T

(
h
S

λ

(
1−GS+1(Ls)

)
+
(
h(Ld − T − Ls) + eT

)(
1−GS(Ls)

)
+ (h− e)T

2 − (T − Ld)2

2T
(
1−GS(Ls)

))

= h
Ld

T

(Ld − T − Ls + 2T − Ld

2

)(
1−GS(Ls)

)
+ S

λ

(
1−GS+1(Ls)

)
+ e

Ld

T

(
T − 2T − Ld

2

)(
1−GS(Ls)

)

= h
Ld

T

(Ld

2 − Ls

)(
1−GS(Ls)

)
+ S

λ

(
1−GS+1(Ls)

)
+ e

L2
d

2T
(
1−GS(Ls)

)
, (4.57)
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whereas for Ld > T , we get

E[CB(Ω(S), V )]

= T − 0
T

(
h
S

λ

(
1−GS+1(Ls)

)
+
(
h(Ld − T − Ls) + eT

)(
1−GS(Ls)

))

+ (h− e)T
2 − 02

2T
(
1−GS(Ls)

)
= h

(Ld − T − Ls + T

2

)(
1−GS(x)

)
+ S

λ

(
1−GS+1(Ls)

)+

+ e

(
T − T

2

)(
1−GS(Ls)

)

= h

(Ld −
T

2 − Ls

)(
1−GS(Ls)

)
+ S

λ

(
1−GS+1(Ls)

)
+ e

T

2
(
1−GS(Ls)

)
. (4.58)

Finally we get

E[CB(Ω(S), V )] =



hLd

T

((
Ld

2 − Ls

)(
1−GS(Ls)

)
S
λ
·(

1−GS+1(Ls)
))

+ e
L2

d

2T

(
1−GS(Ls)

)
if Ld ≤ T ,

h
((
Ld − T

2 − Ls

)(
1−GS(Ls)

)
+ S

λ
·(

1−GS+1(Ls)
))

+ eT
2

(
1−GS(Ls)

)
, otherwise.

(4.59)

time
tr ta to tdtn−1 tn

LdΩB(S)

Ls WHCB WECB

V B

Figure 4.18: Timeline with the important time instances for Situation B when S > 0
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Situation C:

Situation C is similar to Situation B except for the shipment point.

FC(x, y) = P
(
Ω(S) ≤ x, V ≤ y, ta < to, to < tn−1 < td < tn, ts = tn

)
(4.60)

This is the situation with no early delivery.

FC(x, y) = P
(
Ω(S) ≤ x, V ≤ y, tr + Ls < tr + Ω(S),

tr + Ω(S) < tn−1 < tr + Ω(S) + Ld < tn
)

(4.61)

This yields

fC(x, y) =

 g
S(x)u(y) Ls < x <∞, (T − Ld)+ ≤ y ≤ T,

0 otherwise.
(4.62)

The expected inventory costs for Situation C can be obtained by

E[CC(Ω(S), V )] =
∫ ∞

0

∫ T

0
CC(x, y)fC(x, y) dy dx

=
∫ ∞

Ls

∫ T

(T −Ld)+

(
h(x− Ls + Ld + y) + ly

)
gS(x)u(y) dy dx

=
∫ ∞

Ls

h
T − (T − Ld)+

T

(
S

λ
gS+1(x) + (Ld − Ls)gS(x)

)

+ (h+ l)
T 2 −

(
(T − Ld)+

)2

2T gS(x) dy dx

= h
T − (T − Ld)+

T

(
(Ld − Ls)

(
1−GS(x)

)
+ S

λ

(
1−GS+1(Ls)

))

+ (h+ l)
T 2 −

(
(T − Ld)+

)2

2T
(
1−GS(x)

)
. (4.63)

The length of T and Ld define the further cost derivation. For Ld ≤ T we get

E[CC(Ω(S), V )] = h
T − (T − Ld)

T

(
(Ld − Ls)

(
1−GS(x)

)
+ S

λ

(
1−GS+1(Ls)

))

+ (h+ l)T
2 − (T − Ld)2

2T
(
1−GS(x)

)
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= h
Ld

T

(
(Ld − Ls)

(
1−GS(x)

)
+ S

λ

(
1−GS+1(Ls)

))

+ (h+ l)2TLd − L2
d

2T
(
1−GS(x)

)
= h

Ld

T

(Ld

2 − Ls + T
)(

1−GS(Ls)
)

+ S

λ

(
1−GS+1(Ls)

)
+ l

2TLd − L2
d

2T
(
1−GS(Ls)

)
, (4.64)

whereas Ld > T occurs inventory costs of

E[CC(Ω(S), V )] = h
T − 0
T

(
(Ld − Ls)

(
1−GS(x)

)
+ S

λ

(
1−GS+1(Ls)

))
+ (h+ l)T

2 − 02

2T
(
1−GS(x)

)
= h

(Ld − Ls + T

2

)(
1−GS(x)

)
+ S

λ

(
1−GS+1(Ls)

)
+ l

T

2
(
1−GS(x)

)
. (4.65)

Finally, the expected inventory costs for Situation C are defined as follows.

E[CC(Ω(S), V )] =



hLd

T

((
Ld

2 − Ls + T
)(

1−GS(Ls)
)

+S
λ

(
1−GS+1(Ls)

))
+l 2T Ld−L2

d

2T

(
1−GS(Ls)

)
, if Ld ≤ T

h
((
Ld − Ls + T

2

)(
1−GS(Ls)

)
+S

λ

(
1−GS+1(Ls)

))
+lT

2

(
1−GS(Ls)

)
otherwise.

(4.66)

time
tr ta to tdtn−1 tn

Ld V C = WWCCΩC(S)
Ls WHCC

Figure 4.19: Timeline with the important time instances for Situation C when S > 0
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Situation D:

Now, the considered uni is first ordered, then available, and then demanded.

FD(x, y) = P
(
Ω(S) ≤ x, V ≤ y, to ≤ ta,

tn−1 < ta < td < tn, ts = tn
)

= P
(
Ω(S) ≤ x, V ≤ y, tr + Ω(S) ≤ tr + Ls,

tn−1 < tr + Ls < tr + Ω(S) + Ld < tn
)

= P
(
Ω(S) ≤ x, V ≤ y,Ω(S) ≤ Ls,

0 < tr + Ls − tn−1 < tr + Ω(S) + Ld − tn−1 < T
)

(4.67)

Since T = V + Ld + tr + Ω(S)− tn−1 we get

FD(x, y) = P
(
Ω(S) ≤ x,Ω(S) ≤ Ls, V ≤ y,

0 < T − V − Ld − Ω(S) + Ls < T − V < T
)

= P
(
Ls − Ld ≤ Ω(S) ≤ x,Ω(S) < Ls, V ≤ y,

V < T − Ld − Ω(S) + Ls

)
(4.68)

For Ls − Ld ≤ x ≤ Ls and y ≤ T − Ld + Ls − x we get

FD(x, y) = P
(
Ls − Ld ≤ Ω(S) ≤ x, V ≤ y, V < T − Ld − Ω(S) + Ls

)
=
∫ x

Ls−Ld

P
(
V ≤ y, V < T − Ld − t+ Ls | Ω(S) = t

)
gS(t) dt

=
∫ x

Ls−Ld

P
(
V ≤ min(y, T − Ld + Ls − t)

)
gS(t) dt

=
∫ x

Ls−Ld

1
T
ygS(t) dt

= y

T

(
GS(x)−GS(Ls − Ld)

)
. (4.69)
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To obtain fD(x, y), we have to compute a partial derivative with respect to x and y. For
Ls − Ld ≤ x < Ls and y ≤ T − Ld + Ls − x we get

fD(x, y) = ∂

∂x∂y
FD(x, y)

= ∂

∂x∂y

(
y

T

(
GS(x)−GS(Ls − Ld)

))
= ∂

∂y

(
y

T
gS(x)

)
= 1
T
gS(x) = gS(x)u(y). (4.70)

Thus, we obtain

fD(x, y) =

 g
S(x)u(y) Ls − Ld < x ≤ Ls, 0 ≤ y ≤ (T − Ld + Ls − x)+

0 otherwise.
(4.71)

The inventory costs can be derived by

E[CD(Ω(S), V )]

=
∫ ∞

0

∫ T

0
CD(x, y)fD(x, y) dy dx

=
∫ Ls

Ls−Ld

∫ (T −Ld+Ls−x)+

0

(
hx+ h(Ld − Ls) + (h+ l)y

)
gS(x)u(y) dy dx (4.72)

Now, we have to separate the interval Ls−Ld ≤ x < Ls in Ls−Ld ≤ x ≤ Ls−(Ld−T )+

and Ls − (Ld − T )+ < x < Ls to divide 0 ≤ y ≤ (T − Ld + Ls − x)+ into 0 ≤ y ≤
T − Ld + Ls − x and 0 ≤ y ≤ 0. We get

E[CD(Ω(S), V )]

=
∫ Ls−(Ld−T )+

Ls−Ld

∫ T −Ld+Ls−x

0

(
hx+ h(Ld − Ls) + (h+ l)y

)
gS(x)u(y) dy dx

+
∫ Ls

Ls−(Ld−T )+

∫ 0

0

(
hx+ h(Ld − Ls) + (h+ l)y

)
gS(x)u(y) dy dx

=
∫ Ls−(Ld−T )+

Ls−Ld

h
T − Ld + Ls − x

T

S

λ
gS+1(x) + h(Ld − Ls)

T − Ld + Ls − x
T

gS(x)

+ (h+ l)(T − Ld + Ls − x)2

2T gS(x) dx
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=
∫ Ls−(Ld−T )+

Ls−Ld

h

(
2(Ld − Ls)(T − Ld + Ls)

2T + (T − Ld + Ls)2

2T

)
gS(x)

+ h

(
T − Ld + Ls

T
− Ld − Ls

T
− T − Ld + Ls

T

)
S

λ
gS+1(x)− hS(S + 1)

2Tλ2 gS+2(x)

+ l
(T − Ld + Ls)2

2T gS(x)− l (T − Ld + Ls)S
Tλ

gS+1(x) + l
S(S + 1)

2Tλ2 gS+2(x) dx

=
∫ Ls−(Ld−T )+

Ls−Ld

h

(
2TLd − 2L2

d + 2LsLd − 2TLs + 2LsLd − 2L2
s + T 2 + L2

d + L2
s

2T

+ −2TLd + 2TLs − 2LsLd

2T

)
gS(x) + h

(Ls − Ld)S
Tλ

gS+1(x)− hS(S + 1)
2Tλ2 gS+2(x)

+ l
(T − Ld + Ls)2

2T gS(x)− l (T − Ld + Ls)S
Tλ

gS+1(x+ l
S(S + 1)

2Tλ2 gS+2(x) dx

=
∫ Ls−(Ld−T )+

Ls−Ld

h

(
T 2 − (Ls − Ld)2

2T gS(x) + (Ls − Ld)S
Tλ

gS+1(x)

− S(S + 1)
2Tλ2 gS+2(x)

)
+ l

(
(T − Ld + Ls)2

2T gS(x)− (T − Ld + Ls)S
Tλ

g+1S(x)

+ S(S + 1)
2Tλ2 gS+2(x)

)
dx

= h

(
T 2 − (Ls − Ld)2

2T
(
GS(Ls − (Ld − T )+)−GS(Ls − Ld)

)
+ (Ls − Ld)S

Tλ

(
GS+1(Ls − (Ld − T )+)−GS+1(Ls − Ld)

)
− S(S + 1)

2Tλ2

(
GS+2(Ls − (Ld − T )+)−GS+2(Ls − Ld)

))

+ l

(
(T − Ld + Ls)2

2T
(
GS(Ls − (Ld − T )+)−GS(Ls − Ld)

)
− (T − Ld + Ls)S

Tλ

(
GS+1(Ls − (Ld − T )+)−GS+1(Ls − Ld)

)
+ S(S + 1)

2Tλ2

(
GS+2(Ls − (Ld − T )+)−GS+2(Ls − Ld)

))
. (4.73)
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Summarizing, we get

E[CD(Ω(S), V )] (4.74)

=



h
(

T 2−(Ls−Ld)2

2T

(
GS(Ls)−GS(Ls − Ld)

)
+ (Ls−Ld)S

T λ

(
GS+1(Ls)−GS+1(Ls − Ld)

)
−S(S+1)

2T λ2

(
GS+2(Ls)−GS+2(Ls − Ld)

))
+l
(

(T −Ld+Ls)2

2T

(
GS(Ls)−GS(Ls − Ld)

)
− (T −Ld+Ls)S

T λ

(
GS+1(Ls)−GS+1(Ls − Ld)

)
+S(S+1)

2T λ2

(
GS+2(Ls)−GS+2(Ls − Ld)

))
, if Ld ≤ T

h
(

T 2−(Ls−Ld)2

2T

(
GS(Ls − Ld + T )−GS(Ls − Ld)

)
+ (Ls−Ld)S

T λ

(
GS+1(Ls − Ld + T )−GS+1(Ls − Ld)

)
−S(S+1)

2T λ2

(
GS+2(Ls − Ld + T )−GS+2(Ls − Ld)

))
+l
(

(T −Ld+Ls)2

2T

(
GS(Ls − Ld + T )−GS(Ls − Ld)

)
− (T −Ld+Ls)S

T λ

(
GS+1(Ls − Ld + T )−GS+1(Ls − Ld)

)
+S(S+1)

2T λ2

(
GS+2(Ls − Ld + T )−GS+2(Ls − Ld)

))
, otherwise.

time
tr to tdtatn−1 tn

Ld V D = WWCDΩD(S)
Ls WHCD

Figure 4.20: Timeline with the important time instances for Situation D when S > 0
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Situation E:

Now, to and ta occur in different shipment intervals, which is why flexible deliveries are
possible if enough capacity is available.

FE(x, y) = P
(
Ω(S) ≤ x, V ≤ y, to ≤ ta, ta < tn−1 < td < tn, ts = tn−1

)
= P

(
Ω(S) ≤ x, V ≤ y, tr + Ω(S) ≤ tr + Ls,

tr + Ls < tn−1 < tr + Ω(S) + Ld < tn
)

= P
(
Ω(S) ≤ x, V ≤ y,Ω(S) ≤ Ls,

Ls < tn−1 − tr < Ω(S) + Ld < tn − tr
)

(4.75)

Since T = tr + Ω(S) + Ld − tn−1 + V , we get tn−1 − tr = Ω(S) + Ld − T + V

FE(x, y) = P
(
Ω(S) ≤ min(x, Ls), V ≤ y, Ls < Ω(S) + Ld − T + V

< Ω(S) + Ld < tn − tn−1 + tn−1 − tr,M(tn) < Cap
)

= P
(
Ω(S) ≤ min(x, Ls), V ≤ y, Ls < Ω(S) + Ld − T+

V < Ω(S) + Ld < Ω(S) + Ld + V,M(tn) < Cap
)

= P
(
Ls − Ld < Ω(S) ≤ min(x, Ls), T + Ls − Ω(S)− Ld < V ≤ y

)
.

(4.76)

For Ls − Ld ≤ x ≤ Ls we get

FE(x, y) =
∫ x

Ls−Ld

P
(
T + Ls − t− Ld < V ≤ y

)
gS(t) dt. (4.77)
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For T + Ls − Ld − x ≥ y, this is zero. Now T + Ls − Ld − x < y

FE(x, y) =
∫ x

T +Ls−Ld−y

(
P (V ≤ y)− P (V ≤ T + Ls − t− Ld)

)
gS(t) dt

=
∫ x

T +Ls−Ld−y

(
y

T
− T + Ls − t− Ld

T

)
gS(t) dt

= y + Ld − T − Ls

T

(
GS(x)−GS(T + Ls − Ld − y)

)
+ 1
T

∫ x

T +Ls−Ld−y
tgS(t) dt

= y + Ld − T − Ls

T

(
GS(x)−GS(T + Ls − Ld − y)

)
+ 1
T

S

λ

∫ x

T +Ls−Ld−y
gS+1(t) dt

= y + Ld − T − Ls

T

(
GS(x)−GS(T + Ls − Ld − y)

)
+ 1
T

S

λ

(
GS+1(x)−GS+1(T + Ls − Ld − y)

)
. (4.78)

To obtain fE(x, y), we have to compute partial derivative with respect to x and y. For
Ls − Ld ≤ x < Ls and y > T − Ld + Ls − x we get

fE(x, y) = ∂

∂x∂y
FE(x, y)

= ∂

∂x∂y

(
y + Ld − T − Ls

T

(
GS(x)−GS(T + Ls − Ld − y)

)
+ 1
T

S

λ

(
GS+1(x)−GS+1(T + Ls − Ld − y)

))

= ∂

∂y

(
y + Ld − T − Ls

T
gS(x) + 1

T

S

λ
gS+1(x)

)

= 1
T
gS(x) = gS(x)u(y). (4.79)

Thus, we obtain

fE(x, y) =

 g
S(x)u(y) Ls − Ld < x ≤ Ls, T − Ld + Ls − x < y ≤ T

0 otherwise.
(4.80)
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Now, we can derive the inventory costs as follows.

E[CE(Ω(S), V )]

=
∫ ∞

0

∫ T

0
CE(x, y)fE(x, y) dy dx

=
∫ Ls

Ls−Ld

∫ T

(T −Ld+Ls−x)+

(
h(x− T − Ls + Ld + y) + e(T − y)

)
gS(x)u(y) dy dx

=
∫ Ls

Ls−Ld

∫ T

(T −Ld+Ls−x)+

(
hx+ h(Ld − T − Ls) + eT + (h− e)y

)
gS(x)u(y) dy dx

(4.81)

Again, we have to separate the interval Ls − Ld ≤ x < Ls in Ls − Ld ≤ x ≤
Ls − (Ld − T )+ and Ls − (Ld − T )+ < x < Ls to divide (T − Ld + Ls − x)+ < y ≤ T

into T − Ld + Ls − x < y ≤ T and 0 ≤ y ≤ T .

E[CE(Ω(S), V )]

=
∫ Ls−(Ld−T )+

Ls−Ld

∫ T

T −Ld+Ls−x

(
hx+ h(Ld − T − Ls) + eT + (h−e)y

)
gS(x)u(y) dy dx

+
∫ Ls

Ls−(Ld−T )+

∫ T

0

(
hx+ h(Ld − T − Ls) + eT + (h−e)y

)
gS(x)u(y) dy dx

=
∫ Ls−(Ld−T )+

Ls−Ld

h
Ld − Ls + x

T

S

λ
gS+1(x) + h(Ld − T − Ls)

Ld − Ls + x

T
gS(x)

+ eT
Ld − Ls + x

T
gS(x) + (h−e)T

2 − (T − Ld + Ls − x)2

2T gS(x) dx

+
∫ Ls

Ls−(Ld−T )+
h
S

λ
gS+1(x) + h(Ld − T − Ls)gS(x) + eTgS(x) + (h−e)T2 g

S(x) dx

=
∫ Ls−(Ld−T )+

Ls−Ld

h
Ld − Ls

T

S

λ
gS+1(x) + h

S(S + 1)
Tλ2 gS+2(x)

+ h
(Ld − T − Ls)(Ld − Ls)

T
gS(x) + h

(Ld − T − Ls)
T

S

λ
gS+1(x)

+ e
T (Ld − Ls)

T
gS(x) + e

TS

Tλ
gS + 1(x) + (h−e)T

2 − (T − Ld + Ls)2

2T gS(x) dx

+ (h−e)2(T − Ld + Ls)
2T

S

λ
gS+1(x)− (h− e)S(S + 1)

Tλ2 gS+2(x)+∫ Ls

Ls−(Ld−T )+
h

(
Ld − Ls −

T

2

)
gS(x) + h

S

λ
gS+1(x) + e

T

2 g
S(x) dx

=
∫ Ls−(Ld−T )+

Ls−Ld

h

(
2(Ld − T − Ls)(Ld − Ls)

2T + T 2 − (T − Ld + Ls)2

2T

)
gS(x)

+ h

(
Ld − Ls

T
+ Ld − T − Ls

T
+ T − Ld + Ls

T

)
S

λ
gS+1(x) + h

S(S + 1)
2Tλ2 gS+2(x)



Heuristic Time-based Shipment Policy with Flexible Deliveries 136

+ e

(
2T (Ld − Ls)

2T − T 2 − (T − Ld + Ls)2

2T

)
gS(x) + e

S(Ld − Ls)
Tλ

gS+1(x)

+ e
S(S + 1)

2Tλ2 gS+2(x) dx+
∫ Ls

Ls−(Ld−T )+
h(Ld − Ls −

T

2 )gS(x) + h
S

λ
gS+1(x)

+ e
T

2 g
S(x) dx

=
∫ Ls−(Ld−T )+

Ls−Ld

h

(2L2
d − 2TLd − 2LsLd − 2LsLd + 2TLs + 2L2

s + T 2 − T 2 − L2
d

2T

+ −L
2
s + 2TLd − 2TLs + 2LsLd

2T

)
gS(x) + (Ls − Ld)S

Tλ
gS+1(x)

− S(S + 1)
2Tλ2 gS+2(x)

+ e

(2TLd − 2TLs − T 2 + T 2 + L2
d + L2

s − 2TLd + 2TLs

2T

+ −2LsLd

2T

)
gS(x) + (Ld − Ls)S

Tλ
gS+1(x) + S(S + 1)

2Tλ2 gS+2(x)
 dx

+
∫ Ls

Ls−(Ld−T )+
h

(Ld − Ls −
T

2

)
gS(x) + S

λ
gS+1(x)

+ e
T

2 g
S(x) dx

=
∫ Ls−(Ld−T )+

Ls−Ld

h

(
(Ld − Ls)2

2T gS(x) + (Ld − Ls)S
Tλ

gS+1(x) + S(S + 1)
2Tλ2 gS+2(x)

)

+ e

(
(Ld − Ls)2

2T gS(x) + (Ld − Ls)S
Tλ

gS+1(x) + S(S + 1)
2Tλ2 gS+2(x)

)
dx

+
∫ Ls

Ls−(Ld−T )+
h

(Ld − Ls −
T

2

)
gS(x) + S

λ
gS+1(x)

+ e
T

2 g
S(x) dx

= h

(
(Ld − Ls)2

2T
(
GS(Ls − (Ld − T )+)−GS(Ls − Ld)

)
+ (Ld − Ls)S

Tλ

(
GS+1(Ls − (Ld − T )+)−GS+1(Ls − Ld)

)
+ S(S + 1)

2Tλ2

(
GS+2(Ls − (Ld − T )+)−GS+2(Ls − Ld)

))

+ e

(
(Ld − Ls)2

2T
(
GS(Ls − (Ld − T )+)−GS(Ls − Ld)

)
+ (Ld − Ls)S

Tλ

(
GS+1(Ls − (Ld − T )+)−GS+1(Ls − Ld)

)
+ S(S + 1)

2Tλ2

(
GS+2(Ls − (Ld − T )+)−GS+2(Ls − Ld)

))

+ h

(Ld − Ls −
T

2

)(
GS(Ls)−GS(Ls − (Ld − T )+)

)
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+ S

λ

(
GS+1(Ls)−GS+1(Ls − (Ld − T )+)

)
+ e

T

2
(
GS(Ls)−GS(Ls − (Ld − T )+)

)
(4.82)

Summarizing we get

E[CE(Ω(S), V )] (4.83)

=



h
(

(Ld−Ls)2

2T

(
GS(Ls)−GS(Ls − Ld)

)
+ (Ld−Ls)S

T λ

(
GS+1(Ls)−GS+1(Ls − Ld)

)
+S(S+1)

2T λ2

(
GS+2(Ls)−GS+2(Ls − Ld)

))
+e
(

(Ld−Ls)2

2T

(
GS(Ls)−GS(Ls − Ld)

)
+ (Ld−Ls)S

T λ

(
GS+1(Ls)−GS+1(Ls − Ld)

)
+S(S+1)

2T λ2

(
GS+2(Ls)−GS+2(Ls − Ld)

))
if Ld ≤ T ,

h
(

(Ld−Ls)2

2T

(
GS(Ls − Ld + T )−GS(Ls − Ld)

)
+ (Ld−Ls)S

T λ

(
GS+1(Ls − Ld + T )−GS+1(Ls − Ld)

)
+S(S+1)

2T λ2

(
GS+2(Ls − Ld + T )−GS+2(Ls − Ld)

)
+(Ld − Ls − T

2 )
(
GS(Ls)−GS(Ls − Ld + T )

)
+S

λ

(
GS+1(Ls)−GS+1(Ls − Ld + T )

))
+e
(

(Ld−Ls)2

2T

(
GS(Ls − Ld + T )−GS(Ls − Ld)

)
+ (Ld−Ls)S

T λ

(
GS+1(Ls − Ld + T )−GS+1(Ls − Ld)

)
+S(S+1)

2T λ2

(
GS+2(Ls − Ld + T )−GS+2(Ls − Ld)

)
+T

2

(
GS(Ls)−GS(Ls − Ld + T )

))
otherwise.

time
tr to ta tdtn−1 tn

LdΩE(S)
Ls WHCE WECE

V E

Figure 4.21: Timeline with the important time instances for Situation E when S > 0
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Situation F:

The inventory costs changes if no reserved transportation capacity is available for the
considered unit.

FF (x, y) = P
(
Ω(S) ≤ x, V ≤ y, to ≤ ta, ta < tn−1 < td < tn, ts = tn

)
(4.84)

We get the same probabilities since the shipment time is different only from that of
Situation E. Thus, we obtain

fF (x, y) =

 g
S(x)u(y) Ls − Ld < x ≤ Ls, T − Ld + Ls − x < y ≤ T

0 otherwise.
(4.85)

The inventory costs are computed as follows.

E[CF (Ω(S), V )]

=
∫ ∞

0

∫ T

0
CF (x, y)fF (x, y) dy dx

=
∫ Ls

Ls−Ld

∫ T

(T −Ld+Ls−x)+

(
h(x− Ls + Ld + y) + ly

)
gS(x)u(y) dy dx

=
∫ Ls

Ls−Ld

∫ T

(T −Ld+Ls−x)+

(
hx+ h(Ld − Ls) + (h+ l)y

)
gS(x)u(y) dy dx (4.86)

The interval Ls − Ld ≤ x < Ls has to be separated in Ls − Ld ≤ x ≤ Ls − (Ld − T )+

and Ls − (Ld − T )+ < x < Ls to divide the integral (T − Ld + Ls − x)+ < y ≤ T into
T − Ld + Ls − x < y ≤ T and 0 ≤ y ≤ T .

E[CF (Ω(S), V )]

=
∫ Ls−(Ld−T )+

Ls−Ld

∫ T

T −Ld+Ls−x

(
hx+ h(Ld − Ls) + (h+ l)y

)
gS(x)u(y) dy dx

+
∫ Ls

Ls−(Ld−T )+

∫ T

0

(
hx+ h(Ld − Ls) + (h+ l)y

)
gS(x)u(y) dy dx

=
∫ Ls−(Ld−T )+

Ls−Ld

h
Ld − Ls + x

T

S

λ
gS+1(x) + h(Ld − Ls)

Ld − Ls + x

T
gS(x)

+ (h+ l)T
2 − (T − Ld + Ls − x)2

2T gS(x) dx

+
∫ Ls

Ls−(Ld−T )+
h
S

λ
gS+1(x) + h(Ld − Ls)gS(x) + (h+ l)T2 g

S(x) dx
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=
∫ Ls−(Ld−T )+

Ls−Ld

h
Ld − Ls

T

S

λ
gS+1(x) + h

S(S + 1)
Tλ2 gS+2(x) + h

(Ld − Ls)2

T
gS(x)

+ h
Ld − Ls

T

S

λ
gS+1(x) + (h+ l)T

2 − (T − Ld + Ls)2

2T gS(x) dx

+ (h+ l)2(T − Ld + Ls)
2T

S

λ
gS+1(x)− (h+ l)S(S + 1)

Tλ2 gS+2(x)

+
∫ Ls

Ls−(Ld−T )+
h
S

λ
gS+1(x) + h(Ld − Ls)gS(x) + (h+ l)T2 g

S(x) dx

=
∫ Ls−(Ld−T )+

Ls−Ld

h

(
2(Ld − Ls)2

2T + T 2 − (T − Ld + Ls)2

2T

)
gS(x)

+ h

(
Ld − Ls

T
+ Ld − Ls

T
+ T − Ld + Ls

T

)
S

λ
gS+1(x)

+ h
S(S + 1)

2Tλ2 gS+2(x) + l
T 2 − (T − Ld + Ls)2

2T gS(x)

+ l
(T − Ld + Ls)S

Tλ
g+1S(x)− lS(S + 1)

2Tλ2 gS+2(x) dx

+
∫ Ls

Ls−(Ld−T )+
h

(Ld − Ls + T

2

)
gS(x) + S

λ
gS+1(x)

+ l
T

2 g
S(x) dx

=
∫ Ls−(Ld−T )+

Ls−Ld

h

(2L2
d − 4LsLd + 2L2

s + T 2 − T 2 − L2
d − L2

s + 2TLd − 2TLs

2T

+ 2LsLd

2T

)
gS(x) + (Ld − Ls + T )S

Tλ
gS+1(x) + S(S + 1)

2Tλ2 gS+2(x)


+ l

(
T 2 − T 2 − L2

d − L2
s + 2TLd − 2TLs + 2LsLd

2T gS(x)

+ (T − Ld + Ls)S
Tλ

gS+1(x)− S(S + 1)
2Tλ2 gS+2(x)

)
dx

+
∫ Ls

Ls−(Ld−T )+
h

(Ld − Ls + T

2

)
gS(x) + S

λ
gS+1(x)

+ l
T

2 g
S(x) dx

=
∫ Ls−(Ld−T )+

Ls−Ld

h

(
(Ld − Ls)2 + 2T (Ld − Ls)

2T gS(x) + (Ld − Ls + T )S
Tλ

gS+1(x)

+ S(S + 1)
2Tλ2 gS+2(x)

)
+ l

(
−(Ld − Ls)2 + 2T (Ld − Ls)

2T gS(x)

+ (T − Ld + Ls)S
Tλ

gS+1(x)− S(S + 1)
2Tλ2 gS+2(x)

)
dx

+
∫ Ls

Ls−(Ld−T )+
h

(Ld − Ls + T

2

)
gS(x) + S

λ
gS+1(x)

+ l
T

2 g
S(x) dx

= h

(
(Ld − Ls)2 + 2T (Ld − Ls)

2T
(
GS(Ls − (Ld − T )+)−GS(Ls − Ld)

)
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+ (Ld − Ls + T )S
Tλ

(
GS+1(Ls − (Ld − T )+)−GS+1(Ls − Ld)

)
+ S(S + 1)

2Tλ2

(
GS+2(Ls − (Ld − T )+)−GS+2(Ls − Ld)

))

+ l

(
2T (Ld − Ls)− (Ld − Ls)2

2T
(
GS(Ls − (Ld − T )+)−GS(Ls − Ld)

)
+ (T − Ld + Ls)S

Tλ

(
GS+1(Ls − (Ld − T )+)−GS+1(Ls − Ld)

)
− S(S + 1)

2Tλ2

(
GS+2(Ls − (Ld − T )+)−GS+2(Ls − Ld)

))

+ h

(Ld − Ls + T

2

)(
GS(Ls)−GS(Ls − (Ld − T )+)

)

+ S

λ

(
GS+1(Ls)−GS+1(Ls − (Ld − T )+)

)
+ l

T

2
(
GS(Ls)−GS(Ls − (Ld − T )+)

)
(4.87)
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The expected inventory costs for Situation F are given as:

E[CF (Ω(S), V )]

=



h
(

(Ld−Ls)2+2T (Ld−Ls)
2T

(
GS(Ls)−GS(Ls − Ld)

)
+ (Ld−Ls+T )S

T λ

(
GS+1(Ls)−GS+1(Ls − Ld)

)
+S(S+1)

2T λ2

(
GS+2(Ls)−GS+2(Ls − Ld)

))
+l
(

2T (Ld−Ls)−(Ld−Ls)2

2T

(
GS(Ls)−GS(Ls − Ld)

)
+ (T −Ld+Ls)S

T λ

(
GS+1(Ls)−GS+1(Ls − Ld)

)
−S(S+1)

2T λ2

(
GS+2(Ls)−GS+2(Ls − Ld)

))
if Ld ≤ T ,

h
(

(Ld−Ls)2+2T (Ld−Ls)
2T

(
GS(Ls − Ld + T )−GS(Ls − Ld)

)
+ (Ld−Ls+T )S

T λ

(
GS+1(Ls − Ld + T )−GS+1(Ls − Ld)

)
+S(S+1)

2T λ2

(
GS+2(Ls − Ld + T )−GS+2(Ls − Ld)

)
+(Ld − Ls + T

2 )
(
GS(Ls)−GS(Ls − Ld + T )

)
+S

λ

(
GS+1(Ls)−GS+1(Ls − Ld + T )

))
+l
(

2T (Ld−Ls)−(Ld−Ls)2

2T

(
GS(Ls − Ld + T )−GS(Ls − Ld)

)
+ (T −Ld+Ls)S

T λ

(
GS+1(Ls − Ld + T )−GS+1(Ls − Ld)

)
−S(S+1)

2T λ2

(
GS+2(Ls − Ld + T )−GS+2(Ls − Ld)

)
+T

2

(
GS(Ls)−GS(Ls − Ld + T )

))
otherwise.

(4.88)

time
tr to ta tdtn−1 tn

Ld V F = WWCFΩF (S)
Ls WHCF

Figure 4.22: Timeline with the important time instances for Situation F when S > 0
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Situation G:

Since the considered unit is available after it is demanded, early deliveries are not possible.

FG(x, y) = P
(
Ω(S) ≤ x, V ≤ y, to ≤ ta, to < td ≤ ta < tn, ts = tn

)
= P

(
Ω(S) ≤ x, V ≤ y, tr + Ω(S) ≤ tr + Ls,

tr + Ω(S) < tr + Ω(S) + Ld ≤ tr + Ls < tn, ts = tn
)

= P
(
Ω(S) ≤ x, V ≤ y,Ω(S) ≤ Ls,Ω(S) < Ω(S) + Ld ≤ Ls

)
(4.89)

For x ≤ Ls − Ld we get

FG(x, y) = P
(
Ω(S) ≤ x, V ≤ y,Ω(S) ≤ Ls,Ω(S) < Ω(S) + Ld ≤ Ls

)
= GS(x)U(y). (4.90)

Thus, the joint density is given as

fG(x, y) =

 g
S(x)u(y) x ≤ Ls − Ld, y ≤ T

0 otherwise.
(4.91)

E[CG(Ω(S), V )]

=
∫ ∞

0

∫ T

0
CG(x, y)fG(x, y) dy dx

=
∫ Ls−Ld

0

∫ T

0

(
hy + l(y + Ls − Ld − x)

)
gS(x)u(y) dy dx

=
∫ Ls−Ld

0
(h+ l)T2 g

S(x) + l(Ls − Ld)gS(x)− lS
λ
gS+1(x) dy dx

= h
T

2G
S(Ls − Ld) + l

(Ls − Ld + T

2

)
GS(Ls − Ld)− S

λ
GS+1(Ls − Ld)

 (4.92)

time
tr to td tatn−1 tn

Ld WWCGΩG(S)
Ls V G = WHCG

Figure 4.23: Timeline with the important time instances for Situation G when S > 0
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4.6.3 Derivations of the Expected Inventory Costs when S ≤ 0

The expected inventory costs when S ≤ 0 comply with the expected warehouse holding
costs in Situation G when S > 0 because in both cases the unit will always be first
demanded and then it is available. If S = 0, the unit is ordered at the same time point
where the facility order arrives, whereas S < 0 means that we order the considered unit
after the next |S| facility orders are placed. The expected inventory costs are derived
below. Early deliveries are not possible. The time points when the unit is ordered, demand
or available can be described as to = tr−Ω(|S|) < td = tr−Ω(|S|) +Ld ≤ ta = tr +Ls.

F̃ (x, y) = P
(
Ω(|S|) ≤ x, V ≤ y, to < td ≤ ta

)
= P

(
Ω(|S|) ≤ x, V ≤ y, tr − Ω(|S|) < tr − Ω(|S|) + Ld ≤ tr + Ls

)
= P

(
Ω(|S|) ≤ x, V ≤ y, 0 < Ld ≤ Ω(|S|) + Ls

)
(4.93)

For x ≤ ∞ we get

F̃ (x, y) = P
(
Ω(|S|) ≤ x, V ≤ y, 0 < Ld ≤ Ω(|S|) + Ls

)
= P

(
Ω(|S|) ≤ x, V ≤ y

)
= G|S|(x)U(y) (4.94)

Thus, the joint probability density function is given as

f̃(x, y) =

 g
|S|(x)u(y) x ≤ ∞, y ≤ T

0 otherwise.
(4.95)

During V time units the warehouse has to keep stock on hand and during an expected
time interval of V +Ls−Ld + Ω(|S|) late-delivery costs occur, why we get the following
equations.

E[C̃(Ω(S), V )] =
∫ ∞

0

∫ T

0
C̃(x, y)f̃(x, y) dy dx

=
∫ ∞

0

∫ T

0

(
hy + l(y + Ls − Ld + x)

)
g|S|(x)u(y) dy dx

=
∫ ∞

0

∫ T

0

(
(h+ l)y + l(Ls − Ld) + lx

)
g|S|(x)u(y) dy dx

=
∫ ∞

0
(h+ l)T2 g

|S|(x) + l(Ls − Ld)g|S|(x) + l
|S|
λ
gS+1(x) dy dx
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= h
T

2G
|S|(∞) + l

(Ls − Ld + T

2

)
G|S|(∞) + |S|

λ
GS+1(∞)


= h

T

2 + l

(
|S|
λ

+ Ls − Ld + T

2

)
(4.96)

time
to td tr tatn−1 tn

Ld WWC

Ω(|S|) Ls V = WHC

Figure 4.24: Timeline with the important time instances when S ≤ 0

4.6.4 Total Cost of the System without Flexible Deliveries

For our numerical study we need to calculate the shipment costs and inventory costs when
ADI is available but flexible deliveries are not allowed. In that case, the shipment can be
obtained in a similar way as shown in Stenius et al. (2018). Consider that advance orders
can only be shipped after they are due. When computing the expected inventory costs,
there is no decision about early shipments. Therefore, we do not have to distinguish
between all 7 situations as before, we only distinguish between Situation A (ta ≤ to) and
Situation G (to < ta). This yields inventory costs at the warehouse of

E[C̄A(Ω(S))] = h
((
Ld − Ls + T

2

)(
1−GS(Ls − Ld)

)
+ S

λ

(
1−GS+1(Ls − Ld)

))
+ l

T

2

(
1−GS(Ls − Ld)

)
(4.97)

E[C̄G(Ω(S))] = h
T

2G
S(Ls − Ld)

+ l
((
Ls − Ld + T

2

)
GS(Ls − Ld)− S

λ
GS+1(Ls − Ld)

)
(4.98)



5
Chapter Optimal Time-based

Shipment Policy with
Flexible Deliveries

The following chapter is based on Ralfs et al. (2024). Building upon the insights from
the previous chapter, this chapter again focuses on the joint consideration of shipment
consolidation and ADI. However, this chapter differs in several key aspects, as outlined
in Section 5.1. We investigate a periodic review single-echelon inventory system that
satisfies random orders from a production facility. The facility does not expect the
orders to be delivered immediately, but it offers ADI in form of a demand lead time. In
contrast to the previous chapter, we do not assume heuristic shipment quantities but
instead optimize these quantities given a time-based dispatch schedule. In Section 5.2,
we present the MDP, including the state, action, transition functions and period cost. On
this basis, Section 5.3 describes the DRL-based solution algorithm, which relies on state
value approximation, along with an explanation of how the deep neural network is trained.
The results, as discussed in Section 5.4, yield that the DRL policy achieves optimal
decisions in small scale instances. Additionally, we observe general structural properties
of the near-optimal outbound shipment quantities and propose an approximate threshold
(ATH) policy, which performs very well in most of the large-scale instances. We further
benchmark the DRL policy and the ATH policy against three simple policies. Section 5.5
provides a conclusion of this chapter, summarizing the key findings and insights.

5.1 Problem Formulation

We investigate a periodic review inventory model in which a single warehouse satisfies
stochastic orders from a production facility for a single item at the beginning of a shipment
period. The production facility applies a preorder strategy, meaning that every order
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does not have to be satisfied directly but comes along with a due date. This strategy is
represented by a demand lead time Ld, which specifies the number of periods between
the order placement by the facility and the due date. For instance, an order placed at the
end of period i is due at the beginning of period i+ Ld + 1. A preorder does not have
to be satisfied directly until it is due. Therefore, the inventory manager distinguishes
between orders (orders which are not due) and demands (orders which are due). For
simplicity, we assume that the production facility always orders with an identical and
constant demand lead time Ld and that order cancellations are negligible due to high
cancellation costs. We do not consider an explicit replenishment policy at the warehouse,
and we assume that there is always sufficient stock at the warehouse so that we can
focus purely on the optimal outbound shipment policy.

The warehouse applies a time-based shipment dispatch policy, meaning that a shipment is
dispatched to the production facility every T periods. The time T between two shipment
periods is called the shipment interval. In contrast to approaches in the literature on
time-based shipment consolidation, the warehouse does not ship all accumulated demands
accumulated since the last dispatch. Instead, we assume that the inventory manager
decides about the shipment quantity at the beginning of a shipment period, taking into
account the information about the number of demands and orders. Like Wang and
Toktay (2008), the warehouse applies the concept of flexible deliveries. Therefore, orders
can be shipped before the corresponding due date. Instead of making individual binary
decisions for each ordered unit, the inventory manager determines the total number of
units to be dispatched at the beginning of a shipment period t, denoted by xt. This
process results in a single integer-based decision about all demands and orders, with units
being dispatched based on the FCFS principle. In summary, when the inventory manager
chooses a shipment quantity less than the number of demands, only the demands are
shipped, whereas a shipment quantity larger than the number of demands leads to a
shipment of all demands and additional orders.

Let us enumerate the decision periods as t ∈ T , where T defines the set of decision
periods T = {0, 1T, 2T, . . . } with T as the shipment interval, and we define the sequence
of events as follows:

(i) Review of the system state at the beginning of the shipment period t

(ii) Decision about the outbound shipment quantity to the production facility at the
beginning of the shipment period t
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(iii) Arrival of T stochastic orders for periods t, t + 1, . . . , t + T − 1 with identical
demand lead times at the end of the shipment period t

(iv) Incursion of cost at the end of the shipment period t

Now, we focus on the cost incurred within this inventory system. A 3PL manages the
movement of goods from the warehouse to the production facility to be able to act
flexibly. The terms of the contract with the 3PL are set as follows: For each shipment
period t, a prearranged transportation capacity of Cap units is reserved, referred to
as primary transportation option. If the actual shipment quantity in shipment period
t, xt, exceeds this reserved capacity Cap, the manager ships (xt − Cap)+ units with
an alternative transportation option. We assume linear shipment costs c1 per reserved
transportation capacity for the primary transportation option. These costs are similar
in each shipment period and correspond to c1 · Cap. These reservation costs are not
decision relevant and, therefore, are not included in our analysis; however, it is simple
to add them to managerial proposals in a numerical study. Each unit shipped by the
alternative transportation option incurs linear shipment costs c2. The managers’ decision
directly influences this part of the shipment costs. We note that c1 ≤ c2.

In addition to shipment costs, two other types of costs are incurred. First, if orders
are dispatched to the production facility before the due date, early-delivery costs e are
incurred per unit and period. This term represents the additional inventory holding costs
at the production facility, where space is often limited. Second, if the warehouse manager
decides not to fulfill demands, late-delivery costs l are incurred per unit and period.
This reflects the cost of higher safety stocks at the production facility to hedge against
stockouts.

Our goal is to determine the optimal outbound shipment quantities for a given shipment
interval T and a given reserved transportation capacity Cap under random orders, which
minimizes the expected total cost per period comprising early-delivery, late-delivery, and
shipment costs throughout the planning horizon. An overview of the problem is presented
in Figure 5.1.

Shipping all the demands and orders to the production facility at the beginning of a
shipment period may lead to high early-delivery and shipment costs if the reserved capacity
Cap is exceeded. Shipping at maximum Cap units minimizes shipment costs; however,
this strategy may lead to high late-delivery costs. Therefore, the warehouse manager
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Figure 5.1: Flow of information and goods in the considered inventory system

must determine the shipment quantity in such a way that the right balance of these types
of costs is found.

5.2 Markov Decision Process

We formalize the described problem by using a MDP, with the components detailed as
follows:

Decision epoch. Let us consider an infinite planning horizon. The inventory manager
makes decisions at the beginning of each shipment period t ∈ T .

Pre-decision state. The state at the beginning of shipment period t, before the
decision takes place, is an (Ld + 1)-dimensional vector, S̄t =

(
wt, y

1
t , y

2
t , . . . , y

Ld
t

)
. The

component wt denotes the demands already due in shipment period t, and yn
t signifies

the orders due in period t+ n.

Decision. Let Xt be the set of potential decisions at the beginning of shipment period t
and let xt indicate the chosen decision at that time. Given that the inventory manager
decides the quantity of units to dispatch, Xt includes all integers from zero up to the
total of demands and orders. Thus, xt belongs to the set {0, 1, . . . , wt +∑Ld

i=1 y
i
t}.

Post-decision state. The state after making a decision, represented as S̄x
t , encompasses

the information available once the decision xt has been executed but prior to the arrival of
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any exogenous information. In terms of dimensionality, S̄x
t is identical to the pre-decision

state S̄t. Each dimension is updated in the following manner:

w̃t = (wt − xt)+ (5.1)

ỹj
t = min

(wt +
j∑

i=1
yi

t − xt

)+

, yj
t

 ∀ j ∈ {1, 2, . . . , Ld} (5.2)

Given that orders are dispatched based on the FCFS principle, we subtract the dispatch
decision from the pre-decision state vector in sequence. We begin with the demands, as
shown in Equation (5.1). We then proceed with the orders from the lowest due date to
the highest due date, as shown in Equation (5.2). The post-decision state can then be
written as S̄x

t =
(
w̃t, ỹ

1
t , ỹ

2
t , . . . , ỹ

Ld
t

)
.

Exogenous information. We define a vector Φt with T dimensions that contains the
orders from the production facility between two decision points. Since orders are received
on a periodic basis, we denote Φt =

(
D0

t , D
1
t , . . . , D

T −1
t

)
, where Dn

t is a random variable
reflecting the number of ordered units at the end of period t + n and due in period
t+ n+ Ld + 1, with t ∈ T . The realization of Φt is denoted by ϕt =

(
d0

t , d
1
t , . . . , d

T −1
t

)
.

Transition functions and costs. Once the exogenous information variable Φt material-
izes, the system transitions to the subsequent pre-decision state S̄t+T , and associated costs
incur. The transition to the next pre-decision state S̄t+T =

(
wt+T , y

1
t+T , y

2
t+T , . . . , y

Ld
t+T

)
is described in Equation (5.3) and Equation (5.4).

wt+T = w̃t +
min(Ld,T )∑

i=1
ỹi

t +
(T −Ld)+−1∑

i=0
di

t (5.3)

yj
t+T =


dj+T −Ld−1

t ∀ j ∈ {1, 2 . . . , Ld} if Ld ≤ T

ỹj+T
t ∀ j ∈ {1, 2, . . . , Ld − T} if Ld > T
dj−Ld+1

t ∀ j ∈ {Ld − T + 1, Ld − T + 2, . . . , Ld}

(5.4)

Since the transition depends on the length of the demand lead time and the length of
the shipment interval, we distinguish between two scenarios: Ld ≤ T and Ld > T .
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The demand transition in period t+T can be presented consistently, including both cases.
The first term in Equation Equation (5.3) represents that all the demands remaining
unfulfilled after the shipment decision, i.e., w̃t, must be added to the demands in period
t+T , wt+T . Additionally, orders that have not been shipped and became due before t+T
are incorporated into wt+T . The third term in Equation Equation (5.3) demonstrates
that the orders received at the end of shipment period t are attributed to wt+T if the
demand lead time is less than or equal to the length of the shipment interval, meaning
that their due date is before or at the subsequent shipment period t+ T . Consequently,
there is no chance for these orders to be dispatched before their due dates.

To illustrate the transition of orders with the corresponding due date j, yj
t+T ∀ j ∈

{1, 2, . . . , Ld}, we need to separate the transition. If Ld ≤ T , all known orders that
remain after the shipment decision mutate to demands. Therefore, only new orders
received at the end of shipment period t are assigned to yj

t+T ∀ j ∈ {1, 2, . . . , Ld} with
a due date in period t+ T + j. However, if Ld > T , known orders that have not been
shipped at t and whose due date is after t+ T continue to be orders. Additionally, all
new orders received at the end of shipment period t are due after t+ T .

In the sequel, we derive the expressions for the expected total cost per period, when
a shipment decision is made every T periods. Provided that the shipment decision is
set at the beginning of a shipment period t ∈ T , we can easily compute the additional
shipment costs when using the alternative transportation option.

cshipment
t (xt) = c2(xt − Cap)+ (5.5)

Furthermore, all units shipped before their due date incur early-delivery costs.

cearly
t (xt) = e

T∑
i=1

(yi
t − ỹi

t)i (5.6)

Moreover, the expected late-delivery costs are defined as follows:

clate
t (xt) = l

Tw̃t +
min(Ld,T −1)∑

i=1
ỹi

t(T − i)

+ E
[min(Ld−T,Ld−1)∑

i=0
Di

t(T − Ld − i− 1)
] (5.7)
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In summary, the expected total cost per period when the system is in state S̄t and making
decision xt can be written as follows:

c(S̄t, xt) = 1
T

(
cshipment

t (xt) + cearly
t (xt) + clate

t (xt)
)

(5.8)

Let Π represent the set of feasible policies. A policy π ∈ Π is a function that maps a
pre-decision state S̄t to a decision xt. The objective is to identify the optimal policy π∗

that minimizes the expected total discounted cost Ct, starting from the initial state S̄0.

π∗ = argmin
π∈Π

 ∑
t∈{0,1T,2T,... }

γc(S̄t, π(S̄t)|S̄0)

 , (5.9)

where γ ∈ (0, 1] is the discount factor.

In theory, the value function of a state S̄t, denoted by V (S̄t), which is the minimum
cumulative discounted cost when starting from state S̄t, can be recursively determined
by using Bellman’s equation:

V (S̄t) = min
xt∈Xt

{c(S̄t, xt)T + γ
∑

S̄′∈St+T

Pr(S̄t+T = S̄ ′|S̄t, xt)V (S̄ ′)}, (5.10)

where St+T denotes the set of all possible pre-decision states in period t+ T .

Once the state values V (S̄t) for all states in Equation (5.10) are determined, the optimal
decision can then be extracted by using:

x∗
t = argmin

t∈T
{c(S̄t, xt)T + γ

∑
S̄′∈St+T

Pr(S̄t+T = S̄ ′|S̄t, xt)V (S̄ ′)} (5.11)

While the Bellman optimality equations represented in Equation (5.10) and Equation (5.11)
provide an exact framework for computing the optimal policy, their applicability is generally
limited to small-scale problem instances due to the well-known curse of dimensional-
ity (Powell, 2022). In the following section, we introduce an algorithm designed to
approximate the optimal policy in a computationally efficient manner.
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5.3 Deep Reinforcement Learning Policy

In this section, we present our DRL-based solution algorithm to obtain an outbound
shipment policy, denoted by πDRL. In Section 5.4, we demonstrate that the approach
under discussion yields near-optimal decisions in small-scale instances and performs well
in large-scale instances. In the following, we first outline the fundamental concepts before
delving into the specifics of training the deep neural network.

5.3.1 General Concepts

Applying the state value approximation provides a way to circumvent the limitations
of size and dimensionality in the decision space of policy-based reinforcement learning
approaches. In contrast to policy-based methods, where decision-making is restricted by
the number of output nodes in the policy network, the state value approximation enables
a more general optimization problem, as stated in Equation (5.11). However, even when
the pre-decision state values in Equation (5.10) are accurately approximated, extensive
forward simulation is typically necessary to calculate the expected cost-to-go for making
a decision by using Equation (5.11). This becomes an issue when the transition space is
large, which is common in real-world problems. Therefore, we opt to approximate the
value of the post-decision state S̄x

t , as described in Powell (2022), to partially circumvent
this issue.

Given that the post-decision state captures the condition of the system after a decision
has been made but prior to the arrival of any exogenous information, it follows that
the immediate deterministic costs, denoted by cdet(S̄t, xt), include all costs that do not
depend on the realization of the vector Φt. Accordingly, cdet(S̄t, xt) is calculated as
follows:

cdet(S̄t, xt) = c2(xt − Cap)+ + e
T∑

i=1
(yi

t − ỹi
t)i

+ l

Tw̃t +
min(Ld,T −1)∑

i=1
ỹi

t(T − i)
 (5.12)

The optimization problem now becomes:

x∗
t = argmin

xt∈Xt

{cdet(S̄t, xt) + γVx(S̄x
t )} (5.13)
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Figure 5.2: Decision-making process of the DRL policy

where Vx(S̄x
t ) is the value function of the post-decision state S̄x

t , which is the minimum
cumulative discounted cost when starting from the post-decision state S̄x

t .

A general overview of the process, from being in a state S̄t and using πDRL to finally
making a decision xt, is illustrated in Figure 5.2. Starting from the pre-decision state S̄t,
all possible post-decision states are generated by iterating through each decision from
0 to N , where N is the total number of demands and orders. Subsequently, a deep
neural network, represented by θ, assigns a value to each generated post-decision state.
The final decision is determined by choosing the option that minimizes the sum of the
immediate deterministic costs, cdet(S̄t, xt), and the value of the associated post-decision
state. Specifically:

πDRL(S̄t) = argmin
xt∈Xt

{cdet(S̄t, xt) + γV θ
x (S̄x

t )} (5.14)

Let us note that no forward simulation was performed, as all terms in Equation (5.14)
can be calculated exactly.

In problems with a relatively small decision space, this modification enables near-
instantaneous decision-making since no forward simulation is needed to estimate the
cost-to-go of making a decision xt; the post-decision state S̄x

t already captures this
information. This not only speeds up the decision process when the policy is already
in place but also facilitates rapid roll-out during training to aid post-decision state
value approximation. This approach is also applicable to problems with much larger
decision spaces; however, in those cases, an efficient method must be found to solve the
deterministic optimization problem presented in Equation (5.13).

However, the post-decision state value function in Equation (5.14) needs to be accurately
approximated. To this end, we use a simple fully connected neural network and train it
to map post-decision states to their corresponding values. We elaborate on this in the
subsequent section.
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5.3.2 Training the Deep Neural Network

In this approach, we need a function to map a multidimensional post-decision state
vector into a scalar value representation. To achieve this, we chose a straightforward fully
connected network. This network has Ld + 1 input nodes and consists of three hidden
layers, each with 128 nodes, and we use the rectified linear unit (ReLU) as the activation
function. The final output layer utilizes linear activation and has a single output node.

The deep neural network is trained by using the following procedure. Initially, the
parameters of the network, denoted by θ, are subject to random initialization. We
then instantiate a random state S̄t by randomly initializing the elements of its state
vector. Subsequent decisions are made according to Equation (5.13) by using the current
parameter set θ to compute the value of the post-decision state. At the outset of training,
the values produced by the network are not expected to provide accurate approximations
of the post-decision state due to the purely random initialization of θ. After making
the decision xt, we arrive at the post-decision state S̄x

t before the system is simulated
forward to the subsequent state S̄t+T using a single realization of the random vector Φt.
Given this realization ϕt, we can calculate the associated cost as follows:

crand(S̄t, xt) =
min(Ld−T,Ld−1)∑

i=0
di

t(T − Ld − i− 1) (5.15)

In the subsequent pre-decision state S̄t+T , a decision is once again selected by using the
previously described procedure. This yields the next deterministic cost cdet(S̄t+T , xt+T )
as well as the following post-decision state S̄x

t+T . We then store the following quadruples
in a double-ended queue, commonly referred to as the experience buffer, as outlined in
Mnih et al. (2015):

(
S̄x

t , c
rand(S̄t, xt), cdet(S̄t+T , xt+T ), S̄x

t+T

)
(5.16)

This entire procedure continues until an adequate number of experiences is collected in
the buffer. Once this threshold is reached (in the context of our study, 64 experience
quadruples are in the buffer), the optimization of the neural network θ begins. A random
batch of experience is sampled from the buffer, and the loss function from experience is
constructed as follows:

L = [V θ
x (S̄x

t )− (crand(S̄t, xt) + cdet(S̄t+T + xt+T ) + V θtarget

x (S̄x
t+T ))]2, (5.17)
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where θtarget serves as the target network (Mnih et al., 2015) and is structurally identical
to θ. This target network is a delayed duplicate of θ and receives updates at fixed intervals
of every I iterations. Subsequently, the network θ undergoes an update by using the
well-known Adam optimizer (Kingma and Ba, 2014) to minimize the loss function defined
in Equation (5.17). We employ the ϵ-greedy approach, in which there is an ϵ probability
of selecting a random, feasible decision to promote exploration of the state space.

In our study, we configured the experience buffer to have a length of 1,000 experiences,
set the target network update interval I at 100 iterations, and chose a batch size of 64.
The initial value of ϵ is set to 1, and the value undergoes exponential decay at a rate
of 0.999 in each iteration. Varying these hyperparameters within a similar range does
not significantly impact the training results, indicating that the model is relatively robust
to changes in these settings. To capitalize on the benefits of estimating post-decision
state values for faster decision-making, we conduct a brief roll-out (without ϵ-greedy)
every 1,000 iterations. During this process, we use the current network parameters to
assess the current out-of-sample performance. Each roll-out lasts for 10,000 epochs.
If the current network outperforms previous best-performing networks in these rollouts
(i.e., achieves a lower total cost), its parameters are retained as the best-found network
parameters, denoted by θbest. In addition, if no improvement was found in the last ten
roll-outs, we then reset the parameter ϵ to one to diversify the search. The whole training
process stops after 100,000 epochs.

At the end of the training process, we obtain the best-found neural network parameters
θbest, which can then be used in Equation (5.13) to make decisions on unseen instances
in the numerical experiment.

5.4 Numerical Study

To evaluate our proposed DRL approach, we divide the numerical experiments into three
parts. First, we compute the expected total cost per period when using the DRL policy
for a selection of small-scale scenarios and compare them with the expected total cost
per period when using the optimal policy, computed with VI. We can observe several
structural properties of the optimal policy, which we use to define an ATH policy. In
addition, we present simple but reasonable heuristics without any thresholds. Finally,
we turn our focus to a set of large-scale instances characterized by extended demand
lead times, longer shipment intervals, and a higher order rate. Due to the computational
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limitations of VI for such large instances, we benchmark the DRL policy πDRL against all
heuristics. Finally, we draw managerial insights; in particular, we focus on the value of
ADI and transportation capacity planning.

We compute the average total cost per period of our policies for each instance via
simulation. The length of each simulation replication is 10,000 periods, while excluding a
warm-up period of 1,000 periods in each replication. A minimum of ten replications is
performed. Afterward, we use sequential sampling and stop if the half-width of the 95 %
confidence interval of the average total cost per period is less than 1 % of the current
average total cost per period of the considered instance.

5.4.1 Small-Scale Instances

The settings for small-scale scenarios are outlined in Table 5.1. For each period within
the planning horizon, the facility’s order quantities are determined randomly based on
a uniform distribution, U(dmin, dmax), where both endpoints are inclusive. The reserved
transportation capacity Cap is calculated by taking the product of the capacity ratio
rCap and the length of the shipment interval T and then multiplying it by the mean of
the aforementioned period order quantities, dmin+dmax

2 . The capacity ratio rCap reflects
the planner’s strategy for capacity reservation. If rCap is less than 1, Cap is less than
the expected number of facility orders between two shipment periods, and vice versa.

The set of parameter values detailed in Table 5.1 yields 216 unique instances. The
performance gap (i.e., the relative difference in the expected total cost per period)

Table 5.1: Problem parameters for small instances
Parameters Values

Shipment interval T {2, 4}
Demand lead time Ld {1, 2}
Capacity ratio rCap {0.5, 1, 2}
Shipment cost c2 {1, 10, 50}
Early-delivery cost e {10}
Late-delivery cost l {1, 10, 50}
Minimum demand dmin {0}
Maximum demand dmax {4, 6}
Discount factor γ {0.99}
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Table 5.2: Averaged optimality gap for all 216 instances

Parameters Value
Average Maximum

optimality gap optimality gap
in % in %

Shipment interval T 2 0.11 1.79
4 0.06 1.98

Demand lead time Ld 1 0.04 1.10
2 0.13 1.98

Maximum demand dmax 4 0.06 1.47
6 0.10 1.98

Capacity ratio rCap 0.50 0.02 0.43
1 0.23 1.98
2 0.00 0.0

Shipment costs c2 1 0.03 0.68
10 0.06 1.47
50 0.15 1.98

Late-delivery costs l 1 0.17 1.98
10 0.08 1.50
50 0.00 0.04

Total 0.08 1.98

between the DRL policy, πDRL, and the optimal policy computed with VI is presented
across varying parameter values in Table 5.2.

Among the 216 instances, πDRL identified the optimal policy in 192 cases. In the few
instances where it did not, the difference in optimality was small, as highlighted in
Table 5.2. These results highlight the quality of the learning strategy presented, which
delivers high performance across a wide range of scenarios.

Table 5.3 lists the maximum number of iterations at which the optimal DRL parameters,
denoted by θbest, were identified for each instance. The data reveal that for the majority
of instances, θbest was determined in the early phases of the training process. Nevertheless,
it is noteworthy that for some instances, updates to θbest occurred toward the end of
training, implying that extended training duration may yield marginally better policies.
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Table 5.3: Iteration before θbest was found across instances
Iteration 20,000 40,000 60,000 80,000 100,000

Number of instances 170 12 5 12 17

5.4.2 Benchmark Policies

It is highly important to find good approximations to support decisions in large-scale
real-world problems. In this section, we provide key observations of the policy obtained
by VI, leading to a multi-level threshold policy. The insights offer the development of
an ATH policy with three thresholds. Additionally, we present three simple heuristics in
this section. The performance of the benchmark policies is tested in Section 5.4.3 for
large-scale instances.

Structural Properties of the Observed Threshold Policy

In the following, we describe the structure of the observed threshold policy for a demand
lead time Ld. In general, the shipment quantity is composed of four parts:

Part 1 The part of demands that is always shipped. It is limited by the reserved
transportation capacity Cap.

Part 2 The part of the remaining demands that is shipped even if the reserved
transportation capacity Cap is exceeded.

Part 3 The part of the orders that is shipped. It is limited by the reserved transporta-
tion capacity Cap.

Part 4 The part of the remaining orders that is shipped even if the reserved trans-
portation capacity Cap is exceeded.

Let us discuss the intuition leading to these observations. Starting with Part 1, remember
that decision-relevant shipment costs for the alternative transportation option, cshipment

t ,
arise only if the inventory manager decides to ship more than Cap units (cf. Equa-
tion (5.5)). Additionally, demands cause late-delivery costs clate

t if they are left unfulfilled.
Hence, given a specific pre-decision state S̄t, at least min(wt, Cap) units are dispatched
at the beginning of the shipment period t. If the reserved capacity is exhausted, the
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remaining demands w̄t = (wt − Cap)+ may still be shipped at the beginning of the
shipment period t. Therefore, a trade-off occurs between minimizing late-delivery and
shipment costs, which leads to the observations in Part 2.

The inventory manager has the opportunity to ship orders. Part 3 reflects the case
in which there is still available reserved capacity even if the manager decides to ship
all the demands wt. Dispatching orders ahead of their due date causes early-delivery
costs, which is why the inventory manager may decide to ship fewer orders than the
remaining transportation capacity (Cap− wt)+. The trade-off occurs between incurring
early-delivery costs at the end of the current shipment period versus potentially incurring
late-delivery and shipment costs at the end of future shipment periods. Therefore, not
necessarily all the orders are shipped until Cap is fully utilized.

Part 4 outlines the case where orders are shipped even if the reserved transportation
capacity Cap is fully exhausted. We can compute the number of remaining orders that
are not shipped with the reserved capacity by ȳi

t = min(yi
t, (wt +∑i

j=1 y
i
t−Cap)+) ∀ i ∈

{1, 2, . . . , Ld}. In addition to early-delivery costs, shipment costs occur in shipment
period t if the manager decides to ship these orders. However, shipping these orders in
the current period may still be cost-optimal in the long run as future late-delivery and
shipment costs may be saved.

In summary, the structure of the observed threshold policy, denoted by πT H
Ld

, can be ex-
pressed mathematically as demonstrated in Equation (5.18), including multiple thresholds
µi

j, ∀ i ∈ {1, 2, . . . , 2Ld}, ∀ j ∈ {0, 1, . . . , Ld}.

πT H
Ld

(S̄t) = min (wt, Cap)

+ min

w̄t,max


(w̄t +

n∑
i=1

yi
t − µn

0

)+


n∈{0,1,...,Ld}




+
Ld∑
i=1

min


Cap− wt −

i−1∑
j=1

yj
t

+

, yi
t,max


 n∑

j=i

yj
t − µn

i

+
n∈{i,i+1,...,Ld}





+
Ld∑
i=1

min

ȳi
t,max


ȳi

t +
n∑

j=i+1
yj

t − µn
Ld+i

+
n∈{i,i+1,...,Ld}



 , (5.18)

where w̄t = (wt − Cap)+ and ȳi
t = ȳi

t = min(yi
t, (wt +∑i

j=1 y
j
t − Cap)+) represent the
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remaining demands and the remaining orders due to i periods, respectively, which cannot
be shipped by the reserved capacity Cap.

To emphasize the necessity for entire thresholds, we repeat that orders with distinct due
dates cannot be aggregated since they cause different associated costs, leading to Ld + 1
state dimensions. The optimal policy obtained by VI demonstrates that the decision of
how many units of w̄t should be shipped at the end of shipment period t depends not
only on the number of w̄t itself but also on the number of orders that may influence
this decision. We observe that orders with due dates in the near future have a stronger
impact on the abovementioned decision than those with due dates in the distant future.
In conclusion, the number of orders cannot be aggregated across several state dimensions,
even in context decision-making. Overall, Ld + 1 thresholds are needed to represent the
influence of the number of orders yi

t ∀ i ∈ {1, 2, . . . , Ld} on the dispatch decision for
remaining demands w̄t.

The abovementioned impact can be transferred to the dispatch decision for the orders
themselves. Specifically, the number of orders yk

t ∀ k ∈ {1, . . . , Ld} may have an impact
on the shipment decision yl

t ∀ l ∈ {1, . . . , k}. Consequently, multiple thresholds are
needed to represent these influences. Since the influence also depends on whether the
shipment incurs additional shipment costs for the alternative transportation option (Part
3 versus Part 4), a total of two ∑Ld

k=1 k = Ld(Ld+1)
2 thresholds must be included. We

can conclude that the total number of thresholds in Equation (5.18) grows quadratically
according to (Ld + 1)2.

When considering a demand lead time of Ld = 1, the total number of thresholds is still
tractable at four. The associated policy is shown in Equation (5.19).

πT H
1 (S̄t) = min (wt, Cap)

+ min
(
w̄t,max

(
(w̄t − µ0

0

)+
,
(
w̄t + y1

t − µ1
0

)+
)
)

+ min
(

(Cap− wt)+ , y1
t ,
(
y1

t − µ1
1

)+
)

+
(
ȳ1

t − µ1
2

)+
(5.19)

where w̄t = (wt − Cap)+ and ȳ1
t = min(y1

t , (wt + y1
t − Cap)+) represent the remaining

demands and the remaining orders, respectively, which cannot be shipped by the reserved
capacity Cap.
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We computed the expected total period cost for all 108 small-scale instances where
Ld = 1 by evaluating every possible combination of the four thresholds, where each
threshold can take values from 0 to dmax(Ld + 1). We then identify the threshold values
that yield the minimum expected total period cost and compare it to the results calculated
by VI. It is noteworthy that we can determine a combination of thresholds that minimizes
the expected total cost per period for all 108 instances.

Approximate Threshold Policy - πAT H

Let us introduce an ATH policy to compute the outbound shipment quantities based on
the observed properties of the previous section, and we denote it by πAT H . The main
difference from the policy πT H lies in the aggregation of orders with different due dates.
Consequently, a total of three thresholds are needed to reflect the impact on shipment
decisions, as indicated in Part 2, Part 3 and Part 4, independent of the length of the
demand lead time. Specifically, πAT H is defined as follows:

πAT H(S̄t) = min (wt, Cap)

+ min
w̄t,

w̄t +
Ld∑
i=1

yi
t − µAT H

0

+
+ min

(Cap− wt)+ ,

 Ld∑
i=1

yi
t − µAT H

1

+
+
(
ȳt − µAT H

2

)+
, (5.20)

where w̄t = (wt − Cap)+ and ȳt = (wt + ∑Ld
i=1 y

i
t − Cap)+ represent the remaining

demands and the remaining orders, respectively, which cannot be shipped by the reserved
capacity Cap.

While the decision under πAT H is easier to compute than that under πDRL, the challenge
is to determine the cost-minimizing values for the three thresholds µAT H

0 , µAT H
1 , and

µAT H
2 . For this purpose, we use a version of simulated annealing, as described in Van

Laarhoven et al. (1987), where each threshold can take non-negative values. A detailed
description of the simulated annealing algorithm is presented in Appendix 5.6.1.
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Simple Benchmark Policies

In addition to the ATH policy, πAT H , we present simple benchmark policies without any
thresholds, as detailed in the following:

Dispatch-up-to policy Under this policy, we dispatch all demands even if the reserved
transportation capacity Cap is exceeded and unplanned trans-
portation capacity is needed. However, we dispatch orders
only up to the reserved capacity Cap and at a maximum of
one shipment period ahead.
πUP T O(S̄t) = max

(
min(Cap,wt +∑min(Ld,T )

i=1 yi
t), wt

)

Lazy policy Under this policy, we dispatch all demands. This policy is
similar to a situation without any ADI.
πLAZY (S̄t) = wt

Greedy policy Under this strategy, we dispatch all the demands and orders.
πGRDY (S̄t) = wt +∑Ld

i=1 y
i
t

The dispatch-up-to policy is inspired by the outbound shipment policy presented in
Section 4.1. In the following, we present the performance of the four heuristics for 270
large-scale instances.

5.4.3 Large-Scale Instances

In this section, we examine the performance of the presented benchmark policies by
comparing the associated expected total period cost to the expected total period cost
when using DRL. In addition, we present managerial insights into the value of ADI
and capacity planning. Like for small-scale instances, we assume that the number of
stochastic orders at the end of each period can be represented by a uniform distribution
U(dmin, dmax). The configurations for the large-scale instances are presented in Table 5.5.
In contrast to small-scale instances, we consider demand lead times from 0 to 8, fix the
maximum demand to 10, and investigate two shipment interval levels, 2 and 6. Let us
recall that the reserved transportation capacity is Cap = rCapT

dmin+dmax

2 . Overall, we
consider 270 distinct large-scale instances.

Before we conduct managerial investigations for large-scale instances based on the
expected total cost per period obtained by the DRL policy, we first determine how often
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Table 5.5: Problem parameters for large instances
Parameters Values

Shipment interval T {2, 6}
Demand lead time Ld {0, 2,. . . , 8}
Capacity ratio rCap {0.5, 1, 2}
Shipment cost c2 {1, 10, 50}
Early-delivery cost e {10}
Late-delivery cost l {1, 10, 50}
Minimum demand dmin {0}
Maximum demand dmax {10}
Discount factor γ {0.99}

the DRL policy achieves the best performance, defined as leading to the minimum total
period cost among all mentioned policies. We specify that the DRL policy performs the
best among all the mentioned policies if its associated total cost per period is at most
1 % higher than the minimum total cost per period. In our analysis, we find that the DRL
policy exhibits the best performance in 252 out of 270 instances. In only 18 instances,
either the ATH or the dispatch-up-to policy outperforms the DRL policy. Across all these
instances, the average cost increase compared to the minimum cost is 0.18 %, with a
maximum increase of 5.23 %. Given this remarkable performance even in large-scale
instances, we conclude that the performance of the DRL policy is acceptable as the
underlying policy for managerial insights.

Performance of the Benchmark Policies

This subsection primarily focuses on the performance of the benchmark policies. Therefore,
we compare the expected total cost per period of all benchmark policies with that of the
DRL policy, which we consider to indicate near-optimal total cost values. In Appendix
5.6.2, we present Table 5.8, which shows the average total cost per period for all the
policies under fixed input parameters. In Figure 5.3, we specifically concentrate on the
expected total period cost across an increased demand lead time Ld. In Table 5.6, we
provide a summary of the parameter settings where each of the benchmark policies
performs near-optimally.

First, we mention that in instances where no ADI is available, i.e., when Ld = 0, all
simple benchmark policies (i.e., dispatch-up-to, lazy, and greedy policies) are designed to
ensure the shipment of all demands. However, both the DRL and ATH policies slightly
outperform the three simple policies. This suggests that it is cost-beneficial, at least for
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Figure 5.3: Expected total cost per period under different policies across demand lead times

some instances, to delay the fulfillment of demands until the beginning of the subsequent
shipment period, as the shipment fees for the alternative transportation option outweigh
the costs associated with late deliveries.

The ATH policy closely approximates the performance of the DRL policy and identifies
the cost-minimizing policy in more than 65 % of the instances. When no ADI is available,
both the DRL and ATH policies minimize the total cost per period. However, the relative
total cost difference compared to that of DRL increases as the demand lead time increases.
For example, when Ld = 2, the three thresholds approximates the near-optimal policy
quite well. In 41 out of 54 instances, this approximation finds the near-optimal policy,
resulting in an average relative total cost increase of 15.34 % compared to DRL. This
high percentage is caused by a few instances leading to a maximum relative cost of
135.87 %.

As the demand lead time increases, e.g., when Ld = 8, the relative total cost increase
becomes 60.08 %, since 31 out of 54 instances do not perform similarly to the near-optimal
policy. In particular, when the shipment interval is set to 2 and the unit late-delivery cost
is 50, the three thresholds cannot capture all the influences on near-optimal shipment
decisions. However, if we exclude all instances with T = 2 and l = 50, the average and
maximum relative costs increase compared to those of DRL across all remaining instances
by only 6.87 % and 25.69 %, respectively. Similarly, we find that the ATH policy works
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supremely well if the late-delivery cost parameter is 1. To summarize, the ATH policy is
an extremely good approximation for most of the instances. An intuitive policy, such as
the ATH, is often more interpretable and explainable; therefore, it may be preferable to a
DRL policy, which is a black box.

The dispatch-up-to policy already exhibits an average relative total cost increase of more
than 100 % across the 54 instances compared to DRL if Ld = 2. With increasing demand
lead time, the average relative cost increase becomes even greater. However, we find
that this policy works extremely well in scenarios where the unit late-delivery cost is high,
i.e., l = 50, and the capacity ratio is high, i.e., rCap = 2. In these scenarios, a significant
number of late deliveries can be avoided by shipping advance orders ahead of schedule,
enabled by the large capacity reservation.

The lazy policy acts as a policy without any demand information, which is why the average
total cost per period is constant with increasing demand lead time. The lazy policy
performs well when the late-delivery cost parameter is low, in combination with a large
capacity reservation. Under this policy, only demands that are due are dispatched, which
must wait quite long for dispatch due to the time-based shipment scheme. Therefore,
this policy seems reasonable only for a low late-delivery cost parameter. Additionally, if a
large amount of transportation capacity is reserved, the probability of incurring costs for
the alternative transportation option is very low.

The greedy policy ships all the demands and advance orders at the beginning of the
shipment period. As early-delivery costs are incurred on a per-unit and per-period basis for
units sent in advance, the average total period cost increases with increasing demand lead
time under this policy. However, the greedy policy performs extremely well in scenarios
where the demand lead time is shorter than the shipment interval and when there is a
strong incentive to avoid late deliveries, i.e., when late-delivery costs are high.

In summary, we note that every policy presented in this section has its own justification
and is applicable to specific scenarios, summarized in Table 5.6. However, if the planner
does not consider the cost parameters or the capacity ratio, then this may lead to poor
cost performance.
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Table 5.6: Cost minimal behavior of the benchmark policies
Ld < T Ld ≥ T

rCap l = 1 l = 10 l = 50 l = 1 l = 10 l = 50

0.5 ATH - Greedy ATH - -
1 ATH - Greedy ATH - -
2 ATH/Lazy - Greedy/Up-to ATH/Lazy - Up-to

Cost Improvements by Advance Demand Information and Flexible Deliveries

ADI facilitates the option to facilitate flexible deliveries and to ship advance orders ahead
of schedule to the production facility. In this section, our objective is to emphasize the
value of integrating ADI and flexible deliveries by focusing on the average total cost
per period under fixed input parameters. We pay particular attention to the impact of
increasing demand lead times.

Table 5.7 illustrates the marginal relative cost differences per period as the demand lead
time increases when calculating the expected cost using DRL.

If Ld is equal to 0, then no order information is communicated to the inventory manager,
thereby restricting decision-making to the dispatch of units that are already due. These
costs serve as reference values, and we increase the demand lead time with a step size
of two. When we increase Ld from 0 to 2, we observe a significant reduction in the
marginal relative cost of 28.38 % across all instances. However, the marginal relative
cost reduction decreases as the demand lead time increases. For example, increasing Ld

from 2 to 4 results in an average reduction of 8.95 %. Overall, the relative cost difference
when increasing the demand lead time from 0 to 8 is 32.55 %.

We observe that a short demand lead time already offers significant cost improvements.
This is because late-delivery and shipment costs associated with alternative transportation
options can be avoided by shipping orders in advance. These cost savings outweigh
the incurred costs for early deliveries. However, as the demand lead time increases, the
potential for further savings on shipment costs decreases, as the utilization of the capacity
reservation is already high. Additionally, the costs for early deliveries depend on the
number of periods shipped in advance, which is why it is reasonable to ship orders several
shipment periods in advance only in a specific situation. Consequently, an additional
increase in Ld does not necessarily result in notable total cost reductions. In summary,
the ADI value does not follow a linear pattern; instead, it decreases as the demand lead
time increases.
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Table 5.7: Marginal relative cost difference per period enabled by ADI and flexible deliveries
using DRL

Parameter Value
Marginal relative Marginal relative Marginal relative Marginal relative Relative
cost difference cost difference cost difference cost cost difference

in % in % in % in % in %
Ld = 0→ Ld = 2 Ld = 2→ Ld = 4 Ld = 4→ Ld = 6 Ld = 6→ Ld = 8 Ld = 0→ Ld = 8

rCap 0.5 24.71 7.71 −0.12 0.02 28.18
1 31.08 10.06 0.84 −0.14 36.26
2 29.35 9.07 −0.01 −0.12 33.21

c2 1 29.24 9.00 −0.07 0.01 33.11
10 29.11 8.83 0.28 −0.25 33.04
50 26.79 9.01 0.51 0.01 31.49

l 1 1.54 0.20 0.28 −0.14 1.84
10 20.85 0.53 0.14 0.01 21.24
50 62.75 26.10 0.29 −0.10 74.57

T 2 26.26 0.38 0.09 −0.04 26.53
6 30.49 17.51 0.39 −0.12 38.57

Total 28.38 8.95 0.24 −0.08 32.55

We emphasize that the unit costs for late deliveries, in particular, have a substantial
impact on cost reductions. When late deliveries are cheap, the value of the ADI becomes
relatively small, as the cost savings associated with early deliveries are lower than the
cost associated with early deliveries. Conversely, when the unit costs for late deliveries
are high, the inventory manager benefits from early deliveries by avoiding costly late
deliveries.

When comparing shorter and longer shipment intervals, the numerical results demonstrate
greater total cost savings in scenarios with longer shipment intervals. In these latter
scenarios, the ADI prevents many late deliveries, which are associated with high late-
delivery costs. For example, when T = 2, shipments dispatch frequently, which is why
even without ADI, the late-delivery costs are moderate. Furthermore, we observe that
the inventory manager benefits from a demand lead time of only 2 when T = 2. Any
additional increase in Ld results in negligible cost savings. Based on this observation, we
conclude that it is not advisable to expedite orders by more than one shipment period
earlier on average. Dispatching orders too early leads to high early-delivery costs, while
no further late-delivery cost savings can be achieved.

In summary, having access to information about future demands can result in substantial
cost reductions if the inventory manager effectively uses this information by adapting
logistic processes. We specifically concentrate on the possibility of flexible deliveries,
meaning that production facility agrees on shipments ahead of their due dates.
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Cost Comparison under Different Transportation Capacity Reservations

In this subsection, we draw conclusions regarding how an inventory manager should
establish transportation capacity based on the relation between shipment costs for
primary and alternative transportation options. To enable a comparison of different
capacity ratios, we must incorporate the shipment costs that are not relevant to decision-
making, i.e., the shipment/reservation costs for the primary transportation option. These
costs are excluded and not relevant in previous analyses. Consequently, we add the costs
for reserving transportation capacity, c1Cap

T
, to the total cost per period for each instance.

The reservation costs per unit, c1, must be reasonably related to the costs of the
alternative transportation option. To establish this relation, we introduce the shipment
cost ratio rc = c1

c2
. Given that the capacity for the primary transportation option can be

offered at a lower cost (i.e., c1 < c2) since it is set in advance, we restrict rc to within
the range of 0 to 1 (0 < rc < 1).

We investigate two scenarios and set rc ∈ {0.50, 0.75}. In Figure 5.4 and Figure 5.5, we
present the expected total cost per period averaged across all instances while fixing the
shipment costs for the alternative transportation option, the shipment cost ratios, and
the capacity ratios.

When the shipment costs for both transportation options are low, the manager does not
have significant total cost benefits from a specific capacity ratio; the costs associated
with early and late deliveries outweigh. However, as the costs of shipments increase, and
especially when the primary transportation option is substantially cheaper than is the
alternative option, the manager should opt for a capacity reservation close to the mean
demand during a shipment cycle. If the ratio between the shipment costs for reservations
and unplanned shipments increases, e.g., rc = 0.75, the incentive for the manager to
choose rCap = 1 over rCap = 0.50 decreases. Nevertheless, the inventory manager should
avoid reserving excessive capacity, as this may not be used and results in unnecessary
reservation costs.
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Figure 5.4: Expected total cost across different capacity ratios and shipment cost ratios -
rc = 0.5
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Figure 5.5: Expected total cost across different capacity ratios and shipment cost ratios -
rc = 0.75
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5.5 Summary and Outlook

In this chapter, we consider a warehouse that supplies a single production facility by using
a time-based shipment dispatch scheme. The presence of ADI enables the warehouse
manager to dispatch orders ahead of their corresponding due dates. The warehouse
manager does not rely on a heuristic shipment policy but instead opts for the optimal
shipment policy. We assume that the warehouse is equipped with ample stock, eliminating
any potential influence on shipment possibilities due to stockouts. However, we do
incorporate late-delivery costs if the inventory manager decides to ship demands after
the due date. This reflects the necessity of higher safety stocks at the production facility
due to the delayed shipment process. Similarly, early-delivery costs are incurred if orders
are satisfied before the due date, representing additional inventory holding costs for the
production facility. Finally, we consider shipment costs to distinguish between two distinct
transportation modes.

Our numerical study demonstrates that the policy obtained by DRL performs very well
for small-scale instances, resulting in an average optimality gap of 0.08 %. Based on
the results from value iteration, we observe the structure of the shipment policy, which
is a multi-level threshold policy. Given these observations, we present an approximated
three-level threshold policy. Additionally, we introduce simple heuristic policies without
any thresholds.

For large-scale instances, we conduct a comparative analysis between the DRL shipment
policy and various heuristic shipment policies. We find that the ATH shipment policy
performs very well for most of the instances. Furthermore, we provide a summary of the
input parameter settings under which each policy performs nearly optimally.

In accordance with the previous chapter, We find that the value of ADI does not follow a
linear pattern but decreases as the demand lead time increases. Furthermore, in many
scenarios, it is advisable for a warehouse manager to reserve transportation capacity
within the range of the mean order arrival during a shipment cycle.

We firmly believe that the general structure of the approximate three-level threshold
shipment policy yields good performance even in the presence of heterogeneous and
imperfect ADI. For future research, we propose applying the ATH policy to a multi-echelon
inventory system with time-based dispatching. This involves targeting near-optimal
shipment intervals and inventory levels for all stock points while utilizing a heuristic
allocation policy such as FCFS.
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5.6 Appendix

5.6.1 Implementation of the Simulated Annealing Algorithm

Algorithm 1 shows the pseudocode for the implementation of the simulated annealing
algorithm (Van Laarhoven et al., 1987) used to optimize the three thresholds in the ATH
approach, namely, µAT H

1 , µAT H
2 , and µAT H

3 .

The algorithm begins by setting the three parameters µAT H
1 , µAT H

2 , and µAT H
3 to zero. The

algorithm initializes the temperature to 100 and sets a cooling rate of 0.999, which dictates
the probability of exploring suboptimal solutions as the iterations progress. The iteration
counters, denoted by iter, count the total iterations up to a maximum of maxIter
(1,000), and nonImprovingIter, count the iterations since the last improvement in the
solution.

Two evaluation scores are also calculated at the beginning with the current parameter
values: bestEval is the best score found thus far, and currentEval is the score of the
current iteration. The main loop of the algorithm iteratively explores new parameter
combinations by making small adjustments to the current values, evaluating them, and
deciding whether to accept the new combination based on the acceptance probability
function.

In this chapter, we perturb µAT H
1 , µAT H

2 , and µAT H
3 (function neighbor) by adding a

random integer from the set {−2,−1, 0, 1, 2} to each threshold, generating µAT H−new
1 ,

µAT H−new
2 , and µAT H−new

3 . The evaluation of the newly generated parameters (function
eval) is performed by rolling out the new parameters for 10,000 shipment cycles. The
acceptance criterion is determined by the current, the new evaluation scores, and the
current temperature (function accept). If the new evaluation is better than the current
evaluation, then we always accept the newly generated parameters as the current parameter
set. Otherwise, we accept it with a probability p, computed as follows:

p = e(currentEval−newEval)/temperature (5.21)

When a new combination of parameters yields an improved evaluation score, the algorithm
updates the best-known solution (µAT H−best

1 , µAT H−best
2 , and µAT H−best

3 ) and resets the
counter for non-improving iterations. If the new evaluation does not yield an improvement,
the algorithm increases the number of non-improving iterations. To prevent the algorithm
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Algorithm 1 Simulated Annealing Algorithm
1: Initialization:
2: µAT H

1 , µAT H
2 , µAT H

3 ← 0, 0, 0
3: temperature← 100
4: coolingRate← 0.999
5: iter ← 0
6: nonImprovingIter ← 0
7: maxIter ← 1, 000
8: bestEval← eval(µAT H

1 , µAT H
2 , µAT H

3 )
9: currentEval← eval(µAT H

1 , µAT H
2 , µAT H

3 )
10:

11: Output: µAT H−best
1 , µAT H−best

2 , µAT H−best
3

12:

13: while iter < maxIter do:
14: iter ← iter + 1
15: µAT H−new

1 , µAT H−new
2 , µAT H−new

3 ← neighbor(µAT H
1 , µAT H

2 , µAT H
3 )

16: newEval← eval(µAT H−new
1 , µAT H−new

2 , µAT H−new
3 )

17: p← acceptanceProbability(newEval, currentEval, temperature)
18:

19: if accept(newEval, currentEval, p) then
20: µAT H

1 , µAT H
2 , µAT H

3 ← µAT H−new
1 , µAT H−new

2 , µAT H−new
3

21: currentEval← newEval

22:

23: if newEval < bestEval then
24: µAT H−best

1 , µAT H−best
2 , µAT H−best

3 ← µAT H
1 , µAT H

2 , µAT H
3

25: bestEval← currentEval

26: nonImprovingIter ← 0
27: else
28: nonImprovingIter ← nonImprovingIter + 1
29: end if
30: end if
31:

32: if nonImprovingIter = 20 then
33: nonImprovingIter ← 0
34: µAT H

1 , µAT H
2 , µAT H

3 ← µAT H−best
1 , µAT H−best

2 , µAT H−best
3

35: currentEval← bestEval

36: end if
37: temperature← updateTemperature(temperature, coolingRate)
38: end while
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from getting stuck in a non-optimal region, if there are 20 consecutive non-improving
iterations, the parameters are reset to the best values found thus far.

The temperature, which influences the acceptance probability of new solutions, is updated
each iteration according to the cooling rate. This gradual reduction simulates the
annealing process, where initially, the algorithm is more likely to explore the solution
space (including suboptimal solutions) and becomes more conservative as the temperature
decreases, fine-tuning around the best-found solutions. The algorithm halts when it
reaches the maximum number of iterations, outputting the best parameters obtained
during the process.

5.6.2 Table with the Expected Total Cost per Period

Table 5.8: Expected total cost per period under different policies
Parameters Value πDRL πAT H πUP T O πLAZY πGRDY

rCap 0.5 122.34 131.42 202.73 204.69 327.68
1 80.88 86.67 122.01 166.82 289.82
2 70.78 80.46 88.13 152.37 275.36

c 1 71.86 80.50 118.72 153.46 276.45
10 81.27 89.69 127.52 163.31 286.30
50 120.87 128.37 166.63 207.11 330.10

l 1 27.23 27.19 45.98 29.75 257.37
10 75.30 77.96 88.64 97.20 276.10
50 171.48 193.40 278.24 396.93 359.38

Ld 0 173.93 173.93 174.66 174.66 174.66
2 89.73 94.58 134.25 174.56 123.01
4 64.46 72.31 124.17 174.71 197.17
6 64.26 76.29 127.52 174.66 371.80
8 64.29 80.49 127.52 174.56 621.45

T 2 45.47 57.53 61.80 74.70 383.53
6 137.19 141.51 213.45 274.55 211.70

Average 91.33 99.52 137.62 174.63 297.62



6
Chapter

Summary and Outlook

This thesis aimed to integrate different shipment consolidation policies into inventory
management. In the literature, the pure time-based, the pure quantity-based, and the
hybrid time-and-quantity-based consolidation strategies have been analyzed in single-
echelon inventory systems in great detail. In multi-echelon systems, only pure time-based
and quantity-based policies have been examined. Contributing to this field of literature,
we analyzed a multi-echelon inventory system with a hybrid consolidation policy.

The idea of combining ADI and consolidation policies in the inventory systems was
completely innovative. We have, therefore, developed an inventory model incorporating a
heuristic time-based shipment strategy where ADI is used to increase the utilization of the
transportation means. Building on this, we analyzed the near-optimal shipment quantities
under a time-based policy and ADI. We presented results that illustrate the need for
simultaneous inventory and transportation planning. This chapter summarizes the main
findings of this thesis by answering the research questions and making suggestions for
future research.

6.1 Main Research Insights

Research Question 1: Under which conditions could a multi-echelon inventory distri-
bution system apply a pure time-based or a pure quantity-based instead of using the
dominant hybrid consolidation policy?
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In Chapter 3, we considered an OWMR inventory system that applies a hybrid shipment
consolidation policy to replenish the stock of retailer groups facing Poisson demand.
Shipments are dispatched according to a time-based schedule; however, additional
quantity-based shipments may occasionally be dispatched in between if the number of
accumulated demand reaches the consolidation quantity.

The main contribution of this chapter is the derivation to obtain the PMF of the inventory
level at each retailer. Based on these PMFs, we can efficiently compute the inventory and
shipment costs of the inventory system to evaluate a system and subsequently optimize
the inventory and shipment decisions. Our numerical study compares the pure time-based
quantity-based policies with the hybrid time-and-quantity-based shipment policy across
different instances. By definition, the optimal hybrid policy always outperforms the other
two policies. However, when the costs for time-based shipments are significantly lower
than for quantity-based shipments, the increase in the expected total cost is moderate
when applying a pure time-based instead of the hybrid policy. On the contrary, when
the costs for time-based and quantity-based dispatches are equal, a pure quantity-based
strategy, i.e., a hybrid policy with shipment interval T →∞, proves to be optimal.

Research Question 2: What is the value of incorporating ADI and allowing for flexible
deliveries in a single-stage inventory system when satisfying external orders according to
a flexible time-based shipment consolidation policy? What is the effect on the optimal
inventory and shipment policy parameters?

In Chapter 4, we derive analytical, approximate total cost expressions to study a single-
stage inventory system that receives stochastic orders from a production facility. These
orders are satisfied according to a flexible time-based shipment policy. We assume
a reserved transportation capacity, which can be extended by a costly transportation
option in case of need. The heuristic shipment policy operates as follows: On scheduled
time-based shipment days, the stock point has to ship all demands with the primary and
the alternative transportation option if sufficient stock on hand is available. Should there
be remaining capacity at the primary transportation option, orders will be dispatched
until the reserved capacity is fully utilized.

After conducting a comprehensive simulation study to validate the derived mathematical
expressions in determining the reorder level and the shipment interval, we found that ADI
not only reduces the safety stock needed at the stock point but also enables additional
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cost savings through the adaption of logistic processes. Our investigation focuses on
the modification of the shipment policy by allowing for flexible deliveries. It has been
shown that the adaption of the shipment policy leads to the largest part of cost reduction
compared to the reduction of safety stocks. Further, we demonstrated that the optimal
reorder level at the stock point decreases as the demand lead time increases. The optimal
capacity reservation for the primary transportation option, however, remains relatively
stable as the demand lead time increases, and should be set around the mean demand
during the shipment interval.

Research Question 3: What is the (near-)optimal structure of the outbound shipment
policy under time-based dispatching in inventory systems considering ADI and flexible
deliveries?

In Chapter 5, we introduced a MDP to model an inventory system receiving stochastic
customer orders with corresponding due dates, and where shipments are dispatched on
a time-based schedule. We considered a primary and an alternative (more expensive)
transportation option.

The main objective was to draw conclusions on the structure of the optimal outbound
shipment quantities. Our proposed DRL algorithm successfully determined near-optimal
decisions for small-scale instances. Based on the near-optimal results for large-scale
instances, we observed that the near-optimal shipment quantities can be described by a
multi-level threshold policy, with the number of thresholds increasing quadratically with
respect to the demand lead time. Therefore, we proposed the ATH policy, which showed
great performance across the majority of large-scale instances. This approximation relies
on three thresholds, taking into account the due dates and the transportation options
used, both of which influence the total cost. Furthermore, we proposed three simple
policies to compute the shipment quantities and found that each policy performs very
well under specific cost conditions. For example, in scenarios where late deliveries are
expensive and should be avoided, a policy should be applied where all demands are
dispatched, and additionally orders can be satisfied ahead of their due date if there is
remaining capacity at the primary transportation option.



Summary and Outlook 177

6.2 Further Research Opportunities

There are several promising directions for future research. In Chapter 3 and Chapter 4,
the considered demand process is limited to a single unit demand per order. Therefore,
an extension could be to incorporate a compound Poisson demand process. However, it
is worth noting that our presented approaches already require significant computational
effort even with a (pure) Poisson process. For that reason, it could be advisable to develop
efficient heuristics that obtain sufficiently good decisions for inventory and shipment
policies.

In Chapter 3, we focused on shipment consolidation within an OWMR inventory system.
This provides already valuable insights about the dependencies of inventory and shipment
decisions, however, there remains potential for analyzing more general multi-echelon
inventory systems in the future. However, exact solutions for such systems often prove to
be intractable. Consequently, the development of efficient heuristics for OWMR inventory
systems are of enormous importance, as they could provide a framework for analyzing
general inventory systems.

In Chapter 4 and Chapter 5, we assumed perfect ADI for our models. However, in realistic
settings it is likely that customers may cancel their order or modify their order quantities
after placement. Therefore, future research could develop inventory models including
shipment consolidation and imperfect ADI, for example, by including a probability for
order cancellations. Moreover, instead of assuming identical demand lead times for all
customers, valuable insights could be obtained by including non-identical demand lead
times. However, in this case crossovers may appear why the allocation of orders needs to
be taken into account.

The research presented in this thesis does not include fees for receiving ADI from
customers. However, customers are especially motivated to share future information
when incentives as a bonus or a price reduction are offered. Therefore, a further research
direction could be to introduce a cost component for ADI. This would not only increase
the authenticity of the model, but also provide practical insights into the optimal amount
of information an inventory system should pay for, aiming to minimize the system’s total
cost.

For decades, inventory systems integrating shipment consolidation or ADI have been
analyzed. This thesis contributed to this stream of research by jointly optimizing
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inventory and shipment decisions across different shipment strategies combined with ADI.
Nevertheless, as discussed in the previous paragraphs, open questions remain that require
appropriate scientific analysis.
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