
SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY - INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Vectorization of Three-Body Potentials in
AutoPas

Jakob Andreas Englhauser

SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY - INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Vectorization of Three-Body Potentials in AutoPas

Vektorisierung von Dreikörperpotentialen in
AutoPas

Author: Jakob Andreas Englhauser

Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz

Advisor: Samuel James Newcome, M.Sc.

Date: May 15, 2024

I confirm that this master’s thesis is my own work and I have documented all sources and
material used.

Munich, May 15, 2024 Jakob Andreas Englhauser

Abstract

Molecular dynamics simulations rely on potential functions to model intermolecular
interactions. While it is often enough to only consider pair-wise potentials, such as the
Lennard-Jones potential, in some situations, it may be necessary to additionally use three-
body potentials to produce accurate results. One example of a three-body potential is
the Axilrod-Teller potential, which should be implemented in the molecular dynamics
library AutoPas. Since the calculation of the potentials is a major part of the runtime of
molecular dynamics simulation, an efficient implementation is vital for the performance of
the simulation. For this, SIMD instructions also play an important role. Therefore, ways of
manually vectorizing the Axilrod-Teller potential with SIMD intrinsics were explored in this
work.

vii

viii

Zusammenfassung

Molekulardynamiksimulationen basieren auf der Modellierung intermolekularer Wech-
selwirkungen durch Potentiale. Oft genügt es zwar nur paarweise Potentiale, wie das
Lennard-Jones Potential, in Betracht zu ziehen, in manchen Fällen benötigt man jedoch
zusätzlich Dreikörperpotentiale, um akkurate Ergebnisse zu erzielen. Ein Beispiel für ein
Dreikörperpotential ist das Axilrod-Teller Potential, welches in der Molekulardynamik-
bibliothek AutoPas implementiert werden soll. Da die Berechnung der Potentiale einen
großen Teil der Laufzeit von Molekulardynamiksimulationen ausmacht, ist eine effiziente
Implementierung essenziell für die Performanz der Simulation. Dafür spielen auch SIMD In-
struktionen eine bedeutende Rolle. Deshalb wurden im Rahmen dieser Arbeit Möglichkeiten
zur manuellen Vektorisierung des Axilrod-Teller Potentials mit SIMD intrinsics erkundet.

ix

x

Contents

Abstract vii

Zusammenfassung ix

I. Introduction and Background 1

1. Introduction 2

2. Theoretical Background 3
2.1. Molecular Dynamics . 3

2.1.1. Potentials . 3

2.1.2. Forces and Movements . 4

2.1.3. Mixing . 5

2.1.4. Cutoff . 5

2.1.5. Newton’s Third Law . 5

3. Technical Background 6
3.1. AutoPas . 6

3.1.1. Particle Container . 6

3.1.2. Traversal . 7

3.1.3. Data Layout . 7

3.1.4. Functors . 8

3.2. SIMD . 9

3.2.1. SIMD-everywhere . 10

4. Related Works 12

II. Implementation 13

5. Development of an Axilrod-Teller Functor without Intrinsics 14

6. Vectorization of the Axilrod-Teller Functor 16
6.1. Vectorization via Masked Instructions . 16

6.2. Vectorization via Gather/Scatter Instructions 18

6.3. Vectorization via Compress/Alignr . 19

xi

III. Performance Evaluation 21

7. Performance Evaluation 22
7.1. Hardware Overview . 22
7.2. md-flexible . 22
7.3. Functor Benchmark . 23
7.4. Portability to Non-AVX512 Hardware . 25

8. Conclusion 26

IV. Appendix 27

A. YAML-input files 28

Bibliography 31

Part I.

Introduction and Background

1

1. Introduction

Molecular dynamics simulations allow studying intermolecular interactions where experi-
mental analysis is not feasible due to, for example, cost or small timescales. The knowledge
gained from these simulations can prove valuable in various fields of science such as medicine,
where they can aid in the discovery of new drugs [DM11]. Many molecular dynamics
simulations rely primarily on modeling of pairwise interactions based on the Lennard-Jones
potential [LJ24]. However, in some situations, such as the simulation of noble gases, the
Lennard-Jones potential alone is not sufficient to provide fully accurate results and additional
three-body potentials like the Axilrod-Teller potential have to be used [Mar01].

Molecular dynamics simulations may face challenges where fine resolution is required since
the high number of particles can increase the needed computation time to an unacceptable
amount. Therefore, high levels of optimizations are desired for simulation programs to
achieve ideal performance. One major aspect of this is exploiting as much parallelism offered
by modern computers as possible. This includes clusters where the workload is spread
across multiple compute nodes, multi-core processors, and also utilization of so-called single
instruction, multiple data (SIMD) instructions [Fly11]. These instructions are often used
automatically by the compiler without the programmer’s explicit intent. However, if the
code is more complex, manual vectorization may be required to achieve optimal performance.

Another aspect of optimizations is choosing the right set of algorithms and data structures
for the given task, which can prove difficult even for experienced programmers. AutoPas
is an auto-tuning library for simulation programs created to alleviate this problem by
automatically choosing optimal algorithms and data structures based on empirical runtime
measurements. [GSBN21]

Support for the aforementioned three-body potentials in AutoPas is still in development.
Therefore, the goal of this work is to aid in this task by implementing a vectorized version
of the Axilrod-Teller potential.

2

2. Theoretical Background

2.1. Molecular Dynamics

2.1.1. Potentials

Molecular dynamics simulations mainly deal with the computation of intermolecular inter-
actions. Due to the complex quantum mechanical nature of these interactions, they are
modeled by potential functions. Since these potentials are by necessity approximations,
there exist several different potentials which might excel for different use cases [Bre00].

A simple and commonly used potential is the pairwise Lennard-Jones 12-6 potential:

ULJ = 4ε

(
σ

rij

)12

︸ ︷︷ ︸
Van-der-Walls forces

− 4ε

(
σ

rij

)6

︸ ︷︷ ︸
Pauli repulsion

(2.1)

= 4ε

((
σ

rij

)12

−
(
σ

rij

)6
)

(2.2)

where rij is the distance between the two molecules and ε and σ are constants depending
on the molecular model to be simulated. [LJ24]

The Lennard-Jones potential can be split into a negative, attractive and a positive,
repulsive part.

The attractive part is explained by Van-der-Waals forces. Atoms consist of a positively
charged nucleus and a negatively charged electron shell. The electrons are constantly moving
within the shell with their charge normally uniformly distributed over the atom. However,
since particles with an electric charge of the same sign repel each other, once two atoms get
closer to each other, the mutual repulsion of the electrons will push them towards opposing
sides of one nucleus, as shown in Figure 2.1. As a result, two temporary dipoles form,
creating attractive forces between the two atoms, which are modeled by the negative part of
the Lennart-Jones potential.

Figure 2.1.: Illustration of Van-der-Waals forces. The equal charge of the electrons pushes
them away from each other, thus creating two temporary dipoles.

However, the repulsion between electrons also results in an overall repelling force between

3

2. Theoretical Background

the two atoms if they get too close. This so-called Pauli repulsion is modeled by the positive
part of the Lennard-Jones potential [BZBP14].

Pairwise interactions cannot fully explain all forces acting between multiple particles
since the presence of more than two particles may induce additional interactions. Therefore,
to create accurate simulations, it might be necessary to include three-body-potentials to
model these forces [Mar01]. One such potential is the Axilrod-Teller potential defined by
the formula:

UAT = ν
1 + 3(cos γi cos γj cos γk)

(rijrjkrki)
3 (2.3)

where ν is a constant depending on the ionization energy and polarizability of the parti-

cles [AT43]. Applying the cosine rule cos γi =
r2ij−r2jk+r2ki

2rijrjk
eliminates the dependence on the

angles between the particles:

UAT = ν

(
1

(rijrjkrki)
3 +

3(r2ij − r2jk + r2ki)(r
2
ij + r2jk − r2ki)(−r2ij + r2jk + r2ki)

8(rijrjkrki)
5

)
(2.4)

(a) With increasing distance between particles
the Axilrod-Teller potential approaches
zero.

(b) The sign of the Axilrod-Teller potential de-
pends on the form of the triangle formed
between the particles. For an acute trian-
gle the potential is positive. If the parti-
cles are arranged in a line it is negative.

Figure 2.2.: Axilrod-Teller potential for particles placed at the corners of an isosceles triangle
with angle between legs γ and length of legs l.

2.1.2. Forces and Movements

A particle’s movement depends on its acceleration, which in turn depends on forces acting
on the particle based on Newton’s third law F = m ∗ a [New87]. One can obtain these forces
by taking the negative gradient of the potential:

4

2.1. Molecular Dynamics

Fij(rij) = −∇U(rij) (2.5)

The simulation then steps through time in discrete intervals, applying Verlet integra-
tion [Ver67] to calculate velocities and positions.

2.1.3. Mixing

The parameters σ and ε for the Lennard-Jones potential, and the parameter ν for the
Axilrod-Teller potential are constants depending on which type of molecule is simulated.
When considering different types of molecules with different σ, ε, or ν one has to reach a
compromise between the values by applying certain mixing rules [BZBP14].

2.1.4. Cutoff

Both the Lennard-Jones and the Axilrod-Teller potentials are short-range potentials [Mic79],
meaning they quickly approach zero with increasing distance between particles as shown in
Figure 2.2a. As a consequence, it is possible to disregard forces between particles further away
than a set cutoff radius rc entirely without qualitatively changing the result but reducing the
computational intensity of the force calculations. For two particles, the interpretation of the
cutoff radius is obvious. For three particles, the cutoff condition can be applied in multiple
ways, such as requiring all three particles to be pairwise in cutoff or requiring only one pair
to be within cutoff [Mar22]. In this work, we will only be using the former definition.

2.1.5. Newton’s Third Law

Newton’s third law states that for every action, there is a reaction of equal magnitude and
opposing direction [New87]. In the context of three-body forces, this means that the force
acting on one particle can be computed from the sum of forces acting on the other two
particles [Mar01]:

Fk = −(Fi + Fj)

Applying this principle reduces the amount of computationally intensive force calculations
by one third. We will refer to this optimization as newton3 in the following.

5

3. Technical Background

3.1. AutoPas

Among the multitude of algorithms and data structures for molecular dynamics simulations
there exists no singular optimal choice for all simulation scenarios since their performance
heavily depends on the molecule layout. The complexity of large-scale particle simulations
also makes it difficult to choose the best configuration of algorithms and data structures,
even for a single scenario. Furthermore, as particles move around during the simulation,
the optimal configuration may change at any time. A way to deal with these issues is
to automatically adjust simulation parameters during the program execution through an
auto-tuning library like AutoPas1 [GSBN21].

AutoPas is a library intended to act as a black box for delivering an optimal configuration
for molecular dynamics programs. It defines an extensible selection of algorithms and data
structures that are chosen during runtime by empirically measuring their single-step runtime
at periodic time intervals during program execution. Additionally, AutoPas offers a full
molecular dynamics program called md-flexible to showcase AutoPas’ capabilities [Fot19].

Algorithms and data structures relevant to this work will be explained here.

3.1.1. Particle Container

Recall from Subsection 2.1.4 the introduction of a cutoff radius to reduce force computations.
With just the cutoff alone, every particle pair or triplet would still require calculating the
distances between them, leading to a runtime complexity of O(n2) for two-body functors, or
O(n3) for three-body functors. Therefore, it is additionally necessary to use data structures
that make efficient use of the cutoff condition. A simple way to implement such a data
structure is to subdivide the simulation domain into cubic cells with side-length of at least
rc and only consider interactions between particles in neighboring cells as illustrated in
Figure 3.1. This approach is called the Linked Cells algorithm [GSBN21].

1https://github.com/AutoPas/AutoPas

6

https://github.com/AutoPas/AutoPas

3.1. AutoPas

Figure 3.1.: Pairwise interactions between particles in the Linked Cells algorithm. Blue
points are within the cutoff radius of the black point (full force calculation
required), red points are in neighboring cells but outside the cutoff radius (only
distance calculation required), green points are completely outside interaction
range (no calculations required).

A drawback of this approach is the additional overhead for maintaining the cells, since
particles may change cells as they move.

As of writing this thesis, the Linked Cells algorithm is the only particle container in
AutoPas supporting three-body potentials.

3.1.2. Traversal

To be able to make use of the newton3 optimization explained in Subsection 2.1.5, the
functor has to write forces to particles shared with other threads during parallel execution,
meaning the traversal needs to employ strategies such as domain coloring to prevent race
conditions [GSBN21]. Alternatively, one can opt to disregard the newton3 optimization
entirely since then every thread needs to write only to particle forces in cells assigned to
itself and only reads particle positions from other threads. Every cell is assigned to a thread
that updates forces in that cell only, choosing any neighboring cell for the pair functor.
For two-body potentials, this approach is called lc c01 [GSBN21]. The three-body version
lc c01 3b functions the same while additionally considering neighboring cell triplets.

Since the lc c01 3b traversal is the only three-body traversal in AutoPas at the time of
writing this work, no other traversals will be considered here.

3.1.3. Data Layout

Every particle carries information like position, velocity, and acting forces. This data can be
stored in memory in different ways.

Array of Structures (AoS) Here a single particle’s data is stored in an object. Multiple
particle objects are stored in a std::vector.

7

3. Technical Background

Structure of Arrays (SoA) Here for every attribute of the particle a std::vector is created
which holds the value for all particles.

Figure 3.2 illustrates both data layout versions using just spatial coordinates for three
particles.

The AoS layout makes it easy to handle individual particles, for example, to move them
between MPI processes or data structures. However, the SoA layout has the major advantage
that data elements lie consecutively in memory, allowing for easy loading of data into vector
registers, and thus more efficient vectorization of the code [GSBN21]. Therefore, this work
only deals with SoA implementations.

AutoPas stores particles long-term only in AoS format. Whenever a procedure requires
particles in SoA format, they have to be copied into SoA buffers and back to the AoS
structure after the procedure has been completed.

(a) Array of Structures (b) Structure of Arrays

Figure 3.2.: Comparison of data layouts.

3.1.4. Functors

Functors are responsible for computing the interactions between particles, such as described
in Section 2.1. Functors are implemented for AoS and SoA data layouts and can support
either newton3 disabled or newton3 enabled, or both.

The triwise functor provides the following functions:

AoSFunctor The AoS functor takes a single particle triplet as an argument and calculates
forces between them if they are within cutoff. The selection of triplets is handled by
the traversal.

SoAFunctorSingle SoA implementation of the functor taking a single SoA container as an
argument. The SoA container contains multiple particles, such as all particles in one
cell, therefore the functor has to iterate over triplets itself. Since forces are written to
particles in the SoA, the traversal has to ensure that no other threads are concurrently
writing to the same SoA and as a consequence, it is always possible to apply the
newton3 optimization.

SoAFunctorPair SoA functor taking two SoA containers as an argument. Particle triplets
can be chosen by either picking two particles from the first SoA and one from the
second, or one particle from the first and two from the second. Just as in the
SoAFunctorSingle write accesses to the first SoA are always safe. However, for three-
body potentials, the newton3 optimization only comes into full effect for the third
particle.

8

3.2. SIMD

SoAFunctorTriple SoA functor taking three SoA containers as an argument, taking one
particle from each SoA.

InitTraversal, EndTraversal These functions are called at the start and beginning of every
traversal, allowing the functor to reset and finalize buffers for global values.

SoALoader, SoAExtractor These functions allow copying data from AoS to SoA and vice
versa, required for the use of the SoAFunctor, as explained in Subsection 3.1.3.

3.2. SIMD

Most modern CPU architectures provide functionality to apply the same instruction on
different data simultaneously. This concept is known as single instruction, multiple data
(SIMD) [Fly11].

A good compiler can analyze the code and identify repeated operations that can be
vectorized on its own. However, uncertain data dependencies and complex control flow
might make it impossible to guarantee that vectorization will not affect the correctness of
the code, which will prevent auto-vectorization.

Instead of relying on the compiler, it is also possible to vectorize the code manually
by using intrinsics functions [int], although this means that the code might no longer be
portable across different CPU architectures.

Some intrinsics concepts important for this work will be explained in the following.

Aligned/unaligned memory accesses Regular load and store instructions like mm512 load pd

require the memory to be aligned on a 64-byte boundary, meaning the memory address
must be a multiple of 64. This can be ensured by using aligned alloc, memalign,
or similar functions. However, it might not always be possible to guarantee specific
memory alignments. In that case, unaligned loads and stores such as mm512 loadu pd

have to be used, which might be less efficient.

Masked instructions Many intrinsics functions have a masked alternative. These instruc-
tions take a bitmask as an extra argument and only apply the operation, or apply
an alternative operation instead, if the corresponding bit is set to 1, as illustrated in
Figure 3.3a.

Fused multiply-add Combinations of multiplication and addition are common especially
when dealing with matrices or vectors. Therefore, AVX offers so-called fused multiply-
add operations like mm512 fmadd pd which combine the two operations into one, as
shown in Figure 3.3b.

Gather/Scatter Common loads and stores require data to be consecutively in memory. For
situations where this is not the case, AVX512 offers gather and scatter instructions
instead, which take an additional argument vindex specifying offsets relative to a base
address for data to be loaded. Figure 3.3c visualizes this process.

Compress Compress functions such as mm256 maskz compress pd choose elements based
on a bitmask and compress them towards the least significant bit of the register as
shown in Figure 3.3d.

9

3. Technical Background

Alignr Figure 3.3e shows how mm512 alignr epi64 and similar functions concatenate two
registers and shift the result to the right (least significant bit).

3.2.1. SIMD-everywhere

Since the availability of SIMD intrinsics depends on the target hardware, one would usually
have to explicitly write multiple versions of the code to support all architectures. SIMD-
everywhere2 (SIMDe) aims to avoid this issue by providing implementations of SIMD
intrinsics for hardware without SIMD support. If the hardware natively supports intrinsics,
the SIMDe calls are replaced by their native counterparts during compile time, therefore
no performance penalties occur. If the hardware does not support specific instructions
they are replaced by a combination of available vector instructions if possible or a scalar
implementation with compiler hints to ease auto-vectorization. SIMDe functions can be
used by simply prefixing regular intrinsics function names with simde [sim].

2https://github.com/simd-everywhere/simde

10

https://github.com/simd-everywhere/simde

3.2. SIMD

(a) Illustration of masked SIMD instructions.
Values from a are only loaded if the cor-
responding mask bit is set to 1.

(b) Illustration of SIMD fmadd instructions.
Multiplication and addition is combined
into one operation.

(c) Illustration of SIMD gather instructions.
vindex determines which elements are
loaded from memory into the destination
register.

(d) Illustration of SIMD compress instruc-
tions. Elements whose mask bit is set
to 1 are compressed towards the lower
end of the destination register.

(e) Illustration of SIMD alignr instructions.
Input vectors are concatenated, then
shifted towards the lower end of the vec-
tor.

Figure 3.3.: Visualization of a selection of SIMD operations.

11

4. Related Works

The Lennard-Jones potential is one of the most important potentials for molecular dynamics.
However, work has been done to highlight the relevance of three-body interactions like the
Axilrod-Teller potential [Mar01]. Several works also deal with efficient implementations of
the Axilrod-Teller potential [BY13][CW00] but we are not aware of any focusing on SIMD
implementations of the force kernel specifically.

Similarly, recent works regarding three-body interactions in AutoPas only deal with
general algorithm approaches [Mar22], or traversals [Den24].

Furthermore, the expected low hitrate for the cutoff condition makes three-body functors
an interesting area of research to achieve as much parallelism as possible.

12

Part II.

Implementation

13

5. Development of an Axilrod-Teller Functor
without Intrinsics

To work towards a vectorized implementation of three-body potentials, a non-intrinsics
version is required first. This will act both as an initial building block for an intrinsics
version, as well as a baseline for performance evaluation.

As mentioned in Subsection 3.1.2, the functor requires implementations for one, two, and
three different SoA structures. We will consider the triple functor using three different SoAs
first.

The first step is to find particle triplets, whose particles are all pairwise within the cutoff
range. This is accomplished through a triple nested loop as shown in Algorithm 1.

Algorithm 1: Main loop structure for the SoA triple functor

1 for i from 0 to soa1.size()− 1 do
2 for j from 0 to soa2.size()− 1 do
3 r2ij ← squared distance between particles i and j

4 if r2ij > r2c then

5 continue

6 for k from 0 to soa3.size()− 1 do
7 r2jk ← squared distance between particles j and k

8 if r2jk > r2c then

9 continue

10 r2ki ← squared distance between particles k and i
11 if r2ki > r2c then
12 continue

13 calculateForce(i, j, k)

The distances between particles are calculated as the euclidean distance:

r2ij = (xj − xi)2 + (yj − yi)2 + (zj − zi)2

The cutoff criterium is applied to all pair combinations to match the existing AoS functor
and the three-body traversal. This also allows to abort the loop early if the first two particles
are not within cutoff.

For every particle triplet within the cutoff, forces are calculated and applied to particles
in the first SoA. The implementation of the force formula is based on the pre-existing AoS
functor. If newton3 optimization is enabled, forces applying to the other two particles are
calculated using Newton’s third law for the third particle and applied as well.

14

The single functor works conceptually the same, except that newton3 optimization is
always applied as explained in Subsection 3.1.4.

For the pair functor, there are two j-loops depending on whether the second particle is
chosen from the first or second SoA as shown in Algorithm 2.

Algorithm 2: Main loop structure for the SoA pair functor

1 for i from 0 to soa1.size()− 1 do
2 for j from i+ 1 to soa1.size()− 1 do
3 r2ij ← squared distance between particles i and j

4 if r2ij > r2c then

5 continue

6 ...

7 for j from 0 to soa2.size()− 1 do
8 r2ij ← squared distance between particles i and j

9 if r2ij > r2c then

10 continue

11 ...

Due to the complexity of the inner loop, especially the cutoff condition, we actually expect
very little auto-vectorization to be applied.

15

6. Vectorization of the Axilrod-Teller Functor

6.1. Vectorization via Masked Instructions

For vectorized code, the cutoff criterium can be applied via masked instructions, which are
explained in Section 3.2. Vectorization happens across the innermost loop. The third SoA
is processed vecLength elements at a time, where vecLength is the number of elements
in a vector register. Since the number of elements in the SoA may not be a multiple of
vecLength, there might be a remainder that has to be treated separately. For this, the
largest multiple of vecLength that is still smaller than the size of the SoA is required, which
can be efficiently computed if vecLength is a power of two by setting the log2 (vecLength)
least significant bits of the SoA size to zero: (soa3.size() & ~(vecLength - 1)). The
individual iterations and the remainder are handled by the SoA kernel, as seen in Algorithm 3.

Algorithm 3: Inner loop for the masked variant of the SoA triple functor.

1 k ← 0
2 while k < (soa3.size() & ~(vecLength - 1)) do
3 SoAKernel(i, j, k)
4 k ← k + vecLength

5 SoAKernelRest(i, j, k, soa3.size() - k)

The kernel first loads a batch of coordinates from the SoA as seen in Listing 6.1. For the
rest kernel, a masked load is necessary to prevent illegal memory accesses when exceeding
the size of the SoA.

1 const simde m512d x3 =
2 remainderIsMasked
3 ? simde mm512 maskz load pd (masks [r e s t] , &x3ptr [k])
4 : simde mm512 load pd(&x3ptr [k]) ;

Listing 6.1: Loading of coordinates into a vector register. y and z coordinates are handled
analogously.

With the coordinates loaded, it is then possible to compute the squared distances between
particles. The computation closely follows the non-intrinsics implementation, using intrinsics
versions of scalar operations and fused multiply-add, which is shown in Section 3.2, where
possible. Next, a bitmask is created by comparing the squared distances with the squared
cutoff, as shown in Listing 6.2

1 const simde mmask8 cuto f fMask jk =
2 simde mm512 cmp pd mask (drjk2 , cutof fSquaredPd , SIMDE CMP LE OS) ;

Listing 6.2: A cutoff mask is computed by comparing squared distances with the squared
cutoff. The cutoff mask for particles i and k is computed accordingly

16

6.1. Vectorization via Masked Instructions

The two cutoff masks, the dummy mask, and potentially the rest mask are then combined
into a single mask using simde mm512 kand.

The Computation of the force again matches the non-intrinsics implementation, with the
addition of fused multiply-add instructions. The mask is only needed once the force is added
to the force buffer of the current particles, as shown in Listing 6.3. This process is then
repeated for the second particle if newton3 optimization is enabled for the second particle.

1 f x i a c c = simde mm512 mask add pd (f x i , mask , f x i , f x i a c c) ;

Listing 6.3: The computed force is added to the force buffer of the first particle. The second
but not the third particle works in the same way.

If newton3 optimization for the third particle is enabled, its forces are updated directly in
the SoA using simde mm512 mask store pd.

1 const simde m512d f xk o l d = simde mm512 maskz load pd (mask , &fx3pt r [k]) ;
2 const simde m512d fxk new = simde mm512 sub pd (fxk o ld , fxk) ;
3 simde mm512 mask store pd(& fx3pt r [k] , mask , fxk new) ;

Listing 6.4: Forces for the third particle are updated.

Forces for the first and second particles are accumulated in a vector register. Once a
particle has been fully processed, this vector register needs to be reduced to a scalar value
which can be added to the SoA by simde mm512 reduce add pd.

Care is required for the single and pair functors since the third particle might be chosen
from the same SoA as the first or the second. i and j are incremented by one per loop
iteration, so when starting the third loop at k = j + 1, the first particle will no longer be
properly aligned for aligned loads and stores, requiring potentially less efficient unaligned
variants instead. This can be avoided by inverting the loop order to ensure the third loop
starts at k = 0 as shown in Algorithm 4.

Algorithm 4: Inverting the loop order fixes alignment issues when loading values
of the third particle into vector registers.

1 for i from soa.size()− 1 down to 0 do
2 for j from i− 1 down to 0 do
3 . . .
4 for k from 0 to j − 1 do
5 . . .

Using masked stores and loads ensures that interactions between particles outside the
cutoff radius do not add to a particle’s forces. However, the interactions are still calculated
along the way and occupy slots in the vector register, which are thus effectively wasted. This
is fine if only a few of the particle triplets in consideration are not within cutoff distance,
but with decreasing hit rate the benefit of vectorization decreases as well. In the worst case,
if only one element in the vector passes the cutoff check, the computation will be essentially
scalar.

17

6. Vectorization of the Axilrod-Teller Functor

6.2. Vectorization via Gather/Scatter Instructions

A way to avoid the hit rate issues of the simple masked implementation is to delay force
computations until the triplets that satisfy the cutoff conditions are determined. Algorithm 5
shows how this collection of triplets can be done using a std::vector to buffer relevant
indices.

Algorithm 5: Collecting relevant indices for the third particle in the gather/scatter
variant of the SoA triple functor.

1 indicesK← ∅
2 for k from 0 to soa3.size()− 1 do
3 r2jk ← squared distance between particles j and k

4 if r2jk > r2c then

5 continue

6 r2ki ← squared distance between particles k and i
7 if r2ki > r2c then
8 continue

9 indicesK← indicesK ∪ {k}

The indices in indicesK are then processed similarly to Algorithm 3, except that the
kernel takes an offset with respect to the index buffer rather than the SoA as an argument.

Indices in the index buffer are consecutively in memory and can thus be loaded into a
vector register with a simple load instruction. Particle coordinates, however, are spread over
memory and instead require gather instructions explained in Section 3.2.

Listing 6.5 shows how the particles are loaded by first loading a batch of indices from the
index buffer and then passing them to simde mm512 i64gather pd. Once again, masked
instructions are used to avoid illegal memory accesses when processing the remainder of the
index buffer.

1 const s imde m512i vindex =
2 remainderIsMasked
3 ? simde mm512 maskz load epi64 (masks [r e s t] , &ind icesK [kStart])
4 : s imde mm512 load epi64(&indicesK [kStart]) ;
5 const simde m512d x3 =
6 remainderIsMasked
7 ? simde mm512 mask i64gather pd (zero , masks [r e s t] , indicesK , x3ptr , 8)
8 : s imde mm512 i64gather pd (indicesK , x3ptr , 8) ;

Listing 6.5: Particle coordinates are gathered into a vector register.

After the coordinates have been loaded, the kernel proceeds like the simple masked variant
but without the cutoff mask. If newton3 is enabled for the third particle, its forces need to
be updated in the SoA directly, which faces the same issue as the loading of coordinates and
therefore require gather and scatter instructions as shown in Listing 6.6.

1 const simde m512d f xk o l d =
2 remainderIsMasked
3 ? simde mm512 mask i64gather pd (zero , masks [r e s t] , indicesK , fx3ptr , 8)

18

6.3. Vectorization via Compress/Alignr

4 : s imde mm512 i64gather pd (indicesK , fx3ptr , 8) ;
5 const simde m512d fxk new = simde mm512 add pd (fxk o ld , fxk) ;
6 i f constexpr (remainderIsMasked) {
7 s imde mm512 mask i64scatter pd (fx3ptr , masks [r e s t] , indicesK , fxk new , 8) ;
8 } else {
9 s imde mm512 i64scatter pd (fx3ptr , indicesK , fxk new , 8) ;

10 }

Listing 6.6: Forces for the third particle are updated using gather and scatter instructions.

6.3. Vectorization via Compress/Alignr

Another point of possible improvement is the collection of indices shown in Algorithm 5. We
want to vectorize the collection process and also keep the indices in registers for faster access.
This is done by first computing a cutoff mask like the masked kernel shown in Section 6.1.

Passing this mask to simde mm512 maskz compress epi64 compresses the indices towards
the lower end of the vector register. Then simde mm512 alignr epi64 is used to merge
the new indices with the existing indices. If the vector capacity is exceeded, the kernel
is called to process the current batch of indices. This procedure is shown in Algorithm 6
and visualized in Figure 6.1. The kernel is essentially the same as the one explained in
Section 6.2, except it does not need to load the vindex from the vector buffer since the
index register acts as vindex directly.

Algorithm 6: Compress/alignr index collection process

1 popCountMask← count 1 bits in mask
2 newInteractionIndices← simde mm512 maskz compress epi64(. . .)
3 if numAssignedRegisters + popCountMask < vecLength then
4 interactionIndices← simde mm512 alignr epi64(. . .)
5 numAssignedRegisters← numAssignedRegisters + popCountMask

6 else
7 interactionIndices← simde mm512 alignr epi64(. . .)
8 SoAKernel(i, j, interactionIndices)
9 interactionIndices← simde mm512 alignr epi64(. . .)

10 numAssignedRegisters← popCountMask− vecLength

19

6. Vectorization of the Axilrod-Teller Functor

Figure 6.1.: Visualization of the compress/alignr index collection process. For simplicity
vectors of length four are used for the visualization. The actual implementation
uses vectors of length eight.

20

Part III.

Performance Evaluation

21

7. Performance Evaluation

7.1. Hardware Overview

Performance measurements were taken mainly on the CoolMUC-4 cluster of the Leibniz
Rechenzentrum. Some additional measurements were taken on CoolMUC-2 to analyze how
well the AVX512 implementation with SIMDe performs on non-AVX512 hardware. Table 7.1
gives an overview of the hardware features.

The AutoPas commit used for experiments is 42dfbe3.

CoolMUC-4 CoolMUC-2

CPU
Intel®Xeon®Platinum

8380
Intel®Xeon®E5-2690 v3

CPU Architecture Icelake Haswell
Frequency 2.3 GHz 2.6 GHz

Vector Extensions
SSE, AVX, AVX2,

AVX-512
AVX2

Table 7.1.: Hardware overview.

7.2. md-flexible

We used md-flexible to see the performance impact of the vectorized Axilrod-Teller potential
within the entire simulation framework. For the simulation, particles were generated densely
packed in a three-dimensional grid. This, combined with a relatively large cutoff of 5.0,
ensures that there are enough particle triplets to properly see the effect of vectorization.
However, such an idealized scenario will not always happen in real simulations. Therefore,
another test was performed, spreading the particles further apart and using a cutoff of 2.5.
The YAML1 file used as input for the first scenario can be found in Appendix A. For the
second scenario, cutoff was set to 2.5, particle-spacing to 1.7, and box-length to 100
in all dimensions.

In Figure 7.1a can be seen that the masked approach is actually the most promising, achiev-
ing a speedup relative to the auto-vectorized version of around 2.6. The compress/alignr
implementation also performs well, achieving a speedup of approximately 2.2. Only the
gather/scatter implementation performs worse than the auto-vectorized version. Compar-
ing the gather/scatter and compress/alignr (which uses the same gather/scatter kernel)
implementations also shows the significance of the index collection process, as the naive
std::vector approach proves to be a major performance bottleneck. We suspect that the

1https://yaml.org/

22

https://yaml.org/

7.3. Functor Benchmark

(a) Runtime for a dense scenario with 22925
particles spread across a cube with side-
length 30 and a cutoff of 5.0. The masked
implementation performs best, achieving
a speedup of 2.6 compared to the auto-
vectorized version.

(b) Runtime for a less dense scenario with
292876 particles spread across a cube with
sidelength 100 and a cutoff of 2.5. Here,
the auto-vectorized implementation per-
forms best.

Figure 7.1.: Runtimes from tests using md-flexible.

index collection loop in the gather/scatter approach is not auto-vectorized, which combined
with additional overhead from allocating the vector and potentially less efficient cache usage
leads to poor performance.

In the sparse scenario, the auto-vectorized implementation performs slightly better than
the masked and compress/alignr versions. A possible explanation for this is that due to the
low number of particles per cell, the innermost loop does not have as many iterations, thus
limiting the potential gain from parallelization.

7.3. Functor Benchmark

A major concern for the three-body functor is the low hit rate, meaning among the particle
triplets under consideration only a few will contribute to force calculations. To properly
analyze the impact of the hit rate, a benchmarking program based on AutoPasFunctorBench2

was created. This program only runs the functor itself, without the full simulation framework.
This gives us more control over the particle positions and allows us to test very specific
scenarios. In particular, we placed all three cells at the same spatial coordinates, which
allows us to fine-tune the hit rate by modifying the cell size relative to the cutoff.

Figure 7.2 shows speedups relative to the auto-vectorized version, using 300 particles per
cell. Tests were performed for single, pair, and triple functors individually and split into
whether newton3 is enabled.

Results are very similar for all considered options. As already seen in Section 7.2, the
masked version generally performs best and is only slightly overtaken by the compress/alignr
implementation for very low hit rates. Unsurprisingly, the masked variant also performs
generally better, the higher the hit rate, which matches concerns addressed in Section 6.1.
However, the same does unexpectedly not hold for the compress/alignr version, which sees

2https://github.com/AutoPas/AutoPasFunctorBench

23

https://github.com/AutoPas/AutoPasFunctorBench

7. Performance Evaluation

only very little speedup at hit rates close to 100%. Finally, the gather/scatter implementation
also performs marginally better for higher hit rates, but has no significant difference from
the auto-vectorized version.

Figure 7.2.: Speedups observed from tests running the benchmarking program. Results are
split into newton3 modes and single, pair, triple functors. Tests were performed
with 300 particles per cell.

24

7.4. Portability to Non-AVX512 Hardware

7.4. Portability to Non-AVX512 Hardware

Due to SIMDe, all vectorized implementations can also be directly used on hardware that
doesn’t support AVX512 instructions. To evaluate whether doing so would be reasonable
performance-wise, the first scenario from Section 7.2 was repeated on CoolMUC-2 with
box-length set to 20.

Figure 7.3.: Runtime for tests using md-flexible on a non-AVX512 CPU for a dense scenario
with 6970 particles spread across a cube with sidelength 20 and a cutoff of 5.0.

Figure 7.3 shows that on non-AVX512 hardware, the intrinsics implementations perform
worse than the auto-vectorized version. This means that despite SIMDe making the intrinsics
code portable across different cpu architectures, it is still necessary to employ multiple
implementations to achieve optimal performance on every hardware setup.

25

8. Conclusion

In this thesis, an SoA functor for the three-body Axilrod-Teller potential was implemented
and successfully vectorized using SIMD intrinsics. Despite initial concerns about the
efficiency of a simple masked approach to vectorization, it has proved to provide better
performance than more elaborate schemes using gather, scatter, compress, and alignr
instructions. Performance benchmarks also revealed that particle density plays a vital role
for the efficiency of vectorization. How this factor comes into play for more meaningful
simulation scenarios, remains an open question for potential future work.

Although the usage of SIMDe makes the vectorized implementations portable across
different hardware architectures, it has not shown to be useful from a pure performance
aspect, and an implementation split into AVX512 and non-AVX512 remains necessary to
achieve optimal performance.

26

Part IV.

Appendix

27

A. YAML-input files

1 container : [L inkedCe l l s]
2 functor−3b : a x i l r o d− t e l l e r
3 traversal−3b : [l c c 0 1 3b]
4 newton3−3b : [d i s ab l ed]
5 data−layout−3b : [SoA]
6
7 selector−strategy : Fastest−Absolute−Value
8 tuning−strategies : []
9 tuning−interval : 2000

10 tuning−samples : 3
11 tuning−max−evidence : 10
12
13 cutoff : 5 . 0
14 cell−size : [1 . 0]
15 deltaT : 0 . 0
16 iterations : 10
17 boundary−type : [p e r i od i c , p e r i od i c , p e r i o d i c]
18 fastParticlesThrow : f a l s e
19
20 Sites :
21 0 :
22 mass : 1 .
23 nu : 0 .073 # Value f o r Argon
24 Objects :
25 CubeClosestPacked :
26 0 :
27 box−length : [3 0 , 30 , 30]
28 bottomLeftCorner : [0 , 0 , 0]
29 particle−spacing : 1 . 2
30 velocity : [0 , 0 , 0]
31 particle−type−id : 0
32 thermostat :
33 initialTemperature : 1 . 1
34 targetTemperature : 1 . 1
35 deltaTemperature : 0 . 5
36 thermostatInterval : 25
37 addBrownianMotion : t rue
38
39 log−level : warn
40 no−flops : t rue
41 no−end−config : t rue
42 no−progress−bar : t rue

Listing A.1: YAML input file for the md-flexible test

28

List of Figures

2.1. Illustration of Van-der-Walls forces. 3
2.2. Axilrod-Teller potential for particles placed at the corners of an isosceles

triangle with angle between legs γ and length of legs l. 4

3.1. Interactions between particles in the Linked Cells algorithm 7
3.2. Comparison of data layouts . 8
3.3. Visualization of a selection of SIMD operations. 11

6.1. Visualization of the compress/alignr index collection process. 20

7.1. Runtimes from tests using md-flexible. 23
7.2. Speedups observed from tests running the benchmarking program 24
7.3. Runtime for tests using md-flexible on a non-AVX512 CPU 25

29

List of Tables

7.1. Hardware overview . 22

30

Bibliography

[AT43] B. M. Axilrod and E. Teller. Interaction of the van der Waals Type Between
Three Atoms. The Journal of Chemical Physics, 11(6):299–300, 06 1943.

[Bre00] D.W. Brenner. The art and science of an analytic potential. physica status solidi
(b), 217(1):23–40, 2000.

[BY13] W. Michael Brown and Masako Yamada. Implementing molecular dynamics on
hybrid high performance computers—three-body potentials. Computer Physics
Communications, 184(12):2785–2793, 2013.

[BZBP14] Hans-Joachim Bungartz, Stefan Zimmer, Martin Buchholz, and Dirk Pflüger.
Modeling and simulation. Springer Undergraduate Texts in Mathematics and
Technology. Springer, 2014.

[CW00] C.F. Cornwell and L.T. Wille. Parallel molecular dynamics simulations for short-
ranged many-body potentials. Computer Physics Communications, 128(1):477–
491, 2000.

[Den24] Nanxing Nick Deng. Implementation of linked-cells traversals for 3-body in-
teractions in autopas. Bachelor’s thesis, Technical University of Munich, Feb
2024.

[DM11] Jacob D. Durrant and James Andrew McCammon. Molecular dynamics simula-
tions and drug discovery. BMC Biology, 9:71 – 71, 2011.

[Fly11] Michael Flynn. Flynn’s Taxonomy, pages 689–697. Springer US, Boston, MA,
2011.

[Fot19] Nicola Fottner. Developing and benchmarking a molecular dynamics simulation
using autopas. Bachelorarbeit, Technical University of Munich, Sep 2019.

[GSBN21] Fabio Alexander Gratl, Steffen Seckler, Hans-Joachim Bungartz, and Philipp
Neumann. N ways to simulate short-range particle systems: Automated algorithm
selection with the node-level library autopas. Computer Physics Communications,
273:108262, 2021.

[GST+19] Fabio Alexander Gratl, Steffen Seckler, Nikola Tchipev, Hans-Joachim Bungartz,
and Philipp Neumann. Autopas: Auto-tuning for particle simulations. In 2019
IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio
de Janeiro, May 2019. IEEE.

[int] Intel intrinsics guide. https://www.intel.com/content/www/us/en/docs/

intrinsics-guide/index.html. Accessed: 2024-05-12.

31

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

Bibliography

[LJ24] J. E. Lennard-Jones. On the determination of molecular fields. ii. from the
equation of state of a gas. Proceedings of the Royal Society of London. Series A,
Containing Papers of a Mathematical and Physical Character, 106(738):463–477,
1924.

[Mar01] Gianluca Marcelli. The role of three-body interactions on the equilibrium and
non-equilibrium properties of fluids from molecular simulation. 2001.

[Mar22] David Martin. A comparison of three-body algorithms for molecular dynamics
simulations. Bachelor’s thesis, Technical University of Munich, Nov 2022.

[Mic79] Ronald E. Mickens. Long-range interactions. Foundations of Physics, 9(3):261–
269, 1979.

[New87] Issac Newton. Philosophiae naturalis principia mathematica. 1687.

[SGH+21] Steffen Seckler, Fabio Gratl, Matthias Heinen, Jadran Vrabec, Hans-Joachim
Bungartz, and Philipp Neumann. Autopas in ls1 mardyn: Massively parallel
particle simulations with node-level auto-tuning. Journal of Computational
Science, 50:101296, 2021.

[sim] Simd everywhere. https://github.com/simd-everywhere/simde. Accessed:
2024-05-12.

[Ver67] Loup Verlet. Computer ”experiments” on classical fluids. i. thermodynamical
properties of lennard-jones molecules. Phys. Rev., 159(1):98–103, Jul 1967.

32

https://github.com/simd-everywhere/simde

	Abstract
	Zusammenfassung
	Introduction and Background
	Introduction
	Theoretical Background
	Molecular Dynamics
	Potentials
	Forces and Movements
	Mixing
	Cutoff
	Newton's Third Law

	Technical Background
	AutoPas
	Particle Container
	Traversal
	Data Layout
	Functors

	SIMD
	SIMD-everywhere

	Related Works

	Implementation
	Development of an Axilrod-Teller Functor without Intrinsics
	Vectorization of the Axilrod-Teller Functor
	Vectorization via Masked Instructions
	Vectorization via Gather/Scatter Instructions
	Vectorization via Compress/Alignr

	Performance Evaluation
	Performance Evaluation
	Hardware Overview
	md-flexible
	Functor Benchmark
	Portability to Non-AVX512 Hardware

	Conclusion

	Appendix
	YAML-input files
	Bibliography

