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Abstract
Conflict-Free Replicated Data Types (CRDTs) for JSON allow

users to concurrently update a JSON document and auto-

matically merge the updates into a consistent state. Moving

a subtree in a map or reordering elements in a list within

a JSON CRDT is challenging: naive merge algorithms may

introduce unexpected results such as duplicates or cycles. In

this paper, we introduce an algorithm for move operations

in a JSON CRDT that handles the interaction with concur-

rent non-move operations, and uses novel optimisations to

improve performance. We plan to integrate this algorithm

into the Automerge CRDT library.

CCS Concepts: • Theory of computation→ Distributed
algorithms; • Software and its engineering→ Consis-
tency; • Information systems→ Collaborative and social
computing systems and tools.

Keywords: conflict-free replicated data types, replica con-

sistency, JSON, tree data structures, move operation
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1 Introduction
Automerge [2] is an implementation of Conflict-Free Repli-

cated Data Type (CRDT) [15], which allows concurrent

changes to data on different devices to be merged automati-

cally without requiring any central server. It is used in the

development of local-first software [7], which includes ap-

plications such as collaborative drawing, text editing, and

more.

Automerge uses a document as its data model, which can

be viewed as a JSON data type. A document can be accessed

locally through operations such as get, put, and delete, and
anymodifications are replicated to other devices. Many appli-

cations require reordering elements in a list, e.g. when using
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drag-and-drop to change the order of a to-do list. Moreover,

some applications need to move a subtree to a new parent

node: for example, in a document representing a file system

tree, moving a file or directory from one location to another

is a very common operation.

Although move operations are straightforward for an un-

replicated JSON object, as they only require deletion and rein-

sertion, they become challenging in the context of CRDTs.

If several replicas concurrently delete and reinsert the same

object, the merged result contains duplicates of the moved

object [4]. Another issue arises with cycles, as illustrated

in Figure 1. In this example, each device individually exe-

cutes a move operation without creating a cycle. However,

when merging these operations, a cycle may appear if the

algorithm does not take care to prevent the cycle. Currently,

Automerge handles moves by deletion and reinsertion, which

results in behaviour (b) in Figure 1.

Previous research has demonstrated the possibility of

move operations on lists and trees [4, 6, 9, 10], but the existing

algorithms treat the children of a tree node as an unordered

set, rendering them unsuitable for direct application to JSON

trees. In JSON trees, a branch node is either a key-value

map or an ordered list. Therefore, the CRDT algorithm must

handle operations on those maps and lists that may interact

with concurrent move operations (for example, by overwrit-

ing a key containing a node being moved). Moreover, the

algorithm needs to be able to move elements between a list

and a map. In this paper, we show how to implement a move

operation with this functionality. We also developed novel

optimisations to improve its performance. We implemented

the algorithm as a standalone prototype to facilitate experi-

mentation with various algorithm variants, showcasing the

impact of these optimisations and the practical feasibility.

2 The Core Mechanics of Automerge
Automerge uses a monotonically growing set of operations
called OpSet as its internal representation. The set of oper-
ations can be exchanged between different peers, and two

sets can be merged by taking their union. Figure 2 shows an

example JSON document and its internal OpSet.

When modifying a document, a new operation is added

to the OpSet. Operations are never removed from the OpSet.

An operation sets or deletes the value on a single key, or a

single element in a list.

Every operation in Automerge is assigned a unique ID, its

opID, which is implemented as a Lamport Clock [8]. Every
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Figure 1. Initially, nodes 𝐴 and 𝐵 are siblings. Replica 1 moves 𝐵 to be a child of 𝐴, while concurrently replica 2 moves 𝐴 to be

a child of 𝐵. Boxes (a) to (d) show possible outcomes after the replicas have communicated and merged their states: (a) A and

B form a cycle; (b) concurrently moved subtrees are duplicated; (c) Replica 2’s move is ignored; (d) Replica 1’s move is ignored.

Figure from [6].

A: a,

B: [ b1, b2, b3],

C: {

D: d

}

ID Type Object ID Key Value Predecessors

⟨1, 0⟩ put ⟨0, 0⟩ A a

⟨2, 0⟩ make ⟨0, 0⟩ B list

⟨6, 0⟩ make ⟨0, 0⟩ C map

⟨7, 0⟩ put ⟨6, 0⟩ D d

⟨3, 0⟩ put ⟨2, 0⟩ ⟨0, 0⟩ b1

⟨4, 0⟩ put ⟨2, 0⟩ ⟨3, 0⟩ b2

⟨5, 0⟩ put ⟨2, 0⟩ ⟨4, 0⟩ b3

⟨8, 0⟩ delete ⟨3, 0⟩

Internal OpSet

Figure 2. An example JSON document with its internal OpSet

operation references the ID of the list or map object that it

modifies, which is stored as the object ID of the operation. A

list or map is created using a “make” operation, and the ID of

this operation subsequently serves as the unique identifier

for the object it created.

If an operation op
2
overwrites, deletes or moves an ex-

isting key in a map or element in a list, and that existing

value was assigned by a prior operation op
1
, we say that op

1

is a predecessor of op
2
, and op

2
is a successor of op

1
. Every

operation includes the opIDs of its immediate predecessors.

Multiple predecessors could exist, as several prior opera-

tions may concurrently assign values to the same key. An

operation is invisible if it has one or more successors.

3 The Moving Algorithm
When the user moves an element from one location to an-

other, a move operation is generated and added to the OpSet.

This move operation identifies the element being moved and

where it is moved to. The destination of the move is deter-

mined by an object ID and a key if the destination object is

a map, or a list element ID if it is a list. The ID of a prior put

or make operation identifies the element being moved, and

a move operation has a MoveID field where this ID is stored.

3.1 Validity of Move Operations
If multiple concurrent move operations move the same el-

ement, we define the move operation with the largest ID

as the winner, and others have no effect. This prevents the

concurrent moves from duplicating the element. A move

operation is defined to be valid if and only if there is no

concurrent move operation with a greater ID that moves the

same element, and it does not introduce any cycles. If a move

operation is invalid, the move operation itself is invisible

and its predecessors remain visible (unless they have another

successor operation that is valid).

The challenge is to ensure a consistent decision among

replicas regarding the validity of the same operation. Con-

sider Figure 1, where Replica 1 moves B to be a child of A

and then receives the change from Replica 2, while Replica

2 moves A to be a child of B and then receives the change

from Replica 1. If we check the validity at the time of apply-

ing operations, Replica 1 would consider the operation of
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Algorithm 1 A naive approach for updating validity of operations

Input: ops - operations in the OpSet in ascending ID order

Output: valid - a map from operation ID to its validity

1: procedure UpdateValidity(ops)
2: tree← {} ⊲ a map from child ID to parent ID

3: winners← {} ⊲ a map from object ID to winner ID

4: valid← {}
5: for op in ops do ⊲ in order of ascending op.ID

6: for pred in op.Predecessors do
7: tp← pred.Type

8: if tp == move and valid[pred.ID] then
9: tree[pred.MoveID]← null

10: else if tp == make then
11: tree[pred.ID]← null

12: if op.Type == make then
13: tree[op.ID]← op.ObjectID

14: else if op.Type == move then
15: mid← op.MoveID

16: oid← op.ObjectID

17: if IsAncestor(tree, oid, mid) then
18: valid[op.ID]← false

19: continue
20: valid[op.ID]← true

21: tree[mid]← oid

22: prevWinner← winners[mid]

23: if prevWinner != null then
24: valid[prevWinner]← false

25: winners[mid]← op.ID

26: return valid

27:

28: function IsAncestor(tree, node, ancestor)

29: while true do
30: if node == ancestor then
31: return true

32: if node == null || node == root then
33: return false

34: node← tree[node]

moving A to be a child of B as invalid, while Replica 2 would

say the operation of moving B to be a child of A is invalid,

resulting in inconsistent document states on two replicas.

To ensure consistent decisions on the validity of opera-

tions, we apply operations in ascending ID order. We first

show a simple but inefficient approach in Algorithm 1: when-

ever an operation is inserted into OpSet, all the operations

in the OpSet are reapplied, and the validity of operations is

updated accordingly. We present an optimized algorithm in

Section 3.2.

We maintain a map named tree to keep track of the parent-
child relationship between objects. All objects within a list

are considered children of the list object, and the same applies

to map objects. When an object is deleted from the tree, we

record this in the map by setting the deleted object’s parent

to null. A deletion can be thought of as similar to moving

the deleted object to a “trash” tree that is separate from the

visible document tree.

Additionally, we maintain another map named winners,
whose key is the ID of an element being moved, and the

associated value is the greatest ID among operations that

move this element.

By reapplying the operations, we update the tree to reflect

any changes in the parent-child relationship in the document.

Lines 6 to 11 set the parent to null for any objects that are

deleted or overwritten. Lines 14 to 25 update the validity by

checking for cycles and concurrent moves.

In Figure 1, the result (d) implies replica 2’s operation

precedes replica 1’s. From replica 1’s perspective, its oper-

ation starts as visible but becomes invisible after receiving

the operation from replica 2. It’s possible to construct more

complex scenarios in which an operation goes from invisible

to visible as a result of receiving a remote operation.

3.2 Performance Optimisation
Algorithm 1 ensures the consistency of move operations by

applying them in the same order on all replicas. However,

reapplying the entire set of operations in the OpSet is very

inefficient.

To optimise the algorithm, we can avoid executing the

parts that repeat the previous invocation of UpdateValidity.
Let 𝑛 be the ID of the newly added operation. In Algorithm 1,

the execution of the loop for operations with an ID less than

𝑛 is the same as the previous invocation. During real-time

collaboration, the operations with IDs greater than 𝑛 are

usually a small fraction of the total set of operations.

Algorithm 2 shows an optimised version of Algorithm 1.

To insert a new operation with ID 𝑛 into OpSet, our algo-

rithm first restores the parent-child relationship to its state

when only operations with IDs less than 𝑛 are applied. We

then apply the new operation, followed by reapplying the

operations with IDs greater than 𝑛. We call this sequence of

steps the Restore-Apply-Reapply (RAR) procedure.
To restore the parent-child relationship to a past state,

we store former parents of overwritten, deleted, and moved

objects in the variable parents, in which we maintain a map

from object IDs to the old parent IDs for each operation.

Additionally, to restore the validity status of operations

with a lower ID, we maintain a stack of move operations for

every object that is moved. Operations in a stack are sorted

10
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Algorithm 2 The Restore-Apply-Reapply approach for updating validity of operations

1: procedure UpdateValidity
2: ops← [] ⊲ operations in ascending ID order

3: tree← {} ⊲ a map from child ID to its parent ID

4: moves← {} ⊲ a map from element ID to a stack of move operation IDs for moving this element

5: parents← [] ⊲ a list, where each element is a map, from object ID to its parent ID

6: valid← {}
7: while whenever the local replica receives an operation o do
8: Insert o into ops at index i such that all operations at indexes > i have an ID greater than o.ID, and all operations

at indexes < i have an ID less than o.ID

9: Insert a new map into parents at index i

10: for k← |ops| - 1 to i + 1 do ⊲ Restore

11: for (object, location) in parents[k] do
12: tree[object] = location

13: if ops[k].Type is move and valid[ops[k].ID] then
14: moves[ops[k].MoveID].pop()

15: prevMove← moves[ops[k].MoveID].peek()

16: if prevMove != null then:
17: valid[prevMove]← true

18: for k← i to |ops| - 1 do ⊲ Apply and Reapply

19: op← ops[k]

20: parent← {}

21: prevParent← null

22: if op.Type is make then
23: tree[op.ID]← op.ObjectID

24: parent[op.ID]← null ⊲ restore a make operation is to delete the object it creates

25: else if op.Type is move then
26: if op.Value == null then ⊲ the value is not null if it moves a scalar value

27: if IsAncestor(tree, op.ObjectID, op.MoveID) then
28: valid[op.ID]← false

29: continue
30: prevParent = tree[op.MoveID]

31: tree[op.MoveID]← op.ObjectID

32: valid[op.ID]← true

33: if moves[op.MoveID] == null then
34: moves[op.MoveID]← new stack

35: prevMove← moves[op.MoveID].peek()

36: if prevMove != null then:
37: valid[prevMove]← false

38: moves[op.MoveID].push(op.ID)

39: for pred in op.Predecessors do ⊲ handle deleted and overwritten objects

40: if pred.Type is move and valid[pred.ID] then
41: parent[pred.MoveID]← tree[pred.MoveID]

42: tree[pred.MoveID]← null

43: else if pred.Type == make then
44: parent[pred.ID]← tree[pred.ID]

45: tree[pred.ID]← null

46: if prevParent != null then
47: parent[op.MoveID]← prevParent

48: parents[k]← parent

11
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Figure 3. Convergence time of two actors that diverge by

move operations

by ID, with the top of the stack being the winner among the

concurrent move operations of the same element. To restore

to a past state, all the move operations with IDs greater than

that of the past operation are popped.

Lines 10 to 17 in Algorithm 2 restore the effects of the

operations greater than the new operation. Lines 18 to 48

update the tree to reflect any changes in the parent-child

relationship by applying the newly inserted operation and

reapplying the following operations. The validity is updated

by detecting cycles and concurrent move operations during

applying and reapplying operations similarly to Algorithm 1.

Additionally, we store the old parent of objects, ensuring the

ability to restore to any past state. The algorithm doesn’t

check for cycles if the move operation moves a scalar value,

as it is impossible to create a cycle in this case.

3.3 Further Optimisations
3.3.1 Batch Updating. Sometimes a large number of oper-

ations are applied at once, e.g. when a user has been working

offline and comes back online. Instead of calling UpdateVa-

lidity for each operation, it is more efficient to collectively

apply all operations at once, and thereby amortise the cost

of restoring and reapplying.

3.3.2 Lifecycle Tracking. In the process of Restore-Apply-
Reapply, objects shift between the tree and the trash as they

are moved, deleted or overwritten. As each operation’s ID is

a logical timestamp, we can create a sequence of IDs for each

object that traces these shifts over time.We call this sequence

of IDs the LifecycleList of an object. The LifecycleList can

be divided into two sublists: the PresentList, which consists

of operations that create or move the object, and the Trash-

List, which also contains operations that overwrite or delete
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Figure 4. Convergence time of two actors that diverge by

non-move operations

the object. Upon receiving an operation, we insert the ID of

the new operation into the TrashList of objects it deletes or

overwrites, as well as the PresentList of objects it creates or

moves.

By storing the lifecycle of each object, it is no longer nec-

essary to restore and reapply non-move operations, which

merely shift objects back and forth between the tree and

the trash, without changing their parents. Having to per-

form RAR only for move operations results in a large perfor-

mance improvement for workloads where most operations

create/delete objects and update values within objects, and

only a small fraction of operations are moves.

4 Evaluation
We implemented the move algorithm in Go in a standalone

prototype, which is a simplified version of Automerge. The

source code is available on GitHub
1
. We plan to integrate the

algorithm into the Rust implementation of Automerge [2]

in the future. We ran the experiments on AWS c5.large in-

stances, each having 4vCPU and 2GB RAM.

4.1 Convergence Complexity and Performance
To measure the time it takes for two divergent actors to con-

verge, two actors start with identical documents containing

100 map objects. They each generate 𝑁 move operations

concurrently, and then send the operations to each other. For

each move we choose a random object to be moved, and a

random object as the destination.

Figure 3 shows the result of the experiment.With batch up-

dating, when N = 100, it takes about 1 ms to converge, which

is acceptable for most real-time collaborative applications.

1https://github.com/LiangrunDa/AutomergeWithMove
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4.2 Overhead Caused by Move Support
Even when an application does not use any move operations,

our algorithm needs to perform additional work on oper-

ations that modify the parent-child relationship of objects

by creating, deleting or overwriting objects, compared to an

implementation that does not support moves. To quantify

this overhead, we measure the time to achieve convergence

on our implementation with support for move operations

enabled, and compare it to a version of the same implementa-

tion with support for move operations disabled by removing

calls to UpdateValidity. Initially, both actors have identical

documents containing 100 map objects. They each concur-

rently add a further N objects to the document, and then

send the operations to each other. Batch updating is not used

in this experiment.

Figure 4 shows the results. Without lifecycle tracking,

the convergence time grows to more than 60 seconds for

𝑁 = 10
4
; with lifecycle tracking, this is reduced to 20ms,

which is much closer to the 6ms it takes to converge with

the move operation disabled.

4.3 Correctness Testing
We test the correctness of the implementation by randomly

generating operations on different actors to check if they

converge to the same state. This approach is inspired by

Jepsen [3], a framework for distributed systems verification.

With this approach, we found several bugs during the de-

sign of the move algorithm. Those bugs were caused by not

taking care of the corner cases with combinations of inputs

that are rarely encountered during normal execution. Even

if this approach cannot prove the correctness of the algo-

rithm, it can uncover some subtle corner cases and provide

confidence in its correctness.

5 Related Work
5.1 CRDTs for Trees
Several previous papers present designs for JSON CRDTs

[1, 5, 14], but none of them support a move operation. On

the other hand, there are several algorithms for move opera-

tions on trees, but they focus on managing the parent-child

relationship, without integrating the map or list CRDT data

types that occur in JSON:

• Previous work by Nair et al. [9] proposed a conflict-

free replicated tree type with move operations. They

categorized these moves into up-moves (towards the

root) and down-moves (away from the root); concur-

rent up-moves are safe while cycles caused by other

move operations are resolved by ignoring some opera-

tions.

• Najafzadeh et al. [10] proposed a fully asynchronous

file system that replaces the move operations with

copy-delete operations if a cycle occurs, leading to

duplication of directories. They also proposed a mostly

asynchronous file system that uses locks to coordinate

concurrent move operations, but this approach is not

available under network partitions.

• Kleppmann et al. [6] proposed a move operation for

trees based on an undo-do-redo algorithm,which forms

the basis of the algorithm in this paper. We change the

name to Restore-Apply-Reapply to avoid confusion

with a user-facing undo feature.

To our knowledge, our algorithm is the first to handle the

combination of a move operation with a JSON tree struc-

ture, including the overwriting keys in map objects, moving

multi-value registers within map and list objects, and re-

ordering elements within list objects. These features make

the algorithm significantly more complicated. Furthermore,

we introduce the concept of lifecycle tracking to reduce the

overhead of the algorithm, which is not considered in previ-

ous work on move operations.

5.2 CRDTs for Lists
There are many CRDTs for lists, such as Treedoc [13],

WOOT [12], Logoot [16], and LSEQ [11]. However, none

of them support move operations.

DSON [14] is a delta-based JSON CRDT that supports

reordering of items in lists, but not tree moves that change

the parent of a node.

Kleppmann introduced an algorithm to extend existing

List CRDTs with move operations [4]. The algorithm uses

an LWW register for each element to track the location of

the element. We incorporate the algorithm into our Restore-

Apply-Reapply procedure by tracking concurrent move op-

erations that move the same element and selecting the move

operation with the greatest ID as the winner.

6 Conclusions
In this paper, we present an implementation of move opera-

tions in a JSON CRDT, a tree of nested map and list objects.

We optimise the procedure using batch updating, and the

novel technique of lifecycle tracking.

Our performance experiments demonstrate the practical

feasibility of the move operation, even in scenarios with

large numbers of concurrent operations. We also evaluate

the correctness of our implementation through randomised

testing, ensuring that the algorithm converges to the same

state across different actors. In future work we plan to inte-

grate this algorithm into the Automerge CRDT library and

formally verify its correctness.
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