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ABSTRACT
GPUs are increasingly popular in HPC systems, and more applica-
tions are adopting GPUs each day. However, the control synchro-
nization of GPUs with CPUs is suboptimal and only possible after
GPU kernel termination points, resulting in serialized host and de-
vice tasks. In this paper, we propose a novel CPU-GPU notification
method that enables non-blocking in-kernel control synchroniza-
tion of device and host tasks in combination with persistent GPU
kernels. Using this notification method, we increase the overlap
of CPU and GPU execution and with that parallelism. We present
the concept and structure of the proposed notification mechanism
together with in-kernel GPU-CPU control synchronization, using
halo-exchange as an example. We analyze the performance of the
halo-exchange pattern using our new notification method, as well
as the interference between CPU and GPU operations due to the
execution overlap. Finally, we verify our results using a perfor-
mance model covering the halo-exchange pattern with the new
notification method.

CCS CONCEPTS
• Computing methodologies→ Parallel programming languages;
• Computer systems organization → Single instruction, mul-
tiple data; • Software and its engineering → Software perfor-
mance.
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1 INTRODUCTION
As we step into the exascale age of HPC systems, GPU-accelerated
systems are becoming more and more dominant. Already now, they
make up over 50% of the total performance of all the systems in
the Top500 list1, and this is expected to continue to rise. At the
same time, due to the high performance of GPUs, more and more
applications are adopting GPUs with the aim of offloading the
computationally intense portions of the computation that make
up the majority of the scientific applications. Usually, the CPU is
left with seemingly smaller tasks, such as communication, kernel
launching or on-node synchronization of multi GPUs [21]. However,
these tasks are dependent on the GPU-offloaded computation tasks
and, consequently, there is a need to synchronize GPU and CPU
activities.

Device synchronizations are enabled by device vendor APIs, e.g.,
cudaDeviceSynchronize in CUDA. These functions enable coarse-
grained synchronization at GPU kernel boundaries, serializing the
execution of CPU and GPU code by blocking the CPU execution
until the GPU kernel is finished. Such CPU/GPU synchronization
can lead to overhead in the form of idle CPU time due to the blocking
synchronization, kernel termination times, and serialization of the
GPU and CPU tasks at the granularity of kernel boundaries.

As the GPU/CPU control synchronization leads to unavoidable
overheads, there have been significant efforts to remove the GPUs’
dependency on CPUs and with that limiting the needed synchro-
nization. Some of these efforts are GPU-Direct for communica-
tion [10], Unified Virtual Memory (UVM) [2] for memory synchro-
nization, and Cooperative Groups for enabling Multi-GPU synchro-
nizations [8]. However, all of these improvements come with their
own overheads and/or require additional hardware not available
on many systems [1, 2, 7]. This is not expected to change in the
future, and, consequently, we need to, even in these scenarios, find
solutions that enable fine-grained CPU/GPU communication.

As completely removing the synchronization overheads between
CPU and GPU is not possible, we must at least aim at performing
the synchronization at finer granularity in order to decrease its
impact and enable more overlap between GPU kernels and CPU
tasks. This goal requires a bi-directional notification mechanism

1https://www.top500.org/statistics/list/
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that can synchronize GPU and CPU dependent tasks during the
execution of a GPU kernel, instead of forcing the end of a kernel to
achieve synchronization. However, as this notification mechanism
is used at finer granularity than the traditional methods, it needs
to introduce very little to no overhead and has to be non-blocking
for both CPU and GPU operations.

Another advantage of using a finer-grained notification mecha-
nism is enabling longer, persistent GPU kernels, which would have
the potential to significantly reduce kernel launch and termination
overheads. The kernel launch overhead can vary between 3 and
20 µsec [11, 21] and with the best kernel launch overhead case,
together with the kernel termination, the total overhead can add up
to as high as 20 µsec [19] . When considered individually, these over-
heads might seem negligible. However, typically there are many
kernel launches and terminations in each iteration of an application
and the overheads from multiple kernel launches and terminations
can add up to significant numbers in overall application run time.
In addition, overlapping CPU and GPU operations can reduce the
idle CPU time spent until the GPU kernel termination when CPU
only performs GPU dependent tasks.

In order to achieve these goals, we design and implement a novel,
yet simple pinned host memory based notification mechanism that
enables finer granularity non-blocking communication between
the CPU and the GPU without altering control flow. We showcase
the performance advantages of our notification approach on the
halo-exchange communication pattern using CPU triggered MPI
communication. We demonstrate how enabling persistent kernels—
to avoid multiple kernel launches together with reducing CPU idle
time—and overlapping MPI with GPU operations improves overall
performance, which more than compensates the small overhead in-
troduced by the notification mechanism. With this use case, we also
demonstrate how execution on the GPU affects the performance of
concurrent MPI communication orchestrated by the CPU.

In particular, our paper makes the following contributions:
• A fine-grained notification mechanism between the GPU and the
CPU to enable overlap of GPU andCPU taskswithout terminating
the GPU kernel (Section 3.1).

• A faster implementation of the halo-exchange communication
pattern with CPU triggered MPI and our proposed notification
approach (Sections 3 and 6).

• Demonstration of impact of GPUmemory accesses on concurrent
CPU triggered MPI communication operations (Section 4).

• An adaptation of the communication K-model to incorporate our
GPU/CPU notification mechanism (Section 6.4).

• Demonstration of performance of our approach on different ar-
chitectures, namely Intel, IBM and AMD CPUs with NVIDIA
V100 or AMD MI100 GPUs combinations. (Section 6.3).

2 COMMUNICATION-RELATED LATENCIES IN
ACCELERATED SIMULATIONS

Despite the immense computational parallelism and high perfor-
mance of GPUs, they also expose several performance bottlenecks
including kernel launch overhead and data transfer latency. Because
communication to/from the GPU as well as the execution on the
accelerated systems is orchestrated centrally by the CPU, it leads

Figure 1: Halo exchange run-time for different subdomain
sizes. Performance of different communicationmethods com-
bined with different GPU work scheduling methods.

to both kernel launch overheads and data transfer latency. As a re-
sult, computationally intense applications with light and infrequent
CPU/GPU communication perform well on accelerated systems,
while applications with heavy or frequent communication, such as
halo exchange, yield poor performance. We therefore focus on the
latter application patterns and demonstrate our lightweight, non-
blocking CPU-GPU notification mechanism using the widely used
halo exchange pattern. In particular, we show that it enables latency
hiding on the GPU by reducing the number of kernel launches and
overlapping data transfers with computation.

2.1 The Halo Exchange Communication Pattern
Single Program Multiple Data (SPMD) is the dominant program-
ming paradigm used in scientific simulations. The simulated domain
is spatially decomposed into subdomains, and assigned to a thread
or a process for computation. Periodically, the subdomain bound-
aries are exchanged with the logical neighbors to be used in the
next iteration. This boundary value exchange between processes
working on the neighboring data subdomains is called a halo ex-
change and is a very common communication pattern in scientific
applications [3, 16, 17]. The halo exchange pattern first requires the
halo values to be packed into a contiguous send buffer. With the
advent of accelerated systems, the halo values typically reside in
GPU memory, thus this packing is performed by the GPU, followed
by the synchronization of all GPU threads together with the sender
device. This is then followed by many send and receive operations
by each process to exchange the halos with different neighboring
processes. After the new halos are received, all GPU threads are
synchronized again to start the unpack of received halo buffer to be
used in the next iteration. As a consequence, each iteration of this
halo-exchange pattern requires at least two CPU/GPU synchronisa-
tion points, i.e., after packing and before unpacking, to ensure the
correct execution of the many communication operations between
all neighbor pairs. The halo exchange thus often exhibits poor per-
formance on accelerated systems as synchronizing the GPU with
the CPU to perform this communication often comes with heavy
performance penalties that occur very frequently.

2



Non-Blocking GPU-CPU Notifications to Enable More GPU-CPU Parallelism HPCAsia 2024, January 25–27, 2024, Nagoya, Japan

Figure 2: CPU and GPU timeline during a halo exchange in
Comb cuda_mpi implementation (fused kernel): Packing kernel
terminates so CPU can trigger communication.
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Figure 3: GPU-CPU notification implementation:
Communication starts when any buffer is ready.

2.2 State of the Art and Limitations
Several solutions have been proposed to reduce the latency of data
transfers to GPUs and/or to break the GPU’s dependency on syn-
chronization with CPU for communication. For inter- and intra-
node GPU communication, this includes software based solutions,
such as Unified Address Space (UVA) [9], CUDA-aware MPI as
well as hardware-based solutions such as NVLink [14], GPUDirect
RDMA, GPUDirect P2P [10]. Although the CUDA-aware MPI can
utilize more advanced mechanisms and hardware than the standard
MPI, in some cases standard MPI yields better performance than
the CUDA-aware MPI. In their paper Hanford et al. showcase, that
CUDA-aware MPI with GPUDirect can cause worse performance
for message sizes above 1 MB in comparison to standard MPI [7].
Moreover, obtaining performance gains from these systems is not
always easy. For example, Li et al. present via benchmarking how
complicated it is to squeeze out performance from modern GPU
interconnect technologies, such as NVLink [12].

2.3 Halo Exchange Benchmark: Comb
To showcase the latencies in the halo exchange, we use the Comb
benchmark from Lawrence Livermore National Laboratory (LLNL)2.
Comb is an open-source communication performance benchmark
intended to test the performance impact of different inter-process
communication methods. It simulates a configurable structured
mesh halo exchange communication pattern and allows a variety
of communication patterns. The benchmark can be executed with
different types of parallelism, such as serial execution, OpenMP
threading, CUDA streams, CUDA fused kernels or CUDA-Graphs.
It supports different memory spaces, including default system al-
located memory, pinned host memory, CUDA device memory and
CUDA managed memory with different CUDA memory advice. For
communication of the halo-region, options in Comb are standard
MPI, CUDA-aware MPI with GPUdirect and CUDA-aware MPI with
GPUdirect Asynchronous. The benchmark also allows for testing
the halo-exchange communication with different data domain sizes.

To establish a baseline, we assess the current state-of-the-art for
conducting multi-node GPU-to-GPU halo exchanges using Comb
first, comparing three different communication options and two
scheduling mechanisms. The three communication methods are:

2https://github.com/LLNL/Comb

• Standard MPI (mpi): GPU buffers are copied to CPU memory
before being sent with MPI.

• CUDA-aware MPI with GPUdirect (cuda-aware): Standard
MPI with CPU-issued send and receive calls operating directly
on GPU memory buffers. On-node, GPU buffers are exchanged
directly between peer GPUs. Off-node, GPU buffers are sent
directly over network cards, without transferring to CPU.

• CUDA-aware MPI w/ GPUdirect Asynchronous (gpump):
Similar to CUDA-aware MPI with GPUdirect, but GPU can re-
sume computing right after the MPI operations are triggered.

The two scheduling mechanisms are:
• CUDA fused kernels (cuda): executes halo exchange with all
kernels placed on a single stream. As both pack and unpack
kernel streams are fused to run on a single stream, we refer to
this option as fused kernels.

• CUDAgraphs (cuda_graph): enables creation of complex CUDA
workflows as a directed acyclic graph (DAG) where each node
represents a CUDA kernel or memory operation. CUDA graphs
enable more optimization and better scheduling possibilities, e.g.,
a define-once-run-repeatedly execution flow that reduces kernel
launch overhead [20], but can be challenging to program [13].
For our evaluation, we run Comb on 16 nodes on a Power9+V100

system (details in Section 6.1), using 4 MPI processes on each node
and 64 MPI processes in total. We study a 3D 27-point stencil halo
exchange with three different halo sizes, with parameters motivated
by a real-world production use case. Figure 1 shows the results.
The CUDA fused kernels with standard MPI perform best because
this combination minimizes the number of kernel launches. Al-
though other combinations increase the programming complexity
significantly , they don’t offer any significant performance gains in
comparison to the CUDA fused kernels with standard MPI combina-
tion. However, even the best performing option still has substantial
overheads due to low CPU/GPU task overlap as well as due to the
repeated kernel launches before and after communication. These
are the issues we address with our proposed approach, laid out in
the following.

3 NON-BLOCKING CPU/GPU NOTIFICATION
Looking at the different halo exchange implementations explored
in Comb, the best performing implementation uses a fused kernel
and standard MPI, as shown in Figure 1. This is due to the fact that
a single pack kernel (and a single unpack kernel) minimizes one of

3
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GPU block.
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Figure 5: CPU State machine for a single halo exchange.

the key GPU latencies: kernel launch overhead. Consider the code
sequence shown as Algorithm 1 and Figure 2, which demonstrate
the CPU and the GPU timelines for this implementation.

Algorithm 1 Fused Kernel Comb implementation
1: for application iterations do
2: (CPU) Launch application iteration kernel
3: (CPU) Launch fused packing kernel
4: (GPU) Execute application iteration
5: (GPU) Pack all halo exchange buffers in a fused packing kernel
6: (CPU+GPU) Synchronize the device
7: (CPU) MPI_Send buffers to logical neighbors
8: (CPU) MPI_Recv buffers from logical neighbors
9: (CPU) Launch fused unpacking kernel
10: (GPU) Unpack all halo exchange buffers in a fused unpacking kernel
11: (CPU+GPU) Synchronize the device
12: end for

As Figure 2 and Algorithm 1 show, this implementation:
(1) incurs the latency of device synchronization,
(2) has no overlap between CPU and GPU activities.
In order to address these issues, we therefore must tackle both

of those inefficiencies by enabling persistent GPU kernels, which
combine message packing and communication tasks with a non-
blocking CPU-GPUnotificationmechanism. Our proposed approach
achieves this following the high-level idea demonstrated in Figure 3:
as soon as the GPU has packed any buffers, a GPU sends a non-
blocking notification to the CPU to let it know the buffer is ready.
The CPU proceeds to send the buffer via the network interface card
(NIC), while the GPU continues to pack. When all of the buffers
are packed and sent, the CPU switches to checking the received
messages. As soon as a message is received, the CPU notifies the
GPU that the buffer is ready for unpacking. In this way, both the
CPU and the GPU are able to make progress on their tasks at the
same time, minimizing the synchronization overhead. Further, this
scheme takes advantage of the low kernel launch overhead of the
fused kernel, as it stays continuously active.

3.1 Our CPU/GPU Notification Mechanism
The notification mechanism is designed similarly to a state machine
and a spinlock. For each halo message to be sent or received, there
is a corresponding notification flag that is visible to both CPU

and GPU. Both CPU and GPU can write/read access to each flag,
and by checking the state of the flag, the CPU and GPU can start
performing different operations. The CPU state machine and GPU
algorithm are given in Figures 4 and 5, respectively.

To implement the in-kernel CPU/GPU notification mechanism, a
memory that is virtually shared by CPU and GPU is required. UVM
enables the required accessibility and especially the zero-copy UVM
memory allocation provides minimal access latency. As the notifi-
cation flags are frequently accessed both from the CPU and GPU
side, latency is an important performance characteristic. Therefore,
the notification flags are allocated on pinned host memory, which
offers the best latency compromise for both devices.

To read and write the notification flags, GPU atomic operations
are used for GPU accesses. For CPU read and write accesses, normal
memory accesses are used.

To measure the overhead of a single notification, we measure
the time spent for a single read followed by a single write operation
both by the CPU and GPU using the mentioned read and write
access methods. The measurements on all of the available test
environments (described in Section 6.1) are listed in Table 1.

In our improved halo-exchange implementation, we further sep-
arate the notifications between pack/send and receive/unpack to
avoid collisions and contention. We achieve this using two arrays
of notification flags, which we name send-ready flags and unpack-
ready flags. These arrays include one notification flag for each sent
or received halo message. As the first step of our workflow, the
CPU issues MPI_Ireceives for the new halo values computed by
other GPUs. Then, it launches the pack and unpack kernels on
different streams on the GPU, while the CPU polls through the
send-ready flags. On the GPU side, the pack kernel packs the mes-
sages, whereas the unpack kernel polls to check if any messages
are ready to be unpacked. Once a buffer is fully packed and ready
to be sent, the pack kernel on the GPU sets the corresponding send-
ready flag. Packing and setting the corresponding flag operations
are done for all of the halo messages to be sent. On the CPU side,
via the poll operations on send-flags, the CPU observes the set
send-flags and triggers corresponding MPI_Isend operations for
each packed message. Upon the completion of all send operations,
the CPU continues testing MPI_Requests to check if the initially
posted MPI_Ireceives are fulfilled. For each completed receive re-
quest, the CPU sets the corresponding unpack-ready flag. Running
parallel to the CPU operations, the unpack kernel can observe the

4
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Table 1: Single notification overhead

Architecture CPU overhead (nsec) GPU overhead (nsec)
IBM Power9 + Volta100 134 236
Intel Icelake + Volta100 311 29184
AMD Rome + AMD MI100 1760 27

set of unpack-ready flags and then starts the corresponding unpack
operations.

Although polling the notification flags may seem against our
motivation of reducing the CPU idle time, triggering MPI com-
munication early on and overlapping kernel execution time with
MPI communication leads to a reduction of CPU idle time. Also,
polling may seem to contradict our goal of a non-blocking noti-
fication mechanism. However, the CPU can perform other tasks
between each polling iteration and doesn’t have to block when
there is independent CPU work that can be performed.

To ensure performance gains by the proposed implementation,
it is important to investigate memory interference between CPU
and GPU operations and make sure the proposed implementation
doesn’t lead to extra overheads and performance degradation.

In Sections 4 and 6, we focus on these two requirements. Sec-
tion 4 presents investigations into interactions of CPU and GPU
operations with the help of microbenchmarks, and in Section 6 we
show the performance results of integrating the notification mech-
anism into the halo-exchange pattern. In Section 5, we explain the
Comb benchmark configurations used for all of the halo-exchange
communication experiments.

4 CPU/GPU MEMORY INTERFERENCE
Our notification mechanism allows the pack and unpack kernels to
be persistent and merged together. To achieve this, we explore two
different approaches: the first one is referred to as the stream ap-
proach. In this approach the pack and unpack kernels are separate
and placed on two different GPU streams running in parallel, but
both are persistent. The second one is referred to as the stacked ap-
proach, combining pack and unpack together in a single persistent
kernel. This enables the usage of available GPU parallelism to the
fullest by utilizing all available SMs and threads on each GPU.

4.1 Stream Approach
In the stream approach, two GPU streams are used. One of the
streams is assigned with pack operations and as many GPU blocks
as the number of halo messages to be packed are launched. Each
GPU block is assigned one halo region to be packed into a message
buffer. The pack operation is followed by one of the threads in the
block notifying the CPU by updating the synchronization flag. On
the second stream, running in parallel, each GPU block is assigned
an unpack operation of a single message buffer and as many GPU
blocks as the number of halo messages to be unpacked are launched.
The kernel execution starts with polling the unpack-ready synchro-
nization flags. Once a GPU block receives a notification from the
CPU it continues to unpack the received buffer into the halo region.

This approach provides full parallelism and relies on the estab-
lished stream concept to achieve concurrency between the send and
the receive operations and hence is easy to implement. However, it

introduces additional scheduling overheads due to the usage of two
different streams. In addition, it cannot exploit GPU parallelism to
the fullest as the ratio of (utilized SMs)/(all available SMs) doesn’t
reach 100%. As each GPU block is assigned an MPI buffer,i.e. halo
buffer, to be packed or unpacked in total 52 GPU blocks are used.

Moreover, when performing the halo-exchange of a cube shaped
data domain, the size of halo regions are non-uniform, e.g., 8 cor-
ners, 12 edges and 6 faces. The messages exchanging halo corners
are very small messages, whereas halo faces are very big (as shown
in Table 2). In this implementation the nature of non-uniform mes-
sage sizes leads to load imbalances, which is expected to harm the
performance. However, the one GPU block per halo message match-
ing is also used in the CUDA fused kernels implementation of the
Comb benchmark with conventional CPU/GPU synchronization.
The load imbalance due to this matching is especially problematic
for performance when used without the improved synchronization
mechanism and with non-persistent kernels. Without the improved
synchronization mechanism it is not possible to overlap MPI with
the packing of longer messages and GPU blocks, which are assigned
smaller halo pack operations, idle until the pack kernel termination.

4.2 Stacked Kernel Approach
In this approach, the GPUs are used to the fullest capacity with
maximum amount of blocks and threads available according to
the architectures’ limitations. The longest halo regions are packed
one after the other and pack operation for each of these messages
is done in parallel by all blocks and threads available. After the
completion of packing of a long message, synchronization between
all blocks and all threads on the GPU is done via a synchronization
barrier provided by the cooperative groups mechanism. The syn-
chronization barrier is followed by one GPU thread in one block
signaling the CPU by an atomic update on the notification flag. As
shorter messages are already too small to be distributed to multiple
blocks these messages are packed by a single block of threads in
parallel only. After each block packs their corresponding shorter
messages, they notify the CPU by updating the notification flag
corresponding to the message.

4.3 MPI and GPU Memory Access Interference
One side effect of using persistent kernels is that their execution is
concurrent to CPU operations, including inter-process or inter-node
messaging, which can cause interference. To study this potential
impact, we developed a new micro-benchmark. It isolates behavior
of simultaneous GPU memory write accesses and MPI point-to-
point operations on CPUwith 4 differentmemory proximity options
for GPU and CPU buffer. These proximity options are as follows:
• Sequential - Single Buffer (SSB): The GPU and CPU operate on
a single buffer. However, in this case the CPU and GPU operations
are sequential. The CPU waits before cudaDeviceSynchronize
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Figure 6: MPI_Send time for stacked implementation on
Power 9 + Volta 100

Figure 7: MPI_Send time for stream implementation on
Power9 + Volta 100

returns and GPU doesn’t access the memory buffer after kernel
termination. This case is a typical pattern in many applications
and important as a baseline for our cases.

• Parallel - Single Buffer (PSB): In this case the GPU and CPU
operate on a single buffer, but in this case the GPU writes into
the whole buffer and then sets a notification flag on pinned host
memory - similar to our notification approach. Once notified by
the flag, the CPU starts MPI_Isend operations. During the MPI
operations driven by the CPU, GPU continues to write to the
memory buffer. Although this is not a correct implementation,
since updating the MPI buffer when it is being sent is not permit-
ted by the MPI standard, this case serves as an extreme case to
demonstrate CPU/GPU interactions.

• Parallel - Consecutive Buffers (PCB): In this case, CPU and
GPU operations are similar to PSB and also synchronized by
a notification flag. However, before the notification, the GPU
writes to the MPI send buffer, and after notifying the CPU it
continues writing to a consecutive memory buffer to the MPI
memory region.

• Parallel - 2MB Apart Buffers (P2AB): This case is similar to
PCB, but instead of allocating the secondary GPU access buffer
consecutive to the buffer used for the MPI operations, it adds
2MB padding between the two buffers, ensuring that two separate
pages are used for the two buffers.
All of the cases are tested with two different degrees of paral-

lelism on the GPU to measure the impact of the amount of GPU
parallelism on CPU operations. In the first version only 1 GPU block
with the maximum allowed number of GPU threads per block is
used (1024 for Volta100 and MI100) and the threads perform write
accesses on each buffer element in parallel. In this version, the GPU
access pattern is similar to the stream approach in Section 4.1. In
the second version, as many GPU blocks and GPU threads per block
are launched as the architecture limitations allow. In this version all
of the GPU threads are write accessing to different elements of the
buffer in parallel and within the grid synchronized by cooperative
groups grid synchronization barrier. In this version, the GPU access

pattern is similar to the stacked approach in Section 4.2. We call
these two version stream access and stacked access, respectively.

In all cases and versions, all buffers are allocated on pinned
host memory and the secondary GPU memory write accesses are
repeated until the MPI communication is completed. Before the
launch of the measurements, we run five rounds of dummy MPI
communication operations to warm up the MPI implementation.
The time measurements show the time spent on MPI_Send op-
erations for a single buffer. The measurements are performed for
different buffer sizes and use three different platforms whose details
are in Section 6.1.

Figure 6 demonstrates the MPI time overheads caused by the
stacked access version on Power9+Volta 100 architecture. PSB in-
troduces significant overheads and demonstrates the impact of
GPU memory accesses on MPI operations by the CPU. When mes-
sage sizes are smaller than 4MB, the PCB time measurements are
approximately 2.5 times more than the baseline (SSB). Although
P2AB introduces some overheads, as well, it is much lower than
for PCB and PSB. In Figures 10 and 8 we show that on the AMD
Rome+MI100 and Icelake+Volta100 systems the impact of the GPU
memory accesses has negligible to no impact on MPI_Send time.
As an orthogonal issue, we observed more volatility on the AMD
platform, which we are still investigating, although, on average our
conclusion stays the same.

Although stream access has worse algorithmic characteristics
(explained in Section 4.1), Figures 7, 9 and 11 demonstrate that the
stream access version performs at least as well as the stacked access
version in terms of CPU-GPU memory interference for all systems.

5 COMB BENCHMARK CONFIGURATION
To emulate the halo-exchange pattern in experiments in Section 6,
we use the Comb benchmark developed at LLNL, which is an ex-
tensive and complex benchmark with many parameters and mea-
surement capabilities.

We simulate a data domain in the shape of a 3D cube. The com-
putational data domain is uniformly decomposed into 64 sub-cubes
each mapped to one of 64 MPI processes. As the computational
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Figure 8: MPI_Send time for stacked implementation on
Icelake + Volta 100

Figure 9: MPI_Send time for stream implementation on Intel
Icelake + Volta 100

Figure 10: MPI_Send time for stacked implementation on
AMD Rome + MI100

Figure 11: MPI_Send time for stream implementation on
AMD Rome + MI100

data domain is a cube, each MPI rank has to send 26 halo messages
to other MPI processes, which are assigned with the neighboring
sub-cubes. Each GPU is mapped to an MPI process for commu-
nication and kernel launch. GPUs pack the halo regions of their
respective sub-cube into an MPI buffer and hand the buffer to their
corresponding MPI process running on the CPU. After the MPI
communication, GPUs unpack the new received values from the
MPI buffers into halo regions to be used in computation. For the
experiments three sizes of the computational domain are used, as
listed in Table 2.

Table 2: Data domain dimensions and halo region sizes used
for evaluation.

Cube dimensions Face size Edge size Vertex size
(data cells) (bytes) (bytes) (bytes)
200 x 200 x 200 60000 1200 24
400 x 400 x 400 240000 2400 24
800 x 800 x 800 960000 4800 24

The Comb benchmark is implemented in a way that each GPU
block packs and unpacks a single halo region into a single MPI
buffer, which will be sent to/received from a pre-determined MPI
process. This nature of the benchmark causes workload imbalance,
as some blocks are only operating on the corners of their respective
cubes, while some are operating on edges and or cube surfaces.

6 EVALUATION
In this section we present the performance measurements of the
improved halo-exchange implementation with the notification sys-
tem followed by a performance model of this implementation to
understand the absolute quality of our approach.

6.1 Experimental Environment
For our experiments, we use three different systems with different
architectures. The architectural variety is important to test the
performance characteristics of our notification mechanism and to
ascertain its performance portability.

7
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6.1.1 IBM Power9 + Volta 100 : This is the largest scale test system
used for our experiments. Each node has two IBM Power 9 CPUs
and four Tesla V100 NVIDIA GPUs, where each Power 9 CPU
contains 22 CPU cores and is connected with two GPUs by NVLink
2.0. Two GPUs, that are connected to the same CPU, are directly
connected with each other by three NVLink 2.0 busses as well.
This connectivity is useful for on node GPU communication with
GPUDirect. However, as GPU-aware MPI is not employed in our
experiments, this connectivity is not used. For our experiments
we use 16 nodes of this system with CUDA version 10.1, the XL
compiler version 2022.08.19 as well as Spectrum MPI 10.3.1 without
any modifications or GPU aware features.

6.1.2 Intel Icelake + Volta 100: Our second test environment fea-
tures 2 Icelake nodes with Intel Xeon Platinum 8360Y CPUs. Each
node has 72 cores distributed in 2 sockets, with 1 NVIDIA Tesla
V100 GPU per node. The MPI implementation is Intel MPI version
2021.6 together with CUDA 11.6 and GCC 7.5.0.

6.1.3 AMD Rome + AMDMI100: The third system features 2 Rome
nodes with AMD EPYC 7742 CPUs, with 64 cores distributed on 2
sockets. Each node has 2 AMD MI100 GPUs. The MPI implementa-
tion is Open MPI version 5.1.0a1 with HIP version 5.4, clang version
15.0.0 and ROCm version 5.16.9.22.

6.2 Performance of Halo-exchange with
Notification Mechanism

As Comb is a very complex benchmark thus it is hard to isolate and
implement our improvements into the CUDA fused kernels with
standard MPI implementation. Therefore we extract the communi-
cation configurations from Comb. This configuration data includes
message sizes and communication peers for each MPI rank in a
text file. Moreover, we produce a comparable microbenchmark as
the baseline. This baseline performs the exact algorithm as Comb
(as in Figure 2) and shows similar performance when executed on
the same system. In addition it is easier to instrument and adopt

to the improved version in Figure 3. For the GPU parallelism, we
chose the stream approach in Section 4.1, as it has the best interac-
tion characteristics with CPU for all architectures. For this type of
parallelism each GPU block is responsible of pack and unpack of a
single halo buffer.

The experiments in this section are restricted to the Power9+V100
system, unless otherwise noted, as it is the largest scale system avail-
able to us. The experiments ran on 16 nodes containing 64 GPUs
in total. Figure 12 shows the plots for the baseline implementation
(stream_base), the improved implementation (stream_imp) and the
Comb fused kernel implementation. Figure 13 shows the boxplots
for the stream_base and stream_imp plots in Figure12. These fig-
ures show, that the improved version clearly outperforms both the
Comb fused kernel as well as the baseline implementations. The
K-model plot reflects the modeled low bound, which is explained
in Section 6.4. The latter indicates that there is still some room
for theoretical improvements that even our implementation can-
not exploit, yet, although it remains unclear how close an actual
implementation can come to the theoretical lower bound.

6.3 Halo-exchange with Notification
Mechanism on Different Architectures

To demonstrate the performance of the halo-exchange with notifi-
cation mechanism on other architectures, we used the Icelake+V100
and Rome+MI100 systems in addition to the Power9+Volta100 sys-
tem. We ran the same baseline and improved notification based
halo-exchange implementation in Section 6.2 by restricting the
halo-exchange between two MPI processes. This is due to the fact
that in the Icelake systems we have 1 GPU per node and for sake of
comparability we choose 2 MPI processes. The communication con-
figuration data is again obtained from the Comb benchmark with
three different data domain sizes similar to Figure 12. As Figure 14
shows, the notification mechanism does not introduce any over-
heads on different architectures, although it is clear that substantial
performance improvements can only be realized at scale, which is

Figure 12: Run-time of baseline halo-exchange imple-
mentation, improved notification based halo-exchange
implementation, Comb fused kernel implementation and
K-model predictions with different cube sizes

Figure 13: Run-time of baseline halo-exchange implemen-
tation and improved notification based halo-exchange
implementation with different cube sizes
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Figure 14: Run-time vs Data size measurements of down-scaled experiments on Power9+Volta100 (top), Icelake+Volta100
(middle) and AMD Rome+MI100 (bottom) with different cube sizes

to be expected. The measurements on Power9+Volta100 show that
the improved implementation is 7% faster. On Icelake+Volta100 the
improved implementation is 4% and 2% slower for smallest and
mid-sized cube dimensions, whereas for largest cube dimensions
it is 4% faster. On Rome+MI100 the improved implementation is
1% faster for smallest and mid-sized cube dimensions, whereas for
largest cube dimensions it is 5% slower.

6.4 Performance Model
As the results have shown, our approach achieves clear benefits
compared to existing baselines. However, we also wanted to know
how far from a lower-bound our solution is and how much unex-
ploited optimization potential there is. For this we derived a lower
bound model for our problem in two parts; GPU operations and
MPI communication. The model used for the MPI communication
is called K-model and it is taken from the work of Choi et al. In their
paper they introduce an improved communication model for dis-
tributed GPU applications. They build their communication model
on max-rate model and improve it by adding the impact of inter
and intra-node communication ratio [5]. The second part of our
model (GPU operations), includes linear contributions of effective
pack and unpack times. Effective pack and unpack time are GPU
operations which cannot be overlapped by the communication. By
summing the effective pack and unpack times with the MPI time
predicted by the K-model, we get the overall model and a prediction
for the complete halo-exchange time. However, not all overheads
are included in the K-model, turning this into a model showing a
lower-bound for the achievable performance.

In order to model the GPU kernel execution and the overlap, we
follow these observations: the first message to be fully packed is
one of the shortest messages (edge of the halo region). Right after
the pack operation of the first short message, the MPI communica-
tion starts and the rest of the pack operations are overlapped with
communication. After the communication, only longer message
unpack operations (face of the halo-region) influence the rest of
the run-time. This is due to two reasons: a) typically short and mid
sized messages are communicated much faster via MPI and the
completion of sending and receiving of longer messages happens
later, causing the longer messages to be unpacked last; and b) the
unpack operations for short and middle sized messages are much
quicker than those for long messages. Therefore, send operations

for shorter messages start earlier. Moreover, as the unpack opera-
tions of shorter messages are much faster they can be overlapped
with longer message unpack operations on the GPU. For model
calibration to a platform, pack and unpack time averages (Table 3)
are measured by running the pack and unpack kernels with stream
approach 10 times on a GPU by using different halo sizes obtained
from Comb.

Message Size (bytes) Pack Time (µsec) Unpack Time (µsec)
SP 24 1.75 5.54

60000 3.98 12.00
LUP 240000 17.30 30.40

960000 79.10 105
Table 3: Biggest and smallest halo region sizes and their cor-
responding average pack and unpack times measured on
Power9 + V100 system

Considering this structure and neglecting the overheads from
notification flags, we can model our improved version of halo-
exchange as a summation of pack times of one short message plus
MPI communication time and unpack of one long message as in
Equation 1. The parameters SP and LUP are the average pack times
of a short message and average unpack time of a long message.

𝑆𝑃 +
{
Communication Time by K-Model

}
+ 𝐿𝑈𝑃 (1)

The K-model considers the effect of multiple processes using
the network. Differing from its predecessor, the max-rate model, it
considers the effect of inter and intra-node communication. Due
to this update K-model can predict the communication time with
better accuracy than the max-rate model and post model [5]. Choi
et al. already model a halo exchange of an application. They use
a machine with the same Power9+V100 architecture, and we use
their architecture specific model parameters also in our work.

In the K-model the communication between different hardware
units is handled separately. The model used for intra-socket mes-
sages is same as the postal model:

𝛼 + 𝛽 · 𝑛 (2)
• 𝛼 is the one time overhead of communication ( = 2.92 · 10−6)
• n is the message size and it varies depending on the data domain
cube size and halo region - given in Table 3.

• 𝛽 is the per byte cost of communication ( = 3.49 · 10−11)
For inter-socket and inter-node messages, the same model with

different parameters is used:
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𝛼 + 𝐾𝑖𝑛𝑡𝑒𝑟
𝐾𝑡𝑜𝑡𝑎𝑙

· 𝑘′ · 𝑛 · 𝛽 (3)

The other parameters from the K-model together with their
values, obtained either from Comb communication data or the
work of Choi et al., are as follows:
• Kinter is the number of messages that are sent off node.( = 24 )
• Ktotal is the number of total messages.( = 26 )
• k’ is the number of processes engaged in communication per
node. In our implementations it matches the number of GPUs on
node.( = 4 )

• 𝛼 ( = 3.41 · 10−6 for inter socket, 2.36 · 10−6 for inter-node Eager
protocol and 1.06 · 10−5 for inter-node Rendezvous protocol )

• n is the message size and it varies depending on the data domain
cube size and halo region - given in Table 3.

• 𝛽 in equation 3 is :

1
𝑅𝐶𝑏

+ (𝐾𝑖𝑛𝑡𝑒𝑟

𝐾𝑡𝑜𝑡𝑎𝑙
· 𝑘′ − 1) · 𝑅𝐶𝑖

(4)

– 𝑅𝐶𝑏
is the base bandwidth sustained by a single process ( =

8.41·109 for inter socket, 4.92·109 for inter-node Eager protocol
and 1.79 · 1010 for inter-node Rendezvous protocol)

– 𝑅𝐶𝑖
is the bandwidth attainable by additional processes ( =

7.09·109 for inter socket, 2.31·109 for inter-node Eager protocol
and 2.22 · 1010 for inter-node Rendezvous protocol)

The black dashed plot in the Figure 12 shows the lower-bound
prediction from our model for different data domain sizes.

7 RELATEDWORK
Previous work involves different control synchronization mecha-
nisms between CPUs and GPUs, as well as performance analysis
and tuning studies of GPU Communication via MPI. Although not
limited to CPU/GPU control synchronization, Zhang at al. present a
detailed study of available synchronization methods with different
scopes and their overheads on NVIDIA GPUs [21].

Stuart et al. present a mechanism that enables CPU callbacks
triggered by GPUs [18]. Their proposed approach is orthogonal to
our method in-terms of the polling mechanism and usage of UVA
for notification. They present an implementation with an API, but
do not aim for any performance benefits. In fact their evaluation
shows their approach leads to performance degradation. Whereas
in our approach we kept our mechanism as lightweight as possible
without structures such as freely available slots queue as in [18]. In
this work we demonstrate performance improvements due to the
notificationmechanism in a use-case, in addition to a demonstration
of the impact of GPUmemory accesses on concurrent CPU triggered
MPI communication.

Namashivayam et al. introduce stream-aware message passing,
which has similarities to CPU queueing the MPI operations and
eliminating extra kernel termination and re-launch before and after
MPI operations [15]. However, in stream-aware message passing,
communication operations block the GPU stream as the commu-
nication triggers and waits for the completion operations on a
single GPU stream. Our approach doesn’t block the GPU during
communication as communication is handled by CPU. In addition,
stream-aware message passing is limited to MPI only, whereas our
notification mechanism has the flexibility and potential to suit any

use-case that requires CPU and GPU task overlapping with control
synchronization or to enable persistent GPU kernels.

Chen et al. present their PGAS-style framework for asynchro-
nous execution across multiple GPUs in a cluster, which also decou-
ples the communication from synchronization [4]. They propose
a task based approach for GPU programming and utilize PGAS
NVSHMEM for communication. However, in our work we purpose-
fully didn’t include Openshmem implementations due to following
reasons. Firstly, the most prominent Openshmem implementation
NVSHMEM is not portable to all GPU platforms other than NVIDIA.
Although ROCMSHMEM is still developing, portability remains
to be a problem not only for different vendors but also for up-
coming architectures. Secondly, Openshmem implementations are
opaque and don’t provide building blocks to analyze the overheads
in fine resolution. Also, this opacity makes it challenging to debug
when unexpected behavior is observed during execution. Lastly,
the adaptation of NVSHMEM into big-scale real-life applications is
challenging, as significant modifications of the computation kernels
are expected and our approach assumes, that computational kernels
and communication calls from GPU are independent.

Along with other valuable insights into GPU-aware communi-
cation, such as identifying the incomplete parts of some current
benchmarks and challenges of developing correct MPI implementa-
tions, Hanford et al. demonstrate the performance impact of buffer
locality for MPI communication [7]. They conduct experiments
with GDR enabled MPI communication and with different buffer
allocations, namely page-locked CPU allocation, GPU managed and
GPU device allocated buffers. Their experiments are particularly
interesting for our work, as they are conducted on the same ar-
chitecture as ours (Power9+Volta100) and clearly demonstrate the
performance benefits of GDR enabled MPI communication over
standard MPI.

In addition to these methods, LeBeane et al. present an approach,
that enables GPUs to trigger the NIC from within the kernel [11].
They aim to remove similar overheads as in our use-case, such as
kernel start/terminate time, by restricting communication at kernel
boundaries. However as their approach requires modifications to
NIC hardware, it is more challenging to deploy.

8 CONCLUSION AND FUTUREWORK
The standard synchronization methods provided by vendor APIs
are heavy weight and lead to serialization of CPU and GPU tasks. In
this paper, we introduce a lightweight pinned host memory based
CPU/GPU device notification mechanism that enables persistent
GPU kernels, removes the need for vendor API provided synchro-
nization and overlaps more CPU and GPU work. We investigated
the performance improvement potential of the proposed notifi-
cation mechanism by the use-case of halo-exchange on different
architectures. Moreover, we investigated the performance effects
of the choice of GPU parallelism on MPI Send operations on CPU
using a microbenchmark, followed by modelling of our approach.

We model the halo-exchange implementation with our notifi-
cation mechanism by extending the existing K-model. Although
the notification mechanism provides performance improvements
to the original implementation, the run-time measurements of the

10



Non-Blocking GPU-CPU Notifications to Enable More GPU-CPU Parallelism HPCAsia 2024, January 25–27, 2024, Nagoya, Japan

improved halo-exchange implementation is above the model pre-
dictions. The model neglects overheads from the notification mech-
anism entirely and actual run-time is expected to be slightly more
than the prediction. However, as one of our goals is to make the
notification mechanisms lightweight, more investigation needs to
be done to approach the run-time predicted by the model.

In addition, by increasing the number of notifications for longer
halomessage buffers, we intend to increase overlap of CPU andGPU
tasks and improve the performance further for the halo-exchange
use-case. Resembling partitioned communication of MPI [6], longer
messages will be sent in multiple pieces without the CPU waiting
the completion of the whole buffer. This approach can enable more
overlap in certain cases with larger workload imbalances on GPU.

Finally, we aim to deepen our investigations about existing per-
formance results on different architectures, together with investi-
gating the generality of our approach using other common com-
munication patterns in HPC benchmarks.
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