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ABSTRACT 

Numerous machine learning (ML) models employed in protein 

function and structure prediction depend on evolutionary 

information, which is captured through multiple-sequence 

alignments (MSA) or position-specific scoring matrices (PSSM) 

as generated by PSI-BLAST. Consequently, these predictive 

methods are burdened by substantial computational demands and 

prolonged computing time requirements. The principal challenge 

stems from the necessity imposed on the PSI-BLAST software to 

load large sequence databases sequentially in batches and then 

search for sequence alignments akin to a given query sequence. In 

the case of batch queries, the runtime scales even linearly. The 

predicament at hand is becoming more challenging as the size of 

bio-sequence data repositories experiences exponential growth 

over time and as a consequence, this upward trend exerts a 

proportional strain on the runtime of PSI-BLAST. To address this 

issue, an eminent resolution lies in leveraging the MMseqs2 

method, capable of expediting the search process by a magnitude 

of 100. However, MMseqs2 cannot be directly employed to 

generate the final output in the desired format of PSI-BLAST 

alignments and PSSM profiles. In this research work, I developed 

a comprehensive pipeline that synergistically integrates both 

MMseqs2 and PSI-BLAST, resulting in the creation of a robust, 

optimized, and highly efficient hybrid alignment pipeline. 

Notably, the hybrid tool exhibits a significant speed improvement, 

surpassing the runtime performance of PSI-BLAST in generating 

sequence alignment profiles by a factor of two orders of 

magnitude. It is implemented in C++ and is freely available under 

the MIT license at https://github.com/issararab/EPSAPG. 
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1  INTRODUCTION 

In computational biology, multiple sequence alignment methods, 

or MSA-methods, are a set of algorithmic solutions for the 

alignment of evolutionarily related sequences. They can be 

applied to DNA, RNA, or protein sequences. These algorithms are 

designed to incorporate evolutionary events such as mutations, 

insertions, deletions, and rearrangements under certain conditions 

[1]. Due to the complexity of the development of such a vital 

modeling tool which necessitates the addressing of both complex 

computational and biological problems, MSA has always been 

recognized as an NP-complete problem. That is the reason behind 

the numerous alternative algorithms built, more than 100 variants, 

aiming at providing an accurate MSA over the last four decades 

[2]. Despite the various alternatives of MSA methods, they all 

share a core asset: their reliance on estimated and typically greedy 

heuristics, enforced by the NP-complete nature of the problem. 

These heuristics are, more or less, dependent on specific data 

properties, like the length, the relatedness, the type of homology, 

and others. 

 

The aim of MSA methods is to align any set of biological 

sequences, either RNA, DNA or proteins, in such a way they will 

capture their evolutionary, functional, or structural relationships. 

This is accomplished by adding gaps of different lengths within 

the sequences, enabling the homologous regions to be aligned 

with one another, which is analogous to aligning beads of similar 

colour in an Abacus. This is an interesting analogy simulated by 

the ancient counting frame, the Abacus, which was used as a 

calculator in Europe, China and Russia, centuries prior to the 

adoption of the written Arabic numerical scheme. From an 

evolutionary point of view, these gaps reflect insertions and 

deletions within the genome that are hypothesized or believed to 
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have occurred during the evolution of sequences from a common 

ancestor [1]. 

 

One of the most famous and widely used MSA method in 

computational biology is PSI-BLAST [3, 4], which stands for the 

Position-Specific Iterative Basic Local Alignment Search Tool. It 

is a software that runs a multiple sequence alignment algorithm 

powered by the dynamic programming optimization paradigm to 

search a given database of protein sequences [5]. Given a query 

sequence, the algorithm retrieves homologous sequences that pass 

a predefined threshold. This threshold-based computational 

similarity method, which uses protein-protein BLAST [4, 5, 6] to 

identify regions of local alignment, is used to construct the 

Position-Specific Scoring Matrix (PSSM), a.k.a the sequence 

alignment profile, from the retrieved family of sequences. The 

PSSM profiles contain statistical representations of residues in a 

given sequence of a protein with respect to all its relevant aligned 

protein sequences (i.e. homologs) in the database. A profile 

captures the conservation pattern in an alignment and stores it as a 

matrix of scores for each position in the alignment [4], where high 

scores are assigned to highly conserved positions and lower scores 

to low conserved ones. Hence, the matrix representation includes 

what is known in the research community by protein evolutionary 

information. 

 

In modern computational biology, particularly within the field of 

proteins and predicting their properties, sequence alignment and 

PSSM profiles represent the de facto standard input for almost all 

machine learning methods [7]. The main functionality of these 

alignment techniques is to search for homologs of a query 

sequence in a database of protein sequences, as they tend to share 

structure and function. For the past two decades, training machine 

learning models with evolutionary information representations, 

generated by multiple sequence alignments, has revolutionized the 

prediction power of AI methods. Multiple aspects of protein 

function and structure were studied and investigated following the 

same approach and achieved significant results in the prediction 

performance. Such downstream-specific tasks include protein 

secondary structure [8, 9, 10, 11], transmembrane protein regions 

[12, 13, 14], inter-residue contacts [15], and sub-cellular 

localization predictions [16, 17] as well as protein-to-protein 

interactions [18, 19, 20]. However, this increase in performance 

has become costly in recent years, with the continuous 

exponential growth of bio-sequence data pools. UniProt is one 

example of such datastores, in which the entries keep doubling 

every couple of years [21]. 

 

At present, MMseqs2 [22, 23], known as Many-against-Many 

Sequence Searching, emerges as a notable alternative MSA 

solution to handle such extensive data sets. However, its effective 

usage demands considerable hardware resources. Nevertheless, 

it's important to note that this solution doesn't generate sequence 

alignment profiles in the preferred PSSM data format akin to the 

one produced by PSI-BLAST, which is the format used by most 

published predictive models in the field. Therefore, in this paper, I 

present an optimized and fast hybrid alignment solution 

combining these two state-of-the-art methods to quickly generate 

extensive protein sequence alignments and their corresponding 

PSSM profiles. Sections are as follows: I explain the pipeline 

architecture components, give a runtime comparison between both 

tools (MMseqs2 vs PSI-BLAST), and finally, present the 

evaluation results of the EPSAPG output with regard to three 

different ML models (TMSEG [24], REPROF [9], and LocTree2 

[25]) from Predict-Protein [26]. 

2  EPSAPG ARCHITECTURE 

EPSAPG combines MMseqs2 and PSI-BLAST to quickly 

generate profiles for a set of query sequences using heuristics. It 

has the ability to align batch query sequences in parallel and to 

generate corresponding PSI-BLAST PSSM profiles. To achieve 

this goal, preprocessing of the database to be searched is crucial 

before running EPSAPG (Figure 1).  

 

 

 
Figure 1: EPSAPG high-level architecture. The high-level architecture consists of two main parts: a preprocessing step, blue 

section, and a pipeline execution step, orange section. The preprocessing procedure compiles an MMseqs database, named 

targetDB, from the FASTA file of the original database to be searched. From the targetDB, a large index table is constructed that 

later will be used by the pipeline for a fast query alignment. The preprocessing step is crucial for a faster and reusable index table 

in future runs. 
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The preprocessing stage yields an index table, which may have a 

substantial size reaching hundreds of gigabytes, particularly when 

dealing with large-scale data sets. This step is essential to make 

the alignment faster afterward. It is important to underscore that 

the creation of an index table is not obligatory for querying a 

database using EPSAPG. The search command will automatically 

generate the index table at the commencement of the pipeline 

execution. Nonetheless, it is strongly advised to proactively 

generate and retain the index table in advance. By doing so, the 

search command will not need to construct a new index table for 

each query, particularly when multiple pipeline runs are being 

conducted on the same database. 

 

The output of the preprocessing step (Figure 1 - blue) is an index 

table of the original target database to be searched. EPSAPG 

consumes then this index table and runs a set of consecutive 

modules in order to finally generate a PSSM profile (Figure 1 - 

orange). The first module to kick off is the “pre-filter module” 

(Figure 2). This module constructs the main component of 

MMseqs2 power. The pre-filtering module computes an ungapped 

alignment score for all consecutive k-mer matches between all 

query sequences and all database sequences and returns the 

highest score per sequence [2, 7, 23]. The prefilter k-mer match 

stage is key to high speed and sensitivity. It detects consecutive 

short words (i.e. k-mer) matching on the same diagonal. The 

diagonal of a k-mer match is the difference between the positions 

of the two similar k-mer in the query and in the target sequence [2, 

7, 23]. Once the pre-filtering module is complete, it generates the 

best matches for each query sequence. Those matches do not go 

beyond the number N, the maximum number of sequences to be 

retrieved by the module. This value can be provided as a 

parameter to the pipeline, and it is set in the current presented 

study to 1000 aligned sequences per query sequence. 

 

The hits are then passed to the “alignment module” (Figure 2). 

This module implements a SIMD accelerated Smith-Waterman-

alignment algorithm [27] of all sequences that pass a cut-off for 

the prefiltering score in the first module. It processes each 

sequence pair from the prefiltering results and aligns them in 

parallel, calculating one alignment per core at a single point in 

time. This step is implemented using a vectorized programming 

algorithm that makes use of the SIMD instruction set. This is 

where the SSE4.1 instruction set requirement is essential. In the 

end, the module calculates alignment statistics such as sequence 

identity, alignment coverage, and e-value of the alignment [28], 

which are then passed to the “convertalis module” and the 

“parsimus module” to transform the intermediate results into 

FASTA format, using optimized algorithms inspired from and 

detailed in [29]. I call this intermediate data set the golden DB, 

with a default maximum value of one thousand sequences per 

query sequence. This set of best homologous hits, for each query 

sequence, is passed to the subsequent PSI-BLAST modules, 

designed in the pipeline to run in parallel using the full power of 

the machine, to generate the final PSSM profiles. 

 

 

 

 

 
 

Figure 2. EPSAPG Low-Level Architecture. The Pipeline consumes an index table of the database to be searched as input then 

runs the (Pre-filter module) with a maximum number of sequences to be retrieved (a pipeline parameter - default 1000). The result 

is then aligned (Alignment module) to produce a result DB that will then be converted (Convertalis module) to an intermediate 

data set named epsapg.tuple. It is a large file containing a tab-separated list of 3 columns: query header, target header, and target 

sequence. The file is then parsed (Parsimus module) to create intermediate query and corresponding database files, in FASTA 

format. The query and database files will then be consumed to generate the final BLAST output (local alignment result, PSSM, or 

ASCII PSSM – a pipeline parameters to be provided) via PSI-BLAST search on the parsed golden database with a high e-value (a 

pipeline parameter set to the default value of 10) 
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3  DATA AND SOFTWARE 

Runtime measurements in the results section refer to search 

alignments of amino acid sequences (excluding the time needed 

for indexing ~1hrs20min) against a sample of UniProt [30] 

Reference Cluster with 90% sequence identity (uniref90 

2019_02). The pipeline has no limitations in terms of database 

size, but in order to assess the software's optimal performance, I 

needed an index table of a database that can fit entirely in the 

RAM of the test server. Since the whole uniref90 will generate an 

index table of roughly the size of 250 GB, a random sample, of 

~69 million proteins from uniref90, was selected to perform the 

analysis. The sample generates a 181 GB index table, which can 

fit in the test machine memory. 

 

All data, query sequences, search results, and additional 

supplementary online material (SOM) reported and referenced in 

this manuscript have been deposited to Zenodo at 

https://zenodo.org/record/8212007, and 

https://zenodo.org/record/8051133. Regarding EPSAPG software, 

it is implemented in C++ and is freely available under the MIT 

license at https://github.com/issararab/EPSAPG. 

 

4  RESULTS AND DISCUSSION 

All results presented in this section were conducted on a dedicated 

server granted by the University of Luxembourg. The machine’s 

main characteristics are summarized as follows: a memory size of 

198 GB with an Intel Xeon E312xx CPU of 4 cores supporting the 

SSE4.1 instruction set.  

 

Within this section, I present an analysis on the impact of 

sequence length and query batch size on the runtime performance 

of each separate software, MMseqs2 and PSI-BLAST. 

Subsequently, I present an evaluation concerning the pipeline's 

output performance across three different protein ML predictive 

models. Finally, considerations regarding potential avenues for 

achieving enhanced execution speed of the pipeline will be 

discussed. 

 

 

 

 

 
Figure 3. Runtime analysis results in a nutshell. (a) depicts the effect of sequence length on the runtime using each alignment 

method. The sequence length affects PSI-BLAST runtime while it does not for MMseqs2. (c) shows the effect of random bulk 

sequences run as a single query on the runtime of PSI-BLAST, while (d) the effect on the runtime of MMseqs2. (b) benchmarks, in 

a single figure, the impact of the number of sequences as a single query on the runtime of each alignment tool. It shows that PSI-

BLAST scales linearly while MMseqs2 remains relatively constant. 
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4.1  MMseqs2 VS PSI-BLAST: Runtime 

evaluation 

Comparing the runtime execution of each method separately using 

a single query protein shows that the amino acid sequence length 

of the protein affects PSI-BLAST runtime while it does not for 

MMseqs2 (Figure 3-a). Another observation shows that PSI-

BLAST runtime increases with the increasing number of residues 

in a query sequence, while for MMseqs2, the runtime remains 

constant (Figure 3-b). However, the experiments show the 

opposite for batch processing. The increasing number of 

sequences included in one query heavily affects PSI-BLAST 

runtime (see Figure 3-c). On the other hand, MMseqs2 is barely 

affected (see Figure 3-d). MMseqs2 runtime ranges between 22 

and 32 minutes with an average runtime of ~30 minutes. PSI-

BLAST runtime increases linearly, and this is mainly due to the 

sequential processing of the query sequences by the software. 

PSI-BLAST is faster when it comes to a single query alignment 

while MMseqs2 scales much better in terms of batch sequence 

processing. This feature was exploited to build a faster batch 

sequence alignment pipeline to generate PSSM profiles. 

4.2  Pipeline Evaluation 

One strategy to assess the performance of the pipeline involves 

evaluating the impact on predictions made by existing ML models 

using EPSAPG-generated profiles. This evaluation aims to 

determine whether the pipeline-generated profiles introduce any 

adverse effects on the predictions. The pipeline was tested on 

three ML methods, namely TMSEG [24], REPROF [9], and 

LocTree2 [25]. 

 

4.2.1 TMSEG. TMSEG [24] is a tool that predicts the 

transmembrane segments in a protein. For this method, 265 

unique proteins were selected to be evaluated using both PSI-

BLAST and EPSAPG. The initial metric dimension for evaluation 

is the runtime required to obtain the PSSM files. PSI-BLAST 

needed approximately 48.5 hours (refer to Table 1) to search the 

database and to generate the PSSMs, whereas EPSAPG 

accomplished this task within ~30 minutes, resulting in a 

significant reduction in runtime. 

Table 1. Runtime comparison of running a 265-query batch 

against a random sample of 68 million proteins from 

UniRef90. PSI-BLAST needs 48hrs 28min, roughly 100 times 

more than EPSAPG 31min, to generate PSSM profiles. 

Number of sequences EPSAPG runtime PSI-BLAST runtime 

265 31 min 24 sec 48 hrs 28 min 11 sec 

 

The second metric dimension to evaluate is the character-wise 

similarity between both outputs. Figure 4-b illustrates that the 

number of instances exhibiting a character-wise similarity 

percentage to the ground truth of 0.95 or higher, resulting from 

PSI-BLAST PSSMs, is lower compared to those resulting from 

EPSAPG, as depicted in Figure 3-a. Conversely, PSI-BLAST 

yields significantly higher results than EPSAPG when considering 

a similarity threshold of 0.9. From a statistical standpoint, when 

comparing the mean similarity values overall, EPSAPG results 

exhibit a mean similarity of 0.830 with a standard deviation of 

0.125, while PSI-BLAST results demonstrate a mean similarity of 

0.832 with a standard deviation of 0.119.  

 

In general, results in Figure 4 show that both tools demonstrate 

comparable performance, with the distribution among all bars 

effectively compensating for discrepancies observed in specific 

regions in the compared tools. In terms of the predicted string 

using PSSMs from both methods, Figure 5 shows that most of the 

predicted pairs are the same with a similarity mean of 0.945 and a 

standard deviation of 0.061.  

 

 

 

 
Figure 4. Character-wise TMSEG prediction similarity to the ground truth. (a) represents the percentage distribution of how 

similar the residue predictions of a sequence are to the ground truth labels using EPSAPG. (b) represents the percentage 

distribution of how similar the residue predictions of a sequence are to the ground truth labels using PSI-BLAST. 
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To conduct further analyses of the output predictions derived from 

EPSAPG's profiles, two additional studies were carried out: a 

segment prediction analysis on the same test set and an additional 

analysis employing a larger data set consisting of 8817 proteins. 

The findings revealed a similar trend, wherein the runtime 

execution of EPSAPG was ~540 times faster compared to PSI-

BLAST. (For further details consult section 1 of the SOM, as 

referenced in the data section) 

 

 
Figure 5. Character-wise similarity percentage between PSI-

BLAST and EPSAPG PSSM based predicted transmembrane 

segments of the same amino acid sequence with respect to the 

ground truth. 

 

4.2.2 REPROF. REPROF [9] is a tool that predicts a Q3 

protein secondary structure. For this ML methodology, a set of 

250 unique proteins was selected for evaluation using both PSI-

BLAST and EPSAPG. The initial metric to be assessed is the 

runtime required to obtain the PSSM files. PSI-BLAST used up 

~50 hours and a half (refer to Table 2) to search the target 

database and generate the profiles, while EPSAPG accomplished 

the same task within a mere half an hour, yielding a noteworthy 

reduction in runtime by approximately 100-fold. 

 

 

Table 2. Runtime comparison of running a 250-query batch 

against a random sample of 68 million proteins from 

UniRef90. PSI-BLAST needs 50hrs 33min, roughly 100 times 

more than EPSAPG 32m, to generate PSSM profiles. 

Number of sequences EPSAPG runtime PSI-BLAST runtime 

250 32 min 33 sec 50 hrs 33 min 57 sec 

 

Similar to TMSEG, a character-wise similarity analysis was 

conducted. Upon initial visual observation, the histograms 

generated by both alignment methods exhibit a distribution that 

can be deemed comparable. Furthermore, it is worth noting that 

the instances exhibiting a character-wise similarity percentage of 

0.8 or higher to the ground truth, as a result of PSI-BLAST 

PSSMs (Figure 6-b), demonstrate a relatively lower magnitude 

compared to those resulting from EPSAPG (Figure 6-a). Overall, 

both histograms look comparable with some bars compensating 

for other differences. This observation is supported by the 

statistics computed to compare the overall similarity means. 

EPSAPG has a similarity mean of 0.781 with a standard deviation 

of 0.092, whereas PSI-BLAST has a similarity mean of 0.779 

with a standard deviation of 0.092. Therefore, both tools have 

roughly similar performance.  

 

Regarding the predicted secondary structure derived from PSSMs 

generated by either EPSAPG or PSI-BLAST aligned sequences 

families, Figure 7 demonstrates a substantial overlap in the 

majority of predicted pairs, exhibiting a similarity absolute 

difference mean of 0.0005 and an SD of 0.281. A larger data set, 

of 4692 proteins, analysis was also performed and showed a 

similar trend, with a runtime improvement of 414 times. (For 

further details consult section 2 of the SOM, as referenced in the 

data section) 

 

 
Figure 6. Character-wise REPROF prediction similarity to the ground truth. Histogram (a) represents the percentage distribution 

of how similar the residue predictions of a sequence are to the ground truth labels using EPSAPG. Histogram (b) represents the 

percentage distribution of how similar the residue predictions of a sequence are to the ground truth labels using PSI-BLAST. 
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Figure 7. The absolute difference of the character-wise 

similarity percentage between PSI-BLAST and EPSAPG 

PSSM-based predicted secondary structure of the same amino 

acid sequence with respect to the ground truth. 

 

4.2.3 LocTree2. LocTree2 [25] is a computational method 

utilized to predict the subcellular localization of proteins. This 

method employs an innovative approach that combines both 

sequence-based and homology-based strategies. It makes 

predictions for three target organisms: archaea, bacteria, and 

eukaryota. The classes that are predicted depend on the organism: 

18 localization classes are predicted for eukaryota, 6 for bacteria, 

and 3 for archaea. For a thorough assessment of the effect of the 

pipeline's generated profiles on the predictions of LocTree2, I run 

2 types of experiments on the organism with the largest number of 

classes, eukaryota. The first experiment made use of a balanced 

data set of 177 proteins, while the second experiment made use of 

a larger and random set of 600 proteins. The large test set was 

constrained by the prediction method runtime, which requires 

~1.3 minutes per sequence, yielding a total prediction runtime of 

13 hours for the 600 proteins. The test sets were extracted from 

eukaryota DeepLoc data set [31]. 

 

For the balanced data set, I generated profiles using both PSI-

BLAST, which took ~38 hours, and EPSAPG, which took ~30 

minutes. The confusion matrix results of LocTree2 for each input 

show that profiles generated from both tools exhibit a similar 

performance, with EPSAPG pipeline output providing slightly 

better results in the 3 best-predicted classes: 'nucleus-s', 

'extracellular-s', and 'mitochondrion-s' (refer to figure S5 and 

figure S6 in the SOM as referenced in the data section). In terms 

of comprehensive accuracy, the utilization of EPSAPG yielded a 

score of 32.7%, whereas relying solely on PSI-BLAST resulted in 

an accuracy of 31.1%. 

 

In the case of the expanded test set comprising 600 proteins, the 

evaluation was restricted to the pipeline alone. This decision was 

prompted by the fact that utilizing only PSI-BLAST would 

necessitate approximately five days to create the PSSM profiles. 

The outcomes reveal that the metrics presented for the smaller test 

set hold when compared to a larger data set, with the most 

accurately predicted three classes remaining the same: 'nucleus-s', 

'extracellular-s', and 'mitochondrion-s'. Furthermore, the achieved 

overall accuracy stands at 35%, which is still comparable to the 

results of the smallest test set. A detailed graphical representation 

of these findings can be found in figure S7 of the SOM. 

4.3  Can we achieve an even faster sequence 

alignment? 

The runtime analysis of each module separately within the 

EPSAPG search framework revealed that the loading (I/O) of the 

index table constitutes approximately 90% of the overall reported 

runtime. This loading process is primarily constrained during the 

pre-filtering stage and the execution of the Convertalis module. 

Therefore, an approach that involves preloading the entire 

database into memory (RAM), prior to querying, and using it 

directly during the search and conversion of results, would bring 

about a significant reduction in runtime. 

 

An effective strategy involves loading the whole database into the 

RAM and lock the pages within the memory space. Later in the 

search, I can map data from the locked DB instead of loading it 

again from the disk. The “vmtouch” command was used to serve 

this purpose. It is a utility used to manage and control the file 

system cache of Unix and Unix-like systems [32]. The tool loads 

the index table into the RAM and locks the pages there. This can 

be achieved through the following command: 

 

sudo /usr/local/bin/vmtouch -t -l -d targetDB.idx 

 

The command takes three arguments: “-t” to touch or load the file 

into the system cash, “-l” to lock the pages, and “-d” to run it as a 

daemon. Also, the command must have root privileges. The 

reason behind that is the “max lock memory” constraint enforced 

by the operating system, which is usually set to 64 kilobytes. 

Otherwise, the database will be loaded into the RAM but not 

locked there. This can be resolved by either including the full 

PATH into the sudo environment variables and running the 

process with root privileges or just running the command with 

sudo but using the full path to the executable. With this 

workaround, I was able to generate the PSSM file for an average 

length protein sequence (~450 amino acids) in 53 secs using 

EPSAPG. 

5  CONCLUSION 

The findings of this research reveal that MMseqs2 exhibits slower 

execution time in the context of individual query searches as 

compared to PSI-BLAST. However, it demonstrates considerable 

efficiency in batch-processing scenarios. Leveraging this feature, I 

have combined MMseqs2 and PSI-BLAST modules to construct a 

pipeline named EPSAPG. This pipeline accelerates the search for 

sequence alignments, relying on MMseqs2 power, and computes 

corresponding PSSM profiles, which serve as vital input 

components in numerous ML predictive models. Notably, when 

handling substantial query batches of protein sequences, EPSAPG 

surpasses PSI-BLAST in terms of performance, achieving a speed 
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improvement exceeding two orders of magnitude. I conducted a 

thorough assessment of the output results generated by the 

pipeline and compared them with those obtained from PSI-

BLAST. The observations indicate that the performance of 

EPSAPG's output is at least comparable to, and in certain cases 

slightly superior to, the results obtained by PSI-BLAST. 

Subsequently, I introduced a workaround to achieve near-instant 

alignment for individual queries. Given enough computing 

resources and utilizing the "vmtouch" command, one can load the 

index table into the RAM and lock its pages, allowing much faster 

access through sequence mapping for single query searches. 

Ultimately, with EPSAPG I succeeded in achieving a significantly 

improved runtime speed of 53 seconds for an average sequence 

length of ~450 amino acids. The resulting alignments generate a 

PSSM profile that encompasses nearly identical statistical 

information to the matrix produced by PSI-BLAST, which 

typically takes tens of minutes for each query sequence relying 

only on PSI-BLAST.  

 

Concerning future work, a beneficial added value would be the 

utilization of EPSAPG to construct a protein evolutionary 

information database. This database would encompass 

precomputed PSSM profiles for a large repository of distinct 

protein sequences, extensively employed by the scientific 

community. An example of such a cluster would be the UniRef30 

[30] data set, which comprises tens of millions of unique proteins 

with less than 30% sequence similarity. This will also offer 

further stress tests assessing the pipeline's capabilities and 

potential to handle larger query sets. Furthermore, this database 

would serve as a robust foundation for the ongoing advancements 

in protein sequence large language models [33], with a focus on 

encoding the evolutionary information of protein sequences into 

their embeddings.  
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