
Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

Using Four-Valued Signal Temporal Logic for
Incremental Verification of Hybrid Systems

Florian Lercher(�)[0009−0007−7202−5417] and
Matthias Althoff[0000−0003−3733−842X]

School for Computation, Information and Technology,
Technical University of Munich, 85748 Garching, Germany

florian.lercher@tum.de, althoff@tum.de

Abstract. Hybrid systems are often safety-critical and at the same time
difficult to formally verify due to their mixed discrete and continuous be-
havior. To address this issue, we propose a novel incremental verification
algorithm for hybrid systems based on online monitoring techniques and
reachability analysis. To this end, we develop a four-valued semantics
for signal temporal logic that allows us to distinguish two types of un-
certainty: one arising from set-based evaluation and another one from
the incremental nature of our algorithm. Using these semantics to con-
tinuously update the verification verdict, our verification algorithm is
the first to run alongside the reachability analysis of the system to be
verified. This makes it possible to stop the reachability analysis as soon
as we obtain a conclusive verdict. We demonstrate the usefulness of our
novel approach by several experiments.

Keywords: Hybrid systems verification · Many-valued temporal logic ·
Online verification.

1 Introduction

Hybrid systems are a powerful modeling concept, as they can exhibit both con-
tinuous and discrete dynamics. As such, they are applicable in many contexts,
including autonomous vehicles, power systems, robotics, and systems biology.
As the typical application areas indicate, hybrid systems are often safety-critical
and thus require formal verification. Specifications for the formal verification of
hybrid systems are often formalized using signal temporal logic (STL) [26], which
is evaluated on real-valued signals over continuous time. STL monitoring algo-
rithms can determine whether a concrete execution of a system satisfies an STL
specification [8]. By considering the reachable set, i.e., the set of states reached
by at least one execution, rather than single executions, monitoring algorithms
can be adapted to verify a specification for all executions [22,35]. While [22,35]
focus on offline monitoring algorithms, we adapt an online algorithm for incre-
mental verification. This allows us to stop the computation of the reachable set
as soon as the specification can be verified or falsified. Thus, we can use our
novel method online to, e.g., verify motion plans of autonomous vehicles [3].

This version of the contribution has been accepted for publication, after peer review
(when applicable) but is not the Version of Record and does not reflect post-acceptance
improvements, or any corrections. The Version of Record is available online at:
http://dx.doi.org/10.1007/978-3-031-65633-0_12

https://doi.org/10.5281/zenodo.10926462
mailto:florian.lercher@tum.de
mailto:althoff@tum.de
http://dx.doi.org/10.1007/978-3-031-65633-0_12

2 F. Lercher, M. Althoff

1.1 Related Work

Online Monitoring of Real-Time Temporal Logics: The paper that originally
introduced STL also presents an offline monitoring algorithm propagating satis-
faction signals of atomic subformulas up the syntax tree of the specification [26].
Later, [27] calls this method offline marking and adapts it for online monitor-
ing. The new procedure, called incremental marking, essentially performs offline
marking for each new observation and discards the already propagated parts
of the signals. The tool AMT [28] implements both algorithms. Other online
monitoring approaches for real-time logics rely on translating the formula to
timed [10,17] or untimed [20] automata. The algorithm in [34] rewrites the mon-
itored metric temporal logic formula to represent remaining constraints whenever
an observation is made. For robust monitoring, [15] adapts incremental marking
to quantitative semantics of STL [16].

Many-Valued Semantics of Temporal Logics: In the context of monitoring, [10]
employs three-valued semantics for linear temporal logic (LTL) and timed LTL to
handle uncertainty due to finite traces. To obtain a more expressive monitoring
result for finite traces, [9] extends this to a four-valued semantics that distin-
guishes presumably true or false finite traces. The authors of [13] use a five-valued
semantics of LTL to deal with uncertainties arising from finite traces and race
conditions in parallel systems. Most closely related to our approach are [22,35],
which employ three-valued semantics for verification of hybrid systems. Based
on reachable sets, previous work constructs three-valued satisfaction signals for
the atomic predicates of an STL formula implicitly [22] or explicitly [35]. The
third truth value indicates that both satisfying and violating states are reach-
able. To decide whether the specification is met, these are propagated akin to
offline marking. Moreover, [35] employs statically determined masks to evalu-
ate atomic predicates only where they are relevant; masking is an orthogonal
approach to our proposed incremental verification.

Hybrid Systems Verification: Besides the aforementioned approaches based on
three-valued semantics of STL [22,35], there are other verification methods using
only the usual two truth values. The authors of [32] introduce a variant of STL
called reachset temporal logic that is interpreted directly over the reachable set.
They provide a sound transformation of STL into their logic, which is complete if
all intervals in the STL formula range from 0 to a globally fixed time step. In [7],
the authors propose a syntactic separation procedure for STL, which splits a for-
mula into subformulas referring to disjoint time intervals. Based on the separated
formula, they use satisfiability modulo theories (SMT) techniques to search for
counterexamples bounded in length and the number of value changes; the SMT
encoding is improved in [25]. Finally, there are deductive verification approaches
that adapt dynamic logic suitable for software verification into differential dy-
namic logic suitable for hybrid systems [29, 30]. Differential dynamic logic has
been augmented with a fragment of STL to derive temporal properties [1] and
assumption-commitment reasoning to handle parallel hybrid systems [12].

Using Four-Valued STL for Incremental Verification of Hybrid Systems 3

1.2 Contributions

We propose a novel algorithm for verifying STL specifications on hybrid systems
based on reachability analysis. Following the idea of the incremental marking
procedure for STL monitoring [27, Sec. 3.2], our algorithm runs alongside the
reachability analysis. As soon as the reachability algorithm determines the reach-
able set for new time steps, our algorithm uses the new information to update
its verdict on specification satisfaction. Thus, we can terminate the reachability
analysis as soon as we obtain a conclusive verdict. The theoretical foundation
of our algorithm is a novel four-valued semantics for STL. The two new truth
values handle uncertainty arising from set-based (sets might contain both states
satisfying and violating a predicate) and incremental (the entire reachable set
over time is not immediately available) computation.

This paper is organized as follows: After discussing preliminaries and our
problem statement in Sec. 2, we give an overview of our solution concept in
Sec. 3. We present our four-valued semantics for STL in Sec. 4, followed by the
novel incremental verification algorithm in Sec. 5. In Sec. 6, we apply a prototype
implementation to systems occurring in autonomous driving and systems biology
before coming to a conclusion in Sec. 7.

2 Preliminaries and Problem Statement

After introducing the necessary interval operations, we establish the required
truth values. We then define signals as functions over time and briefly discuss
set-based reachability analysis of hybrid systems. Finally, we recapitulate the
syntax and Boolean semantics of STL before providing our problem statement.

2.1 Intervals

We work with intervals over R, admitting∞ and −∞ as endpoints if the interval
is open. The left-closure cll(I) of an interval I always includes its left endpoint,
except if the endpoint is infinite (e.g., cll((a, b]) = [a, b] if a ̸= −∞). Analogously,
the right-closure clr(I) always includes the right endpoint.

For sets A and B, their Minkowski sum A⊕ B is {a+ b | a ∈ A, b ∈ B}. We
will write a⊕B instead of {a} ⊕B. We also use A⊕ (−B) for back shifting [26],
where −B := {−b | b ∈ B}. If A and B are intervals, so are A⊕ B and −B.

2.2 Truth Values

We use the values B := {⊤,⊥} to denote truth ⊤ and falsehood ⊥. By extending
the semantics of the usual Boolean connectives to handle a third value ⊣1 denot-
ing unknown, we can indicate that a statement could be true or false. This results
in a three-valued propositional logic, such as that of Kleene [23]. For uncertainty
arising from incremental computations, we add a fourth value ⊣2 to denote in-
conclusive, indicating that the statement is either true, false, or unknown. In

4 F. Lercher, M. Althoff

0 1 2 3 4 5 6 7 8

⊥

⊤
I+λ1

I+λ2

λ

Fig. 1. A Boolean signal λ and its unitary decomposition {λ1, λ2}

other words, ⊣1 means “we know that we don’t know,” while ⊣2 means “we don’t
know whether we don’t know.” We define the sets of truth values U1 := B∪{⊣1}
and U2 := U1 ∪ {⊣2}. Moreover, we introduce the truth order ⊑t, where v ⊑t v

′

for v, v′ ∈ U2 means that v is “less true” than v′. Thus, we define ⊥ ⊑t ⊣1 ⊑t ⊤
and ⊥ ⊑t ⊣2 ⊑t ⊤; ⊣1 and ⊣2 are incomparable.

2.3 Signals

Let us fix R≥0 as our time domain. A signal over the domain D, or D-signal for
short, is a function σ : R≥0 → D. A partial D-signal σ̃ : T → D is only defined
over a subset T ⊆ R≥0 of the time domain. We refer to signals over B, U1, and
U2 as logical signals; in particular, Boolean signals are logical signals over B. We
adopt the following naming convention for logical signals: λ indicates Boolean
signals, Λ indicates U1-signals, and Λ̃ indicates U2-signals.

A Boolean signal λ is unitary if there is one contiguous interval I+λ ⊆ R≥0

such that λ(t) = ⊤ for all t ∈ I+λ and λ(t) = ⊥ everywhere else [26]. Every
Boolean signal can be represented as a disjunction of unitary signals, as shown
in Fig. 1 [26]. In this work, we require this unitary decomposition to be minimal,
i.e., the number of involved unitary signals must be minimal.

2.4 Reachability Analysis of Hybrid Systems

The literature provides numerous methods for describing hybrid systems. Our
verification method is independent of the chosen description method as long as
the system model is amenable to set-based reachability analysis (see [4] for an
overview). Given the mixed continuous and discrete state space X of the hybrid
system H, an execution of H is a signal ξ : R≥0 → X .

We are interested in the reachable set of the system H, i.e., the set of all
states that are part of at least one execution of H. Formally, the reachable set
of H is a signal R : R≥0 → 2X given by

R(t) := {ξ(t) | ξ is an execution of H}.

Since determining the exact reachable set is often computationally infeasible,
tools like CORA [2], JuliaReach [11], and SpaceEx [18] typically return a discrete-
time overapproximation when performing reachability analysis. To this end, they
represent R as a sequence of sets so that the set RI for the time interval I sub-
sumes

⋃
t∈I R(t). Our verification algorithm assumes that this sequence is incre-

mentally computed for consecutive time intervals, as is the case with the tools

Using Four-Valued STL for Incremental Verification of Hybrid Systems 5

mentioned. To handle Taylor model representations (e.g., as used by Flow* [14]),
a preprocessing step would be required to obtain a sequence of sets.

2.5 Signal Temporal Logic with Boolean Semantics

Suppose AP is a fixed set of atomic predicates, where each predicate is a function
a : X → B. An STL formula φ over AP is constructed according to the grammar

φ ::= true | a | ¬φ | φ1 ∧ φ2 | φ1 UI φ2,

where a ∈ AP and I is an interval over R≥0 with rational endpoints [26]. We use
the common abbreviations φ1∨φ2 := ¬(¬φ1∧¬φ2), FI φ := trueUI φ (finally),
and GI φ := ¬FI ¬φ (globally). Note that we define true as basic syntax rather
than introducing it as an abbreviation for a ∨ ¬a, because the law of excluded
middle does not transfer well to the four-valued semantics we define later.

In Boolean semantics, an STL formula φ is interpreted over an execution
ξ : R≥0 → X to obtain a yes-or-no answer whether ξ satisfies φ [26, 27]. We
define the Boolean satisfaction signal JφKξ : R≥0 → B of φ over ξ inductively as

JtrueKξ(t) := ⊤,
JaKξ(t) := a(ξ(t)),

J¬φKξ(t) := ¬JφKξ(t),
Jφ1 ∧ φ2Kξ(t) := Jφ1Kξ(t) ∧ Jφ2Kξ(t),

Jφ1 UI φ2Kξ(t) :=


⊤ if ∃t′ ∈ t⊕ I : Jφ2Kξ(t′) = ⊤

and ∀t′′ ∈ (t, t′) : Jφ1Kξ(t′′) = ⊤
⊥ otherwise

,

where a ∈ AP. The value of the satisfaction signal at time t indicates whether
φ holds at t. Thus, an execution ξ satisfies φ, denoted by ξ |= φ, if and only if
JφKξ(0) = ⊤. A hybrid system H satisfies φ, written as H |= φ, if ξ |= φ for all
executions ξ of H. Note that we use the strict until semantics from [27], which
does not require φ1 to hold at t or t′, unlike the version in [26,35]. This semantics
is more expressive, as we can recover the until from [26,35] as φ1∧φ1 UI(φ1∧φ2).

To exclude Zeno behavior, we limit ourselves to executions ξ such that, for
all a ∈ AP, the Boolean signal given by point-wise application of a to ξ is of
finite variability. That is, it changes its value only a finite number of times in
any finite time interval [6, Sec. 2.3.5]. This is a common assumption in related
work [17,26,27,35], albeit not always under this name; we refer the reader to [26,
Sec. 4] and [27, Sec. 4] for a discussion.

2.6 Problem Statement

Given an STL formula φ and a hybrid system H, we want to determine whether
H |= φ based on the reachable set of H. As reachability analysis is often in-
cremental, we need to interpret φ over a reachable set that is only known for

6 F. Lercher, M. Althoff

some time intervals to form a preliminary verification verdict. Formally, this
means we want to define and compute a U2-satisfaction signal JφKR̃ : R≥0 → U2

over a partial reachable set R̃ : T → 2X , where T ⊆ R≥0. If our preliminary
verdict is inconclusive due to partial knowledge of the reachable set, we aim to
efficiently update our verdict as soon as more information becomes available. If
the final verdict turns out to be ⊣1, we need to refine our overapproximation of
the reachable set to verify or falsify the specification.

This paper focuses on the four-valued semantics and the efficient update of
the preliminary verdict. We only briefly discuss refinements of the overapproxi-
mation, as this often amounts to tuning the parameters of the reachability analy-
sis. Moreover, it is a common step in verification approaches based on reachable
sets [22, 32, 35]. An automatic refinement technique for the reachset temporal
logic approach [32] is presented in [24].

3 Basic Idea and Solution Concept

As a motivating example, consider the intentionally simple dynamical system
given by the differential equation ẋ = u, where the input u lies somewhere in
[0.9, 1.1] and initially x ∈ [−0.5, 0.5]. Suppose we want to verify that x eventually
becomes larger than 1 within the next five seconds, which we formalize in STL
as φ := F[0,5] x > 1. To this end, we exploit that the reachable set R of our
system encloses all executions of the system. Thus, if we can prove that there
exists a t ∈ [0, 5] such that x > 1 for all states x ∈ R(t), we have shown φ for
all executions of our system.

Recall that the reachable set is usually computed incrementally for consec-
utive time intervals. We are thus dealing with a partial reachable set R̃, which
is only determined for a subset of the time domain. For example, a reachability
algorithm might first compute the reachable set for up to 1 s (top left in Fig. 2)
and then continue to determine the reachable set in the next 0.8 s (top right).

If we are able to interpret our specification φ over such partial reachable sets,
we can re-evaluate its satisfaction with every newly determined time interval and
terminate the algorithm once we obtain a conclusive result. To this end, we derive
a set-based version â : 2X → U1 of every atomic predicate a ∈ AP so that

â(X ′) :=


⊤ if X ′ ̸= ∅ and X ′ ⊆ JaK
⊥ if X ′ ̸= ∅ and X ′ ∩ JaK = ∅
⊣1 otherwise

for X ′ ⊆ X , where JaK := {x ∈ X | a(x) = ⊤} denotes the set of states satisfying
a. This enables us to construct a U2-satisfaction signal for atomic predicates over
R̃ by assigning ⊣2 at times where the reachable set has not yet been determined.
As shown in the second row of Fig. 2, this signal becomes ⊣1 as soon as the
reachable set starts intersecting with our atomic predicate and changes to ⊤ once
it lies fully inside. Thus, ⊣1 means that we do not know whether a predicate is

Using Four-Valued STL for Incremental Verification of Hybrid Systems 7

x

⊥

⊣1

⊣2

⊤

Jx
>

1
K R̃

0 0.5 1 1.5 2
⊥

⊣1

⊣2

⊤

Time t [s]

JF
[0
,5
]
x
>

1
K R̃

0 0.5 1 1.5 2

Time t [s]

-1

0

1

2

R̃ x > 1

Fig. 2. Reachable set R̃ and U2-satisfaction signals of x > 1 and F[0,5] x > 1 for the
simple example system after reachability analysis for up to 1 s (left) and 1.8 s (right)

true or false since the reachable set contains satisfying and violating states; ⊣2
means that we do not know as we have not yet computed the set for this time.

Now that we have satisfaction signals for the atomic predicates, it remains
to combine them in order to obtain satisfaction signals for compound formulas.
For this, we develop operators that preserve the intended meaning of our two
uncertain values ⊣1 and ⊣2 in Sec. 4. The third row of Fig. 2 shows the resulting
satisfaction signal JφKR̃ for our example specification: After reachability analysis
for up to 1 s, the verification verdict is inconclusive, since JφKR̃(0) = ⊣2. Once we
update the satisfaction signal to incorporate information about the next 0.8 s,
we can verify that φ holds and terminate early. In Sec. 5, we use ideas of the
incremental marking procedure [27] to perform this update efficiently.

4 Four-Valued Signal Temporal Logic

To compute the U2-satisfaction signal for an STL formula φ with respect to a
partial reachable set, we proceed by structural recursion on φ. The base case for
true is clear, and we treat atomic predicates as described in Sec. 3. For compound
formulas, i.e., negation, conjunction, and until, we combine the recursively com-
puted satisfaction signals of their subformulas using suitable operators on signals.
Instead of defining these operators directly on U2-signals, we under- and over-
approximate a U2-signal using U1-signals. Similarly, we represent U1-signals by
Boolean signals. Utilizing this representation, we can use the negation, conjunc-
tion, and until operators defined for Boolean signals to combine U2-satisfaction

8 F. Lercher, M. Althoff

⊣1 ∧ ⊣2 ⊣2

⊣1 ∧ ⊤

⊣1 ∧ ⊥

⊣1

⊥

⊤ ∧⊤

⊥ ∧⊤

⊤ ∧⊥

⊥ ∧⊥

⊤

⊥

⊥

⊥

U2

U1

B

▷ Sec. 4.3

▷ Sec. 4.2

▷ Sec. 4.1

Fig. 3. Evaluating ⊣1 ∧ ⊣2 in U2-semantics: On the way down, we under- and overap-
proximate the input values with respect to the truth order by replacing the uncertain
value of the current layer with ⊥ and ⊤. In the Boolean layer, we evaluate the conjunc-
tion as usual. To move back up, we check whether the results for both approximations
agree, and assign the appropriate uncertain value if this is not the case.

signals. Fig. 3 shows this concept simplified to the propositional case, in which
we are dealing with truth values instead of logical signals.

4.1 Computing Boolean Satisfaction Signals

To define the operators for combining Boolean satisfaction signals, we closely
follow the procedure from [27]. For negation and conjunction, we lift ¬ and ∧
from Boolean values to Boolean signals by point-wise application [27, Sec. 3.1.1].
Unlike [27], we handle until directly instead of expressing it as a combination of
untimed until and timed finally, thus avoiding the rather involved specification
rewriting of [27, Lem. 1]. To this end, we adapt the method from [26, Sec. 3] for
arbitrary intervals and strict semantics.

We first define an until operator that works only for unitary Boolean signals
and generalize it later using the unitary decomposition. Unitary signals have the
helpful property that λ(t) = ⊤ = λ(t′) for times t ≤ t′ implies λ(t′′) = ⊤ for all
t′′ ∈ [t, t′]. Given unitary signals λ1, λ2 and an interval I over R≥0, we define the
unitary until UI so that (λ1 UI λ2)(t) = ⊤ if and only if t ∈ I1 ∪ I2, where

I1 :=
[(
I+λ2
∩ clr(I

+
λ1
)
)
⊕ (−(I \ {0}))

]
∩ cll(I

+
λ1
), I2 :=

{
I+λ2

if 0 ∈ I

∅ otherwise
. (1)

Here, I \ {0} is always an interval, since I ⊆ R≥0 = [0,∞). We prove that UI

implements the until semantics for unitary signals.

Using Four-Valued STL for Incremental Verification of Hybrid Systems 9

Lemma 1. Suppose λ1 and λ2 are unitary Boolean signals, and I is an interval
over R≥0. For all t ∈ R≥0, we have

(λ1 UI λ2)(t) =

{
⊤ if ∃t′ ∈ t⊕ I : λ2(t

′) = ⊤ and ∀t′′ ∈ (t, t′) : λ1(t
′′) = ⊤

⊥ otherwise
.

Proof. Let I1 and I2 be given as in (1) so that (λ1 UI λ2)(t) = ⊤ if and only if
t ∈ I1∪ I2. For an arbitrary t ∈ R≥0, we first prove that I1 treats the case t′ > t:

t ∈ I1 ⇐⇒ t ∈
[(
I+λ2
∩ clr(I

+
λ1
)
)
⊕ (−(I \ {0}))

]
∩ cll(I

+
λ1
)

⇐⇒ ∃t′ ∈ t⊕ (I \ {0}) : t′ ∈ I+λ2
and t′ ∈ clr(I

+
λ1
) and t ∈ cll(I

+
λ1
)

⇐⇒ ∃t′ ∈ t⊕ (I \ {0}) : λ2(t
′) = ⊤ and ∀t′′ ∈ (t, t′) : λ1(t

′′) = ⊤.

For the second step, observe that A ⊕ (−B) = {x | ∃a ∈ x ⊕ B : a ∈ A}. The
last equivalence uses that λ1 is unitary: If λ1 is ⊤ both immediately after t,
i.e., t ∈ cll(I

+
λ1
), and immediately before t′, i.e., t′ ∈ clr(I

+
λ1
), the signal must

also be ⊤ throughout (t, t′), since I+λ1
is contiguous. For the converse, note that

∅ ⊊ (t, t′) ⊆ I+λ1
implies t ∈ cll(I

+
λ1
) and t′ ∈ clr(I

+
λ1
). If 0 /∈ I, we are done, as

I = I \{0} and I2 = ∅. Otherwise, I2 handles the case t′ = t, where t⊕{0} = {t}
and the universal quantifier is vacuously satisfied:

t ∈ I2 ⇐⇒ t ∈ I+λ2

⇐⇒ λ2(t) = ⊤
⇐⇒ ∃t′ ∈ t⊕ {0} : λ2(t

′) = ⊤ and ∀t′′ ∈ (t, t′) : λ1(t
′′) = ⊤.

Using that all Boolean signals admit a unitary decomposition, we generalize
UI to Boolean signals λ1 and λ2 that are not necessarily unitary. We define

(λ1 UI λ2)(t) :=
∨

1≤i≤n1

∨
1≤j≤n2

(λ1,i UI λ2,j)(t),

where t ∈ R≥0 and {λk,1, . . . , λk,nk
} is the unitary decomposition of λk for

k ∈ {1, 2}. We prove that this is a general implementation of the until semantics.

Lemma 2. Let λ1 and λ2 be Boolean signals and I be an interval over R≥0.
For all t ∈ R≥0, we have

(λ1 UI λ2)(t) =

{
⊤ if ∃t′ ∈ t⊕ I : λ2(t

′) = ⊤ and ∀t′′ ∈ (t, t′) : λ1(t
′′) = ⊤

⊥ otherwise
.

In particular, we obtain Jφ1 UI φ2Kξ = Jφ1Kξ UIJφ2Kξ.

Proof. Observe that the second statement is a specialization of the first by the
Boolean semantics of STL. Let t ∈ R≥0 be arbitrary. If (λ1 UI λ2)(t) = ⊤, there
must be i and j so that (λ1,i UI λ2,j)(t) = ⊤, and we can immediately conclude

10 F. Lercher, M. Althoff

with Lem. 1. Conversely, let t′ ∈ t ⊕ I so that λ2(t
′) = ⊤ and λ1(t

′′) = ⊤ for
all t′′ ∈ (t, t′). Since λ2(t

′) = ⊤, there exists j such that λ2,j(t
′) = ⊤. As the

unitary decomposition of λ1 is minimal, the union of two or more of the I+λ1,i

cannot yield a contiguous interval (otherwise, we could merge them for a smaller
decomposition). Hence, there exists i such that (t, t′) ⊆ I+λ1,i

, or, in other words,
λ1,i(t

′′) = ⊤ for all t′′ ∈ (t, t′). Applying Lem. 1 again concludes the proof.

4.2 Computing Three-Valued Satisfaction Signals

To compute the U1-satisfaction signal of an STL formula over a reachable set,
we represent U1-signals using Boolean signals and then reuse the techniques
from Sec. 4.1. Recall from Sec. 2.2 that ⊣1 means that we do not know whether
a statement is true or false. Thus, every U1-signal Λ induces a set of Boolean
signals, called refinements of Λ, in which the occurrences of ⊣1 are replaced with
⊤ or ⊥. Formally, a Boolean signal λ refines Λ, denoted as λ ≺ Λ, if Λ(t) ̸= ⊣1
implies λ(t) = Λ(t) for all t ∈ R≥0. Since the set of refinements is unique for each
U1-signal Λ, we use it to represent Λ. We argue that the two special refinements

⌊Λ⌋(t) :=

{
⊥ if Λ(t) = ⊣1
Λ(t) otherwise

and ⌈Λ⌉(t) :=

{
⊤ if Λ(t) = ⊣1
Λ(t) otherwise

adequately characterize this set. Lifting the truth order ⊑t to a partial order on
logical signals by point-wise application, we find that the Boolean signal λ refines
Λ if and only if ⌊Λ⌋ ⊑t λ ⊑t ⌈Λ⌉. Hence, ⌊Λ⌋ underapproximates the refinements
of Λ, while ⌈Λ⌉ overapproximates them. We can recover Λ(t) as ⌊Λ⌋(t)⊔1 ⌈Λ⌉(t),
where v ⊔1 v′ with v, v′ ∈ B yields v if and only if v = v′ and ⊣1 otherwise.

The operator UI on Boolean signals is monotone, i.e., we have λ1 UI λ2 ⊑t

λ′
1 UI λ

′
2 given that λi ⊑t λ′

i for i ∈ {1, 2}. Intuitively, this means that if we
set the inputs to ⊤ at more time points, the output signal will also be ⊤ more
often. Thus, ⌊Λ1⌋UI⌊Λ2⌋ is a faithful underapproximation of λ1 UI λ2, given
that λi ≺ Λi for i ∈ {1, 2}. Similarly, ⌈Λ1⌉UI⌈Λ2⌉ is an overapproximation.
Fig. 4 visualizes this for a derived finally operator FI λ := λ⊤ UI λ, where λ⊤ is⊤
everywhere. To show monotonicity of UI , we apply Lem. 2 and use that λi(t) = ⊤
implies λ′

i(t) = ⊤. The operator ∧ is also monotone. In contrast, ¬ is antitone,
i.e., λ ⊑t λ

′ implies ¬λ′ ⊑t ¬λ. So, ¬⌈Λ⌉ is an underapproximation, while ¬⌊Λ⌋
is an overapproximation. We define the operators ¬, ∧, and UI on U1-signals
such that they recover a U1-signal from these over- and underapproximations:

(¬Λ)(t) := (¬⌊Λ⌋)(t) ⊔1 (¬⌈Λ⌉)(t),
(Λ1 ∧ Λ2)(t) := (⌊Λ1⌋ ∧ ⌊Λ2⌋)(t) ⊔1 (⌈Λ1⌉ ∧ ⌈Λ2⌉)(t),

(Λ1 UI Λ2)(t) := (⌊Λ1⌋UI⌊Λ2⌋)(t) ⊔1 (⌈Λ1⌉UI⌈Λ2⌉)(t).

Finally, we define the U1-satisfaction signal JφKR : R≥0 → U1 of an STL
formula φ with respect to a reachable set R : R≥0 → 2X using our operators.
For all t ∈ R≥0, we define

JtrueKR(t) := ⊤ and JaKR(t) := â(R(t)),

Using Four-Valued STL for Incremental Verification of Hybrid Systems 11

⊥

⊤
⌊Λ⌋ ⌈Λ⌉ λ ≺ Λ

0 1 2 3 4 5 6 7 8

⊥

⊤
F[0,1]⌊Λ⌋ F[0,1]⌈Λ⌉ F[0,1] λ

Fig. 4. Top: All refinements λ of a U1-signal Λ lie between the underapproximation ⌊Λ⌋
and the overapproximation ⌈Λ⌉. Bottom: After applying the monotone finally operator
to all three Boolean signals, the refinement is still between the approximations. We
omit the markers at the jumps, as they are irrelevant to the point of this example.

where a ∈ AP and â is defined as in Sec. 3. Moreover, we define

J¬φKR := ¬JφKR,

Jφ1 ∧ φ2KR := Jφ1KR ∧ Jφ2KR,

Jφ1 UI φ2KR := Jφ1KR UIJφ2KR.

To relate this to the Boolean semantics, we show that JφKξ refines JφKR, if R
covers the execution ξ. We say a reachable set R covers an execution ξ, denoted
as ξ ≺ R, if ξ(t) ∈ R(t) for all t ∈ R≥0.

Theorem 1. Suppose R is a reachable set and φ an STL formula. For every
execution ξ covered by R, we have JφKξ ≺ JφKR. In other words, if JφKR(t) = v,
we have JφKξ(t) = v for all ξ ≺ R, v ∈ B, and t ∈ R≥0.

Proof. We proceed by structural induction on φ. Let t ∈ R≥0 be arbitrary.

Base Cases: The case for φ = true is straightforward, as true always evaluates
to ⊤ in Boolean and U1-semantics. For an atomic predicate a ∈ AP, we find

â(R(t)) = ⊤ ⇐⇒ R(t) ̸= ∅ and R(t) ⊆ JaK =⇒ ∀ξ ≺ R : a(ξ(t)) = ⊤,

and thus JaKR(t) = ⊤ =⇒ ∀ξ ≺ R : JaKξ(t) = ⊤. The argument for ⊥ is similar.

Direct Semantics: Turning to the inductive cases, we notice that our operators
on U1-signals depend on their Boolean counterparts. This makes them easy to
implement, but difficult to handle in proofs. Therefore, we first show that they

12 F. Lercher, M. Althoff

adhere to the following direct semantics that work without this dependency:1

(¬Λ)(t) =


⊤ if Λ(t) = ⊥
⊥ if Λ(t) = ⊤
⊣1 otherwise

,

(Λ1 ∧ Λ2)(t) =


⊤ if Λ1(t) = ⊤ and Λ2(t) = ⊤
⊥ if Λ1(t) = ⊥ or Λ2(t) = ⊥
⊣1 otherwise

, (2)

(Λ1 UI Λ2)(t) =


⊤ if ∃t′ ∈ t⊕ I : Λ2(t

′) = ⊤ and ∀t′′ ∈ (t, t′) : Λ1(t
′′) = ⊤

⊥ if ∀t′ ∈ t⊕ I : Λ2(t
′) = ⊥ or ∃t′′ ∈ (t, t′) : Λ1(t

′′) = ⊥
⊣1 otherwise

.

Proof of the Direct Semantics: First, consider the case where (Λ1 UI Λ2)(t) is
⊤. Recalling that v ⊔1 v′ only yields ⊤ if v = ⊤ = v′, we derive

(Λ1 UI Λ2)(t) = ⊤ ⇐⇒ (⌊Λ1⌋UI⌊Λ2⌋)(t) = ⊤ = (⌈Λ1⌉UI⌈Λ2⌉)(t)
⇐⇒ ∀λ1 ≺ Λ1 : ∀λ2 ≺ Λ2 : (λ1 UI λ2)(t) = ⊤.

The second equivalence is due to the monotonicity of UI over Boolean signals:
If λi ≺ Λi, we know that ⌊Λi⌋ ⊑t λi ⊑t ⌈Λi⌉ for i ∈ {1, 2}. Thus, we also have
⌊Λ1⌋UI⌊Λ2⌋ ⊑t λ1 UI λ2 ⊑t ⌈Λ1⌉UI⌈Λ2⌉. Hence, (λ1 UI λ2)(t) must be ⊤ due
to the antisymmetry of ⊑t. The converse is clear, as ⌊Λi⌋ and ⌈Λi⌉ are particular
refinements of Λi. We continue our derivation by applying Lem. 2 and find

. . . ⇐⇒ ∀λ1 ≺ Λ1 : ∀λ2 ≺ Λ2 :

∃t′ ∈ t⊕ I : λ2(t
′) = ⊤ and ∀t′′ ∈ (t, t′) : λ1(t

′′) = ⊤
⇐⇒ ∃t′ ∈ t⊕ I : Λ2(t

′) = ⊤ and ∀t′′ ∈ (t, t′) : Λ1(t
′′) = ⊤.

To explain the forward direction of the last equivalence, we consider the refine-
ments ⌊Λ1⌋ and ⌊Λ2⌋. Instantiating the universal quantifiers, we find that

∃t′ ∈ t⊕ I : ⌊Λ2⌋(t′) = ⊤ and ∀t′′ ∈ (t, t′) : ⌊Λ1⌋(t′′) = ⊤.

Since ⌊Λi⌋(t) = ⊤ if and only if Λi(t) = ⊤, this establishes the forward direction.
For (Λ1 UI Λ2)(t) = ⊥, we argue analogously, and then the case for ⊣1 follows
by elimination. The reasoning for the remaining operators is similar.

1 These semantics arise naturally from the Boolean semantics in Sec. 2.5 by making
the Boolean “otherwise” case explicit and adding a new “otherwise” to handle ⊣1.

Using Four-Valued STL for Incremental Verification of Hybrid Systems 13

Inductive Cases: We are now equipped to prove the inductive cases for our main
statement. Using the direct semantics (2), we exemplarily show the case for until:

Jφ1 UI φ2KR(t) = ⊤ ⇐⇒ ∃t′ ∈ t⊕ I : Jφ2KR(t′) = ⊤
and ∀t′′ ∈ (t, t′) : Jφ1KR(t′′) = ⊤

=⇒ ∃t′ ∈ t⊕ I : (∀ξ ≺ R : Jφ2Kξ(t′) = ⊤)
and ∀t′′ ∈ (t, t′) : ∀ξ ≺ R : Jφ1Kξ(t′′) = ⊤

(IH)

=⇒ ∀ξ ≺ R : ∃t′ ∈ t⊕ I : Jφ2Kξ(t′) = ⊤
and ∀t′′ ∈ (t, t′) : Jφ1Kξ(t′′) = ⊤

(∗)

⇐⇒ ∀ξ ≺ R : Jφ1 UI φ2Kξ(t) = ⊤.

To derive Jφ1 UI φ2KR(t) = ⊥ =⇒ ∀ξ ≺ R : Jφ1 UI φ2Kξ(t) = ⊥, we argue
similarly. Note that the step marked with (∗) is not an equivalence since we
need to swap an existential and a universal quantifier. Intuitively, this means
that the Boolean semantics allow us to choose the time when φ2 becomes true
for each refinement individually, while we have to choose the same time for all
refinements in the U1-semantics. A similar step is necessary in the ⊥ case of
conjunction, where we have to choose which subformula is false.

4.3 Computing Four-Valued Satisfaction Signals

In the previous section, we used two Boolean signals to over- and underapprox-
imate the refinements of a U1-signal. This enabled us to reuse the operators
defined on Boolean signals for computing a U1-satisfaction signal of an STL for-
mula with respect to a reachable set. Following the same pattern, we can over-
and underapproximate the refinements of a U2-signal by two U1-signals to com-
pute U2-satisfaction signals over partial reachable sets. Hence, many concepts,
definitions, and proofs are analogous to Sec. 4.2, so we only sketch them here.

Given a U2-signal Λ̃, the U1-signal Λ refines Λ̃, denoted by Λ ≺ Λ̃, if Λ̃(t) ̸= ⊣2
implies Λ(t) = Λ̃(t) for all t ∈ R≥0. We define the underapproximation ⌊Λ̃⌋ and
the overapproximation ⌈Λ̃⌉ analogously to Sec. 4.2, i.e., by replacing ⊣2 with
⊥ and ⊤, respectively. Again, we have ⌊Λ̃⌋ ⊑t Λ ⊑t ⌈Λ̃⌉ if and only if Λ ≺ Λ̃.
Moreover, we can reconstruct Λ̃(t) as ⌊Λ̃⌋(t)⊔2⌈Λ̃⌉(t). Here, v⊔2v′ with v, v′ ∈ U1

is v if and only if v = v′ and ⊣2 otherwise.
To define the operators for negation, conjunction, and until on U2-signals,

we first show that the U1-operators are monotone or antitone.

Lemma 3. The operators ∧ and UI on U1-signals are monotone; ¬ is antitone.

Proof. Using the direct semantics (2) of the operators shown in the proof of
Thm. 1 and case distinction, the proof is straightforward. We exemplarily con-
sider the case (Λ1 UI Λ2)(t) = ⊣1, where we need to show ⊣1 ⊑t (Λ′

1 UI Λ
′
2)(t)

given Λi ⊑t Λ
′
i for i ∈ {1, 2}. From the direct semantics, we know

∃t′ ∈ t⊕ I : Λ2(t
′) ̸= ⊥ and ∀t′′ ∈ (t, t′) : Λ1(t

′′) ̸= ⊥.

14 F. Lercher, M. Althoff

Since Λ′
i can only be ⊥ where Λi is also ⊥, the same statement holds for Λ′

1 and
Λ′
2. Thus, (Λ′

1 UI Λ
′
2)(t) cannot be ⊥. Consequently, it must be either ⊣1 or ⊤,

and we know that ⊣1 ⊑t ⊤.

Due to Lem. 3, it is justified to define the operators ¬, ∧, and UI on U2-
signals like in Sec. 4.2 using ⊔2 instead of ⊔1. With these, we can define the
satisfaction signal JφKR̃ : R≥0 → U2 of an STL formula φ with respect to a
partial reachable set R̃ : T → 2X , where T ⊆ R≥0. For atomic formulas true
and a ∈ AP, we define

JtrueKR̃(t) := ⊤ and JaKR̃(t) :=

{
â(R̃(t)) if t ∈ T
⊣2 otherwise

for all t ∈ R≥0. The satisfaction signal for compound formulas is defined analo-
gously to Sec. 4.2 using our operators. Finally, we state the equivalent of Thm. 1
to relate U2- and U1-satisfaction signals: We show that JφKR refines JφKR̃, if R is
an extension of R̃. Given R̃ : T → 2X with T ⊆ R≥0, we say that the reachable
set R extends R̃, denoted as R ≺ R̃, if R(t) = R̃(t) for all t ∈ T .

Theorem 2. Suppose R̃ is a partial reachable set and φ an STL formula. For
every reachable set R that extends R̃, we have JφKR ≺ JφKR̃. In other words, if
JφKR̃(t) = v, we have JφKR(t) = v for all R ≺ R̃, v ∈ U1, and t ∈ R≥0.

Sketch of proof. The proof proceeds by structural induction on φ. For the most
part, it is analogous to the proof of Thm. 1, except that we now have to consider
an additional case for v = ⊣1. In the base case for φ = a with a ∈ AP, we derive:

JaKR̃(t) = ⊣1 ⇐⇒ t ∈ T and â(R̃(t)) = ⊣1
=⇒ ∀R ≺ R̃ : â(R(t)) = ⊣1
⇐⇒ ∀R ≺ R̃ : JaKR(t) = ⊣1,

where the partial reachable set R̃ is defined over T ⊆ R≥0. For⊤ and⊥, we argue
similarly. For the inductive cases with compound formulas, we can determine
direct semantics for our operators on U2-signals similar to those in the proof
of Thm. 1. Like (2), they follow the pattern of making the “otherwise” case of
the U1-semantics explicit and introducing a new “otherwise” case to handle ⊣2.
As for Thm. 1, the crucial points in the proof are those where we need to use
a statement about all refinements of a U2-signal Λ̃ to infer something about Λ̃
itself. In particular, we need variations of the following property

∀Λ ≺ Λ̃ : ∃t ∈ R≥0 : Λ(t) ∈ U ⇐⇒ ∃t ∈ R≥0 : Λ̃(t) ∈ U ,

where U ⊊ U1. To prove the forward direction, we choose a value v ∈ U1 \ U ,
which must exist since U is a proper subset of U1. We consider the refinement
Λv ≺ Λ̃ in which all occurrences of ⊣2 are replaced by v and find that Λv(t) ∈ U
if and only if Λ̃(t) ∈ U to establish the forward direction. Using the direct
semantics, we show the inductive cases analogously to the proof of Thm. 1.

Using Four-Valued STL for Incremental Verification of Hybrid Systems 15

5 Incremental Verification of Hybrid Systems

Thms. 1 and 2 provide a sound, but incomplete, method of proving or disproving
that a hybrid system H satisfies an STL specification φ. We note that incom-
pleteness is unavoidable to some extent since the reachability problem for hybrid
systems is undecidable in general [19, Sec. 4]. We summarize the verification
method in the following corollary.

Corollary 1. Let φ be an STL formula and R̃ a partial reachable set. Let R be
an extension of R̃. If JφKR̃(0) is

– ⊤, we have ξ |= φ for all executions ξ covered by R.
– ⊥, we have ξ ̸|= φ for all executions ξ covered by R.
– ⊣1, the result is unknown. Based on the reachable set R, we cannot make a

statement about all covered executions.
– ⊣2, the result is inconclusive. The partial reachable set R̃ does not contain

enough information to support a claim about all its extensions.

If R̃ is a partial overapproximation of the reachable set of a hybrid system H,
JφKR̃(0) = ⊤ implies H |= φ, while JφKR̃(0) = ⊥ implies H ̸|= φ.

The last claim above holds because there must exist some extension of R̃
covering all executions of the system by definition of the reachable set.

5.1 Incremental Verification Algorithm

Alg. 1 implements the approach outlined in Cor. 1. It incrementally computes
a U2-satisfaction signal of the specification φ as the reachability analysis of
the hybrid system H progresses. At its core, the algorithm alternates between
computing the reachable states of the system, which allows it to observe the
satisfaction or violation of predicates in new time intervals, and propagating
these observations up the syntax tree of φ to update the satisfaction signal. The
algorithm terminates as soon as the satisfaction signal provides a conclusive
verdict. Below, we explain Alg. 1 in more detail.

Before entering the main loop, we initialize the reachability analysis of H and
construct the syntax tree of φ. We assume that φ is written without syntactic
sugar. Each node n of the syntax tree stores the U2-satisfaction signal of the
subformula of φ that its subtree represents. Initially, the satisfaction signal,
which we refer to as n.signal , is ⊣2 on the entire time domain, except for nodes
representing true, where it is ⊤ everywhere.

In the main loop, we first compute one step of the reachability analysis, which
yields the set of states RI that the system can reach in the time interval I. For
each node representing an atomic predicate a ∈ AP, we determine â(RI) based
on the observed set (function Eval) and update its satisfaction signal during I
accordingly. Afterward, we propagate the new observations up the syntax tree.
Note that all occurring signals are guaranteed to be of finite variability as long
as the computed sequence of reachable sets does not exhibit Zeno behavior. If

16 F. Lercher, M. Althoff

Algorithm 1 Incremental Verification
Input: STL formula φ, hybrid system H, time horizon th
Output: Verdict from U2 on whether H satisfies φ

1: reach ← InitializeReachabilityAnalysis(H, th)
2: tree ← SyntaxTree(φ)
3: while ¬reach.Done() do ▷ Did we reach th?
4: RI ← reach.NextStep() ▷ Reachable states in time interval I
5: for ap ∈ tree.aps do ▷ Iterate nodes representing atomic predicates
6: v ← ap.Eval(RI) ▷ Set-based predicate evaluation to v ∈ U1

7: ap.signal .Set(I, v)
8: end for
9: tree.root .Propagate() ▷ See Alg. 2

10: verdict ← tree.root .signal(0)
11: if verdict ̸= ⊣2 then ▷ Is the verdict conclusive?
12: return verdict
13: end if
14: end while
15: return tree.root .signal(0)

we obtain a conclusive verdict on the satisfaction of the top-level formula φ at
time 0, we return the verdict early. Otherwise, we continue until the reachable
set is determined up to a given time horizon th. After reaching th, we return the
current verdict, even if it is the inconclusive ⊣2.

Alg. 2 propagates new observations up the syntax tree. It closely follows the
incremental marking procedure of Maler and Ničković [27, Alg. 2]. The algorithm
traverses the syntax tree in post-order and applies the operators developed in
Sec. 4.3 to update the satisfaction signal of each node based on the satisfaction
signals of its children (function Combine).

Since we only admit future connectives, the satisfaction of a formula at time t
depends only on the truth values of its subformulas at times t′ ≥ t [27, Sec. 3.2].
To exploit this, every node n stores a time interval n.irr of the form [0, t) or [0, t],
indicating the prefix of n.signal that is irrelevant for updates of the parent node.
Initially, n.irr is empty. After updating the signal of n, we also need to revise
the irrelevant prefixes of its children. To this end, we find the largest interval I
containing 0 such that n.signal has a conclusive value, i.e., not ⊣2, everywhere in
I \n.irr ; if n.signal(0) = ⊣2 and 0 /∈ n.irr , we return an empty interval (function
ConclusiveInterval). We exclude n.irr from consideration because n.signal
itself is irrelevant at these times. Then, we can drop the irrelevant prefix from
memory by overwriting it with ⊣2.

Remark 1 (Propagation Frequency). If we conduct the reachability analysis with
a small time step size, we obtain numerous observations. To reduce the overhead
incurred by signal propagation, we can accumulate the observations of several
reachability steps and then propagate them all at once. However, in doing so,

Using Four-Valued STL for Incremental Verification of Hybrid Systems 17

Algorithm 2 Signal Propagation
Input: Syntax tree node n

1: function n.Propagate()
2: if n.IsLeaf() then
3: return
4: end if
5: for c ∈ n.children do
6: c.Propagate()
7: end for
8: ∆← n.Combine({c.signal | c ∈ n.children})
9: n.signal .Merge(∆) ▷ Overwrite n.signal with ∆ where ∆ is not ⊣2

10: for c ∈ n.children do
11: c.irr ← ConclusiveInterval(n.signal , n.irr)
12: c.signal .Set(c.irr , ⊣2) ▷ Drop the irrelevant prefix from memory
13: end for
14: end function

we might compute more reachability steps than required to reach a conclusive
verdict. Choosing a propagation frequency is thus a trade-off similar to the one
mentioned in [27, Sec. 5.3]. In the extreme case, where we never propagate before
reaching the time horizon, we obtain an offline method similar to [22,35].

5.2 Refinement via Branching the Reachability Analysis

Since we use the reachable set as the basis for verification, our approach works
best if all executions of the system under scrutiny behave roughly similarly.
The intuition for this is given at the end of the proof of Thm. 1: To verify that
φ1 UI φ2 holds, we require that all executions covered by the reachable set satisfy
the eventuality φ2 at the same time. However, hybrid systems can have execu-
tions with vastly different behavior, e.g., due to discrete transitions changing the
continuous dynamics. Moreover, the system behavior might strongly depend on
the initial state. For these systems, our algorithm would often return ⊣1, as the
executions covered by the reachable set do not synchronize as required.

The underlying problem is that we compute just one reachable set to cover all
system executions. If these executions have significant differences, the reachable
set also covers many additional spurious executions that are infeasible according
to the system dynamics. To alleviate this issue, we can perform the reachability
analysis in multiple branches so that each branch only covers similar executions.
For example, we could start a new branch whenever a discrete transition occurs.
In addition, we could partition the set of initial states so that we analyze initial
states that lead to vastly different behavior in separate branches.

To adapt Alg. 1 for several branches, we clone the syntax tree whenever a
new branch starts. We then process each branch using its copy of the syntax

18 F. Lercher, M. Althoff

tree and combine the verdicts. If the verdicts are conclusive for all branches, we
merge them using ⊔1, i.e., we return ⊤ or ⊥ if all branches agree on the verdict,
and ⊣1 otherwise. If the analysis is inconclusive for at least one branch after
reaching the time horizon th, the combined verdict is also ⊣2. In this case, we
need to extend the time horizon only for the inconclusive branches.

6 Evaluation

We implemented our algorithm in MATLAB using CORA2 [2] for reachability
analysis. First, we demonstrate the capabilities and limitations of our method on
a simple hybrid system. Then, we apply it to autonomous driving and systems
biology. For all experiments, our algorithm is configured to accumulate 20 obser-
vations before propagation. Note that CORA continues the reachability analysis
in a new branch (cf. Sec. 5.2) after the system takes a discrete transition.

6.1 Bouncing Ball

First, let us consider a bouncing ball, which is a classic example of a hybrid
system. The bouncing ball has two state variables: height h and velocity v. It
accelerates under the influence of gravity and bounces back up once it hits the
ground (h = 0). Bouncing is modeled as a discrete transition that reduces the
velocity and flips its sign (see, e.g., [33, Sec. 2.2.3] for a full derivation). Initially,
we have h ∈ [0.95, 1.05] and v ∈ [−0.05, 0.05], which means that the first bounce
happens after about 0.5 s. The time horizon for our verification algorithm is
th := 2.5 s and the reachability analysis uses a time step size of 0.01 s.

Tab. 1 summarizes the results of our experiments. The future reach of a for-
mula is the amount of time it maximally looks into the future [21, Sec. 3]. Thus,
approaches like [22, 35] need to perform reachability analysis up to the future
reach of the specification. We can successfully verify the first two specifications
and falsify the third while terminating the reachability analysis well before their
future reach. Even though the fourth property also holds for the system (recall
that the ball bounces after about 0.5 s), we cannot verify it since the reachable
set is not sufficiently accurate. However, as ⊣1 is already returned after 0.7 s, we
know early that we need to refine the reachable set. After refining the reachability
analysis by using a time step size of 0.002 s, we can also prove this specification.
The final property demonstrates the drawbacks of accumulating observations:
While we could reject it already after observing the initial set, our algorithm
only returns ⊥ after 20 time steps.

For the last column of Tab. 1, we applied the verification algorithm by Roehm
et al. [32] to the bouncing ball. Since this algorithm requires the reachable set for
the entire future reach of the specification in order to start the verification, it is
not applicable to the first property. We cannot compute the reachable set for an
infinite time horizon here, as no fixed point is detected. As shown by the fourth

2 https://cora.in.tum.de

https://cora.in.tum.de

Using Four-Valued STL for Incremental Verification of Hybrid Systems 19

Table 1. Application of our approach and the approach from [32] to the bouncing ball

Our approach [32]

Specification Future reach Verdict Termination Verdict

F[0.2,∞) h < 0.5 ∞ ⊤ 0.4 s N/A
F[0,0.1](v < 0U[0,1] h < 0.25) 1.1 s ⊤ 0.6 s ⊤
F[0,1](h < 0.1 ∧G[0,2] h < 0.3) 3.0 s ⊥ 1.3 s ⊥
F[0,0.1](v < 0U[0,1] h < 0.01) 1.1 s ⊣1 0.6 s ⊥
G[0,1] h < 0.1 1.0 s ⊥ 0.2 s ⊥

specification, [32] returns ⊥ whenever it fails to verify a property. Therefore, in
contrast to our algorithm, it does not distinguish between insufficient accuracy
of the reachable set and actual falsification of the property by the system. For
the other properties, its verdict is the same as ours.

6.2 Autonomous Driving

Next, we examine an application for autonomous driving in the context of the
CommonRoad3 [5] framework. In our example scenario, an autonomous vehicle is
driving in the middle lane of an interstate with another vehicle in front indicating
to change from the left to the middle lane (see Fig. 5; CommonRoad scenario
ID: ZAM_HW-1_1_S-1). Suppose the motion planner has determined two reference
trajectories that the autonomous vehicle could follow for the next five seconds:
one where it stays in its current lane and another where it changes to the right
lane. We want to verify that the autonomous vehicle avoids collisions with other
vehicles for the entire planned trajectory, even if it cannot precisely follow the
trajectory due to disturbances. Moreover, it should eventually enter the right
lane and stay there for at least 1 s. We formalize these requirements in STL as
(G[0,4](x, y) /∈ O) ∧ F[0,4] G[0,1](x, y) ∈ L, where (x, y) is the position of the
autonomous vehicle, O is the area occupied by other vehicles according to a set-
based prediction, and L is the right lane. Here, obtaining a verdict as soon as
possible is particularly important since the autonomous vehicle has limited time
to decide which trajectory to follow. With our algorithm, the vehicle can quickly
reject the “stay” trajectory after computing the reachable set up to 1 s. Then, it
can spend the remaining time on verifying the “change” trajectory, which yields
the verdict ⊤ after performing reachability analysis up to 4 s. For the reachability
analysis, we adopted a kinematic single-track model [31, Sec. 2.2] of the vehicle
and assumed it tracks the reference trajectory using a P controller.

6.3 Genetic Oscillator

Finally, we consider the 9-dimensional genetic oscillator example (state vari-
ables x1, . . . , x9) from [35, Sec. 5]. In [35], the authors verified the specifi-
3 https://commonroad.in.tum.de

https://commonroad.in.tum.de

20 F. Lercher, M. Althoff

Reach. set Obstacles (set-based prediction) Ref. trajectory

(a) Staying in the middle lane

(b) Changing to the right lane

Fig. 5. Reachable set projected to the position domain for two reference trajectories

cation G[0,1](a1 ∨ G[3,3.5] a2), where a1 := x6 − 1 > 0 and a2 := 0.032 −
1252(x4 − 0.003)2 − 3(x6 − 0.5)2 > 0. We could not verify the original prop-
erty since the reachable sets computed by CORA were not accurate enough,
resulting in the verdict ⊣1. After slightly relaxing the property by using a′2 :=
0.04− 1252(x4− 0.003)2− 3(x6− 0.5)2 > 0 instead of a2, verification succeeded.
The reachability analysis was stopped after 4.5 s, matching the future reach of
the formula. If we change the specification to G[0,2](a1∨G[0,0.5] a

′
2), we can reject

it early after computing the reachable set for up to 1.3 s.

7 Conclusion

We proposed an incremental STL verification algorithm for hybrid systems based
on reachability analysis and a four-valued semantics for STL. Due to its incre-
mental nature, our algorithm can run alongside the reachability analysis and
continuously update its verdict. Consequently, it can stop the computation of
the reachable set as soon as the verdict becomes conclusive. This makes our
approach particularly worthwhile for high-dimensional systems, for which reach-
ability analysis is computationally expensive. The evaluation of our prototype
showed promising results across several application domains.

Acknowledgments. The authors gratefully acknowledge funding from the German
Research Foundation (DFG) under grant numbers AL 1185/20-1 and GRK 2428. More-
over, they thank Benedikt Seidl for implementing the system models used for the eval-
uation in CORA.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

Using Four-Valued STL for Incremental Verification of Hybrid Systems 21

References

1. Ahmad, H., Jeannin, J.B.: A program logic to verify signal temporal logic specifica-
tions of hybrid systems. In: Proc. of the Int. Conf. on Hybrid Systems: Computation
and Control (HSCC). pp. 1–11 (2021). https://doi.org/10.1145/3447928.3456648

2. Althoff, M.: An introduction to CORA 2015. In: Proc. of the 1st and 2nd Workshop
on Applied Verification for Continuous and Hybrid Systems. pp. 120–151 (2015).
https://doi.org/10.29007/zbkv

3. Althoff, M., Dolan, J.M.: Online verification of automated road vehicles us-
ing reachability analysis. IEEE Transactions on Robotics 30(4), 903–918 (2014).
https://doi.org/10.1109/TRO.2014.2312453

4. Althoff, M., Frehse, G., Girard, A.: Set propagation techniques for reachability
analysis. Annual Review of Control, Robotics, and Autonomous Systems 4(1),
369–395 (2021). https://doi.org/10.1146/annurev-control-071420-081941

5. Althoff, M., Koschi, M., Manzinger, S.: CommonRoad: Composable benchmarks
for motion planning on roads. In: Proc. of the IEEE Intelligent Vehicles Symp.
(IV). pp. 719–726 (2017). https://doi.org/10.1109/IVS.2017.7995802

6. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Journal
of the ACM 43(1), 116–146 (1996). https://doi.org/10.1145/227595.227602

7. Bae, K., Lee, J.: Bounded model checking of signal temporal logic properties us-
ing syntactic separation. Proceedings of the ACM on Programming Languages
3(POPL), 51:1–51:30 (2019). https://doi.org/10.1145/3290364

8. Bartocci, E., Deshmukh, J., Donzé, A., Fainekos, G., Maler, O., Ničković, D.,
Sankaranarayanan, S.: Specification-based monitoring of cyber-physical systems:
A survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.)
Lectures on Runtime Verification: Introductory and Advanced Topics, pp. 135–175
(2018). https://doi.org/10.1007/978-3-319-75632-5_5

9. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. Journal of Logic and Computation 20(3), 651–674 (2010). https://
doi.org/10.1093/logcom/exn075

10. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Transactions on Software Engineering and Methodology 20(4), 14:1–14:64
(2011). https://doi.org/10.1145/2000799.2000800

11. Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.: JuliaReach: A
toolbox for set-based reachability. In: Proc. of the Int. Conf. on Hybrid Systems:
Computation and Control (HSCC). pp. 39–44 (2019). https://doi.org/10.1145/
3302504.3311804

12. Brieger, M., Mitsch, S., Platzer, A.: Dynamic logic of communicating hybrid pro-
grams (2023). https://doi.org/10.48550/arXiv.2302.14546

13. Chai, M., Schlingloff, B.H.: Online monitoring of distributed systems with a five-
valued LTL. In: Proc. of the IEEE Int. Symp. on Multiple-Valued Logic (ISMVL).
pp. 226–231 (2014). https://doi.org/10.1109/ISMVL.2014.47

14. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) Computer Aided Verification
(CAV). pp. 258–263 (2013). https://doi.org/10.1007/978-3-642-39799-8_18

15. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Ro-
bust online monitoring of signal temporal logic. Formal Methods in System Design
51(1), 5–30 (2017). https://doi.org/10.1007/s10703-017-0286-7

https://doi.org/10.1145/3447928.3456648
https://doi.org/10.1145/3447928.3456648
https://doi.org/10.29007/zbkv
https://doi.org/10.29007/zbkv
https://doi.org/10.1109/TRO.2014.2312453
https://doi.org/10.1109/TRO.2014.2312453
https://doi.org/10.1146/annurev-control-071420-081941
https://doi.org/10.1146/annurev-control-071420-081941
https://doi.org/10.1109/IVS.2017.7995802
https://doi.org/10.1109/IVS.2017.7995802
https://doi.org/10.1145/227595.227602
https://doi.org/10.1145/227595.227602
https://doi.org/10.1145/3290364
https://doi.org/10.1145/3290364
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/3302504.3311804
https://doi.org/10.1145/3302504.3311804
https://doi.org/10.1145/3302504.3311804
https://doi.org/10.1145/3302504.3311804
https://doi.org/10.48550/arXiv.2302.14546
https://doi.org/10.48550/arXiv.2302.14546
https://doi.org/10.1109/ISMVL.2014.47
https://doi.org/10.1109/ISMVL.2014.47
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/s10703-017-0286-7

22 F. Lercher, M. Althoff

16. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued sig-
nals. In: Chatterjee, K., Henzinger, T.A. (eds.) Formal Modeling and Analy-
sis of Timed Systems (FORMATS). pp. 92–106 (2010). https://doi.org/10.1007/
978-3-642-15297-9_9

17. Ferrère, T., Maler, O., Ničković, D., Pnueli, A.: From real-time logic to timed
automata. Journal of the ACM 66(3), 19:1–19:31 (2019). https://doi.org/10.1145/
3286976

18. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification (CAV). pp.
379–395 (2011). https://doi.org/10.1007/978-3-642-22110-1_30

19. Henzinger, T.A.: What’s decidable about hybrid automata? Journal of Computer
and System Sciences 57(1), 94–124 (1998). https://doi.org/10.1006/jcss.1998.1581

20. Ho, H.M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic.
In: Bonakdarpour, B., Smolka, S.A. (eds.) Runtime Verification (RV). pp. 178–192
(2014). https://doi.org/10.1007/978-3-319-11164-3_15

21. Hunter, P., Ouaknine, J., Worrell, J.: Expressive completeness for metric temporal
logic. In: Proc. of the ACM/IEEE Symp. on Logic in Computer Science (LICS).
pp. 349–357 (2013). https://doi.org/10.1109/LICS.2013.41

22. Ishii, D., Yonezaki, N., Goldsztejn, A.: Monitoring temporal properties using in-
terval analysis. IEICE Transactions on Fundamentals of Electronics, Communica-
tions and Computer Sciences E99-A(2), 442–453 (2016). https://doi.org/10.1587/
transfun.E99.A.442

23. Kleene, S.C.: On notation for ordinal numbers. The Journal of Symbolic Logic
3(4), 150–155 (1938). https://doi.org/10.2307/2267778

24. Kochdumper, N., Bak, S.: Fully automated verification of linear time-invariant sys-
tems against signal temporal logic specifications via reachability analysis. Nonlinear
Analysis: Hybrid Systems 53, 101491 (2024). https://doi.org/10.1016/j.nahs.2024.
101491

25. Lee, J., Yu, G., Bae, K.: Efficient SMT-based model checking for signal temporal
logic. In: Proc. of the IEEE/ACM Int. Conf. on Automated Software Engineering
(ASE). pp. 343–354 (2021). https://doi.org/10.1109/ASE51524.2021.9678719

26. Maler, O., Ničković, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) Formal Techniques, Modelling and Analysis of
Timed and Fault-Tolerant Systems (FORMATS/FTRTFT). pp. 152–166 (2004).
https://doi.org/10.1007/978-3-540-30206-3_12

27. Maler, O., Ničković, D.: Monitoring properties of analog and mixed-signal circuits.
International Journal on Software Tools for Technology Transfer 15(3), 247–268
(2013). https://doi.org/10.1007/s10009-012-0247-9

28. Ničković, D., Lebeltel, O., Maler, O., Ferrère, T., Ulus, D.: AMT 2.0: Qualitative
and quantitative trace analysis with extended signal temporal logic. International
Journal on Software Tools for Technology Transfer 22(6), 741–758 (2020). https:
//doi.org/10.1007/s10009-020-00582-z

29. Platzer, A.: Differential dynamic logic for hybrid systems. Journal of Automated
Reasoning 41(2), 143–189 (2008). https://doi.org/10.1007/s10817-008-9103-8

30. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer International
Publishing (2018). https://doi.org/10.1007/978-3-319-63588-0

31. Rajamani, R.: Vehicle Dynamics and Control. Springer (2012). https://doi.org/10.
1007/978-1-4614-1433-9

https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1145/3286976
https://doi.org/10.1145/3286976
https://doi.org/10.1145/3286976
https://doi.org/10.1145/3286976
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1109/LICS.2013.41
https://doi.org/10.1109/LICS.2013.41
https://doi.org/10.1587/transfun.E99.A.442
https://doi.org/10.1587/transfun.E99.A.442
https://doi.org/10.1587/transfun.E99.A.442
https://doi.org/10.1587/transfun.E99.A.442
https://doi.org/10.2307/2267778
https://doi.org/10.2307/2267778
https://doi.org/10.1016/j.nahs.2024.101491
https://doi.org/10.1016/j.nahs.2024.101491
https://doi.org/10.1016/j.nahs.2024.101491
https://doi.org/10.1016/j.nahs.2024.101491
https://doi.org/10.1109/ASE51524.2021.9678719
https://doi.org/10.1109/ASE51524.2021.9678719
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/s10009-012-0247-9
https://doi.org/10.1007/s10009-012-0247-9
https://doi.org/10.1007/s10009-020-00582-z
https://doi.org/10.1007/s10009-020-00582-z
https://doi.org/10.1007/s10009-020-00582-z
https://doi.org/10.1007/s10009-020-00582-z
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-1-4614-1433-9
https://doi.org/10.1007/978-1-4614-1433-9
https://doi.org/10.1007/978-1-4614-1433-9
https://doi.org/10.1007/978-1-4614-1433-9

Using Four-Valued STL for Incremental Verification of Hybrid Systems 23

32. Roehm, H., Oehlerking, J., Heinz, T., Althoff, M.: STL model checking of con-
tinuous and hybrid systems. In: Artho, C., Legay, A., Peled, D. (eds.) Auto-
mated Technology for Verification and Analysis (ATVA). pp. 412–427 (2016).
https://doi.org/10.1007/978-3-319-46520-3_26

33. van der Schaft, A., Schumacher, H.: An Introduction to Hybrid Dynamical Systems.
Springer (2000). https://doi.org/10.1007/BFb0109998

34. Thati, P., Roşu, G.: Monitoring algorithms for metric temporal logic specifications.
Electronic Notes in Theoretical Computer Science 113, 145–162 (2005). https:
//doi.org/10.1016/j.entcs.2004.01.029

35. Wright, T., Stark, I.: Property-directed verified monitoring of signal temporal logic.
In: Deshmukh, J., Ničković, D. (eds.) Runtime Verification (RV). pp. 339–358
(2020). https://doi.org/10.1007/978-3-030-60508-7_19

https://doi.org/10.1007/978-3-319-46520-3_26
https://doi.org/10.1007/978-3-319-46520-3_26
https://doi.org/10.1007/BFb0109998
https://doi.org/10.1007/BFb0109998
https://doi.org/10.1016/j.entcs.2004.01.029
https://doi.org/10.1016/j.entcs.2004.01.029
https://doi.org/10.1016/j.entcs.2004.01.029
https://doi.org/10.1016/j.entcs.2004.01.029
https://doi.org/10.1007/978-3-030-60508-7_19
https://doi.org/10.1007/978-3-030-60508-7_19

	Using Four-Valued Signal Temporal Logic for Incremental Verification of Hybrid Systems

