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Abstract III 
 

The production of annotated technical drawing in the Architecture, Engineering, and 

Construction (AEC) industry requires much work, necessitating the adoption of tools 

that can limit the workload especially with the advent of artificial intelligence (AI). This 

thesis sought to revolutionize architectural documentation by using Graph Neural Net-

works (GNNs) as a step toward automating this process. The overarching goal is to 

automatically generate annotations for Building Information Modeling (BIM) designs, 

sparing architects from labor-intensive tasks.  

This thesis proposes a method to represent BIM models as graphs and classify nodes 

using GNNs thus predicting interconnectivity of elements. For this purpose, a method 

has been developed in the BIM authoring software ArchiCAD by introducing a plugin, 

named ServCAD utilizing C++ API. The information gathered from BIM models is 

streamlined and is essential for the next steps. The extracted data are transformed into 

detailed graphs that capture architectural elements' semantic and spatial aspects. 

These graphs serve as the GNN model's foundational data set. The objective is to 

evaluate the efficacy and accuracy of GNN in automating the annotation process, spe-

cifically in label type prediction based on node classification, thorough testing and eval-

uation. 

In summary, the prediction results for different types of elements (walls, zones, doors) 

were provided via Graph Convolutional Network (GCN) and Graph Attention Network 

(GAT). Both models demonstrated exceptional performance in classifying certain label 

types. Notably, GAT model achieved accuracy rates of over 90% for labels '0', '2', and 

'3' (GCN was also above 80 %), with label '2' achieving a perfect accuracy of 100%. 

However, there were discrepancies in the accuracy rates for labels '1' and '4'. The GCN 

outperformed the GAT model in accurately predicting these labels. Later, the prediction 

results were examined and mapped on the example projects having different complex-

ities to complete the automatic annotation process by using ServCAD. 

Keywords: Architectural design, ArchiCAD, Artificial intelligence, Automated annota-

tion, BIM, C++ API, Graph neural netwoks, Machine learning, PyTorch, Spatial rela-

tionships  
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Zusammenfassung IV 
 

Die Erstellung kommentierter technischer Zeichnungen in der Architektur-, Ingenieur- 

und Baubranche (AEC) erfordert viel Arbeit und erfordert den Einsatz von Tools, die 

den Arbeitsaufwand insbesondere mit dem Aufkommen künstlicher Intelligenz (KI) 

begrenzen können. Ziel dieser Arbeit war es, die Architekturdokumentation durch den 

Einsatz von Graph Neural Networks (GNNs) als Schritt zur Automatisierung dieses 

Prozesses zu revolutionieren. Das übergeordnete Ziel besteht darin, automatisch 

Anmerkungen für Building Information Modeling (BIM)-Entwürfe zu generieren und 

Architekten arbeitsintensive Aufgaben zu ersparen. 

Diese Arbeit schlägt eine Methode vor, um BIM-Modelle als Diagramme darzustellen 

und Knoten mithilfe von GNNs zu klassifizieren und so die Interkonnektivität von 

Elementen vorherzusagen. Zu diesem Zweck wurde in der BIM-Authoring-Software 

ArchiCAD eine Methode entwickelt, indem ein Plugin namens ServCAD unter 

Verwendung der C++ API eingeführt wurde. Die aus BIM-Modellen gesammelten 

Informationen werden optimiert und sind für die nächsten Schritte unerlässlich. Die 

extrahierten Daten werden in detaillierte Diagramme umgewandelt, die die 

semantischen und räumlichen Aspekte architektonischer Elemente erfassen. Diese 

Diagramme dienen als grundlegender Datensatz des GNN-Modells. Das Ziel besteht 

darin, die Wirksamkeit und Genauigkeit von GNN bei der Automatisierung des 

Annotationsprozesses zu bewerten, insbesondere bei der Vorhersage des 

Etikettentyps basierend auf der Knotenklassifizierung, gründlichen Tests und der 

Bewertung. 

Zusammenfassend lässt sich sagen, dass die Vorhersageergebnisse für verschiedene 

Arten von Elementen (Wände, Zonen, Türen) über das Graph Convolutional Network 

(GCN) und das Graph Attention Network (GAT) bereitgestellt wurden. Beide Modelle 

zeigten eine außergewöhnliche Leistung bei der Klassifizierung bestimmter 

Etikettentypen. Bemerkenswert ist, dass das GAT Modell Genauigkeitsraten von über 

90 % für die Labels '0', '2' und '3' erreichte (GCN lag ebenfalls über 80 %), wobei Label 

'2' eine perfekte Genauigkeit von 100 % erreichte. Allerdings gab es Unterschiede in 

den Genauigkeitsraten für die Labels '1' und '4'. Das GCN übertraf das GAT Modell bei 

der genauen Vorhersage dieser Etiketten. Später wurden die Vorhersageergebnisse 

untersucht und auf Beispielprojekte unterschiedlicher Komplexität abgebildet, um den 

automatischen Annotationsprozess mithilfe von ServCAD abzuschließen. 

Stichworte: Architekturdesign, ArchiCAD, Künstliche Intelligenz, Automatisierte 

Annotation, BIM, C++ API, Graphische neuronale Netzwerke, Maschinelles Lernen, 

PyTorch, Raumbeziehungen 
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1.1 Motivation 

In the AEC sector, architectural drawing serve as the fundamental means of commu-

nication, facilitating the translation of conceptual design concepts into tangible con-

structions. Estimates suggest that technical drawing still play a critical role in data 

transfer, making up 74% of the process, while three dimensional (3D) models with 

Model-Based Definition (MBD) are the main information source in only 26% of cases 

(Ruemler et al., 2017). Beyond making it easier to share and preserve design solutions, 

architectural drawings are very important. In addition, they help with cost calculation, 

procurement of raw materials, component manufacturing, quality assurance, and prod-

uct assembly (Drake, 1999). Despite being a necessary component of modern archi-

tecture practices, BIM can still be improved by utilizing cutting-edge technology like AI 

to expand its capabilities (Zabin et al., 2022). Building and infrastructure project man-

agers, engineers, and architects can collaborate more successfully to design, visual-

ize, simulate, and manage projects using AI tools as part of the BIM.  

Particularly in the complicated world of subterranean construction, the integration of 

BIM with machine learning and computer vision offers hitherto untapped opportunities 

to improve project visibility, reliability, and management (Huang et al., 2021). Better 

decision-making and automation in workflows for architectural design and construction 

are made possible by the incorporation of AI into BIM processes, which opens up new 

opportunities for creativity and efficiency. 

The adoption of BIM in the AEC sector provides a rich environment for applying ma-

chine learning techniques because of the massive amount of data generated in BIM-

based projects. This prospect highlights the research's emphasis on identifying com-

mon application areas, emerging trends within this context and difficulties in imple-

menting and adopting machine learning in the AEC sector (Zabin et al., 2022). This 

inquiry reveals a fresh, rapidly evolving industry where machine learning is just now 

starting to show its potential for automating processes and extracting insights from BIM 

data. Furthermore, BIM has been widely adopted in many different regions due in part 

to government rules that favor its use (Smith, 2014). The abundance of data in the BIM 

shared information model ushers in a new digital approach by encouraging 

1 Introduction 
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collaboration in tracking and managing an asset's whole lifecycle at any point. In addi-

tion to representation and scheduling, this method has numerous applications in plan-

ning, estimating, simulation, and project management (Ciribini et al., 2016; Solihin et 

al., 2016). Because it follows a structured scheme, this abundance of data functions 

as a centralized, machine-interpretable repository (Zabin et al., 2022).  

Moreover, the domains of AI and machine learning have generated unprecedented 

prospects for the AEC industry. Thanks to AI, people with varying backgrounds may 

now develop and create solutions that have the power to drastically alter established 

behaviors. The democratization of technology has enabled stakeholders in the AEC 

sector to create and implement cost-effective, time and resource efficient solutions. AI 

has the capacity to transform the architectural drawing and construction sector signifi-

cantly. This includes automating annotation processes to predictive modeling and op-

timization algorithms. 

The automatic annotation of existing methods such as rule-based approaches is often 

error-prone. It requires manual correction which is slow, and costly and results in slow-

ing down the project. To this end, machine learning and data-driven methods can be 

employed to speed up the process. Since BIM models are highly linked to graph struc-

tures, Graph Neural Networks (GNNs) were mostly investigated to support this pro-

cess. 

A typical floor plan with basic architectural elements such as walls, doors, and zones 

along with some annotation elements like dimension, door label, and zone marker is 

shown in Figure 1.1. Even though this sample project seems simple, it is essential to 

record all the relationships between the components and build a graph based on these 

relationships in order to provide data for the machine learning portion of the thesis. 

Accurately representing these relationships becomes more and more necessary as 

architectural drawings become more complex and nuanced. 
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Figure 1.1: Example of a simple room modelled in BIM authoring software, ArchiCAD   

ServCAD is being developed as part of this master's thesis supporting automatic an-

notation processes in architectural drawings. Our two goals are to: (1) automatically 

produce annotations for the architectural elements shown in Figure 1.1; and (2) de-

velop a scalable and adaptable framework that can be used or improved for more com-

plex architectural designs. The objective is to reduce the workload associated with 

manual annotation and optimize the annotation workflow, especially for projects involv-

ing complex and large-scale architectural designs. 

On the other hand, Figure 1.2's floor plan illustrates the difficulties that arise with more 

complex architectural drawings as mentioned previously. This leads to the investiga-

tion of GNNs for predicting the proper label types for elements as shown in Figure 1.1. 

GNNs can efficiently analyze and interpret detailed architectural drawings by capturing 

spatial and semantic relationships which makes it possible for architects to use this 

information to annotate the model. However, ruled-based automatic annotation in the 

ArchiCAD cannot take this dynamic information into account. Consequently, using pre-

dicted label types from GNN, application programming interfaces (APIs) can be used 

to create automatic annotation, which will speed up the annotation process and in-

crease efficiency in the AEC industry. 
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Figure 1.2: Floor plan of an example drawing, reflecting certain degree of complexity.  

This introduction lays out the background of the study, outlining the difficulties in inter-

preting architectural drawings and the reasons for investigating GNNs for automated 

annotation. The approach, findings, and recommendations from this research project 

will be covered in detail in the upcoming chapters. This thesis aims to evolve annotation 

workflows in the AEC industry and open the door to more productive and successful 

architectural design procedures.  

1.2 Research objectives 

The following questions are the focus of the research:  

• Can we use the BIM authoring tool (ArchiCAD C++ API) to retrieve building 

information, dimensional properties and annotation objects? 

• How can the label classification procedure be automated during the data gen-

eration phase? 

• How can we derive the connection between annotations and building elements? 

• How can we use machine learning (specifically GNN) to predict annotation ele-

ments? 
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• How can automated annotation creation be facilitated by integrating GNN pre-

dictions back into the architectural environment (specifically ArchiCAD)? 

1.3 Reading guide 

The rest of the thesis follows the below chapter structure: 

• Chapter 2 examines various technologies and the current advancements in au-

tomation and GNN research. It also explores theoretical frameworks for auto-

mated annotation and dimensions in the AEC sector. 

• Chapter 3 explores the latest methods and technology advancements in auto-

mated BIM model annotation, utilizing geometric characteristics and machine 

learning algorithm and APIs. 

• Chapter 4 describes the workflow created for this study, which includes using 

ServCAD to create graphs from BIM models, visualizing the data that is pro-

duced, and using these graphs to train the GNN architecture. It also explains 

how to use ArchiCAD APIs to map GNN predictions back to the BIM models. 

• In Chapter 5, the efficacy of GNN models on the task of node label prediction 

on the custom graph dataset is evaluated by examining different model archi-

tecture and hyperparameters.  

• In Chapter 6, the findings are discussed in relation to the research topics, with 

a focus on the study's contributions to the BIM community, the limitations of the 

current approach, and future areas for investigation and optimization.  

• Chapter 7 presents a summary of the study's key conclusions and an appraisal 

of the practicality and effectiveness of employing GNNs for automated BIM 

model annotation. It also suggests future research directions. 
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The section examines the evolution of automated dimensioning and annotation in CAD 

and BIM systems, highlighting the shift from early feature-based methods to the inte-

gration of knowledge-based systems. It draws attention to the developments in manu-

facturing information integration and dimensioning process automation. The review's 

key finding is the glaring absence of studies on the use of machine learning, particularly 

GNN, for enhancing automation in annotation processes. Even with these develop-

ments, there is still a significant research gap on the restricted investigation of using 

AI to improve BIM model annotation. This review sets the stage for future investigations 

aimed at leveraging AI to address the complexities of design and manufacturing inte-

gration, following a structured outline that guides through these thematic areas.  

2.1 Feature based representation in CAD 

CAD systems must incorporate dimensioning and tolerancing (D&T) (A. Requicha, 

1977b) data to advance computer-integrated manufacturing (CIM). Current CAD mod-

els are mainly concerned with object nominal sizes and do not provide strong support 

for D&T and other manufacturing data. Roy and Liu (1988) proposed a feature-based 

representation scheme that utilizes a hybrid constructive solid geometry (CSG) and 

boundary representation (B-Rep) data structure to bridge this gap. The objective of this 

approach is to improve manufacturing orientation in CAD models by associating attrib-

utes such as tolerance with object features (Roy & Liu, 1988). Moreover, Requicha and 

Chan (1986) created an experimental system inside a solid modeler based on CSG, 

concentrating on a tolerancing theory that defines tolerances as characteristics of ob-

ject features (A. Requicha, 1977a), like surfaces and edges, by using the 'variational 

class' concept (A. Requicha & Chan, 1986).  

The framework (Roy & Liu, 1988) creates a strong foundation for advanced CAD by 

utilizing a complex combination of B-Rep and CSG, combined with a structured face-

adjacency graph (SFAG). This hybrid method is designed to give D&T data, which are 

essential for processes in precision manufacturing, a more intricate representation. 

Through a structural connection between B-Rep, which provides detailed boundary 

definitions, and CSG, which facilitates hierarchical modeling of object features (geo-

metric and non-geometric), the framework guarantees an organized and smooth flow 

2 Preliminaries and theoretical background  
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of information between various stages of product design and manufacturing. After the 

introduction of the SFAG, a complete and dynamic mapping of geometric features is 

made possible, which improves the model even more by retaining significant topologi-

cal relationships at different hierarchical levels (low and high levels). Also, there are 

many different tolerances that can be attached to the SFAG since it is an explicit rep-

resentation of fundamental entities (Roy & Liu, 1988). 

Additionally, automated D&T was also discussed by Hillyard and Braid (1978) in their 

research. Although automatic dimensioning algorithms try to mimic the intentions of a 

designer, manual dimensioning is still better because it can capture detailed design 

considerations (Hillyard & Braid, 1978). These pioneering efforts have established the 

foundation for modern automatic dimensioning and annotating techniques, highlighting 

the significance of including manufacturing issues from the outset of the design pro-

cess. 

2.2 Automated dimensioning  

2.2.1 Knowledge-Based approaches 

Further exploration into automatic dimensioning systems revealed the complexities of 

integrating knowledge-based methodologies within CAD modeling processes. Diverse 

rules (for each feature, surface and form) that regulate dimension creation and organ-

ization were highlighted by a system which is written by Prolog1 to automatically di-

mension 3D CAD models based on manufacturing parameters.  This approach demon-

strated how rules-based systems can simplify the CAD design process by cutting down 

on redundancy and improving the ability to choose and arrange dimensions. The ex-

ploration of knowledge-based systems marked a critical step towards intelligent, auto-

mated CAD technologies (Bond & Ahmed, 1989). 

Moreover, the methodical implementation of guidelines controlling the generation of 

3D dimensions for different geometric objects, including rectangular prisms and right 

circular cylinders, highlights the system's flexibility and adaptability in managing a 

range of design situations (Bond & Ahmed, 1989). By instantiating general 3D dimen-

sions onto specific elements and strategically allocating surface dimensions, the 

 

1 Prolog is a strong and adaptable programming language that is used also for creating logic-based AI 
applications. 
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system ensures precise and contextually relevant dimensioning across different views. 

This comprehensive approach not only enhances the clarity and comprehensibility of 

dimensioned drawings but also streamlines the drafting process, thereby contributing 

to increased efficiency and productivity in Computer-Aided Manufacturing (CAM) work-

flows. 

2.2.2 Scheme-Based approaches 

Yuen et al. (1988) provided a comprehensive framework for the automatic dimension-

ing of objects described by solid modeling approaches, emphasizing the seamless 

translation of geometrical descriptions into architectural drawings dimensions. Their 

work, which was applied to the University of Rochester's PADL-21 modeler (A. Re-

quicha, 1977b), shows the possibility for automation in creating sufficient dimensions 

straight from the B-Rep of solid models. This approach aims to minimize human error 

and ensure the correctness and sufficiency of dimensions for part definition by empha-

sizing the value of metrical geometry and its application in the automatic dimensioning 

of solid-modeled objects (Yuen et al., 1988). 

The paper also presents a novel automatic dimensioning scheme that extracts metric 

information expressed as both angular and linear dimensions using B-Rep (Hillyard & 

Braid, 1978). This strategy has greatly enhanced the automation of engineering docu-

mentation and offers a theoretical foundation that could increase the accuracy and 

productivity of producing architectural drawings from solid models. A study conducted 

not only examines the workable application of this scheme on the PADL-2 system but 

also provides opportunities for future research in automatic tolerance representation. 

This implies that the suggested methods could have more uses in CAD (Yuen et al., 

1988). 

2.2.3 Automation for dimensioning and tolerancing in architectural drawings 

Foundational reviews and evolution: 

Roy et al. (1991) provide a thorough explanation of the representation, manipulation, 

and analysis of D&T in CAD and CAM systems. The paper organizes the literature into 

key categories, including how D&T are represented, synthesized, and analyzed, how 

 

1 PADL-2 which is an adaptable and expandable geometric solid modeling system. 
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tolerances (conventional and geometrical) are managed, and how this impacts CAM 

operations. This critical examination clarifies the merging of solid models with varia-

tional geometry to enhance CAD/CAM coherence. The goal is to automate the D&T 

process in order to minimize human error and improve the accuracy and productivity 

of design documentation and production processes. In keeping with the larger goal of 

improving the engineering design and manufacturing environment, this method marks 

a significant shift toward reduced manual intervention in drawing-based processes 

(Roy et al., 1991). 

Building on this foundation, Yu et al. (1994) continue their methodological investigation 

of automatic dimensioning and tolerancing, emphasizing the importance of being able 

to use these critical design and production features within CAD systems. They examine 

the syntactic rules provided by engineering standards (Standard, 1982), assess the 

theoretical underpinnings of D&T, and argue that standards should advance in tandem 

with advances in technology. Their extensive analysis encompasses a broad spectrum 

of theories and models proposed over time, with particular emphasis on the differenti-

ation between variational geometry and class (Elgabry, 1986), the creation of geomet-

ric constraints to faithfully capture dimensional and geometrical tolerances, and the 

direct and indirect object parameterization techniques (Yu et al., 1994). 

Intelligent systems for dimensioning: 

CSG and B-Rep data structures are key components in Chen et al. (2001) intelligent 

CAD system development for automatic dimensioning. These basic building blocks 

enable the system to create a 3D model of a machine part, which is necessary for 

accurate dimensioning and feature extraction (Yuen et al., 1988 ; Roy & Liu, 1988). 

The history of Boolean operations on primitives is captured by the CSG tree structure, 

whereas the part's boundary information such as vertices, edges, and faces as well as 

their connections is recorded by the B-Rep data structure. This combination facilitates 

the accurate determination of the coordinates of each vertex in the model, laying the 

foundation for intelligent dimensioning that reduces duplication and complies with 

drawing standards (Chen et al., 2001). 

The creation of a 3D solid model using both CSG tree structure and B-Rep data struc-

tures is the first step in the methodical workflow for the intelligent dimensioning system. 

Three categories are used to group the model faces: planes, cylindrical surfaces, and 

other more intricate surfaces. The first two groups are treated with intelligent 
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dimensioning techniques, while the third group is treated interactively because of its 

complexity. The steps in the process are to identify dimensioning features for element 

pairs in each coordinate direction, analyze dimension redundancy, and choose the 

best dimensioning scheme. Then, using an expert system, dimensions are assigned 

and positioned in appropriate views to guarantee accuracy and the best possible place-

ment for manufacturing needs (Chen et al., 2001). 

 

Figure 2.1: Box type element (Chen et al., 2001). 

The process is visually represented in Figure 2.1 and  Figure 2.2 (Chen et al., 2001), 

which show the system's ability to place dimensions intelligently, thereby optimizing 

the manufacturing and inspection processes.  

 

Figure 2.2: Automatic intelligent dimensioning by software prototype (Chen et al., 2001). 
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The research efforts of Chen et al. (2002) showed a logical progression towards the 

refinement and enhancement of CAD drawing automatic dimensioning. Extending the 

capabilities of intelligent CAD systems, they focused on the precise automatic creation 

of location dimensions for cylindrical surfaces, building on their foundational work from 

2001 (Chen et al., 2002). 

Figures 2.3 (Chen et al., 2002), which show automatic dimensioning of a multi-spindle 

headstock. These figures highlight the effectiveness of their approach in improving the 

accuracy and efficiency of CAD systems by demonstrating the system's ability for au-

tomatic dimensioning for cylindrical surfaces within complex mechanical parts. Since 

the intelligent system for them is outside the scope of this thesis, a reader suggested 

reading research from 2001 and 2002 to obtain a better understanding of it. 

 

Figure 2.3: Utilizing a software prototype to intelligently locate and measure the holes in the multi-spin-

dle headstock (Chen et al., 2002). 

Automatic datum dimensioning: 

Li et al. (2006) presented a new automatic datum dimensioning technique for plastic 

injection mould design. This technique uses a dynamic programming technique to op-

timize the placement of dimension tags. It addresses the challenge of avoiding dimen-

sion tag overlap and guaranteeing closeness to the features that need to be dimen-

sioned. Additionally, it improves design productivity by facilitating seamless integration 
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with commercial CAD systems and enabling user-defined placement criteria.  This ap-

proach is a big step in automating the mold design documentation process and demon-

strates the possibilities of dynamic programming in CAD programs (Li et al., 2006). 

The methodology is based on a number of important elements: (i) a preparatory phase 

in which key variables like dogleg angle, margin offset, and dimension tag size are set 

in order to make the optimization process easier; (ii) an optimization phase in which a 

dynamic programming technique is used to optimize dimension tag placement based 

on a number of factors, such as minimizing deviation from default locations and opti-

mizing the usage of default forms (Li et al., 2006). Because they rate different charac-

teristics of dimension placement, such as limiting divergence from default configura-

tions and eliminating overlap between dimension tags, cost functions are vector-valued 

functions that are crucial to this process (Li et al., 2006). This methodical technique 

demonstrates the potential of dynamic programming to improve CAD integration for 

mold design by allowing for the quick and efficient placement of datum dimensions.  

𝑐1( 𝑡𝑖,𝑗  , 𝑡𝑖−1,𝑘)  =  𝑂𝐴( 𝑡𝑖,𝑗 , 𝑡𝑖−1,𝑘) +  ∑ 𝑂𝑅
𝑚( 𝑡𝑖,𝑗𝑚 ) 

The study found that the cost function which is depicted above ensures that the dimen-

sion tags are near the features that are being dimensioned, minimizes overlaps, and 

optimizes dimension tag placement in automatic datum dimensioning. The term OA is 

set to zero in the case where there is no overlap between the current dimension block 

and the prior one, indicating an ideal scenario devoid of overlaps. It assigns a relatively 

large value if any overlap occurs, penalizing arrangements that lead to such overlaps. 

The cost function called 𝑂𝑅
𝑚 is applied to penalize overlaps between dimension blocks 

di at the state ti,j , and forbidden region Rm configurations. For a more comprehensive 

description of cost function, please refer to (Li et al., 2006).   

Drafting automation by schemes definitions: 

A different approach to enhancing the technical drawings process' effectiveness was 

presented by Raffaeli and Germani (2016), who created an automatic dimensioning 

methodology based on product family (gear motors) features. The process is divided 

into two primary stages: the online phase, when these schemes are automatically ap-

plied to generate dimensioned drafts, and the offline phase, where rules for drawing 

execution are encoded in a knowledge base created by Drafting Schemes. This inno-

vative approach represents a substantial breakthrough in automating the production of 

architectural drawings (Roberto Raffaeli & Germani, 2016). 
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Figure 2.4: A dimensioned drawing example taken from the 'A60' gear motor 3D model (Roberto Raf-

faeli & Germani, 2016). 

Their tests with the 'bDrafter'1 program show that it is possible to generate a complete 

draft (see Figure 2.4) in an astounding average time of about 32 seconds, starting from 

geometry loading and  feature recognition and ending with the completion of a 2D CAD 

model. Their study offers more insights for a comprehensive look of their findings, 

which go beyond the scope of this thesis (Roberto Raffaeli & Germani, 2016). 

Automatic dimensioning by Automatic Dimensioning Placement (ADP) algo-

rithm: 

For automatic dimensioning in technical drawings, a solution to the ADP problem is 

presented by Kakoulis and Siozos (2017). Their two-step approach, which can be used 

to any 2D design, guarantees that dimensions are put efficiently and properly by draw-

ing standards. They draw attention to how important automatic dimensioning place-

ment is in reducing human mistake, speeding up the design process and preventing of 

financial loss (Bond & Ahmed, 1989), providing a practical solution to a CAD system's 

persistent (G & G, 2017). 

Table 2.1 (G & G, 2017)  displays a summary of their algorithm. According to re-

searcher, future work involves applying dimensions on sections, details, and chamfers 

 

1 'bDrafter' tool, a Windows-based program built on the Siemens NX 9.0 CAD system and the.NET 
framework. 
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to increase the functionality of the current software prototype (G & G, 2017). Another 

difficult issue would be figuring out whether symmetries are present in the input draw-

ing and then adjusting the dimension positions to take those into consideration. 

Table 2.1: Summary of ADP algorithm and definition (G & G, 2017) 

Step Action 

Assumptions Dimensioning involves line segments, circles, and arcs within a 
closed polygon boundary. 

Definition The center of gravity P, defined by coordinates xP and yP, averages 
the midpoints of all line segments in G. This aids in determining di-
mension placement by ensuring balance and feature proximity. 

Input Technical drawing G 

Output A dimension assignment for every graphical element in G. 

1 Identify G's bounding rectangle R. 

2 Compute G's center of gravity P. 

3 Project line segments to R based on their relation to P. 

4 Organize projected segments along R's sides. 

5 Eliminate repeated dimensions. 

6 Append dimensions for circles and arcs. 

 

Figure 2.5: An ADP Algorithm-generated drawing with dimensions (G & G, 2017).  
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Figure 2.5 provides an example of an ADP algorithm on a 2D drawing (G & G, 2017). 

The reader is advised to consult the paper directly for a thorough understanding of 

their methodology and research instruments. 

2.3 Advanced techniques in CAD 

2.3.1 Interactive dimensioning 

Kelly et al. (2015) provides an innovative framework for the interactive dimensioning of 

parametric models. At the core of their methodology is a real-time system that dynam-

ically adjusts dimension lines based on the user's point of view, ensuring that dimen-

sions remain relevant and visually consistent throughout interactive navigation. Their 

basic methodology involves processing every model parameter in order to derive the 

final dimension lines. Every parameter may result in multiple base lines and candidate 

lines before selecting the final line to be presented. The user-specified alignment pref-

erences and slip behaviors work together to facilitate this process, which directs the 

placement of dimension lines to maximize readability and spatial coherence (Kelly et 

al., 2015). 

Table 2.2: The summary of results contained several statistics for each model, including the total num-

ber of base lines, the number of lines in a cluster, and the measured frames per second (Kelly et al., 

2015). 

Name Fig.  poly 
count 

 params  base lines (in 
clusters) 

 num 
clusters 

 pre-process 

Single 
Tree 

18 5610 6  15 (0) 0  <1 ms 

Helix 
House 

19 1495 13  210 (80) 22  <1ms 

Lever 20 1178 7  45 (36) 10  <1ms 

Boat 21 58214 23  37 (36) 24  2ms 

Omni 
Tree 

22 29767 18  75 (0) 0  <1 ms 

Parthe-
non 

23 132263 10  266 (240) 32  2ms 

Candler 24 45366 6  2260 (2260) 47 87 

 



2  Preliminaries and theoretical background 16 
 

If the scope of a parameter is hidden from view, their algorithm fails to return a dimen-

sion line. If not, it retrieves the base lines and uses the parameter's slip behavior to 

assign them to the appropriate planes. Next, it searches for preexisting guides on these 

planes and selects candidate lines on the basis of the results. If no candidates are 

found, the procedure computes them via the silhouette approach. 

Table 2.2 (Kelly et al., 2015) is a comprehensive collection of performance measures 

for several models it is a subset of the complete table that is provided in the paper. The 

Helix House is shown in Figure 2.6 (Kelly et al., 2015), which illustrates the effective-

ness of the methodology through the employment of both static and interactive ap-

proaches. The table displays important statistics such as the number of polygons, base 

lines, clusters, parameter values, and pre-processing times. For a more detailed un-

derstanding of the specific findings, including an analysis of the CPU and GPU perfor-

mance of each model, it is recommended that readers read the whole study (Kelly et 

al., 2015).  

 

Figure 2.6: Helix House. Top: world space positions of static dimension lines. Bottom: In various fields 

of view and camera positions (Kelly et al., 2015). 

2.3.2 Dimensioning methods for 3D modelling 

The lack of a dimensioning technique specifically designed for 3D modeling in CAD 

systems which generally rely on conventional 2D sketching and 3D features like extru-

sion and revolution is addressed by Castro-Cañas and Pavón-Domínguez (2023). 

Their work offers a new dimensioning technique that makes use of the feature manager 

tree's sequential 3D modeling steps to guarantee a part's full geometric and dimen-

sional definition. This method classifies surface and solid features in CAD software and 
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suggests common names and symbols for functional features, making cross-platform 

comprehension easier. More intuitive than traditional orthogonal views and cuts-based 

methods, the method emphasizes the value of 3D views and a logical step-guide, in-

cluding sketching and intuitive symbols for operation orders (Castro-Cañas et al., 

2023). 

Readers are advised to refer to the whole work for a comprehensive understanding of 

their novel 3D modeling dimensioning technique, which falls beyond the specific focus 

of this thesis (Castro-Cañas et al., 2023). Their strategy presents a noteworthy ad-

vancement in CAD system dimensioning techniques, offering useful insights that could 

significantly influence the field of BIM model annotation and other related areas. 

2.4 Graph Neural Networks (GNN) in CAD   

The development of GNNs traces back to the initial explorations conducted in the late 

1990s and early 2000s, where neural network (NN) methodologies were employed to 

analyze data structured in the form of graph (Zhou et al., 2020).  

The earliest utilization of NNs on directed acyclic graphs set the foundation for the first 

investigations into GNNs (Sperduti & Starita, 1997). A significant study by Scarselli et 

al. (2009) established the foundation for the GNN model by presenting the core con-

cept of using NNs to exploit graph relational structures (Scarselli et al., 2009). This 

groundbreaking study made many innovations possible, most notably the development 

of graph convolutional networks (GCNs) and graph attention networks (GATs) (Dai et 

al., 2018). According to Y. Li et al. (2016), these enhancements significantly increased 

GNNs' ability to recognize local and global patterns inside graphs (Y. Li et al., 2016). 

By significantly accelerating advancements in a number of fields, including pattern 

recognition and data mining, NNs have revolutionized machine learning tasks such as 

object detection (Redmon et al., 2016; Ren et al., 2017), machine translation (Luong 

et al., 2015), and speech recognition (Hinton et al., 2012). Previously, the primary 

method for extracting relevant information from these occupations was through metic-

ulous feature engineering (Wu et al., 2021). 

A comprehensive investigation into the use of GNNs for various computational tasks 

is given in the section Wu et al. (2021) examined on GNNs. The explanation centers 

on the adaptability of GNN designs to different learning contexts, which are described 

as follows (Wu et al., 2021). 
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Supervised learning: Using data with predetermined labels, this approach trains mod-

els for accurate prediction analysis (Wu et al., 2021) .  

Semi-Supervised Learning: By combining smaller amounts of labeled data with 

greater amounts of unlabeled data, this method improves model learning capacities. 

(Wu et al., 2021). Networks are able to create a reliable model that accurately assigns 

a class to previously unlabeled nodes (Kipf & Welling, 2017). 

Unsupervised learning: It looks for patterns or structures in unlabeled data to deliver 

insights without predetermined labeling (Wu et al., 2021). 

Additionally, the discussion touches on GNNs' capacity to yield outcomes at different 

levels (Wu et al., 2021). 

At the Node Level: It is crucial for grouping specific nodes. 

At the Edge Level: It is critical to predict the connections between nodes. 

At the Graph Level: Significant for the general categorization of graphs. 

In this study, the focus is placed on Graph Convolutional Networks (GCNs) and Graph 

Attention Networks (GATs). 

2.4.1 Graph convolutional network (GCNs) 

Within the field of deep learning (DL), the effort to augment GCNs' capacity to process 

non-Euclidean data represents a substantial development (G. Li et al., 2019). Histori-

cally, the vanishing gradient problem has restricted GCNs' depth to a limited number 

of layers, which has hampered their capacity to depict complex data. Inspired by the 

successes in deep Convolutional Neural Networks (CNN), a significant breakthrough 

is the development of methods combining residual/dense connections and dilated con-

volutions (G. Li et al., 2019). This innovative method makes it possible to train GCNs 

with up to 56 layers and produces GCN models that greatly outperform the conven-

tional depth (Kipf & Welling, 2017). Such deep GCNs have demonstrated impressive 

performance advantages in tasks such as point cloud semantic segmentation, indicat-

ing a major breakthrough over previous architectures (Y. Wang et al., 2019). 

One noteworthy development in the research is the concept of dynamic edges (Si-

monovsky & Komodakis, 2017), which significantly enhances the capabilities of GCNs 

(Y. Wang et al., 2019). This approach allows the graph's edges to be updated or recal-

culated at each network tier in response to the nodes' changing properties. Learning 
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outcomes are improved by using dynamic edge graphs since they enable the network 

to better adapt to the data (Yang et al., 2018). Because of this continuous recalibration 

of connections between nodes, the GCN is able to identify and adapt to complex pat-

terns in the data more successfully than static designs (G. Li et al., 2019). 

Figure 2.7 illustrates different GNN models built with graph convolutional layers (Wu et 

al., 2021). A readout layer combines the node representations into a single graph rep-

resentation. An end-to-end framework for graph classification is obtained by applying 

a multilayer perceptron and a Softmax layer to various graph representations, as Fig-

ure 2.7 illustrates (Wu et al., 2021). 

 

Figure 2.7: various GNN models generated with convolutional graph layers.  

(a) ConvGNN using several graph convolutional layers. (b) ConvGNN for graph classification with 

pooling and readout layers (Wu et al., 2021).  

2.4.2 Graph attention network (GATs) 

CNNs have demonstrated remarkable performance in tackling tasks like image classi-

fication (He et al., 2016), semantic segmentation (Jegou et al., 2017) and machine 

translation (Gehring et al., 2017) because of underlying data that is arranged in a grid-

like fashion. Because these systems may apply localized filters with tunable parame-

ters at each input point, they are particularly useful for various applications  (Veličković 

et al., 2018). 
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GATs represents a significant development in the field of GNNs. They address the 

shortcomings of previous models by incorporating masked self-attentional layers, 

which allow nodes to assess the relevance of the attributes of their neighbors without 

requiring costly matrix operations or prior knowledge of the network structure 

(Veličković et al., 2018). With this discovery, graph-structured data may now be repre-

sented more nuancedly, opening the door to using GATs for both transductive and 

inductive learning challenges. As demonstrated by Veličković et al. (2018), GATs attain 

or match state of the art (SOTA) results across numerous benchmarks, including cita-

tion network datasets and a protein-protein interaction dataset.  A major development 

in graph data modeling is the capacity of GATs to attend over neighborhoods dynami-

cally, offering a framework that is effective, easily customizable, and capable of han-

dling a variety of graph-based activities  (Veličković et al., 2018). 

 

Figure 2.8: Left: A weight vector is used to parametrize the attention mechanism that is in use.Right: 

An example of multi-head attention (Veličković et al., 2018). 

Figure 2.8 shows the graph attention mechanism of the model. Weighted node char-

acteristics, represented by the weight vector and LeakyReLU1 activation, are combined 

to determine attention coefficients. The multi-head attention approach visualization for 

a node and its neighbors on the right provides an example of how several attention 

processes are integrated, either by concatenation or averaging, to produce enhanced 

node attributes (Veličković et al., 2018). 

 

1 Leaky ReLU activation function is a well-liked solution to the shortcomings of the standard ReLU func-
tion in NNs by adding a tiny negative slope for negative function inputs.  
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3 Latest research and related work 

3.1 API, geometric similarity and machine learning applications 

Automatic drafting by API: 

Buric et al. (2021) focused their inquiry on the automation of drafting in CAD systems 

on the development of iDrafter1, a SOTA tool designed to automate the production of 

architectural drawings for mechanical parts. By utilizing the CAD system's API, the 

iDrafter, as shown in Figure 3.1, streamlines the process of drawing from 3D models, 

including dimensioning and the generation of drawing documents, views, and annota-

tions. The study emphasizes the tool's efficiency in producing 2D architectural draw-

ings from 3D B-Reps, addressing the laborious and prone to error nature of human 

drafting (Chen et al., 2001). A range of CAD models were used to evaluate the com-

putational efficiency and resilience of the iDrafter. Automated feature recognition 

(Chen et al., 2001) and expanding the platform's application to additional drawing kinds 

are the goals of further updates (Buric et al., 2021). 

 

Figure 3.1: iDrafter algorithm (Buric et al., 2021). 

 

1 iDrafter is an automatic dimensioning tool which enables the automatic creation of 2D architectural 
drawings from 3D model's B-Rep. 
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Determining whether the current document is a part document is the first step in the 

iDrafter algorithm.  Next, it examines and groups topological entities in the B-Rep. After 

that, it makes a new drawing document and generates three typical drawing views 

using the first-angle projection technique. The final procedures that methodically raise 

the precision and effectiveness of the drafting process are the D&T of these perspec-

tives (Buric et al., 2021). 

With the current version of iDrafter, only the three most popular views (front, top, and 

side) are created, which may not adequately depict the geometric complexity of the 

part being built. Additionally, the dimensioning algorithm's reliance on geometric sim-

plifications and the removal of additional annotations restrict the tool's suitability for a 

broader variety of design scenarios (Buric et al., 2021).  

3D Model Labeling with Geometric Similarity: 

Wang, Xu, Wang, Fang, and Sun (2022) developed a novel automatic labeling method 

for 3D models, focusing on the use of geometric feature similarity. Their technique 

integrates the Longest Common Subsequence (LCS) algorithm with Freeman chain 

code to match and identify geometric features to find the appropriate label objects for 

3D models. This approach is unique in that it can effectively and precisely automate 

the labeling process. Efficiency was boosted by 40% and labeling speed and accuracy 

were greatly improved as compared to older approaches. This invention addresses the 

challenges of automatic labeling by leveraging the geometric qualities of models, and 

it marks a significant breakthrough in the integration of image recognition and machine 

learning in the fields of intelligent design and digital manufacturing (Wang et al., 2022). 

Figure 3.2 depicts the automatic labeling of 3D models, using geometric feature match-

ing, clustering methods, and annotation structure optimization. This flow chart shows 

the sequential phases from the initial import of model design data, through the Free-

man chain code computation and LCS geometry matching, to the final annotation ver-

ification and completeness check. This visualization, which illustrates how each stage 

leads to the precise and effective automatic labeling of 3D models based on geometric 

similarity, provides a concise summary of the process (Wang et al., 2022). 
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Figure 3.2: Annotation process (Wang et al., 2022). 

Automated drawings by machine learning algorithm: 

The advancements in AI and machine learning technologies have greatly helped the 

field of CAD. Villena et al. (2022) offer a novel method for automating the generation 

of CAD drawings using machine learning methods. The study employs two NN frame-

works and a rule-based approach to automatically assign dimensions in drawings us-

ing supervised learning. While the authors admit that their approach can decrease 

manual labor in repetitive CAD activities, its capacity to handle complexity is limited, 

and rule-based automation is dependent on specialized CAD software (Villena Toro & 

Tarkian, 2022).   

Step I of the procedure is to construct a labeled dataset for machine learning, as shown 

in Figure 3.3 (Villena Toro & Tarkian, 2022). This first stage is crucial to train the com-

puter vision algorithm to recognize and classify different geometric aspects within CAD 

drawings.  By automating the labeling process, this step aims to decrease the amount 

of manual intervention while increasing the precision and effectiveness of the dataset 

preparation phase for machine learning applications in CAD systems. A VBA script is 

used to create the data set automatically, producing both the image and its label. In 
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Step II, an advanced computer vision model called the YOLOv51 algorithm is put into 

practice. This model has been taught to recognize and classify shapes and dimensions 

that are present in engineering drawings. This crucial stage uses machine learning to 

automate the detection and localization of significant features in CAD drawings (Villena 

Toro & Tarkian, 2022). 

 

Figure 3.3: Step I, data set generation (Toro et al., 2022). 

In Step III, as shown in Figure 3.4 (Villena Toro & Tarkian, 2022), a different NN is 

used to forecast the location and quantity of dimensions needed for each drawing, 

which progresses the automation process. The data is kept in matrices with the infor-

mation about the bounding boxes after being divided into classes (Villena Toro & 

Tarkian, 2022).  

 

Figure 3.4: Step III, model setup (Villena Toro & Tarkian, 2022). 

 

1 YOLOv5, or 'You Only Look Once' version 5, is a cutting-edge object detection model. This DL algo-
rithm uses a single NN architecture to effectively identify and categorize objects in photos or videos with 
high accuracy and speed. 
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The machine learning model's outputs are translated back into the CAD program in 

Step IV, which completes the automated process. The flow chart of Step IV is provided 

in Figure 3.5 (Villena Toro & Tarkian, 2022). In the final stage, the anticipated dimen-

sions are instantiated straight into the engineering drawings using a rule-based script. 

 

Figure 3.5: Finalizing the drawing (Villena Toro & Tarkian, 2022). 

The method described in this study integrates design automation and machine learning 

into a framework to produce automatic and customized 2D drawings (Villena Toro & 

Tarkian, 2022). The four-step procedure is provided for a single case study. Future 

breakthroughs will broaden its application to increasingly complicated items, highlight-

ing the ongoing need for improvements in machine learning integration into CAD plat-

forms  (Villena Toro & Tarkian, 2022).  For an extensive knowledge of the methodology, 

readers are advised to read the entire work as it provides a deeper understanding of 

its development and application. 

3.2 Research gaps 

This study deviates from the traditional dependence on algorithmic and manual ap-

proaches by investigating the new application of machine learning and AI, particularly 

focusing on SOTA CAD technologies and GNNs for the automatic annotation of the 

architectural models. Previous research in this area has mostly relied on different meth-

odologies and algorithms, often lacking the sophisticated features offered by machine 

learning and AI. This is particularly true when managing complex shapes and semantic 

details present in technical drawings. 

In summary, there has been a noticeable void in the automatic annotation of architec-

tural drawings in earlier studies as summarized below.  

• Inadequate exploration of sophisticated machine learning and AI techniques, 

particularly Graph Neural Networks (GNNs), for parsing and automating anno-

tations in architectural drafting. 
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• Lack of automatic dimensioning and annotation APIs to integrate machine learn-

ing results with architectural design software. 

• Lack of emphasis on addressing the complex shapes and semantic details pre-

sent in architectural drawings through advanced machine learning and AI meth-

odologies. Previous researchers focused particularly on mechanical compo-

nents, simple 2D and 3D shapes for automatic dimensioning and labelling. 

• Prior research primarily examined CSG and B-Rep data structures for architec-

tural drafting, along with technologies such as geometric similarity analysis and 

feature recognition to improve annotation. 

By introducing a GNNs approach to predict the label types for architectural drawings, 

this thesis aims to close this gap. Furthermore, a plugin that seamlessly integrates the 

machine learning results with APIs is being developed to enable communication with 

architectural environment for automatic annotation. In the next chapters, more infor-

mation on this novel strategy will be provided. 
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Our method is developing a GNN that predicts the interconnectivity of relationships of 

elements in BIM authoring software. We are extracting data from architectural draw-

ings and preprocessing them properly formulating graphs so to provide data for the 

training process. Finally, in the testing stage, the developed models receive architec-

tural drawings without annotations as input. Based on the predicted label types, it sub-

sequently produces the measurement type and the annotation itself. 

Figure 4.1 illustrates the improved automatic annotation process for CAD models with 

ServCAD implementation in the architectural environment. The procedure commences 

with an architectural drawing, which serves as the foundation for data generation. The 

crucial data items are subsequently recorded in the file named 'ElementInfo.txt'. This 

textual data serves as the initial stage in establishing the foundation for structured data 

analysis. 

 

Figure 4.1: Automatic creation of annotation via GNN, proposed pipeline. 

 

4 Methodology 
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Once the data is generated, the graph construction stage utilizes the information in 

'ElementInfo.txt' to construct a graph structure that acts as the basis for training the 

model for node categorization. Also, the complete version of the 'ElementInfo.txt' file 

was provided in Appendix B for Figure 1.1 to give a better understanding of the context 

of the file because it was foundation for all other flowing stages. All the other projects 

generate a similar file in the same structure with a greater length depending on the 

complexity of the architectural drawings. 

The input file 'element_data.csv' is essential for ServCAD since it provides the neces-

sary data for annotating the model after label prediction using GNN stage. The unpro-

cessed architectural drawing undergoes a transformation into a model with annotations 

at the automatic annotation stage, which is the ultimate phase of this procedure. The 

content of the 'element_data.csv' can be observed in Table 4.1. It is the snipped ver-

sion of the complete file which has more columns showing the all-node features that 

will be used for generating 'graphml' files and also for the training stage. The ‘ele-

ment_data.csv' is particularly important for finalizing the proposed method being an 

input file for the automatic annotation part and having predicted label types as a node 

feature. 

Table 4.1: The content of the 'element_data.csv' 
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In the upcoming chapters, each stage of the pipeline, starting from data production and 

ending with automatic annotation as depicted in Figure 4.1, will be comprehensively 

analyzed. A comprehensive explanation of the inputs and outputs generated at each 

level of the workflow will be given. A systematic analysis will be provided, illustrating 

the process of transforming and refining the data, commencing with the first extraction 

of fundamental information and culminating in the implementation of annotations.  

4.1 Data extraction and preprocessing 

4.1.1 Data generation 

To extract all the data needed for the components in the CAD environment, ServCAD 

is employed throughout the data production phase. After starting the initialization pro-

cess, which entails opening the output file where the collected data is supposed to be 

stored. Following processing, the building elements' dimensional properties are rec-

orded and reported. These elements are labeled when the data regarding the basic 

elements is stored. Lastly, any further information deemed necessary is supplied, lead-

ing to the creation of the 'ElementInfo.txt' file. Figure 4.2 provides a summary of the 

entire process. 

 

Figure 4.2 : ServCAD data generation algorithm. 
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Assigning the appropriate label to each building element was a crucial step in our pro-

cess. When identifying walls, we first referred to the base element information stored 

during dimension property reporting. If any wall had attached dimensional elements, it 

was labeled as type 1. To identify connected labels, we utilized the ACAPI_Group-

ing_GetConnectedElements() function, which allowed us to check for any connected 

labels to an element. If found, the label type was assigned as 2. In contrast, labeling 

doors and zone markers was a simpler process. For doors, we extracted specific node 

features, enabling us to assign them as label type 3. Similarly, zone markers were 

identified and labeled as type 4, leveraging pre-existing node features. 

Table 4.2: Extracted information from AD for further processing. 

 



4  Methodology 31 
 

Table 4.2, a comprehensive depiction of the data included in the 'ElementInfo.txt' file, 

summarizes the information retrieved from the architectural drawings. This table con-

tains a list of all the attributes that have been acquired. It covers all the information 

needed for the annotation and analysis of the CAD elements (wall, slab, zone and 

door), including positional data, descriptive labels, unique IDs, and geometrical dimen-

sions. 

4.2 Data representation 

4.2.1 Graph generation 

The 'ElementInfo.txt' file is the initial phase of the graph generation process, as seen 

in Figure 4.3. The system performs a loop that takes each file as input and outputs 

nodes and edges data, which are the fundamental building components of the graph. 

This data is then collected and eventually converted into data frames in order to effi-

ciently organize the information. After conversion, the element and accompanying an-

notation data are refined in a filtration step. The end product of this step is a collection 

of CSV files, which collectively comprises of the structured graph data ready for further 

processing and analysis.  

 

Figure 4.3: Graph generation with python. 

 

 



4  Methodology 32 
 

4.2.2 Edge data creation with Gilbert–Johnson–Keerthi algorithm 

The edge data in the graph construction process was produced using the Gilbert–

Johnson–Keerthi (GJK) distance algorithm, as shown in Figure 4.3. The distance be-

tween elements computed by this complex method had a major role in determining the 

construction of edges in the graph structure. By using a tolerance level on distance (in 

our case is 0.1), it became possible to precisely map the connections required for 

graph-based representations, enabling us to precisely identify relationship between 

adjacent element in the architectural drawings. 

4.2.3 Visualization in neo4j 

After edge, node, and graph files were created, visualization was crucial to verifying 

the quality and integrity of the data. This verification stage made use of Neo4j1 to dis-

play of nodes and connections. The vast scale and abundance of nodes and edges in 

the data made it impossible to visualize every created graph file. Graph data Figure 

1.1 was visualized in Figure 4.4. The nodes, edges, and connections between them as 

determined by the GJK algorithm discussed in the preceding chapter are displayed in 

this image.  

Appendix A.1 offers a more detailed representation of Figure 1.1. It offers a thorough 

understanding of all potential relationships between the building elements, including 

objects with annotations. Even though Figure 1.1 served as a starting point, the objec-

tive was to evaluate the applicability of graph generation and visualize more complex 

architectural drawings. Since more advanced architectural drawings are being used for 

training, this part was essential. Appendix A.1 included visualizations of the more intri-

cate drawings as well. This enhanced representation draws attention to the true intri-

cacy of the architectural drawings by eloquently depicting the intricate web of relation-

ships and the geographical context of each component in the model. This complex 

picture was not the visualizations used to train the data for the subsequent steps. 

Graphs collected from different projects (see Figure 4.5) were assumed to have the 

same element type as in Figure 1.1. Only the wall, door, and zone elements were used 

 

1 Neo4j is incredibly scalable and flexible graph database management system for storing, querying, 
and assessing connected data. 
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for training. Slab elements were not included in the automatic annotation process and 

were eliminated for lack of informative value. 

 

Figure 4.4: Visualization of sample project in Neo4j. 

 

Additionally, in Appendix A.2 graph representation of some example projects was also 

provided with annotation nodes. Although these graphs were not used as a part of the 

training process, they are provided to give an idea about implementation of future 

works such as automatic arrangement of the annotation elements. 

4.3 Dataset preperation 

The node features utilized for our model training included a combination of numerical 

attributes and one-hot encoded categorical variables. Numerical attributes such as po-

sition coordinates (pos_x, pos_y), bounding box dimensions (bb_xmin, bb_ymin, 

bb_xmax, bb_ymax, bb_zmin, bb_zmax), and dimensional properties (width, height, 

length) were considered. Additionally, categorical features such as 'element_type', 

'room_name', and 'room_number' were one-hot encoded to capture the categorical 

nature of these attributes. Table 4.2 illustrates the input features for our classification 

task and the red highlighted cell shows the one-hot encoded features. However, certain 

node features such as 'guid_id' and 'info_string' were disregarded in the training 
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process due to their non-categorical nature. Moreover, considering the classification 

task at hand, the output dimension of our model was determined to be 5 (see Figure 

4.2), corresponding to the five different label types assigned to building elements within 

the architectural drawings. 

After the creation of pytorch geometric, the graph’s split logic was applied to the dataset 

as in Figure 4.5. The dataset is composed of 64 graphs total, of which 49 were pro-

duced from 7 ArchiCAD1 sample projects and 15 were self-drawn to enhance the 

model performances. All the generated graphs have the same element features similar 

to the graph provided in Figure 4.4 without presenting the annotation nodes. The 

graphs include these elements used for the training, validation, and testing stages. 

 

Figure 4.5: Graph split logic for training, validation and testing. 

4.4 GNN Models 

4.4.1 Model definition and assumptions 

A thorough explanation of the architecture and definition of the GNN model utilized in 

this thesis was depicted in Figure 4.6. Initializing seeds is the first step in the workflow 

to guarantee reproducibility. The graph data is then processed by reading GraphML 

files. To make the node compatible with the NN, node properties are analyzed and 

relevant categorization nodes are one-hot encoded. One-hot encoding is carefully 

used before the PyTorch Geometric framework is introduced since it eliminates nodes 

that are unclassifiable. When building and integrating the GNN model, a customized 

 

1 Archicad sample projects: https://community.graphisoft.com/t5/Getting-started/Archicad-Sample-Pro-
jects/ta-p/304186 
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loss function called Cross-EntropyLoss with class weights is coupled with the Adam 

optimizer to handle class imbalance. A learning rate (LR) scheduler called 'ReduceL-

ROnPlateau' is used to dynamically adjust the LR in response to validation lThioss. 

 

Figure 4.6: GNN training logic with pytorch 

The Data Loader effectively shuffles and batches the data during the rigorous training 

phase, allowing the model to learn throughout each epoch. The model continues into 

the following epoch if the validation loss decreases; if not, a deliberate adjustment is 

made to the LR. Throughout this process, continuous monitoring is implemented, yield-

ing a variety of metrics and graphics like loss charts, accuracy graphs, and confusion 

matrices. This all-encompassing method ensures that the model performs reliably both 

during training and testing, and that it is correct and generalizable in the latter stages.  

Following training, the model goes through testing, when it predicts outcomes by using 

the patterns it discovered during training. This makes it possible to assess if the model 

can generalize to new, unseen data. The methodical documenting of process out-

comes, including the model's accuracy and the training loss progression, will be pre-

sented in Chapter 5. 
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4.4.2 GCN Architecture 

In order to process the graph data efficiently, the two-layer structure that defines the 

architecture of the GCN used in this thesis is designed to have the input dimensionality 

tailored to the unique properties of the nodes. The network has 256 neurons in its 

sizable hidden layer. As seen in Table 4.3, it concludes with an output layer meant for 

five distinct categories (see Figure 4.2). The Rectified Linear Unit (ReLU)1 activation 

function is employed in between the convolutional layers to introduce non-linearity into 

the learning process. To avoid overfitting, half of the neuron activations during each 

training cycle are arbitrarily removed at a dropout rate of 0.5. Finally, as shown in Table 

4.3, PyTorch's default settings manage weight initialization and provide a solid basis 

for the network's weight parameters. 

Table 4.3: GCN architecture 

 
 

4.4.3 GAT Architecture 

In contrast to the previously mentioned GCN, the GAT model incorporates an attention 

mechanism in its two-layered structure, as illustrated in Table 4.4. By employing this 

approach, the model can focus its attention on the specific regions of the input graph 

that are most pertinent to the purpose of the thesis. In order to enhance the model's 

ability to recognize various types of relationships within the input data, the GAT 

 

1 ReLU is a popular activation function for NNs that creates non-linearity by directly outputting the input 
when it is positive and zero otherwise. 
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incorporates attention heads. In the first layer, specifically, 22 attention heads are em-

ployed. The lack of attention mechanism in the GCN model is a significant differentiat-

ing factor. 

In order to ensure a reliable as well as effective comparison between the output of 

these two models, all other model parameters, such as input and output dimensions, 

hidden layer size, activation function, dropout rate, and weight initialization, have been 

kept consistent. 

Table 4.4: GAT architecture. 

 
 

4.5 Automatic Annotation with ServCAD 

The final phase of the procedure, seen in Figure 4.7, utilizes the label predictions gen-

erated during the testing phase. These labels have been incorporated into the 'ele-

ment_data.csv' file produced during the graph generation stage and serve as the foun-

dation for further processing. The content of the element_data.csv' was already men-

tioned in  Table 4.1 which has the all node features necessary to automatically create 

annotation such as their positions, dimensional properties (width, height, length), and 

most importantly predicted label types. Based on the predicted label type, related APIs 

from the ServCAD plugin are invoked to create automatic annotation. To suitably label 

walls, doors, and zones, for instance, several functions like CreateDimensionFor-

Walls(), CreateLabel-ForDoors(), and CreateZone() are called. 
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Figure 4.7: ServCAD automatic creation of annotation algorithm. 
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5.1 API functions 

An essential element in automating the process of annotating architectural models was 

the incorporation of ServCAD with API functions1, a list of which may be found in Table 

5.1. Through a series of specific API calls, the system processed elements inside the 

architectural program, registered custom menus, and installed menu handlers to gen-

erate and manipulate data quickly.  

Table 5.1: C++ API Functions 

 

 

1 API functions: https://graphisoft.github.io/archicad-api-devkit/functions.html 

5 Results and Analysis 
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The C++ API had functions that allowed one to connect similar items by aligning them 

with anticipated labels to automate annotations, construct new elements with specific 

attributes, and retrieve element properties. 

5.2 User interface (UI) in the ArchiCAD  

Data extraction and annotation are made easy by ServCAD through a menu located 

inside the ArchiCAD interface. Features with names like 'Automatic Annotation, ' 'De-

lete ADZL', and 'Extract BE' are easily accessible. Although the 'Automatic Arrange-

ment' feature is included in the menu, it is not examined in this thesis. Its inclusion is 

intended to be a work in progress; while its functionality is not yet complete, this sug-

gests that ServCAD's potential for improvement and expansion may be realized in fu-

ture projects. Figure 5.1 shows the location of the ServCAD in the BIM authoring tools, 

ArchiCAD 27. 

 

 

Figure 5.1: ServCAD UI in the Archicad 27 

5.3 Hardware and software 

To complete my thesis, a wide variety of hardware and software were used; Figure 5.2 

provides specifics. A desktop computer and a laptop were employed to accommodate 
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the different stages and requirements of the investigation. The laptop was more porta-

ble and convenient with its Intel(R) Core(TM) i7-8550U CPU and 16GB RAM, but the 

desktop with its NVIDIA Quadro P2000 graphics card and 32GB RAM was a better 

option due to its higher processing capability. This allowed for a thorough testing of 

several GNN model architectures and hyperparameters. 

 
 

Figure 5.2: Hardware and software. 

It showed that the computational difference between the CPU and GPU setups had no 

discernible impact on the outcomes for the same hyperparameters. For the purposes 

of this thesis, the results of the CPU-based setup were therefore employed. Because 

of the GPU's greater processing capability for more complicated architectural drawing 

with more nodes and label types, the choice may shift in the future in favor of employing 

it. 
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5.4 Training the GNN Model 

The GNN model was developed using the methods and presumptions listed in Table 

5.2. To help with the optimization process, the Adam optimizer1 which is renowned for 

its adaptable LR characteristics was employed. It started out with a value of 0.01. Class 

weights determined from the frequency of each class in the training dataset were 

added to the CrossEntropyLoss2 function, which was applied equitably to the model's 

loss calculations to resolve any potential class imbalance. To further prevent overfit-

ting, L2 regularization which has a lambda value of 0.001 was employed. A batch size 

of 16 was used to process the data.  The model training schedule, with a provisional 

limit of 750 epochs, included an early stopping mechanism based on validation perfor-

mance to reduce overtraining and promote model generalization. 

Table 5.2: GNN model definition and proposed techniques  

 

To optimize training efficiency, the LR scheduler parameters for the GNN model were 

configured as shown in Table 5.3.  The 'min' mode was selected, indicating that the LR 

would be lowered if a validation loss did not improve. The LR would be reduced to a 

tenth of its present value whenever the requirement was met because the LR reduction 

factor was set at 0.1. The model was given 30 epochs of patience, which meant that it 

may train for a predefined period of time before changing the LR in the event that the 

 

1 The Adam optimizer, also known as 'Adaptive Moment Estimation', is an iterative optimization algo-
rithm that reduces the loss function when NN are being trained. 
2 Cross-entropy loss is employed when training a supervised learning algorithm for classification tasks. 
It is applied when changing the model weights in a training. Minimizing the loss is the goal; a smaller 
loss indicates a better model. 
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validation loss did not improve.  Lastly, the verbose setting was used to offer clarity 

and insights into the training dynamics. This made sure that updates on LR modifica-

tions and training status were reported. 

Table 5.3: LR schedular 

 

The sections that follow discuss how the GCN and GAT models trained in comparison. 

Comprehensive analyses comprising confusion matrices, accuracy assessments, and 

loss curves are used to explain the models' results. 

5.4.1 Training the GCN Model 

Training and validation curves: 

Figure 5.3 displays the training and validation loss metrics for the GCN model over 

several epochs. At the beginning, there is a noticeable decrease in training and vali-

dation loss, which suggests quick learning. As the epochs proceed, the losses level 

off, indicating the model's convergence and stabilization. The closeness of the training 

and validation loss lines suggests that the model has strong generalization and is not 

overfitting to the training set. 
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Figure 5.3: Training and validation loss over epochs for GCN. 

The validation accuracy plot of the GCN model (refer to Figure 5.4) exhibits a positive 

trend over the course of the training epochs. After a period of rapid advancement, the 

model's precision stabilizes at an elevated level, suggesting that it can generalize from 

the training set to the validation set with effectiveness. The elevated precision plateau 

is an indication of the model's constant performance over time and shows that it has 

been successful in capturing the essential features needed for dependable prediction. 

 

Figure 5.4: Validation accuracy over epochs for GCN 
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Class accuracy and confusion matrix: 

 

Figure 5.5: Label classification accuracy for GCN model 

Figure 5.5 shows the per-class precision histogram of the GCN model, which shows 

how different categories function. 'No Label', 'Connected Label' and 'Door Marker' clas-

ses exhibit exceptional accuracy, while 'Wall with Dimension' and 'Zone Stamp' classes 

exhibit lower accuracy. This distribution of accuracies is most likely caused by the class 

imbalance in the training data, where the model is more frequently exposed to some 

classes and hence becomes more proficient in recognizing them.  

Moreover, the number of precise estimates for the GCN model is displayed by the 

numbers in the diagonal cells of the confusion matrix (see Figure 5.6). These cells 

demonstrate the model's capability to accurately identify these classifications, with high 

numbers for 'No Label', 'Connected Label' and 'Door Marker' and reasonable counts 

for classes like 'Wall with Dimension' and 'Zone Stamp ' as it was also illustrated in 

class accuracy histogram. On the other hand, the diagonal illustrations for 'Zone 

Stamp' and 'Connected Label' are comparatively lower, suggesting that these areas 

require further model improvement.  
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Figure 5.6: Confusion matrix for GCN model. 

5.4.2 Training the GAT Model 

Training and validation curves: 

Like the GCN model, the GAT model exhibits an initial dramatic decrease in training 

and validation losses as depicted in the Figure 5.7, followed by a plateau that signifies 

the model has achieved a stable point of learning. The constant validation loss indi-

cates that the GAT model, similar to the GCN model, effectively learns from the training 

data without overfitting. This is evident from the tight connection between the loss met-

rics of the two models. 
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Figure 5.7: Training and validation loss over epochs for GAT. 

 

Figure 5.8: Validation accuracy over epochs for GAT 

With respect to validation accuracy as provided in Figure 5.8, the GAT model maintains 

a consistently high level of accuracy throughout the training process, which is con-

sistent with the excellent performance reported in the GCN model. Overall, both mod-

els achieve similar high validation accuracies, with the GCN model exhibiting some-

what more stable learning dynamics.  
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Class accuracy and confusion matrix: 

Regarding the GAT model, the per-class accuracies indicate that certain classes, such 

as 'No Label', 'Connected Label' and 'Door Marker' have high levels of accuracy. In 

fact, 'Connected Label' achieves perfect classification (100 %), as shown in Figure 5.9.  

This suggests that the attention processes, which focus on important elements of the 

graph framework, can assist the GAT model in effectively differentiating between these 

categories.  Nevertheless, several classes like 'Wall with Dimension' and 'Zone Stamp' 

exhibit noticeably lower accuracy rates, which may be attributed to various factors, 

including class imbalances. 

 

Figure 5.9: Label classification accuracy for GAT model. 

The confusion matrix in Figure 5.10 of the GAT model demonstrates a substantial num-

ber of accurate predictions, suggesting that the majority of classes have been classi-

fied with precision.  Predictions of the class distribution indicate a significant improve-

ment over the GCN model specifically for label types 0,2 and 3. However, there is some 

degree of uncertainty, particularly with the differentiation between the 'No Label' cate-

gory and other labels, and to a lesser degree regarding the predictions related to 'Zone 

Stamp'. These incidents of misclassification indicate potential avenues for further 
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development of the model, such as enhanced training procedures, data rebalancing, 

or architectural enhancements. 

 

Figure 5.10: Confusion matrix for GAT model 

Additionally, Table 5.4 shows the classification accuracy of various attention heads, 

ranging from 4 to 24, within our model for different class types. Notably, attention head 

22 was found to be the most effective among them all, consistently delivering better 

performance across several classes. The highest accuracies were achieved for 'Con-

nected Label (2) ' at 100%, and it was among the top performers for 'Door Marker (3)' 

and 'No Label (0) '. Given these results, attention head 22 was selected for detailed 

reporting. 
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Table 5.4: Class accuracy for different attention heads for GAT model 

 

A detailed discussion of the potential causes of the variations in training results be-

tween the models will be presented in Chapter 6, which will shed light on how much 

better GNN predictions could be made. 

5.5 Automatic creation of annotation 

The results of the automated annotation procedure for the example projects are pre-

sented in this section. The prediction results for the test graphs will demonstrate how 

the annotating capabilities of the model are applied in practical situations, giving a clear 

image of how the model's predictions are translated into annotations in the architectural 

drawings.  

Three architectural drawings are shown in this Figure 5.11, Figure 5.12, Figure 5.13, 

Figure 5.14 to illustrate the annotation capabilities of our ServCAD. The ground truth 

drawing, which offers comprehensive annotations and dimensions used as the refer-

ence standard and is shown in the bottom right panel. The raw model, which is pro-

vided in the top portion of the figures without any annotations, is created using this 

ground truth. This raw model is subjected to the automatic annotation procedure that 

is carried out using ServCAD. The bottom left panel displays the automated annotation 

results, which demonstrate how the GNN predictions were mapped back to the archi-

tectural environment. 
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Figure 5.11: Result of the automatic annotation for Sample Project 2 with ServCAD 
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Figure 5.12: Result of the automatic annotation for Sample Project 3 with ServCAD 
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Figure 5.13: Result of the automatic annotation for Sample Project 5 with ServCAD 
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Figure 5.14: Result of the automatic annotation for Sample Project 6 with ServCAD 
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6.1 Discussion 

This study investigates the relatively uncharted topic of AI in architectural drafting while 

also adding to the existing understanding in response to the research questions pre-

sented in section 1.2.  Architectural drawings are intricate and multi-layered, requiring 

a level of understanding and interpretation that is challenging for existing methods to 

give without machine learning and AI underpinnings.  

This research offers a significant step towards enhancing automatic annotation pro-

cesses by merging GNNs, powered by machine learning and AI, to make sketching 

more visually appealing and context aware. By focusing on automatic annotation using 

GNNs, this study contributes to resolving current technical limitations and imagines a 

future where AI technologies will significantly accelerate the architectural design pro-

cess from inception to completion. Since machine learning is inherently scalable, these 

approaches can be expanded to more complicated designs in the future. This adapta-

bility demonstrates the broader revolutionary potential of the study and establishes the 

foundation for future advancements in architectural design and annotation at various 

levels of complexity. 

The data generating process we employ confirms the efficacy of the ServCAD system 

in efficiently extracting data from the architectural environment. Data extraction was 

successful not just for our initial sample project (Figure 1.1), but also for an additional 

22 projects (7 from official ArchiCAD, 15 projects self-drawn) of varying complexity. 

This accomplishment showcases ServCAD's proficiency in navigating architectural 

data and accurately capturing crucial element relationships and information. To guar-

antee the data acquired is relevant and coherent, the procedure adhered strictly to 

established assumptions, focusing on significant architectural components such as 

walls, slabs, zones, and doors, while omitting others. 

This methodical approach to data collection highlights ServCAD's precision and agility 

in obtaining pertinent information from complex architectural projects. The accuracy of 

the example projects was clarified by visualizing the nodes and edges with neo4j. Ap-

pendix A.1 and Appendix A.2 showed the visualization of the certain graphs. As we 

already mentioned, the Appendix A.1 was our foundation for the machine learning part. 

6 Discussion and Limitations 
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Appendix A.2 also includes the annotation nodes to show the true picture of example 

projects to inspire the future works. The distinctive data extraction needs of our GNN 

models were successfully met, establishing a solid foundation for training and testing 

the models using real architectural data. The efficacy of ServCAD in this scenario not 

only showcases the potential of integrating SOTA machine learning techniques into 

architectural drawings, but also underscores the need of targeted data extraction meth-

ods in facilitating substantial AI applications inside BIM workflows.  

The investigation of GNNs, with a specific emphasis on GCNs and GATs, for the pur-

pose of predicting label categories in technical drawings has produced valuable and 

enlightening results. Both models underwent a thorough evaluation under similar con-

ditions, including the same hyperparameters and graphs for training, validation, and 

testing. This was done to ensure a fair comparison between the two models. The re-

sults suggest that the GAT model demonstrates higher performance in reliably predict-

ing certain label types (see Figure 5.9). GAT model achieved the highest accuracies 

for 'Connected Label (2)' with 100% and for 'No Label (0)' and 'Door Marker (3) ', it has 

the 90 % and 91% accuracy respectively. This is explained by the GAT model's capac-

ity to dynamically determine each node's relative importance within the graph, provid-

ing a more complex interpretation and representation of the architectural drawings. On 

the other hand, GCN shows better performance to predict more label types (see Figure 

5.5) with reasonable amount. 

However, the low performance of the GAT model on certain labels such as 'Wall with 

Dimension' and 'Zone Stamp' can be largely because of class imbalance and the na-

ture of the neighborhood structure of the graph data. The effectiveness of GAT models 

is deeply influenced by the neighborhood structure, as these models use the relation-

ships and interactions between nodes to make predictions. If these features are not 

effective in differentiating the classes, this could lead to lower performance of the 

model. Given the limitation of needing to fair compare results between the GAT and 

GCN models without extensive hyperparameter modifications, it would be beneficial to 

explore GAT specific settings that could potentially address these issues. 

6.2 Limitations 

Data Generation 

Our reliance on the ArchiCAD C++ API was a major limitation during the data genera-

tion phase, despite all of its features. Its capacity to record all the features needed for 
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our models is restricted. The range of architectural elements we could include was 

restricted by the function ACAPI_Grouping_GetConnectedElements(), which only 

worked with specific element types: API_WindowID, API_DoorID, API_SkylightID, 

API_LabelID, and API_OpeningID. Limiting the extraction of bounding boxes for di-

mension elements and dimension text which are represented by a single point, also 

reduced the amount of detail in our dataset. Notwithstanding these limitations, the C++ 

API proved to be really beneficial in procuring particularized facts for our inquiry. The 

Python API became less appropriate, particularly when it comes to capturing compli-

cated element relationships, because it is more current and has more constraints than 

the C++ API. 

Moreover, our research was based on an analysis of a model project that included 

basic architectural elements such the zones, slabs, doors, and walls depicted Figure 

1.1. The vast number of labels and annotations found in more complex architectural 

drawings is not included in this as a part of the thesis. As a result, the present API 

version has limitations regarding the automatic labeling in more complicated designs. 

However, our created algorithms are scalable and could be applied in the future to 

more complex architectural drawings, similar to ServCAD. Since our main interests are 

significant building elements and annotations, this adaptability is very crucial. 

Model Architecture and Training 

Data from 22 projects were added to our dataset for model training, some of which 

featured highly complex drawings with a range of floor plans and architectural ele-

ments. The goal of this project was to improve the dataset's comprehensiveness, with 

a focus on a variety of wall kinds, including interior partitions and outside, fire-rated, 

and both. Dimensions were given the type 1 name, indicating their relationship to di-

mensions and their essential function in dimensioning, because they are mostly asso-

ciated with outside walls in the architectural context. However, a significant portion of 

the information had a label class '0', suggesting that certain walls had no dimensions, 

which created a clear imbalance in the label classification. 

For final results, CPU based system was used (see Figure 5.2). In particular, this hard-

ware choices helped to efficiently handle GCNs and GATs. It is important to 

acknowledge that, even with the careful comparison of the GCN and GAT models un-

der identical hyperparameter and training conditions, the research into potential model 

performance might have been constrained by the focus on these two models alone, as 
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well as the specific hyperparameter configuration. Regarding accuracy in prediction 

and model efficiency, alternative GNN architectures or even a different hyperparameter 

configuration might produce better results. 

Additionally, as the confusion matrixs in Figure 5.6 and Figure 5.10 illustrates, the train-

ing results exhibit variations in prediction accuracy between various label classes. This 

volatility is mostly caused by the imbalanced nature of our dataset, especially when it 

comes to dimension connections with various wall kinds. By introducing the class 

weights, the models demonstrated a unique capacity to offset these imbalances and 

offer a more accurate label prediction across several architectural components. How-

ever, particularly in GAT model, some label classes ('1' and '4') accuracies are low. 

This could be because the limitation that we had for model architecture, special atten-

tion on the GAT model with increasing layer size and other hyperparameters (such as 

batch size, attention heads), may result in better performances. 

This study shows the importance of label distribution imbalances, and it also suggests 

that future research should examine a wider variety of GNN models and hyperparam-

eter configurations in order to achieve better results. Moreover, larger-scale trials could 

be made possible by advancements in computational hardware and optimization algo-

rithms, which could lead to the discovery of more effective techniques for the automatic 

annotation of intricate architectural models.  

Integration into Architectural Environment 

There were several challenges in reintegrating the predictive capabilities of the models 

into the architectural environment, chief among them being limitations in the API used 

to replicate dimensions and annotations in architectural software. We were able to ef-

fectively build wall dimensions and zone and door markers using the API, however we 

encountered problems when attempting to further modify and enhance the look of 

these components. For example, when we attempted to enhance the appearance of 

dimensioned objects, texts, and labels, the capability of the API did not satisfy our 

expectations. 

These shortcomings highlight the need for a more robust and flexible API that can 

manage the intricate adjustments necessary for improved architectural drawings. The 

ability to automatically produce dimensions for significant architectural elements, such 

as walls and markers for zones and doors, was an amazing accomplishment in spite 

of these difficulties. The limits of the existing API, however, emphasize how important 
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it will be to update the program in the future to have a genuinely integrated system that 

can handle the demands of intricate architectural projects. These gaps could be filled 

by providing additional options for modifying and enhancing the appearance of dimen-

sioned items and annotations. 

As architectural drawings and documentation move more and more toward digital and 

automated procedures, APIs will need to change to accommodate more intricate 

changes. These advancements would enhance the overall caliber and use of digital 

architectural drawings in addition to simplifying the integration of AI-generated com-

ments into architectural workflows. Expectations for more powerful versions of APIs 

reflect a broader industry trend toward improving the flexibility and interoperability of 

digital design tools, which is necessary for the effective use of AI technology in the 

architectural domain. 

 



7  Conclusion 60 
 

7 Conclusion  

7.1 Summary 

This thesis extensively examined several important questions regarding the application 

of advanced machine learning techniques, especially GNNs, to improve architectural 

design processes. By addressing the questions, the current study has significantly im-

proved the field and created methods that have the potential of fostering the adoption 

of increasingly sophisticated and automated architectural drafting procedures. The pri-

mary algorithm of the study, ServCAD, demonstrated its effectiveness in both the data 

production stage and the annotation creation process based on predicted label types, 

which made it beneficial for automating and enhancing architectural design operations. 

The answers to the research questions from section 1.2 are provided below, 

1. Information about building and annotation properties, such as dimensional prop-

erties and annotation objects like dimensions and labels, were successfully ex-

tracted using specialized C++ API functions. Table 5.1 provides a detailed over-

view of the API function that supports the functionality of the ServCAD algorithm 

and outlines the various functions and capabilities of this API. This table con-

tains a thorough documentation of the API functions used in the study. 

2. During the data generation phase, a large amount of C++ API utilized for  the 

successful automation of the label categorization process as it also illustrated 

in the Figure 4.2. By using the identified C++ API, methods were developed that 

automatically associate labels with matching building elements, ensuring a 

seamless transmission of relevant data for GNN training. 

3. The C++ API was helpful to get interconnectivity between architectural elements 

and annotations. This information improved the dataset for GNN training by en-

abling accurate label and dimensional property mapping. As it already provided 

in the Table 5.1, some functions were useful such as ACAPI_Group-

ing_GetConnectedElements() to get relationship been element and connected 

label. 

4. The study explored how to configure a GNN to accurately predict label types by 

optimizing the network architecture, fine-tuning hyperparameters, and ensuring 

the quality and relevance of the training data that is extracted from the architec-

tural environment. 
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5. Annotation creation was made automated by reintegrating GNN predictions into 

the architectural environment. Figure 5.11, Figure 5.12, Figure 5.13 and  Figure 

5.14 shows how the ServCAD system can dynamically generate concise and 

contextually relevant annotations within architectural drawings, exemplifying 

how well it can automate the development of annotations. 

This thesis provides valuable knowledge and practical approaches to enhance the au-

tomation and intelligence of the architectural drafting and design processes, effectively 

addressing the difficulties it raised. The development and implementation of the 

ServCAD algorithm, reinforced by the tacit use of a C++ API, has demonstrated the 

potential of GNNs for automatic annotation of architectural drawings. This achievement 

is a critical step toward the digital transformation of architectural practices, as well as 

a means of generating chances for further research and development in the field of 

architecture. In summary, this study represents a major advancement in the digital 

transformation of architectural drawing and documentation workflows by highlighting 

the potential of GNNs to improve the automation and intelligence of BIM procedures. 

7.2 Contributions 

The creation of the ServCAD plugin for ArchiCAD is a notable addition to the CAD 

community as well as an important part of the thesis. It becomes clear that ServCAD 

is a strong and adaptable tool that can extract a wide range of data from architectural 

drawings, even those with complex and intricate structures. ServCAD demonstrated 

its efficacy in precisely capturing the dimensional and relational features of architec-

tural elements through rigorous development and testing. 

Furthermore, this thesis explored the use of GNNs to predict label types in architectural 

drawings, which are a component of intricate architectural compositions, which is a 

novel application. Moreover, the ServCAD algorithm has shown effectiveness in pro-

ducing raw models from annotated architectural drawings, indicating that its potential 

goes beyond data extraction. This feature creates opportunities for improved architec-

tural analysis in addition to making it easier to test innovative annotation strategies. 

The successful generation of dimensions, zone stamps, and door labels effectively 

shows how ServCAD is implemented efficiently to close the gap between design and 

documentation. 
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7.3 Future Works 

In terms of further analyzing and utilizing the architectural drawings, ServCAD's future 

development holds great potential. One important thing that needs to be done is to 

make ServCAD more flexible so that it can handle the complexity of contemporary 

architectural drawings. With continued technological progress and API development, 

ServCAD can be enhanced to capture complex relational structures and extract more 

data from architectural drawings. ServCAD can grow to analyze a greater variety of 

architectural elements by going beyond the analysis of standard elements like walls, 

slabs, zones, and doors. This will increase the tool's usefulness and suitability in a 

variety of architectural contexts. 

In addition, future versions of ServCAD could focus on including sophisticated func-

tionalities meant to automate several aspects of architectural analysis and visualiza-

tion. Apart from its current features of data generation, raw model creation, and auto-

matic annotation, ServCAD can be improved to expedite the arrangement process for 

improved annotation visualization. In addition to increasing productivity, ServCAD's 

automation of these processes gives architects and designers a better understanding 

of architectural compositions, which aids in well-informed decision-making and design 

improvement. These developments ultimately establish ServCAD as a complete and 

essential tool in the toolbox of architectural professionals, leading to creativity and 

quality in architectural analysis and design. 
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Appendix A.1: Graph visualization for sample projects used for machine learning 

part without annotations. 
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Appendix A.2: Graph visualization for sample projects including annotation 

nodes 
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